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ABSTRACT 

 

Modeling and Application of Soil Moisture at Varying Spatial Scales with Parameter 

Scaling. (August 2008) 

Narendra Narayan Das, B.En., National Institute of Technology, Raipur, India; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Binayak P. Mohanty 

 

The dissertation focuses on characterization of subpixel variability within a 

satellite-based remotely sensed coarse-scale soil moisture footprint. The underlying 

heterogeneity of coarse-scale soil moisture footprint is masked by the area-integrated 

properties within the sensor footprint. Therefore, the soil moisture values derived from 

these measurements are an area average. The variability in soil moisture within the 

footprint is introduced by inherent spatial variability present in rainfall, and geophysical 

parameters (vegetation, topography, and soil). The geophysical parameters/variables 

typically interact in a complex fashion to make soil moisture evolution and dependent 

processes highly variable, and also, introduce nonlinearity across spatio-temporal scales. 

To study the variability and scaling characteristics of soil moisture, a quasi-distributed 

Soil-Vegetation-Atmosphere-Transfer (SVAT) modeling framework is developed to 

simulate the hydrological dynamics, i.e., the fluxes and the state variables within the 

satellite-based soil moisture footprint. The modeling framework is successfully tested 

and implemented in different hydroclimatic regions during the research. New multiscale 



 iv

data assimilation and Markov Chain Monte Carlo (MCMC) techniques in conjunction 

with the SVAT modeling framework are developed to quantify subpixel variability and 

assess multiscale soil moisture fields within the coarse-scale satellite footprint. 

Reasonable results demonstrate the potential to use these techniques to validate 

multiscale soil moisture data from future satellite mission e.g., Soil Moisture Active 

Passive (SMAP) mission of NASA. The results also highlight the physical controls of 

geophysical parameters on the soil moisture fields for various hydroclimatic regions. 

New algorithm that uses SVAT modeling framework is also proposed and its 

application demonstrated, to derive the stochastic soil hydraulic properties (i.e., saturated 

hydraulic conductivity) and surface features (i.e., surface roughness and volume 

scattering) related to radar remote sensing of soil moisture. 
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CHAPTER I 

GENERAL INTRODUCTION 

 

Soil moisture is a small proportion (only 0.15%) of freshwater on the Earth 

[Dingman, 1994]. Even with this small proportion, it is a key variable that links the 

water-, energy-, and carbon-cycle. Soil moisture plays a fundamental role in partitioning 

of incoming solar energy into latent heat and sensible heat fluxes, and precipitation into 

runoff and infiltration. Soil moisture is also critical for evapotranspiration process. In 

boreal latitudes, the switching on and off of land-atmosphere carbon exchange is 

influenced by the freeze/thaw of soil moisture. Long term soil moisture storage changes 

have been identified as a good indicator of climate change. Over the past decade, 

numerous studies have also recognized the importance of soil moisture in numerical 

weather prediction at regional- and continental-scale. Soil moisture also influences a 

variety of processes related to plant growth, thereby, affecting ecological patterns and 

agricultural production. 

Hydrologic processes depending on soil moisture, such as infiltration, 

evapotranspiration, and runoff, occur at spatial scales on the order of 1 ~ 1000 m. 

Physical processes involving soil moisture that affect land-atmosphere interaction in a 

weather and climate dynamics take place at scales ranging from 10 ~ 100 km. This broad 

range of  scales over  which  soil   moisture   information   is   needed   poses   a   serious  

____________ 
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challenge. Therefore, it is important to develop techniques for accurate 

measurement/assessment of soil moisture at different spatial and temporal scales to 

understand the hydrological and meteorological processes that are the integral 

components of the water-, energy-, and carbon-cycle. The measurement of soil moisture 

is also crucial for various water resource management strategies (e.g., flood control and 

mitigation, and irrigation scheduling), and weather forecast.  

In-situ (point-scale) measurements have historically been used to characterize soil 

moisture for the purpose of hydrologic modeling at field- to watershed-scale. Although 

in-situ measurements are reasonably accurate with very small support, they do not 

provide adequate information in terms of spatial continuity and spatial support required 

for regional- to continental-scale soil moisture dynamics. Maintaining an expensive high 

density in-situ network for soil moisture measurement at continental- and global-scale is 

almost impossible. The trade-off is to deploy satellite-based remote sensing instruments 

e.g., Advanced Microwave Scanning Radiometer (AMSR-E) [Njoku, et al., 2003], to 

obtain coarse spatial scale continuous measurements with certain level of uncertainty 

against fairly accurate in-situ measurements. This makes satellite-based measurements 

suitable for initial/boundary condition in large scale environmental, crop, and climate 

model.  The satellite-based remote sensor measures area-integrated properties within the 

sensor footprint and the soil moisture derived from these measurements are an area 

average, resulting in loss of underlying detail. Ground-based investigations have shown 

that a significant amount of variability exists within the remote sensing footprint 

[Famiglietti, et al., 1999; Mohanty, et al., 2000b]. The variability in soil moisture within 
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satellite-based footprint is introduced by inherent variability in rainfall, and geophysical 

parameters (vegetation, topography, and soil). The extent and support of satellite-based 

measurements have a complex spatial scale effect also. This is due to the geophysical 

parameters/variables (soil, topography, rainfall, and vegetation) that typically interact in 

a complex fashion to make soil moisture evolution and dependent processes highly 

variable, and introduce nonlinearity across spatio-temporal scales [Western, et al., 2002]. 

Even with the evolution of numerous airborne- and satellite-based sensors, resulting in 

improvement of support, spacing, and extent of soil moisture measurements, many scale 

issues in soil moisture still remain unresolved. 

Scale issues in soil moisture cause challenges for researchers on several fronts. The 

dissertation focuses on resolving questions that often arise regarding soil moisture 

scaling issues: How to deal and quantify subgrid-scale variability in soil moisture within 

a remote sensing footprint? How can remotely sensed or assimilated coarse scale soil 

moisture fields be downscaled for input to small scale modeling or hydrologic 

applications? How can remotely sensed soil moisture measurements be optimally 

combined with model predictions to initialize and validate coupled land-atmosphere 

models? Few algorithms and techniques to better understand these questions of scale-

dependency and space-time dynamics of soil moisture variability within a remote 

sensing footprint are addressed in Chapters II-IV of this dissertation. Chapters V and VI 

are applications of soil moisture modeling at various scales to estimate the soil physical 

properties and characterize the radar backscattering used for soil moisture remote 

sensing, respectively. 
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In Chapter II, the spatio-temporal evolution of root zone soil moisture of the 

Walnut Gulch Experimental Watershed (WGEW) in Arizona is investigated during the 

Soil Moisture Experiment 2004 (SMEX04). Root zone soil moisture is estimated via 

assimilation of aircraft-based remotely sensed surface soil moisture into a distributed 

Soil-Vegetation-Atmosphere-Transfer (SVAT) model. The study also provided an 

opportunity to develop and test the quasi-distributed SVAT framework. An ensemble 

square root filter (EnSRF) based on a Kalman filtering scheme is used for assimilating 

the aircraft-based soil moisture observations at a spatial resolution of 800 m X 800 m. 

Model predictions are presented in terms of temporal evolution of soil moisture 

probability density function at various depths across the WGEW.  

In Chapter III, a MCMC-based algorithm is developed to derive upscaled land 

surface parameters for a SVAT model using time series data of satellite measured 

atmospheric forcings (e.g., precipitation), and land surface states (e.g., soil moisture and 

vegetation). This study focuses especially on the evaluation of soil moisture 

measurements from AMSR-E aboard AQUA satellite using the new MCMC-based 

scaling algorithm. Soil moisture evolution is modeled at a spatial scale comparable to the 

AMSR-E soil moisture product, with the hypothesis that the characterization of soil 

microwave emissions and their variations with space and time on soil surface within the 

AMSR-E footprint can be represented by an ensemble of upscaled soil hydraulic 

parameters. The study demonstrated the potential to improve upon the AMSR-E 

measurements by assimilating the soil moisture evolution from the proposed upscaled 

SVAT model.  
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Chapter IV focuses on downscaling of remotely sensed coarse scale soil moisture 

footprint. Two approaches are proposed for soil moisture downscaling. The first 

approach provides the probability distribution functions at the finer scales with no 

information about the spatial organization of soil moisture fields. The second approach 

implements a multiscale ensemble Kalman filter (EnKF) that assimilates remotely 

sensed coarse scale soil moisture footprint, attributes of fine scale geophysical 

parameters/variables (i.e., soil texture: %sand, vegetation: NDVI, topography: slope, and 

precipitation) and coarse/fine scale simulation into a spatial characterization of soil 

moisture evolution at the finer scales. 

New algorithm developed in Chapter V is used to assess the soil physical property 

i.e., saturated hydraulic conductivity. The proposed algorithm uses the Karhunen-Loève 

Expansion (KLE) and 3-D soil moisture modeling in conjunction with Markov Chain 

Monte Carlo (MCMC) technique which employs measured soil moisture values to 

characterize the saturated hydraulic conductivity of an agricultural field at a fine 

resolution. An application of soil moisture modeling at much coarser scale is 

demonstrated in Chapter VI. A Soil-Vegetation-Atmosphere-Transfer (SVAT) 

framework is employed for soil moisture estimation that is used to assess the dielectric 

constant of soil profile which in turn relates to radar backscattering. A new algorithm is 

proposed that uses the simulated radar backscattering to separate/estimate the stochastic 

surface roughness and vegetation backscattering components in diverse hydro-climatic 

regions under different combinations of geophysical parameters (i.e., soil, topography, 

and vegetation). 



 6

The motivation of all these studies discussed in Chapters II-VI comes from the 

belief that satellite-based remote sensing is the future of soil moisture estimation in a 

watershed-, regional-, and global-scale at a reasonable temporal frequency. In the near 

future, there are two major satellite missions planned which will include sensors for 

measuring soil moisture: Soil Moisture and Ocean Salinity (SMOS) mission by 

European Space Agency (ESA), and Soil Moisture Active and Passive (SMAP) mission 

by National Aeronautics and Space Agency (NASA). The SMOS satellite by ESA will 

be launched in 2009. It will monitor soil moisture, ocean salinity, the water content in 

vegetation, and the snow and ice cover by using a passive microwave interferometer 

MIRAS i.e., Microwave Imaging Radiometer using Aperture Synthesis. MIRAS will 

operate in the L-band, where the sensitivity to soil moisture is very high, whereas, the 

sensitivity to atmospheric disturbances and surface roughness is minimal. In the 

timeframe 2010-2013, NASA will have the SMAP mission, which will monitor soil 

moisture and freeze-thaw cycles and provide the data for weather and climate prediction, 

hydrospheric modeling and water resource availability prediction. The instrumentation 

will utilize both active (radar) and passive microwave (radiometers) technique in L-band 

to measure the dielectric characteristics of soil and vegetation. 
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CHAPTER II 

MODELING AND ASSIMILATION OF ROOT ZONE SOIL MOISTURE USING 

REMOTE SENSING OBSERVATIONS 

 

2.1. Synopsis 

Soil moisture status in the root zone is an important component of the water cycle 

at all spatial scales (e.g., point, field, catchment, watershed, and region). In this study, 

the spatio-temporal evolution of root zone soil moisture of the Walnut Gulch 

Experimental Watershed (WGEW) in Arizona was investigated during the Soil Moisture 

Experiment 2004 (SMEX04). Root zone soil moisture was estimated via assimilation of 

aircraft-based remotely sensed surface soil moisture into a distributed Soil-Water-

Atmosphere-Plant (SWAP) model. An ensemble square root filter (EnSRF) based on a 

Kalman filtering scheme was used for assimilating the aircraft-based soil moisture 

observations at a spatial resolution of 800 m X 800 m. The SWAP model inputs were 

derived from the SSURGO soil database, LAI (Leaf Area Index) data from SMEX04 

database, and data from meteorological stations/rain gauges at the WGEW. Model 

predictions are presented in terms of temporal evolution of soil moisture probability 

density function at various depths across the WGEW. The assimilation of the remotely 

sensed surface soil moisture observations had limited influence on the profile soil 

moisture. More specifically, root zone soil moisture depended mostly on the soil type. 

Modeled soil moisture profile estimates were compared to field measurements made 

periodically during the experiment at the ground based soil moisture stations in the 
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watershed. Comparisons showed that the ground-based soil moisture observations at 

various depths were within ±1 standard deviation of the modeled profile soil moisture. 

Density plots of root zone soil moisture at various depths in the WGEW exhibited multi-

modal variations due to the uneven distribution of precipitation and the heterogeneity of 

soil types and soil layers across the watershed.  

 

2.2. Introduction 

Surface and root-zone soil moisture are important state variables for hydrological 

and meteorological modeling. The sensitivity of energy exchange processes at the land-

atmosphere boundary to root zone soil moisture is well known. These processes are 

important for global water circulation and carbon cycling. Passive microwave remote 

sensing has the potential to provide synoptic surface soil moisture measurements 

[Engman and Gurney, 1991; Jackson, 1993; Jackson, et al., 1999; Njoku and Entekhabi, 

1995] that are important for assessment of root-zone soil moisture over a region. These 

measurements describe near-surface (0~0.05 m) soil moisture [Schmugge, et al., 1974; 

Schmugge, et al., 1980; Schmugge, et al., 1977]. Recognizing the importance of surface 

and root-zone soil moistures, major efforts are underway to develop operational soil 

moisture remote sensing techniques. Scientific campaigns such as Washita 1992, 

Southern Great Plains hydrology experiments 1997 (SGP97), and Soil Moisture 

Experiments 2004 (SMEX04) were conducted to validate airborne and space-borne 

passive microwave remote sensing platforms and thus estimating soil moisture over 

large spatial scales. These campaigns were conducted in selected geographical regions 
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representing rangeland, agricultural farmland, and semi-arid shrubland, as well as 

different topographic conditions such as flat, rolling/undulating, and mountainous 

terrains.  

Kostov and Jackson [1993] suggested that a promising approach for estimating 

profile soil moisture is the integration of remote sensing surface soil moisture data and 

computational modeling. In the case of bare soil, Entekhabi et al. [1994] showed that it 

is possible to retrieve profile soil water content using passive microwave data at 

frequencies less than 10 GHz. In that study, the propagation of information from the 

surface to deeper soil layers was investigated using a multilayer model of heat and water 

transfer. Houser et al. [1998] studied the use of four-dimensional data assimilation 

methods in a macro-scale land hydrology model to generate surface and root zone soil 

moisture fields at regular space and time intervals for the Walnut Gulch Experimental 

Watershed (WGEW) in Arizona. Other related/similar studies have been conducted for 

estimation of surface and profile soil water contents using passive microwave data at 

watershed/regional scale during the SGP97 experiment [Crosson, et al., 2002; Crow and 

Wood, 2003; Das and Mohanty, 2006; Dunne and Entekhabi, 2005; Margulis, et al., 

2002; Reichle, et al., 2002].   

The primary objective of this study is to determine the evolution of the spatial and 

temporal dynamics of root-zone soil moisture in semi-arid shrublands of the WGEW 

during the SMEX04 experiment. We have used an Ensemble Square Root Filter 

(EnSRF) to assimilate aircraft-based (Polarimetric Scanning Radiometer) remotely 

sensed surface soil moisture observations with the Soil-Water-Atmosphere-Plant 
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(SWAP) model for the estimation of profile soil water content. The assimilation of 

Polarimetric Scanning Radiometer (PSR/CX)-based surface soil moisture and modeling 

of root-zone soil moisture were conducted by extending the parallel non-interacting 

stream tube framework proposed by Das and Mohanty [2006] and also included run-off 

and run-on processes between remote sensing footprints. The temporal evolution of soil 

moisture measured at point-based monitoring locations and depths across the WGEW 

was also compared with EnSRF-based model predictions. A secondary objective of this 

study is to develop the probability distributions for soil moisture at various depths within 

the WGEW.  

 

2.3. Materials and Methods 

Description of Study Area and Forcings 

The SMEX04 field campaign was conducted between August 2 and August 27, 

2004 across Arizona, USA and Sonora, Mexico (http://hydrolab.arsusda.gov/smex04/). 

The primary focus of the field experiments in Arizona during SMEX04 was the Walnut 

Gulch Experimental Watershed (31º43´N, 110º41´W) near Tombstone, operated by the 

Agriculture Research Service (ARS), U.S. Department of Agriculture (USDA). The 150 

km2 watershed (Fig. 2.1) is part of the San Pedro river basin, and is heavily instrumented 

to measure rainfall and runoff. The instrumented area of the watershed comprises a 

dense network of 88 rain-gages (Fig. 2.1) of which 19 are collocated with soil moisture 

sensors. The elevation of the WGEW (Fig. 2.2) varies between 1250 m and 1585 m 

above the mean sea level, with an average annual temperature of 17.7ºC. It receives an 
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average of 350 mm of precipitation annually. The vegetation is mainly shrubs, covering 

about two-thirds of the watershed. The remaining one-third is mostly grassland. The soil 

is generally well drained, calcareous, gravelly loam with large percentages of rock and 

gravel at the soil surface. Natural Resources Conservation Services (NRCS) has mapped 

27 soil series in this watershed. The soil classification based on dominant surface soil 

texture at a resolution of 800 m X 800 m is illustrated in Fig. 2.3. Complete information 

about the WGEW is available on the USDA-ARS website (http: 

//ars.usda.gov/SP2UserFiles/Place/53424500/WGBrochure.pdf). During SMEX04 

campaign, the PSR/CX (Piepmeier and Gasiewski, 2001) with polarimetric channels of 

C and X band (5.82-10.80 GHz) was flown on the Naval Research Lab’s (NRL) P3 

aircraft. The P3 flight details of the remote sensing campaign are available at National 

Snow and Ice Data Center (NSIDC). The PSR/CX-based soil moisture snapshots for 9 

days across the WGEW are illustrated in Fig. 2.4 [Bindlish, et al., 2006b].   

The footprint size (800 m X 800 m) of PSR/CX was used as the basis for grid 

resampling (by inverse-distance interpolation) for all variables resulting in a total of 224 

pixels across the WGEW. The resulting daily spatially distributed hydro-climatic 

datasets were used as inputs to the SWAP model. For this distributed modeling and data 

assimilation study, we used input data from various sources including the LAI data 

collected during SMEX04 campaign, the soil layers and types from the SSURGO 

database (USDA-NRCS), and the precipitation data collected by the network of 88 

weighing-type recording rain-gages arranged in a grid across the WGEW (Fig. 2.1). An 

inverse-distance interpolation (IDI) technique was used to create a spatial distribution of 
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daily accumulated precipitation on relevant dates (Fig. 2.5). It is apparent from Fig. 2.5 

that during the SMEX04 period WGEW received scattered and scanty rainfall with no 

major precipitation event throughout the watershed. The spatial distribution of LAI (800 

m X 800 m) across WGEW was also generated with IDI technique (Fig. 2.6). All other 

meteorological forcings (e.g., relative humidity, wind speed, and air temperature) were 

extracted from the Soil Climate Analysis Network (SCAN) site located within WGEW 

(Fig. 2.1), and were assumed to be spatially uniform for the purpose of this study. The 

relevant GIS and ground measurement datasets available at NSIDC were used for 

distributed modeling of root zone soil moisture in the WGEW.  

 

 

Figure 2.1. Walnut Gulch Experimental Watershed (WGEW) with rain gages, SCAN, 

RG46, and RG82 sites used in the study. 

 



 13

 

Figure 2.2. Walnut Gulch Experimental Watershed (WGEW) digital elevation model 

(DEM) at resolution of 800 m X 800 m, resampled from 30 m X 30 m DEM. Data 

source: USDA geospatial-data-gateway. 
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Figure 2.3. Walnut Gulch Experimental Watershed (WGEW) surface soil texture at 

resolution 800 m X 800 m (SL: Sandy Loam; COSL: Coarse Sandy Loam; FSL: Fine 

Sandy Loam; GRV-FSL: Very Gravelly Fine Sandy Loam; GR-FSL: Gravelly Fine 

Sandy Loam; CBV-CL: Very Cobblly Clay Loam; SR-G: Stratified Gravel; STV-LS: 

Very Stony Loamy Sand; GRV-L: Very Gravelly Loam; LS: Loamy Sand; GR-L: 

Gravelly Loam; CBV-L: Very Cobblly Loam; GRV-SL: Very Gravelly Sandy Loam; 

CBX-L: Extremely Cobbly Loam; CBV-SL: Very Cobblly Sandy Loam). 

Data source: http://soildatamart.nrcs.usda.gov/County.aspx?State=AZ 
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Figure 2.4. Walnut Gulch Experimental Watershed (WGEW) PSR/CX snapshots of soil 

moisture for Day of Year (DOY) 218, 221, 222, 223, 225, 226, 237, 238, and 239 at 

resolution of 800 m X 800 m. 
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Figure 2.5. Spatial distribution of precipitation at resolution of 800 m X 800 m created 

with inverse distance interpolation (IDI) of measurements from 88 raingages in Walnut 

Gulch Experimental Watershed (WGEW). 
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Figure 2.6.  Walnut Gulch Experimental Watershed (WGEW) Leaf Area Index (LAI) at 

resolution of 800 m X 800 m. 

 

Soil-Water-Atmosphere-Plant (SWAP) Model 

SWAP [Van Dam, et al., 1997] is a robust physically-based field scale eco-

hydrological model used to simulate the processes occurring in the soil-water-

atmosphere-plant system. SWAP is an open source hydrological model and is the 

successor of the SWATR model [Feddes, et al., 1978]. SWAP is available at 

http://www.swap.alterra.nl/. The model simulates both the soil water quantity and 

quality with daily temporal resolution. SWAP can account for several combinations of 
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the top and bottom boundary conditions. Ines and Honda [2005] have successfully used 

SWAP in their study for quantifying surface and root-zone soil water contents from low 

resolution remote sensing data. Since SWAP was not originally designed for distributed 

modeling, it was adapted into a framework developed by Das and Mohanty [Das and 

Mohanty, 2006]. This framework was developed on ArcGIS platform for distributed 

hydrological modeling. It uses geophysical variables in grid format as inputs to the 

hydrologic model (SWAP). The framework is capable of producing soil moisture 

outputs at watershed-scale at various depths in a grid format. For this study, run-on and 

run-off routing were also included in the framework by extracting flow-accumulation, 

flow-direction, and flow-length information from the digital elevation model (DEM) 

(Fig. 2.2) of the WGEW with a steepest descent technique. Note, however, the DEM of 

800 m X 800 m resolution (resampled from 30 m X 30 m resolution) may introduce 

some scale uncertainty while evaluating flow-accumulation, flow-direction, and flow 

length.  

The governing equation of SWAP solves the 1-D Richards’ equation (eq. 2.1) to 

simulate partially-saturated water movement in the soil profile.  
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where θ is the soil water content (m3/ m3), z is the soil depth (m), h is the soil water 

pressure head (m), K is the unsaturated hydraulic conductivity (m/day), and Sa(h) is the 

root water uptake (m/day). The maximum possible root water uptake over the rooting 

depth is equal to potential transpiration rate, Tp (m/day), which is governed by 

atmospheric conditions. The potential root water uptake at a certain depth, Sp(z), may be 
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determined by the root length density, lroot(z) (m/m3), as a fraction of the integrated root 

length density. 
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where Droot is the root layer thickness. In practice the distribution of lroot(z) is often not 

available. Therefore in SWAP, a uniform root length density distribution is assumed. 
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which leads to the simplification of eq. (2.2) (Feddes et al., 1978), as 
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The actual root water uptake Sa(h), is calculated from  
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αw is the reduction factor as a function of h that accounts for water stress [Feddes, et al., 

1978]. Penman-Monteith equation [Monteith, 1965] was used to calculate potential 

evapotranspiration. The potential transpiration (Tp) and the soil evaporation (Ep) were 

partitioned using LAI. The potential evaporation rate of soil under standing vegetation is 

derived from Penman-Monteith equation by neglecting the aerodynamic term. Thus, the 

only source of soil evaporation is net radiation that reaches the soil surface. Assuming 
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that the net radiation inside the canopy decreases according to an exponential function, 

we can derive 

LAIeEE grκ
pop

¬=            (2.6) 

where κgr is the extinction coefficient of global solar radiation and Epo (m/day) is 

potential evaporation. SWAP calculates the daily average Tp (m/day),: 

Tp = (1.0 – Wfrac) ETpo - Ep            (2.7) 

where Wfrac (-) is ratio of the daily amount of intercepted precipitation and potential 

evaporation rate of the water intercepted by the vegetation. In eq (2.7) ETp0 (m/day) is 

potential evapotranspiration rate of a dry canopy.  

In the SWAP model soil moisture retention and hydraulic conductivity functions 

are defined by the Mualem-van Genuchten equation,  
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where Se is the relative saturation (-), θs and θr are the saturated and residual water 

content (m3/ m3) respectively, α (m-1), n (-), m (-) are the shape parameters of the soil 

water retention function and nm /11−= , Ko is the matching point at saturation (m/s), and 

parameter l (-) is an empirical pore tortuosity/connectivity parameter.  

 

SWAP Modeling Domain and Parameters  

The spatially and temporally variable atmospheric forcings, soil hydraulic 

properties, and vegetation interact in a highly nonlinear manner to produce 
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heterogeneous soil moisture at the soil surface and in the root-zone. In this paper, we 

mainly focused on watershed-scale representations of the root-zone soil moisture at a 

coarser spatial resolution of 800 m X 800 m and temporal resolution of one day. 

Therefore, the disparity of scales between the horizontal (spatial resolution: 800 m X 

800 m) and vertical (soil depth: 3.86 m) extents of the root-zone was the key 

consideration in formulating the framework for watershed-scale root-zone hydrology. 

For SWAP model simulation, the 3.86 m thick soil profile (available soil depth in 

SURRGO database) at every remote sensing footprint was discretized into 50 nodes, 

with finer discretization near the soil layer interfaces and at the land-atmosphere 

boundary. Finer discretization near the top boundary and layer interfaces were used to 

handle the steep pressure gradient for the numerical simulations. Time-dependent flux-

type top boundary conditions for each parallel soil column (matching the remote sensing 

footprints) were used with precipitation distribution across the WGEW. A unit vertical 

hydraulic gradient (free drainage) condition was used at the bottom boundary of the soil 

columns because of deep groundwater table (45 m to 150 m) condition across the 

WGEW. No flow bottom boundary condition was imposed where impervious layers 

(i.e., bedrocks) were encountered in 3.86 m of the soil profile. Runoff and runon 

between adjacent footprints due to topography was considered on the land surface. The 

runoff from the one or more adjacent pixels of steepest descent according to flow routing 

was used as runon for the pixel under consideration. Given the relatively coarse 

horizontal scale with shallow root-zone, the parallel soil columns model ignores the 

lateral water fluxes across the adjacent soil columns and only predicts the vertical fluxes 
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including infiltration, evapotranspiration, runoff, and deep percolation as parallel non-

interacting stream-tubes concept in distributed vadose zone hydrology. We also assumed 

that 1-D Richards’ equation is an appropriate physical model to simulate vertical 

partially-saturated flow and partitioning of fluxes at the spatial scale of 800 m X 800 m. 

Numerical studies conducted by Mantoglou, [1992], and Zhang, [1999] on general 

upscaled Richards’ equations have shown that at large spatial scales and in the absence 

of interflow vadose zone flow can be represented by one-dimensional Richards’ 

equation. 

A probabilistic approach was adopted in the distributed modeling environment 

across the WGEW. An ensemble of state variables (profile soil moistures) was created 

for all the 224 (800 m x 800 m) PSR/CX footprints in the WGEW. A state augmentation 

technique was applied by concatenating uncertain soil properties to state variables, 

forming composite vectors in the ensemble. The soil hydraulic properties (θs, θr, and Ksat) 

from the SSURGO database were used to introduce uncertainty in the ensemble. The 

van-Genuchten shape parameters (α, and n) for the soil textural classes given by Carsel 

and Parrish [1988] were used with ±20% uncertainty. The purpose of including 

uncertain soil properties in the ensemble is to address the assumption that it simulates 

model errors and subpixel variability present within a PSR/CX footprint.  

For best computational efficiency, one hundred members (composite vectors) were 

populated in the ensemble. The soil moisture in the discretized soil profile was assigned 

an initial value of 50% relative saturation according to the soil texture on the  onset of 

model simulation. A Gaussian noise of 20% to 5% of the initial soil moisture (in 
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decreasing order from top to bottom of the soil profile) was introduced in all the 

ensemble members with an assumption of decreasing variability in soil moisture with 

increasing depth. The SWAP model was run a month ahead of the SMEX04 campaign 

(August 2nd, 2004 through August 27th, 2004), to tune the state of initial soil moisture 

profile. PSR/CX-measured surface soil moisture was assimilated with the SWAP model 

predictions (across the 3.86 m of soil layer) through the ensemble square root filter 

(EnSRF) updating scheme described below. At each time step, final states were 

determined by averaging the ensemble of the one hundred replicated predictions made 

by the model.  

  

Ensemble Square Root Filter (EnSRF) 

An enduring problem in many hydrologic situations is to forecast the state of a 

system given a set of observations and a hydrologic model. While the use of 

deterministic models has significantly addressed this problem, it now appears that much 

more promising solutions lie with probabilistic forecasting and data assimilation. In 

hydrology, the ensemble Kalman filters (EnKF) [Evensen, 2003; Houtekamer and 

Mitchell, 1998] based on the Monte-Carlo approach are generally used [Crosson, et al., 

2002; Crow and Wood, 2003; Das and Mohanty, 2006; Dunne and Entekhabi, 2005; 

Margulis, et al., 2002; Reichle, et al., 2002]. Use of the Kalman filter system implicitly 

assumes that the observations are related to the true state tx  through  

εHxy t +=   (2.10) 



 24

where ε  is a Gaussian random error vector with a mean of zero and measurement error 

covariance R, and H  is the operator that maps the model variable space to the 

observation space.  Furthermore, the forecast of tx is Gaussian with mean f

ktx =  and error 

covariance f

ktP = . Using these assumptions, the estimated state of the profile soil moisture 

and error covariance is updated as 
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Here, the superscripts f and a represent the respective prior (forecast) and posterior 

(analysis/updated) estimates, the subscript t represents time, y  is the observation vector, 

I is the identity matrix, and K  is the Kalman gain matrix defined as: 
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The EnKF forecast and analysis error covariance comes directly from an ensemble of 

model simulations as: 
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eN  is the number of ensemble members, and the subscript n represents each individual 

ensemble member. The overbar represents the ensemble mean, which is sampled as 
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The ensemble is generated by perturbing a first-guess value so that ensemble mean is 

equal to the first-guess value. The variance is specified based on the uncertainty in the 
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first-guess. In this system, ensemble members are integrated independently and updated 

in accordance with the Kalman filter methods when new observations become available. 

An alternate version of the EnKF approach is required in our study to ensure that the 

analysis error covariance does not become unrealistically low. Burgers et al. (1998) 

demonstrated that aP  is underestimated by a factor of I-KH when observations are not 

treated as random variables. This can cause the EnKF to reject observations in favor of 

the ensemble forecast. This leads the analysis incrementally further away from reality, 

resulting in filter divergence [Burgers, et al., 1998; Houtekamer and Mitchell, 1998; 

Mitchell and Houtekamer, 2000; Whitaker and Hamill, 2002]. Whitaker and Hamill  

[2002] showed that adding random noise to observations further skews the distribution 

of aP , and this results in a more erroneous analysis even though the covariance is 

increased. They suggested an alternative ensemble square root filter (EnSRF) where the 

ensemble mean is still updated by eq. 2.11, but deviations from the mean are updated by  
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Using this method, the analysis error covariance is guaranteed to be exactly equal to that 

in eq. 2.11, and perturbed observations are no longer necessary ( )0y ' = . This scalar 
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version of EnKF for the assimilation of a single observation at a time was implemented 

in this study. 

