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Summary 
 

Computer vision is an inter-disciplinary research field that has as primary objective to 

address visual perception through mathematical modeling of visual understanding tasks. 

The first part of vision –from images to surfaces- has been termed early vision and consists 

of a set of processes that recover physical properties of visible three-dimensional surfaces 

from the two dimensional images. Different arguments suggest that early vision processes 

correspond to conceptually independent modules that a first approximation can be studied 

in isolation. Surface reconstruction is one of these modules. 

 

This thesis is about surface reconstruction from range images using some extensions of 

Tikhonov regularization that produces splines applicable on n-dimensional data. The 

central idea is that these splines can be obtained by regularization theory, using a trade-off 

between fidelity to data and smoothness properties; as a consequence, they are applicable 

both in interpolation and approximation of exact or noisy data. We propose a variational 

framework that includes data and a priori information about the solution, given in the form 

of functionals. We solve optimization problems which are extensions of Tikhonov theory, 

in order to include functionals with local and global features that can be tuned by 

regularization parameters. The a priori is thought in terms of geometric and physical 

properties of functionals and then added to the variational formulation. The results obtained 

are tested on data for surface reconstruction, showing remarkable reproducing and 

approximating properties. In this case we use surface reconstruction to illustrate practical 

applications; nevertheless, our approach has many other applications. In the core of our 

approach is the general theory of inverse problems and the application of some abstract 

ideas from functional analysis. The splines obtained are linear combinations of certain 

fundamental solutions of partial differential operators from elasticity theory and no prior 

assumption is made on a statistical model for the input data, so it can be thought in terms of 

nonparametric statistical inference. They are implementable in a very stable form and can 

be applied for both interpolation and smoothing problems.  

 

Well-posedness of an inverse problem depends on the topological properties, then is very 

important the function spaces in which our optimization problems are going to be 

formulated and solved. Here we show how Schwartz distribution theory is a fundamental 

tool for modeling and understanding of reconstruction problems. Distributional spaces, 

such as Sobolev and Beppo-Levi spaces provides an abstract setting for including discrete 

and continuous function in the same framework. In this way we obtain explicit expressions 

for a family of interpolating and smoothing splines. This family includes the well-known 

Thin Plate Spline (TPS), which is used as performance criterion for testing the other 

members of the class. Numerical tests applied with these splines yield very promising and 

successful results, showing that it is possible to design new splines able to improve the 

properties of TPS by an appropriate selection of parameters and regularization functionals. 

These results also have consequences in other approaches that can be applied for solving 

reconstruction problems as Learning Theory, Nonparametric Statistical Inference and 

Neural Networks. We think that in this way we are making contributions to fill the gap 

between some abstract mathematical ideas and their corresponding engineering applications 
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Chapter 1 

  

 

 

 

Introduction 
 

 

Through vision, we obtain an understanding of what is in the world, where objects are 

located, and how they are changing with time. Because we obtain this understanding 

immediately, effortlessly, and without conscious introspection, we may believe that vision 

should therefore be a very simple task to perform. An important contribution that 

computational studies have made is to show how difficult vision is to perform, and how 

complex are the processes needed to perform visual tasks successfully.  

 

Computer vision is an inter-disciplinary research field that has as primary objective to 

address visual perception through mathematical modeling of visual understanding tasks. It 

has evolved during the last four decades with two main goals: to develop image 

understanding systems and to understand biological vision. Its main focus is on theoretical 

studies of vision, considered as an information processing task. In the second half of the 

twentieth century, there were two important attempts to provide a theoretical framework for 

understanding vision, by David Marr [113] and James Gibson [68]. 

 

We shall focus at the level Marr called computational theory of vision. Marr emphasized 

that vision was nothing more than an information-processing task. Any such task, he 

argued, could be described on three levels: (i) computational theory; (ii) specific 

algorithms; and (iii) physical implementation. 

 

The important point is that the levels can be considered independently. This concept of 

independent levels of explanation remains a paradigm of vision research. Marr attempted to 

set out a computational theory for vision as a whole. He suggested that visual processing 

passes through a series of stages, each corresponding to a different representation, from 

retinal image to 3D model representation of objects. Today, forty years on, most would 

agree that Marr’s framework for investigating human vision and [113-118], in particular, 

his strategy of dividing the problem into different levels of analysis, has become 

unquestioned [74,75].  

 

The first part of vision –from images to surfaces- has been termed early vision and consists 

of a set of processes that recover physical properties of visible three-dimensional surfaces 

from the two dimensional images. Different arguments [114,116] suggest that early vision 

processes correspond to conceptually independent modules that as first approximation can 

be studied in isolation. Surface reconstruction is one of these modules. Other early vision 

modules are edge detection, spatio-temporal interpolation and approximation, 
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computational optical flow, shape from contours, shape from texture, shape from shading 

and binocular stereo. 

 

A very remarkable fact is that most early vision problems are ill-posed in the sense defined 

by Hadamard [81]. A problem is well posed when its solution (a) exists, (b) is unique, and 

(c) depends continuously on the initial data. Ill-posed problems fail to satisfy one or more 

of these criteria. Bertero, Poggio and Torre [18] show precisely the mathematically ill- 

posed structure of these problems. This fact suggests the use of regularization methods 

developed in mathematical physics for solving the ill-posed problems of early vision. 

 

The main idea supporting Tikhonov regularization theory [179,132,82,83] is that the 

solution of an ill-posed problem can be obtained using a variational principle, which 

contains both the data and prior smoothness information. If we consider, for instance, 3D 

data, these two features are taken into account, assuming  ( )i iz f a  and minimizing the 

functional 

 

2

1

1
min [ ] : ( ( ) ) [ ] .

M

i i
f

i

f f a z R f
M






      (1.1) 

 

With this approach, we are looking for an approximation that is simultaneously close to the 

data and smooth. Smoothness is included with the smoothness functional or regularizer 

[ ]R f  in such a way that lower values of the functional corresponds to smoother functions, 

and   is a positive number called regularization parameter.  

 

  

1.1   Surface Reconstruction from range image data  

 
In the area of surface reconstruction the goal is to obtain a digital representation of a real, 

physical object or phenomenon described by a cloud of points, which are sampled on or 

near the object’s surface. Recently there has been a growing interest in this field motivated 

by the increased availability of point-cloud data obtained from medical scanners, laser 

scanners, vision techniques (e.g. range images), and other modalities. 

 

Range images [36,61,20] are a special class of digital images. Each pixel of a range image 

expresses the distance between a known reference frame and a visible point in the scene. 

Therefore, a range image reproduces the 3D structure of a scene. Range images are also 

referred to as depth images, depth maps, xyz maps, surface profiles and 2.5D images.  

 

Range images can be represented in two basic forms. One is a list 3

1 2{ , , , }MA a a a 

of M  scattered points in 3D coordinates ( , , )i i i ia x y z , 1, ,i M  in a given reference 

frame (point clouds), for which no specific order is required. The other is a matrix of depth 

values of points along the directions of the ,x y  image axes, which makes spatial 

organization explicit. Intensity images are of limited use in terms of estimation of surfaces. 

Pixel values are related to surface geometry only indirectly. Range images encode the 

position of surface directly; therefore, the shape can be computed reasonably easy.  
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Apart from being ill-posed, the problem of surface reconstruction from unorganized point 

clouds is challenging because the topology of the real surface can be very complex, and the 

acquired data may be non-uniformly sampled and contaminated by noise. Moreover, the 

quality and accuracy of the data sets depend upon the methodologies which have been 

employed for acquisition (i.e. laser scanners versus stereo using uncalibrated cameras). 

Furthermore, reconstructing surfaces from large datasets can be prohibitively expensive in 

terms of computations.  

 

Our approach to surface reconstruction will be based in the following multivariate 

interpolation problem: 

 

Given a discrete set of scattered points 
1 2{ , , , } n

MA a a a   and a set of possible noisy 

measurements
1{ }M

i iz 
, find a continuous or sufficiently differentiable function 

: nf  , 

such that f  interpolates ( ( )i if a z ) or approximates ( ( )i if a z ) the data  

 

    
1D {( , ) } .n M

i i ia z     

 

 
1.2   Applications of 3D reconstruction 
 

Surface reconstruction is an important problem in computational geometry, computer 

aided design (CAD), computer vision, graphics, and engineering. The problem of building 

surfaces from unorganized sets of 3D points has recently gained a great deal of attention. In 

fact, in addition to being an interesting problem of topology extraction from geometric 

information, its applications are becoming more and more numerous. For example, the 

acquisition of large numbers of 3D points is becoming easier and more affordable using, for 

example, 3D-scanners [20]. There are a number of other applications where objects are 

better described by their external surface rather than by unorganized data (clouds of points, 

data slices, etc.). For example, in medical applications based on CAT scans or NMRs it is 

often necessary to visualize some specific tissues such as the external surface of an organ 

starting from the acquired 3D points. This can be achieved by selecting the points that 

belong to a specific class (organ boundary, tissue, etc.) and then generating the surface 

from their interpolation. In most cases the definition of this surface is an ill-posed problem 

as there is no unique way to connect points of a dataset into a surface; therefore it is often 

necessary to introduce constraints for globally or locally controlling the surface behavior. 

As a matter of fact, the resulting surface often turns out to exhibit a complex topology due 

to noise in the acquired data or ambiguities in the case of non-convex objects [200]. In 

order to overcome such problems, surface reconstruction algorithms need to incorporate 

specific constraints on the quality of the data fitting (surface closeness to the acquired 

points), on the maximum surface curvature and roughness, on the number of resulting 

triangles, etc.  

  

Three dimensional object surface reconstruction and modeling plays a very important role 

in reverse engineering [146]. For example, if we want to build a geometrical model to a 
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3D object for reproduction, the only way is to scan the object with a digital-data acquisition 

device and perform surface reconstruction to get its geometrical model. While conventional 

engineering transforms engineering concepts and models into real parts, in reverse 

engineering real parts are transformed into engineering models and concepts. The existence 

of a computer model provides enormous gains in improving the quality and efficiency of 

design, manufacture and analysis. Reverse engineering typically starts with measuring an 

existing object so that a surface or solid model can be deduced in order to exploit the 

advantages of CGD/CAM technologies.  

 

There are several application areas of reverse engineering. It is often necessary to produce a 

copy of a part, when no original drawings or documentation are available. In other cases we 

may want to re-engineer an existing part, when analysis and modifications are required to 

construct a new improved product. In areas where aesthetic design is particularly important 

such as in the automobile industry, real-scale wood or clay models are needed because 

stylists often rely more on evaluating real 3D objects than on viewing projections of objects 

on high resolution 2D screens at reduced scale. Another important area of application is to 

generate custom fits to human surfaces, for mating parts such as helmets, space suits or 

prostheses. It is important to say that there exist other meanings for reverse engineering but 

we refer here to surface reconstruction. 

 

Since surface-based representation of a 3D object is crucial not only in data rendering, but 

also in 3D object analysis, modeling and reproduction, many surface reconstruction 

algorithms have been proposed in recent years. In 3D object reconstruction and display, 3D 

surface points can be collected either by tactile methods such as Coordinate Measuring 

Machines (CMM), or via non-contact methods, such as magnetic field measurement 

machines and optical range scanners. After surface point acquisition, the next step of 3D 

object reconstruction will be data fusion (patch registration and integration) to translate the 

surface point sets captured at different view-angles into a common coordinate system, 

known as the World Coordinate System (WCS), and merge the overlapping points of any 

two neighboring data sets. The last step of the process is surface reconstruction (surface 

meshing/triangulation) and rendering.  

 

From the point of view of technology, 3D reconstruction methods can be collected under 

two groups: active and passive. Active methods make use of calibrated light sources such 

as lasers or coded light most typical example of which is the shape from optical 

triangulation method. Passive methods on the other hand, extract surface information by the 

use of 2D images of the scene. Among the most common that fall into this category are the 

techniques known as shape from silhouette, shape from stereo, and shape from shading. 

Many results are available concerning reliable reconstruction of objects using these 

methods. However, there is still a need for improved reconstructions since each specific 

method, active or passive, has its own drawbacks and deficiencies. 

  

All techniques that recover shape are commonly called “shape-from-X,” where X can be 

shading, stereo, texture, or silhouettes, etc. (see [9,58,93,98,148,166] and the references 

therein). For example, in the stereo problem, one first extracts features (e.g., corners, lines, 

etc.) from a collection of input images, and then solves the so-called correspondence 

problem, i.e., matching features across images. After obtaining depth information at the 
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locations of the extracted features, one needs to reconstruct the surfaces of the objects 

present in the scene. One way of achieving this is by using techniques that reconstruct 

surfaces from point clouds. Reconstructing a surface from unorganized point clouds is a 

challenging problem because the topology of the real surface can be very complex, the 

acquired data may be non-uniformly sampled and the data may be contaminated by noise. 

In addition, the quality and accuracy of the data sets strongly depend upon the acquisition 

methodology. Furthermore, the computational cost of reconstructing surfaces from large 

datasets can be prohibitive. Most of the existing reconstruction methods were developed 

postulating that precise and noise-free data is available. Therefore, they cannot meet the 

demands posed by noisy and/or sparse data. 

  

 
1.3   Requirements of surface reconstruction 
 

A primary goal of early vision is to recover the shapes and motions of 3D objects from their 

images. To achieve this goal, we must synthesize visual models that satisfy a bewildering 

variety of constraints. Some constraints derive from the sensory information content of 

images. Others reflect background knowledge about image formation and about the shapes 

and behaviors of real-world objects. Exploiting diverse constraints in combination has 

proven to be a challenge. We need models which not only integrate constraints, but which 

escape the confines of conventional representations that impose simplifying assumptions 

about shape and motion. Computational vision calls for general-purpose models having the 

capability to accurately represent the free-form shapes and nonrigid motions of natural 

objects---objects with which the human visual system copes routinely. Clearly, we are 

looking for models that can accommodate deformation, nonconvexity, nonplanarity, inexact 

symmetry, and a gamut of localized irregularities. 

 

Many results are available concerning reliable reconstruction of objects using different 

methods. However, there is still a need for improved reconstructions since each specific 

method has its own drawbacks and deficiencies. A reconstructed surface is an intermediate 

representation to bridge the gap between sensor data and a symbolic description of a 

surface. An ideal framework or algorithm for reconstruction should have several properties 

[97] that Marr eloquently expresses [113] in the following conditions: 

 

R1. Reconstruction must be invariant with respect to viewpoint, that is, to rotations and 

translations of the surfaces being reconstructed. This is especially important when 

reconstruction is part of an object recognition system. In this case a change in this 

intermediate representation may cause a change in any symbolic description that is derived, 

resulting in failure to identify objects in a scene. 

