

Empirical Evaluation of the
Usefulness of Graph-based

Visualization Techniques to Support
Software Understanding

Germán Oswaldo Cárdenas Caro

Universidad Nacional de Colombia

Facultad de Ingeniería, Departamento de Ingeniería de Sistemas e Industrial

Bogotá, Colombia

2016

II Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques to

Support Software Understanding

Empirical Evaluation of the

Usefulness of Graph-based

Visualization Techniques to Support

Software Understanding

Germán Oswaldo Cárdenas Caro

A Thesis presented in partial fulfillment for the degree of Master in Engineering - Systems

and Computing

Advisor

Ph.D., McS., Jairo Hernán Aponte Melo

Research Line:

Software Engineering

Universidad Nacional de Colombia

Facultad de Ingeniería, Departamento de Ingeniería de Sistemas e Industrial.

Bogotá, Colombia

2016

 III

Dedication

A mi familia entera

IV Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques to

Support Software Understanding

Acknowledgement

I would like to thank my advisor professor Jairo Hernán Aponte for their constant support

in this thesis.

I would like to thank to the people of Colombia and to the National University of Colombia.

I am really happy to give back this small retribution to everything I have received.

 V

Resumen

Muchos investigadores han señalado la falta de estudios empíricos que sistemáticamente

examinen las ventajas y desventajas del uso de técnicas de visualización para soportar la

comprensión del software. Estos estudios son indispensables para recolectar y analizar

evidencia objetiva y cuantificable acerca de la utilidad de las técnicas de visualización y

herramientas propuestas, y más aún, para servir como guía de la investigación en

visualización de software. En este estudio, 6 tareas típicas de comprensión de software

fueron realizadas por 20 estudiantes de ingeniería de software. Se midió el tiempo de

respuesta y se calificó la exactitud en las respuestas de los participantes. Los resultados

indican que, por una parte, el uso de la técnica de visualización basada en grafos mejoró

la exactitud en las respuestas de los estudiantes (21.45% en promedio), por otra parte, no

se encontró evidencia de reducción en el tiempo gastado por los estudiantes para resolver

las tareas de comprensión de software.

Palabras clave: visualización de software; experimento controlado, comprensión de

software.

VI Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques to

Support Software Understanding

Abstract

Many researchers have highlighted the scarcity of empirical studies that systematically

examine the advantages and disadvantages of the use of visualization techniques for

software understanding activities. Such studies are crucial for gathering and analyzing

objective and quantifiable evidence about the usefulness of proposed visualization

techniques and tools, and ultimately, for guiding the research in software visualization. This

paper presents a controlled experiment aimed at assessing the impact of a graph-based

visualization technique on comprehension tasks. Six common comprehension tasks were

performed by 20 undergraduate software engineering students. The completion time and

the accuracy of the participants’ responses were measured. The results indicate that on

one hand the use of the graph-based visualization increases the correctness (by 21.45%

in average) but on the other hand it does not reduce the completion time in program

comprehension tasks.

Keywords— software visualization; controlled experiment; software comprehension

 VII

Content

Pág.

Introduction ... 11
Goals .. 11
Contributions... 12
Thesis Outline ... 12

1. Background .. 14
1.1 Software Visualization .. 14
1.2 Types of Software Visualization Techniques .. 14

1.2.1 Graph-based Visualization Technique ... 15
1.2.2 Notation-based Visualization Technique .. 16
1.2.3 Matrix-based Visualization Technique .. 17
1.2.4 Metaphor-based Visualization Technique .. 18

1.3 Graph-based Visualization Technique Concepts .. 19
1.3.1 Graph Visualization .. 19
1.3.2 Graph Layouts ... 21

1.4 Empirical Software Engineering Concepts .. 22
1.4.1 Empirical Methods ... 23
1.4.2 Controlled Experiments Concepts .. 23
1.4.3 Experimental Process .. 24

1.5 Software Comprehension Concepts ... 25
1.5.1 Definitions .. 26
1.5.2 Cognitive Theories ... 26

1.6 ISPACE .. 27
1.6.1 Basic Concepts and Operations ... 27

1.7 Related Work ... 28

2. Experimental Design .. 31
2.1 Research Questions ... 31
2.2 Hypotheses .. 31
2.3 Object System .. 32
2.4 Tasks ... 32
2.5 Subjects ... 34
2.6 Data collection .. 36
2.7 Independent variables .. 36
2.8 Dependent variables .. 36
2.9 Controlled variables .. 36
2.10 Study procedure and instrumentation ... 37
2.11 Threats to Validity... 38

2.11.1 External Validity ... 38

VIII Empirical Evaluation of the Usefulness of Graph-based Visualization

Techniques to Support Software Understanding

Introduc

2.11.2 Internal Validity .. 38

3. Results .. 39
3.1 Analysis Overall Results on Correctness .. 39
3.2 Analysis Overall Results on Completion Time ... 40
3.3 Tasks Analysis .. 41

3.3.1 Task 1 ... 41
3.3.2 Task 2 ... 42
3.3.3 Task 3 ... 44
3.3.4 Task 4 ... 45
3.3.5 Task 5 ... 46
3.3.6 Task 6 ... 48

3.4 Discussion and comparison of unsuccessful tasks .. 51
3.5 Usefulness Perception .. 52
3.6 Post-Experiment Analysis ... 53

4. Conclusions and Future Work .. 55
4.1 Conclusions .. 55
4.2 Future Work .. 56

Bibliography .. 58

 IX

Lista de figuras

Pág.

Figure 1-1: Software Visualization techniques [2]... 15

Figure 1-2: SHriMP’s multiples views of a Java program [12]................................... 16

Figure 1-3: Example of SysML core diagrams. .. 17

Figure 1-4: View of Lattix. .. 18

Figure 1-5: View of CodeCity ... 19

Figure 1-6: Graph-based software representations. ... 20

Figure 1-7: Graph-based layouts. .. 22

Figure 1-8: Overview of the experimental process [19]. ... 25

Figure 1-9: ISPACE view. .. 28

Figure 2-1: Subjects’ Expertise. ... 35

Figure 3-1: Boxplots for overall correctness. .. 40

Figure 3-2: Boxplots for overall completion time... 41

Figure 3-3: Boxplots for Task 1 correctness. .. 42

Figure 3-4: Boxplots for Task 2 correctness. .. 43

Figure 3-5: Boxplots for Task 2 completion time. ... 43

Figure 3-6: Boxplots for Task 3 correctness. .. 44

Figure 3-7: Boxplots for Task 3 completion time. ... 45

Figure 3-8: Boxplots for Task 4 correctness. .. 46

Figure 3-9: Boxplots for Task 5 correctness. .. 47

Figure 3-10: Boxplots for Task 5 completion time. ... 47

Figure 3-11: Boxplots for Task 6 correctness. .. 48

Figure 3-12: Boxplots for Task 6 completion time. ... 49

Figure 3-13: Correctness per task. ... 49

Figure 3-14: Boxplot correctness per task. ... 50

Figure 3-15: Completion time per task. .. 51

Figure 3-16: Boxplot completion time per task. .. 51

Figure 3-17: Usefulness perception of the Visualization Technique. 53

Figure 3-18: Task difficulty perception. .. 54

 X

Lista de tablas

Pág.

Table 2-1: Hypotheses .. 32

Table 2-2: Subjects’ Distribution. .. 35

Table 2-3: Block design .. 37

Table 3-1: Descriptive Statistics of the Experimental Results. 39

Introduction

In order to analyze and understand large-scale software several techniques have been

developed and one of the most interesting is software visualization. This approach takes

advantage of the human’s brain ability to recognize and understand graphic patterns and

images and has been extensively used by many researchers to propose a wide variety of

techniques and supporting tools. Unfortunately, not many of them have been empirically

evaluated, which indicates that the systematic, disciplined, and controlled method for

evaluating visualization techniques provided by experimentation has hardly been used [1,

2, 3]. As a consequence, several primary studies have highlighted the need for an objective

evaluation of the proposed visualization techniques that allows researchers and

practitioners to identify the pros and cons of applying them for performing typical software

engineering activities. Among the existing empirical evaluation of software visualization

tools, most controlled experiments are dedicated to the validation of the tools developed by

the authors of those studies.

