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ABSTRACT

Dynamic Binary Instrumentation (DBI) is one way to monitor a distributed system in

real-time without modifying source code. Previous work has shown it is possible to in-

strument distributed systems using standards-based distributed middleware. Existing work,

however, only applies to a single middleware, such as CORBA.

This thesis therefore presents a tool named the Standards-based Distributed Middleware

Monitor (SDMM), which generalizes two modern standards-based distributed middleware,

the Data Distribution Service (DDS) and gRemote Procedure Call (gRPC). SDMM uses

DBI to extract values and other data relevant to monitoring a distributed system in real-

time. Using dynamic instrumentation allows SDMM to capture information without a priori

knowledge of the distributed system under instrumentation. We applied SDMM to systems

created with two DDS vendors, RTI Connext DDS and OpenDDS, as well as gRPC which

is a complete remote procedure call framework. Our results show that the data collection

process contributes to less than 2% of the run-time overhead in all test cases.
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1. INTRODUCTION

Distributed middleware, such as the Data Distribution Services (DDS) [ 23 ] and gRemote Pro-

cedure Call (gRPC) [  27 ] are designed for large distributed systems that have many endpoints

and components. An important aspect of these systems is real-time monitoring because it

ensures the system is functioning properly and meeting its performance requirements [  18 ].

For example, real-time monitoring can provide feedback to stakeholders that the distributed

system is offline, missing end-to-end deadlines, and show the data values to events when

deadlines are missed. Regardless of how system architects apply real-time monitoring, it is

vital to providing critical information to stakeholders.

There are two approaches to monitoring distributed systems, intrusive [ 10 ] and non-

intrusive [  32 ] instrumentation. Intrusive instrumentation is when coders modify source code

to collect data, such as logging events, by recording timestamps and content. The advantage

of intrusive instrumentation is instrumentation code becomes a part of the execution flow.

The disadvantage to this approach is any change to the distributed system requires changes

to the instrumentation code—if not complete removal—since the instrumentation is tied to

specific blocks of code.

The second approach is to use non-intrusive instrumentation, which is when data is

collected without modifying source code. Dynamic binary instrumentation (DBI) is one form

of non-intrusive instrumentation. In DBI, code is injected at run-time into the binaries for the

software under instrumentation. When the program terminates, the binaries return to their

original state before undergoing DBI. The advantage of this approach is it allows stakeholders

to delay decisions related to instrumentation, such as what data to collect and when to collect

it, to later in the software development life cycle. The disadvantage, however, is that more

execution overhead is brought into the system compared to the intrusive approach. Because

non-intrusive dynamic binary instrumentation allows stakeholders to analyze third-party

binaries [ 20 ], we believe it has potential to provide more visibility into distributed system

behavior compared to intrusive instrumentation. An example of third-party binaries are the

distributed middleware provided by a vendor.
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The advantage to using distributed middleware, such DDS and gRPC, is they make pro-

gramming a distributed system easier and more portable [ 7 ]. The interfaces in middleware,

which all vendors comply to, are often written with patterns to the symbols. These patterns

could be anything repetitive, or noteworthy, such as attaching the same symbol to procedure

names or the ordering of data types in parameter lists. We refer to these patterns as pro-

gramming standards. In the context of dynamic instrumentation, programming standards

become the gateway into a distributed system.

Satyanarayana et al. [ 28 ] has shown that systems developed with CORBA [ 22 ,  30 ], a

standards-based distributed middleware, can be monitored with DBI. Although the existing

work shows that DBI can be used to instrument standards-based distributed middleware,

there is unanswered questions:

1. Can DBI be used to instrument other standards-based distributed middleware such as

DDS and gRPC?

2. If so, can the individual solutions be generalized into one common approach?

Based on the questions above, we developed a generalized approach for non-intrusive

instrumentation of distributed middleware. The approach is realized in a tool called the

Standards-based Distributed Middleware Monitor (SDMM). To use SDMM, the user supplies

a configuration file that indicates the distributed middleware, the binary files for the system

under instrumentation, and the interface definition file that the distributed middleware use.

This is a generalized approach since any distributed middleware and relevant binaries can

be represented in the configuration file.

SDMM will then discover the methods used for initializing data and component commu-

nication which are defined within the interfaces of distributed middleware. Those methods

are entry points into the system, which allows SDMM to identify the events passed between

components and extract information in real-time for analytical purposes. Our work therefore

extends the work completed by Satyanarayana et al. [ 28 ] in that SDMM supports any type

of distributed middleware if the developer can define a configuration file that matches the

above specifications.

The main contributions of this thesis are as follows:
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• It presents an approach to non-intrusively instrument any distributed system without

any a priori knowledge of the target system by leveraging programming standards;

• It discusses a strategy for identifying entry points for instrumentation in compiled

distributed middleware such as DDS and gRPC;

• It presents a generalized approach to represent any distributed middleware using a

configuration file and object composition;

• It presents an approach for non-intrusively extracting event data sent using a dis-

tributed middleware in real-time without a priori knowledge of the events; and

• It presents results of SDMM for run-time performance, CPU usage, and memory usage.

We evaluate SDMM on a distributed system from the shipboard computing domain. Three

versions were created with two DDS vendors, RTI Connext DDS [ 2 ] and OpenDDS [  1 ], as

well as gRPC. We executed those systems with SDMM for 10 minute periods. Our results

show that SDMM can extract the values from events communicated between components

and the tool accounts for less than 2% of the total run-time in all test cases.

1.1 Thesis Organization

The remainder of this thesis is organized as follows: Chapter  2 discusses related works that

cover instrumentation of middleware. Chapter  3 introduces the DBI frameworks Pin, Pin++,

and the case study used in this thesis. Chapter  4 presents challenges in non-intrusively in-

strumenting any distributed middleware and describes the design behind SDMM; Chapter  5 

presents experimental results and evaluates the performance of SDMM. Chapter  6 discusses

the limitations and future research directions to SDMM. Finally, Chapter  7 provides con-

cluding remarks.
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2. RELATED WORKS

This chapter offers a review of techniques others have created to instrument or analyze

distributed middleware. In particular, we compare our work to tools that use intrusive

and non-intrusive instrumentation. Table  2.1 also provides a summary of related work and

classifies them as intrusive or non-intrusive tools.

Table 2.1. Summary of related work classified by intrusive or non-intrusive tools.
Tool Intrusive Reference
Scalasca yes [ 34 ]
GCov yes [  6 ]
Component Port Monitor no [ 28 ]
Data Distribution Service no [ 26 ]
NetLogger no [  13 ]
Wireshark no [  25 ]

2.1 Intrusive Instrumentation Approaches

The theme of intrusive instrumentation tools is that they require modifications to source

code. SCALASCA [ 34 ], for example, is designed to instrument high performance computing

middleware such as MPI and OpenMP. Scalasca analyzes distributed systems by inserting

instrumentation code at the entry and exit of MPI or OpenMP function calls with their own

compiler named Score-P.

Another example is GCov [ 6 ], from the GNU Project, which is a tool that calculates

program code coverage. GCov will annotate C/C++ source code when the GCov compiler

flag is enabled. The annotated source files are passed to the GCov command line tool where

instrumentation occurs and code coverage results are written to stdout.

A main requirement for intrusive approaches is the availability of source code so annota-

tions are made at compile-time. Moreover, any changes to the source code also requires that

annotations are reapplied which can become a repetitive process for system maintainers. A

key difference between these approaches and SDMM is that SDMM does not analyze source

code. Instead, SDMM analyzes binary files at run-time.
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The problem with the intrusive approach is gaining access to the source code can be

difficult when using closed-source libraries or third-party middleware. The pros to analyzing

binary files is that binaries are always available on a machine. The cons to analyzing binary

files, however, is that instrumentation is injected and executed at run-time which can increase

run-time overhead.

2.2 Non-intrusive Instrumentation Approaches

Non-intrusive instrumentation tools refers to software that does not modify source code.

Examples of non-intrusive instrumentation are the Component Port Monitor [ 28 ], Net Log-

ger [ 13 ], Wireshark [  25 ], and even the Data Distribution Service [ 26 ] comes with instrumen-

tation methodology.