 

R2. It is desirable to find discontinuities in both depth and orientation. A reconstruction 

algorithm, if detection of discontinuities is not simultaneously carried out in the 

reconstruction process, should at least sharply preserve regions near discontinuities for a 

later stage of discontinuity detection.  

 

R3. A reconstruction framework should conduct to computationally efficient algorithms 
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We use these requirements as a guide for our proposal of surface reconstruction, although it 

is extremely difficult, if not impossible, to fully satisfy them. Nevertheless, from the early 

work of Marr [113] it has been shown that problems of computer vision are a set of ill- 

posed problems, so we have considered regularization theory as the most natural tool for 

dealing with these problems, in particular surface reconstruction. The purpose of this thesis 

is not only to derive a method for surface reconstruction but to provide a framework and 

mathematical formulation for thinking and incorporating knowledge about the problem.  

 

 

1.4   The thesis objectives  

 

1.4.1   General  
 

Our goal is to give a general approach and a theoretical framework for solving the problem 

of surface reconstruction from range image data, incorporating both local and global 

information about the surface. 

 

 

1.4.2   Specific  
 

1. Formulation of surface reconstruction as a variational problem in terms of inverse 

theory. 

 

2. To establish a regularization approach and a mathematical framework for surface 

reconstruction able to satisfy data and smoothness constraints on the surface. 

 

3. To obtain criteria for the selection of smoothing functionals and regularization 

parameters that satisfies local or global features. 

 

4. Validation of the proposed framework for surface reconstruction with point clouds 

from different objects, using criteria as accuracy and computational complexity. 

 

 

Surface reconstruction is one of the fundamental problems of computer vision, a class of 

extremely ill-posed inverse problems that has originated two branches of functional 

analysis:  

 

(a) The theory of generalized inverses, which is an extension of the Moore-Penrose inverse 

of a matrix and  

 

(b) The regularization theory of inverse problems. 

 

Given the difficulty of the problem we are dealing with, it is not enough to use the theory of 

generalized inverses. As a consequence we apply regularization theory as a variational 

problem on infinite-dimensional function spaces.  
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Naturally, trying to represent a completely arbitrary surface with a function f is next to 

impossible. Therefore one should make some assumptions about this function. The most 

common assumptions are explicit assumptions about the shape, or the form of the function. 

We fulfill these objectives considering our functions and our data as linear functionals on 

Schwartz’s distributional spaces (generalized functions) [40,65,66,152,163,164,202] and 

analyzing the problem under the point of view of some generalizations of Tikhonov 

regularization.  

 

From the practical point of view, we to obtain explicit representations for a surface in the 

form : nf  , making interpolation or approximation of range data 
2

1D {( , ) }M

i i ia z    . The function f  may then be used as a model or representation of 

the real object or phenomenon from which data are taken. 

 

We approach the problem of surface reconstruction with a generalization of the standard 

regularization (1.1) that satisfy the above mentioned requirements (R1, R2, R3). The 

regularization functionals come from a seminorm 2[ ] | |R f Pf , where P  is a differential 

operator and  is an appropriate function space, so we can make different choices for 

[ ]R f .  

 

 

1.5   Proposed model 

 
Our framework uses two regularization functionals

1R ,
2R , one functional for global 

smoothness and other for locality; with their corresponding regularization parameters 
1 ,

2 , included in the variational problem  

 

2

1 1 2 2

1

1
min [ ] ( ( ) ) [ ] [ ],

M

i i
f

i

f f a z R f R f
M

 




      (1.2) 

 

where 
1R ,

2R  are functionals taken from the family of seminorms 

[ ]R f  [ ]mJ f 2

| |

!
| ( ) |

!
x x

n

m

m
f d

 

  .   (1.3) 

 

These seminorms include and generalize to n dimensions the Tikhonov original proposal 

[170] given by the norm 2

0

[ ] ( )
mp

m m
m

d f
R f w dx

dx

 .  

 

A seminorm has the same properties of a norm with the difference that its null space can be 

different from zero. This property makes seminorms less restrictive than norms. 

Furthermore, it can be proved that a seminorm is an enough condition for solving the 

optimization problem [78,79,48,122].  
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We provide an abstract framework for the solution ( )xS of our proposal (1.2) and obtain 

these solutions as translates of a basis function : [0, [   , in the form 

1

( ) (|| ||) ( )x x x
M

j j

j

S a p


    .    (1.4) 

These splines are linear combinations in terms of the fundamental solutions (Green’s 

functions) of operators formed by different combinations of m , where   is the Laplacian 

operator and 1( )m mf f    . They include Thin Plate Spline (TPS) and splines in 

tension [63, 178]. For example, when 2m n  , [ ]mJ f  represents the potential energy of 

deformation of a thin plate, so if an elastic material is deformed to satisfy the constraints

( )i if a z , the plate fits these points, minimizing its potential energy 

 

2

2 2 2
2 2 2

2 2 2
[ ] ( ) 2( ) ( ) .

f f f
J f dx dy

x yx y

  
  

     (1.5) 

 

In this approach, we satisfy requirements (R1, R2, R3) of surface reconstruction in the 

following way: 

 

R1. Our solutions to regularization framework have radial form given by (1.4). As a 

consequence they are invariant to rotations and translations.  

 

R2. We use local and global functional with two regularization parameters one for locality 

and other for global smoothness. 

 

R3. And they have robust implementation because they have explicit mathematical 

expressions as linear combinations of translates of a basis function whose weights are 

found solving a system of linear equations. 

 

This work is mainly inspired in Marr and Poggio [113-118] with their formulation of 

computational vision as a set of inverse problems; D. Terzopoulos [174-178], in the 

addition of proper functional for improving standard regularization, and J. Duchon [47-50] 

in his distributional approach for the solution of variational problems. 

 

We preserve the main virtues of these three viewpoints and we also provide some 

contributions that make a difference with them. For example, Terzopoulos [167] do not 

give demonstrations of our explicit expressions ( )xS for the solution of the variational 

problem, instead, he used finite element methods for managing discontinuities; we do it by 

tuning the regularization parameters. On the other side, Duchon [48] handle variational 

problems in a distributional approach but he does not consider noisy data. 

 

 

1.6   Contents and contributions 
 

This work is based in and at the same time is a generalization of these previous publications 

of the author [129-131] 
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In the first paper [129] we made a proposal of regularization for surface reconstruction 

from point clouds in the framework of radial basis functions. In the second paper [130] we 

make a generalization to several kinds of data and the third one we contribute some 

practical applications.  Now, in this thesis our work goes further in order to formulate the 

general problem of surface reconstruction in terms of inverse problems theory. We are 

showing splines and radial basis functions as a particular case of our framework. The key 

idea is the extension of Tikhonov regularization to include global and local characteristics 

of data to be reconstructed. We propose a regularization approach under a unified 

variational framework that includes fidelity to data and generalization of the surface and 

makes a proper choice of the a priori knowledge in the form of regularization functionals. 

 

Traditionally, surface reconstruction problems and their solutions are considered for 

particular problems, and different methods have been developed for each case. Unlike this, 

we face the problem with an integrated framework. The advantage of this approach is that 

provide the engineering community with a tool that helps to bridge the distance between 

theory and applications. Our approach lies heavily on inverse problems theory and 

approximation theory, so we can obtain robust methods and algorithms.  

 

Up to now, many researchers do not have paid enough attention to criteria for choice of 

regularization functionals. We tackle this problem selecting these functionals by physical 

and geometric criteria, providing a heuristic reasoning that enriches the mathematical 

formulation. 

 

In chapter 1, we state the problem of surface reconstruction from range data and its 

importance for engineering and technology. We then identify the question as an inverse 

problem with many applications in the so called inverse engineering pipeline, making 

emphasis in reconstruction from point clouds. We then explain the purpose and 

contributions of the thesis, mainly inspired in : Marr and Poggio with their formulation of 

computational vision as a set of inverse problems; D. Terzopoulos, in the addition of proper 

functional for improving standard regularization, and J. Duchon in his distributional 

approach for the solution of regularization. 

 

Next, in chapter 2 we place our work into the past and present of surface reconstruction. 

We review the state of the art and make a classification of methods for surface 

reconstruction. Currently there is a wide variety of methods; a situation which may produce 

confusion among developers of applications; so this problem deserves a conceptually based 
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taxonomy. We propose to classify the different procedures as: geometric, statistical and 

regularization methods.  

 

In chapter 3 we state one of our contributions to the philosophical basis of inverse 

problems, showing a set of problems as noise, complexity and others, which should be 

identified and tackled in surface reconstruction problems. We have called them the seven 

intrinsic problems of surface reconstruction, and its statement is done in terms of how 

regularization theory contributes to their solution. 

 

In chapter 4 we do the mathematical statement of this thesis problem: The problem of 

surface reconstruction from point clouds. Using ideas from functional analysis, we make an 

integrated treatment of the problem, showing how inner product spaces and seminorms 

provide an abstract setting for surface reconstruction. Our framework uses two 

regularization functionals, one for global smoothness and other for locality; with their 

corresponding regularization parameters, we distinguish two basic problems: interpolation 

and smoothing. The first alternative can be applied on exact data, the second one, for noisy 

data. One important fact is that our proposal of regularization includes and solves both 

problems in a unified variational framework. 

 

In chapter 5, we show how the study of seminorms, provide us a set of criteria for 

choosing the functionals which later will be used as regularizers. Although theoretically 

many functionals could be used for this task, some extra criteria or constraint should be 

imposed to its choice. We show that physical and geometrical criteria provide a firm guide 

in this decision. Seminorms associated with classical problems of continuum mechanics, as 

for instance the concept of deformation potential energy, are shown to be very useful and 

enrich the solutions of variational problems with very suggestive heuristic interpretations. 

This interpretation enables us for handling global and local features in terms of 

regularization functionals.  

 

Chapters 6, it is the most theoretical one and provides strong and very refined 

mathematical tools. Here we use Schwartz distribution theory (generalized functions) for n

-dimensional surface reconstruction. Distributional function spaces combine continuous 

and discrete functions in a unified framework, making possible the reconstruction of 

scattered data which are the basis of modern meshless methods. With distribution theory, 

we can develop a successful generalization of minimum norm problems from one to n  

dimensions. Although this treatment of inverse theory is more abstract than usual and 

requires a big amount of functional analysis, our reward is a theory that provides 

constructive proofs and implementable algorithms. Following this framework, we find that 

some ideas of classical analysis, as reproducing kernel Hilbert spaces and Green’s functions 

yield very practical results for constructing interpolating and smoothing splines.  

 

Chapter 7 contains applications and algorithmic implementations; here we apply the ideas 

developed in the former chapters to obtain concrete and explicit solutions to surface 

reconstruction. Here is shown the way in which variational methods are applied to 

interpolation of point clouds data and its solutions are obtained as linear combination of 

translates of radial basis functions, implementable as the solution of a linear system. The 
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ideas from distribution theory are combined with Hilbert space properties in a general 

abstract framework that includes ( , )m s -splines and -splines. 

 

In chapter 8 we present general results for our proposed model, considering data with or 

without noise. The most interesting aspect is that these results provide general solutions in 

the form of radial functions that include two regularization parameters. In the same way, we 

obtain practical algorithms for interpolation and approximation of range data. 

 

Finally in chapter 9, the properties and applicability of our models are analyzed using 

exact and noisy data. We use different criteria in order to find the best performer among a 

family of splines that resulted as a consequence our proposed model of regularization. We 

find that these splines fit the properties we are looking for, about the detection of local and 

global features in the data. From these splines only thin plate spline is well known. The 

analysis shows that our results are a good alternative for problems of reconstruction, 

performing equally well to TPS and better than it in complex situations (for example, noisy 

data), where models better than TPS are necessary. In chapter 10 we make conclusions and 

future research. 

 

 

1.7   Brief contents by chapter 

 
Chap 1. Statement of thesis problem and its relevance in engineering and science  

 

Chap 2. The state of the art and methods of surface reconstruction  

 

Chap 3. The key problem in terms of regularization theory  

 

Chap 4. Regularization theory in surface reconstruction 

 

Chap 5. The physical meaning 

 

Chap 6. The math tools  

 

Chap 7. Interpolation  

 

Chap 8. Smoothing  

 

Chap 9. Applications 

 

Chap 10. Conclusions 
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Fig. 1.1 Structure of the chapters 

 

 

The logical dependence of chapters (Fig. 1.1) can be used by different readers, in the 

following manner:  

 

 Inverse problems applications: Chapters 1, 2,3,5,8 

 

 Distribution theory and its applications: Chapters 6, 7, 8 

 

 Applications of splines: Chapters 4,6,7,9  
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Chapter 2 
 

 

 

 

Review and classification of methods for 

surface reconstruction 
 

 

2. 1   Introduction  
 

The computer graphics, computer-aided design and computer vision literatures are filled 

with an amazingly diverse array of approaches to surface description. The reason for this 

variety is that there is no single representation of surfaces that satisfies the needs of every 

problem in every application area. 

 

Apart from being ill-posed, the problem of surface reconstruction from unorganized point 

clouds is challenging because the topology of the real surface can be very complex, and the 

acquired data may be non-uniformly sampled and contaminated by noise. Moreover, the 

quality and accuracy of the data sets depend upon the methodologies which have been 

employed for acquisition. Furthermore, reconstructing surfaces from large datasets can be 

prohibitively expensive in terms of computations. 

 

Methods to digitize and reconstruct the shapes of complex three dimensional objects have 

evolved rapidly in recent years. The speed and accuracy of digitizing technologies owe 

much to advances in the areas of physics and electrical engineering, including the 

development of lasers, CCD’s, and high speed sampling and timing circuitry. Such 

technologies allow us to take detailed shape measurements with precision better than 1 part 

per 1000 at rates exceeding 10,000 samples per second. To capture the complete shape of 

an object, many thousands, sometimes millions of samples must be acquired. The resulting 

mass of data requires algorithms that can efficiently and reliably generate computer models 

from these samples. 

 

Surface reconstruction from unorganized data set is very challenging in three and higher 

dimensions. Furthermore the ordering or connectivity of data set and the topology of the 

real surface can be very complicated in three and higher dimensions. A desirable 

reconstruction procedure should be able to deal with complicated topology and geometry as 

well as noise and non-uniformity of the data to construct a surface that is a good 

approximation of the data set and has some smoothness (regularity). Moreover, the 

reconstructed surface should have a representation and data structure that is not only good 

for static rendering but also good for deformation, animation and other dynamic operation 

on surfaces. None of the present approaches possess all of these properties. 
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In general, surfaces can be expressed in an implicit or explicit form. An explicit form of a 

surface is the graph of a function of two variables.  