This thesis presents a controlled experiment aimed at evaluating an independent graph-

based visualization technique, not developed by the authors. Graph-based visualizations

are the most popular techniques used to represent software architectures [2] and explicitly

depict software organization and its key aspects [4]. Our purpose is to evaluate the

efficiency and effectiveness of this visualization technique at supporting typical software

comprehension tasks. Source-code-based exploration technique is our chosen baseline,

since it is the common way to perform software understanding [1, 5].

Goals

The general goal of this work is to provide empirical evidence of the effectiveness and

efficiency of graph-based visualization techniques to support software understanding. The

following are the specific goals to achieve in the current study:

12 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

1. To build the current state of the art on empirical evaluation of graph-based

software visualization techniques.

2. To select a tool and a set of software systems in order to generate the

software visualizations for the assessment.

3. To design and perform an empirical assessment of the visualization
technique in which we will collect qualitative and quantitative data.

4. To analyze the data collected in order to determine the strengths and
weaknesses of graph-based visualization techniques used to support
software understanding.

5. To present results of the empirical assessment so that the conducted

experiments can be completely replicated by other researchers.

Contributions

This work makes the following main contributions:

1. A state of the art of empirical evaluations of graph-based visualization

techniques.

2. A well-designed controlled experiment to determine benefits and drawbacks

of the graph-based visualization technique to support software

comprehension.

3. Article: “An Empirical Assessment of the Graph-based Visualization

Technique” submitted and accepted in the International Conference on

Information Systems and Computer Science (INCISCOS 2016).

4. A complete set of study materials for reviewing and replication purposes1.

Thesis Outline

The document is structured as follows:

1 https://drive.google.com/open?id=0B6lbY7sU2RMIMW1LclRhTGc5OTQ

https://drive.google.com/open?id=0B6lbY7sU2RMIMW1LclRhTGc5OTQ

 13

1. Chapter 1 shows the background and related work which was used as starting point

for the research.

2. Chapter 2 delineates all the considerations taking into account to design the

controlled experiment.

3. Chapter 3 presents overall and per task results of the experiment.

4. Chapter 4 draws some conclusions and presents the future work.

14 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

1. Background

In the current section the background and related work used for this thesis is presented.

This include relevant concepts and definitions, representative tools and techniques, and

the related work performed by researchers in order to empirically evaluate the usefulness

of software visualization to support different aspects of software comprehension through

controlled experiments.

1.1 Software Visualization

Since the software system increasingly complex, the associated task to their development,

maintenance, and evolution become more complex too. The more complex the system, the

more difficult its understanding. It is precisely here where arise the necessity to use

techniques facilitate software comprehension. Software visualization is a technique that

support this task, and it is defined as “a representation of computer programs, associated

documentation and data that enhances, simplifies, and clarifies the mental representation

the software engineer has of the operation of a computer system” [17].

1.2 Types of Software Visualization Techniques

For the current research we have adopted the categorization made by Shahin et al. [2]

whom employed thematic analysis, which is a qualitative method to identify, analyze and

report patterns form a given set of data [6]. They define 4 kinds of visualization techniques,

namely graph-based, notation-based, matrix-based, and metaphor-based. Since the

current work only evaluate one of them (graph-based), the techniques are described at

glance, and the graph-based visualization technique is presented deeper in a separate

section. An example of the 4 techniques are shown in Figure 1-1.

 15

Figure 1-1: Software Visualization techniques [2].

1.2.1 Graph-based Visualization Technique

This type of visualization technique is the most used in order to represent the software

structure [2]. It uses nodes to represents different software entities and edges to visualize

relationships between them [7]. The early work of Storey et al. [11, 13] in which their tool

Rigi is presented and evaluated is one of the most representative of the technique. Sim et

16 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

al. [45] presents their graph-based tool the Searchable Bookshelf for information retrieval

and software comprehension. Synytskyy et al. [46] presents their tool LSEdit, and also

reports some success stories. Figure 1-2 presents a view of SHriMP [13], a tool used for

visualize static aspects of software.

Figure 1-2: SHriMP’s multiples views of a Java program [12].

1.2.2 Notation-based Visualization Technique

Classical graphic languages to represent software such as UML (Unified Modeling

Language)2, SysML3 (System Modeling Language), and E-R Diagrams fit in this category

[2, 7]. UML is a well-known general-purpose modeling language developed and maintained

by OMG (Object Management Group)4, and is widely used in both Industry and Academia.

SysML is also developed by the OMG consortium. It is defined as a dialect of UML standard,

2 http://uml.org/
3 http://sysml.org/
4 http://www.omg.org/

 17

and is used to support different source of processes such as: analysis, design, verification

and validation [8]. Stratton et al. [47] reports an automatic construction of UML models form

source code. Telea et al. reference Enterprise Architect, a tool for reverse engineering.

Figure 1-3 shows the key diagrams of SysML.

Figure 1-3: Example of SysML core diagrams.

1.2.3 Matrix-based Visualization Technique

Since the visualization of large systems may become complex and hard to follow using

current visualization approaches mostly based on node-link diagrams [9], the matrix-based

visualization techniques emerges as a necessary and very useful complement to support

software understanding. It is less intuitive in comparison with graph-based visualization

techniques, but it is able to show additional details when the graph is large or dense [2].

Beck and Diehl [49] use matrix to compare software architecture descriptions. Also, Lungu

and Lanza [50] use matrix to display detailed dependency between two modules. Figure 1-

4 shows a matrix-based representation of a .NET software system.

18 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

Figure 1-4: View of Lattix5.

1.2.4 Metaphor-based Visualization Technique

This visualization technique is particularly effective and easy to understand due to its

representation are based in real-world elements [2]. Software systems are visualized in

wide variety of actual objects such as cities, landscapes, and solar system. City-metaphor

typically represents software artifacts as entities that commonly make up urban

environments [10]. For example, Wettel et al. [1] presents CodeCity a metaphor that

represents classes as buildings, and packages as districts. Figure 1-5 shows a visualization

of JDK (Java Development Kit)1.5. Balzer et al. [51] use 3D landscapes to represent the

static structure of object-oriented programs.

5 http://lattix.com/

 19

Figure 1-5: View of CodeCity

1.3 Graph-based Visualization Technique Concepts

Since the current study aims to empirically assess how useful is the graph-based

visualization technique to support software understanding, we consider necessary to

describe deeply the concepts and definitions involved in its representation and use.

1.3.1 Graph Visualization

Graphs have emerged as a great concept to represent a huge range of types of information

due to their natural capability to represent objects and relationships between objects [14].

Since graph are the fundamental structural representation of data [15], and software is

inherently structured, software graph-based representation is a very obvious result.

Software graph visualization represents entities as nodes and the relationships between

these entities as edges. Nodes could vary depending of the desired granularity. They may

represent methods, classes, packages, modules, components, subsystems, and even

entire systems. Edges can visualize either static or dynamic aspects, such as inheritance,

implementations, aggregation-composition or calls between methods [14].

20 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

Depending of their application context graph can be drawn in different ways. Nodes may

be dots, circles, or simply labels. Edges may be straight lines, orthogonal or arbitrary

polygonal paths, or curves [14]. Figure 1-6 visualize functions and the calls between them.

Colors represents hot-spots.

Figure 1-6: Graph-based software representations.