 

2.4. Results and Discussion 

Modeling and Verification  

The model run for the period of SMEX04 resulted in soil moisture estimation up to 

a profile depth of 3.86 m in all 224 pixels of the WGEW. Figure 2.7 illustrates the 

evolution of average (from pixel ensemble) soil moisture fields at the depths of 0.05, 

0.20, 1.00, and 3.50 m for August 8th, 2004 (Day of Year, DOY, 221). To evaluate the 

model performance, model outputs were compared with soil moisture observations from 

the SCAN and Hydra sites (RG46 and RG82) at WGEW (highlighted in Fig. 2.1). The 

modeled footprint-scale profile soil moisture at a particular depth was compared with the 

corresponding local (point-scale) profile soil moisture data measured at these three sites. 

It is suggested that the ensemble variability of soil moisture within a pixel (800 m X 800 

m) reflects the variability at the subpixel/point scale at the respective depth. The 

evolution of profile soil moisture states at corresponding footprint-scale and local/point-

scale were greatly influenced by the soil layers, antecedent moisture conditions, soil 

hydraulic properties, and precipitation (Fig. 2.8). Table 2.1 shows the layer depth (z), 

saturated hydraulic conductivity (Ksat), residual water content (θr), saturated water 

content (θs), and soil texture for various soil layers (from SSURGO database) up to 3.86 

m depth at the SCAN and Hydra sites representing typical conditions of the WGEW. 
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The following discussion elaborates the comparisons of modeled and observed profile 

soil moisture values at these three sites.  

 

 

 

 

Figure 2.7. Walnut Gulch Experimental Watershed (WGEW) model (with assimilation) 

simulated soil moisture for Day of Year (DOY) 219 at depth 0.05 m, 0.20 m, 1.00 m, 

and 3.50 m at resolution of 800 m X 800 m.  
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Figure 2.8.   Precipitation in mm observed in three sites (SCAN, RG46 and RG82). 
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Table 2.1. Saturated hydraulic conductivity, water content (residual and saturated), and 

soil texture of various soil layers at the SCAN site and the Hydra sites of Walnut Gulch 

Experimental Watershed (WGEW). 

 

  Soil layers depth (m) Ksat (m/day) Water Content (%) Soil texture 

Site top bottom min. avg. max. residual saturated description 

SCAN 0 0.127 1.20 2.41 3.62 3.9 25 very gravelly sandy loam 

  0.127 0.83 1.20 2.41 3.62 5.7 33 gravelly sandy loam 

  0.83 2.00 1.20 2.41 3.62 6.6 40 sandy loam 

  2.00 251.46 1.20 2.41 3.62 5.5 33 gravelly sandy loam 

  2.51 3.86 0.34 0.77 1.20 6.1 37 gravelly loam 
                  

RG46 0 0.07 1.20 2.41 3.62 8 41 fine sandy loam 

(Hydra)  0.07 0.45 0.12 0..23 0..34 17.5 44 sandy clay loam 

  0.45 2.51 0..03 0.17 0.34 20 49 clay Loam 

  2.51 3.86 0.12 0.23 0.34 12.2 45 sandy clay loam 
                  

RG82 0 0.12 1.20 2.41 3.62 7.1 33 gravelly fine sandy loam 

(Hydra)   0.12 2.26 0.12 0.23 0.34 13.8 36 gravelly sandy clay loam 

  2.26 3.86 1.20 2.41 3.62 7.8 39 sandy loam 

 

 

SCAN Site 

The SCAN site is a semiarid shrubland located at an altitude of 1362 m above the 

sea level. The SCAN site is typical of WGEW with very gravelly sandy soil texture and 

high saturated hydraulic conductivity (Table 2.1). The site has 5 distinct soil layers up to 

the depth of 3.86 m. The top 4 layers at the site have similar Ksat, but dissimilar θr and θs 

due to different degrees of compaction. The SCAN site observations at the depths of 

0.05, 0.10, 0.20, 0.50 and 1.00 m are plotted in Fig. 2.9a-e. Model prediction with 

PSR/CX-based data assimilation and open-loop (model prediction without data 

assimilation) are also plotted in these figures. The subpixel variability in the PSR/CX-
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assimilated prediction is shown as ±1 standard deviation (SD) in the plots. From Fig. 

2.9a, it is clear that at 0.05 m depth, SCAN observations and PSR/CX observations 

disagree for the initial study period. During the initial dry days (DOY: 214-220) the 

model predictions (with and without data assimilation) were close to θr (0.039 based on 

SSURGO), whereas SCAN observations are much below this value and were beyond the 

±1 SD. One explanation for such low SCAN observations is the presence of rock and 

gravel fraction in the top 0.13 m of soil depth. High rock and gravel fraction influence 

the soil hydraulic characteristics making them highly nonlinear with very high saturated 

hydraulic conductivity, which drains the soil rapidly. The other reason for the 

discrepancy between the SCAN point-scale (observation) and PSR pixel-scale (modeled) 

soil moisture is that the SCAN site received scanty rainfall during SMEX04 (Fig. 2.8). In 

dry conditions the model was constrained due to the lower limit set by θr (from 

SSURGO dataset). Thus, on DOY 219, assimilating PSR/CX observations made the 

model prediction deviate further away from the SCAN observations (Fig. 2.9a). During 

the rest of the SMEX04 experiment (DOY: 222 to 244), with the increase in soil 

moisture at 0.05 m depth, the model prediction trend matches reasonably well with the 

SCAN observations. At the depths of 0.10, 0.20, and 0.50 m (Fig. 2.9b-d) the SCAN 

observations are close to ±1 SD of the model predictions with data assimilation using 

PSR-based data. The deepest SCAN site observations at 1.00 m depth show a uniform 

state of soil moisture and the trend matches with both the models (assimilated and open-

loop), and are also contained completely within ±1 SD of assimilated model predictions. 

Most SCAN observations lie within ±1 SD of the assimilated model predictions. This 
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provides some evidence that the spatial variability is well represented by the model 

ensemble for the particular pixel. The open-loop model also performed somewhat 

similar to the assimilated model at the deeper depths (Fig. 2.9b-e), demonstrating the 

dominant effect of soil texture in the evolution of soil moisture distribution at the deeper 

depths, irrespective of the model. Figures 2.9a-e also show that the propagation of 

EnSRF Kalman gain through the land surface model reaches deeper with diminishing 

effect when the soil layers are nearly similar. In other words, the results from this site 

show the benefits of providing better soil layer (textural heterogeneity) information as 

open loop simulation performs reasonably well. At 0.10 m depth, soil moisture values 

were constrained due to residual water content of the soil layer. Data assimilation could 

not improve over open-loop and they are almost similar. Whereas, at 0.20 m depth, soil 

moisture values are slightly more than the residual water content and data assimilation 

adjusts the soil moisture and deviate it further from SCAN observations. This effect 

exhibits another good example of having very gravelly sandy soil and how it influences 

the soil moisture observations and data assimilation. It is quite apparent from Fig 2.9d-e, 

that data assimilation did improve the prediction over open-loop. 
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Figure 2.9. Comparison of SCAN soil moisture observations with model (with 

assimilation) simulated soil moisture at depth of (a) 0.05 m, (b) 0.10 m, (c) 0.20 m, (d) 

0.50 m, and (e) 1.00 m of Walnut Gulch Experimental Watershed (WGEW).  
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Hydra Site (RG46) 

This rain-gauge site (RG46) is situated in a shrubland at an altitude of 1442 m 

above the sea level. Figure 2.8 shows the amount of precipitation received at this site 

during the SMEX04 experiment. Hydra soil moisture sensors are installed at 0.13, 0.38, 

and 0.76 m depths at this site. The top two sensors are in the second soil layer (Table 

2.1: sandy clay loam), and the sensor at 0.76 m is in the third soil layer (Table 2.1: clay 

loam). The states of soil moisture at these depths (Fig. 2.10a-c) were predominantly 

influenced by the clay loam (CL) texture of the layers (Table 2.1). The PSR/CX-based 

surface soil moisture observations for the pixel at this site are very low, ranging from 2 

to 3% by volume, which is much below θr for the surface soil used in the modeling. Very 

low remotely sensed surface soil moisture for the pixel could be attributed to rock 

fraction on the surface. The effect of PSR/CX data assimilation is clearly visible at the 

depth of 0.13 m (Fig. 2.10a). However, the effect of data assimilation diminishes at the 

deeper depths of 0.38 and 0.76 m (Fig. 2.10b-c). It is also important to note that starting 

the model for a month before SMEX04 primed the initial conditions in both the 

assimilated and open-loop models quite close to the Hydra measurements. For the entire 

SMEX04 duration, the Hydra measurements for this site were within the bounds of ±1 

SD of the assimilated model predictions.  
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Figure 2.10. Comparison of Vitel (RG46) soil moisture observations with model (with 

assimilation) simulated soil moisture at depth of (a) 0.13 m, (b) 0.38 m, and (c) 0.76 m 

of Walnut Gulch Experimental Watershed (WGEW).   

 

 

 

 

 

 

212 217 222 227 232 237 242 247
0

10

20

30

40

50

depth 0.13 m

 

 

212 217 222 227 232 237 242 247
0

10

20

30

40

50

 

 

depth 0.38 m

212 217 222 227 232 237 242 247
0

10

20

30

40

50

 

 

depth 0.76 m



 35

Hydra Site (RG82) 

The RG82 site is at 1518 m above the sea level and located in a shrubland. The site 

received small amount of precipitation during the SMEX04 period (Fig. 2.8). As for the 

other sites, the PSR/CX measurements for this site were influenced by the gravelly 

sandy loam texture at the soil surface. As illustrated in Fig. 2.11a PSR/CX 

measurements are very low (much below θr of soil surface from SSURGO) which was 

due to overall rock fraction on the soil surface in the pixel. Of the three soil layers 

considered in modeling this site, the middle layer contained clay (Table 2.1) that 

impeded water movement. All the three Hydra soil moisture sensors at the depths 0.13, 

0.38, and 0.76 m are installed in the middle soil layer (gravelly sandy clay loam). 

Figures 2.11a-c show very small fluctuations in soil moisture as a result of high retention 

by the clay content. In the time stability study, Vachaud et al. [1985] described the 

relation between soil water content and soil texture and demonstrated that locations with 

the high clay content remain most wet at all times. The assimilated and open-loop 

models performed equally well in describing the soil moisture trend. Comparisons of 

Hydra measurements with assimilated and open-loop models show a good agreement at 

all the three depths and the match improved with depth. At this site the Hydra 

observations were completely contained within ±1 SD of the assimilated model 

predictions. 
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Figure 2.11. Comparison of Vitel (RG82) soil moisture observations with model (with 

assimilation) simulated soil moisture at depth of (a) 0.13 m, (b) 0.38 m, and (c) 0.76 m 

of Walnut Gulch Experimental Watershed (WGEW).   

 

Spatio-Temporal Variability of Soil Moisture in WGEW 

From the results presented above for the three test sites, it is evident that the 

assimilated model ensembles for a particular pixel reasonably describe the variability 

present at the respective depths. The averages from these ensembles for 224 different 

pixels are used to characterize the soil moisture states at various depths across the 

212 217 222 227 232 237 242 247
0

10

20

30

40

50

depth 0.13 m

 

 

212 217 222 227 232 237 242 247
0

10

20

30

40

50

 

 

depth 0.38 m

212 217 222 227 232 237 242 247
0

10

20

30

40

50

depth 0.76 m

 

 



 37

WGEW (Figs. 2.12). Western et al. (2002) showed that the normal distribution fits best 

for spatial representation of soil moisture. A kernel smoothing technique [Silverman, 

1981] was used to compute the normal probability density of soil moisture at the depths 

of 0.01, 0.05, 0.10, 0.20, 0.50, 0.75, 1.00, 1.50, and 3.50 m at the WGEW scale. At each 

depth 31 (daily) realizations of probability density (Fig. 2.12) from DOY 214 to 244 

(August 1st to August 31st 2004) are presented using 22400 (224 footprints X 100 

ensembles) soil moisture estimates.  

Figures 2.12a-i reveal the transition of soil moisture probability densities and 

describe the temporal variability across the soil profiles in the WGEW. For most of the 

days between DOY 214 to 244, unimodality in soil moisture probability density was 

observed in the top 0.05 m depth (Fig. 2.12a-b). Variation in magnitude of the peak 

densities for 31 days is apparent at the depth of 0.01 m (Fig. 2.12a). We suggest that the 

change in the mean and variance of the daily soil moisture probability densities at the 

0.01 m depth (Fig. 2.12a) is due to the highly variable (localized) convective summer 

precipitation patterns across the WGEW. However, at 0.05 m depth, the variation in soil 

moisture probability density peaks is less pronounced as compared to the probability 

density at the 0.01 m depth.   [Western, et al., 2002] found that the bounded normal 

probability densities of soil moisture become skewed and less variable as the means 

approach the lower bound i.e., residual water content. In our study, as the Gaussian 

kernel estimates at shallow depths (0.01 and 0.05 m, Fig. 2.12a-b) approach the lower 

boundary, probability densities become positively skewed with small spread/variation. 

This behavior is also consistent with the findings of [Famiglietti, et al., 1999]. It is 
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noteworthy that during the SMEX04 period no shift was observed from positively 

skewed (dry: near lower bounds) to moderate (midrange of wetness) or negatively 

skewed (wet: near upper bounds) probability densities at 0.01 m and 0.05 m depths. This 

limited variation in soil moisture skewness indicates an absence of uniform rainfall 

events over the whole watershed domain as illustrated in Fig. 2.5. Further, positively 

skewed narrow densities with little or no variation were attributed to a very conductive 

(sandy texture) top soil layer and little precipitation at WEGW.  

With increasing depth (0.10 m to 3.50 m), realizations with multi-modal kernel 

density estimates were observed (Fig. 2.12c-i). Mixture of distinct Gaussian probability 

density functions (PDFs) was apparent in these multimodal densities. The persistence of 

these distinct Gaussian PDFs in the multimodal densities was observed at specific soil 

moisture values. Little difference in mean and variance was observed in the distinct 

Gaussian PDFs across the DOYs (Fig. 2.12c-i). Also, multimodality of probability 

density was much more pronounced for the deeper depths than near the soil surface (Fig 

2.12). A spike in probability distribution was detected at the depth 1.50 m (Fig. 2.12h). 

A logical explanation for this spike is internal drainage or redistribution. During 

redistribution, relatively deeper layer (at 1.50 m) draw soil moisture from the upper 

layers. It is apparent from Fig. 2.12e-g, that nominal spikes were also present for DOY 

214-225 at the depths of 0.50 m, 0.75 m, and 1.00 m. The time-varying rate of 

redistribution depends not only on the hydraulic properties of the conducting soil but 

also on the initial soil moisture status (wetting front depth and the relative dryness of the 

deeper layers). When the initial wetting front depth is small and the underlying soil is 
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relatively dry, the hydraulic gradient augmenting the gravitational gradient are likely to 

be strong and hence induce a rapid rate of redistribution.  

 

 

Figure 2.12. Walnut Gulch Experimental Watershed (WGEW) soil moisture densities at 

depth of (a) 0.01 m, (b) 0.05 m, (c) 0.10 m, (d) 0.20 m, (e) 0.50 m, (f) 0.75 m, (g) 1.00 

m, (h) 1.50 m, and (i) 3.50 m at resolution of 800 m X 800 m.  
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To understand the spatial variability of soil moisture across the WGEW, kmean 

clustering [Jain and Dubes, 1988] was conducted on 22400 (224 footprints X 100 

ensembles) soil moisture estimates at the depths of 0.01, 0.05, 0.10, 0.20, 0.50, 0.75, 

1.00, 1.50, and 3.50 m for all 31 days of SMEX04. Table 2.2 shows the number of 

spatial clusters of soil moisture at specified depths in WGEW. Table 2.2 also provide 

spatial clustering of texture related soil hydraulic properties i.e., saturated hydraulic 

conductivity (Ksat), residual water content (θr), and saturated water content (θs) across 

the WGEW. Number of clusters of θr and θs are nearly similar at all the specified depths, 

whereas in case of Ksat the number of spatial clusters increases with the depth. The 

smaller number of Ksat spatial clusters (4 clusters for 0.05 m depth) corroborate with the 

presence of large percentages of rock and gravel fraction on the soil surface. Based on 

the groupings of saturated hydraulic conductivity and soil moisture spatial clusters, three 

distinct depth-dependent zones (i) 0-0.05 m, (ii) 0.05-0.75 m, and (iii) below 0.75 m can 

be identified in the soil profile. The number of clusters in the spatial distributions of soil 

moisture for the depths of 0.01 m, 0.05 m, and 0.75 m were somewhat matching to the 

modality in the respective probability distributions in Fig. 2.12. Also note that a sudden 

increase in the number of soil moisture spatial clusters was observed below 1.00 m 

depth. The numbers of spatial clusters found at these deeper depths were close to the 

number of soil textures encountered at these specific depths. Based on these findings we 

suggest that soil texture takes control of soil moisture evolution and spatial distribution 

with increasing depth and with lesser influence from forcings and feedbacks at the land-

atmosphere boundary. At the depths between 0.05 and 1.00 m, plant roots play a major 
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role in describing the status of soil moisture. In our SWAP model simulations the 

maximum rooting depth was prescribed to be 1.00 m. Plant root water uptake is largely 

controlled by soil water status and spatial (horizontal-vertical) variability of soil 

moisture. Root-soil interaction tends to equalize soil water content in the root-zone. The 

tendency of homogenization of soil moisture at these depths resulted in three spatial 

clusters which could be attributed to root dynamics of various vegetation types present in 

the WGEW. The phenomenon of homogenizing soil moisture in the root zone also 

reduces soil water flux variability.  

 

Table 2.2. Spatial clusters (SC) of soil moisture and hydraulic parameters across WGEW 

at specified depths. 

Soil profile 
depth in m 

Soil moisture 
SC 

Saturated Hydraulic 
Conductivity (Ksat) SC 

Residual Water Content 
(θr) SC 

Saturated Water 
Content (θs)SC 

0.01 1 4 14 11 

0.05 2 4 14 13 
0.10 3 7 12 14 
0.20 3 8 13 11 
0.50 3 9 14 13 
0.75 3 9 10 12 
1.00 8 10 12 12 
1.50 9 10 11 11 
3.50 12 10 10 10 

 

Based on the above results it is clear that a coarse spatial resolution of 800 m X 

800 m and daily time scale for model simulations influence the evolution of profile soil 

moisture and other hydrologic responses in WGEW during SMEX04. Furthermore, 

because of the scanty and scattered nature of rainfall within WGEW during the SMEX04 

period and highly conductive nature of the top soil layer, no significant surface runoff 
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and runon were observed at a coarse resolution of 800 m X 800 m. The topographic 

control on spatial distribution of soil moisture was not apparent due to sustained dry 

period. This finding agrees with those of Chang and Islam [2003], where they 

demonstrated that soil physical properties and topography control spatial variations of 

soil moisture over large areas. They have shown that topographical control dictates soil 

moisture distribution under wet conditions, and soil physical properties control 

variations of soil moisture under drier conditions. Based on these arguments and our 

results we suggest that at the remote sensing pixel scale the effect of topography and 

patchy rainfall on the spatio-temporal distribution of soil moisture at the soil surface and 

deeper depths was not found to be as significant as that of soil texture in the WGEW 

during SMEX04.   

 

2.5. Summary and Conclusion 

The distribution, behavior, and evolution of soil moisture at various depths in the 

Walnut Gulch Experimental Watershed, Arizona, during SMEX04 were studied. Aircraft 

based remotely sensed surface soil moisture for the WGEW was assimilated using 

EnSRF to model root zone soil moisture up to a depth of 3.86 m. The modeled root zone 

soil moisture was evaluated with insitu measurements from several Hydra and SCAN 

sites. The comparison shows significant benefits of providing better soil layer/property 

information, and the propagation of EnSRF Kalman gain through the land surface model 

SWAP. Reasonable agreement was observed for the shallow depths (0-0.50 m). Most of 

the measurements at these depths were within ±1 standard deviation of the modeled soil 
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moisture. The models with assimilation and without assimilation (open-loop) performed 

equally well at deeper depths using soil layer information from the SSURGO database. 

The results also demonstrated the impact of data assimilation of PSR/CX-based surface 

soil moisture measurements reaching deeper layers having similar hydraulic properties. 

In case of the presence of deeper soil layers (with different hydraulic properties from the 

surface soil layer) the propagation of information during data assimilation from the soil 

surface to deeper layers was found to be ineffective. The ensembles from the PSR/CX-

assimilated model output were used for characterizing the probability densities of soil 

moisture at several depths. The soil moisture probability densities revealed the temporal 

evolution across the soil profile in the WGEW. Unimodality in soil moisture densities 

was observed for the top 0.05 m of soil, whereas multimodality was observed for the 

deeper soil layers for all 31 days of SMEX04. Multimodality in probability density 

became more pronounced with depth across the soil profile. Almost no appreciable 

temporal variation in soil moisture probability densities were observed at any depth 

between 0.01 and 3.50 m. An increase in the number of soil moisture spatial clusters 

with depth was found and could to be related to the number of soil textures encountered 

at the deeper depths (below 1.00 m). An increase in soil moisture spatial clusters 

suggests that soil texture took control of space-time evolution with increasing depth, 

while the impact of land-atmosphere interaction diminished. With a coarser resolution of 

800 m X 800 m and a temporal resolution of one day, the effect of existing conditions of 

geophysical factors (e.g., topography, rainfall) on the distribution of soil moisture at 

deeper depths were found to be less significant in the WGEW during SMEX04.  
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Further investigation is warranted involving different data assimilation schemes 

and how they affect the evolution of root-zone soil moisture with the use of single layer 

as opposed to multilayer soil information in different hydroclimatic conditions. Besides, 

we need to develop an improved modeling/assimilation framework to accommodate 

higher spatial and temporal resolutions to study diurnal variations in precipitation and 

other meteorological forcings (e.g., air temperature, wind speed) which may be present 

at the study site.  
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CHAPTER III 

A MCMC ALGORITHM FOR UPSCALED SVAT MODELING TO EVALUATE 

SATELLITE-BASED SOIL MOISTURE MEASUREMENT 

 

3.1. Synopsis 

A Markov Chain Monte Carlo (MCMC) based algorithm was developed to derive 

upscaled land surface parameters for a Soil-Vegetation-Atmosphere-Transfer (SVAT) 

model using time series data of satellite measured atmospheric forcings (e.g., 

precipitation), and land surface states (e.g., soil moisture and vegetation). This study 

focuses especially on the evaluation of soil moisture measurements of the AQUA 

satellite based AMSR-E instrument using the new MCMC-based scaling algorithm. Soil 

moisture evolution was modeled at a spatial scale comparable to the AMSR-E soil 

moisture product, with the hypothesis that the characterization of soil microwave 

emissions and their variations with space and time on soil surface within the AMSR-E 

footprint can be represented by an ensemble of upscaled soil hydraulic parameters. We 

demonstrated the features of the MCMC based parameter upscaling algorithm (from 

field to satellite footprint scale) within a  SVAT model framework to evaluate the 

satellite-based brightness temperature/soil moisture measurements for different 

hydroclimatic regions, and identified the temporal effects of vegetation (LAI) and other 

environmental factors on AMSR-E based remotely sensed soil moisture data. The SVAT 

modeling applied for different hydroclimatic regions revealed the limitation of AMSR-E 

measurements in high vegetation regions. The study demonstrated the potential to 
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improve upon the AMSR-E measurements by assimilating the soil moisture evolution 

from the proposed upscaled SVAT model. The technique also has the potential to derive 

upscaled parameters of other geophysical properties used in remote sensing of land 

surface states. The developed MCMC algorithm with SVAT model can be very useful 

for land-atmosphere interaction studies and further understanding of the physical 

controls responsible for soil moisture dynamics at different scales.  

 

3.2. Motivation 

Studies [Claussen, 1998; Delworth and Manabe, 1989; Foley, 1994; Texier, et al., 

1997] have shown that the initial/boundary (I/BC) values of state variables (e.g., soil 

moisture, soil temperature, vegetation water content) at various spatial and temporal 

scales in the land surface exert strong controls on hydrologic, climatic and weather 

related processes. Hence, measuring these state variables is crucial for flood forecasting, 

natural resource management, agronomic crop management, and regional/global climate 

simulation. There are various ways to measure the state variables depending upon the 

spatial scale of interest. In-situ techniques provide reasonably accurate measurements of 

state variables at the local-scale, at desired time intervals. Direct incorporation of in-situ 

measurements as I/BC in large scale models has limitations due to its very small spatial 

support. Satellite-based remote sensors measure spatially integrated measurements of 

state variables with temporal sampling that depends upon the orbital placement of the 

satellites. This makes satellite-based measurements suitable for I/BC in large scale 

modeling. However, the quality of satellite-based land parameter measurements is often 
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questionable due to uncertainties introduced by atmospheric attenuation, clouds, rainfall, 

and the inherent variability present in geophysical properties and state variables, which 

influence the measurements and their calibration and validation. The extent and spatial 

resolution of satellite-based measurements can also introduce complex scale effects 

[Western, et al., 2002]. Conventionally, satellite-based measurements are validated using 

ground-based measurements, but this approach is also limited in accounting for scale 

effects and heterogeneity within the large footprints. In this study we focus primarily on 

developing a physically-based soil hydrologic model at the satellite footprint scale, 

including parameter upscaling and a soil moisture data assimilation scheme.  

The Advanced Microwave Scanning Radiometer (AMSR-E) on the Earth 

Observing System Aqua satellite is currently used for global soil moisture mapping 

[Njoku, et al., 2003].  AMSR-E measures radiation at six frequencies in the range 6.9–89 

GHz with dual polarization. It covers the globe in approximately two days or less with a 

swath of 1445 km. The spatial resolution at the surface varies from approximately 60 km 

at 6.9 GHZ to 5 km at 89 GHz [Njoku, et al., 2003]. The current ASMR-E soil moisture 

algorithm is based on a change detection approach using polarization ratios (PR) of the 

calibrated AMSR-E channel brightness temperatures [Njoku and Chan, 2006]. The 

accuracy of the soil moisture algorithm has been investigated on short time scales during 

calibration/validation field campaigns of the Soil Moisture Experiments in 2002, 2003, 

and 2004 (SMEX02, SMEX03, and SMEX04) [Bindlish, et al., 2006a; Bindlish, et al., 

2005; Jackson, et al., 2005a]. Results show some level of consistency and calibration 

stability of the observed brightness temperatures at specific locations. However there 
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have been concerns regarding the spatial variability of the retrieved soil moisture biases 

over areas with different amounts of vegetation. AMSR-E measurements have shallow 

measurement depth (1 cm or less) and coarse spatial resolution (~60 km x 60 km) which, 

combined with subgrid and grid scale variability, also impose limitations on the retrieval 

algorithm and its operational accuracy.  

Measurements of microwave emissions show sensitivity to soil moisture through 

the effects of moisture on the dielectric constant and hence emissivity of the soil [Ulaby, 

et al., 1986]. The large contrast between the real part of the dielectric constant of water 

and that of dry soil translates into a difference of up to 100 K or more in brightness 

temperature between very dry and very wet soils [Njoku and Kong, 1977; Wang, 1980; 

Wang and Choudhury, 1995]. The surface geophysical properties, i.e., soil 

characteristics (surface roughness and soil texture) and vegetation, also affect the 

microwave emissivity. Vegetation acts as an attenuating and emissive layer over the soil 

[Jackson and Schmugge, 1991; Njoku and Chan, 2006; Ulaby and Wilson, 1985] and is 

characterized mainly by its water content and geometrical structure. The net effect of 

vegetation is a reduction in sensitivity that makes it more difficult to estimate soil 

moisture accurately over vegetated terrain. At AMSR-E frequencies (6.6 GHz and 

higher) the sensitivity to soil moisture becomes very low when the leaf area index (LAI) 

exceed 2.0 [Njoku and Li, 1999]. Surface roughness adds another dimension of 

complexity due to surface scattering [Choudhury, et al., 1979; Njoku and Chan, 2006] 

which affects the emissivity. The net effect of surface roughness can be difficult to 

establish, especially when dealing with inhomogeneous elements. Soil texture, ranging 
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from sand to clay, also influences the emissivity of the soil. Sandy-textured soil has the 

highest emissivity at all frequencies which is influenced by least specific surface area of 

soil that leads to lowest bound water [Wang and Schmugge, 1980].  

The uncertainty in estimating microwave emissivity at the AMSR-E footprint scale 

is affected also by the heterogeneity of the vegetation, surface roughness, and soil 

moisture within the footprint. Soil moisture exhibits heterogeneity due to variability in a 

number of geophysical parameters (soil properties, vegetation, topography, and 

precipitation). The soil moisture distribution at a particular spatio-temporal scale within 

an AMSR-E footprint evolves from complex interactions among these geophysical 

parameters [Dubayah, et al., 1997; Western, et al., 2002]. Soil properties always exhibit 

significant spatial variability that characterizes the soil moisture status and transport 

processes. For example, Rodriguez-Iturbe, et al. [1995] suggested that the spatial 

organization of soil moisture is a consequence of the soil properties; Tomer et al. [2006] 

found significant correlation between soil properties and soil moisture at the watershed 

scale; and [daSilva, et al., 2001] showed that temporal stability in soil moisture patterns 

can be associated with the arrangement of soil types and textures at the landscape scale. 

Soil texture is also related to topographical attributes such as surface curvature, slope, 

and elevation. Mohanty and Mousli [2000], Pachepsky et al. [2001], and Leij et al. 

[2004] demonstrated that soil hydraulic properties relate to relative landscape positions 

in topographically complex landscapes, and [Chang and Islam, 2003] demonstrated that 

soil physical properties and topography together control spatial variations of soil 

moisture over large areas. They showed that topographical control dictates the soil 
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moisture distribution under wet conditions, and soil physical properties control 

variations of soil moisture under relatively dry conditions. Infiltration properties of soil 

are influenced by vegetation at the plant scale [Seyfried and Wilcox, 1995] or 

tillage/cropping practice at the field scale [Mohanty et al., [1994b]. In a recent study, 

Sharma et al. [2006] discovered that including remotely sensed vegetation parameters in 

addition to soil texture and topographic features improved the predictability of soil 

hydraulic properties across Little Washita watershed in Oklahoma using artificial neural 

networks. These spatially overlapping geophysical attributes define the functional 

organization of soil hydrological processes, and in turn soil moisture variability. The 

evolution of the soil moisture state within the AMSR-E footprints is primarily forced by 

precipitation. For this study subgrid variability of precipitation is not considered. The 

partitioning and transport of the water above and below the land surface is mainly 

controlled by soil hydraulic properties which are in turn influenced by soil types, texture, 

topography, and vegetation. In summary, the emitted microwave radiation (brightness 

temperature) of the soil observed at the 60 km x 60 km AMSR-E footprint scale is a 

weighted integral of the soil moisture distribution, as influenced by the variability in soil 

hydraulic properties within the footprint. Camillo et al. [1986] have also shown that 

remotely-sensed soil moisture may be inverted to estimate soil hydraulic properties using 

a microwave emission model and soil moisture and temperature profiles generated by 

moisture and energy balance equations. Application of such approaches on a regional 

scale may generate large-scale soil properties for input into mesoscale land-atmosphere 

models. Regional soil properties may be estimated by inversion of dynamic one-
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dimensional soil-water-vegetation model in conjunction with soil moisture obtained 

from microwave remote sensing.   