 

Definition 2.1. Let : nf   . The graph of f  it is the subset of 1n  consisting of 

the points 1 1( , , , ( , , )),n nx x f x x
 
for 1( , , )nx x   an open subset of .n

 In symbols  

 

  
1

1 1 1{( , , , ( , , )) : ( , , ) }n

n n ngraph f x x f x x x x   ,  

 

for the case 1n   the graph is, intuitively speaking, a curve, while for 2,n   it is a surface. 

In the context of vision, the depth maps produced from stereo algorithm or a range finder 

can be interpreted as the sample data set from a surface in the explicit form ( , )z f x y , 

where z is the distance from the viewer to the object points in a scene and ( , )x y  are the 

image plane coordinates. The implicit form of a surface in 3  is expressed as the function  

 

   
3: ;f   ( , , )f x y z  constant, 

 

where ( , , )x y z are the Cartesian coordinates of the surface points. Of course, the explicit 

form is a special case of the implicit equation. In fact, all surfaces in the explicit form can 

be transformed to an implicit form but not vice versa. Another useful representation of a 

surface is the parameterized form. A parametric surface in 3
 is a smooth map 

2 3:x   , where   is a connected open set in 2 such that x pd  has rank 2 for 

each p . In this way the surface   will be a set of points x  of the form   

 

1 2 1 1 2 2 1 2 3 1 2( , ) ( ( , ), ( , ), ( , ))x u u x u u x u u x u u ,  1 2( , ) .u u    

 

Explicit (boundary) representations describe the surface in terms of point connections, and 

traditional approaches are based on Delaunay triangulation and Voronoi diagrams [6,52]. 

Another well known explicit approach is a parametric surface description based on NURBS 

[140,149]. One example of surface-oriented solution, proposed in [140,90] is based on the 

computation of the signed Euclidean distance between each sample point and a linearly 

regressed plane that approximates the local tangent plane. Curless and Levoy [38] 

developed an explicit algorithm tuned for laser range data, which is able to guarantee a 

good rejection of outliers (points whose coordinates were not correctly acquired). Another 

well-known approach is the α-shape [53,54], which associates a polyhedral shape to an 

unorganized set of points through a parameterized construction. 

 

Now we propose a classification for surface reconstruction methods. Our approach can be 

compared to previous works in the areas of shape representation, reconstruction, 

smoothing, and surface regularization. The large number of published methods requires a 

comprehensive classification, but it is nearly impossible to perform a perfect survey. We 

describe some of the most well-known approaches, with a bias towards those more closely 

related to our regularization framework.  
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2.2   Geometric methods  

 
One of the key concepts in these methods is a triangular mesh, because it is obtained 

directly from the data; this is a simple representation of the topology of the object, but if 

other properties are required, a better representation is needed. In this context the problem 

of surface reconstruction can be stated as follows: Let   be a surface of objectO , and 

assume that   is a smooth twice-differentiable two dimensional manifold, embedded in an 

Euclidian three-dimensional space 3 . Given a discrete set of points 

 
3

1 2{ , , , }MA a a a  ,  

 

that samples the surface  ; find a surface   that approximates  , using the data set A . 

The reconstructed mesh   must be topologically equivalent to the surface of the original 

object. In order to get this, a good idea is to take advantage of the different geometric 

viewpoints under which one can see an object and its surface. This is done studying 

properties that may be local, intrinsic or global; examples of these are respectively, tangent 

planes, Gaussian curvature or Gauss-Bonnet theorem. All the properties considered should 

be, sooner or later, discretizable in order to be applicable on point clouds 

 

Geometric methods range from the simple but very useful triangular mesh to more 

sophisticated tools that come from fields such as algebraic topology or Differential 

geometry. These developments have conducted to a new branch of geometry – discrete 

differential geometry [22], whose aim is to develop discrete equivalents of the geometric 

notions and methods of classical differential geometry, where a surface   can be seen as a 

collection of points in 3 . 

 

A popular approach in computer vision is to reconstruct a triangulated surface using 

Delaunay triangulations and Voronoi diagrams. The reconstructed surface is usually a 

subset of the faces of the Delaunay triangulations. A lot of research has been done with this 

approach [52,90] and efficient algorithms have been designed to compute Delaunay 

triangulations and Voronoi diagrams. Although this approach is very versatile and can deal 

with general data sets, the constructed surface is only piecewise linear and it is difficult to 

handle non-uniform and noisy data. Recently, implicit surfaces or volumetric 

representations have been used most frequently in recent years for surface reconstruction 

from point clouds. These are based on well established algorithms of computer tomography 

like marching cubes and therefore are easily implemented. They produce approximated 

surfaces, so that error smoothing is carried out automatically. The method of Hoppe [90] is 

able to detect and model sharp object features. Curless and Levoy [38] can handle millions 

of data points. Levoy et al. [106] used this reconstruction method for their huge Digital 

Michelangelo Project. 

 

The traditional approach [21,133,183] uses a combination of smooth basis functions such as 

blobs, to find a scalar function such that all data points are close to an isocontour of that 

scalar function. This isocontour represents the constructed implicit surface. However 

computation costs are very high for large data sets, since the construction is global which 
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results in solving a large linear system. The second approach uses the data set to define a 

signed distance function on rectangular grids and denotes the zero isocontour of the signed 

distance function as the reconstructed implicit surface [15,29]. The construction of the 

signed distance function uses a discrete approach and needs an estimation of local tangent 

planes or normals for the orientation, i.e. a distinction needs to be made between inside and 

outside.  

 

Using the signed distance representation, many surface operations such as Boolean 

operations, ray tracing and offset become quite simple [139, 195]. Efficient algorithms 

[129,184], are available to turn an implicit surface into a triangulated surface. In [41] 

implicit surfaces are used for animation and the level set method is used for surface 

reconstruction from range data in [36]. In fact the level set method [201] provides a 

general framework for the deformation of implicit surfaces according to arbitrary physical 

and/or geometric rules. 

 

Triangle meshes are so-called unstructured grids [193] and therefore it is not possible to use 

conventional modeling or signal processing methods like tensor product surfaces or linear 

filters. Unfortunately, no basic theory exists for handling unstructured data in order to 

estimate surface normals and curvature, interpolate curved surfaces, and subdivide or 

smooth triangle meshes. An approach for general meshes was proposed by Taubin [173]. 

He has generalized the discrete Fourier transformation by interpreting frequencies as 

eigenvectors of a discrete Laplacian. Defining such a Laplacian for irregular meshes allows 

to use linear signal processing tools like high and low pass filters, data compression and 

multiresolution hierarchies. However, the translation of concepts of linear signal theory is 

not the optimal choice for modeling geometry data. Surfaces of three-dimensional objects 

usually consist of segments with low bandwidth and transients with high frequency 

between them. They have no “reasonable” shape, as it is presupposed for linear filters. 

“Optimal” filters like Wiener or matched filters usually minimize the root mean square 

(RMS) error. Oscillations of the signal are allowed, if they are small. For visualization or 

milling of surfaces, curvature variations are much more disturbing than small deviations 

from the ideal shape. A smoothing filter for geometric data should therefore minimize 

curvature variations. 

 

 

2.3   Statistical methods 
 

Statistical methods explain data 1D {( , ) }n M

i i ia z     from a surface, with a stochastic 

model by considering that the observations iz , constitute a realization of an stochastic 

process. Under this point of view the surface reconstruction problem is solved by finding 

the response (x)f  of an unknown function f  at a new point x  of a set , from a sample of 

input-response pairs ( , ( ))j ja f a  given by observation or experiment. Now the response jz  

at ja  is not a fixed function of ja  but rather a realization of a random variable Z( ja ). It is 

assumed that for each x  there is a real-valued random variable (x)Z  which replaces 

f  in the deterministic approach. The purpose is to get information about the expectation
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( ( ))xE Z  of (x)Z  with bounded positive variance  2[ ( ) ( ( )]x xE Z E Z  . If x  is close to 

y  the random variables ( )xZ and ( )yZ  will be correlated. This is described by a covariance 

kernel cov( , ) : ( ( ) ( ))x y x yE Z Z  .  

 

The stochastic solution to ill-posed problems is a straightforward application of Bayesian 

interpretation of regularization [99]. In a Bayesian approach [188,18,119], the stabilizer 

corresponds to a smoothness prior, and the error term to a model of the noise in the data 

(usually gaussian and additive). Following Girosi et al. [70]; for surface reconstruction, it is 

supposed that 1D {( , ) }n M

i i ia z     are noisy data obtained from sampling the function 

f , thus  

( )
i i i

f a z   , 1, ,i M ,    (2.1) 

 

where i  are random independent variables with a given distribution. The problem is to 

recover f  or an estimate of it from the set of data D . f  is the realization of a random field 

with a known prior probability distribution. The Bayesian interpretation find the function f  

which maximizes the conditional probability of the function f  given D [ | ]P f D  by using 

Bayes rule 

 

[ | ]P f D  [ | ]P D f [ ],P f      (2.2) 

 

where [ | ]P D f  it is the conditional probability of D  given f . [ ]P f  is the a priori 

probability of the random field f , and embodies the a priori knowledge of the function. 

Assuming the noise variables in equation (2.1) are normally distributed with variance   

then  

[ | ]P D f  

2

2 1

1
( ( ) )

2

M

i ii
f a z

e  
 

. 

 

Taking a model known in statistical physics it is defined [ ]P f  [ ]R fe  , hence replacing in 

(2.2) 

 

[ | ]P f D 

2

2 1

1
( ( ) ) 2 [ ]

2

M

i ii
f a z H f

e


 
  

.    (2.3) 

 

One estimate of the function f  from the probability distribution (2.3) is the maximum a 

posteriori (MAP) estimate that maximizes the a posteriori probability [ | ]P f D  and 

therefore maximizes the exponent in (2.3). The MAP estimate therefore minimize the 

functional  

2

1

[ ] ( ( ) ) [ ]
M

i i

i

f f a z R f


   ,   (2.4) 

 

which it is the well-known regularization model.  
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In statistical methods 3D objects can be represented by regression models. Fitting data to a 

model is a basic statistical tool that has been frequently used in computer vision. Objects in 

range images are simply represented by the polynomial surface model. With the estimated 

surface parameters, the range image analysis such as reconstruction and segmentation can 

be achieved easily. The model parameters are commonly estimated by the least squares 

(LS) method that yields optimum results for the Gaussian noise case. However, it becomes 

unreliable if non-Gaussian noise (e.g., impulse noise) is added. Statistical approaches to 

surface parameter estimation include robust estimators such as the M-estimator, least 

median of squares (LMedS) method, least trimmed squares (LTS) method, and so on 

[151,121,105]. 

 

Robust estimation techniques have been used to recover the parameters of a surface patch 

because they are robust to outliers. Outliers have values far from the local trend, resulting 

in a large measurement error. The local window size employed in a robust estimator is a 

user-specified parameter. The surface parameters are accurately estimated in a large 

homogeneous region whereas the estimation error becomes large near abrupt 

discontinuities. Thus, it is difficult to select a single optimal window size (resolution) that 

yields reliable parameter estimation results over an entire image. Optimal parameters, 

therefore, can be estimated in different applications by integrating the surface parameters 

obtained at various resolutions [138]. Range image reconstruction based on the estimated 

surface parameters can be regarded as a means of noise suppression. Noise that corrupts the 

range images is modeled by Gaussian and impulse noise mixture [101]. 

 

Waqar et al. [190] develop a technique based on nonparametric kernel density estimation to 

robustly filter a noisy point set which is scattered over a surface and contains outliers. 

Given a set 3D scattered points, a density function of the data is estimated, the main idea of 

this filtering approach consists on defining an appropriate density estimation to determine 

those cluster centers which deliver an accurate and smooth approximation of the sampled 

surface. Recently, robust statistics and statistical learning techniques have gained popularity 

in Computer Graphics and have been successfully applied to surface reconstruction [60,95, 

160,169]. 

 

 

2.4   Regularization methods  
 

Regularization methods are based in variational principles. Variational methods have been 

employed with considerable success in computer vision, particularly for surface 

reconstruction problems. Formulations of this type require the solution of computationally 

complex Euler–Lagrange partial differential equations (PDEs) to obtain the desired 

reconstructions. These methods have played an important role in the analytic formulation of 

most early vision problems [92,134,176,178]. Early vision has traditionally been 

considered as an array of special reconstruction methods operating on images. They include 

the reconstruction of 2-D image intensity gradient.and flow fields, as well as the 

reconstruction of 3-D surface depth, orientation, and motion fields. A broad range of visual 

reconstruction problems may be unified mathematically as well-posed variational 

principles. These can be characterized as optimal approximation problems involving a class 

of generalized multidimensional spline functionals [26-28,32,175].  
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Jean Duchon, a mathematician at the University Joseph Fourier in Grenoble, France, 

suggested a variational approach minimizing the integral of f , which also leads to the 

thin plate splines. This work was done in the mid 1970s and is considered to be the 

foundation of the variational approach to radial basis functions [47-50]. The method 

introduced by Duchon followed the ideas of Attéia [10] and Laurent [104], for the general 

theory of Hilbertian splines and involved a reproducing kernel. The reproducing kernel of 

Aronszajn [8] or the Hilbertian kernel of Schwartz [163] gives the explicit characterization 

of the ( , )m s  splines. It is widely known that the ( , )m s -splines belong to a variety of radial 

basis functions which are conditionally positive definite functions [57,26,112,158].  

 

Barrow and Tenenbaum [12] were among the first to introduce the surface reconstruction 

problem in vision. They implemented the solution for the interpolation of approximately 

uniformly curved surfaces from initial orientation values and constraints. The solution 

applies a relaxation algorithm that involves using an array of simple parallel processes 

performing iterative local averaging. This technique, although very simple, has many 

drawbacks. It does not deal with local and global properties, yields an interpolated surface 

that is not invariant to 3-D rigid motion, and is computationally inefficient.  

 

The early work of Grimson [78,79] presents a theory of visual surface interpolation where 

range data is obtained from a pair of stereo images. The theory deals with determining a 

best-fit surface to a sparse set of depth values obtained from the Marr and Poggio [117] 

stereo algorithm. Grimson minimized what he called the quadratic variation E  (1.5) of the 

surface ( , )f x y  

2 2 22xx xy yyE f f f dy dx


    ,   (2.5) 

 

where   is a region in the image plane at which the depth constraints are specified. This 

functional also happens to be a particular case of the seminorm we are using in this work 

and represents the energy of a thin plate [47-50]. The minimization yields the thin plate 

splines; this function was applied earlier by Schumaker [162] for interpolation of scattered 

3-D data.  

 

Grimson [78] developed an iterative algorithm based upon the biharmonic equation that 

results from applying Euler’s equations to minimize E . His work does not apply to the 

general surface reconstruction problem since it did not deal with surface or orientation 

discontinuities. The reconstructed surface is invariant to image plane rotations and 

translations.  