 21

1.3.2 Graph Layouts

In this section a brief review of graph layout concepts is presented. The works of Lemieux

et al. [12], Herman et al. [15], and Kaufmann et al. [16] give more detailed insights into the

graph layout theory. The classification given in [12] was taken as basis to develop this

section, since it is focused towards software comprehension, which is one of the key

concepts of our study.

 Tree Layout: Tree layout has an ancestor-children composition. All children are

placed immediately below of their ancestor. In general, this representation models

hierarchical information using space-filling methods [10]. The most common

structured- positioning are top-down, left-to-right, concentric circles, Information

Cubes, and 3D cone-tree.

 Hierarchical Layout: This technique is the typical method to visualize directed

graphs [12]. Hierarchical layouts drawn vertices in rows or levels, and edges are

driven from the top to the bottom.

 Orthogonal Layout: In this sort of layout nodes are located both horizontally and

vertically, so the edges are blended in 90-degree angles. Orthogonal layout

representations have the advantage of minimize the amount of edge crossing [12].

 Force-based Layout: It places the nodes according to a system of forces using

physical concepts. The most used algorithms are spring embedder and molecular

mechanics. It combines repulsive and attractive forces and the optimal graph is

shaped when the forces have been minimized [12].

 Hyperbolic Layout: This type of layout was developed with graph visualization and

interaction in mind [15]. It reduces the amount of space that is necessary to display

representations, providing a distorted view of graph structure.

 Layout of Cluster Graphs: This is based in the abstraction and reduction

techniques [12], it has the advantage of reducing the number of visible elements

improving the clarity of the diagram [15].

 Nested Graph Hierarchy: This technique is an expansion of graphs where each

node can contain a nested graph, and it is possible to navigate through the hierarchy

going to arbitrary depth.

 Symmetric Layout: Symmetric layout grouped nodes in symmetrical patterns by

applying transformation that not to modify information presented by the graph. It is

a very practical way to reduce edge crossings [12].

22 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

Figure 1-7 shows different examples of graphs layouts

Figure 1-7: Graph-based layouts.

1.4 Empirical Software Engineering Concepts

Since main contributions of this work were obtained via empirical strategies, we considered

essential to present the more important concepts used in empirical software engineering

going deeper in those related to the current thesis.

 23

1.4.1 Empirical Methods

Empirical software engineering provides a set of methods to solve any research problem,

and in a great number of cases is necessary to apply a combination of them to fully fulfill

concluding results [18]. Moreover, the results and their validity have a strong relationship

with the method chosen.

There are two types of approaches in to empirical studies, namely exploratory research and

exploratory research [19].

Exploratory research is focused to study a phenomenon is its natural setting. It is often

referred to as qualitative research. Explanatory research which is focused in obtain

quantitative measures of cause-effect relationships [19]. The current thesis aims for

gathering information using both approaches.

The most important empirical methods’ definitions are given below.

 Controlled Experiments: A method that seek to test a hypothesis manipulating

one or more independent variables in order to measure the effect on one or more

dependent variables [18].

 Case Studies: Empirical method which investigate a phenomenon within its real-

life context. It is especially useful when are not clearly distinguishable the boundary

between context and phenomenon [20].

 Survey Research: It is used to identify characteristics within a well-defined

population by mean of the analysis of a representative sample. It is often associated

with questionnaires, but it could be carry out through interviews, or data-login

techniques [18].

 Ethnographies: This is a technique that look for understand how communities build

their social interactions. This kind of technique allow researchers to investigate

communities culture [21].

 Action Research: In this method the researcher attempts to investigate a real-life

problem while tries to solve it [22]. Action research attempt to improve de

researched situation instead of only to observe and measure.

1.4.2 Controlled Experiments Concepts

As we mentioned above, an experiment in software engineering is an inquiry which modify

one or more for measuring the effect on one or more independent variables. It is mostly

performed in controlled environments. According with Wohlin et al. [19] is the experiment

24 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

is not randomized, it is termed quasi-experiment. Quasi-experiments are empirical methods

similar to “typical” experiments, where treatments are not assigned to subjects randomly,

they are assigned according with some criteria that arise from the subjects themselves. Our

empirical assessment belongs to this category because subjects were allocated in the

experimental treatment based on their performance in the software engineering course.

In order to understand the experimental process, it is necessary to introduce some basic

concepts.

 Independent Variables: Variables in the process that are manipulated and controlled.

 Dependent Variables: Variables which value is measured to know the effect caused

in response to a change in the independent variable.

 Subjects: Often called participants. The term is referred to the people who apply the

treatment.

 Objects: They are the artifacts over the treatment is applied by the subjects.

 Treatment: It is a combination of values of the independent variables. The treatments

are applied to a combination of objects and subjects.

1.4.3 Experimental Process

The experimental process is made up by several and well-defined series of steps. In order

to building this section, we took the activities structure presented by Wohlin et al. [19].

 Scoping: This is the first activity of the experimental process. The hypothesis has to be

clear, and both objectives and goals must be defined.

 Planning: The context of the experiment is determined in the planning step. It includes

define participants and environment of the experiment, and formally state null and

alternative hypothesis. Even more, the independent and dependent variables are

selected and their possible values and scales. Threats to validity are also determined

in this step. The most important product of this step is the experimental design.

 Operation: In this stage the preparation, execution and data validation of the

experiment take place. In the preparation the subjects and material are readied for the

experiment. The execution step is related with the accomplishment of the experimental

design and the data collection. Data validation is concerned of ensuring that the data is

correct and representative.

 25

 Analysis and Interpretation: It is the phase where the collected data in the previous

stage is analyzed and interpreted. Data is understood by mean of descriptive statistics.

Strange measures are removing by using data removing methods. Finally, it is

determined if the hypothesis is rejected by using statistical tests.

 Presentation and package: This is the final activity of the experimental process,

results of the experiment could be presented by means of a technical paper, and a lab

package can be elaborated for either validation or validation purposes.

The experimental process is described in figure 1- 8.

Figure 1-8: Overview of the experimental process [19].

1.5 Software Comprehension Concepts

Software or program comprehension is the activity by means programmers understand how

a software system or a part of it works [23]. It is an intensive activity in which developers

spend about 50% of their time [24, 25]. This section presents an overview of the different

concepts and strategies in software comprehension. We decided to take the approach

given by Storey [26].

26 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

1.5.1 Definitions

 Mental Model: It portrays the developer’s mental representation of the software

system.

 Cognitive Model: It depicts the cognitive process that take place in the developer’s

mind to form the mental model.

 Cognitive Support: It assists cognitive tasks such as thinking or reasoning [27].

 Beacons: They are familiar patterns or features that work as clue to identify program

structures.

 Rules of programming: Rules referred to coding standards and implementations [26].

1.5.2 Cognitive Theories

 Top-down comprehension: This theory claims that developers understand programs

from top to de down, i.e. mapping domain knowledge into source code. It is used

especially when the code is familiar for the developer [26].

 Bottom-up comprehension: In this theory software understanding is gained firstly

reading pieces of code and then putting together this gained knowledge in high-level

abstractions.

 Opportunistic and systematic strategies: This strategy states that programmers

either acquire general understanding of the software by using code-reading, control and

data-flow abstractions, or taking an as-needed approach focusing on pieces of code

related to a particular task [26].

 The Integrated Metamodel: This theory consists of 4 components. The first three

components describe the process to create the mental model by using the firsts three

approaches (top-down, bottom-up, and opportunistic), and the last one called

knowledge base describes the information needed to build the previous models. It is

represented by the developer’s current knowledge, which is used to gain new

understanding of the software.

 27

1.6 ISPACE

The current section presents ISPACE tool6, the selected tool to implement the technique

under assessment. Since ISPACE has a large number of characteristics, we limit our

description to those which were needed to perform our controlled experiment. The work

presented in [28, 29] gives a more detailed tool description. Also, we describe briefly the

selection criteria.