Satyanarayana et al. [ 28 ] created a Pintool, which SDMM was based on, called the

Component Port Monitor (CPM) that monitors CORBA events in real-time. Their Pintool

leverages CORBA coding standards to non-intrusively discover events and extract data from

methods prefixed with push . The authors successfully instrument event data in real-time

and show that data collection requires an average of 2 seconds. The differences between

their work and ours is twofold: (1) Our work extends CPM such that SDMM non-intrusively

instruments any distributed middleware instead of a single specification. (2) Our work

generalizes the design so new distributed middleware can be easily supported for real-time

monitoring.

Other tools such as NetLogger identify performance bottlenecks by using an API to

control the instrumentation process [ 13 ]. NetLogger instruments by simplifying log out-

put and display results with several visualizations. In contrast to NetLogger, SDMM uses

configuration files that represent the system instead of an API to instrument a distributed

middleware.

Wireshark is an open-source tool that analyzes network packets in numerous protocol

formats [  25 ]. Example protocol formats are the Real-time Publish-Subscribe protocol [  24 ]

which is used in DDS and Protocol Buffers [ 9 ] used in gRPC. SDMM is different from

15



Wireshark because it does not inspect low-level network packets but instead inspects the

events passed between components.

Lastly, the Data Distribution Service (DDS) also has methodology for instrumenting

itself [ 26 ]. DDS’s instrumentation listens to network communication between the objects

responsible for producing and consuming events, the DataWriter and DataReader. SDMM

is similar in that it instruments on communication methods such as write() and take(). Unlike

DDS instrumentation that is only for its specification, SDMM is designed as a general tool

to instrument any distributed middleware.

16



3. BACKGROUND

This chapter presents the instrumentation frameworks we used to analyze binary images

and monitor a running distributed system. We also introduce the case study and distributed

middleware used throughout this thesis. The middleware is described in the context of the

case study.

3.1 Pin

Intel’s Pin is a dynamic binary instrumentation (DBI) framework for the IA-32 and x86-

64 instruction-set architectures. Developers use Pin to create analysis tools, called Pintools,

that can instrument a C/C++ program at different levels: binary image level, routine level,

and instruction level. Pintools are developed independent from the target program and are

compiled into separate shared binaries. To instrument a C/C++ program, the shared binary

file is loaded into the Pin environment and executed at runtime.
1 s t a t i c UINT64 icount = 0 ;

2 VOID docount ( ) { i count++; }

3

4 VOID I n s t r u c t i o n ( INS ins , VOID ∗v ) {

5 I N S I n s e r t C a l l ( ins , IPOINT BEFORE, (AFUNPTR) docount , IARG END) ;

6 }

7

8 ofstream OutFile ;

9 KNOB<s t r i n g > KnobOutputFile (KNOB MODE WRITEONCE, "pintool" , "o" , "inscount.out" , "specify

↪→␣output␣file␣name" ) ;

10 VOID Fin i ( INT32 code , VOID ∗v ) {

11 OutFile . s e t f ( i o s : : showbase ) ;

12 OutFile << "Count␣" << i count << endl ;

13 OutFile . c l o s e ( ) ;

14 }

15

16 INT32 Usage ( ) {

17 c e r r << "This␣tool␣counts␣the␣number␣of␣dynamic␣instructions␣executed" << endl ;

18 c e r r << endl << KNOB BASE : : StringKnobSummary ( ) << endl ;

19 re turn −1;

20 }

21

22 i n t main ( i n t argc , char ∗ argv [ ] ) {

23 i f ( PIN Ini t ( argc , argv ) ) re turn Usage ( ) ;

17



24

25 OutFile . open ( KnobOutputFile . Value ( ) . c s t r ( ) ) ;

26

27 INS AddInstrumentFunction ( I n s t r u c t i o n , 0) ;

28 PIN AddFiniFunction ( Fini , 0) ;

29 PIN StartProgram ( ) ;

30

31 re turn 0 ;

32 }

Listing 3.1. Pin example that counts the number of instructions in a program.

Listing  3.1 shows an example Pintool that counts the number of instructions in a program.

Lines 1 & 2 define a callback function, docount(), that increments a counter. Lines 4-6 define

the Instruction() procedure used to inject docount() to every unique instruction in the binary.

Lines 8-20 define the Fini() function which is injected just before program exit and another

procedure that prints a helper message. Finally, lines 22-32 define the main function that is

responsible for starting the instrumentation process, injecting the above procedures into the

binary image, and executing the target program.

3.2 Pin++

The original Pin framework is fragile, rigid, hard to reuse, and difficult to understand [ 15 ,

 28 ]. To address those problems, Hill et al. [  15 ] extended Pin, which originally had a C-like

interface, into the C++ runtime. Named Pin++, their framework wraps many low-level

Pin procedures and symbols around C++ objects. The authors show that Pintools written

in Pin++ have a reduction in cyclomatic complexity, do not introduce additional overhead,

and improve performance in some cases. For these reasons we use Pin++, and consequently

Pin, as the instrumentation framework behind our approach.

There are three pieces to writing a Pintool in Pin++, the Callbacks, Instrument, and

Tool. Callbacks are objects with the methods used for instrumenting a C/C++ program.

These methods are injected into the binary images at run-time. The developer defines

when and where to insert Callbacks for instrumentation within the Instrument class. The

Tool objects are responsible for starting the instrumentation process, performing any tasks

before the program terminates, and usually contains the Instruments. Pintools written with

18



Pin++ must have one or more Tool instances but may have any number of Instruments

and Callbacks.
1 c l a s s docount : p u b l i c OASIS : : Pin : : Cal lback <docount ( void )> {

2 p u b l i c :

3 docount ( void )

4 : count (0 ) { }

5

6 void hand le ana lyze ( void ) {

7 ++ th i s −>count ;

8 }

9

10 UINT64 count ( void ) const {

11 re turn th i s −>count ;

12 }

13

14 p r i v a t e :

15 UINT64 count ;

16 } ;

17

18 c l a s s I n s t r u c t i o n : p u b l i c OASIS : : Pin : : I n s t r u c t i o n I n s t r u m e n t <I n s t r u c t i o n > {

19 p u b l i c :

20 void handle inst rument ( const OASIS : : Pin : : Ins & i n s ) {

21 th i s −>c a l l b a c k . i n s e r t (IPOINT BEFORE, i n s ) ;

22 }

23

24 UINT64 count ( void ) const {

25 re turn th i s −>c a l l b a c k . count ( ) ;

26 }

27

28 p r i v a t e :

29 docount c a l l b a c k ;

30 } ;

31

32 c l a s s inscount : p u b l i c OASIS : : Pin : : Tool <inscount > {

33 p u b l i c :

34 inscount ( void ) {

35 th i s −>e n a b l e f i n i c a l l b a c k ( ) ;

36 }

37

38 void h a n d l e f i n i ( INT32 code ) {

39 std : : o f s t ream fout ( o u t f i l e . Value ( ) . c s t r ( ) ) ;

40 fout . s e t f ( i o s : : showbase ) ;

41 fout << "Count␣" << th i s −>i n s t r u c t i o n . count ( ) << std : : endl ;

42
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43 fout . c l o s e ( ) ;

44 }

45

46 p r i v a t e :

47 I n s t r u c t i o n i n s t r u c t i o n ;

48 } ;

49

50 KNOB <s t r i n g > i n scount : : o u t f i l e (KNOB MODE WRITEONCE, "pintool" , "o" , "inscount.out" , "

↪→specify␣output␣file␣name" ) ;

Listing 3.2. Pin++ example that counts the number of instructions in a
program.

Listing  3.2 shows the same Pintool from Listing  3.1 written in Pin++. Lines 1-16 define

the Callback class for incrementing the counter to an instruction. Lines 18-29 define the

Instrument class used to setup and inject instrumentation into the binary images. Specif-

ically, line 21 inserts the docount object to every unique instruction in the binary. Lines

32-48 create the Tool object that is responsible for starting the instrumentation process

and defines what the Pintool should do when the program terminates in the handle fini()

method. Finally, line 50 defines the command line option to capture the output file name.