Based on the above discussion we hypothesize that an ensemble of soil hydraulic 

properties describing the soil moisture dynamics within the AMSR-E footprint can be 

used to determine the microwave emission from the surface soil layer. In other words, 

the ensemble of soil hydraulic properties can suitably characterize the variability present 

within the AMSR-E footprint. Although at a field scale, Burke et al. [1997] 

demonstrated retrieval of soil hydraulic properties from the time series of the measured 

brightness temperature over agricultural fields. There could be some concern, however, 

about the validity of using an ensemble of local soil hydraulic properties to represent 

conditions at the remote sensing footprint scale. Soil hydraulic properties are defined at 

the point to field scale, whereas soil is conceptualized as a hierarchical heterogeneous 

medium with discrete spatial scales, e.g., Roth et al. [1999]. It is argued that the natural 

pattern of soil variability may exhibit embedded, organizational structures that lead to 

non-stationary soil hydraulic properties and processes. With an increase in spatial scale 

(extent), soil hydraulic properties typically become non-stationary. The soil hydraulic 

properties may change from deterministic at smaller scale to more random at larger 

scale, with the small scale soil  properties filtered out by larger scale soil related 

processes [Kavvas, 1999]. Thus, upscaling of soil properties is required to understand the 

physical processes, and characterize the evolution of soil moisture and in turn soil 

emissivity, at the AMSR-E footprint scale.  
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The primary objective of this study is to develop a procedure, using a Markov 

Chain Monte Carlo (MCMC) algorithm, for estimating upscaled land surface parameters 

to be used in a SVAT model for evaluating satellite-based land surface state 

measurements. The performance of the upscaled parameters and SVAT model can then 

be tested using selected AMSR-E footprints in three different hydroclimatic conditions 

to evaluate the satellite-based soil moisture product.  

 

3.3. Approach 

Effective soil hydraulic parameters are a representative set of parameters that 

characterize a footprint-scale domain and approximate the flux equivalent to the 

aggregated flux obtained from distributed modeling within the domain [Kabat, et al., 

1997; Zhu and Mohanty, 2003]. Footprint-scale effective soil hydraulic parameters are 

vital to hydroclimatic studies since such studies commonly use soil-vegetation-

atmosphere-transfer (SVAT) models whose sub-surface flow components are based on 

the Darcian flow equation [Demarty, et al., 2005].  The soil hydraulic parameters used in 

SVAT models are physically defined at a local measurement scale (mostly at point to 

field scale). Therefore, soil hydraulic parameter upscaling from field scale to 

hydroclimate grid or satellite footprint scale is critical for SVAT model performance at 

these scales. The difficulty of upscaling soil hydraulic parameters to the footprint scale 

stems from the inherent spatial variability of soil properties and the non-linear 

dependence of soil moisture. Our strategy here is to develop a new approach for 

estimating upscaled soil hydraulic parameters. We follow a method that derives upscaled 
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hydraulic parameters directly from explicit information on the soil moisture state at the 

AMSR-E footprint scale and the stochastic variability of soil hydraulic parameters at the 

much smaller (local) scale within the footprint. Using ensembles of upscaled soil 

hydraulic parameters, large scale fluxes and states at the land surface can be determined 

that are compatible with the microwave emission from the surface soil layer at the 

footprint scale.  

The algorithm developed for this approach uses a Bayesian methodology that 

provides an effective and efficient tool for combining two or more discrete sources of 

information, model output and observed data. The algorithm is used to merge prior 

information on an arbitrary number of soil hydraulic parameters, with the information 

content of the related soil moisture data, to find SVAT model parameter estimates. The 

algorithm is particularly useful when extracting target (soil hydraulic property) 

characteristics from remotely sensed (e.g., AMSR-E soil moisture) data. The Bayesian 

technique can produce full probability distributions for an arbitrary number of 

parameters. In practice, the probability distributions can be considered to represent either 

the imprecise knowledge regarding the true value of the parameter, the natural variability 

of the parameter, or a combination of the both. In the procedure, the inference about the 

set of soil hydraulic parameters is obtained after integrating all possible combinations of 

the soil hydraulic parameters in the full joint probability posterior distribution. In this 

study the integration is performed on the set of parameters using a Markov Chain Monte 

Carlo (MCMC)-based numerical method.  
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MCMC Algorithm  

Bayesian methods provide a framework within which pre-existing knowledge 

about the parameters of a model can be combined with observed data and model output. 

These results in a probability distribution of the parameter space (posterior distribution) 

that summarizes uncertainty about the parameters based on the combination of pre-

existing (or prior) knowledge and the sampled data values. In this study, the 

uncertainties in accurately determining the parameters of the nonlinear soil water 

retention function for large scale hydrological modeling is the focus of the development 

of the Bayesian framework. The Bayesian approach takes the parameters of the model as 

random variables [Gelman, et al., 1995] with particular probability density functions 

(pdfs). Thus, in addition to the determination of a likelihood function, the process of 

Bayesian inference may require the specification of prior pdfs that summarize the prior 

knowledge. Figure 3.1 illustrates the methodology of the Bayesian framework. Here, the 

likelihood function is the time series of AMSR-E derived soil moisture data D = {θ1, 

θ2,.., θt} at a particular grid point. The priors are defined as the soil hydraulic parameters 

(shown in eq. 3.1) of the dominant soil types based on Soil Survey Geographic 

(SSURGO) database within the particular AMSR-E footprint. These soil hydraulic 

parameters are used in the Mualem-van Genuchten functions [Mualem, 1976; van 

Genuchten, 1980]: 
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where, water content θ is a nonlinear function of pressure head h, Se is the relative 

saturation (-), θres and θsat are the residual and saturated water contents (cm3 cm-3) 

respectively, α (cm-1), n (-), m (-) and λ (-) are shape parameters of the retention and the 

conductivity functions, Ksat is the saturated hydraulic conductivity (cm d-1), and m=1-

1/n. The values of these parameters are distinct amongst soil (textural) types and are 

defined at the local or field scale. By virtue of the variability in soil types within an 

AMSR-E footprint, very relaxed pdfs (high standard deviations, σ) were defined for the 

soil parameters as priors.  A normal distribution was assigned to all parameters, e.g., θres 

~ N(µθres, σθres) based on the UNSODA database [Nemes, et al., 2001]. In principle, non-

normal priors could be used as well, but the computational complexity would increase 

considerably. If no prior information from the SSURGO database is available for the soil 

parameters except for their ranges, uniform pdfs are assigned in the valid ranges. For 

computational simplicity, random samples are drawn independently from the pdfs of 

different soil hydraulic parameters to form a field scale parameter set (θres, θsat, α,  n, 

Ksat). A scaling parameter β (with a uniform distribution between 0 and 1) is introduced 

in our algorithm to account for the scale disparity. Thus, β relates the soil hydraulic 

parameters at the field scale to the effective soil hydraulic parameters at the ASMR-E 

footprint scale. The general relationship used in this study for upscaling of any of the 

soil hydraulic parameters in the Mualem-van Genuchten relationship (eq. 3.1), can be 

written as (e.g., for θres) 

(θres)eff  = (θres)
β
                                (3.3)  

where (θr)eff is the effective value of the residual water content at the ASMR-E footprint 
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scale. Thus, for upscaling the field-scale parameters, eq. 3.3 was used to form a set of 

upscaled parameters, zi = )K,n,,,( i

sat

iii

sat

i

res

βββββ αθθ i, where i is a realization of the 

MCMC and the upscaling parameter βi represents the corresponding upscaling 

parameter drawn randomly from a uniform distribution between 0 and 1.   

By applying Bayes' theorem, the conditional posterior pdf, P(Z|D), given the 

measured values of D, is described as: 

)D(P

)Z|D(P)Z(P
)D|Z(P =                                      (3.4)                                                                                                                             

where P(Z) is the prior joint pdf for the upscaled soil hydraulic parameters Z = {z1, z2,…, 

zm}. The P(D) is a normalization factor and P(D|Z) is the likelihood derived from 

measured AMSR-E soil moisture footprint values given Z. To describe the AMSR-E 

data, a normal (pdf) likelihood was introduced. Once the joint pdf is obtained, given 

specific values for D, the marginal posterior pdf that retains exclusively the dependence 

on one parameter (e.g., βθ res ) can be obtained as follows: 
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where, Σ  is the covariance matrix of the soil hydraulic parameters, and µ is the vector 

of means of the parameters. This marginalization could potentially be an intractable task 
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because of the high-dimensional integration in eq. 3.5. This could happen when the 

retrieval process is applied to situations where there are more than two soil parameters to 

be estimated, and when the resulting pdf does not have a standard form. A possible 

solution is to estimate the form of the posterior pdf by generating samples by means of 

the Markov Chain Monte Carlo (MCMC) method [Brooks and Roberts, 1998]. The 

mean, variance, and higher order moments for the parameters can be calculated from the 

numerically approximated pdf’s of the MCMC. We use the MCMC to perform the 

integration required for the evaluation of eq. 3.5. More specifically, we used the 

Metropolis algorithm for the Markov Chain Monte Carlo (MCMC) method with a 

simple random walk to describe the posterior distribution, representing the ensemble of 

soil hydraulic parameters for the AMSE-E footprint. The Metropolis algorithm 

[Metropolis and Ulam, 1949] has been widely used in Bayesian applications because of 

its simplicity and its efficiency. Its principle can be summarized as follows: starting from 

a vector generated at iteration i-1, a new candidate vector is generated based on a 

symmetric jump distribution. The SVAT model (addressed below) is run with the new 

candidate vector (proposed soil hydraulic parameters) and the surface soil moisture 

generated from the model is compared with the AMSR-E measurements. If this new 

candidate vector leads to an increased probability of the target distribution, it is accepted 

as the generated value at iteration i. Otherwise, the ratio between the new and the 

previous value of the target distribution is computed, and used as the acceptance 

probability of the candidate vector. In case of rejection, the generated vector at iteration i 

remains the same as that at iteration i-1. The Metropolis algorithm was used in this paper 
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with a Gaussian jump distribution with covariance matrix ∑. The MCMC algorithm used 

in the study is summarized below: 

i. Choose a starting point of candidate vector π(0) with a covariance matrix ∑. 

ii. Iterate i = 1, . . ., Niter . 

1. Generate a candidate vector based on π* ~ N (π(i-1), ∑) 

2. If p(π*|X) ≥ p(π(i-1)|X), set π(i) = π*, else accept the candidate vector 

(π(i)=π*) with probability r = 
����|��

����	
|��  or reject it (π(i) = π(i-1)) with 

probability (1-r).  

In order to avoid numerical overflows, it is useful to consider the logarithm of the 

posterior distribution, and to compute the posterior ratio as r =exp(log(p(π*|X))-log(p(π(i-

1)|X))). Moreover, this ratio is made invariant by multiplying the posterior distribution by 

a constant, which implies that the Metropolis algorithm can be applied to a non-

normalized target distribution. The MCMC algorithm generates a Markov chain (kn) 

whose stationary distribution is π(k). The posterior distributions of parameters obtained 

from the MCMC algorithm are further subjected to a process of thinning. The objective 

of thinning is to decrease the autocorrelation (increasing independence) between 

samples. Thinning a Markov chain necessitates that the chain be long enough to obtain a 

sample of the desired size. Thinning was implemented in the algorithm by periodic 

selection of samples from the MCMC chain at a specified rate to form an ensemble of 

soil hydraulic parameters. 
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Figure 3.1. Markov Chain Monte Carlo (MCMC) based schematic for deriving upscaled 

soil hydraulic parameters. 

 

SVAT Modeling for Soil Moisture Estimation 

Key challenges in using SVAT models for very coarse scale (e.g., AMSR-E 

footprint scale) hydrologic modeling are the selection of governing flow equations, 

setting accurate boundary conditions, and defining the modeling domain. For this study, 

we used the parallel non-interacting soil column approach [Milly, 1988; Peck, et al., 

1977] that allows a variety of modeling concepts for soil water processes in 

heterogeneous conditions. In this stream-tube approach, the horizontal spatial 

heterogeneity is represented by an ensemble of upscaled soil hydraulic parameters and is 

conceptualized as bundle of independent parallel soil columns. At the large spatial scale, 

the stream tube approach suits well the hypothesis of negligible lateral interflow across 
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adjacent soil columns within the modeling domain. In a previous study, Zhu and 

Mohanty [2002] analyzed the magnitude of the lateral flow component in parallel soil 

columns and found them of minor importance. We also assumed that the 1-D Richards’ 

equation is an appropriate physical model to simulate the vertical partially-saturated flow 

and partitioning of fluxes at such coarse spatial scale. Numerical studies conducted by 

Mantoglou [1992], and Zhang [1999] on general upscaled Richards’ equations have 

shown that at large spatial scales and in the absence of lateral flow, vadose zone flow 

can be represented by the one-dimensional Richards’ equation. We used the SWAP 

model [Van Dam, et al., 1997] to simulate the processes of the soil-water-atmosphere-

plant system. SWAP is a physically-based, hydrologic model that numerically solves the 

one-dimensional Richards’ equation for simulating the soil moisture dynamics in the soil 

profile under different climatic and environmental conditions. Irrespective of scale, for 

transient isothermal unsaturated water flow in non-swelling soil, Richards’ equation as 

used in SWAP is described by 

�

�� � �

�� �� ���
�� � 1�� � �����               (3.8) 

where θ is the soil water content (m3/ m3), z is the soil depth (m), h is the soil water 

pressure head (m), K is the unsaturated hydraulic conductivity (m/day), and Sa(h) is the 

root water uptake (m/day). The Penman-Monteith equation [Monteith, 1965] was used to 

calculate potential evapotranspiration, while potential transpiration (Tp) and soil 

evaporation (Ep) were partitioned using LAI. In the SWAP model, soil moisture 

retention and hydraulic conductivity functions are defined by the Mualem-van 

Genuchten equations, shown in eq. 3.1 and 3.2, respectively. 
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Modeling Domain 

SWAP is a numerical water management tool that can accommodate several 

combinations of top and bottom boundary conditions. Availability of satellite data to 

characterize the upper boundary condition as well as the vegetation cover allows study 

of regional/footprint scale soil water processes. The SWAP model simulates both the soil 

water quantity and quality with a temporal resolution of one day, along with other state 

variables. The model has been used in various applications in the past, and has been well 

validated under different climatic and environmental conditions [Ines and Droogers, 

2002; Ines and Mohanty, 2006; Wesseling and Kroes, 1998]. For more detailed 

descriptions of SWAP the reader can refer to [Van Dam, 2000]. 

A rooting depth of 50 cm for the soil profile with a parallel soil columns concept 

was used to characterize the AMSR-E soil moisture footprints, keeping in view the 

scope and objective of this study. For the SWAP model simulations, the 50 cm thick soil 

profile at each remote sensing footprint was discretized into 50 nodes, with finer 

discretization near the soil layer interfaces and at the land-atmosphere boundary. Finer 

discretizations near the top boundary and at layer interfaces were used to handle the 

steep pressure gradients for the numerical simulations. A time-dependent flux-type top 

boundary condition was applied for each parallel soil column matching the AMSR-E 

footprint. A unit vertical hydraulic gradient (free drainage) condition was used at the 

bottom boundary of the soil profile because of shallow root-zone (50 cm). Given the 

relatively coarse horizontal scale with shallow root-zone, the parallel soil column model 

ignores the lateral water fluxes across the adjacent soil columns and only predicts 
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infiltration, evapotranspiration, and deep percolation following the parallel non-

interacting stream-tubes concept of distributed vadose zone hydrology.  

 

Site Description 

To study the MCMC based parameter upscaling and SVAT modeling for 

evaluating soil moisture dynamics in large space-borne AMSR-E footprints, diverse 

hydroclimatic regions within the USA were selected. As illustrated in Fig. 3.2, large 

regional area in Arizona (semi-arid), Oklahoma (grassland/pastures), and Iowa 

(agricultural) regions were selected for the study. All of these regions have been 

included in previous hydrologic field campaigns (e.g., Southern Great Plains 1997 

(SGP97), 1999 (SGP99), Soil Moisture Experiment 2002 (SMEX02), 2003 (SMEX03), 

2004 (SMEX04), and 2005 (SMEX05)) whose objectives included calibration and 

validation of remotely sensed geophysical variables, especially soil moisture. The 

selected Arizona region comprises 42 AMSR-E footprints covering nearly 26,250 km2. 

The landscape consists of perennial shrub cover with low LAI (< 1 m2/m2), well drained 

gravelly sandy loam soil, and moderately rocky and hilly terrains. The Oklahoma 

regional site encompasses 45 AMSR-E footprints covering nearly 28,125 km2. Grassland 

and pasture with rolling topography dominates the landscape, with LAI averaging 

between 3 and 4 m2/m2 and attaining peak value between late spring and summer. 

Loamy sand, sandy loam, loam, and silty loam are the predominant surface soil textures 

in the Oklahoma region. The Iowa region, with 35 AMSR-E footprints spanning 21,825 

km2, has mainly a row crop agricultural landscape (nearly 60% corn and 40% soybean in 
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2002). This site is considered as the pothole region of Iowa because of its undulating 

terrain. The soil on the surface is mainly silty clay loam with a large percentage of 

organic matter. During the peak crop growing condition the LAI for this region reaches a 

high of 4-6 m2/m2. 

 

Figure 3.2. Three selected study regions (Arizona, Oklahoma, and Iowa) within the 

continental United States of America. 

 

Data  

AMSR-E soil moisture product 

For this study we used two years (2004-2005) of AMSR-E Level-2B gridded data 

extracted for the three regions (AZ, OK, IA) to evaluate the quality of the AMSR-E soil 



 64

moisture product. This Level-2B land surface product includes daily measurements of 

surface soil moisture, vegetation water content interpretive information, and quality 

control variables. The data values correspond to a 56 km mean spatial resolution, 

resampled to a global cylindrical 25 km Equal-Area Scalable Earth Grid (EASE-Grid) 

spacing. The more reliable night-time AMSR-E data [Njoku, et al., 2003] were used, as 

soil moisture and temperature profiles remain more uniform, and soil-vegetation 

temperature differences are smaller during the night than the early afternoon. In other 

words the soil moisture retrieval algorithm is expected to have less error and be more 

representative of deeper soil layers using the night-time data.  

 

TRMM and other GPCP calibrated data for precipitation 

Precipitation is arguably the most critical input for accurate soil moisture 

modeling. We used Tropical Rainfall Measuring Mission (TRMM) and other Global 

Precipitation Climatology Project (GPCP) calibration rainfall product 3B-42 (available 

at: http://disc.sci.gsfc.nasa.gov/data/datapool/TRMM/01_Data_Products/02Gridded/ind- 

ex. html). The combined instrument rain calibration algorithm (3B-42) uses an optimal 

combination of products from other satellites to adjust instantaneous rain (IR) estimates 

from geostationary IR observations. The rainfall data product used in this study has a 

spatial resolution of 0.25o x 0.25o grid for every 3 hours.  
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MODIS data for LAI 

Eight-day composite LAI data (from the MODIS instrument on the Terra satellite) 

(http://nsidc.org/~imswww/pub/imswelcome/index.html) with 1-km spatial resolution 

were used for the study. For soil moisture modeling, the MODIS data was averaged up 

from 1 km to 56 km resolution to match the AMSR-E footprint.  

 

NCEP/NCAR reanalysis data for atmospheric forcings 

The atmospheric forcing data such as relative humidity, air temperature, etc. 

required for soil moisture modeling was acquired from the 40 years reanalyses products 

of NCEP (http://www.cdc.noaa.gov/cdc/data.ncep.reanalysis.surfaceflux.html). The 

NCEP/NCAR 40 years reanalysis uses a state-of-the-art global data assimilation system 

and a complete available database [Kalnay, et al., 1996].  

 

SSURGO data for soil texture  

Soil texture information (fraction of sand, silt, and clay) was required for 

generating the ensemble of upscaled soil hydraulic parameters. The data was obtained 

from the Soil Survey Geographic (SSURGO) database (http://www.ncgc.nrcs.usda.gov/ 

products/datasets/ssurgo/). SSURGO is the most detailed level of soil mapping done by 

the Natural Resources Conservation Service (NRCS). Mapping scales generally range 

from 1:12,000 to 1:63,360.  
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3.4. Results and Discussion 

Upscaled Soil Hydraulic Parameters 

The approach described above was applied in the Arizona, Oklahoma, and Iowa 

regions, each encompassing several AMSR-E footprints. The SVAT model was run 

within the MCMC framework for one complete year (2004). The soil moisture 

evolutions from first two months (January and February, 2004) were not used in 

evaluating the proposal probability distribution of soil hydraulic parameters during the 

MCMC runs (as mentioned in previous section). This was necessary to eliminate the 

effects of initial conditions imposed across the profile of soil layers. Soil moisture states 

at the land surface were selected for 30 days in 2004 coinciding with the AMSR-E 

footprints to evaluate the proposal probability in MCMC sampling. A key issue in 

successful implementation of MCMC sampling is the number of runs (steps) until the 

chain approaches stationarity (length of the burn-in period). A poor choice of starting 

values and/or proposal probability distribution of soil hydraulic parameters can greatly 

influence the required burn-in time. The use of the SSURGO database for soil texture 

information, and corresponding parameter distributions from the UNSODA database, 

eliminated the possibility of choosing poor starting values from proposed parameter 

distributions. For this study, the MCMC chain was run 50,000 times, and the first 5,000 

burn-in were discarded. An acceptance ratio of nearly 7-10% was realized during 

MCMC for all the AMSR-E footprints used in the study. For illustration, the mixing of 

chain (evolution of soil hydraulic parameters from MCMC) for upscaled parameters 

)n,,,( satres

ββββ αθθ  selected randomly at the AMSR-E footprint scale from the Arizona, 
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Iowa, and Oklahoma regions are shown in Fig. 3.3(a-d), 3.4(a-d), and 3.5(a-d), 

respectively. Visual examination of these plots indicates reasonably good mixing i.e., 

sampling from all valid probability space. However, the length is too large (45,000) to 

rely upon visual inspection. Hence, we considered convergence diagnostics based on the 

Geweke test [Geweke, 1992]. The Geweke test splits the MCMC chain (after removing 

the burn-in period) into two parts. The first part comprises the beginning 10% of the 

chain and the second part is the last 50% of the chain. If the chain is at stationarity, the 

mean of the two parts should be equal, and the resulting test statistic is often referred to 

as the Geweke z-score. A value of greater than 2 for the Geweke z-score indicates that 

the mean of the series is still drifting, and a longer burn-in period is required. During the 

MCMC process for parameter upscaling, convergence diagnostics of the Geweke test 

detected no z-score greater than 2. A z-score less than 2 is also indicative of time 

invariant soil parameters within the footprint. The accepted proposals were extracted 

from the MCMC chain and subjected to a thinning process to reduce autocorrelation. 

From the thinning process an ensemble of upscaled soil hydraulic parameters were 

prepared for the SVAT model simulation.  
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a) b)  

c) d) 
 

Figure 3.3. Posterior density plots for upscaled van Genuchten parameters, for a 

particular footprint in the Arizona regional site. 
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a) b) 

c) d) 
 

Figure 3.4. Posterior density plots for upscaled van Genuchten parameters, for a 

particular footprint in the Iowa regional site. 
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a) b) 

c) d) 
 

Figure 3.5. Posterior density plots for upscaled van Genuchten parameters, for a 

particular footprint in the Oklahoma regional site.  
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The upscaled soil hydraulic parameters of the study regions from the MCMC 

process were greatly influenced by the initial proposal distributions of the parameters. 

For the Arizona region, the initial parameter space was defined based on the dominant 

soil type i.e., mostly sandy loam with a high percentage of gravel. On the other hand, the 

Iowa region top soil is mostly silty clay and loam, and in the Oklahoma region the top 

soil layer is dominated by fine sandy loam, clay and occasional loam. Although, the 

initial distributions of the parameters were predefined, the Markov random process drew 

samples from a very relaxed search space provided for all the parameters. The signature 

of soil types for the three regions is clearly visible in the pdfs of the hydraulic 

parameters, shown in Fig. 3.3(a-d), 3.4(a-d), and 3.5(a-d). As expected the mean 

upscaled residual water content βθ res  in Arizona was the lowest of the three regions. As 

illustrated in Fig. 3.5a, the effect of clay and fine sandy loam soil in Oklahoma region is 

also evident with highest mean βθ res . The observed variance of upscaled residual water 

content βθ res was quite low and very similar for all the three regions. Similarly, increasing 

trend for saturated water content βθ sat was also observed from sand and gravel dominated 

soil in Arizona to clayey and fine sandy loam soils in Oklahoma, revealing the influence 

of the parameter space in the MCMC algorithm. The variance of βθ sat  encountered was 

also larger for the Oklahoma region than for the other two regions, determined primarily 

by the soil texture present in the regions. The van-Genuchten parameters ( ββα n, ) show 

a trend with the highest mean observed for the Arizona region and lowest for the 

Oklahoma region, consistent with the dominant soil texture for each region. The 
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characteristics of  the hydraulic parameters shown in Fig. 3.3(a-d), 3.4(a-d), and 3.5(a-d) 

is typical of these particular regions. Of all the van-Genuchten parameters, the saturated 

hydraulic conductivity ( β
satK ) was the most variable and uncertain parameter obtained 

from the upscaling algorithm. Figure 3.6 illustrates the probability distribution of β
satK  

for a typical footprint from the Arizona region. Unlike other parameters, β
satK  shows a 

multimodal distribution in space. Similar multimodal pdfs were also observed for the 

Iowa and the Oklahoma regional sites. Studies have shown that saturated hydraulic 

conductivity is a highly uncertain parameter that varies widely at the field scale 

[Mohanty, et al., 1994a]. The wide range of β
satK  in a footprint scale is a fair estimation 

keeping in view the size of the spatial domain of this study. The MCMC-based upscaling 

of soil hydraulic parameters results in an effective ensemble of parameter sets that is 

specific to regional hydroclimatic conditions, vegetation and soil type. Influence of 

topography on upscaling of soil hydraulic parameters was not considered in this 

framework. However, with the parallel stream-tube concept and the large horizontal 

spatial extent (60 km x 60 km) compared to the vertical range of topographic variations, 

the effect of topography on soil hydraulic parameters is greatly diminished.  
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Figure 3.6. A typical example of probability distribution for upscaled saturated hydraulic 

conductivity ( β
satK ), from the Arizona regional site. 
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Figure 3.7a-c illustrates the posterior distribution of the upscaling parameter β for 

the three study regions. It also exhibits typical characteristic behavior as influenced by 

the parameter search space of the field-scale soil hydraulic parameters. For flat 

homogenous bare soil the value of β is 1 and the parameter values are independent of 

spatial scale. With heterogeneity the value of β remains no longer equal to unity and in 

fact can be larger or smaller than 1. In this study the upscaling parameter β is smaller 

than 1 due to heterogeneity introduced by soil types, vegetation and atmospheric 

forcings with increasing spatial scale. Essentially, all the nonlinearity encountered in the 

physical processes with increasing spatial scale is lumped in the upscaling factor β. As 

shown in Fig. 3.7, the MCMC converges to a stationary distribution of β with a mean of 

nearly 0.8, 0.85, and 0.9 for the Arizona, Iowa and Oklahoma region, respectively. Mean 

value of β may depend upon the individual AMSR-E footprint as every footprint is 

unique due to complex combination of topography, vegetation, soil, and other 

geophysical processes. Further investigation is required to study the influence of 

individual as well as different combinations of geophysical parameters (soil type, 

topography, vegetation, and atmospheric forcings) on the behavior of β with increasing 

spatial scale.  
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a) 

 
b) 

 
c) 
 

Figure 3.7. Posterior density plots for upscaling parameter for a) Arizona region, b) Iowa 

region, and c) Oklahoma region. 
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Comparison of Modeled and Remotely Sensed Soil Moisture 

Arizona regional site 

The Arizona regional site is ideal for satellite-based passive microwave remote 

sensing of soil moisture because of sparse vegetation (LAI < 1 m2/m2). Studies [Njoku 

and Li, 1999; Paloscia, et al., 1993] have demonstrated that at the AMSR-E frequency 

of 10.7 GHz used for soil moisture sensing, the sensitivity of brightness temperature (Tb) 

to variations in soil moisture strongly decreases when the soil is covered with well 

developed vegetation. Also, the predominant sandy texture soil with sparse vegetation of 

this region is suitable for microwave remote sensing. Therefore, we used this regional 

site as a testbed to evaluate the MCMC algorithm developed for upscaling of soil 

hydraulic parameters. One hundred ensemble members (each member representing one 

set of upscaled van Genuchten parameters) were selected from the thinning operation of 

the MCMC chain (posterior distribution). Modeled soil moistures from the top 1 cm 

depth of the soil profile from all 42 AMSR-E footprints in the region were compared 

with the AMSR-E measurements. Three out of 42 footprints in the region were randomly 

selected to display the results of  SVAT modeling of the 100 ensemble members (Fig. 

3.8a-c) at 60 km x 60 km resolution for 2004-2005. As illustrated in Fig. 3.8a-c, most of 

the times the ensemble of SVAT simulated soil moisture matches very well with the 

AMSR-E footprint measurements and are always within the bounds of the ensemble of 

SVAT simulated soil moisture. However, few discrepancies were also observed as 

reflected in Fig. 3.8b. Close examination of these discrepancies reveal that the AMSR-E 

soil moisture data did not respond to the TRMM-based precipitation data. The reason 
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may be the precipitation event occurring after the overpass time of the Aqua satellite 

(descending: 1 AM) and vice-versa. The top soil, which mostly contributes to the 

microwave emission, has high rock and gravel fraction with sandy texture. This 

influences the soil hydraulic characteristics making them highly nonlinear with very high 

saturated hydraulic conductivity, which drains the soil rapidly and the signature of the 

precipitation event is lost from the top soil. During the SMEX04 field campaign, Das et 

al. [2008] also observed similar behavior in Walnut Gulch watershed situated within this 

Arizona regional site. A high correlation (average R of 0.91) was observed between the 

AMSR-E soil moisture and the mean of SVAT ensembles for all the 42 footprints during 

the summer seasons of 2004-2005. However, lower correlation was observed for winter 

periods of 2004-2005, with an average R of 0.65. The Arizona region experiences most 

of the precipitation during winter by North American monsoon which is mostly 

widespread and is unlike convective thunderstorms during summer. The SVAT model 

showed high soil moisture during such major precipitation events, whereas the AMSR-E 

footprints showed a weak response. This also degraded the correlation value observed 

during the winter periods. Co-registration of satellite-based precipitation and soil 

moisture measurement may minimize such anomalies. The estimated upscaled hydraulic 

parameters for this region reasonably modeled the soil moisture evolution at a footprint 

scale. These upscaled parameters also retained the typical characteristics of the sandy 

soil at large scales. The good performance of SVAT model (using MCMC based 

upscaled parameters) with AMSR-E measurements in semiarid Arizona region is further 
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evaluated in agricultural landscapes with high biomass (Iowa region), and grass/pasture 

(Oklahoma region). 
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Figure 3.8.  Comparison of randomly selected footprints of soil moisture evolution from 

ensemble of upscaled soil hydraulic parameters using SVAT model and AMSR-E 

measurements for 2004-2005, from Arizona region (where W: winter, and S: summer). 
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Iowa regional site 

The Iowa regional site is a typical example of agricultural landscape (LAI of 3-6 

m2/m2). Using data from a soil moisture experiment (SMEX02) in June-July 2002 in this 

region, Bindlish et al. [2006b] reported a satisfactory validation of the space-borne 

AMSR-E soil moisture using an airborne Polarimetric Scanning Radiometer (PSR). 

However, in this region, our study found contrasting results for 2004-2005. Performance 

of AMSR-E soil moisture product was evaluated against the SVAT model simulated soil 

moisture for 35 footprints. Results from three randomly selected footprints in the region 

are illustrated in Fig. 3.9a-c. Figure 3.9a shows that AMSR-E did not respond to the 

precipitation events, especially during the summer months. This behavior was also found 

in many other footprints in the region (results not shown here). During summer, in such 

agricultural regions mid- to late-stage corn and soybean crops of high LAI (3-6 m2/m2) 

attenuate microwave emission from soil and themselves emit essentially depolarized 

microwave radiations [Wang and Choudhury, 1995]. The attenuation of microwave 

emission from soil introduces masking effect observed by remote sensors and 

uncertainty in soil moisture process dynamics at the soil surface. Soil moisture values 

with very little variations or decreasing trend was found in AMSR-E measurements with 

the increase of LAI during the summers in the Iowa region. Contrarily, the SVAT model 

predictions responded with high soil moisture in the top soil layer on the day of 

precipitation events.  
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Consequently, a very low average R (0.15) was recorded between AMSR-E soil 

moisture product and SVAT simulated values. A slightly higher correlation (R = 0.23) 

was observed for the winter seasons. In few occasions, AMSR-E soil moisture was 

found much higher during the winters, which may be due to wet ice. A noticeable feature 

in Fig. 3.9c is high soil moisture measured by AMSR-E during the summer of 2005. 