1.6.1 Basic Concepts and Operations

The main factor being analyzed is the use of the graph-based visualization technique, which

in this case is implemented in the ISPACE tool. The selection of the graph-based

visualization tool was strongly influenced by the easiness of use and installation, the proven

usefulness of the generated visualizations, and the ability to visualize packages which on

one hand is the natural decomposition mechanism of a java system, and on the other, is

essential for understanding non-trivial programs [30].

This Eclipse plug-in allows the users to explore the structure of a software system, i.e., its

components and their dependencies using a nested-labeled graph. Nodes are called

container boxes and can contain other nodes. Edges represent relationships between

boxes, and the number of dependences is mapped onto the weight of the arrows [28].

 Expand/Collapse: The elements nested in any composed node can be visualize by

calling the “expand group” functionality. The inverse operation is collapse. Also, these

operations can be performed using double-click. This functionality allowed subjects to

explore hierarchy, and to focused in the part of the system of their interest.

 Hide/Unhide: This feature permits to hide irrelevant nodes and their edges. This feature

allowed subjects to improve their visualizations.

 Move: All elements can be moved within the ISPACE layout, even among container

boxes.

6 http://web.archive.org/web/20111201180259/http://ispace.stribor.de/index.php?

28 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

 Nodes and relationships: ISPACE is able to represents all the sorts of elements of a

Java system as a node, from packages to variables and methods. Furthermore, it is

capable to describe relationships such as: implements, inherits, and uses.

Figure 1-9 shows a screenshot of the ISPACE user interface. It represents the packages

hierarchy hippoecm.faceteddate and its classes, and its relationship with

hippoecm.repository package. This hierarchical-recursive organization is the typical

structure of object-oriented software [31].

Figure 1-9: ISPACE view.

1.7 Related Work

Although there have been several works on evaluation of visualization techniques, we

restrict ourselves to briefly report on controlled experiments aimed at assessing graph-

based software visualization tools and approaches used to support program

comprehension.

Knodel et al. [32] evaluated the impact of changing the configuration of graphical elements

in their tool for software architecture visualization and evaluation SAVE. The experiment

compares the influence of two configuration utilizing Tomcat web server as object system.

29 academic subjects performed 10 architecture analyses tasks. Their findings show an

improvement of 63% in effectiveness by changing the configuration of graphical elements.

 29

Cornelissen et al. [33] carried out an experiment to assess EXTRAVIS, their tool for

visualizing execution traces. The experiment compares EXTRAVIS + Eclipse IDE against

Eclipse IDE. The results show a time decrease of 22% in time, and an increase of 43% in

correctness. They used CHECKSTYLE as object system, and a group of 23 academic

subjects and one participant from industry.

Storey et al. [11] evaluated the two different views approaches in their tool Rigi, namely

Multi-Win and SHriMP, and vi/grep Unix command line tool. 3 different programs written in

C were used as objects system. 12 subjects with academic background participated in the

controlled experiment. Quantitative results of this experiment is not reported.

Haitzer and Zdun [34] conducted a controlled experiment to determine the usefulness of

component diagrams to support understanding architectural level using Freecol computer

game as object, and 60 students as subjects. The results indicate that architectural

component diagram are useful to understand architectural connections that are hard to see

by exploring code.

Quante [35] performed a controlled experiment to evaluate whether their approach DOPG

(Dynamic Object Process Graphs) is useful to support program understanding. The

controlled experiment was carried out with 25 participants, all of them students, and three

object systems, namely Jetris, GanttProject, and ArgoUML. They found that the usefulness

of the approach depends of the system, it was only beneficial for ArgoUML, the biggest

system.

Finally, Fittkau et al. [36] conducted two controlled experiments; the primary study and its

replication in order to compare their tools EXRAVIS and ExploreViz in typical

comprehension tasks. They performed their assessment by using Babsi and PMD as object

systems. In the experiment 30 students participated, and 50 in its replication. The findings

show that subjects spent similar time for the small-sized system (Babsi), and a time

reduction of 28% for the large-sized (PMD) system in favor of ExplorViz. Also, results show

a significant improvement for both small and large-sized systems by using ExploreViz; 39

and 61% respectively.

30 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

There are two major differences between the related work and our study. First at all, most

of the studies evaluate their own tools or approaches, while our study is completely

independent. The assessment presented by Haitzer and Zdun [34] is the only exception,

but they used predefined diagrams in their controlled experiment. In our approach we

provided subjects with a tool, which allows them to interact directly with the object system.

The second principal difference is the system object’s size. We decided to utilize a software

system of 303828 LOC. The experiments cited in this section, mainly present software

systems not representatives of actual industrial systems. Only in the Quante’s experiment

[35] the largest system has 319917 LOC, which we consider a reasonable and

representative size.

2. Experimental Design

Research Design is the process of selecting a method for a particular research problem,

tapping into its strengths, while mitigating its weaknesses [18]. The purpose of the

experiment is to provide a quantitative evaluation of the effectiveness and efficiency of the

graph-based visualization technique when compared to a common code-based exploration

technique. Throughout this chapter the complete experiment’s design is explained in detail.

2.1 Research Questions

The following research questions were formulated:

RQ1: Does the use of graph-based VT increase the correctness, when performing software

understanding tasks?

RQ2: Does the use of graph-based VT reduce the completion time, when performing

software understanding tasks?

Thus, there are only two treatments in our experiment, one that provides subjects with a

graph-based visualization tool for performing the tasks (that is, ISPACE), and another that

provides subjects only with the Eclipse IDE. A between-subjects design was used, so that

each participant was tested on only one treatment.

2.2 Hypotheses

Based on the formulated research questions, the null and alternative hypotheses are given

in the table 2-1.

32 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

Table 2-1: Hypotheses

Null Hypothesis Alternative Hypothesis

H10: There are no significant differences in

correctness between both techniques for

software understanding tasks.

H1: There are significant differences in

correctness between both techniques for

software understanding tasks.

H20: There are no significant differences in

completion time between both techniques

for software understanding tasks.

H2: There are significant differences in

completion time between both techniques

for software understanding tasks.

2.3 Object System

A real system was chosen for our assessment. This selection was made based on two

criteria: 1) it has to be as large as typical industrial software, so that it is possible to extend

and generalize the results, and 2) its application domain has to be familiar to the subjects,

in order to prevent unnecessary confusion among participants. The selected system was

Hippo CMS7, a friendly and popular Content Management System written in Java and used

by a variety and well-known range of clients such as: Autodesk, ACM, and the University

of Amsterdam among many others. It has 145 packages, 928 classes, and 303828 lines of

code.

2.4 Tasks

For choosing experimental tasks, three strategies were adopted. The first one was to survey

practitioners for identifying activities they consider important in the software understanding

process in industry; the second one was to look for typical tasks in previous and related

studies [1, 11, 32, 33, 36, 37, 38, 39, 40]; and the last one was to make sure that each task

requires a reasonable amount of time to be completed, yet the set of tasks does not require

more than 120 minutes.

7 https://www.onehippo.org/

 33

Eight tasks were initially chosen, but it was necessary to exclude two original tasks. One

task was redundant because it was based on names recognition and coupling analysis

which we consider covered by tasks 3, 4 and 6. The second task was dismissed since it

was biased towards a particular architectural style, so we would not able to generalize

results.

Finally, six tasks8 were selected in order to cover the most important and common software

understanding activities [40]. It was decided on the final set of tasks, described below, after

a pilot was ran with two subjects to determine the approximate amount of time needed to

complete the tasks, and to remove ambiguities in the writing of questions.

Task 1. From a structural viewpoint, what is the most important package or set of packages

in the system? How does it interact with the others? How did you identify it?

Rationale: Assessing high-level structure/architecture of the software system and how its

components interact is a key comprehension activity to understand the domain of the

system [40].

Task 2. Describe the class structure of the package P. That is, relationships among entities.

How did you identify that structure?