3.3 The SLICE Scenario

The case study we refer to throughout this thesis is the SLICE scenario, which is a dis-

tributed system from the domain of shipboard computing environments. It has been used in

prior research for emulating workloads for early testing of real-time distributed systems [ 14 ],

evaluating system execution modeling tools [ 31 ], conducting formal verification [  16 ], and

highlighting challenges of searching the deployment and configuration solution space of real-

time distributed systems [ 17 ]. With respect to everyday use, similar distributed systems are

used by the navy for shipboard computing [ 3 ]. A high-level diagram of the SLICE scenario is

shown in Figure  3.1 . Figure  3.1 illustrates that seven component instances form the SLICE

scenario: (from left-to-right) SensMain, SensSec, PlanOne, PlanTwo, Config, EffMain, and

EffSec. The directed black lines indicate communication points for event I/O between com-

ponents. Lastly, each component is deployed across two nodes in the target environment.

SensMain and SensSec have endpoints for event transmission over the network. EffMain and

EffSec have endpoints for receiving events. The other components PlanOne, PlanTwo, and

20



Figure 3.1. A conceptual, high-level diagram of the SLICE scenario.
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Config have endpoints both for transmitting and receiving events. Pin++, from Section  3.2 ,

is applied to the

3.4 The Distributed Middleware

The distributed middleware discussed in this thesis is the Data Distribution Service

(DDS) [ 23 ] and gRemote Procedure Call (gRPC) [ 27 ]. Out of the several implementations

of DDS we used RTI Connext DDS [ 2 ] and OpenDDS [ 1 ]. We treat gRPC as its own vendor

because there is only one implementation to gRPC.

We selected RTI Connext DDS because the library accounts for 70% of the DDS market

share [ 8 ]. We chose OpenDDS [  1 ] version 3.14 because the library is open-source, comes with

many build scripts that fit our development process, and is updated daily where as years

pass until other open-source implementations are updated. We based our development on

the DDS C++11 mapping for all implementations [ 4 ]. We used gRPC version 1.20 because

the latest version is not compatible with the operating system on our test bed.

In the context of the component layout from Figure  3.1 , representative interface defini-

tions are shown in Listing  3.3 for DDS and Listing  3.4 for gRPC.
1 s t r u c t PlannerOneEvent {

2 long eventcount ;

3 s t r i n g name ;

4 } ;

5

6 s t r u c t PlannerTwoEvent {

7 long eventcount ;

8 s t r i n g name ;

9 } ;

10

11 s t r u c t ConfigEvent {

12 long eventcount ;

13 s t r i n g name ;

14 } ;

15

16 s t r u c t Ef f ec torEvent {

17 long eventcount ;

18 s t r i n g name ;
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19 } ;

Listing 3.3. An example interface definition for the events in DDS in the
SLICE scenario.

1 s e r v i c e SLICEServer {

2 rpc SendEvent ( SimpleEvent ) r e t u r n s ( goog l e . protobuf . Empty) {}

3 }

4

5 message SimpleEvent {

6 in t64 eventcount = 1 ;

7 s t r i n g name = 2 ;

8 }

Listing 3.4. An example interface definition for the servers and events in
gRPC in the SLICE scenario.

For DDS, PlannerOneEvents are produced by SensMain & SensSec and consumed by

PlanOne. PlannerTwoEvents are produced by PlanOne and consumed by PlanTwo. Con-

figEvents are produced by PlanTwo and consumed by Config. Lastly, the EffectorEvents are

produced by Config and consumed by EffMain & EffSec.

For gRPC, every remote server has a single remote procedure named SendEvent() that

takes a SimpleEvent as input and returns Empty. Empty is a class defined by gRPC to

represent return type void. The SimpleEvent object is communicated between all endpoints

of the system.
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4. SDMM Design and Implementation

This chapter describes the design and implementation of the Standards-based Distributed

Middleware Monitor (SDMM). First we discuss the challenges in non-intrusively instru-

menting standards-based distributed middleware. Second is a discussion over the different

approaches to designing SDMM. Then we address each challenge in the context of the SLICE

scenario case study.

4.1 Implementation Challenges

Creating a tool to non-intrusively instrument any standards-based distributed middle-

ware is a non-trivial problem. This is because the instrumentation tool is unaware of the

middleware in use, the system composition and user defined types, as well as the binaries

used within the distributed system. For example, an instrumentation tool does not know

what distributed middleware is used. Likewise, an instrumentation tool is unaware of the

event types from Listings  3.3 &  3.4 , and does not know a priori what binary files to parse

through.

More specifically, creating a tool capable of non-intrusively instrumenting a distributed

system implemented using any standards-based distributed middleware has the following

challenges:

1. Generalizing distributed architecture. Our instrumentation tool must analyze a

distributed system irrespective of the different architectures used in distributed middle-

ware. For example, the Data Distribution Service (DDS) [  23 ] is based on the publisher-

subscriber architecture and is designed for asynchronous event communication. gRe-

mote Procedure Call (gRPC) [ 27 ], on the contrary, is based on the remote procedure

call (RPC) model where the client’s execution is suspended until control returns from

the RPC. The instrumentation tool does not have a priori knowledge of these differ-

ences between middleware and must adjust at run-time.

2. Accounting for small differences between vendors. We recognize that middle-

ware vendors will have small differences that are difficult to generalize. The tool must
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be able to account for these differences between vendors. For example, RTI Connext

DDS [ 2 ] has several wrapper classes around symbols that are not used in OpenDDS [  1 ].

3. Extracting values from events. The instrumentation tool should be able to extract

values from events. In each middleware, there are user-defined data fields such as

PlannerOneEvent.eventcount in Listing  3.3 . Extracting values is a challenge because

the instrumentation tool cannot call the getter or setter methods like a traditional C++

method.

4. Discovering points of instrumentation. The instrumentation tool will not know

about the system under instrumentation. The tool, for example, will not know the

produce and consume methods in DDS nor the RPC arguments in gRPC. Locating

the communication methods in distributed middleware is important because they serve

as the entry points into the system. The difficulty increases since different binary files,

which are loaded at different times, contain the methods of interest. This is a challenge

because the instrumentation tool must locate these points-of-instrumentation at run-

time.

The remainder of this chapter therefore discusses how we address these challenges while

designing and implementing the Standards-based Distributed Middleware Monitor.

4.2 Design Approaches

Figure 4.1. Representation of SDMM where each distributed middleware has
a unique composition.
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Before discussing the details of SDMM, it is necessary to understand different approaches

for non-intrusively instrumenting a distributed system supported by any standards-based

middleware. The following are two approaches we explored for realizing the monitor:

• Approach 1: Create individual monitors for each middleware. The initial

design involved using a programmatic approach to instrument standards-based mid-

dleware. The instrumentation tool would select the middleware, (e.g., DDS or gRPC),

within its source code. This results in a unique composition, as shown in Figure  4.1 ,

within the instrumentation code for each middleware. The tool would decide which

instrumentation to use with parameter flags and other rigid code [ 21 ]. The advantage

to this approach is that the target middleware is set at compile-time and the resulting

monitor will be configured for that middleware.

There are several disadvantages to this approach. First, users will need to modify

instrumentation source code when they want to make changes such as selecting the

middleware. This is risky because the user must be familiar with the tool’s design

and instrumentation framework (e.g., Pin) to make those updates. Second, modifying

the instrumentation source code is error prone and time consuming. Finally, in this

scenario, the monitor will only work for systems using the targeted middleware and

must be updated for each system with a different middleware.

• Approach 2: Configuration file based implementation. An external configu-

ration file could be used instead of a unique composition. When the instrumentation

software loads the configuration file, where the target middleware is indicated, it will

automatically adjust components to the middleware at run-time. This is a generalized

approach. The advantage to this approach is that users can analyze a distributed sys-

tem with any standards-based middleware without modifying instrumentation code.

The disadvantage to this approach is that it may impact performance negatively com-

pared to Approach 1 because instrumentation code is interpreted at run-time instead

of compile-time.