 

Boult and Kender [29] discuss an approach for visual surface reconstruction that is based 

on semireproducing spline kernels of Duchon [48]. Semireproducing kernel splines are 

defined in terms of the reproducing kernels for the semi-Hilbert space [8,10]. The major 

computational component of the method is the solution to a dense linear system of 

equations. The algorithm results in a true functional form of the surface allowing for 

symbolic manipulations (e.g., differentiation or integration). If the norm used in the 

problem is isotropic, then the kernel is rotation, translation, and scale invariant. Hence, the 
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reconstruction is invariant to such transformations applied to the data with respect to the 

image plane. Since the resulting linear system is dense and often indefinite, this limits the 

approaches that can be used in its solution.  

 

Terzopoulos [174-178] pioneered finite-differencing techniques to compute approximate 

derivatives used in minimizing the thin-plate energy functional of a height-field. He 

developed computational molecules from the discrete formulations of the partial derivatives 

and uses a multi-resolution method to solve the surface. He presents a technique for visible 

surface computation from multiresolution images. His primary contribution was improved 

computational efficiency and also the integration of surface depth and orientation 

discontinuity information into the surface reconstruction problem. He used multigrid 

methods [178] to speed up his algorithm by orders of magnitude over the single grid 

approach. His surface reconstruction process treats surfaces of objects as thin plate patches 

bounded by depth discontinuities and joined by membrane strips along loci of orientation 

discontinuities. The description of the surfaces thus obtained is invariant to image plane 

transformations (rotations and translations in image plane) but not to three-dimensional 

rigid motion. The “controlled continuity stabilizer” in the functional that is minimized by 

Terzopoulos is similar to spline in tension. 

 

Both Grimson [78] and Terzopoulos [176,177] used the standard discrete biharmonic 

operator or their surface reconstruction algorithms. Grimson used finite-difference methods 

while Terzopoulos used more general finite-element techniques.  

 

In [142], Poggio and Torre suggest that the mathematical theory developed for regularizing 

ill posed problems leads in a natural way to the solution of early vision problems in terms 

of variational problems. They argued that this is a theoretical framework for some of the 

variational solutions already obtained in the analysis of early vision processes. Thus the 

computational ill posed nature of these problems dictates a specific class of algorithms for 

solving them, based on variational principles. They show that these variational principles 

follow in a natural and rigorous way from the ill posed nature of early vision problems. 

 

In a series of papers [71-73], Girosi and coworkers established relations between the 

problem of function approximation and regularization theory. The approach regularizes the 

ill posed problem of function approximation from sparse data by assuming an appropriate 

prior on the class of approximating functions which follows the technique introduced by 

Tikhonov, identifying the approximating function as the minimizer of a cost functional that 

includes an error term and smoothness functional. They show that regularization principles 

lead to approximation schemes that are equivalent to networks with one hidden layer, called 

regularization networks. In particular, they described how a certain class of radial 

stabilizers-and the associated priors in the equivalent Bayesian formulation lead to a 

subclass of regularization networks, the already known radial basis functions network. 

 

Recently, Turk [183] used variational surface and thin plate spline by specifying locations 

in 3D through which the surface should pass, and also identifying locations that are interior 

or exterior to the surface. A 3D implicit function is created from these constraints using a 

variational scattered data interpolation approach. They call the iso-surface of this function a 

variational implicit surface.  



 21 

 

In [150] it is proposed a variational technique for reconstructing surfaces from a large set of 

unorganized 3D data points and their associated normal vectors. The surface is represented 

as the zero level set of an implicit volume model which fits the data points and normal 

constraints. The resulting model use explicit solutions in terms of radial basis functions. 

Gokmen and Li [76] presents an edge detection and surface reconstruction algorithm using 

regularization, in which the smoothness is controlled spatially over the image space but 

they only use one regularization parameter. Beatson et al. [14] apply a method for surface 

reconstruction from scattered range data by fitting a Radial Basis Function (RBF) to the 

data and convolving with a smoothing kernel (low pass filtering). These splines are a 

particular case of our approach.  

 

There exist well known relations between regularization theory and other variational 

approaches. In [70] Girosi et al. show that regularization principles conduct to 

approximation schemes called regularization networks. In particular, standard smoothness 

functionals lead to radial basis functions. Additive splines as well as some tensor product 

splines can be obtained from appropriate classes of smoothness functionals. In the 

probabilistic interpretation of regularization, the different classes of basis functions 

correspond to different classes of prior probabilities on the approximating function spaces, 

and therefore to different types of smoothness assumptions.  

 

Parallel to the problems of computer vision there has been a great development of 

variational approach and splines in surface reconstruction from the point of view of 

approximation theory. These developments have conducted to Radial basis function theory 

and meshfree methods [57,191]. Originally, the motivation came from applications in 

geodesy, geophysics, mapping, or meteorology. Later, applications were found in many 

other areas such as in the numerical solution of PDEs, computer graphics, artificial 

intelligence, statistical learning theory, neural networks, signal and image processing, 

sampling theory, statistics (kriging) and optimization.  

 

Donald Shepard, suggested the use of what are now called Shepard functions in the late 

1960s [165]. Rolland Hardy, who was a geodesist, introduced the so-called multiquadrics 

(MQs) in the early 1970s. Hardy’s work was primarily concerned with applications in 

geodesy and mapping [85]. Robert L. Harder and Robert N. Desmarais [84] who were 

aerospace engineers at MacNeal-Schwendler Corporation (MSC Software), and NASA’s 

Langley Research Center, introduced the thin plate splines in 1972. Their work was 

concerned mostly with aircraft design. Meinguet introduced what he called surface splines 

in the late 1970s. Surface splines and thin plate splines fall under what are called as 

polyharmonic splines [122-125]. 

 

Richard Franke [63,64], a mathematician at the Naval Postgraduate School in Monterey, 

California, compared various scattered data interpolation methods, and concluded MQs and 

TPSs were the best. Franke also conjectured that the interpolation matrix for MQs is 

invertible. Madych and Nelson proved Franke’s conjecture based on a variational approach 

[105]. Charles Micchelli, also proved Franke’s conjecture [126-128]. His proofs are rooted 

in the work of Bochner, from 1932 [23,24] and Schoenberg (from 1937) [158,159]; on 

positive definite and completely monotone functions. Grace Wahba, a statistician at the 
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University of Wisconsin, studied the use of thin plate splines for statistical purposes in the 

context of smoothing noisy data and data on spheres, and introduced the ANOVA and cross 

validation approaches to the radial basis function setting [186-189]. 

 

Robert Schaback, introduced compactly supported radial basis functions (CSRBFs) in 

[154], and a very popular family of CSRBFs was presented by Holger Wendland in his 

Ph.D. thesis [192] and in [191]. Both of these authors have contributed extensively to the 

field of radial basis functions for surface reconstruction [155,156].  
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Chapter 3 
 

 

 

 

The seven intrinsic problems of surface 

reconstruction 
 

 

3.1   Introduction 
 

The recovery and representation of 3-D geometric information of the real world is one of 

the most challenging problems in computer vision research and its literature is filled with 

an amazingly diverse array of approaches to surface description. The reason for this variety 

is that there is no single representation of surfaces that satisfies the needs of every problem 

in every application area.  

 

Apart from being ill-posed, the problem of surface reconstruction from unorganized point 

clouds is challenging because the topology of the real surface can be very complex, and the 

acquired data may be non-uniformly sampled or contaminated by noise. Moreover, the 

quality and accuracy of the data sets depend upon the methodologies which have been 

employed for acquisition. Furthermore, reconstructing surfaces from large datasets can be 

prohibitively expensive in terms of computations. 

 

Commonly, reconstruction problems correspond to solving a compact operator equation. 

But compact operators cannot have a bounded inverse. This means that the problems we are 

dealing with are intrinsically ill-posed. In this chapter we study this and other difficulties 

that arise when considering surface reconstruction from scattered data.  

 

 

3.2   The problems of surface reconstruction  
 

Surface reconstruction shares a common structure with the rest of inverse problems in 

which the input-output relation in the operator equation Af z , takes the form of a 

Fredholm integral operator of the first kind with ( )( )f sA ( , ) ( )
b

a
K s t f t dt  , where ( , )K s t  

is called the kernel of the operator and represents a simplified model of the process. The 

assumption of linearity is very important, because in spite of the increasing power of 

computers, only in the case of linear problems it is possible to get a solution in almost real 

time for large scale problems. The source of great mathematical problem is that, on all three 

counts of Hadamard conditions, Fredholm integral equations of the first kind are ill-posed. 

These are compact operators, and then cannot have a bounded inverse [100,172,132].  
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We claim that these limit situations have an intrinsic nature; therefore we should look for, 

not a definite solution for them but for the best way to deal with them. Next, we study those 

which we consider the most critical intrinsic problems of surface reconstruction from 

scattered data giving a way to treat the problem using the properties of our regularization 

framework. 

 

 

3.2.1   Reproduction-generalization dilemma 
 

In surfaces reconstruction from scattered data 1 2{ , , , }MA a a a , the resulting function f  

that models the surface should be such that it generalizes well, i.e. it should give practically 

useful values of ( )xf to new points x A . Furthermore, it should be stable in the sense 

that small changes in the training data do not change f  too much. However, these goals 

are in conflict with good reproduction of data. Sometimes we could obtain a highly stable 

but useless model, while over fitting occurs if there is too much emphasis on data 

reproduction, leading to unstable models with bad generalization properties.  

 

Problem: Surface reconstruction is subject to the reproduction-generalization dilemma 

and need a careful balance between generalization and stability properties on one hand 

and data reproducing quality on the other.  

 

This is called the bias-variance dilemma under certain probabilistic hypotheses, but it also 

occurs in deterministic settings. This problem can be illustrated by the uncertainty principle 

in its multiple forms. For example, it is impossible for a signal f to be to be both band-

limited and time-limited; that is, it is impossible for f  and its Fourier transform f both to 

vanish outside a finite interval unless f is identically zero.  

 

Solution: In our regularization approach (3.1), we treat the reproduction-generalization 

dilemma on surfaces, using one term for reproduction or fidelity to data and other for 

generalization, with two functionals (local and global) that handle different degrees of 

smoothness by tuning parameters 1 and 2 in the following scheme 

 

 

1 2, ,min [ ]z
f

f
 




F
 2

1

1
( ( ) )

M

i i

i

data reproduction

f a z
M 

 1 1 2 2[ ] [ ]

Generalization

R f R f   .  (3.1) 

 

 

3.2.2   Restrictions on the choice of spaces 
 

Problem: Given a surface reconstruction problem from scattered data, there is not enough 

information to come up with a useful solution of the reconstruction problem. In particular, 

the simple numbers do not say how to define f or which space of functions to pick it from. 

We are facing an ill-posed problem with plenty of indistinguishable approximate solutions. 
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Surface reconstruction problem requires minimum conditions in order to be well posed. 

This is done by working in a linear or vector space. There are also practical reasons for this, 

because: 

 

 If the values ( )j jz f a , from the surface are multiplied by a fixed scalar factor  , 

then the new data should be recovered by the function f  instead of f . 

 

 If data ( )j jz f a  and ( )j jz g a  at the same locations 1 2{ , , , } n

MA a a a   

are recovered by functions f  and g , respectively, then the data ( ) ( )j jf a g a  

should be recovered by the function f g . 

 

But, from a practical point of view, all mathematical a-priori assumptions on f are useless 

if we are not taking the application into account. For example, if we take a linear subspace 
F  of dimension  2M   of a space of multivariate functions in such a manner that F  does 

not depend on the set 1 2{ , , , }MA a a a . There will always be a degenerated set  . It is to 

say, there exist a function gF , different from zero that vanishes on  . This is 

undesirable because we can add to the solution f , all the functions of the form g , without 

altering the reproduction of data. Furthermore, the recovery process will have a non-unique 

solution and will be numerically unstable (see Mairhuber-Curtis theorem [191]).  

 

Solution: To define the problem of surface reconstruction into functional spaces with data 

dependent inner products. We do this in chapter 7 (see formula 7.1). This is the reason for 

obtaining solutions in the subspace 
,

1

{ ( , ) : }x
M

A K j j j

j

K a 


 F . 

 

3.2.3...The Curse of dimensionality  
 

The curse of the dimensionality (term coined by Bellman in 1961 [16,17]) refers to the 

following 

 

Problem: in the absence of simplifying assumptions, the sample size needed to estimate a 

function of several variables to a given degree of accuracy grows exponentially with the 

number of variables.  

 

Let us say that we wanted to do a second-order polynomial fit. In 1D this is simply 
2

0 1 2y a a x a x   . In 2D, we have 
2 2 2

0 1 2 3 4 5y a a x a y a x y a x a y      , we have gone 

from three to six terms. In 3D we need ten terms: 

 

0 1 2 3 4 5 6y a a x a y a z a x y a x z a y z       2 2 3

7 8 9a x a y a z   .  
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It is known that 
k n

n

 
 
 

 is the dimension of ( )n

k , then as we increase the order of the 

polynomial, the exponent of the number of terms required increases accordingly. 

 

Solution: If our problem is to approximate the surface ,f  by the solution ( )xS of the 

regularization problems (3.1). The solutions (as we proof in chapter 6) can be written as 

linear combinations of translates containing the original data, in the form 

 

1

( ) ( )x x
M

j i

j

S K a


  ,     (3.2) 

then, given the approximation error  , with data 1 2{ , , , }MA a a a d , in a d -

dimensional space, we are looking for approximations with a degree of smoothness s  such 

that 

1

|| ( ) ||x
M

j i M

j

f K a 


   .    (3.3) 

Usually [69], M  is such that
1

s

d

M
M


 

  
 

. It is common to say that the curse of 

dimensionality is the d  factor and the “blessing” of smoothness is the s factor. This means 

that fixing the dimension d  of the surface, if we want to "beat the curse of dimensionality" 

we have to increase the smoothness degree .s   

 

We do it into our approach, by defining regularization in functions spaces for which the rate 

of convergence to zero of the error M  is independent of any number of dimensions (see 

[69]). This avoidance of the curse of dimensionality is due to the fact that these functions 

are more and more constrained as the dimension increases. Examples include spaces of the 

Sobolev type, in which the number of weak derivatives (in the sense of Schwartz 

distributions) is required to be larger than the number of dimensions. 

 

 

3.2.4   Noise 
 

Problem: Noise is ubiquitous in measured data.  