Rationale: Investigating the internal structure of an artefact is a typical comprehension task

[40].

Task 3. Which is the class in the package P with the strongest coupling to package Q?

How did you identify that class? [33]

Rationale: Coupling and cohesion are two of the most important design concepts and help

to determine how the system works and how easy it is to maintain and evolve.

8 Complete questionnaire is available in the experimental package.

34 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

Task 4. Which is the class in the package P with the highest fan-in (incoming calls)? Which

is the class with the lowest fan-out (outgoing calls)? How did you identify them? [36]

Rationale: Understanding dependencies between artefacts and assessing the quality of the

system's design is one of the principal activities in software comprehension [40].

Task 5. Look for the class C in the package P. Evaluate its change impact considering its

caller classes. The assessment is done in terms of both intensity (number of potentially

affected classes) and dispersion (how these classes are distributed in the packages

structure). How did you do this task?

Rationale: Impact analysis provides the means to estimate how a change to a restricted

part of the system would impact the rest of the system. Although extensively used in

maintenance activities, impact analysis may also be performed by developers when

estimating the effort needed to perform a change. It also gives an idea of the quality of the

system. A part of the system which requires a large effort to change may be a good

candidate for refactoring [1].

Task 6. Describe the purpose of package P. How did you determine the purpose of that

package? [11]

Rationale: Investigating the functionality of (a part of) the system and understanding its

domain is one of the main and useful activities in software comprehension for practitioners

and researchers [40].

2.5 Subjects

Subjects in this controlled experiment were undergraduate students from a Software

Engineering course. As we see in Figure 2-1, all subjects had knowledge of the

fundamentals of OO programing and design, and Java programing experience, which it was

estimated as an adequate background for performing the experiment.

Since motivation is an essential element of software visualization evaluations [41], to recruit

participants it was offered a reward and 21 students from the course decided to accept the

 35

invitation. However, it was necessary to discard the responses of one of the participants,

since the participant did the tasks in just a few minutes, which indicated lack of serious

effort.

Figure 2-1: Subjects’ Expertise.

To assign the two treatments, participants were divided into two groups, maintaining a

balance between the groups with respect to course performance as much as possible. To

do that, the students were grouped in three categories namely, A, B, and C, according to

their grades and the quality of their contributions to the course software project. After that,

the students of each category were evenly distributed among the two groups using the

blocking technique (Table 2-2).

Table 2-2: Subjects’ Distribution.

Number of Subjects Treatments

Blocks Graph-based Source-code-based Total

C 6 7 13

B 1 2 3

A 3 1 5

36 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

Total 10 10 20

2.6 Data collection

All subjects answered the six tasks via an online questionnaire designed using the

Qualtrics9 system. The tasks were presented in the order they appear in Section 2.4. Each

task was timed and the subjects were asked to write the answer in the space provided in

the online forms. They were not allowed to go back to questions already answered or skip

a question without answered it.

2.7 Independent variables

Since the current experiment has the purpose of measuring the effectiveness and the

efficiency of graph-based VT at supporting software understanding tasks, we consider the

type of technique our independent variable. This variable has two levels, i.e., graph-based

visualization and source-code-based exploration technique.

2.8 Dependent variables

We assessed the correctness and the completion time of each task to measure

effectiveness and efficiency, respectively. The correctness of each answer was scored by

one of the authors with a number between 0 and 10 (See grading scale in the experimental

package). All answers were previously mixed, so the grader did not know which treatment

was rating. The time spent by a subject on answering a task was recorded by Qualtrics, the

online survey tool used.

2.9 Controlled variables

We identified the participants’ course performance as an influential factor over the

experiment’s results. To mitigate this potential influence, we used blocking technique based

9 https://www.qualtrics.com/

 37

on the criteria and categories described in Section 2.5. Table 2-3 shows the assignment of

individuals to groups, broken down by categories.

Table 2-3: Block design

Treatments A B C Total

Source Code-based group 2 2 7 11

Graph-based group 3 1 6 10

2.10 Study procedure and instrumentation

We ran a pilot study that allowed us to verify the feasibility of the tasks, calculate the

approximate time required by each task, and improve the wording and clarity of the

questions and instructions for the participants. It was performed by two students, each one

of them resolved tasks for one treatment.

Before the study, one of the authors made a brief presentation of ISPACE to the entire

course. At the same meeting, the presenter did a review of the main features provided by

Eclipse for exploring the structure of a system. In addition, when starting the experiment,

the ISPACE group was given a one-page description of the visualization tool and a brief

tutorial of the most relevant Eclipse functionalities for performing the tasks of the study; and

the other group was provided only with the Eclipse tutorial.

The study was conducted in a laboratory where each participant used a laptop computer

previously set up with the software required. Participants in the ISPACE group were

allowed to use any Eclipse feature they thought are essential for doing the task at hand, in

addition to the ISPACE plug-in. At the end of the study, they filled out a short post-

questionnaire. The complete set of study materials is available for reviewing and replication

purposes.

38 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

2.11 Threats to Validity

2.11.1 External Validity

External validity refers to the degree to which the results of our study can be generalized to

other populations and contexts. First of all, the subjects were undergraduate students with

acceptable knowledge of Java and Eclipse, but with no knowledge of the software

architecture subject. It is likely that using graduate students or industry developers, the

results may have been different. Secondly, the six tasks chosen refer to a single medium

sized system. Thus, the representativeness of the tasks and subject system selected is

another threat that reduces our ability to extrapolate our results to other Java systems and

other types of comprehension tasks.

2.11.2 Internal Validity

Internal validity refers to unrelated factors that may compete with the independent variable

in explaining the study results. First of all, to reduce the threat that the subjects may not be

competent enough to perform the tasks proposed, we chose them from a software

engineering course, ensuring that participants had basic knowledge of Java programming,

and OO programming. In addition, all subjects attended a brief presentation about the main

functionality of ISPACE and the Eclipse IDE, and also received short tutorial of both tools.

Secondly, based on the performance of the students in the course, we grouped the subjects

such that both groups would have participants with fairly similar programming skills and

software engineering knowledge. In this way we mitigated the threat of an unbalanced

distribution of the subjects’ expertise across the two groups. Third, since we are conducting

an independent assessment, the choice of the tasks was not biased toward any technique,

and participants in the ISPACE group were allowed to use any Eclipse feature they thought

are essential for doing the task at hand, in addition to the ISPACE plug-in. Finally, the

participants were recruited on a voluntary basis, all of them received a reward simply for

participation, they were assured of the anonymity of their answers, they did not know neither

the study goal, nor which group they were before performing the study.

 39

3. Results

We used the two-tailed Student’s t-test for our analysis as it is the most suitable for our

experimental design. This test requires our data meet normal distribution and depend on

equal or unequal variances. To test normal distribution, Shapiro-Wilk test was used and to

test homogeneity of the variances, Levene’s test was conducted. Both test succeeded

assuming a significant level of 0.05 (α=0.05). The complete statistics related to the

experiment’s result are presented in Table 3-1.

Table 3-1: Descriptive Statistics of the Experimental Results.

Correctness

Treatment Mean Min Max Median Stdev
Shapir-Wilk

Test
Cohen’s d

Levene’s

Test
t p-value

Code-based
5.78 4.17 7.08 6.21 0.98 0.1934

1.0034 0.4782
-

2.2587
0.0366

Graph-

based

7.01 4.87 9.58 7.08 1.43 0.8272

Completion Time

Treatment Mean Min Max Median Stdev
Shapir-Wilk

Test
Cohen’s d

Levene’s

Test
t p-value

Code-based
40.00 20.57 58.48 38.73 12.00 0.8241

- 0.7236 0.0602 0.9530

Graph-
based

39.64 28.11 60.83 37.83 10.60 0.1847

We performed the analysis for correctness and completion time using RStudio10 Statistical

Software. All scripts and results are available as part of our experimental package.