Based on the advantages and disadvantages of both approaches discussed above, Ap-

proach 2 was selected as the approach for non-intrusively instrumenting any standards-based
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distributed middleware. We selected this approach because system administrators can easily

target different distributed middleware with no modification to the instrumentation code.

The SDMM, however, must support the middleware.

4.3 Creating a Generic Pintool

The first challenge, as described in Section  4.1 , in non-intrusively instrumenting any

standards-based distributed middleware is creating a Pintool that works with multiple dis-

tributed middleware. The SDMM is focused around two architectures, publisher-subscriber

with DDS and remote procedure call with gRPC. SDMM needs to determine the middleware

Figure 4.2. Representation of distributed middleware in SDMM using the
Adapter Pattern.

at run-time and we achieve this with the Adapter Pattern [ 12 ] where each middleware are

the adapters and the Pin++ objects (and consequently the Pin framework) are the adaptees.

As shown in Figure  4.2 , the DDS and gRPC classes inherit from the Middleware interface

that defines methods for running Pin analysis on the binary files [ 20 ].

The DDS adapter contains code for instrumenting any distributed system written with

a DDS vendor such as RTI Connext DDS or OpenDDS. For example, the DDS produce

and consume methods (write & take). The gRPC adapter contains code for instrumenting

routines that are not the remote procedure or event setter methods.
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1 MIDDLEWARE = DDS

2 VENDOR = RTI

3 IDL = /path/ to /SLICE . i d l

4 INCLUDE = Sensor , PlannerOne , PlannerTwo , Config , E f f e c t o r

Listing 4.1. An example SDMM configuration file.

Also in Figure  4.2 , the SDMM Tool is where the configuration file is parsed and the Pin

instrumentation process begins. An example configuration file is shown in Listing  4.1 where

the distributed middleware is on line 1, the DDS vendor is on line 2, and line 3 shows the

absolute path to the interface definition file. Line 4 lists the binary & shared library files,

referred to as images in Pin. The RTI Connext DDS example of the SLICE scenario had all

symbols in the component executables.

After parsing the configuration file, the distributed middleware object is created

at run-time and passed to the SDMM Instrument where data collection begins. The

SDMM Instrument will capture all running images and routines which are passed to the

adapters via the Middleware interface for further processing. Middleware.analyze rtn() will

analyze the routines contained within the binary images.

The method Middleware.analyze rtn() is where any instrumentation specific to a vendor

is called. More details on vendor specific analysis is discussed in Section  4.4 . Using the

adapter pattern and configuration files generalizes distributed middleware and allows SDMM

to address Challenge 1 presented in Section  4.1 .

4.4 Accounting for Differences in Vendors

Our previous iteration to SDMM [ 19 ] supported one vendor for both middleware and

did not need to address the second challenge from Section  4.1 . The second challenge in

non-intrusively instrumenting standards-based distributed middleware is creating a Pintool

that handles the design differences between vendors. SDMM was developed with the Data

Distribution Service (DDS) and gRemote Procedure Call (gRPC) as the distributed middle-

ware.

The new SDMM supports two DDS implementations, RTI Connext DDS and OpenDDS,

and gRPC was treated as its own vendor. An example of design differences is that RTI Con-
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next DDS has several method overloads to write and take which are not used in OpenDDS.

Likewise, OpenDDS also has its own share of unique method overloads.

Figure 4.3. Representation of distributed middleware vendors in SDMM using
the Strategy Pattern.

To differentiate between implementations, we used the Strategy Pattern [  12 ] where each

vendor has its own class. As shown in Figure  4.3 , each implementation inherits from the Ven-

dor interface that defines methods for handling vendor specific details. In the diagram, each

Distributed Middleware (DM) contains one vendor such as RTI Vendor, OpenDDS Vendor,

or gRPC Vendor and will invoke the vendor interface methods when appropriate.

Vendor.match signature() is called when SDMM needs to decide whether to instru-

ment a procedure and Vendor.excluded() checks if a procedure should not be instru-

mented. Vendor.process idl() is used to process an interface definition file. Finally, Ven-

dor.create callback() is a factory method [ 12 ] that creates Pin/Pin++ callback routines.

The function Middleware.analyze rtn(), from Figure  4.2 , is where many vendor methods

are used. For example, Vendor.match signature() and Vendor.excluded() are used to check if

a procedure should or should not be instrumented. If the procedure should be instrumented,
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then Vendor.create callback() is invoked to construct the necessary Pin callback function

that is injected into the binary. The procedure is skipped if it should not be instrumented.

Section  4.6 discusses how SDMM decides if instrumentation is injected for a procedure.

Also, Section  4.5 indicates where Vendor.process idl() is called. Using the strategy pat-

tern generalizes middleware vendors and allows SDMM to address Challenge 2 presented in

Section  4.1 .

4.5 Extracting Values from Events

Early versions of SDMM did not retrieve values from the events passed between com-

ponents [ 19 ] which is the third challenge from Section  4.1 . SDMM cannot call accessor or

setter methods on C++ objects because the tool does not have access to the object defini-

tions in their ADT files. To address this problem, we extended SDMM to parse the interface

definitions from Listings  3.3 &  3.4 .

4.5.1 Extracting Values from DDS

For DDS, several C++ files are generated when the interface definitions from Listing  3.3 is

compiled. For both vendors, each event becomes a C++ class with public methods for setting

the data values. The code follows a standard where each field from the interface has their own

setter methods and Listings  4.2 &  4.3 show an example on the PlannerOneEvent type. To

detect each setter method, SDMM will parse the interface definition file in the vendor specific

methods RTI Vendor.process idl() for RTI Connext DDS and OpenDDS Vendor.process idl()

for OpenDDS from Figure  4.3 . The signatures to each setter method is then stored in the

appropriate vendor object.
1 c l a s s PlannerOneEvent {

2 void eventcount ( i n t 3 2 t ) ;

3 void name( const std : : s t r i n g &) ;

4 void name( const char ∗) ;

5 } ;

Listing 4.2. Source code for the RTI Connext DDS endpoints to set data
values for PlannerOneEvent.

1 c l a s s PlannerOneEvent {
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2 void eventcount ( i n t 3 2 t ) ;

3 void name( const std : : s t r i n g &) ;

4 } ;

Listing 4.3. Source code for the OpenDDS endpoints to set data values for
PlannerOneEvent.

4.5.2 Extracting Values from gRPC

For gRPC, the interface follows a standard where each field from Listing  3.4 has their

own setter methods prefixed with the substring set . The setter methods are shown in

Listing  4.4 . To detect each setter method, SDMM will parse the interface definition file in

gRPC Vendor.process idl() from Figure  4.3 . The signatures to each setter method is then

stored in the gRPC Vendor object.
1 c l a s s SimpleEvent {

2 void s e t e v e n t c o u n t ( long ) ;

3 void set name ( const char ∗) ;

4 } ;

Listing 4.4. Source code for the gRPC endpoints to set data values.

Each setter method serves as an entry point into the system to extract values. More

entry points into the system are discussed in Section  4.6 . By parsing the interface definition

files for setter methods, SDMM can address Challenge 3 in Section  4.1 .

4.6 Discovering Points of Instrumentation

The fourth challenge in non-intrusively instrumenting standards-based distributed mid-

dleware as defined in Section  4.1 is locating places to analyze code. Our approach to this

challenge is influenced by Schantz et al. [ 29 ] where the authors breakdown middleware in

distributed systems to four layers. Starting at the most concrete: the host infrastructure

layer refers to code that generalizes OS specific features for passing data over the network

such as sockets; the distribution middleware layer extends the networking capabilities from

the host layer without creating dependencies to the programming language or OS (this is

where DDS and gRPC reside); the common middleware services layer extends the distribu-

tion layer with code that lets developers focus on business logic rather than managing system
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resources; lastly, the domain-specific layer refers to code tailored to a particular domain such

as e-commerce or health care.

SDMM instruments systems at the distribution middleware layer exclusively because the

symbols of interest come from the extensions to the host layer. For example, the publisher-

subscriber methods in DDS or remote procedures in gRPC. The consequence of excluding

other middleware layers is that our tool does not analyze low-level procedures such as socket

creation or the procedures common middleware use to manage resources.