 

Noise it is a disturbance that affects a signal and that may distort the information carried by 

the signal. In the case of observational data, noise may have many sources including 

quantization and noise from image video systems. Important object features, such as corner 

points or edges are not directly recorded; instead, they have to be modelled from data in a 

separate process. In range sensor for point clouds, noise may have very high frequency due 

to measurement errors. Some reconstruction methods tends to smooth any high frequency 

feature such as corners and wrinkles that belongs to the geometry of the object creating 

inaccuracy in the reconstructed object. Many of the errors that are caused by the measuring 

process (noise, aliasing, outliers, etc.) can be filtered at the level of raw sensor data. A 
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special class of errors (calibration and registration errors) first appears after merging the 

different views. 

 

Surface mesh models built using measurement data obtained using 3D range scanners 

necessarily contains some type of noise. To remove the noise in surface mesh models, 

many mesh denoising algorithms have been developed, for example [34,37,41,44,157] and 

other references therein. In evaluating the effectiveness of denoising algorithms both visual 

and numerical comparisons are used [170]. For meshes corresponding to real scanned data, 

however, we can in most cases only perform visual comparisons, because ground truth data 

required for evaluation are almost always unavailable. However, to provide a more 

objective evaluation and more through testing, numerical comparisons are required. Having 

synthetic models of real scanner noise would be useful for evaluating denoising algorithms. 

Any synthetic model used for evaluating denoising algorithms should take an exact model 

surface and add noise, which has to be removed by the algorithms. The noise should have 

the same characteristics as noise in real measurement data. Experimentally, measurement 

noise is often assumed to be Gaussian in a wide range of disciplines. Thus, various mesh 

denoising algorithms have been developed based on the Gaussian noise assumption [39], 

while others used synthetic models with Gaussian white noise (that is, independent 

Gaussian noise per mesh vertex) in evaluation of their algorithms [34,96,170,196,198]. 

 

Point datasets routinely generated by optical and photometric range finders usually are 

corrupted by noise. In order to remove these deficiencies from scanned point clouds, a large 

variety of denoising approaches based on low-pass filtering [110], MLS fitting [5,43,120] 

and partial differential equations (PDEs) [103] has been proposed.  

 

A very important consequence of being ill-posed is that mathematical modelling of the 

surface reconstruction cannot uniquely consist in establishing the equations relating the 

data to the solution; it must also include a model of the noise perturbing the data and, as far 

as possible, a model of known properties of the solution. Then the data are a linear 

transform of an original signal f  corrupted by noise, so that we have  

 

( )i i iz Kf a   ,    (3.4) 

 

where K  is some known compact linear operator defined on a Hilbert space  and i  is a 

white noise with unknown variance 2 . Since K is compact, the equation (3.3) cannot be 

directly inverted since 1K  is not a bounded operator.  

  

Solution: The solution ( )xS  to our regularization schemes (3.1) may be considered as the 

result of applying a low-pass filter to the data. In frequency space it can be shown that   

controls the half-power point of the filter and m  ( m  refers to seminorm [ ]mJ f  in (1.3)) 

the steepness of the roll-off [189]. Further, under certain conditions the regularization 

functional [ ] [ ]mR f J f  can be written as 2 2[ ] | ( ) | ||ξ ξ|| ξ
sR f f d  . If this seminorm is 

defined in the Hilbert space associated with a kernel K  and its Fourier transform
2( ) || ||ξ ξ

mK  , the seminorm reduces to the form  
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2| ( ) |
[ ]

( )
n

ξ
ξ

ξ

f
R f d

K
  ,    (3.5) 

 

in this case ( )ξK  can be viewed as a low-pass filter [189,70], which plays a roll of 

smoothing in the sense that the solution surface f  can be viewed as the convolution of the 

observation with a smoothing filter ( ) ( ) ( )x x xf z B  , where   denotes the operation of 

convolution product and ( )xB is the inverse Fourier transform of ( )ξB  given by  

 

( )
( )

( )

ξ
ξ

+ ξ

K
B

K
 .     (3.6) 

 

When 0  f z , then ( ) 1ξB  , ( ) ( )x xB  , which corresponds to an interpolation 

problem in the noiseless situation [70]. 

 

 

3.2.5   Error bounds  
 

Error estimates and error bounds are fundamental in any approximation process. Remember 

that the surface reconstruction problem pretends to recover the surface f from data
2

1D {( , ) }M

i i ia z    . From this information is desired to compute another value ( )xf . 

As it is usual in approximation theory, we are looking for an element S  in a subset or 

subspace and then use ( )xS  to approximate ( )xf  with an error , such that  

 

| ( ) ( ) |x xf S  F .    (3.7) 

 

It is desirable to obtain an a priori measure of the error  . But in general, the information 

we have about f  is that f  is an element of a known linear space of functionsF ; then the 

value ( )xS  at a fixed point x is a linear combination 
1

( )x
M

i ii
f

 of certain elements if  of 

F  . 

 

Problem: The intrinsic problem here is that it is impossible to give finite bounds for error, 

in terms of 1( ), , ( )Mf a f a , if the only additional information is that f  is the element of a 

linear space F .  

 

Moreover, it can be demonstrated that it is impossible to obtain finite bounds for  if the 

only additional information is that f  is an element of F  (see [77]). This is true no matter 

how restricted the infinite-dimensional space F  is by conditions of continuity, 

differentiability, analyticity, and so on. Therefore is meaningless to speak of the goodness 

of a linear approximation without reference to some nonlinear constraint in F . 
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Solution: The variational properties of regularization method provide the additional 

information necessary for calculating bounds of the approximation error. The basic idea is 

to build a semi-inner product ( , )F , using data and the variational properties of 

regularization functionals (semi-norms), then using orthogonality properties and Cauchy-

Schwarz inequality is possible to obtain error bounds in the form  

 
2| | ( , )f S f S f S    F  

( , )f f S  F  2| | || ||f f S F .    (3.8) 

 

This is the most frequent method for obtaining error bounds in surface reconstruction 

methods (see [77,109,27,28]). 

 

 

3.2.6   The Computational complexity 
 

An important question about surface reconstruction is what the theoretical limitations are 

on the speed of interpolation and approximation algorithms. The computational complexity 

of any procedure or algorithm can be considered or expressed by means of a function ( )T n  

that gives its execution time in terms of the size n  of the input.  

 

Problem: The tasks associated with reconstruction problems may have a very high 

computational complexity, including issues as amount of data, implemented algorithms, or 

the available hardware. 

 

In this thesis, we obtain interpolators with the form  

 
1

( ) (|| ||) ( )x x x
M

j j

j

S a p 


    ,     (3.9) 

where the basis functions (|| ||)x ja   are the Green’s functions of the Gram’s operator 

associated with the stabilizer. If the stabilizer exhibits radial symmetry, the basis functions 

are radially symmetric as well and a radial basis function is obtained. M is the number of 

centers or points in the cloud. In order to find ,i  1, ,i M , we have to solve the linear 

system  

 

0 0t

     
     

     

A I P z

P




,     (3.10) 

 

with 

,i j
A (|| ||)

i j
a a  , , 1, ,i j M , ( ),i j j ip aP 1, ,i M , 1, ,j N , 1( , , )Mz zz , 

such that 1( , , )M  M , 1
( , , )

M
 β N , and the polynomials

1{ }N

j jp 
  form 

a basis for 1( )n

m  (see chapters 6, 7 for more details). 
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The dimension of the linear system is equal to the number of centres M , giving a 

complexity 
3( ) ( )T M O M . If we consider that usually a point cloud may have one million 

centres or more, it is easy to imagine the huge number of floating point operations we are 

dealing with. 

 

The interpolation matrix A  is not sparse and, except for symmetry, has no obvious 

structure that can be exploited in solving the system. Solution via a symmetric solver will 

require 
3

2( )
6

M
O M  flops. Moreover, a single direct evaluation of expression (3.4) 

requires ( )O M  operations.  

 

Solution: There exists a diversity of solutions 

 

 Simplify the data set reducing the number of centers ia  in order to make them 

computationally manageable (see [15,191]). 

 

 The computation of some basis functions (|| ||)x ja   require more floating point 

operations, so we could choose the most convenient. 

 

 Fast methods for solving the interpolation matrix A  and the evaluation of ( )xS . 

For example, Beatson and Powell [14] proposed to use the smoothness of the 

interpolant and required the cardinality properties be satisfied at a small number of 

points in the domain. This method was further developed by the groups of Powell 

and Beatson for obtaining a fast method. The culmination of this work was an 

iterative Krylov subspace algorithm [59,80]. 

 

 

3.2.7   Local and global properties 
 

Visual surfaces have both microscopic and macroscopic properties. A point cloud of an 

scanned surface may come from objects of different form and topology. So the shape of the 

surface varies from simple to a highly complex one, with rapid variations in the local 

surface orientation. This complexity can be measured with the derivatives of the surface. A 

surface that curves continuously, without breaks or creases and cusps will be referred to as 

a regular surface. More exactly, if 
2:f   is a differentiable function in an open 

set   of 2 , then the graph of f , that is the subset of 3 given by ( , , ( , ))x y f x y  for 

( , )x y  , is a regular surface. Regularity is measured by the smoothness degree of the 

surface. This is a hierarchical concept related to the order of continuity in the surface´s 

partial derivatives. Loosely speaking, the more continuous the derivatives, the smoother the 

surface. 

 

Problem: A surface reconstruction approach should be able to reproduce local and global 

behaviour of the surface. 
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Given a set of scattered data 1 2{ , , , }MA a a a  on a surface, there will be many possible 

surfaces consistent with these initial points. How do we distinguish the correct one? 

Mathematically, we need to be able to compare two possible surfaces, to determine which 

is “better”. This can be done by defining a functional [ ]R f  from the space of all possible 

surfaces to the real numbers, so that comparing surfaces can be accomplished by comparing 

corresponding real numbers, provided [ ] [ ]R f R g  whenever surface f is better than 

surface g . The best surface to fit through the known points is the one that minimizes [ ]R  . 

 

Solution: These functionals are chosen in such a way that permits different smoothness 

degree. One attractive formal characterization of smoothness is readily related to physical 

models, in particular we apply functionals coming from elasticity theory to deduce explicit 

expressions that performs local approximation and fits a global surface to initial data (see 

chapter 5). 
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Chapter 4 
 

 

 

 

Regularization and inverse theory in 

surface reconstruction 
 

 

4.1 Introduction 

 
In surface reconstruction one is faced with the task of discovering the nature of objects that 

produced the point cloud for the surface received by the camera. A proper computational 

formulation of these problems recognizes that they involve inverse processes that are 

mathematically ill-posed. This allows one to derive systematically, computational schemes 

based upon regularization theory that ensure existence of solution and stability of inversion 

process. Such approaches often suggest particular types of algorithms for efficient solution 

to the problems. The concepts of regularization theory give a comprehensive framework to 

formulation of the problems in vision: at all three levels of problem, algorithm, and 

implementation. Furthermore, the mathematical theory of regularization provides a useful 

theory for incorporating prior knowledge, constraints, and quality of solution. 

 
 

4.2 Regularization and inverse problems. 
 

In this section we show how regularization theory provides a framework for formulation of 

inverse problems of computer vision, in particular, surface reconstruction. A general 

formulation of inverse problems is that one is given the sensed data z , which is produced 

through the action of an operator A , acting upon the data, we wish to recover f  from the 

operator equation 

.f zA      (4.1) 

 

In surface reconstruction, f is a corrupted version of z  and A is an integral operator that 

models the laser scanning process. A problem involving inversion of this operator is well-

posed [82,179,132] if we can ensure existence, uniqueness, and stability of solutions.  

 

For a variety of reasons, failure of one or more of these conditions is common and thus the 

problem is ill-posed. For example A  may not be full rank (so that the solution is not unique 

- extra information may be required to restrict the solution space), or A  may be invertible 

but ill-conditioned (thus small changes in data lead to large deviations in solution - which 
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can be disastrous in the presence of noise), or A  may be of rank greater than the number of 

degrees of freedom (the system is over-determined and thus a solution may not exist if any 

of the measurements contains noise).  

 

Additional constraints and assumptions restrict the solution space, but in the presence of 

noise, the problem can become ill-posed in either of the last two senses. Standard 

regularization theory provides mathematical tools that enable one to turn an ill-posed 

problem into a well posed problem. 

 

 

4.3 Ill-posed problems and regularization 
 

From the point of view of modern mathematics, all problems can be classified as being 

either correctly posed or incorrectly posed. In the language of functional analysis, this fact 

can be stated in the following manner. 

 

Let and be Banach spaces and the continuous operator : A  (not necessarily 

linear). The equation f zA , represents a correct, correctly posed or well-posed problem 

in the sense of Hadamard if the operator A  has a continuous inverse 
1 : A . In other 

words  

 

(wp1) Exists a solution: z  there exists a solution f  . 

 

(wp2) The solution is unique: z   there is no more than one f   such that f zA . 

 

(wp3) The solution f  depends continuously on the data: *|| || 0f f   when 
*|| || 0z z  . 

 

If one of these three conditions is not satisfied, the problem f zA  is called ill-posed. 

Given that we want to find f  given z  it is also called ill-posed inverse problem. 

 

These conditions do not have the same degree of importance [94]. If the uniqueness 

condition (wp2) is not satisfied then the problem does not make sense. However, if (wp1) 

is not satisfied, it only means that there are not conditions to guarantee existence of a 

solution. On the other side, one may think (as Hadamard did) that without (wp3) the 

problem f zA does not have physical sense and is incomputable. Nevertheless, choosing 

a proper notion of convergence and the space , it is possible to fix the situation. For 

instance and  may be taken from the classical spaces ( )k nC  or , ( )m p nW . These 

spaces are a natural setting for mathematical physics and partial differential equations. 

They reflect physical reality and generate stable computational algorithms. 

 

Now we will deal with Tikhonov regularization. The main idea supporting this approach 

[100] is that the solution of an ill-posed problem can be obtained using a variational 
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principle, which contains both the data and prior smoothness information. For the stable 

approximation of a solution of the operator equation f zA ; where it is assumed that only 

noisy data z of the exact data z are available. Tikhonov or variational regularization 

propose to minimize a functional in the general form 

 

, [ , ] [ ],z f z R f
     A    (4.2) 

 

only assuming that   is a functional measuring the error between fA  and z , 0  and 

[ ]R   is a nonnegative functional. The real number   is called regularization parameter. 

The idea is to find a solution for f zA  as an element minimizing the functional (4.5). 

One may think that this element is || ||f zA , but it does not work because is equivalent to 

(4.4) and therefore will also be ill-posed. Another idea could be to use Moore-Penrose 

generalized inverse † †f z A , defined as the minimum norm solution of the problem 
2min || ||

f
z z


A . However the operator †A  is usually not bounded. The viewpoint of 

regularization is to use the “improved” functional ,z .  