This happened after small precipitation events, when the canopy interception due to high 

LAI reduces emissions to a large extent. At the same time little increase in simulated soil 

moisture values was observed. Due to such uncertainties and overall variability, the 

SVAT model ensemble trajectory for the two years did not match well with the trend of 

AMSR-E measurements. A noticeable feature of this regional site is high average and 

large variability in soil moisture content than the Arizona site. This finding signifies that 

the proposed MCMC algorithm, which retained the basic nature of the soil type after 

upscaling, highlights the discrepancies of SVAT modeled soil moisture evolution with 

the AMSR-E measurements. 
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Figure 3.9. Comparison of randomly selected footprints of soil moisture evolution from 

ensemble of upscaled soil hydraulic parameters using SVAT model and AMSR-E 

measurements for 2004-2005, from Iowa region (where W: winter, and S: summer). 
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Oklahoma regional site 

Studies showing AMSR-E instrument validation for this region is not available to 

date. Other studies [Hu, et al., 1998; Hu, et al., 1997; Nykanen and Foufoula-Georgiou, 

2001; Oldak, et al., 2002; Peters-Lidard, et al., 2001; Rodriguez-Iturbe, et al., 1995] 

conducted in this region, using airborne remote sensing (Electronically Scanned Thinned 

Array Radiometer, ESTAR) soil moisture data during SGP97 field campaign, reported 

nonstationarity and multiscaling properties with increasing spatial scale. Our MCMC-

based upscaled hydraulic parameters in the SVAT model were used for 45 footprints in 

this region and ensemble trajectories of soil moisture evolution for three (randomly 

selected) AMSR-E footprints are presented in Fig. 3.10a-c. The SVAT model did 

reasonably well as compared to the Iowa regional site. An average R value of 0.51 for 

the summers and 0.39 for the winters in 2004-2005 was recorded for the Oklahoma 

region. As shown in the Iowa sites the AMSR-E footprints for Oklahoma in many 

occasions show no effects of major precipitation events. During the summer months, 

LAI of this region grows up to 3-5 m2/m2, which hampers the sensitivity of AMSR-E 

10.7 GHz frequency, resulting in low soil moisture values of AMSR-E footprints. It was 

also observed that for this regional site, the model ensemble trajectories capture the 

AMSR-E measurements most of the time.  
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Figure 3.10. Comparison of randomly selected footprints of soil moisture evolution from ensemble of 

upscaled soil hydraulic parameters using SVAT model and AMSR-E measurements for 2004-2005, from 

Oklahoma region (where W: winter, and S: summer). 

 



 84

Comparison of Ground-Based, Remotely-Sensed, and Modeled Soil Moisture 

Extensive regional scale field campaigns for surface soil moisture measurement 

(with point scale support) were conducted during the SMEX04 (in Arizona regional site) 

and the SMEX05 (in Iowa regional site). The time period of our modeling study (2004-

2005) overlapped with the duration of these field campaigns. Figures 3.11 and 3.12 

illustrate the comparison of surface soil moisture from SVAT model predictions, 

AMSR-E observations, and ground measurements (local/point scale) for Arizona and 

Iowa region, respectively. For comparison, simple average was evaluated for the all 

ground measurements within the specific AMSR-E grid. Note, however, the local/point 

scale soil moisture data (theta-probe measurements) supports a depth of 5 cm, whereas 

the SVAT model evolution are from top 1 cm  and AMSR-E soil moisture data with 

footprint scale support is valid up to 1 cm depth. In Fig. 3.11, the AMSR-E observations 

and the SVAT model predictions having footprint scale (60 km x 60 km) support 

maintains a steady trend without much variation, as observed in the local/point scale 

surface soil moisture data in the Arizona region. This is because at the footprint scale 

most of the local variations were homogenized which were captured by local point scale 

surface soil moisture data. Also, Das et al. [2008] found that the change in the mean and 

variance of daily soil moisture probability densities at the 1 cm depth was due to the 

highly variable (localized) convective summer precipitation patterns across the Walnut 

Gulch watershed in the Arizona region. However, in the Arizona regional site the 

difference in mean of the surface soil moisture with SVAT model and AMSR-E soil 

moisture data (Fig. 3.11) were not prominent as in the Iowa regional site (Fig. 3.12). 
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This was due to the prevailing dry conditions with a very conductive top soil in Arizona 

region. The less difference in mean soil moisture was due to no major precipitation event 

throughout the region during SMEX04. Therefore, the wetting and subsequent drydown 

phase is missing in Fig. 3.11. Whereas, in the Iowa region, the mean of insitu surface (0-

5 cm) soil moisture data is much higher than the SVAT model predictions, and the 

AMSR-E soil moisture data. As already discussed in the previous section, high soil 

moisture which was measured by point-scale gravimetric sample in the clayey textured 

top soil was completely masked by high LAI in the agricultural region for the AMSR-E 

measurements. In the Iowa region, however, the SVAT model prediction clearly 

responds to the precipitation events, which is not observed in the case of AMSR-E 

measurements because of microwave emission attenuation/manipulation by high 

vegetation. Another noticeable feature in Fig. 3.12 is the difference in correlation of soil 

moisture of the SVAT model predictions and the point-scale measurements on wet days 

(e.g., DOY: 176) versus dry/drydown days. This finding reflects the simple spatial 

scaling characteristics for the wet day as opposed to the multiscaling properties for the 

drydown period which corroborates with the findings of Das and Mohanty [2008] during 

SMEX02 campaign in the Iowa region. This comparison further strengthen the notion of 

parameter upscaling requirements and validity of using our proposed MCMC based 

upscaled SVAT model to record the hydrological processes within large AMSR-E 

footprints. 
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Figure 3.11. Comparison of field scale, SVAT model, and AMSR-E soil moisture data 

from Soil Moisture Experiment 2004 (SMEX04). 
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Figure 3.12. Comparison of field scale, SVAT model, and AMSR-E soil moisture data 

from Soil Moisture Experiment 2002 (SMEX02). 
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observed for the semi-arid region of Arizona attesting to the use of upscaled parameters 

in SVAT models at the AMSR-E footprint scale. In the agricultural landscapes of the 

Iowa region, the SVAT model revealed the limitation in the AMSR-E soil moisture 

product under dense vegetative conditions. A very low correlation was observed in the 

summers of 2004-2005 for the Iowa regional site.  The SVAT model did reasonably well 

in grass/pasture lands of Oklahoma as compared to the Iowa agricultural sites. High 

vegetation during summers was found to degrade the AMSR-E soil moisture detection 

sensitivities. One constraint encountered during this study was the precipitation inputs 

from TRMM, which were not co-registered with AMSR-E footprints. This led to the 

mismatch of soil moisture evolution from SVAT model and AMSR-E soil moisture 

product. Our approach, using remotely sensed data to calibrate a SVAT model to mimic 

the evolution of land surface state variable as soil moisture, may be used in future for 

improving the remotely sensed products through data assimilation. The technique also 

has the potential to derive upscaled parameters for geophysical properties. 
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CHAPTER IV 
 

A NEW MULTISCALE DATA ASSIMILATION ALGORITHM TO 

DOWNSCALE SATELLITE-BASED SURFACE SOIL MOISTURE DATA 

 
4.1. Synopsis 

The study focuses on downscaling of soil moisture from coarse remote sensing 

footprints to finer scales. Two approaches are proposed for soil moisture downscaling. 

The first approach provides the probability distribution functions at the finer scales with 

no information about the spatial organization of soil moisture fields. The second 

approach implements a multiscale ensemble Kalman filter (EnKF) that assimilates 

remotely sensed coarse scale soil moisture footprint, attributes of fine scale geophysical 

parameters/variables (i.e., soil texture: %sand, vegetation: NDVI, topography: slope, and 

precipitation) and coarse/fine scale simulation into a spatial characterization of soil 

moisture evolution at the finer scales. To downscale the remotely sensed coarse scale 

soil moisture to another spatial scale, the multiscale EnKF uses a bridging model. The 

bridging model infers the pixel-specific scaling coefficient from the compatible 

geophysical parameters/variables that influence the soil moisture evolution process at 

that particular spatial scale. Data from diverse hydroclimatic regions from the semiarid 

Arizona, the agricultural landscape of Iowa, and the grassland/rangeland of Oklahoma 

are used in the study to implement the multiscale downscaling algorithm. The results 

demonstrate that the bridging model of multiscale EnKF helps to characterize the 

evolution of soil moisture within the remotely sensed footprint. Validation conducted at 
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the finest scale also shows reasonable agreement between the measured field data and 

the simulated downscaled soil moisture evolution. 

 

4.2. Introduction 

Soil moisture is recognized as an important state variable that greatly influences 

hydrological/meteorological processes occurring at micro- (pore) to macro-(continental) 

scale involved in the global water and energy cycles. Therefore, knowledge of soil 

moisture at varying spatial scales is essential for better understanding of hydrological 

and meteorological processes. However, in general soil moisture is observed at two very 

contrasting spatial scales i.e., in-situ techniques (at cm scale) and satellite-based (> 

several km resolution) measurements. This enormous gap in spatial scales of the 

observations does not capture the characteristics of soil moisture spatial evolution 

occurring at the intermediate scales for different environmental, hydrological, water 

management, and geohazard mitigation applications. 

The evolution of soil moisture at a particular spatio-temporal scale develops from 

nonlinear interactions among different geophysical parameters/variables i.e, soil, 

topography, rainfall, and vegetation [Western, et al., 2002]. A number of studies about 

the influence of these geophysical parameters on soil moisture variability are reported in 

the past. For example, soil was conceptualized as a hierarchical heterogeneous medium 

with discrete spatial scale by Cushman [1990], and Roth et al. [1999]. They argued 

natural pattern of soil variability may exhibit embedded, organizational structures that 

lead to non-stationary soil properties and processes. Rodriguez-Iturbe et al. [1995] 
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suggested that the spatial organization of soil moisture is a consequence of soil 

properties. With respect to topography, studies [Famiglietti, et al., 1998; Hawley, et al., 

1983] have shown topographical characteristics (slope and elevation) manifest control 

on spatial variation of soil moisture through runon, runoff, lateral flow, and water 

accumulation. Chang and Islam [2003] demonstrated that soil physical properties and 

topography control spatial variations of soil moisture over large areas. They have shown, 

topographical control will dictate soil moisture distribution under wet conditions, and 

soil physical properties control variations of soil moisture under relatively dry 

conditions. Similarly, vegetation types also influences soil moisture spatio-temporal 

variability through evapotranspiration [Mohanty, et al., 2000a]. Infiltration properties of 

soil are influenced by vegetation at the plant scale [Seyfried and Wilcox, 1995]. With the 

increase in spatial scale, soil moisture variability is affected by variation in vegetation 

shifts from plant to patch to the community scale. Of all the geophysical variables, 

precipitation primarily forces spatio-temporal variability in soil moisture evolution by its 

inherent highly stochastic space-time characteristics at the ground level [Gupta and 

Waymire, 1990; Kumar and Foufoula-Georgiou, 1993]. Sellers et al. [1995] also 

presented spatial heterogeneity in soil moisture evolution introduced by rainfall and 

removed through dry-down dynamics.  

The influence of the geophysical parameters/variables also reflects in studies 

conducted to investigate spatio-temporal variability of soil moisture. Famiglietti et al. 

[1999] found significant variability in soil moisture because of different combinations of 

soil type, vegetation cover, management practice, and rainfall gradient within six 



 92

selected Electronically Scanned Thinned Array Radiometer (ESTAR) footprints during 

the Southern Great Plains 1997 (SGP97) experiment. Mohanty and Skaggs [2001] also 

used ground-based datasets of SGP97 to show the characteristic differences in the space-

time dynamics of soil moisture within several remote sensing footprints with various 

combinations of soil texture, slope and vegetation type. Another investigation of the 

spatial structure of soil moisture for Washita’92 and Washita’94 was presented by 

Peters-Lidard et al. [2001]. They conducted scaling analysis of both measured and 

modeled soil moisture pattern and found multiscaling properties. Oldak et al.  [2002] 

studied the statistical properties of remotely sensed soil moisture field of Washita ’92 

and SGP97 experiments. They showed that the shape of scaling dependencies remains 

the same during drydowns, consequently reducing the volume of observations needed to 

predict scaling of surface soil moisture. Using SGP97 data, Crow and Wood [1999] 

showed that a multiscale analysis reveals a qualitatively different relationship between 

soil moisture means and soil moisture spatial variances when variability is sampled at 

fine (<1 km) versus coarse (>10 km) spatial scales. Recently, Das and Mohanty [2008] 

reported about spatial scaling characteristic of soil moisture in the agricultural region of 

Iowa using remotely sensed data of Polarimetric Scanning Radiometer (PSR) of ~0.8 km 

resolution from Soil Moisture Experiment 2002 (SMEX02) [Bindlish, et al., 2005]. They 

used wavelet-based multiresolution analysis on the PSR data and found that the region 

exhibits multiscaling properties for drying fields and simple scaling for wet fields.  

It is apparent from the above mentioned studies that measurements taken at 

different spatial scales may vary significantly in their mean and variance and depend 
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greatly on interactions among the geophysical parameters/variables. The soil moisture 

measurement available through satellite-based remote sensing offers product over large 

spatial scale that resembles an integrated value of the footprint e.g., remotely sensed soil 

moisture footprints of Advanced Microwave Scanning Radiometer (AMSR-E) aboard 

the Aqua satellite [Njoku, et al., 2003]. The underlying heterogeneity introduced by 

geophysical parameters is completely masked in such remotely sensed measurements. 

Numerous studies [Crow, et al., 2005; Houser, et al., 1998; Margulis, et al., 2002; 

Reichle and Koster, 2005; Reichle, et al., 2004] have used coarse scale remotely sensed 

soil moisture data in land-surface modeling having a data assimilation scheme. The 

solutions of states and fluxes from these land-surface modeling exercises are valid at the 

respective spatial scale of the input data. Also, land-surface and energy balance models 

that uses remotely sensed soil moisture measurements, operates over regional, 

continental to global domains at a very coarse spatial resolution. Therefore, it is nearly 

impossible to obtain accurate fine scale spatially continuous soil moisture estimation in 

large extent on a consistent basis from these models, and will likely to remain so through 

the next generation of soil moisture remote sensors e.g., Soil Moisture Active Passive 

(SMAP) of NASA.  

This study provides a way to predict subfootprint/subgrid variability present within 

a satellite-based remotely sensed coarse scale soil moisture footprint. Two approaches 

are proposed for soil moisture downscaling. The first approach provides the probability 

distribution functions (pdfs) at the finer scales with no information about the spatial 

organization of soil moisture fields. The second approach implements a multiscale 
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ensemble Kalman filter (EnKF) that assimilates information from remotely sensed 

coarse scale soil moisture footprint, attributes of fine scale geophysical 

parameters/variables (i.e., soil texture: %sand, vegetation: NDVI, topography: slope, and 

precipitation) and simulation outputs from coarse and fine scale modeling into a spatial 

characterization of soil moisture evolution at the finer scales. To downscale the remotely 

sensed coarse scale soil moisture footprint to the pixel of a particular scale, the 

multiscale EnKF algorithm uses a bridging model. The bridging model infers the fine 

scale pixel specific spatial scaling coefficient from the compatible geophysical 

parameters/variables that influence the soil moisture evolution process. The multiscale 

EnKF technique results in optimal solution and spatial organization of the soil moisture 

fields at the finer scales.  

 
4.3. Prediction of High Resolution Soil Moisture   
 

Tradionally, in hydrology, data assimilation is employed with a dynamical system 

models ‘M’ and observations ‘O’, as shown in Fig 4.1. The figure presents an ideal 

situation and is entirely uncoupled across scales. The data assimilation in this case have 

observations at a given scale that is assimilated only with simulated states at that 

particular scale, and predictions and updating in different scales are actually independent 

of each other. However, most of the time the explicit system models and observations 

are not available simultanously at desired scales. For example, remotely sensed soil 

moisture (AMSR-E data) is avaiable at a very coarse scale of ~60 km resolution, in 

contrast to in-situ measurements that are valid in meters scale. The large gap in 

observation scales impose constraint to assess soil moisture at intermediate scales. 
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Therefore, the question arises, how do we obtain assessment of soil moisture fields at 

interim scales that are consistent with the remotely sensed soil moisture measurements at 

the coarse scale? Our motivation is to formulate an algorithm to infer 

subfootprint/subgrid variability from satellite-based remotely sensed soil moisture 

measurement that will provide assessment at finer scales. We propose two methods: 1) 

estimation of probability density function (pdf) at intermediate scales, and 2) estimation 

of soil moisture field at intermediate scales.  

 

 

Figure 4.1. A traditional way of Ensemble Kalman Filter (EnKF) based data assimilation 

in hydrology with model and observation given in all scales. M: Hydrologic model, O: 

Observation, X: State variable, L: Data Assimilation, i: spatial scale, t: time, b: 

background/prior, and a: optimal solution or analysis. 
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In both the methods, modeling at coarse and fine scales are required. The AMSR-E 

soil moisture data at ~60 km resolution is chosen as reference for the coarsest scale. A 

Markov Chain Monte Carlo (MCMC) based algorithm developed in Das et al. [2008b] is 

used to derive an ensemble of upscaled soil hydraulic parameters for a Soil-Vegetation-

Atmosphere-Transfer (SVAT) model at the AMSR-E footprint scale. Soil moisture 

evolution is simulated using SVAT model at a spatial scale comparable to the AMSR-E 

soil moisture product (~60 km), with the hypothesis that the characterization of soil 

microwave emissions and their variations with space and time on soil surface within the 

AMSR-E footprint can be represented by the derived ensemble of upscaled soil 

hydraulic parameters. As suggested in Das et al. [2008b], the simulated soil moisture 

from the SVAT model is further subjected to ensemble Kalman filter (EnKF) based data 

assimilation with AMSR-E data to improve the soil moisture estimate. 

For the finest scale, the Nexrad-based precipitation data of ~4 km resolution is 

selected as the reference. The selection of finest scale at ~4 km is done keeping in 

perspective the spatio-temporal continuity, and availability of precipitation data that is 

arguably the most important geophysical variable for evolution of soil moisture. A quasi-

distributed, physically-based SVAT model is setup to model profile soil moisture at ~4 

km. We mainly focus on the root-zone soil moisture at spatial resolution of ~4 km and at 

a temporal resolution of one day. The disparity of scales between the horizontal (~4 km) 

and vertical (1 m) extents of the root-zone was the key consideration in formulating the 

framework. The implementation of the model setup is similar to Das et al. [2008a]. Brief 

overview of the modeling framework at fine scale is provided here for the relevance of 
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this study. For SVAT model simulation, the root-zone at every Nexrad footprint within 

the AMSR-E footprint is vertically discretized, with finer discretization near the soil 

layer interfaces and at the land-atmosphere boundary. Finer discretization near the top 

boundary and layer interfaces are used to handle the steep pressure gradient for the 

numerical simulations. Time-dependent flux-type top boundary conditions for each 

parallel soil column (matching the Nexrad footprints) are used with precipitation 

distribution within the AMSR-E footprint. Runoff and runon between adjacent pixels 

due to topography was considered on the land surface. The runoff from the one or more 

adjacent pixels of steepest descent according to flow routing is used as runon for the 

pixel under consideration. Given the relatively coarse horizontal scale with shallow root-

zone, the parallel soil columns in the SVAT model ignores the subsurface lateral water 

fluxes across the adjacent soil columns and only predicts the vertical fluxes (infiltration, 

deep percolation and evapotranspiration) and surface runoff. This results in a parallel 

non-interacting stream-tubes concept with distributed modeling framework within a 

AMSR-E footprint. A probabilistic approach is adopted, by using an ensemble of state 

variables (profile soil moistures) for all the Nexrad-based pixels (~4 km) within the 

coarse scale soil moisture footprint. A state augmentation technique is applied by 

concatenating uncertain soil properties to the state variables, forming composite vectors 

in the ensemble. The dominant soil types from the CONUS soil database and the van-

Genuchten shape parameters for the soil textural class given by Unsaturated Soil 

Hydraulic Database (UNSODA) are used with ±20% uncertainty. The purpose of 

including uncertain soil properties in the ensemble is to address the assumption that it 
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simulates subpixel variability present within a Nexrad footprint. For best computational 

efficiency, one hundred members (composite vectors) were populated in the ensemble of 

individual Nexrad footprint. The SVAT models at the finest and coarsest scale are run 6 

months ahead of the year 2005, to tune the state of initial soil moisture profile. At each 

time step, final states (soil moisture) are determined by the ensemble of the one hundred 

replicated predictions made by the SVAT model for every Nexrad footprint at finest 

scale. The soil moisture fields realized at finest- (~4 km) and coarsest-scale (~60 km) for 

a particular time-step is represented as ���,�! " and �#$,�� , respectively. The subscripts 

indicate the spatial scale in kilometers and the time (t) in day of year (DOY). The 

superscript b is an indicator of prior knowledge before assimilation, and superscript a 

represent the analysis or optimal solution. The SVAT model used in the soil moisture 

modeling scheme is described briefly as follows. 

We use the SWAP model [Van Dam, et al., 1997] to simulate the processes of the 

soil-water-atmosphere-plant system. SWAP is a physically-based, hydrologic model that 

numerically solves the one-dimensional Richards’ equation for simulating the soil 

moisture dynamics in the soil profile under different climatic and environmental 

conditions. Irrespective of scale, transient isothermal unsaturated water flow in non-

swelling soil, Richards’ equation used in SWAP is described by 

  

%θ
%& � %

%' �K �%)
%' � 1�� � S+�h�                                                                  (4.1) 

where θ is the soil water content (m3/ m3), z is the soil depth (m), h is the soil water 

pressure head (m), K is the unsaturated hydraulic conductivity (m/day), and Sa(h) is the 

root water uptake (m/day). Penman-Monteith equation [Monteith, 1965] was used to 
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calculate potential evapotranspiration. The potential transpiration (Tp) and the soil 

evaporation (Ep) were partitioned using LAI. In the SWAP model soil moisture retention 

and hydraulic conductivity functions are defined by the Mualem-van Genuchten model 

[van Genuchten, 1980].  

The modeling procedures at coarsest and finest scale mentioned above are used in 

the two methods proposed for downscaling satellite-based soil moisture information. The 

first downscaling scheme makes use of soil moisture estimates at the coarsest (i.e., 

AMSR-E footprint scale ~60 km), and the finest (i.e., Nexrad footprint scale ~4 km) 

scale to describe the probability distribution of soil moisture at intermediate scales. The 

second method uses the soil moisture (with SVAT) modeling at coarsest and finest 

scales within a data assimilation framework to assess the soil moisture fields at 

intermediate scales. 

 

Method 1: Estimation of Probability Density Function (PDF) at Interim Scale 

Understanding the statistical distribution of soil moisture in varying space is 

important for a range of applications in hydrology, remote sensing, and land-atmosphere 

interactions. One approach to characterize statistical distribution of soil moisture is by 

developing probability density functions (pdfs). Ryu and Famiglietti [2005] studied 

behavioral features of satellite footprint-scale (~60 km) soil moisture pdfs obtained by 

aggregating airborne remotely sensed data (~ 0.8 km resolution) and suggested that 

normal distribution is reasonable for soil moisture pdf. Therefore, from the modeling 

exercise of this study, normal pdf is assessed at respective coarsest (~60 km) and finest 
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(~4 km) scale. To obtain pdf at an intermediate scale (e.g., ~8 km, ~15 km, or ~30 km) a 

weighted combination of pdfs at coarsest and finest scale is used. The hypothesis of such 

combination of pdfs is that the parameters of probability distribution functions of the 

interim scales are located somewhere between the parameters of coarsest and finest 

scales. The following description briefly explains the algorithm of parameters estimation 

for the pdfs at intermediate scales. The normal probability distribution from modeling at 

the coarsest scale is given by �#$~ .�/#$, 0#$1 �, where /#$ is the mean and 0#$1  is the 

variance of soil moisture estimate from �#$,�� . Similarly,  ��~ .�/�, 0�1� is the normal 

probability distribution of soil moisture at the finest scale ���,�! " , and /� is the mean and 

0�1 is the variance at ~4 km resolution, within the AMSR-E footprint. To determine the 

interim scale pdf, for example at ~30 km resolution is given by  

�2$  ~   .3 �4 � /#$ �  5 �  /��,  � 41 �  0#$1 �  51 �  0�1�6             (4.2) 

In eq. 4.2 the coefficient a and b are described as 

 4 �   789

7 , and 5 �   789:

7             (4.3) 

where, A in eq. 4.3 is the difference between the area (3600 km2) of coarsest scale (~60) 

and the area (~16 km2) of finest spatial scale (~4 km). In eq. 4.3, ;< is the difference 

between the area of desired spatial scale and the area of finest spatial scale (~16 km2), in 

this case it is (|900 km2 – 16 km2|), and ;1  is the difference between the corarest scale 

(~60) and the desired spatial scale i.e., (|3600 km2 – 900 km2|). The advantage of this 

downscaling method is to obtain an approximate estimate of mean and variance at a 

particular interm spatial scale. However, it is incapable to describe the essential spatial 

organization of the soil moisture evolution at the interm scales within the satellite 
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footprint. The second method proposed for spatial downscaling of soil moisture imparts 

the capability of spatial organization of soil moisture evolution at the finer scales. 

 

Method 2: Estimation of Soil Moisture Fields at Interim Scales 

Given the optimal solution of soil moisture �#$,��  at footprint scale (~60 km) and 

simulated soil moisture fields ���,�! " at finest scale (~4 km), the problem of estimating 

the soil moisture fields at intermediate scales (~4 km, ~8 km, ~15 km, and ~30 km) has 

been addressed through the development of multiscale Ensemble Kalman Filter (EnKF) 

algorithm. Keeping in mind the multiscale nature of the problem and exchange of 

information required across spatial scales, the algorithm of multiscale EnKF is divided in 

two parts, a) Upward sweep, i.e., traversing from fine-to-coarse scale, and b) Downward 

jump, i.e., traversing from coarse-to-fine scale. This mechanism of upward and 

downward sweep ensures that the soil moisture fields at the finer scales possess the 

attributes of finest and coarsest scales. Figure 4.2 illustrates the scheme, and is explained 

below 
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Figure 4.2. Schematic of proposed approach having an upward sweep that provides the 

priors and downward jumps that provide the likelihood of soil moisture estimate across 

spatial scales within the satellite-based soil moisture footprint for multiscale data 

assimilation. M: Hydrologic model, O: Observation, X: State variable i.e., soil moisture, 

L: multiscale data assimilation, t: time, b: background/prior, and a: optimal solution or 

analysis. 

 

Upward sweep 

The rationale of using upward sweep is to propogate soil moisture information 

(having influence of fine scale geophysical parameters/variables and hydrologic 

processes) from finest scale to coarser scales. Basically, it is an smoothing operation 
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from finest to coarser scales that provides estimate (background/prior information for 

data assimilation) of soil moisture fields at intermediate scales.  In the study, the upward 

sweep from the finest scale is implemented by subjecting the simulated soil moisture 

fields to Haar-based scaling filter [Haar, 1910]. The Haar-based spatial scaling is 

preferred because it conserves the amount of information within multiresolution 

analysis. The Haar scaling φ(x) function is the simplest of all orthogonal (orthonormal) 

scaling [Kumar and Foufoula-Georgiou, 1997] and is given as: 

  


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=
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               (4.4) 

where,  

φ =,>�;�  �  28= 1@  φ � 28=; �  A�                   (4.5) 

For the soil moisture field f(x) at finest resolution, the coefficients 

B=,> �  C φ =,> �;� D�;� E;   give the discrete sampled values of f(x) at scale m and 

location n. For Haar scaling function, m0 = 2, and the scale parameter is dyadic series 

i.e., m = 2,4,8,…, and the location n is incremented in steps that depends on the scale 

parameter so that x = nx0m0
m, here x0 is the soil moisture field at highest available 

resolution. Figure 4.2 illustrates the configuration of soil moisture field upward sweep 

using Haar scaling function, here f(x) is represented as a field of soil moisture ���,�! " at 

~4 km resolution. At each level of upsweep, the smoothed nonstationary soil moisture 

fields become more homogenous and the anisotropy is captured by the stationary 

fluctuation components of Haar wavelets filter. Three intermediate soil moisture fields 
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of resolution ~8 km: ��F,�! ", ~15 km: ��<G,�! ", and ~30 km: ��2$,�! " are realized from the 

finest resolution (~4 km) soil moisture field of ���,�! " .  
 

Downward jump 

As already mentioned that satellite-based passive microwave remote sensing of soil 

moisture provides vast horizontal support of ~60 km. The data reflects integrated 

information of the intrinisic neighborhood variability and dynamics in terms of large 

scale soil moisture processes. Thus, the downward jump produces finer scale estimates 

that incorporate the information of the entire remote sensing footprint (~60 km). In other 

words, the downward jump carries the large scale information to finer scales.  

Before conducting downward jump, the optimal solution is obtained at satellite 

footprint scale from EnKF-based data assimilation of coarse scale SVAT model (M) 

forecast and AMSR-E obervation O (suggested by Das et al. [2008b] and also mentioned 

in Chapter II) as shown in Fig 4.2 and is described in eq. 4.6. 

�#$,�� � �#$,�! �  �#$,�3 H� � �#$,�! 6                    (4.6) 

where, �#$,�!  is the forecast/background at time t obtained from M(�#$,�8<! ),  H� is the 

AMSR-E observation at time t, �#$,� is the Kalman gain, and �#$,��  is the analysis or the 

optimal solution at the coarsest scale (~60 km) at time t (Fig. 4.2).  

The optimal solution �#$,��  is subjected to downscaling during downward jump at time t. 

The derived scaling parameters βs,t (the subscript s is an indicator of particular spatial 

scale), downscales �#$,��  to the finer scales. The downscaled soil moisture i.e.,  βs*�#$,��  
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is assimilated using EnKF with the smoothed soil moisture estimate from the upward 

sweep operation. For example, the estimate at ~30 km resolution is given by 

�2$,�� � �2$,�! �  �2$,�3 I2$,� � �#$,��  � �2$,�! 6         (4.7) 

�2$,� �  JKL,M
JKL,MN OKL,M�PQL,M

             (4.8) 

where, �2$,�!  is the smoothed soil moisture value from upward sweep, �2$,� is the 

Kalman gain at ~30 km scale,  I2$,� � �#$,��  is the soil moisture downscaled to ~30 km 

scale from the coarsest scale (~60 km), R2$,� is the background error of �2$,�! , S#$,� is the 

error covariance of the optimal solution at the coarsest scale, and �2$,��  is the analysis or 

the optimal solution at ~30 km resolution. This multiscale EnKF-based data assimilation 

is conducted individually for all the pixels at ~30 km resolution.  Similar approach is 

applied to finer scale soil moisture field (~4km, ~8 km, and 15 km) to get optimal 

solution at their respective scales. At the finest scale (~4 km), the optimal solution of soil 

moisture at the soil surface is propagated to root-zone using the covariance matrix of the 

profile soil moisture that evolves over time. This ensure to vertically extrapolate surface 

soil moisture solution from data assimilation to soil moisture states at deeper depths that 

are not directly involved in the data assimilation scheme. The advantage of updating 

root-zone is to carry on the information gained forward in time that influence the 

evolution of profile soil moisture to the next time step while modeling at finest scale. 