SDMM will look at all symbols within the indicated binaries to discover standards-based

code which serve as gateways into the system. SDMM instruments a system by using pro-

gramming standards to detect when a DDS or gRPC procedure is invoked at run-time,

extract information from the procedure signature, and then resumes procedure execution.

The tool does not modify a components instructions. The remainder of this section discusses

how we identified programming standards in DDS and gRPC to gain access into the system.

4.6.1 Instrumentation Points for DDS

For both RTI Connext DDS and OpenDDS, SDMM instruments the binaries for each

component. Those binaries are Sensor, PlannerOne, PlannerTwo, Config, and Effector.

OpenDDS also has a separate binary, libSLICE Idl.so.3.14.0, where the setter methods

reside. SDMM will insert instrumentation for each setter method discovered in Section  4.5 .
1 void

2 DataWriterImpl < . . . > : : wr i t e (

3 PlannerOneEvent const &,

4 TInstanceHandle<InstanceHandle> const&) ;

5

6 LoanedSamples<PlannerOneEvent>

7 DataReaderImpl < . . . > : : take ( void ) ;

Listing 4.5. Source code for the RTI Connext DDS endpoints to communicate
PlannerOneEvents.

1 v i r t u a l ReturnCode t

2 DataWriterImpl T < . . . > : : wr i t e (

3 const PlannerOneEvent &,

4 Ins tanceHand le t ) = 0 ;

5

6 v i r t u a l ReturnCode t
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7 DataReaderImpl T < . . . > : : take next sample (

8 PlannerOneEvent &,

9 SampleInfo &) = 0 ;

Listing 4.6. Source code for the OpenDDS endpoints to communicate
PlannerOneEvents.

In DDS, producing events is done with write methods and consuming events is done with

take or read methods. Our implementation of the SLICE scenario only uses take which will

be the primary focus of this thesis. Regardless, SDMM can still detect and instrument DDS

read. Both vendors overload write and take methods for each event. Listings  4.5 &  4.6 show

an example on the PlannerOneEvent type.

There are two patterns to observe with DDS write. First, there may be multiple write

methods in a DDS implementation even though there is only one write defined in the DDS

specification [  23 ]. Second, from Listings  4.5 &  4.6 , observe there is a DataWriter substring

before both versions to DDS write.

There are two patterns to observe with DDS take. First, there is multiple take methods in

the DDS specification but they all start with the substring take. Second, from Listings  4.5 

&  4.6 , observe there is a DataReader substring before both versions to DDS take.

Considering the above observations for DDS write and take, we can represent the stan-

dards for producing and consuming events in DDS as a regular expressions. Listing  4.7 

shows the regular expressions used to identify DDS communication methods and they are

held within the DDS DM class from Figure  4.2 . All procedures are first tested against the

regular expressions and then are tested against the setter method signatures by invoking

Vendor.match signature() from Figure  4.3 .
1 // Regular e x p r e s s i o n f o r DDS wr i t e

2 std : : regex w r i t e r e g e x ( "(.*)(DataWriter)(.*) (:: write \\() (.*)" ) ;

3

4 // Regular e x p r e s s i o n f o r DDS take

5 std : : regex t a k e r e g e x ( "(.*)(DataReader)(.*) (:: take)(.*)" ) ;

6

7 // Regular e x p r e s s i o n f o r gRPC c l i e n t −s i d e SendEvent

8 std : : regex c l i e n t r e g e x ( "(.*) (:: SendEvent)(.*)(ClientContext)(.*)" ) ;

9

10 // Regular e x p r e s s i o n f o r gRPC server −s i d e SendEvent
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11 std : : regex s e r v e r r e g e x ( "(.*) (:: SendEvent)(.*)(ServerContext)(.*)" ) ;

Listing 4.7. The regular expressions for identifying methods in DDS and
gRPC.

4.6.2 Instrumentation Points for gRPC

For gRPC, SDMM analyzes the binaries for each component because that is where the

setter methods and the remote procedures reside. The binaries are Sensor, Planner, Config,

and Effector. Just like with DDS, SDMM will insert instrumentation for each setter method

discovered in Section  4.5 .
1 v i r t u a l Status SendEvent (

2 Cl ientContext ∗ ,

3 const SimpleEvent&,

4 Empty∗ re sponse ∗) = 0 ;

5

6 v i r t u a l Status SendEvent (

7 ServerContext ∗ ,

8 const SimpleEvent&,

9 Empty∗ re sponse ∗) = 0 ;

Listing 4.8. Source code for the gRPC endpoints to invoke the SendEvent()
remote procedure.

There can be any number of arguments to a remote procedure, such as SendEvent(), in

gRPC but they still follow a standard for both client-side and server-side stubs. The first

parameter is always a context object corresponding to the endpoint such as ClientContext

or ServerContext. Any number of arguments may follow the context object, but for the

SLICE scenario, the arguments are instances of the SimpleEvent and Empty classes.

The pattern for remote procedures in gRPC is generalized into the regular expressions

shown in Listing  4.7 which are held in the gRPC DM class from Figure  4.2 . All procedures

are tested against the regular expressions first and then are tested against the gRPC setter

signatures by invoking the Vendor.match signature() interface method from Figure  4.3 .

Expressing symbol patterns as regular expressions and capturing setter method signatures

allows SDMM to address Challenge 4 presented in Section  4.1 . Furthermore, SDMM can

support any C++-based middleware by placing vendor specific instrumentation in their own

objects, parsing the interface definition files for setter method signatures, indicating the
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middleware and relevant binaries in the configuration file, and discovering instrumentation

points by expressing methods as regular expressions.
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5. EXPERIMENTAL RESULTS

This chapter presents the environment used for our experiments, experimental results, and

discusses SDMM’s impact to performance. The Standards-based Distributed Middleware

Monitor (SDMM) is evaluated by applying the SLICE scenario used throughout this the-

sis. We implemented the SLICE example with RTI Connext DDS [ 2 ], OpenDDS [ 1 ], and

gRPC [  27 ]. As part of our evaluation, we focused on answering three questions:

1. Does SDMM successfully instrument distributed middleware that follow

programming standards? This is an important question because it allows us to

understand if SDMM can successfully instrument distributed systems implemented

using different distributed middleware.

2. What is the performance impact that SDMM has on a distributed system?

We know dynamic binary instrumentation introduces overhead to a distributed system.

We, however, want to understand how much overhead SDMM introduces. Specifically,

we want to understand the difference in SDMM’s run-time, CPU usage, and memory

when applied to distributed systems implemented using different middleware (e.g.,

DDS and gRPC).

3. Is determining the middleware at run-time truly slower? As described in

Section  4.2 , we expect the programmatic approach (Approach 1) to perform data

collection faster than the configuration file approach (Approach 2) because Approach

1 determines the middleware at compile-time instead of run-time. We, however, want

to know if that truly is the case.

5.1 Experiment Setup

All experiments were executed on an installation of Emulab [ 33 ] which is a cluster of

machines that can emulate any operating system given the necessary disk image. All nodes

were equipped with AMD Opteron 4130 2.6GHz 4-core processors running Ubuntu 14.04.1

operating system and Linux Kernel 3.13.0. A LAN connects nodes with an average round

trip time of 0.093ms. All code was compiled with the GNU C++ compiler version 4.8.4. Our
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deployment layout, as shown in Figure  3.1 , was influenced by Slaby et al. [ 31 ] who tested

many deployments for SLICE endpoints to meet end-to-end performance deadlines. Finally,

both DDS vendors were configured with the DDS Real Time Publish Subscribe protocol over

UDP.