 

4.4  Surface reconstruction as an inverse problem 
 

The original idea of regularization is to replace an ill-posed Fredholm integral equation of 

the first kind  
1

0
( , ) ( ) ( )K s t f t dt z s , 

 

by a nearby well-posed Fredholm integral equation of the second kind. Here ( )f t  is the 

unknown function and ( , )K s t  is the kernel of the operator. 

 

In abstract features this equation may be written in operator form as f zA , where A is a 

linear integral operator such that ( ) ( , ) ( )
b

a
f s K s t f t dt A . 

 

Let 
xA be the integral operator with ( )x f f xA . In a point cloud

 1D {( , ) }n M

i i ia z     

we have noisy data that can be modeled as 

 

( )
ii a iz f  A  ( , ) ( )

b

i i i
a

K a t f t dt   , 1, ,i M .  (4.3) 

 

This is a discrete (noisy) Fredholm integral equation of the first kind. In vector form we 

will denote 1 2( , , , )Mz z zz , such that  

 

M f z A  , where ( )M ifA ( , ) ( )
b

i i
a

K a t f t dt  . (4.4) 
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Commonly, the errors { }i  are i.i.d. (independent and identically distributed) random 

variables from a normal distribution 2(0, )N  (see [188]). 

 

 

4.5 Regularization of surface reconstruction 
 

Let and  be two Hilbert spaces and : A  a linear bounded operator. The 

Tikhonov regularization scheme [132,142,184] is given by  

 

,min
f

z


 2|| ||f zA 2|| || .f    (4.5) 

 

Observe that in general, the spaces ,  have different metrics. Now, we adapt this 

framework to the particular case of surface reconstruction. Let be a reproducing kernel 

Hilbert space [8,188] with continuous kernel :K  . If x , we let 

( ) ( , )x s s xK K  and by the Riesz representation theorem[100,104,152], define the bounded 

linear operator  

 

( )( ) ( , ) ( )xx xf f K f A .    (4.6) 

 

Given the data 
1D {( , ) }n M

i i ia z    , from a point cloud, we obtain a discretized version

:x

MA  of A  in the following way  

 

( ) ( , ) ( )x ii a if f K f a A ,    (4.7) 

 

where 
M , has the inner product

1

1
( , )z z M

M

i i

i

z z
M 

   . Then it is straightforward to 

see that 

2|| ||x z Mf A 2

1

1
( ( ) ) ,

M

i i

i

f a z
M 

      (4.8) 

 

Using this setting, we see surface reconstruction as the minimization of the functional ,z

, given by 

 

,min [ ]
f

z f



 2|| ||x z Mf A [ ]R f  

 

2

1

1
( ( ) )

M

i i

i

f a z
M 

  [ ]R f ,    (4.9) 

where 

2

| |

!
[ ] | ( ) |

!
x x

n

m

m
R f f d

 

  . 
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4.5.1 Interpolation and approximation by regularization 

 
It is a well-known fact that the classical methods of interpolation (Lagrange polynomials, 

for example) have serious problems for fitting data from real problems. Given a set of knots 

there exist many ways to interpolate them, so in order to choose one is necessary to add 

more information other than the knots. Cubic splines were one of the first successful 

answers to this problem, adding the requirement of a smoothing functional.  

 

Depending on the origin of data and kind of application, it is possible to do interpolation (

( ) ( )x xS f ) or approximation ( ( ) ( )x xS f ). For example, some range scanners data are 

accurate enough for obtaining good results using interpolation, but if we are going to 

interpolate noisy data, the advisable way is to make approximation on the data. We may 

state both problems in terms of regularization over a function space . 

 

 

P1. Interpolation problem 

 

min [ ]
f

R f


,  with 
1{ ( ) } .M

i i if a z     (4.10a) 

 

P2. Smoothing problem 

 

 2

1

,

1
min ( ( ) ) [ ]

M

i i
f

i

z f a z R f
M 




   ,  with 
1{ ( ) } .M

i i if a z    (4.10b) 

 

 

4.5.2   Proposed model 
 

Finally, we extend the approach (4.6) considering two regularization functionals 
1R  and 

2R

in the form 

1 2, ,min [ ]z
f

f
 


 2

1

1
( ( ) )

M

i i

i

f a z
M 

  1 1 2 2[ ] [ ]R f R f   .  (4.11) 

 

The idea is to integrate local and global features of the surface or phenomenon in order to 

obtain models that fit the three requirements for surface reconstruction. The first term is 

controlling fidelity to data and functionals 1R , 2R are properly combined for handling the 

degree of smoothness or generalization by tuning parameters 
1 and 

2 . This is one of the 

most important properties of regularization approach, that is, the possibility to add a priori 

knowledge about the model in the form of functionals, into an integrated variational 

approach.  
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Chapter 5 

 

 

 

 

Regularization functionals and their 

physical interpretations 
 

 

5.1   Introduction  

 
At first glance, it seems to be impossible to compute the solution of a problem numerically 

if the solution does not depend continuously on the data, i.e., for the case of ill-posed 

problems. Under additional a priori information about the solution, such as smoothness and 

bounds on the derivatives, however, it is possible to restore stability and construct efficient 

numerical algorithms.  

 

The main purpose of this chapter is to develop some criteria for choosing smoothing or 

regularization functionals [ ]R f . In order to do a heuristic discussion we consider the 

behaviour of curves and surfaces under geometrical criteria, as for instance, Gaussian and 

mean curvature as well as physical criteria, based on continuum mechanics. 

 

 

 
 
Fig. 5.1: Dirac deltas do exist, don’t they? (La Ferté pedestrian bridge in Stuttgart, Germany) [86].  

 

 

Using the ideas of variational calculus we show the strong relationship between 

regularization and the physical realities represented by classical partial differential 

operators of mathematical physics. It is also important to take into account more subtle 
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mathematical properties in the functionals in order to produce solvable minimization 

problems and according to the reality of data.  

 

 

5.2   Plate and membrane models  
 

Variational calculus is the most reliable guide for dealing with the partial differential 

equations of mathematical physics. The models we will use as criteria for choosing 

regularization or smoothing functionals comes originally from continuum mechanics, in 

particular elasticity theory. An elastic body is defined to be a solid which, once deformed 

will revert to its original shape if the forces causing the deformation are removed. These 

problems of stable equilibrium, are governed by the variational principle of minimal 

potential energy:  

 

A mechanical system with the potential energy 
1 2( , , , )nU q q q  is in equilibrium at a 

particular set of values of the coordinates 
1 2, , , nq q q  if and only if the potential energy 

is stationary for this set of values. 

 

An example in one dimension is the vibrating string and in further dimensions the plate 

and membrane models. They have shown to be very useful for modeling and 

reconstruction of surfaces. A membrane [86,87,181,176] is a portion of a surface, plane at 

rest, with potential energy proportional to change in area; the proportionality factor is 

known as tension. Now, suppose that the membrane at rest covers a region   of the plane 

and that the deformation ( , )f x y  is normal to the equilibrium plane. Suppose this 

deformation is small in the sense that higher powers of the partial derivatives ,x yf f  of f  

are negligible compared with lower ones. Then the expression 2 21 x yf f dy dx


   for 

the area may be replaced by 
2 21

[1 ( )]
2

x yf f dy dx


   and the potential energy by 

2 21
( )

2
x yf f dy dx


 . 

 

For the equilibrium problem of the membrane we suppose that the displacement ( , )f x y  of 

the membrane have prescribed values on its boundary and that no external forces act on the 

membrane, then the equilibrium position is characterized by the following variational 

problem.  

  

The displacement ( , )f x y  in the equilibrium position is the function for which the potential 

energy functional 
2 2[ ] ( ) ,x yR f f f dy dx



     (5.1) 

attains the least possible value among the functions which are continuous in the closed set 

 , take on the prescribed boundary value, and possesses continuous first and piecewise 

continuous second derivatives in the interior. Observe that the functional (5.1) is the 
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Duchon seminorm [ ]R f  [ ]mJ f
2

| |

1
| |

!
n

m

f

 

  in 2  with 1m  . When 2m  , we 

obtain the elastic potential energy of a plate. 

 

A plate is the body ] , [
2 2

h h
   of thickness h , that occupies the region   in 2 , one of 

its dimensions, in the z direction, say, is very smaller than the other two, so that 

geometrically the plate is flat.  

 

If for the equilibrium problem of the plate we suppose similar conditions to membrane 

problem, then the displacement ( , )f x y  in the equilibrium position is the function which 

minimize the potential energy functional 

 

2

2 2 2
2 2 2

2 2 2
[ ] ( ) 2( ) ( )

f f f
J f dx dy

x yx y

  
  

   . 

 

The governing equation for the deflection of an elastic thin plate is  

 

 2D f g  , 

 

where 
4 4 4

2

4 2 2 4
2 ,

x x y y

  
   

     

is the biharmonic operator, D is called the bending 

stiffness; depends on the material and the geometry, and is defined by 3 2/12(1 )D Eh   , 

where E and   are constants known respectively as Young’s modulus and Poisson’s ratio 

[147]. 

 

(a)              (b)      

 

 

Figure 5.2: (a) Plate and (b) beam are classical models that have inspired variational theory of 

splines. 

 

The one-dimensional version of plate model is the deflection of a beam. A beam is a body 

rectilinear in shape and whose length is considerable greater than its two other dimensions. 

We want to find the in-plane deflection f  of the beam (fig.5. 2) while subject to a force of 

intensity g  per unit length. The beam has length L , width b  and depth d ; b  and d  are 

assumed to be much smaller than its length. The governing equation for deflection of the 

beam is 
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4

4
( )

d f
EI g x

dx
 , 

where E : modulus of elasticity, I : moment of inertia of a cross section about the neutral 

axis [153,87,153]. 

The beam model explains the original idea of splines. The term spline is derived from the 

analogy to a draughtsman’s approach to pass a thin metal or wooden strip through a given 

set of constrained points called ducks (fig 5.3). 

 

 
 

(a)        (b) 
 

Figure 5.3: Physical interpretation of one dimensional cubic spline [153]. 

 

 

We can imagine any segment between consecutive ducks (fig. 5.3 (b)) to be a thin simply 

supported beam across which the bending moment varies linearly. Applying the linearized 

Euler-Bernoulli beam equation for small deformations 

 
2

2

d f
EI EI Ax B

dx
     . 

 

Where EI  is the flexural rigidity of the beam,  the curvature, A and B  known constants. 

Solving for the deflection yields a cubic polynomial 

3 2

1 2
6 2

A B
f x x C x C

EI EI
    . 

 

In general [35,188], this cubic spline has the form 

 

     
3

0 1

0

( ) ( )
M

i i

i

S x x a x  



    , 

and minimize the functional 2[ ] ( '')
b

a
R f f  . This is an approximation to the total 

curvature of the curve, because if in the formula  

     
2 3

''

(1 ' )

f
k

f



, 

for the curvature of the curve ( , ( ))x f x , we consider 'f  small, then ''k f  and [ ]R f  

approximates the total curvature 2( )
b

a
k x dx , of the curve. 
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5.3   Weak formulation  
 

There exist a very close relationship between differential equations and variational 

problems. Many of the PDE of mathematical physics and applied mathematics are in fact 

the Euler-Lagrange equations for the minimum of some functional. Laplace's equation 

 

0xx yyf f f    , 

 

 is the Euler-Lagrange equation for the potential energy functional of the membrane, 

 
2 2 2[ ] | | ( )x yR f f dydx f f dy dx




     ,  

called the Dirichlet integral. If we consider the Dirichlet boundary value problem for the 

Poisson equation  
2

,
0

f g in

f on

  


 
    (5.2) 

 

with ( )g C  , the desired classical solution of this equation belongs to 2 ( )C   and 

vanishes on  . Multiplying eq. (5.2) by an arbitrary function   with compact support 

(i.e. 0  on  ) we have f g 
 

     . Then, using integration by parts 

 

 f


  f


   ˆ

f
dS

n







 g


  , 

we obtain 

 f

  g


  0 ( )C    . 

 

This is equivalent to finding 
1

0 ( )u H  such that using
2L - inner product  

 

( , ) ,f g      1

0 ( )H   .    (5.3) 

 

This is called the variational or week form of equation 5.2, which in contrast is called 

strong form. In the next chapter we treat its relation with Schwartz distribution theory. 

 

 

5.4   Fundamental solutions 

 
Given that our central problem is the reconstruction from scattered data, we will need 

physical interpretations of operator equations in the form P f g , where P  is a partial 

differential operator, and g  may be Dirac’s delta  . If in the plate problem g represents the 

force acting on the plate then g    represents a point load acting at 0x   and the 

corresponding equation is  
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 f   . 

Historically, depending of the kind of application, the solutions to ( )P D    have taken 

different names: impulse response, Green’s functions or fundamental solution.  

 

The point- force Green function ( )xK  for a spline in tension must satisfy  

 
2 ( ) ( )x xD K T K     ,  

 

where 2 and   are the biharmonic and Laplace operators, respectively. The general 

situation of M  data constraints ( )i if a z  at the locations 1 2{ , , , } n

MA a a a  , results 

(using distribution theory) in the equation  

2

1

( ) ( ) ( ) ,x x x
M

i i

i

D f T f a


       

with solution (see chapter 7) 

1

( ) ( )x x
M

i i

i

f K a


  .    (5.4) 

 

 

5.5   Criteria for selection of regularization functionals 
 

In general any functional able to measure the amount of rapid variations of the surface (that 

is, the amount of variation in the local surface orientation) could be used as stabilizer [ ]R f . 

This suggests that this functional should measure some factor of the second –order 

derivative of the surface. Although every requirement restricts the number of possible 

regularization functionals, we would also like 

 

 Functionals that measure local and global features. 

 Rotation invariant functionals. 

 Functionals with geometrical or physical interpretation.  

 Functionals that fit certain mathematical requirements.  

 

All the requirements are hard to fulfill. There are very complicated functionals that yield 

surfaces of high quality. But the minimization procedure is very costly or simple 

functionals that do not lead to good surfaces.  

 

Then, thinking geometrically, one possibility is to measure the curvature of the surface, 

which implicitly reflects variation in surface orientation. It may be used mean curvature H  

or Gaussian curvature K . They both depend on the principal curvatures
1k and

2k (see 

[22,45,136]). At any point of the surface there exists an infinite number of normal sections 

that is, planes that intersect the surface containing the normal vector of the surface and 

defining curves over the surface. There are two sections of particular interest, one with 

maximum curvature and other with minimum curvature. It can be shown that the directions 
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corresponding to these two curves are orthogonal. These directions are called the principal 

directions and the curvatures of the corresponding sections are the principal curvatures 

 

1 2K k k ,  
1 2H k k  . 