The key to this multiscale data assimilation is the bridging model for scaling 

parameter βs,t that provides the coupling mechanism. The scale parameter βs,t embodies 

the influence of geophysical parameters/variables on spatio-temporal evolution of soil 
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moisture in the particular scale. The relation of geophysical parameters and variables 

with βs,t is given by the model 

IT,� � U1 �  �< 8 VW� � XYZ[MN |<8< \]^_|⁄
�<N \_a_M� b

cde �cde�T��
     (4.9) 

where, Sf is the average sand fraction (-) in soil texture, NDVIt is the Normalized 

Difference Vegetative Index (-) at time t, slp is the average slope (-), and pcpt is the 

amount of daily precipitation (mm) in the particular pixel of spatial scale ratio s. The s (-

) is the ratio of area of coarsest scale to the area of desired spatial scale (e.g., with the 

coarsest scale ~60 km and for the desired scale ~30 km, s = [(60*60)/(30*30)] = 4). For 

a desired scale, geophysical parameters and precipitation data are obtained from Haar-

based multiresolution technique that provided the pixel based values from the fine scale 

data that are used in eq. 4.9.  

The formulation of scaling parameter βs,t is empirical in nature and is always ≥ 1. 

Studies e.g., Das and Mohanty [2008], Hu et al. [1997], and Oldak et al. [2002] have 

shown that the mean value of soil moisture increases with increasing resolution having 

multiscaling characteristics and remains almost the same during simple scaling. The 

satellite-based remote sensor (AMSR-E) footprint is considered the base scale in 

development of the model for scale parameter βs,t. Therefore, in eq. 4.9, βs,t is equal to 1 

for the coarsest resolution (in this study for ~60 km resolution) and for fine scales βs,t 

have values greater than or equal to 1 depending upon the spatial and temporal evolution 

of geophysical factors that affect its evolution. The geophysical parameters (Sf, NDVIt 

and slp), that espescially influence βs,t, have two space and time invariant factors (Sf and 

slp) and one time variant factor (NDVIt) for all the desired scale. The contribution of 
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these factors are further described to elaborate their significance in eq. 4.9.  The term (1- 

Sf) exhibits the physical control of soil on βs,t. It is well established that Sf influences 

infiltration into the soil; greater the Sf, higher is the infiltration rate. This leads to less 

runoff generation, that means less nonlinearity in surface soil moisture. Soils with high 

Sf have better subsurface flow and have more uniform distribution of soil moisture. 

Typically, sandy soils rarely become water logged and allow most of the water to 

percolate downward more rapidly than clayey soils. Consequently, homogenity in soil 

moisture field is observed in the soil type having higher Sf. The term (1- Sf) also 

represents the silt and clay portion of the soil that shows high water retention/holding 

capacity, resulting in more runoff and higher nonlinearity in the system. Reduction in Sf 

displays this attribute and affects by increasing the value of scaling parameter βs,t. The 

soil characteristics and vegetation are closely related in the proposed model of βs,t. When 

Sf is 1 (i.e., 100% sand), the model mimics an arid (desert) condition which does not 

support any form of vegetation. Hence, the term [(1-Sf) * NDVIt] in the numerator of eq. 

4.9 becomes zero, and has no contribution in downscaling soil moisture from the 

coarsest scale. In other words, the downscaling of soil moisture is not required, if the 

effect of slp and pcpt are ignored. It is hypothesized that soil with Sf less < 1 is capable 

of supporting vegetation. Therefore, the effect of NDVIt increases with the reduction of 

Sf. However, the contribution of NDVIt to βs,t value is significant in its own respect. 

Evapotranspiration through vegetation canopy (represented in the model as NDVIt) 

introduces variability in spatial evolution of soil moisture that imparts nonlinear scaling 

characteristics. The NDVIt value in eq. 4.9 also reflects the effects of vegetation that 
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creates macpores due to biomass and roots in the soil profile leading to uneven 

distribution of soil moisture and consequently affecting the scaling charateristics. 

Overall, the term [(1-Sf)* NDVIt] in eq. 4.9 accounts for interaction between soil and 

vegetation and their combined effect on spatial scaling of soil moisture. 

The term |1-1/eslp| in eq. 9 represents the topographic effects on soil moisture 

spatial scaling. Note, slp is described in fraction i.e., (topographic relief)/100. Higher 

averege slope exhibits rough terrain and complex overland and subsurface/lateral flow 

within the pixel of particular scale. Terrain-based simulations have shown typical soil 

moisture patterns (i.e., wet conditions in lower elevation and dry conditions at higher 

elevation) that are correlated with the topographic attributes. This effect is even more 

prominent after precipitation events. Studies (e.g.,  [Yeakley, et al., 1998]) have also 

found that topograhic effects on soil moisture is more predominant in the upper layer of 

the soil. Overall, the topographic control on soil moisture manifests itself in the form of 

spatial variability. In Eq.9, a value of zero is realized for the term |1-1/eslp| having slp = 0 

that represents a flat surface, and the value then increases correspondingly with the 

increase in average slope that leads to nonlinear scaling for rough terrain.  

In the numerator of eq. 4.9, the two terms |1-1/eslp| and [(1-Sf) * NDVI] express the 

variability and scaling requirement of soil moisture for the finer resolution pixels within 

satellite-based footprint. However, the term in the denominator �1 �  f�g�M� of eq. 4.9 

negates this effect in the event of precipitation. In βs,t, fractional (i.e., subpixel 

variability) precipitation within the pixel is ignored. Therefore, the precipitation is 

considered uniform within the pixel which tends to remove the soil moisture variability 
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from the concerned pixel. It is obvious from  �1 �  f�g�M� that higher the amount of 

precipitation, lesser is the value of βs,t, and as it gets closer to 1 indicating simple scaling 

in soil moisture. This phenomenon takes place on the day of precipitation event. 

However, in the absence of precipitation, sand fraction, NDVI, and slope should entirely 

describe the soil moisture scaling characteristics. The term �1 �  f�g�M� also has a 

normalizing tendency i.e., with no precipitation (pcpt = 0) the value is 2 that averages out 

the effect of the two terms in the numerator βs,t formulation. On the day of precipitation, 

the magnitude of �1 �  f�g�M� is greater than 2 and is directly proportional to the amount 

of precipitation that sytematically mitigates the effects of sand fraction, NDVI, and 

slope.  

The physical significance of the term log(log(s)) in eq. 4.9 is to exemplify the 

spatial scaling effects, when traversing from the coarsest scale to finer scales. The term 

log(log(s)) embodies the effect of contributing  pixels at a particular scale in describing 

the state at the coarsest scale. The spatial area ratio s in the term log(log(s)) also 

represents the number of  pixels at a finer scale that is contained within the coarsest 

scale. In this study, the magnitude of s at finer scale i.e., at ~30 km resolution is 4, at ~15 

km is 16, at ~8 km is 56, and at ~4 km is 225. The value of s also represents the 

heterogenity factor due to number of pixels within the coarsest scale. The ultimate effect 

of the term log(log(s)) is to spatially downscale the optimal solution at coarsest scale to 

the finer scale pixel based on the interaction of the three physically-based terms i.e, |1-

1/eslp| , [(1-Sf) * NDVI], �1 �  f�g�M�  as given by eq. 4.9.  
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The geophysical parameters in eq. 4.9 are the dominant factors among others that 

influence soil moisture scaling. However, other parameters like bulk density of soil, 

vegetation types, and elevation are likely candidates that may also influence the spatio-

temporal evolution of soil moisture. These factors are, however, ignored in the 

formulation of βs,t (eq. 4.9) due to apparent correlations between Sf and bulk density, and 

between slope and elevation. We tried to keep the soil moisture scaling function as 

simple as possible using geophysical parameters that are easily obtained through remote 

sensing, or from existing databases.  

 

4.4. Study Region and Data  

Study Region 

As illustrated in Fig. 4.3, large areas in Arizona (semi-arid), Iowa (agricultural), 

and Oklahoma (grassland/pastures) regions are selected for the study. These regions are 

selected for the sake of consistency with Das et al. [2008b], as this study is an extension. 

An important aspect of selection of these study regions is the diversity in hydroclimatic 

regions that helps understand the spatial scaling issues under different combinations of 

geophysical parameters/scenarios. The region from Arizona comprises perennial shrub 

cover with low LAI (< 1 m2/m2), well drained gravelly sandy loam soil, and moderately 

rocky and hilly terrains. The Iowa region has mainly a row crop agricultural landscape 

(nearly 60% corn and 40% soybean). This site is considered as the pothole region of 

Iowa because of its undulating terrain. The soil on the surface is mainly silty clay loam 

with a large percentage of organic matter. During the peak crop growing condition, the 

LAI for this region reaches a high of 4-6 m2/m2. The Oklahoma region is dominated by 
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grassland and pasture with rolling topography, with LAI averaging between 3 and 4 

m2/m2 and attaining peak value between late spring and summer. Loamy sand, sandy 

loam, loam, and silty loam are the predominant surface soil textures in the Oklahoma 

region. 

 

Figure 4.3. Three selected study regions (Arizona, Oklahoma, and Iowa) within the 

continental United States of America. 
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AMSR-E Data 

For this study, we used one year (2005) of AMSR-E Level-2B gridded data 

extracted for the three regions (AZ, OK, IA) to downscale the AMSR-E soil moisture 

product. The data values correspond to a ~60 km mean spatial resolution. The more 

reliable night-time AMSR-E data [Njoku, et al., 2003] are used, as soil moisture and 

temperature profiles remain more uniform, and soil vs. vegetation temperature 

differences are smaller during the night than the early afternoon. In other words, the soil 

moisture retrieval algorithm is expected to have less error and be more representative of 

deeper soil layers using the night-time data.  

 

Soil 

The soil data for the study was derived from CONUS-SOIL (available at 

http://www.soilinfo.psu.edu/),a multilayer soil characteristic dataset, comprises of 

requisite soil parameters (e.g., % sand, % clay, bulk density and saturated hydraulic 

conductivity) for the study. The % sand (Sf) data of ~1 km resolution is further subjected 

to the Haar-based scaling to obtain Sf at ~4 km, ~8 km, ~15 km, and ~30 km resolutions. 

 

NDVI and LAI 

MODIS derived 16 day composite data of NDVI and LAI at ~1 km spatial 

resolution is used for the study. The NDVI data for the study period is resampled further 

to ~4 km, ~8 km, ~15 km, and ~30 km resolutions using the Haar-based scaling. 
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Precipitation 

The spatial resolution of ~4 km NEXRAD (WSR-88D) precipitation data is the 

most suitable for soil moisture modeling at finest resolution used in the study. Quality-

controlled ~4 km precipitation data [Seo and Breidenbach, 2002] that is multi-sensor 

(radar WSR-88D and rain gauge) estimates is obtained from National Weather Service 

(NWS) River Forecast Centers (RFCs) and scaled to ~8 km, ~15 km, and ~30 km spatial 

resolution using the Haar-based scaling function. 

 

Meteorological Forcings 

Other important forcings (e.g., min and max air temperature, relative humidity and 

incoming solar radiation) that are relatively spatially homogenous are extracted from the 

North American Regional Reanalysis (NARR) dataset. The NARR dataset of ~32 km 

resolution are further resampled to ~4 km to suit the soil moisture modeling at finest 

resolution. 
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4.5. Results and Discussion 

The proposed methods are applied in the study regions to demonstrate the 

application of algorithm (mentioned in Section 4.3) for estimation of soil moisture at 

varying spatial scales. The study period is for the year 2005. The results are discussed 

region wise to highlight the impact of hydroclimatic diversity on soil moisture evolution 

across spatial scales.  

 

Arizona Regional Site 

The SVAT modeling framework developed for this study is used to estimate soil 

moisture at the finest scale (~4 km). Figure 4.4 illustrates the mean estimated soil 

moisture (���,�! ") at ~4 km resolution (encompassed within the coarsest scale) plotted 

against the assimilated soil moisture estimates (�#$,�� ) for a AMSR-E footprint in the 

Arizona regional site for the year, 2005. A good agreement is observed between the two 

although with a systematic bias. Das et al. [2008b] also found high correlation between 

AMSR-E data and SVAT simulated soil moisture estimates at the AMSR-E footprint 

scale using upscaled soil hydraulic parameter for this semiarid region. In this study, the 

bias observed in Fig. 4.4 is a manifestation of spatial scaling between ~4 km and ~60 

km. Even with the bias, the shape of scaling dependencies remains the same throughout 

the year. The linearity in Fig. 4.4 also suggests less volume of observations needed to 

predict surface soil moisture across spatial scale. This is also visible in the probability 

distribution functions (pdfs) shown on Fig. 4.5 that are created using h��!i and 

h�#$� i according to the proposed method 1 in Section 4.3. The spatial scaling attributes 
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are more prominent during the drydown period (Fig. 4.5b) as compared to dry day (Fig. 

4.5a) and wet day ((Fig. 4.5c). With little difference in distribution parameters (mean 

and variance), the pdfs for dry days are almost similar across the scales. The reason for 

such  behavior  is  the extreme  dry  condition   that   is   mostly   due   to  high   rock  

and  gravel fraction with sandy texture  in  the top soil layer, prevailing in  such  regions.  

This influences the soil hydraulic characteristics, making them highly nonlinear with 

high saturated hydraulic conductivity. This characteristics soil hydraulic feature drains 

the soil rapidly and consequently the top soil becomes very dry. High evaporation 

potential also contributes to the dryness of the top soil layer. The high hydraulic 

conductivity of the top soil layer also influences during the wet days in this region. As 

shown in Fig. 4.5c, the surface soil moisture could not attain a mean more than 10% v/v 

across the spatial scale within the ~60 km AMSR-E footprint for the particular wet day. 

Another noteworthy feature in Fig. 4.5c is the parameters (mean and variance) of the 

pdfs are almost similar for all the scales. Overall, for the region, these pdfs provide an 

impression that given an estimate or measurement in one scale between ~4 km and ~60 

km gives a fair idea of surface soil moisture estimates in the other scale. The predictions 

of soil moisture distributions using method 1 (Section 4.3) at finer scale shows the 

uncertainties within a scale but lacks in describing the spatial organization of soil 

moisture and therefore, are of limited use.  
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Figure 4.4. Plot of daily mean soil moisture v/v at ~60 km resolution against mean soil 

moisture v/v at ~4 km, for year 2005, for a randomly selected AMSR-E footprint from 

the Arizona study region. 

 

The method 2 described in Section 4.3 is used to assess the soil moisture spatial 

organization. As elaborated in this method, the upsweep step provides the prior soil 

moisture estimates across increasing spatial scales. The downward jump uses the 

proposed bridging model (eq. 4.9) to obtain the likelihoods for the multiscale EnKF-

based data assimilation. Table 4.1 provides the statistics of geophysical 

parameters/variables used in eq. 4.9. The bridging model (eq. 4.9) of downward jump 

results in scaling parameters βs,t for the region and the mean values are shown in Fig. 

4.6. The scale parameter βs,t exhibits typical characteristics for this region. It remains 
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almost constant throughout the year, except for the days of precipitation events. Such 

characteristics in  βs,t is attributed to the geophysical variables like NDVIt that remains 

almost constant (≈ 0.24) due to sparse semiarid vegetation throughout the year. A low 

value of NDVIt and very high mean (≈ 45 %) of Sf (sand fraction) at all finer scales 

indicates minimal scaling is required for downscaling an AMSR-E soil moisture 

footprint. However, the model (eq. 4.9) values for scale parameter βs,t shown in Fig. 4.6 

are much higher than 1 for all the spatial scales except for days of high precipitation 

events. This is due to high value of the invariant geophysical parameter i.e., the slope (≈ 

20˚) of the terrain within the pixels of finer resolutions. The value of the scale parameter 

βs,t also increases consistently with increase in spatial resolution (Fig. 4.6) because of 

inherent heterogenity factor (s) that is involved with increase in spatial resolution. 

Although, the geophysical parameter slp (slope) imparts high value to the scale 

parameter, the effect of spatial scaling is not visible in the soil moisture values. As 

illustrated in Fig. 4.7, within AMSR-E footprint of this region, for a particular wet day 

the surface soil moisture do not attain high values that is attributed to very high 

conducting top soil layer. This undermines the effects of scale parameter βs,t, when 

downscaling the AMSR-E footprint soil moisture values in the downward jump 

operation.  
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Table 4.1. Statistics of sand fraction (Sf) and slope (slp) at different spatial scales for the 

Arizona regions.  

    Arizona 

    mean min max std mode 

~4 km Sf 45.60 17.00 58.00 7.90 48.50 

slp 18.89 1.14 64.36 8.92 1.14 

wd 7.68 6.29 9.40 0.57 6.29 

ddp 5.54 4.89 6.92 0.42 4.89 

dd 4.05 3.57 5.20 0.35 3.57 

      

~8 km Sf 45.60 33.00 54.50 5.20 35.00 

slp 18.89 5.98 42.94 7.18 5.98 

wd 7.41 6.61 8.24 0.40 6.61 

ddp 5.34 4.88 6.08 0.30 4.88 

dd 3.88 3.61 4.50 0.24 3.61 

      

~15 km Sf 45.55 35.50 54.50 4.26 35.50 

slp 20.10 8.34 39.50 6.62 8.34 

wd 7.14 6.60 7.73 0.27 6.60 

ddp 5.17 4.92 5.49 0.19 4.92 

dd 3.73 3.56 4.09 0.17 3.56 

      

~30 km Sf 45.55 44.38 47.55 1.21 44.38 

slp 20.10 12.59 29.17 2.21 12.59 

wd 6.59 6.40 6.84 0.20 6.40 

ddp 4.68 4.62 4.74 0.05 4.62 

dd 3.38 3.32 3.46 0.06 3.32 

 

 

Figure 4.7 displays the soil moisture fields with increasing resolution for wet and 

dry days from a randomly selected AMSR-E footprint of the region. Table 4.1 provides 

the statistics for the wet day and dry day at different resolutions that is shown in Fig. 4.7. 

The statistics of a randomly selected day during drydown period is also included in 

Table 4.1. The algorithm (Section 4.3) demonstrates its capability to capture the spatial 
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organization at the finer scales influenced by physical processes and geophysical factors. 

To validate the soil moisture evolution from the algorithm, ground data i.e., SCAN-

based surface soil moisture measurements are plotted against the overlapping modeled 

soil moisture values at ~4 km resolution (Fig. 4.8). Overall, a reasonable agreement is 

found (R2 of 0.55), however, with slight overestimation of modeled soil moisture at drier 

end. The overestimation resulted due to very small spatial support of the SCAN data that 

is representative of local-scale variability in comparison to spatial support of ~4 km. The 

soil hydraulic properties used for the region in the algorithm also constraint the evolution 

of soil moisture in extreme dry conditions by not allowing to recede below the residual 

water content. The errors involved in Nexrad-based precipitation and geophysical 

parameters at ~4 km spatial scale may also lead to such uncertainty that is shown in Fig. 

4.8. 

For the period of study, no specific soil moisture patterns are observed within the 

AMSR-E footprints. However, with sparse vegetation and highly conductive top sandy 

soil layer, any pattern imposed by precipitation and topography are expected to be lost 

immediately from the surface soil.  
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a)  

b) 

 
c) 

 

 
 
 
 
 

 

Figure 4.5. Soil moisture probability distribution functions (pdfs) at different spatial 

scales within a randomly selected the AMSR-E footprint, for a) dry day, b) a day during 

drydown period, and c) wet day, from the Arizona study region. 

 

 

0 2 4 6 8 10
0

0.05

0.1

Soil Moisture % (v/v)

P
ro

b
a
b

il
it

y

 

 

0 2 4 6 8 10
0

0.05

0.1

Soil Moisture % (v/v)

P
ro

b
a

b
il

it
y

 

 

0 2 4 6 8 10 12 14
0

0.05

0.1

Soil Moisture % (v/v)

P
ro

b
a
b

il
it

y

 

 

60 km

30 km

15 km

  8 km

  4 km



 121

 

Figure 4.6. Plot of scale parameter βs at different spatial scales, for year 2005, for a 

randomly selected AMSR-E footprint from the Arizona study region. 
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Figure 4.7. Soil moisture fields at different spatial scales, for a wet and dry day within a 

randomly selected AMSR-E footprint from the Arizona study region. 
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Figure 4.8. Comparison of Scan-based soil moisture data with overlapping pixel soil 

moisture evolution at ~4 km resolution from the proposed downscaling algorithm, in the 

Arizona region.  

 

Iowa Regional Site 

For a particular AMSR-E footprint of this regional site, Fig. 4.9 shows the mean of 

surface soil moisture simulated (���,�! ") at ~4 km resolution using SVAT modeling 

framework for fine scale against the assimilated surface soil moisture (�#$,�� ) estimated at 

the footprint scale for the year, 2005.  More nonlinearity is observed in Fig. 4.9 than that 

of the Arizona regional site (Fig. 4.4). From Fig. 4.9, it is obvious that maximum scaling 
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plot (Fig. 4.9) also indicates that the shape of spatial scaling dependencies changes 

consistently during the study period. In other words, the mean and the variance changes 

with increasing spatial scale and the rate of change is subjected to the condition 

(wet/dry) of soil moisture field. The pdfs shown in Fig. 4.10 obtained using method 1 

(Section 4.3) also elaborate this phenomenon clearly. The pdfs (Fig 4.10a-c) show few 

distinct characteristics of soil moisture fields for wet and dry days (during a high 

vegetation period) in the region that are in contrast to the Arizona region (Fig. 4.5a-c). 

The mean of soil moisture across spatial scale for a dry day is distinct with the 

distributions having considerable variance. For this region, at the time of high 

vegetation, the pdfs for dry days also provide an impression that given an estimate or 

measurement in one scale does not provide enough information about surface soil 

moisture estimates in the other scale. Typical attributes are also observed i.e., increase of 

kurtosis during drydown process (Fig. 4.10). The region also experiences a high mean 

surface soil moisture and large variance in soil moisture evolution for wet days that 

highlight the effects of vegetation (i.e., through evapotranspiration) and high percentage 

of clay in the top soil layer. 
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Table 4.2. Statistics of sand fraction (Sf) and slope (slp) at different spatial scales for the 

Iowa region.  

    Iowa 

    mean min max std mode 

~4 km Sf 21.42 10.00 35.00 7.00 16.00 

slp 2.70 0.21 6.75 1.33 0.21 

wd 33.49 29.18 40.51 1.85 29.18 

ddp 18.10 11.36 25.11 2.71 11.36 

dd 13.20 9.02 20.86 2.42 9.02 

      

~8 km Sf 21.26 12.00 35.00 4.60 16.00 

slp 2.70 0.42 5.10 0.99 0.42 

wd 33.57 30.76 39.48 2.04 30.76 

ddp 17.96 13.81 22.47 2.21 13.81 

dd 12.93 10.15 16.98 1.87 10.15 

      

~15 km Sf 21.25 16.00 25.50 2.05 20.50 

slp 2.65 1.09 3.78 0.79 1.09 

wd 33.05 30.91 34.60 1.19 30.91 

ddp 17.54 13.73 19.98 1.68 13.73 

dd 12.82 10.54 15.56 1.73 10.54 

      

~30 km Sf 21.25 20.03 22.23 0.75 20.03 

slp 2.65 2.39 2.91 0.29 2.39 

wd 33.61 33.17 33.98 0.40 33.17 

ddp 17.23 14.60 20.95 2.70 14.60 

dd 12.05 10.95 14.25 1.49 10.95 

 

 

 

 

 

 



 126

Unlike the Arizona site, the region has a relatively flat topography (having average 

slp of 2.7˚) and has low average sand fraction (Sf ≈ 21.25). Table 4.2 shows the statistics 

of slp and Sf for this region across spatial scales within a particular AMSR-E footprint. 

As expected, the variability of these geophysical parameters (slp and Sf) reduces with 

increasing spatial scale. The vegetation of this region adds another unique dimension. 

Corn and soybean agriculture dominates the landscape giving it a diverse temporal 

NDVIt based on growth and decay of crop. The NDVIt reaches it maximum (≈ 0.8) in the 

months of June and July, and has minimum value (nearly 0) during the months of 

January and December. These features impart interesting results for the scale parameter 

βs,t across spatial scales, as illustrated in Fig. 4.11.  The bridging model (eq. 4.9) results 

in βs,t close to 1 for all the scales within the AMSR-E footprints for the months of 

January and December. This is due to very low NDVIt that nullifies the term [(1-

Sf)*NDVI] and the flat terrain also results in a low value from the term [|1-1/eslp|] of eq. 

4.9. With emergence of crop, a sudden increase in βs,t is observed. An upward trend of 

βs,t corresponds with the growth of the crop (i.e., with increasing NDVIt) and then βs,t 

recedes with the decay of crop. The systematic difference in βs,t across scales (Fig. 4.11) 

is the effect of s that exhibits the inherent spatial heterogenity within the respective 

scale. Heavy precipitation events in the region smoothen out the variability introduced 

by NDVIt and drydown process, and consequently, making βs,t closer to 1. It is evident 

from the results (Fig. 4.11) that primarily NDVIt describes the behavior of βs,t for the 

region and precipitation has a secondary role that influences βs,t. Using method 2 

(Section 4.3), the AMSR-E footprint is downscaled for the region and a randomly 
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selected footprint is shown in Fig. 4.12 for wet and dry days, and the statistics presented 

in Table 4.2. It is interesting to note that no specific pattern is evident in the respective 

scales within the footprint in the wet and dry soil moisture fields at the spatial range 

between ~4 km and 60 km. The random patterns of surface soil moisture organization on 

a particular day and at a particular scale is due to the effect of transient 

evapotranspitation and precipitation distribution at respective scale within the footprint. 

The soil types and the cropping pattern within the AMSR-E footprint also imparts 

variability in evolving soil moisture patterns.   

For the region, to validate the algorithm, 13 days of field-scale (WC11 and WC12 

fields from the Walnut Creek watershed, Iowa) soil moisture data collected during Soil 

Moisture Experiment, 2005 (SMEX05) is used instead of SCAN-based data which is not 

of good quality for the study period. Figure 4.13 illustrates the comparison of field scale 

soil moisture with the modeled soil moisture from overlapping ~4 km resolution pixel. A 

good agreement is observed for all the 13 days but with slight underestimation from the 

algorithm that could be attributed to disparity in spatial scale. It is noteworthy that the 

algorithm responded to the precipitation events and drydown process as observed in the 

WC11 and WC12 fields.  
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Figure 4.9. Plot of daily mean soil moisture v/v at ~60 km resolution against mean soil 

moisture v/v at ~4 km, for year 2005, for a randomly selected AMSR-E footprint from 

the Iowa study region. 
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a) 

 
b) 

 
c) 

 

 
 
 
 
 

 

Figure 4.10. Soil moisture probability distribution functions (pdfs) at different spatial 

scales a randomly selected AMSR-E footprint, for a) dry day, b) a day during drydown 

period, and c) wet day, from the Iowa study region. 

 

 

0 10 20 30
0

0.01

0.02

0.03

0.04

0.05

Soil Moisture % (v/v)

P
ro

b
a
b

il
it

y

 

 

0 10 20 30
0

0.01

0.02

0.03

0.04

0.05

Soil Moisture % (v/v)

P
ro

b
a
b

il
it

y

 

 

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

Soil Moisture % (v/v)

P
ro

b
a

b
il

it
y

 

 

60 km

30 km

15 km

  8 km

  4 km



 130

 

 

Figure 4.11. Plot of scale parameter βs at different spatial scales, for year 2005, for a 

randomly selected AMSR-E footprint from the Iowa study region. 
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Figure 4.12. Soil moisture fields at different spatial scales, for a wet and dry day within a 

randomly selected AMSR-E footprint from the Iowa study region. 



 132

 

Figure 4.13. Comparison of measured field-scale (WC11 and WC12) soil moisture data 

with overlapping pixel soil moisture evolution at ~4 km resolution from the proposed 

downscaling algorithm, in the Walnut Creek watershed, Iowa.  
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vegetation throughout the year. Emergence of crop/vegetation during spring and summer 

increases the NDVIt from average value of 0.35 to 0.6. With these factors and 

precipitation events, the evolution of soil moisture fields at various scales is discussed 

subsequently. 

 

Table 4.3. Statistics of sand fraction (Sf) and slope (slp) at different spatial scales for the 

Oklahoma region.  

    Oklahoma 

    mean min max std mode 

~4 km Sf 30.08 8.00 69.00 14.04 27.00 

slp 3.41 0.29 7.36 1.58 0.29 

wd 22.23 18.81 29.39 1.85 18.81 

ddp 17.73 8.01 24.98 3.75 8.01 

dd 14.62 6.23 22.16 3.07 6.23 

      

~8 km Sf 30.08 8.00 59.50 10.89 8.00 

slp 3.41 1.25 5.32 1.07 1.25 

wd 22.05 19.50 25.81 1.64 19.50 

ddp 17.97 13.00 22.63 2.24 13.00 

dd 14.71 8.87 18.81 1.96 8.87 

      

~15 km Sf 31.52 12.69 46.00 8.94 12.69 

slp 3.24 1.59 4.61 0.85 1.59 

wd 22.09 20.22 24.48 1.37 20.22 

ddp 17.51 15.78 20.02 1.40 15.78 

dd 14.58 10.51 17.90 1.66 10.51 

      

~30 km Sf 31.52 25.23 36.20 6.42 25.23 

slp 3.24 2.80 3.90 0.23 2.80 

wd 21.76 19.75 22.79 1.37 19.75 

ddp 16.67 16.23 16.99 0.37 16.23 

dd 14.05 12.89 14.93 0.98 12.89 
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The Oklahoma regional site exhibits the maximum scaling bias between the 

simulated mean surface soil moisture (���,�! ") at ~4 km and the assimilated surface soil 

moisture (�#$,�� ) estimated at ~60 km (AMSR-E footprint scale) for the year, 2005. 

Figure 4.14 illustrates the spatial scaling bias at ~4 km and ~60 km from a randomly 

selected AMSR-E footprint from the region. As expected, for wet days less scaling bias 

is observed. The region shows much higher scaling bias for drydown period as compared 

to the dry days. The evolution of soil moisture during drydown period is characterized 

by processes controlled by vegetation, soil and meteorological forcings and are affected 

by spatial scaling. However, for the dry days, soil is the primary physical control that 

characterizes the soil moisture fields. The fine and coarse scale SVAT model framework 

captures these phenomena during the drydown period and for the dry days. The pdfs of 

Fig. 4.15a-c obtained using method 1 (Section 4.3) substantiate this trend that is 

observed for wet days, drydown period and dry days. The effect of diversity in surface 

soil moisture evolution is also exemplified by the pdfs of ~4 km resolution that retain 

considerable variability irrespective of dry days (Fig. 4.15a), drydown period (Fig. 