3.1 Analysis Overall Results on Correctness

Student’s t-test revealed a p-value 0.0366. In consequence, we reject H10 in favor of the

alternative hypothesis H1 indicating that the mean correctness in the graph-based

treatment was significantly higher than the one for code-based treatment. This means that

the data show evidence that the graph-based visualization increases the correctness in

program comprehension tasks (21.45%).

10 https://www.rstudio.com/

40 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

To understand better de magnitude of the difference between the two treatments [42, 43],

we decided to compute the effect size using Cohen’s d measure. The found value was

1.0034, which means a large effect due to the support of the graph-based visualization

technique. The effect of the technique on correctness is illustrated in Figure 3-1.

Figure 3-1: Boxplots for overall correctness.

3.2 Analysis Overall Results on Completion Time

For the completion time analysis, we decided to remove results from both task T1 and T4

due to their low correctness, especially in the code-based treatment, which makes

impossible the comparison. Even more, we decided to perform an extra grading including

only results from the remaining tasks (T2, T3, T5, and T6), and removed all subjects with a

total score less than 7.5 in the same way that the evaluation performed by Fittkau et al.

[36]. It ended up in elimination of 3 subjects per treatment.

Student’s t-test revealed a p-value 0.9530. Thus, there is no evidence to rejected H20 in

favor of the alternative hypothesis H2 indicating that the difference between the mean

completion time in both graph-based and code-based treatments was not significant. This

means that the data show no evidence that there are significant differences in completion

 41

time between both techniques for software understanding tasks. The effect of the technique

on completion time is illustrated in Figure 3-2.

Figure 3-2: Boxplots for overall completion time.

3.3 Tasks Analysis

We provide a deeper analysis of the results, for each task. Both task T1 and T4 was

excluded from completion time analysis, as the same way as results below 7.5 for remaining

tasks (T2, T3, T5, and T6). All results were taken into account for the correctness analysis.

3.3.1 Task 1

The graph-based group performed better than the code-based group in terms of

correctness (6.15 vs. 2.50). Subjects in code-based treatment had a very poor

performance, while for the graph-based one it was acceptable. The subject who had an

acceptable performance used strategies such as look for hierarchical relations and amount

of classes per package. That was the approach used by most of the participants in graph-

based treatment, which suggests that the VT leads participants through a better strategy.

The effect of the technique on correctness is shown in Figure 3-3.

42 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

Figure 3-3: Boxplots for Task 1 correctness.

3.3.2 Task 2

The graph-based group performed better than code-based in terms of correctness (8.19 vs.

5.90). Description of entities and relationships was more detailed in the graph-based

treatment than in the code-based one, which suggests that VT gives an extra degree of

accurateness. There is a difference in terms of completion time in favor of the graph-based

treatment (16.63 vs. 18.43). The effect of the technique on correctness and completion time

is shown in Figure 3-4 and 3-5 respectively.

 43

Figure 3-4: Boxplots for Task 2 correctness.

Figure 3-5: Boxplots for Task 2 completion time.

44 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

3.3.3 Task 3

The code-based group performed better than graph-based group in terms of correctness

(10.00 vs. 8.00). Code-based exploration seems to be the best strategy here; even

participants in graph-based treatment used it to carry out this task. There is a slight

difference in favor of graph-based technique in completion time (7.27 vs. 8.25). The effect

of the technique on correctness and completion time is shown in Figure 3-6 and 3-7

respectively.

Figure 3-6: Boxplots for Task 3 correctness.

 45

Figure 3-7: Boxplots for Task 3 completion time.

3.3.4 Task 4

The graph-based group performed better than code-based group in terms of correctness

(4.50 vs. 1.50). Exploring calls via metrics (number of dependencies) and caller classes

was the strategy used by participants with perfect score in the graph-based treatment. In

the code-based treatment no one has a perfect score, and seven out of the eleven subjects

scored 0 in this task. This suggests that the use of graph-based conventions substantially

improves correctness in this task. The effect of the technique on correctness is shown in

Figure 3-8.

46 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

Figure 3-8: Boxplots for Task 4 correctness.

3.3.5 Task 5

For this task the graph-based performed better than code-based in terms of correctness

(5.25 vs. 4.75). However, both groups had a low performance. Evidence suggests similar

results, and similar strategies (searching relationships). On the other hand, the graph-based

performed better than code-based in terms of completion time (9.25 vs. 10.34). The effect

of the technique on correctness and completion time is shown in Figure 3-9 and 3-10

respectively.

 47

Figure 3-9: Boxplots for Task 5 correctness.

Figure 3-10: Boxplots for Task 5 completion time.

48 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

3.3.6 Task 6

No significant differences between both techniques in correctness were found (10.00 vs.

10.00). Evidence suggests that VT leads subjects to use mostly name recognition strategy,

while in code-based treatment most subjects inspected code to understand package’s

functionality, and just one subject used name recognition strategy to solve this task. The

code-based group performed better than graph-based in terms of completion time (4.91 vs.

5.66). The effect of the technique on correctness and completion time is shown in Figure

3-11 and 3-12 respectively.

Figure 3-11: Boxplots for Task 6 correctness.

 49

Figure 3-12: Boxplots for Task 6 completion time.

In summary, subjects in the graph-based group performed better in tasks T1, T2, T4, and

T5 in terms of correctness, with the largest differences in tasks T1 and T4. For task T6, final

results in correctness were exactly the same for both techniques. Task T3 was the only one

in which the code-based group overcame the graph-based one. Figures 3-13 and 3-14

show graphical results of correctness.

Figure 3-13: Correctness per task.

50 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

Figure 3-14: Boxplot correctness per task.

Subjects in graph-based treatment performed better in tasks T2, T3, and T5 in terms of

completion time. The only one task in which code-based technique overcame graph-based

technique was T6; however, the difference was not too large. Figures 3-15 and 3-16 show

graphical results of completion time.

 51

Figure 3-15: Completion time per task.

Figure 3-16: Boxplot completion time per task.

3.4 Discussion and comparison of unsuccessful tasks

Both techniques performed low in tasks T4 and T5. Task 4 was used in a study by

Cornelissen et al. [33] and task 5 in a study by Wettel et al. [33]. Results in the mentioned

studies outperformed considerably ours for both tasks.

52 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

The experiment done by Cornelissen et al. [33] evaluates the EXTRAVIS tool, which

visualizes dynamic and static analysis against Eclipse. EXTRAVIS provide a two linked

views; the massive sequence view to support trace analysis, and the circular bundle view,

which is representative of the graph-based technique [2] to perform static analysis. The

subjects using EXTRAVIS performed considerably well in this task, in terms of correctness

and completion time. Task 5 was taken from a controlled experiment conducted by Wettel

et al. [1]. They evaluate the CodeCity tool, which presents a metaphor-based technique [2].

The study was performed over two different software systems against a base-line (Eclipse

+ Excel), having good results too.

Hence, the low performance in our experiment could be caused by several reasons such

as: subjects’ background, unsuitability of the graph-based technique for carrying out this

particular type of tasks, misunderstanding of the tasks, etc. We asked participants about

tasks understandability, and only two claimed not to understand task T4. No subject said

not to understand task T5. In order to analyze the others mentioned potential reasons,

further research is necessary.

3.5 Usefulness Perception

We asked subjects about how useful was the support provided by the visualization

technique to solve each task. The graph-based visualization technique was rated as

Extremely Useful and Moderately Useful for most participants in all tasks, especially in tasks

T1 (100%), T2 (100%), and T6 (90%). For Task T3 (60%), T4 (70%), and T5 (80%) the

visualization technique was less useful.