 

For a surface in the form ( , , ( , ))x y f x y , these curvatures are given by  

H
2 2

( )
1

x

x y

f

x f f



   2 2

( )
1

y

x y

f

y f f



  

,  

and  
2

2 2 2(1 )

xx yy xy

x y

f f f
K

f f




 
. 

 

We may define regularization functionals that takes measures over the whole surface in the 

form  
2

1[ ]R f H dydx    

2 2 2

2 2 3

[ (1 ) (1 ) 2 ]

(1 )

xx y yy x x y xy

x y

f f f f f f f
dydx

f f

   


  . 

If 
xf and yf  are assumed to be small, then  

2

1[ ] ( )xx yyR f f f dydx 
2( )f dydx  .   (5.5) 

 

Assuming similar conditions we can define other functional 

 

  
2

2[ ]R f K dydx    
2( )xx yy xyf f f dydx  .    (5.6) 

 

Note that 
1R and 

2R  are both functionals containing second order derivatives. The relation 

with the regularization functionals used in this thesis is the following:  

 

Physically we may think in energy functionals. Thin plate energy functional has an exact 

and simple version  
2 2

1 2( ) ,exactE k k dS


   

 
2 2 22simple xx xy yyE f f f dydx


   , 

 

 From the physical point of view represents the bending energy of a thin plate having the 

shape of the surface represented by f . When this surface is not very complex, simpleE  is a 

good approximation to 
exactE . Since simpleE  is quadratic, is much easier to minimize than the 

highly non linear functional 
exactE  which may also be written as 
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 2 2

1 2 1 2( ) 2(1 )exactE a k k b k k dS


    , 

 

where ,a b  are constants describing properties of the material (resistance to bending and 

sheering). 

 

 

5.6   The Resolution of the functional  
 

In general, it is extremely difficult to find a functional that measures surface consistency 

and satisfies the conditions of an inner product. Hence if the regularization functional 

[ ]R f  comes from a semi-inner product on a semi Hilbert space of possible surfaces, then 

the most consistent surface is unique up to possibly an element of the null space of the 

functional. The null space is simply the set of surfaces that cannot be distinguished by the 

functional from the surface that is zero everywhere. It is to say, we can consider a vector 

space  of functions with seminorm | |f  and null space  

 

{ : 0}| |u u   ,    (5.7) 

 

that induces a normed space / , called the quotient space. The induced norm on 

/  is clearly well-defined and is given by: 

| | | |f f N .    (5.8) 

 

This means that we can study our problems on the space /  in order to use the 

properties of norms.  

 

Based on the form of the null space, we can determine whether or not the differences in 

minimal surfaces are intuitively indistinguishable. Then this criteria that may be used to 

determine the “best” functional, using the size of the null space, since this determine the 

resolution of the functional, that is, the level at which the functional cannot distinguish 

between two different surfaces. For example, it is better to use the quadratic variation  

 

2

| |

!
[ ] | ( ) |

!
x x

n

m

m
R f f d

 

  ,  

 

because is unable to distinguish between two different surfaces only when they differ by a 

plane, while the square Laplacian in the functional 2 2( )
n

f  cannot distinguish between 

two surfaces differing by any harmonic function. It is to say, the null space on the first 

functional is smaller than the second one. 
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5.7   Adding more functionals 
 

To illustrate the way these physical interpretations may help our understanding and analysis 

of surface reconstruction, let us consider the interpolation problem. The idea in this case is 

to choose a proper condition added to the interpolation constraints ( )i if a z in order to 

obtain a well-posed problem. Let us suppose we have a thin plate of a flexible material, 

plane when no external force is applied on it and we impose the condition of crossing the 

points represented by data 
2

1D {( , ) }M

i i ia z    .  

 

In equilibrium, the plate tends to form a smooth surface. It is a well-known fact that the 

plate minimizes its potential energy, which is expressed up to certain degree of 

approximation minimizing the TPS functional 

 

2

2 2 2
2 2 2

1 2 2
[ ] [( ) 2 ( ) ( ) ]

R

f f f
R f dy dx

x yx y

  
  

   . 

The interpolant satisfying these conditions is the well known Thin Plate Spline. This model 

is very suitable for certain cases, but arise some problems when we have regions with rapid 

change of gradients in the modelled phenomenon. Physically this may be interpreted as the 

resistance of the plate to be stressed beyond its flexibility. This resistance of the plate may 

be avoided taking a more general model minimizing the functional  

 

2

2 2

1 1[ ] [ ] [( ) ( ) ] ,
R

f f
R f R f dy dx

x y


 
  

     (5.9) 

where
1 0   is a regularization coefficient. When

1 0  , we again obtain the TPS model. 

On the other side, if 
1   the resulting spline represents the surface, being not a plate 

but an elastic membrane (rubber sheet) crossing the interpolation points. This membrane 

overcomes the difficulties of TPS. The solution to (5.9) may be interpreted as a thin plate 

with tension applied on its boundaries and it is called spline with tension [27,63]. In this 

case the shape will depend on the amount of tension being exerted as well as the stiffness of 

the material. 

 

This process of extending the energy functionals to include more complex conditions in the 

form of adequate functionals is the core of this thesis work. We take TPS as initial model to 

obtain explicit expressions of splines that may deal with some of its limitations, especially 

the reconstruction of local and global properties of shapes from point clouds. In general, we 

are interested in partial differential operators ( )P D , with constant coefficients c  

 

| |

( )
m

P D c D



 

  ,     (5.10) 

whose properties mainly depend on its principal part
| | m

c D



 
 , formed by its higher 

order terms [87]. 
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Chapter 6 
 

 

 

 

Distribution spaces and regularization 

for surface reconstruction 
 

 

6.1   Distributions and inverse problems 
 

The theory of distributions has its origins in problems of partial differential equations of 

mathematical physics. However, as usual, after being rigorously formulated in 

mathematical terms, the theory has developed very far from the immediate applications and 

has become very useful in other disciplines, particularly surface reconstruction from 

scattered range data. Distribution theory was created mainly by Sobolev and Schwartz 

[163,164,167] to give answers to problems of mathematical physics. After obtaining a solid 

mathematical foundation, during the last decades, it became an independent discipline. 

Distribution Theory (or generalized functions) “re-establishes differentiation as a simple 

operation of analysis" [163]. 

 

Using the variational properties of splines with an abstract approach on distribution spaces, 

Duchon [48] obtained expressions for the now well-known thin plate spline. Using the 

Sobolev embedding theorem, he found spaces that are included into the space of continuous 

functions ( )n
C , making possible the work of interpolation. During the last decades, it has 

been necessary to develop very subtle mathematical models and algorithms for tackling the 

reconstruction problem and there still remain many others to be solved. Nevertheless, they 

all have common features that can be treated into the framework of inverse problems 

theory [94,129,55,132].  

 

In this chapter we review distribution theory and some distribution spaces, highlighting the 

facts concerning surface reconstruction. The reader should consult the references 

[51,65,91,163,164] for a better comprehension. We show how distribution spaces are 

specially suited for dealing with inverse problems of 3D reconstruction, providing a 

variational framework that conducts to the generalization from classical cubic spline to 

multivariate interpolation and approximation. The results of this approach include the well-

known thin plate spline and other radial basis functions. 

 

Although surface reconstruction is an ill-posed inverse problem, distribution theory gives a 

setting to construct spaces where they become well-posed. In this theory, discontinuous 

functions can be handled as easily as continuous or differentiable functions into a unified 

framework, making it appropriate for dealing with discrete data. We will show how this 
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framework may serve as a tool for the double task of modelling these data and at the same 

time to provide solutions for its reconstruction.  

 

In this thesis, we use Schwartz’s approach to generalized functions considering them as 

continuous linear functionals on the space of infinitely differentiable functions with 

compact support. This setting is adequate for introducing the concept of generalized 

differentiation, which makes possible the calculus of distributions with all its practical 

consequences. The delta functional ( )x , contradictorily defined by Dirac, as 

( ) ( ) (0)x x dx    ; is a generalized function in the theory of distributions, established 

rigorously by L. Schwartz. The spaces of distributions and its consequences for multivariate 

approximation and spline theory have appeared in several publications [47-49,108,109]. In 

this work we want to remark  

 

 How distribution spaces and calculus on distributions provide an appropriate 

framework for solutions of ill-posed problems. 

 

 The role played by fundamental solutions of differential operators for finding 

explicit forms of interpolants. 

 

 
6.2   The derivative problem 
 

Let us consider the classical problem of differentiation. Given a function f , It is possible to 

find its derivative by the classical rules for differentiation. If the function is given by a 

formula, a composition of elementary functions or an integral depending on a parameter, 

then its derivative is also given by a formula. However if the problem is to find the 

numerical derivative of a function on the basis of experimental data, the problem becomes 

ill-posed [55,100].  

 

Our main task is to find or construct spaces where approximation problems can be well-

posed, this is, to fulfill properties (wp1, 2, 3). Nevertheless, classical spaces like [ , ]kC a b  

may not be adequate for this purpose. For example, there may exist a sequence nf  of 

functions in 1( )C  such that converge uniformly to f  but 1( )f C . As we can see, 

many of these problems (like the non invertibility of the order of differentiation) are on 

derivatives and it may happen that 

2 2f f

x y y x

 


   
.  

 

Therefore, it is necessary a more versatile viewpoint for differentiation of a function: 

derivation in the sense of distributions. Even more; the spaces of distributions solve the 

existence problems (wp1) but this is not enough for uniqueness (wp2) and regularity (wp3). 

These problems are solved taking subspaces of distributions with some additional 

properties. For numerical analysis the most useful spaces are those as close as possible to 

Euclidian and Hilbert spaces; these are Sobolev spaces, which may be introduced using the 
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concept of functional on a linear (vector) space and some results from approximation 

theory.  

 

 

6.3   Distributions 
 

If X  is a function space, i.e. a space whose elements are functions (e.g. [ , ]a bC ) then a real 

(complex) function :T X  on X  is called a functional. The set X  of all continuous 

linear functionals on X  is called the dual space of X . Especially interesting for us is the 

so-called space of test functions, the set of infinitely differentiable functions on 
n

 with 

compact support, symbolized 0 ( )n
C , ( )nD or simply by D . The elements of the linear 

space '( )nD  are called distributions (or generalized functions) and are characterized by 

their “actions” ( )T   or ,T   (“Duality bracket”) over the elements ( )n . For 

instance , (0)     is the action of the delta functional over  . In general each 
na

determines a linear functional ( ) ( )xa a    on ( )nD by the expression ( ) , ( )a a    . 

This is a way to solve the formal inconsistency settled by Dirac’s sampling property. An 

important thing to note is that any locally integrable function f , will define a distribution 

by  

 

, ( ) ( )
n

x x xf f d      0 ( ).nC   (6.1) 

 

These are called regular distributions. If this is not the case, they are called singular 

distributions (for example,  ). By abuse of notation singular distributions are also denoted 

by the symbol ( )f x  used for ordinary functions and are written as in (6.1). The main goal 

now is to extend as many operations as possible from functions to distributions (derivatives, 

convolution, Fourier transform). One key idea is that the definition of operations on 

distributions should coincide with the definition for regular distributions. From 

 

( ) ( )f f     , 

 

it follows that the product of a distribution T en ( )n  and a function C  is defined 

as 

 

, ,T T     . 

 

Nevertheless, this should be done carefully, because it may arise several limitations; for 

example, it will not be possible to multiply distributions nor define the Fourier transform 

without making extra assumptions. It is a well-known fact that classical spaces may not be 

suitable in order to formulate well-posedness. The derivative concept is in the core of this 

difficulty, so it is necessary to get a more versatile definition of derivative. It is known that 

classical differentiation is an ill-posed problem, because taking derivatives of a function 
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amplifies its oscillations resulting in less smooth functions. On the contrary, integration is 

an smoothing operation.  

 

Distributional derivatives are motivated using integration by parts and the compact support 

of ( )n , with the following definition  

 

,
n

k k

f f

x x

 
   
  ,

n

k k

f f
x x

 
    

  , 

 

then, , ,
k k

T
T

x x

 
    
 

 for '( )nT D . As a consequence, the derivative   of the 

delta distribution it is expressed as ,   ,     (0)   . A distribution T has 

derivatives of all orders. This is expressed as  

 
| |, ( 1) ,T T            ( ).nD    (6.2) 

 

This means that the derivative of a non-differentiable function can be defined in terms of 

relations with smooth functions of compact support. A direct consequence is that a 

distribution T  is indefinitely differentiable and 

2 2

j k k j

T T

x x x x

 


 
. It is also important to 

remember that distribution spaces may be defined on a bounded region n ; but for 

reconstruction from scattered data it is convenient to take n  , such as in the above 

definitions. In this manner, the boundary conditions are shifted to   and is not necessary 

to solve boundary value problems which may conduct to unbounded Green functions 

[188,189]. Another problem is that some interpolants are not easy to compute, because their 

characterization involves a kernel given by a series, then things are much simpler replacing 

  by the whole plane 
2
. 

 

 

6.3.1   Convolution 
 

An operation with very useful properties in theory and applications is the convolution 

product of two functions u and v  ( ) ( ) ( )x x t t t
n

u v u v d    .Several conditions on u and 

v  are necessary to ensure that the integral exists [163]. If S and T  are distributions on 
n

then their convolution product S T  is a new distribution on 
n

, defined by 

 

, , ( )x y x yS T S T        ( ).n   

 

Convolution product is particularly useful because of its regularizing properties, i.e. make a 

function regular or smooth. Convolution becomes a very powerful and general operation 

when considered from a distributional point of view. Some kinds of differential, difference, 
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and integral equations are all special cases of convolution equations. A great variety of 

equations of mathematical physics can be compactly represented by the simple form 

 

.u v f   

 

 Linear translation invariant systems are modelled by this kind of convolution equation. The 

convolution of a distribution '( )nT D  with ( )n  is a 


C  function T   on
n

. 

T   is called the regularization of T . Besides of being commutative and associative, 

convolution of distributions has other useful properties as 

 

(a) T T  ;  

(b) ( )a aT T   ;  

(c) T T    ;  

(d) ( ) ( ) ( ).x xa h h a           (6.3) 

 

In general, if D  is a differential operator with constant coefficients in
n

, D T DT  . 

Thus, if D  is the Laplacian operator 

2

2
1

n

i ix


 


  in 

n
, then T T   . 

 

6.3.2   The Schwartz Space   
 

A very important problem when extending the Fourier transform of a function f  

 

[ ]f F  ( ) ( ) x ξ
ξ x x

n

if f e d   ,   
1 2( , , , ).ξ n    

 

 to distributions is that if   it is possible that  . In order to obtain a useful 

definition of Fourier transform, Schwartz defined the space  of functions C  such 

that   and all its derivatives    vanish at infinity more rapidly that any power of || ||x . 