5.2 Results

1 Method : eventcount

2 InputTypes : i n t

3 Container : PlannerTwoEvent

4 CallCount : 4795

5 AvgRuntime : 0 .00437956ms

6 Values : [ 1 , 2 , . . . ]

7

8 Method : name

9 InputTypes : char const ∗

10 Container : PlannerTwoEvent

11 CallCount : 4795

12 AvgRuntime : 0 .00417101ms

13 Values : [ Foo , . . . ]

14

15 Method : wr i t e

16 InputTypes : PlannerTwoEvent const &, TInstanceHandle<InstanceHandle> const&

17 Container : DataWriterImpl<PlannerTwoEvent>

18 CallCount : 4795

19 AvgRuntime : 0 .61293ms

20

21 Method : take

22 InputTypes :

23 Container : DataReaderImpl<PlannerOneEvent>

24 CallCount : 4794

25 AvgRuntime : 0 .0329579ms

Listing 5.1. Sample output from running SDMM on the PlannerOne binary
using RTI Connext DDS.

5.2.1 Results for RTI Connext DDS

When we execute the RTI Connext DDS version of the SLICE scenario, SDMM success-

fully discovers the setter methods on all event objects as well as the produce and consume

methods on each endpoint. These methods are discovered in real-time without a priori

knowledge of the system. Listing  5.1 shows a sample of the output from running SDMM on
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the PlannerOne binary. SDMM reports the method, the data types in its parameter list,

the object or namespace that contains the method, the call count which indicates the total

number of method calls, and the methods average runtime. SDMM also discovers the data

values assigned to events.

The PlannerOne binary will consume PlannerOneEvents and produce PlannerTwoEvents.

As shown in Listing  5.1 , SDMM detects the setter methods eventcount() and name(). The

tool will extract method metadata as well as the value assigned to the event each time a

setter method is invoked.

As expected, the call count between eventcount() and name() is equal since they are both

called for event creation. The average run-time between the two methods is similar which

aligns with expectations. We expected similar run-times because the events are assigned a

short character array.

SDMM also detects the write() and take() methods from the endpoints that produce

PlannerTwoEvents and consume PlannerOneEvents. The call counts between the communi-

cation methods are off by one because, at termination, PlannerOne will create and transmit

a new event that informs PlannerTwo to terminate. The call count between write() and

the setter methods are equal because event creation happens just before the event is sent

to the next component. The average run-time between the two communication methods are

different because, by default, RTI Connext DDS blocks the running thread if write() would

cause data to be lost [ 2 ].
1 Method : eventcount

2 InputTypes : i n t

3 Container : PlannerTwoEvent

4 CallCount : 4772

5 AvgRuntime : 0 .003772ms

6 Values : [ 1 , 2 , . . . ]

7

8 Method : operator <<

9 InputTypes : S e r i a l i z e r &, char const ∗

10 Container : DCPS

11 CallCount : 4772

12 AvgRuntime : 0 .00544845ms

13 Values : [ Foo , . . . ]

14

15 Method : wr i t e
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16 InputTypes : PlannerTwoEvent const &, i n t

17 Container : DataWriterImpl T<PlannerTwoEvent>

18 CallCount : 4772

19 AvgRuntime : 0 .776194ms

20

21 Method : take next sample

22 InputTypes : PlannerOneEvent&, SampleInfo&

23 Container : DataReaderImpl T<PlannerOneEvent>

24 CallCount : 5923

25 AvgRuntime : 1 .25713ms

Listing 5.2. Sample output from running SDMM on the PlannerOne binary
using OpenDDS.

5.2.2 Results for OpenDDS

When we execute the OpenDDS version of the SLICE scenario, SDMM successfully

discovers the setter methods on all event objects as well as the produce and consume methods

on each endpoint. Output samples from running SDMM on the PlannerOne binary are

shown in Listing  5.2 . Just like the RTI Connext DDS example, SDMM reports the method,

parameter types, the container, the call count, the methods average runtime, and discovers

the data values assigned to events.

As shown in Listing  5.2 , SDMM detects the setter methods on the PlannerTwoEvent class

that do not have string input types and will extract the argument values at run-time. Strings

are still captured via the data insertion operator (<<) and OpenDDS uses << to serialize

strings. The consequence of instrumenting << is that the strings are no longer correlated to

the appropriate setter method. The reason for using the data insertion operator is explained

in Section  6 .

The call counts between eventcount() and << is equal, which aligns with expectations.

We expected eventcount() and << methods to have equal call counts because the former

is called for event creation and the latter is called for every string assigned to an event

(e.g., the strings assigned via setter methods). The average run-time for << is higher than

the run-time for eventcount(). We expect << to be slower because the character array is

serialized for network transmission which takes time.
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SDMM detects the write() method for producing PlannerTwoEvents and the

take next sample() method for consuming PlannerOneEvents. The call count is higher for

take next sample() because of fault tolerance. The OpenDDS version to SLICE will retry

take next sample() if there were any problems with consuming the event. Fault tolerance

also explains why the average run-time for consuming events is slower than producing since

less writes occurred over time. The call count between write() and eventcount() is equal be-

cause event creation happens just before the event is sent over the network. The call counts

between write() and << are equal because serialization occurs on all the events passed to

write().
1 Method : s e t e v e n t c o u n t

2 InputTypes : long

3 Container : SimpleEvent

4 CallCount : 4280

5 AvgRuntime : 0 .0208201ms

6 Values : [ 1 , 2 , . . . ]

7

8 Method : set name

9 InputTypes : char const ∗

10 Container : SimpleEvent

11 CallCount : 4280

12 AvgRuntime : 0 .0582937ms

13 Values : [ Foo , . . . ]

14

15 Method : SendEvent

16 InputTypes : ServerContext ∗ , SimpleEvent const ∗ , Empty∗

17 Container : SLICEServerServiceImpl

18 CallCount : 4487

19 AvgRuntime : 0 .0749184ms

20

21 Method : SendEvent

22 InputTypes : Cl ientContext ∗ , SimpleEvent const &, Empty∗

23 Container : SLICEServer : : Stub

24 CallCount : 4280

25 AvgRuntime : 2 .22696ms

Listing 5.3. Sample output from running SDMM on the PlannerOne binary
using gRPC.
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5.2.3 Results for gRPC

When we execute the gRPC version of the SLICE scenario, SDMM successfully discovers

the setter methods on the SimpleEvent class and the remote procedure calls on both the

server and client-side endpoints. Listing  5.3 shows the output from running SDMM on the

PlannerOne binary. From the listing, SDMM detects all setter methods on the SimpleEvent

class and the remote procedure. Our tool also reports the method parameter types, the

method containers, method call counts, method average run-time, and the values passed to

setter methods. More importantly, this information is extracted without knowledge of the

system before-hand.

The call count between set eventcount() and set name() are equal, as expected, since

they are both called whenever an event is created. We expected the average run-times

between the setter methods to be similar because the events are assigned a small character

array. Instead, the average run-time for set name() is higher than set eventcount() because

Protocol Buffers [ 9 ], a dependency to gRPC, converts the C-string to a std::string using the

system allocator behind several other checks and function calls [ 5 ]. This issue, however, is

removed in the latest versions of gRPC and Protocol Buffers.

The call count between client-side and server-side versions of SendEvent() are unequal

because the component terminated before sending all the events left in its queue. Early

program termination also explains why the call count between setter methods and the server-

side SendEvent() are different. Yet, the call count between the client-side procedure and

setter methods are equal because event creation occurs before event transmission to the next

component.

The average run-time for the client-side SendEvent() is higher than the server-side be-

cause the client is blocked until control is returned from the remote server. Whereas the

server-side procedure is called locally and does not have added overhead from communicating

events over the network.

Since SDMM reports method names, parameter types, procedure average run-time, and

the values communicated over the network, we believe our tool successfully instruments

standards-based distributed middleware. SDMM can monitor a system supported by dis-
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tributed middleware by using symbol patterns, such as the setter methods, to gain access

into the system. This is important because stakeholders can use our tool to ensure their

distributed systems are meeting performance requirements [ 18 ].

5.3 SDMM’s Impact on Run-time

We evaluated the impact that SDMM has on a distributed system’s run-time by mea-

suring how long data collection took during 10-minute executions of the SLICE scenario.

Table  5.1 reports how long data collection took for the PlannerOne component using RTI

Connext DDS, OpenDDS, and gRPC. The numbers are an average over 10 runs and are in

milliseconds. We calculated run-time overhead by dividing the time taken to collect data

over the total run-time. For reference, 10-minutes is 6e5ms.