Subjects perceived the visualization technique more useless for Task 3, where 30% of the

subjects perceived it as moderately useless, and 10% as totally useless. This is consistent

with their strategy to resolve this specific task, since 5 subjects used code exploration when

solved it. The most useful support was perceived in Task 2, where 90% of the subjects

rated the visualization technique as extremely useful, and the remaining 10% as moderately

useful. The strategy here was to explore visual conventions. Figure 3-17 shows the overall

subjects’ perceptions of the graph-based group.

 53

Figure 3-17: Usefulness perception of the Visualization Technique.

3.6 Post-Experiment Analysis

After the experimental session we surveyed subjects about the tasks difficulty; 19

participants answered the questionnaire. They were asked to select the 3 most difficult

tasks. The results show that tasks T1 was considered the most difficult task by participants,

which corresponds with their low scores. Task T2 was considered the less difficult which is

consistent with the results. Tasks T3, T4, T5 and T6 had an average and similar perception,

but different results in correctness and completion time. Tasks T3 and T6 had excellent

results, whereas participants’ performance was low for tasks T4 and T5. It could be due to

participants’ confidence in their answers. Unfortunately, we have no evidence to state our

hypothesis as we did not ask participants about their level of confidence.

Figure 3-18 compares the difficulty perceptions against both completion time and

correctness results.

54 Empirical Evaluation of the Usefulness of Graph-based Visualization Techniques

to Support Software Understanding

Figure 3-18: Task difficulty perception.

4. Conclusions and Future Work

4.1 Conclusions

We conducted a controlled experiment in order to assess the impact of using the graph-

based visualization technique, when performing typical software understanding tasks. Six

of these typical tasks were performed by 20 undergraduate students enrolled in a software

engineering course. Half of them used the ISPACE Eclipse plug-in, a graph-based tool for

visualizing and analyzing Java dependency graphs; and the other half used only the code

exploration features offered by the Eclipse IDE. The subject system was Hippo CMS, a

friendly and popular Content Management System written in Java. To assess the influence

of the visualization technique, we measured the completion time and the accuracy of each

one of the participants’ responses.

The study results indicate that the use of the graph-based visualization increases the overall

correctness (21.45%) and show no statistical evidence of reduction for overall completion

time in program comprehension tasks. Therefore, results show benefits of the graph-based

visualization technique on improving the effectiveness to carry out typical software

comprehension tasks, and suggest no effect on improving the efficiency.

Furthermore, subjects in the graph-based group performed better in tasks T1, T2, T4, and

T5 in terms of correctness. Task 6 had the perfect score for both treatments. Task T3 was

the only one in which the code-based group outperformed the graph-based one, the code-

based exploration seems to be the best strategy for performing this type of tasks.

Although results in overall completion time show no evidence favoring neither the graph-

based visualization technique nor the code-based exploration technique, it is possible to

see slight differences per task. On one hand subjects in the graph-based group performed

better in tasks T2, T3, and T5, but on the other hand subjects in the code-based group

56 Empirical Evaluation of the Usefulness of Graph-based Visualization

Techniques to Support Software Understanding

performed better in Task 6. Tasks T1 and T4 were omitted form the analysis on completion

time since the poor results on correctness make the analysis unreliable.

The visualization technique had the worst perception in Task 3, where 30% of the subjects

perceived it as moderately useless, and 10% as totally useless. This is consistent with their

strategy to resolve this specific task, since 5 subjects used code-based exploration

technique to solve it. Otherwise the more favorable perception was obtained in Task 2,

where 90% of the subjects rated the visualization technique as extremely useful, and the

remaining 10% as moderately useful. This perception lays in the strategy taken by the

subjects which consisted of exploring visual conventions.

Post-experiment survey shows that Identifying the most important package(s) in the system

was seen as the most difficult task by the 74% of the surveyed subjects. This fact is

consistent with the low scores, especially on the code-based treatment. This post-

experiment result plus the results on usefulness perception, where all participants rated the

visualization as useful, shows the poorness usability of the code-based exploration

technique for supporting high-level understanding. 53% of the subjects found Describing

the class structure of a package as the easiest kind of task. The excellent results of the

graph-based group in that task (T2), and the favorable perception point out the usefulness

of the visualization for understanding internal structure of artifacts.

4.2 Future Work

We plan on replicating this study with industrial subjects and organizing subsequent similar

studies to assess the influence of other visualization techniques on typical software

comprehension tasks. Another direction is to characterize the types of tasks in which each

of the four visualization techniques [4] is more appropriate and effective, and similarly,

identify those in which the visualization support does not improve neither the efficiency nor

the effectiveness.

Since replications play important roles in the construction of knowledge [44], and most of

the software engineering experiments have not been replicated [45], we provide a complete

experimental package including raw data, R scripts, and other detailed material in order to

 57

encourage other researchers to replicate our experiment or take our findings as starting

point to carry out other valuables empirical assessments.

58 Empirical Evaluation of the Usefulness of Graph-based Visualization

Techniques to Support Software Understanding

Bibliography

 [1] Wettel, R., Lanza, M., & Robbes, R. (2011, May). Software systems as cities: a

controlled experiment. In Proceedings of the 33rd International Conference on

Software Engineering (pp. 551-560). ACM.J.

[2] Shahin, M., Liang, P., & Babar, M. A. (2014). A systematic review of software

architecture visualization techniques. Journal of Systems and Software, 94, 161-

185.

[3] Seriai, A., Benomar, O., Cerat, B., & Sahraoui, H. (2014, September). Validation

of Software Visualization Tools: A Systematic Mapping Study. In Software

Visualization (VISSOFT), 2014 Second IEEE Working Conference on (pp. 60-69).

IEEE

[4] Dąbrowski, R., Stencel, K., & Timoszuk, G. (2011). Software is a directed

multigraph. In Software Architecture (pp. 360-369). Springer Berlin Heidelberg

[5] Wettel, R., Lanza, M., & Robbes, R. (2010). Empirical validation of CodeCity: A

controlled experiment. Tech Report 2010/05, University of Lugano

[6] Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative

research in psychology, 3(2), 77-101.

[7] Salameh, H. B., Ahmad, A., & Aljammal, A. (2016, July). Software evolution

visualization techniques and methods-a systematic review. In Computer Science

and Information Technology (CSIT), 2016 7th International Conference on (pp. 1-

6). IEEE.

[8] Friedenthal, S., Moore, A., & Steiner, R. (2006, July). OMG systems modeling

language (OMG SysML™) tutorial. In INCOSE Intl. Symp.

[9] Rufiange, S., & Melançon, G. (2014, September). AniMatrix: A matrix-based

visualization of software evolution. In Software Visualization (VISSOFT), 2014

Second IEEE Working Conference on (pp. 137-146). IEEE.

 59

[10] Teyseyre, A. R., & Campo, M. R. (2009). An overview of 3D software

visualization. IEEE transactions on visualization and computer graphics, 15(1), 87-

105.

[11] Storey, M. A., Wong, K., Fong, P., Hooper, D., Hopkins, K., & Műller, H. A.

(1996, November). On designing an experiment to evaluate a reverse engineering

tool. In Reverse Engineering, 1996., Proceedings of the Third Working Conference

on (pp. 31-40). IEEE.

[12] Lemieux, F., & Salois, M. (2006). Visualization techniques for program

comprehension. New Trends in Software Methodologies, Tools and Techniques

(eds. H. Fujita and M. Mejri), 22-47.

[13] Storey, M. A., Best, C., & Michand, J. (2001). Shrimp views: An interactive

environment for exploring java programs. In Program Comprehension, 2001. IWPC

2001. Proceedings. 9th International Workshop on (pp. 111-112). IEEE.

[14] Fleischer, R., & Hirsch, C. (2001). Graph drawing and its applications. In

Drawing graphs (pp. 1-22). Springer Berlin Heidelberg.

[15] Herman, I., Melançon, G., & Marshall, M. S. (2000). Graph visualization and

navigation in information visualization: A survey. IEEE Transactions on visualization

and computer graphics, 6(1), 24-43.