4.15b) and wet days (Fig. 4.15c). However, the spatial organizations of soil moisture 

across spatial scales within the AMSR-E footprint that are not captured by pdfs are 

obtained using method 2 (Section 4.3). The bridging model of method 2 provides the 

scale parameters βs,t values shown in Fig. 4.16 for a particular AMSR-E footprint of this 

regional site that gives a representative idea of spatial variability present across different 

scales. From Fig. 4.16, it is evident that the value of βs,t at a particular spatial scale is a 

summation of a baseline value and a transient term except for the days having 
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precipitation event. The baseline value of βs,t for a pixel at a particular spatial scale is 

imparted by slp, Sf, s and the minimum NDVIt value within a year. The transient part of 

βs,t corresponds with the NDVIt value that exceeds the minimum NDVIt. For dry days, the 

high value of βs,t in the algorithm is compensated by the low (near residual) soil moisture 

values. For the wet days, βs,t value is low or close to 1, and the spatial organisation of 

soil misture field at a particular spatial scale is influenced by the precipitation pattern 

and soil moisture evolution at finest scale. The maximum influence of βs,t on spatial 

organization is observed during the drydown period, when the soil moisture values are in 

mid ranges. Based on these values of βs,t, an example of the multiscale data assimilation 

results is shown in Fig. 4.17 for a wet and dry days, and the statistics presented in Table 

4.3. Like the Iowa region, no specific trend is observed in the wet and dry soil moisture 

fields in the range of spatial scale between ~4 km and ~60 km. In such diverse region, 

the spatial organization of soil moisture within the AMSR-E footprint for any day at a 

particular scale does not depend on any specific physical control. In fact, the result 

suggests that for the region, the soil moisture patterns is influenced by process dynamics 

resulting from complex combination of initial soil moisture status, soil, vegetation, 

topography and precipitation pattern.  
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Figure 4.14. Plot of daily mean soil moisture v/v at ~60 km resolution against mean soil 

moisture v/v at ~4 km, for year 2005, for a randomly selected AMSR-E footprint from 

the Oklahoma study region. 
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a) 

 
b) 

 
c) 

 

 

 
 

 

Figure 4.15. Soil moisture probability distribution functions (pdfs) at different spatial 

scales within a randomly selected AMSR-E footprint, for a) dry day, b) a day during 

drydown period, and c) wet day, from the Oklahoma study region. 
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Figure 4.16. Plot of scale parameter βs at different spatial scales, for year 2005, for a 

randomly selected AMSR-E footprint from the Oklahoma study region. 
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Figure 4.17. Soil moisture fields at different spatial scales, for a wet and dry day within a 

randomly selected AMSR-E footprint from the Oklahoma study region. 
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4.6. Conclusion 

The study demonstrates the potential to downscale the AMSR-E-based coarse scale 

(~60 km) soil moisture footprint for diverse hydroclimatic regions. Two algorithms are 

developed to characterize the soil moisture distribution across various scales within the 

AMSR-E fooprint. The first algorithm results in probability distribution functions (pdfs) 

that provide a reasonable estimation of statistics across desired scale between coarse 

scale and fine scale soil moisture distributions. However, the algorithm does not account 

for the effects of geophysical parameters/variables on soil misture spatial evolution 

while evaluting the statistics for the intermediate scales. Another drawback of the first 

algorithm is the incapability to describe the spatial organization of soil moisture at finer 

scale that give rise to the footprint scale integrated soil moisture estimate. The second 

algorithm is a two prong multiscale data assimilation approach comprising upward 

sweep and downward jumps. The exchange of fine scale and coarse scale soil moisture 

information in a multiscale data assimilation technique resulted in a soil moisture field at 

the finest (i.e., ~ 4 km) and various intermediate scales (i.e., ~ 8 km, ~15 km, and ~30 

km). Validation of soil moisture evolution is conducted at the finest scale (~4 km) for the 

study regions and reasonable agreement is observed. The validation also highlights that 

within the ~4 km spatial scale soil moisture variability exists and the algorithm shows a 

scaling bais and is not capable to describe the variability entirely. Availability of finer 

scale spatial continuous meteorological focings to the proposed downscaling algorithm 

may improve the characterization of variability, bais and uncertainty in estimation of soil 

moisture fields. 
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The bridging model of multiscale data assimilation based on the important 

geophysical parameters/variables that affect the soil moisture evolution and organization 

helps to downscale satellite-based soil moisture footprint. The robustness of the bridging 

model has a limitation i.e., the range of heterogenity factor or the spatial-scale ratio s. 

Excessive downscaling may lead to overestimation of downscaled satellite-based soil 

moisture likelihood for the multiscale data assimilation. Futher studies will be conducted 

to identify the valid range of the heterogenity factor or the spatial-scale-ratio s and will 

also apply the proposed algorithm for different hydroclimatic regions. The accuracy of 

the bridging model across spatial scales also depends on the quality of geophysical 

parameters/variables data and their errors involved in scaling them to match the desired 

resolution for estimating the soil moisture fields.   

The proposed multiscale data assmilation scheme will also help to validate the fine 

scale soil moisture data from the future satellite platform (e.g., SMAP of NASA).   
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CHAPTER V 
 

CHARACTERIZATION OF SATURATED HYDRAULIC CONDUCTIVITY IN 

AN AGRICULTURAL FIELD USING KARHUNEN-LOÈVE EXPANSION 

WITH MCMC 

 

5.1. Synopsis 

Process-based soil hydrologic models require input of saturated hydraulic 

conductivity (Ksat). However, model users often have limited access to measured data 

and thus use published or estimated values for many site-specific hydrologic and 

environmental applications. We proposed an algorithm that uses the Karhunen-Loève 

Expansion (KLE) in conjunction with Markov Chain Monte Carlo (MCMC) technique 

which employs measured soil moisture values to characterize the saturated hydraulic 

conductivity of an agricultural field at a fine resolution. The study domain is situated in 

the Walnut Creek watershed, Iowa with soybean crop (in 2005) and well defined top 

(atmospheric) and bottom (ground water) boundary conditions. The KLE algorithm 

parameterize and generates Ksat fields with random correlation length that is used in the 

SWMS_3D model for predicting soil moisture dynamics for two different scenarios: 1) 

the van Genuchten soil hydraulic parameters (except Ksat) are constant and are based on 

the soil type of the grid block within the domain; 2) Ksat is correlated with the van 

Genuchten parameter α, as Ksat ∝ α2. The predicted soil moisture for both scenarios are 

evaluated with the measured soil moisture in the MCMC algorithm for acceptance (or 

rejection) of the Ksat fields. The accepted Ksat fields are evaluated and validated against 
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the laboratory measured Ksat at specific locations and the comparison shows reasonable 

agreement. The KLE-MCMC algorithm was further tested in the same study domain for 

another year (2002) having different vegetation (corn) and local forcings. The algorithm 

shows potential to characterize the saturated hydraulic conductivity fields at fine-scale 

using inexpensive and more regularly measured soil moisture measurements. Further 

studies are required to incorporate variability in different hydro-climatic regions and 

diverse topography to extend the application of this algorithm.  

 

5.2. Introduction  

Characterization of infiltration is important for better understanding of overland 

and subsurface water flow, and chemical transport in the vadose zone. High degree of 

spatial variability in local infiltration is observed due to random nature of soil property 

i.e., saturated hydraulic conductivity (Ksat) [Nielsen, et al., 1973; Sharma, et al., 1987; 

Warrick and Nielsen, 1980]. Saturated hydraulic conductivity is a difficult property to 

describe because it can change many orders of magnitude over very small distances. 

Numerous studies [Loague and Gander, 1990; Mohanty, et al., 1994a; Mohanty and 

Mousli, 2000; Nielsen, et al., 1973; Sharma, et al., 1987] have shown large variability 

exhibited by Ksat. In an agricultural field, spatial variability of Ksat is influenced by soil 

texture, cropping/tillage practice, and growing seasons [Azevedo, et al., 1998; Mohanty, 

et al., 1994a; Mohanty and Kanwar, 1994]. Carsel and Parrish [1988] reported soil 

texture-based descriptive statistics of Ksat. They found the highest coefficient of 

variation for Ksat (ranged from 453.3 for silty clays to 52.4 for sands), and also observed 
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a large difference in the value of Ksat between sand and clay. Various other databases 

are also available that highlight the variability present in Ksat. Prominent among them is 

the UNSODA database  [Nemes, et al., 2001] that provides wide range of Ksat values for 

uniform, single-grain size sands to  loam, and clay soils and mixtures thereof. Decayed 

root channels lead to the formation of macropores that ultimately enhance infiltration in 

soil. Meek et al. [1990] showed that  alfalfa root system generates an extensive 

macropore flow, consequently increasing Ksat. Wetting/drying, freezing/thawing, and 

earthworm activities in agricultural fields may also contribute to macropores formation 

that leads to high infiltration rate. However, Wager and Denton [1989] and Mohanty et 

al [1994a] also found that interrow wheel tracks by farm machinery compacted the 

underlying soil, resulting in low infiltration capacity and leading to a great reduction in 

Ksat in tracked area as compared to untracked interrow areas.  

Several laboratory and in situ techniques are available to measure Ksat and the 

results of these techniques often vary significantly [Gupta, et al., 1993; Klute and 

Dirksen, 1986; Mohanty, et al., 1994a; Paige and Hillel, 1993] based on different 

measurement support sizes and the governing principles. The spatial support of the 

measurement may be representative of few square centimeters to several square meters. 

Macropores also tend to increase the variability of Ksat measurements when small 

sample sizes are used [Mohanty, et al., 1994b]. Variability of Ksat in soils has also been 

viewed with respect to the numerous independent processes operating at different spatial 

and temporal scales [McBratney, 1998]. Recognizing that Ksat represents an end result 

of a number of independent processes, whose complex interactions makes it impractical 
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to apply deterministic methods for describing the spatial continuity of Ksat. Studies have 

been conducted to characterize the stochasticity of Ksat by auto-correlograms and 

variograms [Hillel, 1980; Wierenga, 1985]. Mohanty et al. [1991] used the simplified, 

split-window median-polishing technique in conjunction with a robust semivariogram 

estimator to examine the spatial structure of Ksat in a glacial till material. Gupta et al. 

[1992] used Fourier series analysis along with autoregressive methods to model 

hydraulic conductivity as a stochastic process. Due to such high spatial heterogeneity, 

Ksat is often modeled as random field characterized by a lognormal probability density 

function with relevant spatial correlation. Thus, generally the characterization of Ksat 

requires experimental data acquisition which is time-consuming and costly. 

In this study, our primary objective is to parameterize Ksat at a field-scale with 

inexpensive and more regularly observed surface soil moisture measurements. We 

employ a physically-based soil hydrologic modeling in conjunction with Karhunen-

Loève Expansion (KLE) and Markov Chain Monte Carlo (MCMC) method to 

characterize the Ksat distribution in an agricultural field using available surface soil 

moisture data. With KLE, we can represent the high dimensional Ksat field by a small 

number of parameters. Furthermore, the static data (the values of Ksat fields at some 

sparse locations) can be incorporated into the KLE to further reduce the dimension of the 

parameter space. Imposing the values of the Ksat at certain locations restricts the 

parameter space to a subspace (hyperplane). The Ksat fields from KLE algorithm was 

used in a three dimensional hydrologic model with well defined boundary conditions to 

obtain the evolution of profile soil moisture in the field. The simulated profile soil 
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moisture and the soil moisture measurements at the field site were used in a simple 

MCMC-based random walk sampler to accept or reject the Ksat realizations from the 

KLE algorithm. The posterior distribution of Ksat fields were subjected to statistical 

analysis and validated against the measured Ksat value at specific field locations. 

Additionally, the algorithm was further tested in the same study domain for a separate 

year having different vegetative cover (i.e., corn) and local forcings.  

 

5.3. Study Area and Data Collection 

During the Soil Moisture Experiments in 2002 (SMEX02) and 2005 (SMEX05), 

hydro-meteorological sampling campaigns (details available at 

http://ars.usda.gov/Research/docs.htm) at field- and regional-scale were conducted in the 

Walnut Creek watershed (Fig. 5.1) and regional sites near Ames, Iowa, respectively. Our 

study uses field sampling data of SMEX02 and SMEX05 from Walnut Creek watershed. 

Approximately 95% of the watershed is used for row crop agriculture (corn and 

soybean). The climate of the region is humid and average annual rainfall is 835 mm. The 

topography has low relief and poor surface drainage characteristics, resulting from 

prairie potholes that are water-holding depressions of glacial origin. In the watershed, 

ground sampling was conducted at 32 fields, approximately 800 X 800 m, for aircraft 

remote sensing validation. For this study, field WC11 (Fig. 5.1) within the watershed 

was selected during the SMEX02 and SMEX05 experiments for intensive soil moisture 

sampling. The geographical location of WC11 is 41.97˚N and 93.69˚W. The WC11 had 

corn during the SMEX02, and soybean during the SMEX05 with a small area of corn 
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planted near the western edge of the field. The portion of western edge was eliminated 

from the study domain to obtain uniform vegetation cover that rendered it to a size of 

600 m X 600 m. Average rooting depth of 30-60 cm for corn and 30-50 cm for soybean 

during vegetative growth and development stage [Smajstrla, 1990] was used. The Leaf 

Area Index (LAI) measured during the SMEX02 and the SMEX05 field campaigns were 

used in the study. The topography of the WC11 is characterized by low relief and poor 

surface drainage. The representative soils of the WC11 as illustrated in Fig. 5.1, are clay, 

loam, and silty clay loam of glacial origin, and have relatively low permeability 

(SSURGO database). Meteorological data was obtained from USDA-NRCS managed 

SCAN site (42.00oN and 93.74oW) near Ames, IA.   

Primarily the study was conducted based on the data obtained and conditions 

observed in the WC11 field during the SMEX05 campaign. Data from the SMEX02 

campaign was further used to validate the algorithm. Soil moisture content was 

measured during the SMEX02 (for 12 days) and SMEX05 (for 10 days) campaigns at 

the same 62 point locations in the WC11 field. Measurements were conducted between 

1100 and 1500 local time (CDST). Sampling points were located at nearly 30 m intervals 

along four transects oriented east–west and north–south within the WC11 field (as 

shown in Fig. 5.1). During the experiment, volumetric soil moisture contents were 

measured using theta probes (HH2 device, Delta-T, Inc.). For the purpose of validating 

Ksat fields, soil cores were also collected at highlighted locations in Fig. 5.1 during 

SMEX05 and Ksat measurements were made using constant head permeameter in the 

soil hydrology laboratory at Texas A&M University. 
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Figure 5.1. (a) Study area, (b) study domain with soil moisture sampling transect, (c) 

DEM, soil texture in the WC-11 field  at the Walnut Creek watershed, Iowa. 

 

5.4. Methodology 

It consists of two parts. First, we present the parameterization of Ksat using 

Karhunen- Loève Expansion. This parameterization reduces the dimensionality of the 

uncertainty space by eliminating the modes with lower energy. Second, we present the 

sampling algorithm which uses Markov Chain Monte Carlo scheme.  
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Karhunen-Loève Expansion (KLE) 

Suppose the Ksat(x) field is defined in the study domain Ω = 600 m X 600 m of the 

WC11 field (Fig. 5.2). We assume that the Ksat is known at some random spatial 

locations within the domain, and the covariance of log(Ksat) is also known.  Thus, by 

discretizing the domain Ω into a rectangular mesh (of 30 m X 30 m), Ksat(x) is 

represented by a matrix, making it a high dimensional vector. Following Loève [1977], 

the KLE was used to generate Ksat field in term of an optimal L2 basis. By truncating the 

expansion we can represent the Ksat matrix by a small number of random parameters. 

To impose the hard constraints (the values of the Ksat at prescribed locations), we find a 

linear subspace of our parameter space (a hyperplane) which yields the corresponding 

values of the Ksat field. For better readability, we briefly elaborate the KLE algorithm. 

Denote Y (x, ω) = log[Ksat(x, ω)], assuming Ksat(x) as lognormal, where the random 

element ω was included for the uncertainty in Ksat(x). Suppose Y(x, ω) is a second order 

stochastic process with  

 j C k1
l �;, m�E; n  ∞                (5.1) 

where E is the expectation operator. Given an orthonormal basis {φk} in L2
(Ω), we can 

expand Y(x, ω) as a general Fourier series  

       k�;, m� � ∑ kq�m�rq�;�sqt<                (5.2) 

where 

       kq�m� �  C k�;, m�rq�;� E;l                  (5.3) 
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We are interested in the special L
2 basis {φk} which makes the random variables Yk 

uncorrelated. That is, E(YiYj) = 0 for all i ≠  j. Denote the covariance function of Y as  

R(x, y) = E [Y(x)Y(y)]. Then such basis functions {φk} satisfy 

        E[YiYj] = C ru�;�E;l C S�;, v�rw�v�Ev � 0,l         i ≠  j. 

Since {φk} is a complete basis in L2
(Ω), it follows that ru�;� are eigenfunctions of R(x, 

y):  

        C S�;, v�rq�y�dy �  {qrq�;�l ,         k = 1, 2, . . . ,                                      (5.4) 

where λ} = E[kq1]  >  0. Furthermore, we have 

        R(x, y) =  ∑ {qrq�;�rq�v�sqt<                           (5.5) 

Denote ~k = Yk/√λk, then πk satisfy E(πk) = 0 and E(πi πj)= δij. It follows that 

        Y(x, ω) = ∑ √{q~q�m�rq�;�sqt<                                 (5.6) 

where φk and λk satisfy (4). We assume that the eigenvalues λk are ordered as λ1 ≥ λ2 ≥ .... 

The expansion (eq. 5.6) is called the KLE. In eq. 5.6, the L2 basis functions φk(x) are 

deterministic and resolve the spatial dependence of the Ksat field. The randomness is 

represented by the scalar random variables ~q. After we discretize the domain by a 

rectangular mesh, the continuous KLE is reduced to finite terms. Generally, we only 

need to keep the leading order terms (quantified by the magnitude of λk) and still capture 

most of the energy of the stochastic process Y(x, ω). For an N-term KLE approximation 

YN =∑ √{q~qrqsqt< , define the energy ratio of the approximation as 

        e(N) := 
�||��||:
�||�||: �  ∑ �����


∑ �����

               (5.7) 
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If λk (k = 1, 2,...), decay very fast, then the truncated KLE would be a good 

approximation of the stochastic process in the L2 sense. Suppose the saturated hydraulic 

conductivity field Ksat(x, ω) is a log-normal homogeneous stochastic process, then Y(x, 

ω) is a Gaussian process and ~q are independent standard Gaussian random variables. 

We assume that the covariance function of Y(x, ω) has the form 

        R(x, y) = σ2 exp �� |9
8�
|:
1�
:

�  |9:8�:|:
1�::

�             (5.8) 

In the above formula, L1 and L2 are the correlation lengths in each dimension, and σ2 = 

E(Y2) is a constant representing variability in Ksat. The eigenvalues are ordered in 

decreasing fashion. The rate of decay is subject to the covariance matrix of the intrinsic 

Ksat field, e.g., the shorter the correlation length; the more terms are required in the 

expansions. We first solve the eigenvalue problem (4) numerically on the rectangular 

mesh and obtain the eigenpairs {λk, φk}. For smooth Gaussian fields used here, we can 

sample Y(x, ω) from the truncated KLE (6) by generating Gaussian random variables ~q. 

In the simulations, we first generate a reference Ksat field using the full KLE and obtain 

the corresponding soil moisture using a three dimensional vadose zone mode. In our 

agricultural field example, to represent the discrete Ksat fields from the prior 

(unconditioned) distribution, we keep 16 terms in the KLE, which captures more than 

90% of the energy of Y(x, ω). We assume that the Ksat field is known at 11 distinct 

points. This condition is imposed by setting 

          ∑ √{q~q�m�rq�x�� �  �w  <#qt<                                                                       (5.9) 
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where αj (j = 1,..., 11) are prescribed constants and xj are prescribed locations. In the 

simulations we propose eleven ~q and calculate the rest of ~q by solving the linear 

system (9). Note that, L1 and L2 are assumed to be random in our simulations. 

  

SWMS_3D Model and Domain Characteristics 

The generated Ksat fields from KLE algorithm were used in SWMS_3D model. 

The SWMS_3D is a fortran-based finite element code for simulating water flow and 

solute transport in three-dimensional, variably saturated media [Simunek, et al., 1995]. 

For its performances, this model was widely used by vadose zone hydrology community 

[Javaux and Vanclooster, 2006; Javaux, et al., 2006; Lewandowska, et al., 2004]. Water 

flow is solved using Richards’ equation, which can be written in conventional way as  

 
�

�� � �

�9�
�� ��uw7

��
�9�

� �u�7�� � �                                                                        (5.10)      

where θ is the volumetric water content [L3
L

-3], h is the pressure head [L], S is a sink 

term [T-1] (root water uptake), xi (i=1,2,3) are the spatial coordinates [L] , t is time [T], 

�uw7 are components of a dimensionless tensor K
A representing the possible anisotropic 

nature of the medium, and K is the unsaturated hydraulic conductivity function [LT
-1] 

given by 

           K(h,x,y,z) = Ksat(x1,x2,x3) Kr(x1,x2,x3)                 (5.11) 

where Kr is the relative hydraulic conductivity [-] and Ksat the principal saturated 

hydraulic conductivity [LT-1]. According to this definition, the value of �uw7 in eq. 5.10 

must be positive and less than or equal to unity. The diagonal entries of �uw7 equal one 
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and the off-diagonal entries zero for an isotropic medium. Finite element schemes are 

used for the discretization of the flow and transport equations and the resulting equations 

are solved in an iterative fashion, by linearization Additional measures are taken to 

improve solution efficiency in transient problems, including automatic time step. The 

water content term is evaluated using the mass-conservative method proposed by [Celia 

and Bouloutas, 1990]. For any additional information, readers are referred to [Simunek, 

et al., 1995].  

 

 

Figure 5.2. A 600 m X 600 m section of WC11 three dimensional domain configuration 

with  horizontal discretization of 30 m X 30 m (in x and y directions) and vertical 

discretization comprises 55 elements (in z direction) up to the depth of 4.5 m (note: not 

to scale).  

 

A 600 m X 600 m section of WC11 with soybean crop was set for model domain, 

as illustrated in Fig. 5.2. The domain was further discretized horizontally into grids of 30 

m X 30 m (in x and y directions) resulting in 400 grid blocks. The vertical discretization 
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comprises 55 elements (in z direction) up to the depth of 4.5 m for all the 400 grid 

blocks. The 3D-domain configuration had 24255 nodal points, 21600 tetrahedral 

elements, and 882 boundary nodes. Atmospheric boundary condition was set for the top 

surface of the domain.  Nodal spacings were made relatively small at the soil surface 

where highest head gradients and flow velocity were expected. The initial position of the 

groundwater was set at 3.5 m. No flow boundary condition was imposed on the sides. A 

rooting depth of 2 cm to 50 cm from the top surface was set with a uniform distribution 

of the potential water uptake. The unsaturated soil hydraulic properties including soil 

water retention and hydraulic conductivity were described by a set of closed-form 

equation, (van Genuchten [1980]). The surface soil texture information from SSURGO 

database was extended in vertical direction to form a homogeneous soil layer in each of 

the grid block. For this study, the van Genuchten parameters of residual water content 

θres, and saturated water content θsat were assigned based on soil texture information 

from SSURGO database. No stochasticity was introduced in these parameters with the 

assumption that they do not vary significantly at field scale. However, there are some 

conflicting reports in literature about the correlation among Ksat, α (cm-1), and n (-) 

parameters. Smith and Diekkruger [1996] concluded that no significant correlation was 

observed among any of the characteristic parameters and suggested that most random 

variation in soil characteristic parameters could be treated as independent. However, 

Wang and Narasimhan [1992] indicated that Ksat and α were correlated with Ksat ∝ α2. 

In this research, we study two cases: i) case 1 (C1), with no correlation among Ksat, α, 

and n; ii) case 2 (C2), with correlation of Ksat ∝ α2 having n as constant. A study 
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conducted by Hills et al. [1992] demonstrated that the water retention characteristics 

could be adequately modeled using either a variable α with a constant n or a variable n 

with constant α, with a better result when α was variable. The KLE algorithm was used 

to obtain the stochastic Ksat fields, and for C2, the α fields are obtained from the 

corresponding Ksat fields. Analysis of existing soil hydraulic properties database (e.g., 

UNSODA) reveals a range of values for the constant of proportionality (P) in the 

correlation of Ksat ∝ α2. The values of P between 5000 and 75000 cover a wide 

spectrum of soil types e.g., coarse sand, loam, sandy loam, clayey loam, clay, etc. 

During simulation involving C2, for constant of proportionality, specific values between 

5000 and 75000 were used with an increment of 10000 to evaluate α. The simulation for 

both cases was conducted using SWMS_3D for 211 Julian days during 2005. The soil 

moisture evolution of top 5 cm from the SWMS_3D model was subjected to the MCMC 

algorithm (described below) to evaluate the Ksat fields. 

 

MCMC Algorithm 

Bayesian methods provide a rigorous framework within which pre-existing 

knowledge about the parameters of a model which can be combined with observed data 

and the model output. Here the preexisting knowledge (priors) was the soil hydraulic 

properties except Ksat that were derived from SSURGO database and the effective Ksat 

of the discretized field was obtained from KLE algorithm. The observed data 

(likelihood) was the measured soil moisture values from WC11, and the model output 

was soil moisture prediction from SWMS_3D. The results from Bayesian method is a 
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probability distribution of the parameter space (posterior distribution), that summarizes 

uncertainty about the parameters based on the combination of pre-existing knowledge 

and the sampled data values. The marginalization could be an intractable task in 

Bayesian method because of high dimensionality. We use the Metropolis algorithm 

within Markov Chain Monte Carlo (MCMC) method with an independent sampler to 

sample the posterior distribution, which were the distribution of the Ksat fields of 

WC11. The Metropolis algorithm [Metropolis and Ulam, 1949] has been widely used in 

Bayesian applications, because of its simplicity. Its principle can be summarized as 

follows: starting from a vector generated at iteration i-1, a new candidate vector is 

generated based on instrumental probability distribution. If this new vector leads to an 

increasing value of the target distribution (assuming symmetric instrumental probability 

distribution), it is accepted as the generated value at iteration i. Otherwise, the ratio 

between the new and the previous value of the target distribution is computed, and used 

as the acceptance probability of the candidate vector. In case of rejection, the generated 

vector at iteration i remains equal to that of iteration i-1. The Metropolis algorithm was 

used in this paper. As discussed above, we use the Bayes rule P(Ksat|s) α P(s|Ksat) 

P(Ksat), and our goal is to sample P(Ksat|s). Here s denotes the state variable (e.g., soil 

moisture) which we seek by Ksat. The MCMC algorithm used in the study is described 

below 

1. Choose a starting point Ksat(0) (where 0 refer to the number of iteration) and 

a variance ∑.  

2. Iterate i = 1, . . ., Niter . 
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2.1. Generate a proposal candidate vector Ksat* from  q(· |Ksat(i-1))  

2.2. Accept Ksat* with probability r = 

( * | ) ( ( 1) | *)

( ( 1) | ) ( * | ( 1))

P Ksat s q Ksat i Ksat

P Ksat i s q Ksat Ksat i

−

− −  
or reject it with probability (1-r)  

The likelihood here is described as P(s|Ksat) α f;� ��8 ∑ �T�]�M�,� �9�,���8T��]�9�,����:�
�: �.  In 

order to avoid numerical overflows, it is useful to consider the logarithm of the posterior 

distribution, and to compute the posterior ratio as r =exp(log(p(Ksat *| s))-log(p(Ksat (i-

1)| s))). The MCMC algorithm generates a Markov chain consisting of Ksat whose 

stationary distribution is P(Ksat|s). In our numerical simulations, ( | )q x y is a symmetric 

distribution (chosen by specifying the correlation lengths), ( | ) ( | )q x y q y x= , and thus 

the acceptance probability reduces to 
( * | )

.
( ( 1) | )

P Ksat s

P Ksat i s−
 

 

5.5. Results and Discussion 

In this study, we test for 10000 samples of Ksat field for each case (C1 and C2) for 

the 600 m X 600 m model domain of WC11 (Fig. 5.2). Note that the range of ln(Ksat) in 

these realizations are about −5.0 ~ +5.0, which means that the difference of the hydraulic 

conductivity is about four orders of magnitude. The statistics (mean, variance, and 

directional correlation length) of the generated realizations are also evaluated for the 

study. Each realization of the conductivity field is then used to estimate the pressure 

head and soil moisture fields from the SWMS_3D model with governing equations and 

boundary/initial conditions, i.e., (10)–(11) for both of the cases (C1 and C2). The soil 
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moisture evolutions of these Ksat realizations are compared with the measured soil 

moisture values within MCMC algorithm. The acceptance for these samples was nearly 

2% percent (i.e., 200 from 10000 samples). In our simulations, we propose an 

independent realization of the saturated hydraulic conductivity field based on proposed 

correlation lengths. The low success rate was expected because of possibility of infinite 

number of combination of Ksat fields that could be generated from KLE algorithm. The 

first hundred accepted samples were discarded to eliminate the influence of starting 

proposal distribution and account for burn-in. Fig. 5.3 illustrates the residuals of two 

hundred selected samples for C1. Similar plot for C2 was also observed (not shown 

here). The residuals decreases initially and then becomes asymptotic to exhibit some 

level of convergence.  

Few examples of accepted Ksat fields for WC11 are shown in Fig. 5.4 and Fig. 5.5 

for C1 and C2, respectively. All these different Ksat fields demonstrated potential to 

describe same soil moisture dynamics with the applied initial and boundary conditions 

for C1 and C2. The plots in Fig. 5.4 and Fig. 5.5 also illustrate the uncertainty associated 

with Ksat in an agricultural setup. Uncertainties in hydraulic conductivity in agricultural 

fields were also reported in other studies. For example, in a silty loam soil, Coutadeur et 

al. [2002] and Logsdon and Jaynes [1996] found that tillage increased the spatial 

variation of Ksat measured with a disc infiltrometer.  In WC11, uncertainty in Ksat 

fields is influenced by clustering of glacial till soil. This clustering phenomenon is due to 

differential deposition of soil layers by glacial drifts during its formation or subsequent 

incremental deposition due to wind drifts [Mohanty, et al., 1991]. The impact of soil 
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type (hydraulic properties), and influence of lateral flow due to high water table during 

wet conditions also dictate considerably the realization of stochastic Ksat fields from the 

employed algorithm. This highlights the need for researchers to use caution when using 

Ksat data as model input without field validation and characterization. Also, model users 

need to consider both the variability/uncertainty of Ksat data associated with specific 

soil and field location and understand how the method of determination may influence 

its value.  

 

 

Figure 5.3.  Residuals of accepted Ksat fields during SMEX05 from the MCMC for case 

1 (C1) having no correlation among Ksat, α, and n. 
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a) b) 

 
c) d) 

 

 

 

Figure 5.4. Randomly selected, highly probable Ksat fields during SMEX05 for case 1 

(C1) having no correlation among Ksat, α, and n. 
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a) 

 
b) 

 
c) d) 

 

 

 

Figure 5.5. Randomly selected, highly probable Ksat fields during SMEX05 for case 2 

(C2) having correlation of Ksat ∝ α2, and n as constant. 

 

The log saturated hydraulic conductivity Y(x) = ln(Ksat(x)) in the model domain is 

second-order stationary with a separable exponential covariance function (eq. 5.8). 

Various combinations of correlation length L1 and L2 in the horizontal directions (x1 and 
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x2 axes) from eq. 5.8 were obtained for highly probable realizations of Ksat fields. This 

exemplifies the stochastic nature of Ksat that give similar soil moisture evolution in 

WC11 for the study period. It is noteworthy that the mean horizontal correlation length 

of the Ksat is nearly 0.5 times of domain length (~300 m) in either direction (L1 and L2) 

for C1. However, in case of C2 a mean correlation length is nearly 0.65 times of domain 

length (i.e., 400 m). The increase in correlation length for C2 is attributed to 

characteristics of α fields corresponding to Ksat fields that introduces more flexibility 

i.e., degree of freedom in describing the 3-dimensional flow of water in soil profile, i.e., 

more water retention functions are capable to explain the nature of water movement in 

the soil profile within the domain. Close examination of the domain (Fig. 5.1d) also 

reveals spatial continuity of soil type in the range of 0.2-0.7 times of the domain length. 

Under similar field conditions, Mohanty et al. [1991] in their study reported a nested 

correlation structures with correlation lengths ranging from 23 m to 60 m and attributed 

the effect to the agricultural practices and soil of the same origin and/or their 

depositional patterns. 