Table 5.1. Shows how much time data collection requires on the PlannerOne
component. The measurements are an average over 10 runs.

PlannerOne Data Coll run-time % of Total Run-time
RTI Connext DDS 4442.550ms 0.740%
OpenDDS 11327.700ms 1.887%
gRPC 2297.070ms 0.382%

As shown in Table  5.1 , data collection on the PlannerOne component for RTI Connext

DDS accounts for ∼ 0.740% of the 10-minute run-time. For OpenDDS, data collection

accounts for ∼ 1.887% of the run-time. For gRPC, data collections takes ∼ 0.382% of the

run-time.

SDMM has little impact to run-time performance because the tool simply reads and then

stores information as it is created in real-time. Other additional processing will come from

parsing the configuration file, interface definition file, and procedure signatures. Those files

and strings, however, are small and should not take much execution time.

Our previous experiments in [ 19 ] showed that data collection contributes to less than

0.01% of the run-time for some test cases. The differences between our previous work and

this new iteration involve the amount of symbols SDMM analyzes. For example, the previous

design did not extract values from setter methods. Without analyzing setter methods, the
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tool parses less symbols and less instrumentation is injected into the binaries. Second, the

past case study used fewer endpoints per node and fewer endpoints means less time spent

parsing binary images.

The run-time overhead for OpenDDS is higher than RTI Connext DDS because there are

more procedures in the OpenDDS binaries passed to SDMM. The number of procedures af-

fects run-time because each function signature is tested against our regular expressions which

adds to run-time. SDMM does filter out many functions using the Vendor.match signature()

and Vendor.excluded() methods from Figure  4.3 . There still is, however, many procedures

that fall through the filtration.

5.3.1 Throughput with respect to Data Collection run-time

We were also interested in the throughput with respect to data collection run-time.

Table  5.2 shows the throughput for the number of events analyzed over data collection run-

time ( #ofevents
datacollectionruntime

). We only consider outbound events, without garbage values, because

the setter methods are explicitly invoked on them. We converted the time measurements

from milliseconds to seconds because it is easier to comprehend throughput in seconds.

Table 5.2. Shows how many events are instrumented per second with respect
to the data collection run-time. The numbers are from the PlannerOne com-
ponent.

PlannerOne Data Coll run-time Total Events Events/Data Coll run-time
RTI Connext DDS 4.442s 4795 1072.714 events/s
OpenDDS 11.327s 4724 417.056 events/s
gRPC 2.297s 1105 481.062 events/s

As shown in Table  5.2 , SDMM instruments 1072.714 events/s for RTI Connext DDS

and 417.056 events/s for OpenDDS. For gRPC, SDMM instruments 481.062 events/s on

PlannerOne. It is important to note that the throughput is with respect to the data collection

run-time and not total run-time.

OpenDDS throughput is lower than RTI because of the procedures that pass our filtering

strategy and are compared against the regular expressions which increases run-time. The

low throughput for gRPC is because SDMM is capturing a lot of garbage values. SDMM
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is a middleman and sometimes records values before they are deserialized. Serialized values

are excluded from the event count, and decrease the throughput, because they are in a

non-human readable form.

If SDMM is run on a distributed system with significantly larger strings or arrays of

primitive types (e.g., C-string length 10e6), then data collection may impact execution time

more than what is reported in Tables  5.1 &  5.2 . A large string would affect performance

because SDMM will also have to read and store the string which takes time. Since data

collection takes less than 2% of the total run-time, we believe SDMM has a negligible impact

on run-time performance.

5.4 SDMM’s Impact on CPU Usage

We evaluated the impact that SDMM has on distributed system’s CPU usage by measur-

ing how much time data collection spent in user mode and kernel mode during the 10-minute

executions of the SLICE scenario. We measured CPU usage with the rusage struct available

on Linux platforms. We calculated CPU usage for data collection by taking the time spent in

each mode at the start and exit of functions specific to SDMM. Then the difference between

the start and exit times are summed.

Tables  5.3 &  5.4 report how much time data collection spent in user and kernel mode,

respectively, for the PlannerOne component. The numbers are an average over 10 runs and

are in milliseconds. We calculated CPU overhead by dividing the time data collection spent

in each mode over the total time the component spent in each mode.

Table 5.3. Shows how much time data collection on the PlannerOne compo-
nent spent in user mode. The measurements are an average over 10 runs.
PlannerOne Data Coll User Mode Total User Mode % of Total
RTI Connext DDS 4430.298ms 16007.843ms 27.675%
OpenDDS 11297.439ms 46382.270ms 24.357%
gRPC 2301.874ms 9533.738ms 24.144%

As shown in Tables  5.3 &  5.4 , data collection on the PlannerOne component for RTI

Connext DDS accounts for ∼ 27.675% and 2.828% of the total time spent in user mode and
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Table 5.4. Shows how much time data collection on the PlannerOne compo-
nent spent in kernel mode. The measurements are an average over 10 runs.
PlannerOne Data Coll Kern Mode Total Kern Mode % of Total
RTI Connext DDS 72.419ms 2560.606ms 2.828%
OpenDDS 42.272ms 3923.068ms 1.077%
gRPC 47.322ms 1798.581ms 2.631%
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kernel mode, respectively. For OpenDDS, data collection accounts for 24.357% of the time

spent in user mode and 1.077% of the time spent in kernel mode. For gRPC, data collection

accounts for 24.144% of the time spent in user mode and 2.631% of the time spent in kernel

mode.

For all test cases in Table  5.3 , SDMM is spending ∼ 24% to ∼ 27% of its time in

user-mode. We expected SDMM to often reserve the CPU because our tool must run and

compete for time on the processor. SDMM frequently operates in user mode because most

of the instrumentation uses high-level C++ code that does not require system interrupts.

SDMM does not operate in kernel mode often because the only system calls are memory

allocation for objects at startup and handling files such as the interface definition files.

5.4.1 Throughput with respect to CPU Usage

We also looked at the throughput in terms of CPU usage. Tables  5.5 &  5.6 show rates

for #ofevents
datacollectionusermode

and #ofevents
datacollectionkernmode

respectively. Only outbound events without

garbage values are considered because the setter methods are invoked on those events. The

time measurements are shown in seconds instead of milliseconds because it is easier to un-

derstand throughput in seconds.

Table 5.5. Shows how many events are instrumented per second with respect
to the time data collection spent in user mode. The numbers are from the
PlannerOne component.

PlannerOne Data Coll User Mode Total Events Events/Data Coll User Mode
RTI Connext DDS 4.430s 4795 1082.392 events/s
OpenDDS 11.297s 4724 418.164 events/s
gRPC 2.301s 1105 480.225 events/s

As shown in Tables  5.5 &  5.6 , SDMM analyzes 1082.392 events/s in user mode and

66,597.222 events/s in kernel mode for RTI Connext DDS. For OpenDDS, SDMM analyzes

418.164 events/s in user mode and 112,476.190 events/s in kernel mode. Lastly, for gRPC,

the tool instruments 480.225 events/s in user mode and 23,510.638 events/s in kernel mode.

It is important to note that the throughput is with respect to the time data collection spent

in both CPU modes.
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Table 5.6. Shows how many events are instrumented per second with respect
to the time data collection spent in kernel mode. The numbers are from the
PlannerOne component.

PlannerOne Data Coll Kern Mode Total Events Events/Data Coll Kern Mode
RTI Connext DDS 0.072s 4795 66,597.222 events/s
OpenDDS 0.042s 4724 112,476.190 events/s
gRPC 0.047s 1105 23,510.638 events/s
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Examining the throughput in user mode, OpenDDS is lower than RTI because of the

higher count of procedures that fall through filtration and are tested against our regular

expressions. Those comparisons are performed in user mode. The main factor behind low

user mode throughput with gRPC is the low number of valid events. The throughput rate in

kernel mode is high for all middleware because SDMM does not invoke many system calls.

OpenDDS, however, is higher than RTI because SDMM creates a few more objects for RTI

specific symbols.