[16] Kaufmann, M., & Wagner, D. (Eds.). (2003). Drawing graphs: methods and

models (Vol. 2025). Springer.

[17] Mili, R., & Steiner, R. (2002). Software Engineering. In Software Visualization

(pp. 129-137). Springer Berlin Heidelberg.

[18] Easterbrook, S., Singer, J., Storey, M. A., & Damian, D. (2008). Selecting

empirical methods for software engineering research. In Guide to advanced

empirical software engineering (pp. 285-311). Springer London.

[19] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A.

(2012). Experimentation in software engineering. Springer Science & Business

Media.

[20] Runeson, P., Host, M., Rainer, A., & Regnell, B. (2012). Case study research

in software engineering: Guidelines and examples. John Wiley & Sons.

60 Empirical Evaluation of the Usefulness of Graph-based Visualization

Techniques to Support Software Understanding

[21] Robinson, H., Segal, J., & Sharp, H. (2007). Ethnographically-informed

empirical studies of software practice. Information and Software Technology, 49(6),

540-551.

[22] Davison, R., Martinsons, M. G., & Kock, N. (2004). Principles of canonical

action research. Information systems journal, 14(1), 65-86.

[23] Maalej, W., Tiarks, R., Roehm, T., & Koschke, R. (2014). On the

comprehension of program comprehension. ACM Transactions on Software

Engineering and Methodology (TOSEM), 23(4), 31.

[24] Murphy, G. C., Kersten, M., & Findlater, L. (2006). How are Java software

developers using the Elipse IDE?. IEEE software, 23(4), 76-83.

[25] Ko, A. J., DeLine, R., & Venolia, G. (2007, May). Information needs in collocated

software development teams. In Proceedings of the 29th international conference

on Software Engineering (pp. 344-353). IEEE Computer Society.

[26] Storey, M. A. (2005, May). Theories, methods and tools in program

comprehension: Past, present and future. In 13th International Workshop on

Program Comprehension (IWPC'05) (pp. 181-191). IEEE.

[27] Walenstein, A. (2003, May). Observing and measuring cognitive support: Steps

toward systematic tool evaluation and engineering. In Program Comprehension,

2003. 11th IEEE International Workshop on (pp. 185-194). IEEE.

[28] Aracic, I., & Mezini, M. (2006). Flexible abstraction techniques for graph-based

visualizations. In Eclipse Technology eXchange workshop (eTX) at ECOOP.

[29] Aracic, I., Schaeffer, T., Mezini, M., & Osterman, K. (2007). A survey on

interactive grouping and filtering in graph-based software visualizations. Technical

Report, Technische Universität Darmstadt.

[30] Lungu, M., Lanza, M., & Gîrba, T. (2006, March). Package patterns for visual

architecture recovery. In Conference on Software Maintenance and Reengineering

(CSMR'06) (pp. 10-pp). IEEE.

 61

[31] Caserta, P., & Zendra, O. (2011). Visualization of the static aspects of software:

A survey. IEEE transactions on visualization and computer graphics, 17(7), 913-

933.

[32] Knodel, J., Muthig, D., & Naab, M. (2008). An experiment on the role of

graphical elements in architecture visualization. Empirical Software Engineering,

13(6), 693-726.

[33] Cornelissen, B., Zaidman, A., & Van Deursen, A. (2011). A controlled

experiment for program comprehension through trace visualization.

[34] Haitzer, T., & Zdun, U. (2013, July). Controlled experiment on the supportive

effect of architectural component diagrams for design understanding of novice

architects. In European Conference on Software Architecture (pp. 54-71). Springer

Berlin Heidelberg.

[35] Quante, J. (2008, June). Do Dynamic Object Process Graphs Support Program

Understanding? -A Controlled Experiment. In Program Comprehension, 2008.

ICPC 2008. The 16th IEEE International Conference on (pp. 73-82). IEEE.

[36] Fittkau, F., Finke, S., Hasselbring, W., & Waller, J. (2015, May). Comparing

trace visualizations for program comprehension through controlled experiments. In

Proceedings of the 2015 IEEE 23rd International Conference on Program

Comprehension (pp. 266-276). IEEE Press.

[37] Lungu, M., Lanza, M., & Nierstrasz, O. (2014). Evolutionary and collaborative

software architecture recovery with Softwarenaut. Science of Computer

Programming, 79, 204-223.

[38] Sillito, J., Murphy, G. C., & De Volder, K. (2006, November). Questions

programmers ask during software evolution tasks. In Proceedings of the 14th ACM

SIGSOFT international symposium on Foundations of software engineering (pp. 23-

34). ACM

[39] Fittkau, F., Krause, A., & Hasselbring, W. (2015, September). Exploring

software cities in virtual reality. In Software Visualization (VISSOFT), 2015 IEEE 3rd

Working Conference on (pp. 130-134). IEEE.

62 Empirical Evaluation of the Usefulness of Graph-based Visualization

Techniques to Support Software Understanding

[40] Pacione, M. J., Roper, M., & Wood, M. (2004, November). A novel software

visualisation model to support software comprehension. In Reverse Engineering,

2004. Proceedings. 11th Working Conference on (pp. 70-79). IEEE.

[41] Sensalire, M., Ogao, P., & Telea, A. (2009, September). Evaluation of software

visualization tools: Lessons learned. In Visualizing Software for Understanding and

Analysis, 2009. VISSOFT 2009. 5th IEEE International Workshop on (pp. 19-26).

IEEE.

[42] Vegas, S. (2015). What Makes a Good Empirical Software Engineering

Thesis?: Some Advice.

[43] Kampenes, V. B., Dybå, T., Hannay, J. E., & Sjøberg, D. I. (2007). A systematic

review of effect size in software engineering experiments. Information and Software

Technology, 49(11), 1073-1086.

[44] de Magalhães, C. V., da Silva, F. Q., Santos, R. E., & Suassuna, M. (2015).

Investigations about replication of empirical studies in software engineering: A

systematic mapping study. Information and Software Technology, 64, 76-101.

[45] Da Silva, F. Q., Suassuna, M., França, A. C. C., Grubb, A. M., Gouveia, T. B.,

Monteiro, C. V., & dos Santos, I. E. (2014). Replication of empirical studies in

software engineering research: a systematic mapping study. Empirical Software

Engineering, 19(3), 501-557.

[45] Sim, S. E., Clarke, C. L., Holt, R. C., & Cox, A. M. (1999). Browsing and

searching software architectures. In Software Maintenance, 1999.(ICSM'99)

Proceedings. IEEE International Conference on (pp. 381-390). IEEE.

[46] Synytskyy, N., Holt, R. C., & Davis, I. (2005, May). Browsing software

architectures with LSEdit. In 13th International Workshop on Program

Comprehension (IWPC'05) (pp. 176-178). IEEE.

[47] Stratton, W. C., Sibol, D. E., Lindvall, M., & Costa, P. (2007, March). The SAVE

tool and process applied to ground software development at JHU/APL: an

experience report on technology infusion. In Software Engineering Workshop, 2007.

SEW 2007. 31st IEEE (pp. 187-193). IEEE.

 63

[48] Telea, A., Voinea, L., & Sassenburg, H. (2010). Visual tools for software

architecture understanding: A stakeholder perspective. IEEE software, 27(6), 46.

[49] Beck, F., & Diehl, S. (2012). Visual comparison of software architectures.

Information Visualization, 1473871612455983.

[50] Lungu, M., & Lanza, M. (2007, March). Exploring inter-module relationships in

evolving software systems. In 11th European Conference on Software Maintenance

and Reengineering (CSMR'07) (pp. 91-102). IEEE.

[51] Balzer, M., Noack, A., Deussen, O., & Lewerentz, C. (2004). Software

landscapes: Visualizing the structure of large software systems. In IEEE TCVG.