 A mean of 20000 for P is observed for C2, also concur with the characteristics of 

the predominant soil types (clay loam and loam) within the domain. For C1, the 100 

accepted Ksat fields show a dynamic range of 45 cm/day to 400 cm/day. In case of C2, 

the 100 Ksat fields have a much smaller range of 45 cm/day to 80 cm/day. This 

corroborates that the inclusion of parameter correlation (i.e., Ksat ∝ α2) reduces the 

uncertainties (nonuniqueness) attached to Ksat within the domain. The high correlation 

length (L2) for C2 also indicates this feature. The domain average Ksat determined from 
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our KLE-MCMC algorithm may suggest the presence of preferential flow due to 

macropores in the domain, as it is much higher than the specified values of Ksat in the 

literature for clay loam and loamy texture soil. However the influence of topography on 

correlation structure of Ksat is not apparent in this study. The domain size and variation 

in elevation of the WC11 is not adequate enough to capture the influence of topography 

in Ksat characterization.  

Undisturbed soil cores for Ksat measurement collected at different locations along 

the soil moisture sampling transects in WC11 are shown in Fig. 5.1b. The soil cores 

were taken between the land surface and 30 cm depth. The purpose of measuring Ksat of 

these soil cores was to validate Ksat characterization and evaluate the performance of the 

KLE-MCMC algorithm. For comparison between the laboratory measurements and 

simulated values, the distribution of Ksat realizations at (four) particular soil hydraulic 

conductivity sampling locations (Fig. 5.1b) were extracted from the highly probable 

stochastic Ksat fields. Lognormal distributions of Ksat from the realizations of 

overlaying grid cell for four specific locations are shown in Fig. 5.6 and Fig. 5.7 for C1 

and C2, respectively, along with the lab measured Ksat at the same locations. The PDFs 

also exhibit the amount of uncertainty involved in Ksat within the grid cell of the 

domain. Few interesting features of Ksat are apparent in Fig. 5.6 and Fig. 5.7. 

Noteworthy among them is very similar distributions with nearly same mean, standard 

deviation, and range for all the four locations. Similar statistics were also obtained for 

remaining three locations not shown here. A distinct difference is visible between C1 
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(Fig. 5.6) and C2 (Fig. 5.7), i.e., the overall variability is greatly reduced in case of C2. 

This demonstrates the decrease in uncertainty due to parameter correlation as Ksat ∝ α2.  

 

a. b. 

c. d. 
 

Figure 5.6. Probability distribution functions of Ksat at specific locations during 

SMEX05 for comparison with field measurements for case 1 (C1) having no correlation 

among Ksat, α, and n. 
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a. b. 

c. d. 
 

Figure 5.7. Probability distribution functions of Ksat at specific locations during 

SMEX05 for comparison with field measurements for case 2 (C2) having correlation of 

Ksat ∝ α2 , and  n as constant. 

   

The multimodality in these probability density functions (PDFs) for a clayey 

texture soil indicates presence of multi-modal pore size distribution including textural 

micropores, mesopores, and structural/biological macropores at the field locations. 

Preferential flow through the mesopores and macropores increase the overall effective 

Ksat of the domain. Laboratory measurements of Ksat for these locations also 

demonstrate distinct characteristics. Except in one location (Fig. 5.6b and Fig. 5.7b), the 

lab measured Ksat for soil surface is greater than that of the Ksat at 30 cm depth.  This 

phenomenon is usually observed as the Ksat is expected to decrease with depth because 

1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

log(Ksat)

P
ro

b
a

b
il
it

y

Soil surface30 cm

Lab Measurement

1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

log(Ksat)

P
ro

b
a

b
il
it

y

Soil surface 30 cm

Lab Measurement

1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

log(Ksat)

P
ro

b
a

b
il
it

y

30 cm

Lab Measurement

1 2 3 4 5 6
0

0.02

0.04

0.06

0.08

0.1

log(Ksat)
P

ro
b

a
b

il
it

y

Soil surface

30 cm

Lab Measurement



 166

of changes in soil density, texture, and structure. One obvious feature in Figs. 5.6 and 5.7 

(except in 7a) is the high probability of Ksat measured at 30 cm depth than at the soil 

surface, making it a more reliable estimate. In most of the locations the measured value 

of Ksat at 30 cm depth is closer to the mean of the predicted Ksat. The low probability 

associated with the soil surface Ksat is due to high measured value. This could be 

attributed to the presence of biological macropores and structural fractures in the core 

samples collected near the soil surface. Under field conditions, such macropores would 

be expected to terminate in the subsoil because of the decrease in porosity with depth, 

soil swelling, and from clay hydration, and are thus much less conductive when satiated 

than continuous open ended macropores in cores. At a site (Fig. 5.6b and Fig. 5.7b) the 

lab measured Ksat of soil surface is lesser than that of the Ksat value at 30 cm, 

highlights another dimension of variability. Anthropogenic manipulations (e.g., tractor 

tracks, trails) that lead to soil compaction may explain such occurrences. The presence of 

biomass and high concentration of organic matter could also impede water conduction at 

the soil surface. Bouma [1980] also suggested a representative elementary volume of 

10000 cm3 for clayey soil to estimate lab measured Ksat with less variability. However, 

the soil cores used for this study were much smaller than the representative elementary 

volume. The PDFs of KLE-MCMC predicted effective Ksat (Figs. 5.6 and 5.7) in 

selected grid cells (30 m X 30 m X 4.5 m) within the model domain that encompassed 

the laboratory measured values, exemplifying the existence of variability. To further 

assess the performance of the KLE-MCMC algorithm, conditions of the WC11 field 

during the SMEX02 field campaign were also applied. The importance of this 
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assessment is to evaluate the effects of change in vegetation cover (i.e., between corn 

and soybean), anthropogenic manipulation (i.e., tillage) and variation in the local 

forcings (i.e., atmospheric conditions) on the evolution of Ksat fields. The change in 

vegetation cover influences the status of soil moisture and ultimately modeled Ksat by 

having different evapotranspiration rates and related infiltration characteristic. Tillage 

and addition of biomass to the top soil also greatly manipulates the Ksat field. During 

the latter part of the SMEX02 period greater amount of precipitation was also observed 

that led to wetter conditions with very high soil moisture content in clayey texture soil. 

With these varied conditions during SMEX02 as compared to SMEX05, the Ksat fields 

modeled using the KLE-MCMC algorithm were compared. The comparison of the PDFs 

shows statistically insignificant difference between the overall effective Ksat fields 

estimated during the SMEX02 and SMEX05 periods. It is also noteworthy to observe 

similarity in the correlation length L2 of the Ksat fields during SMEX02 and SMEX05 

periods. This suggests that effective Ksat fields have experienced statistically 

insignificant change over time irrespective of the change in vegetation cover and 

anthropogenic manipulation (tillage) of the soil surface in WC11 field. 

 

5.6. Conclusion 

In this paper, we characterize and parameterize saturated hydraulic conductivity 

(Ksat) for an agricultural field (WC11) in the Walnut Creek watershed, Iowa. Soil 

moisture measurements taken during a field campaign were used to assess effective 

Ksat. The Karhunen-Loève Expansion (KLE) with Markov Chain Monte Carlo 
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(MCMC) technique in conjunction with a physically based vadose zone model 

(SWMS_3D) was used for the study under two different scenarios: case 1) van 

Genuchten soil hydraulic parameters except Ksat are constant and are based on the soil 

type of the grid block within the modeling domain; case 2) Ksat is correlated with the 

van Genuchten parameter α as Ksat ∝ α2. The MCMC algorithm selected Ksat fields 

with a low acceptance rate, but displayed a reasonable level of convergence. The 

selected Ksat fields revealed an average spatial correlation length of nearly 400 m within 

a study domain of 600 m X 600 m which is quite reasonable considering the influence of 

clayey soil texture. Laboratory measurements of Ksat using soil cores collected from the 

WC11 at soil surface and 30 cm depth are used to validate the predicted effective Ksat 

fields. The probability distribution functions (PDFs) of the predicted effective Ksat for 

both C1 and C2 scenarios encompassed the laboratory measurements and also illustrated 

the variability associated within the domain. In general, the uncertainty of Ksat reduces 

when the parameter correlation, Ksat ∝ α2, is used. The PDFs also show multimodality 

which indicates the presence of macropores. Furthermore, the laboratory measured Ksat 

values from the soil cores collected at 30 cm depth were found more reliable and 

representative of the field conditions in comparison with the predicted effective Ksat.  

Application of the same algorithm in separate field conditions (i.e., different years) 

of the WC11 domain was used to assess the impact on effective Ksat fields due to 

different vegetation cover and local forcings. Results reveal statistically insignificant 

difference between the two years 2002 (SMEX02) and 2005 (SMEX05). The study 

shows that the proposed algorithm is efficient to characterize and parameterize the 
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evolution of effective Ksat for an agricultural field. Further studies are required for 

different hydroclimatic regions and diverse topography to extend the application of 

proposed algorithm. We also plan to use more efficient sampling techniques such as 

two-stage MCMC to sample Ksat in our future work. 
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CHAPTER VI 

A NEW ALGORITHM FOR CHARACTERIZATION OF BACKSCATTER BY 

SURFACE FEATURES IN L-BAND MICROWAVE REMOTE SENSING OF 

SOIL MOISTURE 

 

6.1. Synopsis 

Satellite based remote sensing of soil moisture is generally conducted with active 

(radar) and passive (radiometer) microwave measurements. These methods of 

measurements have their own strengths (e.g., spatial/temporal continuity) and limitations 

(e.g., coarse spatial resolution). Particularly, the active microwave remote sensing of soil 

moisture is very sensitive to the presence of vegetation on soil surface. During active 

microwave remote sensing the backscattering from the target (i.e, the soil surface) is 

affected by the overlaying vegetation, consequently sending degraded signal back to the 

radar. This phenomenon greatly compromises the quality of remotely sensed soil 

moisture measurements at the footprint scale. Radar backscattering is also greatly 

influenced by the surface roughness characteristics. Theoretical and empirical models 

exist to remove such influence of vegetation and surface roughness from the radar 

backscattering data, however, they are complicated and mostly site specific. The 

proposed research presents an alternative algorithm that averts usage of such techniques. 

The algorithm has simple assumptions that convert the total radar backscattering 

equations for a particular temporal scale (i.e., the inter-strom period) into a set of simple 

linear equations. A Soil-Vegetation-Atmosphere-Transfer (SVAT) model is employed in 
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the algorithm for soil moisture estimation that is used to assess the dielectric constant of 

soil profile which in turn relates to radar backscattering. A major advantage of the new 

algorithm is its potential to separate/estimate the stochastic surface roughness and 

vegetation backscattering components in diverse hydro-climatic regions under different 

combinations of geophysical parameters (i.e., soil, topography, and vegetation) and 

estimate their uncertainties. Entropy-based characterization is utilized to quantify the 

chaos in radar backscattering. The study helped to identify the physical controls that 

influence the L-band radar backscattering components. 

 

6.2. Introduction 

Soil moisture is a crucial variable of the environmental continuum formed by soil, 

water and air that influences hydrologic, ecologic, and climatic processes. Therefore, 

measuring soil moisture at various spatial and temporal scales is critical for better 

understanding of these environmental processes. Recent advancement in remote sensing 

technology has demonstrated that soil moisture can be measured by variety of techniques 

i.e., optical (visible, near-infrared, shortwave infrared) [Muller and Decamps, 2001], 

thermal infrared [Shih and Jordan, 1993], active microwave [Dubois, et al., 1995], and 

passive microwave  [Engman, 1991; 1995; Jackson, et al., 2005b; Jackson, et al., 1999; 

Njoku, et al., 2003; Njoku and Oneill, 1982]. Optical remote sensing of soil moisture has 

serious drawbacks due to limited ability to penetrate clouds and vegetation canopy, and 

is highly attenuated by the earth’s atmosphere. Similarly, thermal infrared remote 

sensing has serious limitations due to presence of any vegetation. On the other hand, 
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microwave remote sensing is considered suitable to quantitatively measure soil moisture 

under variety of soil, topographic and vegetation conditions and particularly the earth’s 

atmosphere is relatively transparent to microwave. The use of various active and passive 

microwave remote sensors [Georgakakos, 1996] has enhanced the capability for 

monitoring soil moisture across range of spatio-temporal scales. Microwave 

(active/passive) remote sensing of soil moisture, however, remains an active area of 

investigation because of its dependency on variety of geophysical parameters (e.g., 

precipitation, soil type, topography, and vegetation) and sensor configuration (system 

parameters: frequency, incident angle, polarization), and due to coarse spatial resolution 

of remote sensor that mask the underlying ground heterogeneity. 

Significant progress has been made in regional/global soil moisture mapping using 

passive microwave sensors [Jackson, et al., 1999; Njoku, et al., 2003]. Njoku and 

Entekhabi  [1995] have also shown that a passive microwave radiometer with less than 

1˚K radio brightness noise sensitivity can measure near-surface soil moisture with a 

root-mean-square error of 1–2% vol/vol for bare soil. In a spaceborne satellite-based 

radiometer with the current technology, 1˚K radio brightness noise sensitivity can only 

be attained for a footprint size larger than 40 km [Njoku, et al., 2003]. Having such 

coarse spatial resolution (>40 km) in relatively low microwave frequencies (<10.71 

GHz), the spatial heterogeneity in land surface (e.g., snow cover, soil wetness, surface 

roughness, topography) also introduce complexity in soil moisture retrieval. 

Furthermore, microwave emissions are also attenuated by vegetation canopy reducing 

sensitivity for accurate estimation of soil moisture [Jackson and Schmugge, 1991; Njoku 
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and Chan, 2006].  With the available configurations and associated limitations in terms 

of coarse resolution of passive microwave remote sensing it is not adequate to meet the 

finer scale spatial resolution requirement for soil moisture in watershed, catchment, and 

field scale applications. The only satellite-based sensor that can meet the spatial 

resolution requirement for watershed and finer scale management is by using active 

microwave remote sensing techniques. Dobson and Ulaby [Dobson and Ulaby, 1986]  in 

their study showed that using active microwave (radar) soil moisture (with ±3.5% 

vol/vol error) for spatial resolutions down to 1 km may be retrieved for soil surfaces with 

vegetation cover shorter than 15 cm. In active microwave remote sensing, the radar 

backscattering from the soil surface is adversely affected by the presence of vegetation. 

This is due to increased volume scattering and attenuation of electromagnetic signal 

[Tansly and Millington, 2001]. The overall impact of vegetation, surface roughness, and 

topography on radar signals results significantly higher root mean square error (RMSE) 

for soil moisture retrieval [Dobson and Ulaby, 1986]. Currently, there are three 

operational Synthetic Aperture Radar (SAR) satellite systems that have capability to 

measure soil moisture: ESA ERS 2 (C-band) [Haider, et al., 2004], ESA ENVISAT (C-

band) [Baghdadi, et al., 2007], and Canadian RADARSAT-1/RADARSAT-2 (C-band) 

[Leconte, et al., 2004]. Studies [Baghdadi, et al., 2007; Haider, et al., 2004; Leconte, et 

al., 2004] have also demonstrated that SAR instruments at C-band measure soil moisture 

for bare soil with nearly 3-4% vol/vol  retrieval error. However, with SAR C-band it is 

difficult to map soil moisture accurately from the soil surface covered with vegetation. 

Schmullus and Furrer [Schumullius and Furrer, 1992] examined backscattering from 



 174

soil under different vegetation conditions at various frequencies in L-, C-, and X-band at 

cross and like polarizations. They reported that backscattering is better related to soil 

moisture only at L-band frequency.  

At present, there is no operational L-band radar satellite system. The upcoming 

Soil Moisture Active Passive (SMAP) mission of National Aeronautic and Space 

Administration (NASA) is a pathfinder-class concept for global mapping of soil 

moisture. The SMAP will have onboard low-frequency L-band radiometer (1.42 GHz) 

and radar (1.26 GHz). It will have soil moisture product derived from ~40 km resolution 

brightness temperature from the L-band radiometer and ~3 km resolution backscattering 

coefficients from the L-band radar with a revisit period of 2-3 days. The radar on SMAP 

platform is of particular interest here because it will provide a new perspective of L-band 

radar backscattering from a satellite platform. The primary objective of this study is to 

describe L-band radar backscattering coefficient under variety of terrain characteristics 

and vegetation conditions. The study also proposes a simple algorithm for determining 

stochastic surface roughness using synthetic radar data. 

 

6.3. Modeling Active Microwave Sensing of Surface Soil Moisture 

We hypothesize that a reliable spatio-temporal distribution of soil moisture is 

important for probabilistic characterization of backscatter by surface features in active 

microwave remote sensing. A distributed framework with Soil Vegetation Atmosphere 

Transfer (SVAT) modeling based on the work of Das and Mohanty [Das, et al., 2008a] 

is implemented for spatio-temporal evolution of soil moisture for the study region. The 
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SVAT model incorporates Dobson’s model [Dobson, et al., 1985] to convert soil 

moisture to dielectric constant ε. Geophysical parameters (e.g., NDVI, soil texture, 

surface roughness) characterizing the study domain and estimated ε from SVAT 

modeling provided synthetic radar total backscatter. The radar backscatter for a 

vegetation-covered soil layer in both HH and VV polarizations is expressed as the sum 

of three components [Ulaby, et al., 1996], 

σt
 = σs exp(-2τo/cosθ) + σv + σsv                                                                            (6.1) 

where σt represents the total radar scattering cross-section, σs is the scattering 

contribution of the soil surface modified by the two-way vegetation attenuation, σv is the 

scattering cross-section of the vegetation volume, and σsv represents the multiple 

scattering interaction between the soil and vegetation. Subsequently the terminology 

vegetation backscattering and soil-vegetation backscattering are interchangeably used 

with volume scattering and surface-volume scattering, respectively. 

In practice, theoretical and empirical models are used to model the scattering 

components σs, σv, and σsv [Dobson and Ulaby, 1986; Dubois, et al., 1995]. In case of the 

above-ground biomass (vegetation) is lesser than 0.5 kg/m2 second and third terms (σv 

and σsv) on the right side in eq. (1) become negligibly small. The atmospheric and 

ionospheric effect for the radar L-band is also negligible and could be ignored and then 

the soil surface backscatter σs can be modeled theoretically by Integral Equation Model 

(IEM) [Fung, et al., 1992].  For a given radar configuration (i.e., wavelength, local 

incident angle and polarization), the IEM predicts the backscattering coefficient on a 

random surface depending on surface roughness (RMS height) s and its correlation 
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length l, and the relative dielectric constant ε. The IEM is tested in many studies 

including comparisons with data from Monte Carlo simulation, controlled laboratory 

study, truck-mounted scatterometer, and SIR-C/AIRSAR. For bare soil, there is a 

general confidence using the IEM in predicting L-band co-polarized backscattering 

signals (0ZZT  and 0��T ) of a random rough surface. The RMS errors are commonly within 

2 dB for backscattering when the surface roughness is well characterized. Studies 

[Leconte, et al., 2004],[Baghdadi, et al., 2002] have also shown that the results from 

IEM deviated when compared to truck-mounted scatterometer and SAR (airborne and 

spaceborne) measurements. The theoretical models like IEM can rarely invert data 

measured from natural environment because of restrictive assumptions made during their 

derivation. Well established alternative empirical methods are used in this study to 

circumvent the difficulties for modeling the backscattering signatures of bare surfaces. 

The empirical models for backscattering coefficient of bare soil 0ZZT , 0��T , and 0�ZT  are 

derived from experimental data. Dubois, et al. [1995] provide empirical expressions for 

0ZZT  and 0��T  that is used in this study for the co-polarized backscatter,  

( ) 70410280
5

51
752s 1010 ..tan'.

.
.

HH sinks
sin

cos
λθ

θ

θ
σ θε ⋅⋅⋅⋅








⋅= ⋅⋅−                                               

 (6.2) 

( ) 70110460
3

3
352s 1010 ..tan'..

VV sinks
sin

cos
λθ

θ

θ
σ θε ⋅⋅⋅⋅








⋅= ⋅⋅−                                                  (6.3) 

where, θ is radar incidence angle, λ (cm) is the wavelength, k is the wave number, s is 

the surface RMS height, and ε is the real part of the dielectric constant. The cross 



 177

polarization component 0�ZT  can be computed from 0ZZT  using the empirical model given 

by [Oh, et al., 1992]. The cross polarization component 0Z�T  is equal to 0�ZT  because of 

reciprocity property of radar scattering, as the response for HV and VH are identical. 

The presence of vegetation biomass adds complexity and increase uncertainty in 

total radar backscattering. Vegetation canopies are complex structures in terms of the 

shapes and sizes of the scattering elements relative to wavelength. For radar backscatter 

modeling (unlike radiometric modeling) a uniform canopy assumption may not be 

adequate to describe the microwave-vegetation interactions.  In this study it is assumed 

that, over the spatial extent of the 3-km radar footprints, the scattering is dominated by 

randomly-oriented components. Models for the co- and cross-polarized backscatter from 

vegetation represented as randomly orientated -structures are given by [Ulaby, et al., 

1986]. The expressions for the volume scattering ( v

VVσ , v

HHσ ) and surface-volume 

interaction terms ( sv

HHσ , sv

HVσ ) are mentioned below.  
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Where, τo is vegetation opacity, l is correlation length of surface roughness s, rv and rh 

are the Fresnel reflectivities and ω is vegetation parameter. The VV-polarized surface-
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volume interaction term, 0ZZT� , is small and thus neglected. To evaluate τo, total 

vegetation water content (VWCc) was used as follows:  

VWCc =  –0.3215 (NDVI) + 1.9134 (NDVI)2   (6.8) 

where NDVI is normalized difference vegetative index. A woody component fraction fT was 

used to scale the foliar water content derived from (8) to a corrected vegetation water content 

VWC  =  VWCc / (1 - fT)  (6.9) 

The nadir vegetation opacity τo is related to the columnar vegetation water content VWC (kg m-2) 

and is given by: 

τo  =  bo*VWC  (6.10) 

were, the coefficient bo depends on vegetation type [Jackson and Schmugge, 1991]. 

Our numerical study uses a Soil-Vegetation-Atmosphere-Transfer (model) [Das, et 

al., 2008a] for soil moisture/dielectric constant modeling in conjunction with empirical 

models (eq. 1-10) for characterizing the spatial and temporal varibaility of microwave 

backscattering components. To generate synthetic backscattering data, normal random 

variability of 10% standard deviation was introdcued in the parameters (s, bo, ω, and fT) 

mentioned in Table 6.1 [Zhan, et al., In press]. This synthetic data obtained from eq. 1 is 

considered as the total backscattering received by the satellite-based radar and is the 

basis for the characterization of uncertainty in radar backscattering (Section 6.4) and 

proposed algorithm (Section 6.5). The synthetic data is used because no such radar 

backscattering data exist for the study area (Section 6.7) for spatial and temporal 

characterization, and for use in the algorithm mentioned in subsequent sections for 

deriving surface roughness and vegetation backscattering components. 
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Table 6.1.  Land cover classes, roughness parameters (s and h), albedo (ω), and 

 vegetation parameters (bo, fT).  

 
Class Category Name s (cm) h  ω bo fT 

1 Crop/mixed farming 1.5 0.15 0.05 0.13 0.2 
2 Short grass 1.0 0.1 0.05 0.10 0.0 
3 Evergreen needleleaf tree 1.0 0.1 0.12 0.10 0.8 
4 Deciduous needleleaf tree 1.0 0.1 0.12 0.10 0.8 
5 Deciduous broadleaf tree 1.0 0.1 0.12 0.12 0.8 
6 Evergreen broadleaf tree 1.0 0.1 0.12 0.12 0.8 
7 Tall grass 1.0 0.1 0.05 0.10 0.0 
8 Desert 1.0 0.1 0.00 0.00 0.0 
9 Tundra 1.0 0.1 0.05 0.10 0.0 
10 Irrigated crop 1.0 0.1 0.05 0.11 0.0 
11 Semidesert 1.0 0.1 0.05 0.10 0.0 
12 Bog or marsh 1.0 0.1 0.05 0.10 0.0 
13 Inland water 1.0 0.1 0.00 0.00 0.0 
14 Evergreen shrub 1.0 0.1 0.05 0.11 0.0 
15 Deciduous shrub 1.0 0.1 0.05 0.11 0.0 
16 Mixed woodland 1.0 0.1 0.12 0.11 0.8 
17 Short grass/crop 1.2 0.12 0.05 0.13 0.1 
18 Tall grass/crop 1.2 0.12 0.05 0.13 0.1 
19 Crop/mixed woodland 1.2 0.12 0.08 0.12 0.5 
20 Crop/evergreen needleleaf tree 1.2 0.12 0.08 0.12 0.5 
21 Crop/deciduous broadleaf tree 1.2 0.12 0.08 0.12 0.5 
22 Irrigated crop/deciduous broadleaf tree 1.2 0.12 0.08 0.12 0.5 
23 Short grass/mixed woodland 1.0 0.1 0.08 0.11 0.4 
24 Evergreen needleleaf/short grass 1.0 0.1 0.08 0.11 0.4 
25 Evergreen needleleaf/evergreen broadleaf 1.0 0.1 0.12 0.11 0.8 

 
 

6.4. Method for Uncertainty Characterization in Radar Backscattering 

Naturally occurring processes are chaotic and similar chaos is also observed in 

radar backscattering components. The knowledge on the behavior of radar 

backscattering is limited by their intrinsic complexity, which is the result of numerous 
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interacting geophysical parameters (e.g., vegetation canopy and surface roughness) and 

random errors (e.g., radio frequency interference) that contributes to the chaos. 

Sometimes it is related to the difficulties we have in describing or understanding radar 

backscattering components. To capture chaos and randomness in radar backscattering in 

diverse hydro-climatic, terrain, and vegetation, entropy theory defined by Shannon 

[Shannon, 1948] is used. According to the entropy theory, uncertainty in probability 

distribution of any variable is the negative expected value of the logarithm of the 

probability distribution function (PDF) of the variable. Shannon entropy H is defined as 

a function of probabilities pi as  

 ∑
=

−==
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i
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1

                                                                                        (6.11) 

Characteristically the increasing randomness of the variable decreases the skewness of 

the probability distribution, thus leading to increased entropy. Entropy takes on a 

maximum value when the probability distribution is uniform without any deflection, and 

it reduces to zero when a particular value of the variable occurs with probability of one. 

Again, the entropy-based methodology is applicable to any distribution and whether the 

distribution is a priori known or not.  Direct application of the entropy theory can 

quantify the uncertainty in radar backscattering. The backscattering components σs, σv, 

and σsv can be charaterized as continous random variables for entropy based 

characterization.  
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6.5. A New Algorithm to Estimate Surface Roughness and Volume Scattering 

Using the synthetic radar backscattering data, the study uses a new algorithm to 

determine the surface roughness and vegetation backscattering components as an 

alternative to using any of the aforementioned empirical models (eq. 4-7). In the 

proposed algorithm, the surface roughness parameter (s) and the vegetation 

backscattering (σv) are considered static for a small temporal scale (i.e., interstorm 

period). This is a resonable assumption based on the growth/decay status of vegetation in 

natural environment and soil surface getting modified after precipitation events. Also the 

parameters such as s and σv are considered not very dynamic for pasture and herbaceous 

fields for small temporal scale. On the other hand, special attention and treatment is 

required for a region having agricultural farmlands because of anthropogenic 

manipualtion (e.g., plowing and  harvesting) that might change the backscattering 

components (σs, σv, and σsv) very abruptly. Therefore, in such conditions the assumption 

of constant s and σv might hold for few days only and may introduce error in the 

proposed approach. The backscattering due to soil-vegetation interaction componenet 

(σsv) is the most dynamic [Njoku and Kong, 1977] because along with vegetation it is 

greatly influenced by the temporal status of dielectric constant which is highly correlated 

to soil moisture evolution. Based on these assumptions and conditions, a new approach 

is proposed here for determining surface roughness and backscatter components. For co-

polarized radar backscattering from a specific region for a particular day (x) is given as 

09 � �  09T�� 2�� �� ¡⁄ � �  09� �  09T�                                        (6.12)   
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where x = 1…n, represents a daily timestep within an interstrom period T. In other words 

the system has n sets of equations. By solving the n sets of equations simultaneously 

eliminated 0� from all the equations as that component is considered constant across T. 

The backscattering from the soil surface 09T has two unknowns, εx (dielectric constant for 

day x) and s in all the n equations. To compute dielectric constant reliable soil moisture 

at compatible resolution is essential. The SVAT model (mentioned in Section 5) 

provides reasonable distribution of state variable i.e., soil moisture at soil surface for ~3 

km resolution. Subsequently Dobson's model [Dobson, et al., 1985]  relates soil moisture 

to equivalent dielectric constant. Now the system of n simultaneous equations comprise 

n+1 unknowns (i.e., s, 0<T� ,…, 0>T�). To solve n simultaneous equations with n+1 

unknowns, we assumed 0<T� ¢  01T�. The rationale of  0<T� ¢  01T� is that at the start of 

interstrom period and due to wet condition of soil surface the probability of  0<T� ¢  01T� 

is high. The assumption is even more appropriate for the region having high vegetation 

and also the region with soil texture having high percentage of clay fraction that retains 

high soil moisture. This assumption reduced the number of unknowns to n, leading to 

computation of s, 0 �, 0<T�…, 0>T�, for the interstrom period. The algorithm applied to 

certain regions for continuous interstrom periods could help study the temporal evolution 

and statistical characteristics of surface roughness s with changing season, precipitation, 

vegetation growth and vegetation water content.  
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6.6. SVAT Model 

Reliable estimate of surface and root-zone soil moisture across the study is 

required to implement the algorithm mentioned in section 6.4. Therefore, we mainly 

focus the root-zone (~1 m depth) soil moisture at a spatial resolution of ~3 km. The 

disparity of scales between the horizontal (spatial resolution: ~3 km) and vertical (soil 

depth: 1 m) extents of the root-zone was the key consideration in formulating the SVAT 

modeling framework. The implementation of the model set up is similar to Das et al. 

[2008a]. Brief overview of the model framework at is provided for relevance of this 

study. For SVAT model simulation, the root-zone at every radar footprint within the 

study region is vertically discretized, with finer discretization near the soil layer 

interfaces and at the land-atmosphere boundary. Finer discretization near the top 

boundary and layer interfaces are used to handle the steep pressure gradient for the 

numerical simulations. Time-dependent flux-type top boundary conditions for each 

parallel soil column (matching the radar footprints) are used with precipitation 

distribution across the study region. Runoff and runon between adjacent footprints due to 

topography was considered on the land surface. The runoff from the one or more 

adjacent footprint of steepest descent according to flow routing is used as runon for the 

footprint under consideration. Given the relatively coarse horizontal scale with shallow 

root-zone, the parallel soil columns model ignores the lateral water fluxes across the 

adjacent soil columns and only predicts the vertical fluxes including infiltration, 

evapotranspiration, runoff, and deep percolation as parallel non-interacting stream-tubes 

concept. A probabilistic approach is adopted, by using an ensemble of state variables 
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(profile soil moistures) for all the radar footprints (~3 km). A state augmentation 

technique is applied by concatenating uncertain soil properties to state variables, forming 

composite vectors in the ensemble. The soil types from the CONUS soil database and 

the van-Genuchten shape parameters for the soil textural classes given by Unsaturated 

Soil Hydraulic Database (UNSODA) are used with ±20% uncertainty. The purpose of 

including uncertain soil properties in the ensemble is to address the assumption that it 

simulates model errors and subpixel variability present within a radar footprint. For best 

computational efficiency, one hundred members (composite vectors) were populated in 

the ensemble. The SVAT model is run 6 months ahead of year 2005, to tune the state of 

initial soil moisture profile. At each time step, final states (soil moisture) are determined 

by the ensemble of the one hundred replicated predictions made by the SVAT model for 

every radar footprint. The SVAT model used in the soil moisture modeling scheme is 

described briefly as follows. 