The CPU usages may change if a different distributed system from the SLICE scenario

is used. For example, a system with thousands of unique communication methods or setter

methods. With such an example, we would expect the time spent in user mode to increase

because SDMM will extract information at every method call. Since data collection con-

tributes to ∼ 27% of the total time in user mode, we believe SDMM impacts CPU usage.

5.5 SDMM’s Impact on Memory Usage

We evaluated the impact that SDMM has on memory usage by comparing how much vir-

tual memory a component uses with SDMM, with Pin++ but without SDMM, and without

any instrumentation. We considered virtual memory only because SDMM analyzes sym-

bols in any binary file including binaries that are swapped from disk. We measured virtual

memory usage, in megabytes, by parsing output from the Linux top command during the

10-minute execution and averaged the numbers across 10 runs. Figure  5.1 & Table  5.7 il-

lustrate how much virtual memory the PlannerOne component used for RTI Connext DDS,

OpenDDS, and gRPC.

Table 5.7. Shows how many Megabytes of virtual memory the PlannerOne
component used with SDMM, with Pin++ only, and without instrumentation.

PlannerOne SDMM Pin++ Only No Instrumentation
RTI Connext DDS 1719.475 MB 1717.009 MB 1198.351 MB
OpenDDS 1206.266 MB 1199.564 MB 727.256 MB
gRPC 1011.069 MB 892.952 MB 443.932 MB

48



Figure 5.1. Shows how much virtual memory the PlannerOne component
used with SDMM, with Pin++ only, and without instrumentation.
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From Figure  5.1 & Table  5.7 , observe that experiments with SDMM and Pin++-only use

a similar amount of virtual memory. We can infer that the SDMM code separate from the

Pin++ framework uses a small amount of memory. SDMM uses a small amount of memory

because the information extracted from middleware is also small such as the metadata from

communication methods and values taken from setter methods. Additionally, there is the

memory needed to instantiate the classes from Sections  4.4 &  4.3 as well as hold the regular

expressions from Section  4.6 . The classes and regular expressions, however, are only created

once at startup.

Comparing experiments with Pin++-only and no instrumentation, we see a larger differ-

ence in the amount of virtual memory used. The larger difference in virtual memory shows

that the instrumentation framework accounts for most of the introduced virtual memory

overhead instead of SDMM.

The virtual memory usage may change if a different distributed system from the SLICE

scenario is used. For example, a system that defines events with many primitive types or

large arrays of data. The larger the events, the more memory is needed for SDMM to store

copies of event data. In contrast, we would expect to see an improvement in memory usage

from a distributed system with smaller events than the SLICE scenario. Since SDMM adds

little memory on top of Pin++, we believe the tool has a negligible impact on an distributed

system’s virtual memory usage.

5.6 Approach 1 vs. Approach 2

Table 5.8. Compares the run-time of data collection between Approach 1 and
Approach 2 from Section  4.2 

PlannerOne Approach 1 Approach 2 % Change
RTI Connext DDS 4320.630ms 4507.690ms 4.237%
OpenDDS 11430.800ms 12715.700ms 10.642%
gRPC 2204.830ms 2306.430ms 4.504%

Table  5.8 compares data collection run-time on the PlannerOne component from the two

approaches discussed in Section  4.2 . The experiments were run for 10-minutes and execution
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times were averaged over 10 runs. Data collection on PlannerOne with RTI Connext DDS

is faster with Approach 1 than Approach 2 by ∼ 4.237%. With OpenDDS, data collection

on PlannerOne is 10.642% faster with Approach 1 than Approach 2. Lastly, with gRPC,

data collection on PlannerOne is faster with Approach 1 than Approach 2 by ∼ 4.504%.

As expected, Approach 1 is faster than Approach 2 for all test cases because Approach 2

determines the distributed middleware at run-time.
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6. LIMITATIONS AND FUTURE WORK

This section discusses the limitations and potential future research directions to the

Standards-based Distributed Middleware Monitor (SDMM).

6.1 SDMM does not work with ADTs as parameter types

SDMM does not extract data values when the parameter is an ADT (e.g., std::string).

This is because Intel’s Pin treats all data types as an ADDRINT, a type defined by Pin that

needs explicit conversion rules. The consequence of this issue is that SDMM only works with

primitive data types. Unfortunately, the DDS C++11 Mapping [  4 ] requires that all strings

be treated as C++ std::string and not C-strings.

To address this limitation, we overloaded all string setter methods in RTI Connext DDS

with C-strings as the parameter types. We could not do the same with OpenDDS because the

target file gets overwritten every time the source code is compiled. Fortunately, OpenDDS

uses the data insertion operator << to serialize data, including strings in their C-string

representation. SDMM was able to extract string values from events in OpenDDS by in-

strumenting the << operator. The consequence, however, is that those strings are no longer

correlated to the appropriate setter methods.

The solution, and therefore future work, includes features that analyze and extract values

from ADTs. This process can be done in two ways. The first method is SDMM can be

compiled with the necessary ADT files. The second method would be to require ADTs

written with a conversion rule to Intel’s Pin ADDRINT type. Both methods, however,

qualify as a priori knowledge of the distributed system.

6.2 Unintended signatures may match with SDMM regular expressions

It is likely that multiple binary files share similar patterns and name conventions. In such

a case, SDMM would attempt to instrument all methods that match our regular expressions,

which will affect performance and results. This is, however, a user-based error because
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the user must indicate those binary files either in the code from Approach 1, or in the

configuration file from Approach 2.

The manual solution to this problem is to remove the culprit binary file from the con-

figuration file. This solution, however, may not be feasible if a particular binary has other

methods targeted for instrumentation. An automated solution, and therefore future work,

is to generalize commonalities between the regular expressions from Listing  4.7 into a single

grammar. The resulting grammar could then be used in lexical analysis to identify tokens

from method signatures. For example, the lexical analyzer could identify the DataWriter

substring from the write signature or the Context objects in the SendEvent() signature.

6.3 Any instrumentation will slow down the distributed system

Any instrumentation framework will always slow down a distributed system. In the

context of Pin, new I/O layers are introduced every time instrumentation code is injected

into the binary files. Control must pass through these new layers, which inhibits performance,

every time a method flagged for instrumentation is invoked.

The solution is to add control over how much instrumentation overhead is brought into

a system. Incorporating instrumentation control has the potential to reduce the number of

instrumentation insertions. This feature could include user-controlled sampling for a subset

of events instead of instrumenting every event and method discovered. Future work therefore

will investigate how we can integrate such controls into SDMM without introducing more

instrumentation overhead.

6.4 Support other processing architectures

Intel’s Pin is the DBI framework behind SDMM. While this framework is suitable for

our project, Pin is only compatible on the x86 CPU architecture. The solution and future

work include incorporating support for other CPU architectures by porting the Pin instru-

mentation code to other DBI frameworks. For example, DynamoRIO [ 11 ] is a framework

that supports ARM and PowerPC architecture.
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7. CONCLUSION

This thesis presented a Pintool named the Standards-based Distributed Middleware Monitor

(SDMM) that non-intrusively instruments a distributed system implemented with standards-

based distributed middleware. SDMM can support any distributed middleware, such as the

Data Distributed Service (DDS) and gRemote Procedure Call (gRPC), by representing them

in a configuration file and object composition. The tool leverages symbol patterns, which we

call programming standards, as the gateway into a distributed system. The Pintool captures

standards from communication methods and setter methods for real-time monitoring and

analysis. SDMM currently works with two DDS vendors, RTI Connext DDS and OpenDDS,

gRPC, and CORBA, which was not discussed in this thesis.

Based on experience gained from applying SDMM to distributed systems, we learned it

is possible to create a single tool to non-intrusively instrument a system written with any

distributed middleware. SDMM could discover the object setter methods and communication

methods for programs written with DDS and gRPC middleware. Furthermore, SDMM could

extract information relevant to real-time monitoring such as method average run-time and

the data values. This is valuable because all the information is collected at run-time without

a priori knowledge of the system under instrumentation.

SDMM has been integrated in Pin++. SDMM is freely available in open-source format

from the following location:  https://github.com/SEDS/PinPP/tree/master/examples/SDMM .
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