We use the SWAP model [Van Dam, et al., 1997] to simulate the processes of the 

soil-water-atmosphere-plant system. SWAP is a physically-based, hydrologic model that 

numerically solves the one-dimensional Richards’ equation for simulating the soil 

moisture dynamics in the soil profile under different climatic and environmental 

conditions. Irrespective of scale, transient isothermal unsaturated water flow in non-

swelling soil, Richards’ equation used in SWAP is described by  

 

�
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�� �� ���
�� � 1�� � ���£� 

           
                                                           (6.13) 

where θ is the soil water content (m3/ m3), z is the soil depth (m), H is the soil water 

pressure head (m), K is the unsaturated hydraulic conductivity (m/day), and Sa(H) is the 
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root water uptake (m/day). Penman-Monteith equation [Monteith, 1965] was used to 

calculate potential evapotranspiration. The potential transpiration (Tp) and the soil 

evaporation (Ep) were partitioned using LAI. In the SWAP model soil moisture retention 

and hydraulic conductivity functions are defined by the Mualem-van Genuchten model 

[van Genuchten, 1980].  

 

6.7. Study Area and Data 

The Red-Arkansas river basin (Fig. 6.1) is selected for this study due to presence of 

diverse geophysical characteristics (topography, soil type and vegetation). The basin 

provides various combinations of these geophysical characteristics that are significant to 

study the spatio-temporal stochasticity present in radar backscattering. Three specific 

regions (Fig. 6.1) are selected as focus areas: i) Northwestern mountainous region 

(50,000 km2), with elevation more than 1200 m from the sea level and having low LAI 

between 0 and 1.2 m2/m2. The land cover of this region is mostly dominated by high 

elevation alpine trees, deciduous trees and shrubs. ii) Central plains of 

farmlands/grasslands (38,000 km2) with moderate elevation between 150 m and 500 m 

of rolling topography and having highly variable LAI between 1 and 5 m2/m2, peaking 

during the summer months. iii) Eastern plains, of low lying (elevation: 40 to 100 m) 

eastern region (38,000 km2). The landcover of the eastern region is dominated by 

deciduous trees, grasslands and summer crops with moderate to high LAI of nearly1-6 

m2/m2.  Fig. 6.2 presents the diversity of soil type, vegetation, topography, and 

precipitation present across the basin. The study region is subhumid and receives heavy 
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to moderate rainfall distributed throughout the year. The other relevant datasets used in 

the study are summarized below: 

 

 

 

 

Figure 6.1. Red-Arkansas River Basin with highlighted region showing three focus study 

area: a) the Northwestern Mountainous Region, b) the Central Plains, and c) the Eastern 

Plains. 
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Figure 6.2. Sample data of Soil, LAI, Nexrad, and DEM of Red-Arkansas River basin. 

 

Soil 

The requisite soil parameters (e.g., %sand, %clay, bulk density and saturated 

hydraulic conductivity) data were derived from CONUS-SOIL 

(http://www.soilinfo.psu.edu/) which is a multilayer North American soil characteristic 

dataset. 

 

NDVI and LAI 

MODIS derived 16-day composite data of NDVI and LAI at ~1 km spatial 

resolution were obtained and resampled to ~3 km for the study.  
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Precipitation 

Precipitation is arguably the most important forcing for spatio-temporal evolution 

of soil moisture. Quality-controlled ~4 km precipitation data [Seo and Breidenbach, 

2002] based on multi-sensor (radar WSR-88D and rain gauge) estimates from National 

Weather Service (NWS) River Forecast Centers (RFCs) and resampled to ~3 km 

(matching SMAP-based L-band radar spatial resolution) is used for the study.  

 

Meteorological Forcings 

Other important forcings (e.g., min and max air temperature, relative humidity and 

incoming solar radiation) those are relatively spatially homogenous are extracted from 

the North American Regional Reanalysis (NARR) dataset. The NARR dataset resolution 

of ~32 km was further resampled to ~3 km to suit the study. 

 

6.8. Results and Discussions 

SVAT modeling based on a distributed modeling framework [Das, et al., 2008a] 

that have an ensemble of appropriate boundary conditions and scaled parameters [Das, et 

al., 2008b] [Das, et al., 2008c] was used to simulate soil moisture, soil temperature, and 

evapotranspiration in the Red-Arkansas river basin at a spatial resolution of ~3 km for 

the year 2005. The soil moisture status and soil temperature profile for the surface/root 

zone were retrieved. Arbitrarily selected random error of 10% was introduced in the soil 

moisture values and the parameters (surface roughness, tree fraction, albedo, and 

vegetation opacity) in eq. 1-8. The random error of 10% was to make the synthetic 
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backscattering data more representative of chaos in the backscattering dynamics. The 

surface (i.e., top 5 cm) soil moisture from the simulation was used to compute total radar 

backscattering and its individual components (soil, vegetation, and soil-vegetation 

interaction). Figure 6.3 illustrates the estimated total backscattering and individual 

components at HH polarization (based on eq. 2) across the study river basin for the DOY 

180, 2005. Visual examination of the backscattering values shows clear dependence on 

soil moisture. Mainly, backscattering based on HH/VV polarization was considered as 

the HV/VH cross polarization return was usually weaker than the like polarized return. 

Studies (e.g., [Ulaby, et al., 1996]) have also demonstrated that backscattering are more 

sensitive at like polarizations (HH, VV) compared to cross polarization (VH, HV). 

Results presented in the subsequent figures (Fig. 6.4-6.12) are based on the average 

values of backscattering components within the study regions (i.e., the Northwestern 

mountainous region, the Central plains, and the Eastern plains). The results from the 

three focus areas are discussed below.  
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Figure 6.3. A sample of total and individual backscattering components at HH 

polarization for day of year (DOY) 180, 2005. 
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Northwestern Mountainous Region  

This region is dominated by rugged topography and mountains, has low yearly 

average NDVI, and low average ambient temperature. The soil texture on surface is 

mostly sandy-loam or clay-loam. Low evapotranspiration rates throughout the year 

greatly influence the soil moisture evolution within the region. The average soil moisture 

of this region is nearly 0.25 (v/v) with occasional spikes due to precipitation events. As 

expected, the backscattering at HH/VV polarization (0��T ,0ZZT ) from soil corresponds 

with soil moisture (Fig. 6.4a-b), although the variation and correspondence of 0��T  (Fig. 

6.4a) with soil moisture evolution is not as pronounced as 0ZZT  (Fig. 6.4b), and is 

relatively constant throughout the year. Numerous investigations (e.g., [Njoku, et al., 

2002]) have also shown that backscattering from soil having VV polarization (0ZZT ) is 

more sensitive to soil moisture than 0��T . The spikes in 0ZZT  are the result of high soil 

moisture after precipitation events (Fig. 6.4b). The time series of HH total backscattering 

(0��� ) (Fig. 6.4a) makes a hump in the middle of the year due to increase in NDVI value 

that ultimately increase the HH vegetation (0��� ) and soil-vegetation backscattering 

(0��T� ) components. However, this phenomenon is not visible with VV polarization (Fig. 

6.4b). It mainly resulted from the surface-volume (soil-vegetation) interaction term that 

has the characteristics 0�� T� ¤ 0ZZ T� . For this region the overall trend in 0���  could be 

attributed to the trends in 0���  and 0��T�  backscattering components. To corroborate the 

finding, the backscattering components were plotted with the 16 days composite NDVI 

values shown in Fig. 6.5. It is interesting to note that the average of 0���   from the region 

entirely corresponds with the trend of average NDVI. At L-band, the cross polarization 
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HV backscattering (0�Z� ) is almost negligible for the region (Fig. 6.4c). However, the 

expected increase in 0�Z�  with increase in vegetation is not observed for the region. 

 

a) b) 

 

c) 

 

 

 

 

 

Figure 6.4. Mean soil moisture and mean backscattering components of the 

Northwestern Mountainous Region: a) at HH polarization, b) at VV polarization, and c) 

at HV polarization. 
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Figure 6.5. Mean NDVI and mean backscattering components of the Northwestern 

mountainous region at HH polarization. 

 

Figure 6.6 highlights the uncertainty in terms of entropy associated with soil 

moisture and backscattering components for the Northwestern Mountainous Region. The 

consistently high entropy value for soil moisture evolution suggests more chaos in 

spatial organization of soil moisture (Fig 6.6a-b). The high entropy in soil moisture 

evolution for this region is attributed mostly to topographically-based distribution effects 

i.e., high elevation and steep mountain slopes result in high runoff/runon events. The 

difference in entropy values is distinct when the 0��T  and 0ZZT  components are compared. 

This property of 0ZZT  component having high entropy values is attributed to the higher 

sensitivity of 0ZZT  component to change in dielectric constant of soil medium with 
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respect to change in soil moisture. In contrast, high entropy is not visible in the 0��T  

component (Fig. 6.6a). The entropy of 0��T  component for this region is relatively 

consistent for the whole study period. Another noticeable feature in Fig. 6.6a-b is the 

contribution of entropy of vegetation and soil-vegetation backscattering components in 

the overall response of HH/VV total backscattering (0��� , 0ZZ� ) entropy. In case of HH 

polarization, the first harmonic of 0���  entropy corresponds to the entropy of 0���  and 

0��T�  components, and the higher harmonic responds to the σHH§  component. However, 

the entropy of 0ZZ�  is almost unaffected by the entropy of 0ZZ�  and 0ZZT�  component. The 

entropy of 0ZZ�  only responds to the entropy of 0ZZT  component. This indicates that with 

sparse vegetation, the scattering in L-band at VV (0ZZ� ) polarization is dominated by the 

underlying surface and not by the vegetation and HH (0��� ) polarization is influenced by 

the overlaying vegetation and the entropy of the HV backscattering (0�Z� ) is insignificant 

(Fig. 6.6c). The mean plots in Fig. 6.4 shows the influence of the vegetation on total 

backscattering, but the entropy plot distinctly illustrates the effects in Fig. 6.6. The 

findings emphasize the dependence of 0���  on vegetation (i.e., NDVI) as an important 

index for algorithm development for the high elevation mountainous region. However, in 

the actual radar backscattering form such mountainous region other factors that is not 

included in this study could also introduce uncertainty i.e., large variation of slope and 

aspect that creates a great variation of local incidence angles and illuminated area. It is 

assumed that the uncertainty due to variation of local incidence angles is a constant 

random error and could be ignored while interpreting the uncertainty due to system and 

geophysical parameters in trends of total radar backscattering for the region.  
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a) 

 

b) 

 

c) 

 

 

 

 

 

Figure 6.6. Entropy of soil moisture and backscattering components of the Northwestern 

Mountainous Region: a) at HH polarization, b) at VV polarization, and c) at HV 

polarization. 

 
 
Central Plains 

The selection of the Central plains region is to analyze the effects of radar 

backscattering from the range and farm lands having rolling topography. As compared to 

the Northwestern mountainous region, the Central plains have a higher average NDVI 
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value throughout the year with slight increase in the summer months due to cropping, 

which is evident in Fig. 6.7. Favorable meteorological forcings and high soil moisture 

status promote high average NDVI for this region and resulting in a higher average 

evapotranspiration for the whole year. The meteorological forcings of this region is 

much more dynamic than the Northwestern mountainous region. The effect of 

evapotranspiration and dynamic forcings is conspicuous in highly variable soil moisture 

evolution (Fig. 6.8) that is induced by faster drydown. The region also maintains high 

average soil moisture values due to higher clay fractions found in the surface soil. All 

these geophysical attributes and state variables dynamics result in high radar 

backscattering components for the Central plains. 

Even with high average NDVI value of this region, the 0ZZT  component is always 

higher and more sensitive to soil moisture evolution than the 0��T  component (Fig. 6.8a-

b). The response to soil drydown is also better for 0ZZT  component. For this region, 

vegetation barely affects 0ZZ� , and 0ZZ�  is dominated by 0ZZT  component (Fig. 6.8b). Like 

the Northwestern mountainous region, the 0���  distinctly shows the contribution of 0���  

and 0��T�  component throughout the time series (Fig. 6.8a). The cross-polarization term 

HV (0�Z� ) shows backscatter for this region, however, still insignificant in comparison to 

co-polarized HH/VV backscattering. The greater amount of 0�Z�  for the Central plains 

than that observed in the Northwestern mountainous region is also attributed to higher 

NDVI values (i.e., higher vegetation amount).  
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Figure 6.7. Mean NDVI and mean backscattering components of the Central Plains at 

HH polarization. 
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a) b) 

c) 

 

 

 

 

 

Figure 6.8. Mean soil moisture and backscattering components of the Central Plains: a) 

at HH polarization, b) at VV polarization, and c) at HV polarization. 
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The mean entropy of soil moisture (Fig. 6.9) shows high temporal variation which 

is typically observed due to uniform and widespread rainfall events that tends to saturate 

the soil surface and diminish the soil moisture variability. The entropy increases with 

natural drydown that is influenced by soil texture and crops of the region and this 

process is mainly prominent in the summer months. The entropy plots (Fig. 6.9a-b) of 

co-polarized HH/VV backscatter have a typical characteristic (i.e., the entropy of 0��T   
and 0ZZT  is greater than the entropy of 0���   and 0ZZ� ) that was not observed in the 

Northwestern mountainous region. The reason behind this behavior in the Central plains 

region is the reduction in variability of 0���   and 0ZZ�  because volume backscattering by 

vegetation removes part of variability in 0���  and 0ZZ�  introduced by 0��T  and 

0ZZ T components. Like the Northwestern mountainous region, the backscattering at HH 

polarization for this region captures more variability (high entropy) in 0���  and 0��T�  

components (Fig. 6.9a). The entropy of cross-polarization backscatter i.e., 0�Z�  also 

responds in this region, although they are very low and insignificant when compared to 

entropy of 0���  and 0ZZ�  (Fig. 6.9a-c). 
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a) b) 

c) 

 

 

 

 

 

  

Figure 6.9. Entropy of soil moisture and backscattering components of the Central 

Plains: a) at HH polarization, b) at VV polarization, and c) at HV polarization. 
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Eastern Plains 

This region was included in the study to assess the effects of high vegetation in L-

band radar backscattering. The vegetation of this region is a mix of deciduous trees and 

croplands and has the highest average NDVI among the three study regions throughout 

the year (Fig. 6.10). The Eastern Plains resembles a typical low lying plain with little 

undulation and sandy soil texture on the land surface. The dense vegetation, sandy soil 

texture and dynamic forcings impart high evapotranspiration rates. Therefore, this region 

experiences highest surface soil moisture variability (Fig. 6.11), among the three study 

areas.  

 

 

Figure 6.10. Mean NDVI and mean backscattering components of the Eastern Plains at 

HH polarization. 
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a) b) 

c) 

 

 

 

 

 

Figure 6.11. Mean soil moisture and backscattering components of the Eastern Plains: a) 

at HH polarization, b) at VV polarization, and c) at HV polarization. 
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Dense vegetation of this region contributes few special characteristics in HH/VV 

backscattering components. For most part of the year (especially spring and summer), 

the 0���  component dominates the 0��T  (Fig. 6.11a), except on very wet days that leads to 

higher backscattering from 0��T . Owing to dense vegetation, considerable amount of 0��T�  

component is also observed (Fig. 6.11a). Furthermore, quite high backscattering form 

σVV©  polarization is also discovered (Fig. 6.11b). A notable exception for the Eastern 

Plains as compared to the observations in the other two regions is its higher vegetation 

backscattering for 0ZZ�  than for 0���  component (Fig. 6.11a-b).  During spring and 

summer, the region experience an almost equal 0���  and 0ZZ� , while it is not observed in 

the Central plains and the Northwestern mountainous region (Fig. 6.4a-b, Fig. 6.8a-b, 

Fig. 6.11a-b). This may be attributed to very rough surface features due to high 

vegetation. This increased roughness results in high volume scattering and tends to 

equalize 0���  and 0ZZ�  components. Similar findings are reported in other studies (e.g., 

[Dubois, et al., 1995], [Ulaby, et al., 1996]), and also demonstrated by geometrical optics 

and integral equation models. It is also evident from Fig. 6.11b that on dry days 0ZZ�  

polarization is nearly equal to backscattering from 0ZZT .  
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As expected, the entropy of soil moisture is much higher than the backscattering 

components. A high variation in the entropy value of soil moisture indicates chaotic 

spatial organization influenced by precipitation and high evapotranspiration rate (Fig. 

6.12). The entropy in Fig. 6.12a-b shows less temporal variability for total 

backscattering, as well as for soil, vegetation and soil-vegetation interaction components. 

Unlike the other two regions, the entropy of 0���  component that is influenced by the 

diverse vegetation pattern is higher than entropy of other backscattering components 

(Fig. 6.12a). The predominant effect of vegetation also renders high entropy in 0��T�  and 

in fact has greater entropy than the entropy of 0��T , except on very wet days. So, it is 

apparent that for high vegetation (high NDVI) the entropy of σHH&  is primarily described 

by the entropy of 0���   and 0��T�  components. However, the region lacks similar 

predominant effect of vegetation on entropy of σVV&  (Fig. 6.12b). The backscattering 

from 0ZZT  component has a major contribution in characterizing the 0ZZ� , as it is clear 

from the entropy of 0ZZT  and 0ZZ�  (Fig. 6.12b). The entropy of 0ZZ�  is also quite significant 

that is normally not seen in other study region. The impact of high roughness in the 

region is also witnessed, due to almost equal entropy of 0���  and 0ZZ� . 
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a) b) 

                                             

  

 

Figure 6.12. Entropy of soil moisture and backscattering components of the Eastern 

Plains: a) at HH polarization, b) at VV polarization, and c) at HV polarization. 

 

Estimation of Surface Roughness and Volume Scattering 

From the aforementioned results and discussions it is obvious that the total radar 

backscattering is a complex summation of individual backscattering components and is 

greatly affected by soil moisture, geophysical, and other system parameters. The new 

algorithm proposed here (Section 4) exploits the summation of radar backscattering 

components for determining certain geophysical parameters. Especially, the HH 
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polarization is used to evaluate surface roughness. As discussed in the above sections, 

the L-band HH polarization (0��� ) is most sensitive to the presence of vegetation which 

influence the overall roughness characteristics. The algorithm uses the synthetic 0��� , 

surface average soil moisture (~5 cm), soil temperature and precipitation data to estimate 

the surface roughness and vegetation backscattering. The assumptions and stochasticity 

in the algorithm introduce uncertainty in derived surface roughness estimates. The 

derived values of surface roughness depend on the inter-storm period, dielectric model 

and the assumption of static vegetation within the inter-storm period. In the study region, 

the validity of assumptions stands a better likelihood during spring and summer months, 

where the inter-storm periods are small. The smaller inter-storm period can capture the 

dynamics of variable surface roughness. However, for extended inter-storm events, the 

cumulative errors of algorithm assumptions (static vegetation within the inter-storm) and 

errors in the model and data may lead to an inferior estimate of surface roughness. For 

the Northwestern mountainous region, a randomly selected pixel, Fig. 6.13 shows the 

derived surface roughness and vegetation backscattering components. The result shows 

that the surface roughness from the algorithm is very similar to the values used in 

calculating the synthetic radar backscattering data. The surface roughness exhibits 

variability during spring and summer months, and are more reliable estimate due to 

shorter interstrom period. The algorithm-estimated vegetation backscattering component 

shows consistency with respect to derived surface roughness, sparse vegetation and soil 

backscattering component for the pixel. However, the derived vegetation backscattering 

parameter shows nearly 25% absolute errors, when compared to synthetic data for the 
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particular pixel. Similarly, other randomly selected pixels show absolute error ranging 

20-30%. The errors in estimated vegetation backscattering are expected and are within - 

reasonable limits considering the simplified assumptions used in the algorithm. Figure 

6.14 illustrate a randomly selected pixel from the Central plain region that exhibits 

typical characteristics of the surface roughness variability. Less variability and 

consistency in surface roughness parameter is found in the Central plain that also agrees 

with the existing ground conditions. The average surface roughness is slightly 

overestimated by 10%, when compared to the value used for calculating the synthetic 

data. The estimated vegetation backscattering for the pixel has nearly 31% absolute 

error. For the region, the absolute errors for estimated vegetation backscattering range 

from 23-36%. Similarly, Fig. 6.15 shows a randomly selected pixel in the Eastern plains. 

The maximum surface roughness is observed for the Eastern plains are consistent to the 

presence of dense vegetation that imparts to this attribute. However, the surface 

roughness is overestimated by nearly 20%. For the Eastern plains, an absolute error 

ranging between 25% and 35% is obtained for estimated vegetation backscattering. The 

algorithm performed reasonably well in approximating surface roughness of the study 

areas. In case of estimation of vegetation backscattering, the algorithm produced 

considerable errors. The major portion of errors in vegetation backscattering is the 

consequence of the mismatch of inter-storm period and NDVI 16 days composite data. 

However, with the future availability of satellite-based radar data at L-band, the problem 

of high error in vegetation backscattering is expected to reduce significantly by 

including the co-registered remote sensing of vegetation water content in the algorithm. 
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Figure 6.13. Algorithm based surface roughness and combined vegetation backscattering 

of the Northwestern Mountainous Region at HH polarization. 
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Figure 6.14. Algorithm based surface roughness and combined vegetation backscattering 

of the Central Plains at HH polarization. 
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Figure 6.15. Algorithm based surface roughness and combined vegetation backscattering 

of the Eastern Plains at HH polarization. 
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6.9. Conclusion 

In preparation for the upcoming soil moisture active passive (SMAP) mission our 

study focuses to characterize the L-band radar backscattering under different 

topography, meteorological conditions, and vegetation densities. Three regions in the 

Red Arkansas river basin were selected based on the attributes of topography and 

vegetation. Synthetic backscattering data with appropriate uncertainties were evaluated 

for the three regions and subjected to entropy-based characterization. Spatial averages at 

daily time step indicates important dynamics of total and individual radar backscattering 

components. Especially, the responses at HH and VV polarizations were investigated. 

Generally, the VV polarization of radar backscattering was found to be most sensitive to 

soil moisture status, whereas the HH polarization was most sensitive to vegetation status. 

The mountainous region showed that with sparse vegetation, the scattering in L-

band at VV (0ZZ� ) polarization is dominated by the underlying surface and not by the 

vegetation and HH (0��� ) polarization is influenced by the overlaying vegetation, and the 

HV backscattering (0�Z� ) is insignificant. For this region overall trend in 0���  could be 

attributed to the trends in 0���  and 0��T�  components. As expected, 0ZZ�  is always greater 

than 0��� . 

The Central plains with moderate vegetation indicated that volume backscattering 

by vegetation removes part of the variability in HH/VV total backscattering (0��� , 0ZZ� ) 

introduced by HH/VV soil backscattering component (0��T , 0ZZT ). The vegetation barely 

affects 0ZZ� , and 0ZZ�  is dominated by 0ZZT . The 0���  polarization distinctly shows the 
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contribution of 0���  and 0��T�  components. The region also experiences higher 

backscattering at 0ZZ�  polarization as compared to 0��� . 

The Eastern plains with dense vegetation that imparts high roughness in the region 

witnessed almost equal 0���  and 0ZZ�  in magnitude. Unlike other regions, the 0���  

component is influenced by the diverse and dense vegetation pattern and is higher than 

the 0��T  component. Most of the variability in the 0���  is captured by the 0���  and 0��T�  

components. 

An algorithm using SVAT model and radar backscattering data is presented to 

derive stochastic surface-roughness and volume scattering by vegetation. The results 

were promising for estimation of surface-roughness. However, further studies and 

realistic radar data is required to reduce the errors in estimation of vegetation volume 

backscattering. The work advances our understanding in active microwave remote 

sensing of soil moisture with region specific characterizations of backscattering 

components. The entropy-based characterization scheme of backscattering dynamics for 

variety of soil, topographic and vegetation conditions will help improve the radar-based 

soil moisture retrieval for upcoming NASA SMAP mission.    
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CHAPTER VII 

GENERAL CONCLUSION 

 

Most of the research mentioned in Chapters II-VI pertaining characterization of 

soil physical parameters and hydrologic modeling for accurate soil moisture estimation 

is directed towards contributing to the understanding of soil moisture dynamics within 

and beyond the satellite footprint. Keeping in perspective the upcoming satellite 

missions (e.g., SMAP mission of NASA) for soil moisture remote sensing, new 

upscaling, downscaling, and data assimilation algorithm based on geophysical 

parameters for soil moisture spatial evolution are developed in these studies and the 

effectiveness is successfully demonstrated. Studies conducted in Chapters II-IV show the 

potential to quantify the subpixel variability and spatial evolution of soil moisture in 

different hydroclimatic regions. The physical controls of soil moisture spatial evolution 

are also identified. Results from studies conducted in semiarid hydroclimatic conditions 

of the Arizona region suggested soil texture as a primary physical control for surface and 

root zone soil moisture. However, the agricultural and grassland/rangeland landscapes of 

the Iowa and the Oklahoma regions, respectively, indicate that a complex combination 

of vegetation, precipitation pattern and soil texture dictates the surface soil moisture 

evolution across the spatial scales.  

Effective application of soil moisture modeling with appropriate boundary 

conditions and modeling framework at field- to satellite footprint-scale that estimates 

stochastic soil hydraulic properties, surface feature attributes, and the radar 
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backscattering is also demonstrated. The new algorithm in Chapter V performed 

satisfactorily to characterize the saturated hydraulic conductivity at the field-scale. The 

algorithm developed in Chapter VI for characterization of surface features i.e., surface 

roughness and surface/volume backscattering is also achieved with reasonable success.  

The future satellite mission, especially SMAP, will provide unique opportunity in 

form of regional-/global-scale data at varying resolutions to study the spatio-temporal 

scaling effect, hydrologic modeling, and data assimilation important for state variable 

and fluxes i.e., soil moisture and evapotranspiration. The technique developed in these 

studies may help unravel soil moisture spatio-temporal patterns, statistical 

characteristics, and spatial scaling issues in a variety of hydroclimatic conditions.    
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CHAPTER VIII 

LIMITATIONS IN THE STUDIES AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 

 

The studies mentioned in this dissertation to estimate soil moisture at various 

spatial scales depend mostly on the data quality, and the hydrologic model parameters 

and structure. Assumptions, errors and uncertainties involved in the data, and the model 

parameter and structure directly impact on the output soil moisture estimates and their 

efficacy in subsequent applications. The implications of the data and the model in this 

dissertation are discussed hereafter. 

Mostly, remote sensing data are used in the studies. The quality of remote sensing 

data largely relies on retrieval algorithm, systematic errors, and natural 

randomness/uncertainties involved in it. A basic assumption in the studies is also that the 

remote sensing data are representative of state/forcings at a specific spatial resolution. If 

the assumption is reasonably valid, then the data errors/uncertainties involved in soil 

moisture modeling are propagated forward in time and also degrade the model 

parameters. To some extent, the errors and uncertainties in remotely sensed soil moisture 

data are handled through data assimilation techniques. However, with the forcings data 

(e.g., rainfall, air temperature, and relative humidity) that bears a significant impact on 

soil moisture evolution, no such effort is made in the studies to improve the quality of 

forcings data by removing errors and uncertainties. So, a caveat for these studies is that 

the quality of forcings may have influenced the interpretation of results. Another aspect 
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of data needs special remark i.e., the satellite-based remotely sensed soil moisture 

measurements provide a snapshot at particular time on a daily basis and do not capture 

any information of subdaily soil moisture dynamics. As the model output are based on 

the average values of daily forcings; incorporating such remotely sensed daily snapshot 

into data assimilation may also lead to inferior soil moisture estimates. Uncertainties in 

geophysical data (e.g., soil, DEM, and vegetation) at coarse spatial resolution are other 

factors that introduces errors in the physical processes (i.e, infiltration, runon/runoff, and 

evapotranspiration), ultimately, affecting the reliability of outputs from the model.       

The difficulties of obtaining unique and conceptually realistic parameter values 

have posed many challenges to hydrological modeling community for decades. The 

research conducted for this dissertation is also not immune to this aspect. Therefore, the 

model parameters uncertainties are another realm in these studies that warrant special 

attention. The effectiveness of a model to describe the states or outputs is constraint 

within the parameter domain. For the studies, the model parameters, which are difficult 

to measure or for which there are insufficient measurements, physical constraints, 

literature review, and past experience with the model, allowed to estimate the best and 

probable range of parameter values (e.g., van Genuchten soil parameters). Stochastic 

approaches are also implemented to describe the model parameters for these studies. The 

model parameters from a multivariate normal distribution whose mean and covariance 

are determined during the stochastic optimization techniques. On occasions, the 

limitations of parameters that affect the output states are especially encountered in 

semiarid regions. For example, the residual water contents are higher than the in-situ or 
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remotely sensed soil moisture. For all the studies, an ensemble of model parameter (i.e., 

soil hydraulic parameters) is used to make it more representative and capture the 

variability present within a specific spatial scale.       

Model-structure is another grey area that is discussed here to highlight the 

implications of estimating soil moisture at varying scales. Model-structure uncertainty 

stem from the inability to truly represent the physical processes occurring on soil surface 

and in soil profile. The uncertainties introduced by the approximations used in the model 

affect the prediction of infiltration, runoff, and evapotranspiration that ultimately 

influence the soil moisture evolution. The model uses Richard’s equation as the 

governing equation for the transport of soil moisture through the soil profile. However, 

the efficacy of Richard’s equation is questioned at large spatial scale. Two approaches 

are normally used to overcome the shortcoming of implementing Richard’s equation at 

large spatial scale. The first is through upscaling the Richard’s equation (e.g., 

[Mantoglou, 1992]), and the second is by using scaled parameters (e.g., [Ines and 

Mohanty, 2008]). The studies in this dissertation use the second approach. Other forms 

of governing equations to model the transport of soil moisture through the soil profile 

are not used in the studies. A model averaging technique that uses various modeling 

concept and governing equation is recommended for future research use. The advantage 

of such technique is to compensate the limitations and drawbacks of a particular model 

by the strengths of other hydrologic models. The modeling framework used in these 

studies also requires special attention. A pseudo-3D framework is formulated that 

comprises 1D SVAT model for all the cell blocks and is connected overland. The 
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hypothesis is that the resultant flow of soil moisture is vertical in the top soil layer at 

coarse spatial scale. However, subsurface lateral transport of soil moisture induced by 

topography is expected among adjoining cell, especially, during wet conditions. This 

part is ignored in the studies that may lead to inferior soil moisture estimate during wet 

conditions.  

Another important aspect that is completely overlooked in these studies is the 

effect of soil temperature on the movement of soil moisture. Soil temperature varies in 

response to change in the radiant, thermal, and latent heat exchange processes which 

take place primarily through the soil surface, therefore, influence the spatial evolution of 

surface soil moisture. The research mentioned in Chapters II-VI greatly depends on 

spatial evolution of surface soil moisture. This imposes another limitation on soil 

moisture outputs from the studies.  

 With the experience and insight gained from the studies, the following 

perspectives are recommended for future research: 

�  A 3D modeling framework is recommended to thoroughly simulate the spatio-

temporal evolution of soil moisture. The significance of 3D hydrologic modeling 

also enhances with increase in resolution.  

� Markov Chain Monte Carlo (MCMC) optimization technique is used in the studies to 

obtain optimal solution for model parameters. Optimization techniques (e.g., genetic 

algorithm, simulated annealing, stochastic tunneling, and particle swarm) other than 

MCMC could also be explored. It is recommended to use a technique that is closest 

to global optimization.     
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� Instead of using one SVAT model for simulating spatio-temporal evolution of soil 

moisture, a suite of models with Bayesian model averaging is recommended. This 

will boost the credibility by providing diverse modeling approaches.    

� It is recommended to use subdaily time step in soil moisture simulation. This will 

capture diurnal soil moisture dynamics, and the data assimilation operation will be 

effective because of better temporal match between subdaily simulation output and 

remote sensing snapshot. 

� To understand the influence and physical controls of geophysical parameter (i.e., 

soil, vegetation, DEM, and precipitation) on soil moisture spatial evolution, it is 

suggested to derive spatially continuous soil moisture at higher resolution (< 4 km 

resolution used Chapter 4).  

� The studies in the dissertation use parameter upscaling to model soil moisture at 

varying spatial scales. For further studies, it is recommended to explore upscaling of 

the governing equations and compare with the parameter upscaling. 
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