For example 
2|| ||( ) x

xp e  belongs to  with p any polynomial. With this in mind, is defined 

the space of tempered distributions as the dual space ( )n . As a consequence   

implies   and it is possible to define , ,T T      T   ; preserving in this way, 

the well-known nice properties of Fourier transform ( 1  , for example). One important 

property for applications on reconstruction is that the Fourier transform of a radial function 

(say
0( ) ( )xf f r ) is also radial (say 0( ) ( )ξf f  ), || ||xr   2 1/ 2

1

( )
n

i

i

x


  ; || ||ξ   

2 1/ 2

1

( )
n

i

i




  .  

 

Very useful for us will be the following results taken from Gel’fand and Shilov book [66] 
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[ ] nr C  F  ,
1

2

( )
22 ,

( )
2

n
n

n

C 
















 

1 2[ ln ] ln .n nr r C C        F        (6.4) 

 

1C , 2C  are also given in terms of the Gamma function. 

 

 

6.3.3   Fundamental solutions  
 

A fundamental solution of linear differential operator 
| | m

P c 



 

  with constant 

coefficients  is a distribution ( , )x yK , such that ( ( , )) ( )x x y x-yP K   . If K    then K  is 

called a potential. Here P  is applied to K  as a function of x  and y  is a parameter.  

 

Fundamental solutions have the remarkable property of being part of the solution of 

inhomogeneous differential equations. Reasoning formally and using properties (6.3), if 

PK   , then ( )P K g  ( )PK g  g  g , therefore  

 

K g  is a solution of .Pf g    (6.5) 

 

This is a well-known fact in the theory of differential equations. In this and the next 

chapters, it is shown its great utility for multivariate approximation. The most remarkable 

fact that concern us about fundamental solutions is that the interpolants we are going to 

construct are expressed as a linear combination of translates of the fundamental solution for 

a differential operator. Fundamental solutions are called Green's functions when they are 

subjected to boundary conditions. According to Malgrange-Ehrenpreis theorem [91], every 

operator 
| | m

P c 



 

  has a fundamental solution. Fundamental solutions take different 

names, depending of the specific fields where they arise: impulse response, Green’s 

functions, influence functions. These multiple names are strongly related with the history of 

physico-mathematical sciences [199]. 

 

One of the most important fundamental solutions comes from the iterated Laplacian 

operator
mu . If K  is a fundamental solution of the operator m , then 

mK   . Taking 

Fourier transform on both sides, 2( 1) 1m m E   and using formulas (6.4) are obtained the 

fundamental solutions  

 

.( , ) (|| ),x y x - y||m nK       (6.6) 

 

   

2

, 2

ln ,
( ) ,

,

m n

m n m n

c r r n even
r

d r n odd






  


    (6.7) 
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( 2) / 2

2 1 / 2

( 1)

2 ( 1)!( / 2)!

m n

m n
c

m m n

 






 
,  

2 / 2

( / 2 )

2 ( 1)!m n

n m
d

m

 



 .   

 

 

6.3.4   Sobolev and Beppo Levi spaces 
 

The well-known classical spaces (e.g. the space of continuous functions) may fail when 

dealing with ill-posed problems. Distribution theory gives a setting to construct spaces 

where surface reconstruction becomes well posed. The space of distributions ( )n  as 

described above provides answers for conditions of existence and uniqueness. However, 

this space is "very large”, therefore, the issues on regularity are treated into some of its 

subspaces. It is possible to reconstruct the space 2 ( )n
L  as a Hilbert space of distributions, 

unifying this theory with the theory of 2 ( )n
L  spaces; this leads naturally to Sobolev 

spaces, very convenient for the pure and numerical treatment.  

 

The key idea of Sobolev techniques it is to assume that the distributions which solve a 

particular problem really come from a function f , but without making any smoothness 

assumption about f . The next step in the method, is to take advantage of the most general 

and operational properties of distributions and apply them to solve the problem. Once this 

is done it is possible to use the so called Sobolev embedding properties in order to 

determine the smoothness degree of the solution. If m  is a nonnegative integer and 

[1, [p  , The Sobolev space , ( )m p nW , is the vector space 

 
, ( ) ( ): ( ),| |{ }'m p n n p nu L mW u     D , 

 

provided with the norm ,

2

( )
| |

|| || || ||m p p n

p

W L
m

u u

 

  . 

The spaces ,2 ( )m nW  ( ) are symbolized as ( )m nH and consists of those functions 

in 2 ( )n
L  that, together with all their distributional derivatives of order | | m  , belong to 

2 ( )n
L  

2( ) : ( ), | |{ }L
m n nH u u m      . 

 

We consider real value functions only, and make ( )m nH  an inner product space with the 

Sobolev Inner product  

| |

( , ) ( )( ) xm nH
m

u v u v d 

 

     , mu v H . 

 

This inner product generates the Sobolev norm 2 2

| |

|| || ( )m nH
m

u u dx

 

  . 

 

One important fact about these spaces is that ( )m nH is a Hilbert space with respect to the 

norm || || mH
  . In general, for s , is defined as 

2p 
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/ 2 2( ) ( ) : (1 || ||) ( ){ }ξ
s n n s nH S u Lu   ' ,  

 

with the scalar product ( , ) || ( ) ( )ξ ξ ξ ξ
n

su v u v d    . It can be shown [202] that when

s m  , ( )s nH  is topologically equivalent to ( )m nH . 

 

Now, our interest is to find a proper abstract setting for a natural n -dimensional 

generalization of the minimal norm interpolation problem. This is provided by 

homogenous Sobolev spaces or Beppo Levi spaces ( )m nBL  of order m over
n

 

 
2( ) : ( );| |{ }m n nBL u L mu      D' . 

 

In words, this is the vector space of all the (Schwartz) distributions for which all the partial 

derivatives (in the distributional sense) of (total ) order m  are square integrable in 
n

. 

Due to its “weaker” definition, in ( )m nBL  there is not a norm but the rotation invariant 

semi-norm defined by (1.3)  

[ ]R u 2

| |

!
| ( ) | ,

!
x x

n

m

m
u d

 

      (6.8) 

 

corresponding to the semi-inner product  

| |

!
( , ) ( )( ) .

!
x

n

n

m

m
u v u v d 

 

       (6.8a) 

 

A semi-inner product has nearly all the properties of an inner product, but its null space is 

different from cero. It can be shown that the null space of (6.8) is the space , of 

polynomials of total degree no greater than 1m ; the dimension of ( )n

k  is 
k n

n

 
 
 

; 

for instance, },,,,,1{ 22 xyyxyx  is a base for 2

2 ( ) . An important relation between 

Sobolev and Beppo-Levi spaces is that the intersection of all Beppo-Levi spaces ( )k nBL  

of order k m  yields the Sobolev space 2 ( ) ( )n k n

m

k m

W BL


 . 

 

With the above setting, distribution theory provides a very efficient tool for treating with 

very complex problems; nevertheless, it is very important to remember that in order to have 

a realistic application this should be done with spaces of continuous functions. This is the 

method used in partial differential equations, where the problems are first solved in the 

realm of distributions and then if these distribution solutions are classical solutions. 

Sobolev embedding theorems answers this question.  

 

1( )n

m
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By the Sobolev embedding theorem [2], it is well known that for 
2

n
m  , the inclusion 

 holds, or, to be more precise, that every equivalence class in ( )m nH  

contains a continuous representer. In this way, ( )m nH is interpreted as a set of continuous 

functions. The following theorem shows that ( ) ( )m n nBL C  as well.  

 

Theorem 6.1 ([48,116]). If 
2

n
m   then ( )m nBL  is semi-Hilbert space of continuous 

functions on n  and all the evaluation functionals with finite support in n  that annihilate 

1( )n

m  are bounded.  

 

Some of the ideas we have mentioned up to now (functionals, fundamental solutions, inner 

product spaces) can be linked using the ideas of Reproducing Kernel Hilbert Spaces 

(RKHS) [8,171,184,188].
 

 

 

6.3.5   Distributions and Mercer condition on kernels 
 

In the theory of integral equations, the kernel ( , )x yK  is positive definite when ( , )x yK  

satisfies  

( ) ( ) ( )x,y x y x yK f f d d  ( , ) 0,Kf f     (6.9) 

 

for any continuous function ( )xf . In the beginning of XX-th century, Mercer [8] 

discovered that this condition is equivalent to the quadratic form  

, 1

( , ) 0,
M

i j i j

i j

K a a 


  

for any M points 
1 2, , , Ma a a

n , and 
1 2, , , M   \{0}  . If K  is radial then 

( , ) ( )x y x yK     and (6.9) will be 

 

( ) ( ) ( ) 0x y x y x yd d       for all 0 ( )nC .  

 

To see this one only need to approximate this integral by a Riemann sum. This condition 

can be written as ( ) ( ) ( )f d d   τ x x τ τ x ( )( )( ) 0f d = τ τ τ , where  is the 

function ( )   x x . This suggest to define a distribution ( )nT   of positive type 

if  

 

( ) 0T    for all ( ).n     (6.10) 

 

If  is a Hilbert space of functions on an arbitrary set whose inner product is written 

( , )  , 


 will be the space of mappings from   to and [ ]  is the vector space of finite 

( ) ( )m n nH  C
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linear combinations of the Dirac, or evaluation functionals 
0 0( ) 0( ) ( ) ( )x x xL f f f    onto 

, [ ]

1

: ,{ }
i

M

i a i i

i

a 



    . In this way, [ ] and   are sets in duality by the 

bilinear form [ ], :      such that 
1 1

( ),
i

M M

i a i i

i i

f af 
 

    . If the Dirac 

functional ( )xL f is bounded on , by Riesz representation theorem [35], there exists 

exactly one
xK  such that 

( ) ( , )x xL f f K ( )xf , for all f  . 

 

xK is known as the representer of 
xL . Then  becomes a Reproducing Kernel Hilbert 

Space (RKHS) or Hilbert space of functions [35] and the representer is a unique positive 

definite function : n nK   , ( , ) ( , )x y x yK , called the reproducing kernel of

; such that  

( ) ( ( ), ( , ))f f K yx y x y f  .   (6.11) 

 

The kernels we deal with in this work are radial, thus they have the form 

( , ) (|| ||)x y x yK    , where : [0, [   is a continuous function that depends of the 

distance between points.   is called a radial basis function. Table 6.1 gives a list of the 

most used radial basis functions. 

 

Useful cases [154-157,188] of both positive definite and radial kernels are 

( , ) (|| ||)K  x y x-y  with Gaussians 
2

( ) rr e  ,  inverse multiquadrics 
2

1
( )

1
r

r
 


 

and Wendland compactly supported function 4( ) (1 ) (4 1)r r r    . An especial case of 

conditionally positive definite kernel is obtained with the thin plate spline function 
2

2,2 ( ) lnr r r  , which is a particular case of (6.6).  

 

The next theorem clearly illustrates the two trends that historically have been followed to 

study properties and applications of kernels. In the first trend, one is interested primarily in 

a class of functions , and the corresponding kernel ( , )x yK  is used essentially as a tool 

in the study of functions in this space. Those following the second trend consider a given 

kernel ( , )x yK  and study it in itself as a tool of research, the space  corresponding to 

( , )x yK  is introduced a posteriori. 

 

Theorem 6.2 (Moore-Aronszajn [188]). To every RKHS there corresponds a unique 

positive definite function (called the reproducing kernel) and conversely, given a positive-

definite function ( , )x yK on n n  it is possible to construct a unique RKHS of real 

valued functions on n with ( , )x yK as its reproducing kernel, this space is called the 

native space.  
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It can be shown [191] that the native space for thin plate spline kernel 

,( , ) (|| ||)x y x ym nK     is the Beppo-Levi space ( )m nBL  and the native space for 

( , ) (|| ||)x y x yK     with Wendland function 4( ) (1 ) (4 1)r r r    is the classical 

Sobolev space 3( )nH .  

 

  
Name ( )r  Parameters order 

Linear ( )r r    1m  

Cubic 3( )r r    2m  

Gaussian 
2

( ) rr e    
0   0m   

Poli-harmonic ( )r r   0 \ 2   / 2m      

Thin plate spline ( ) log( )r r r   2   / 2m   

Multiquadric 
2 2 / 2( ) ( )r c r     0 \ 2  0c   / 2m      

Inverse 

multiquadric 
2 2( ) 1/r c r    

 0m   

Wendland  

function 

4( ) (1 ) (4 1)r r r      0m   

 
 

Table 6.1: Some well known Radial Basis Functions. 
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Chapter 7 
 

 

 

 

Interpolation of surfaces from point 

clouds 
 

 

7.1   Introduction  
 

Now we are going to apply the theory developed in the former chapter to solve the 

interpolation problem from a point cloud in any dimension 1{( , ) }n M

i i iD a z    ; this 

correspond to the problem (P1) proposed in (4.10a) 

 

min [ ]
f

R f


,  with 1{ ( ) } .M

i i if a z      (7.1) 

 

The approximation problem P2 in (4.10b) will be treated in the next chapter. Based on 

results from Hilbert space and distribution theory [35,48,56], we give a constructive proof 

to the problem of interpolation from scattered data. As a consequence of interpolation and 

smoothness conditions we obtain Thin Plate Spline (TPS), whose explicit expression is 

given in terms of the fundamental solution of the biharmonic differential operator. This 

spline is also written in terms of convolution with a fixed function.  

 

TPS is a generalization to n of the well-known cubic spline in one variable [4,161,188]. 

Cubic spline was developed for solving interpolation problems in aircraft, shipbuilding and 

car industries at the 1950´s. Mathematicians soon realized that common interpolation 

methods as Lagrange Polynomials were not suitable for tackling these problems. It was 

necessary to build more subtle tools. After this achievement, there was a great interest to 

obtain the n equivalent to cubic spline. Several ways were tried but only the variational 

approach was successful. In the following lines we describe this approach. 

 

 

 7.2   mD - Splines or Thin Plate Spline 
 

mD splines results as the application and generalization to n  variables of the plate model 

discussed in chapter 5. This model was formalized by Duchon [48] and Meinguet 

[122,123]. To reconstruct a function (or surface), it is assumed that data 

1{( , ) }n M

i i iD a z     comes from the sampling of a function f  such that ( )i if a z  

and it is required to find an expression for f , in order to approximate ( )f x  when x  does 
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not belong to the set of nodes or centres 1 2{ , , , }Ma a a . This means that f  should be 

a continuous function. 

 

The idea is to find an element ( )xS in a proper subset or subspace and then use ( )xS  to 

calculate ( )xf . We suppose  contains a 1( )n

m -unisolvent subset 
1{ }N

j ja  , 

1dim ( )n

mN  
 
and we want to find ( )xS  such that ( ) ( )i i iS a f a z   for 1, ,i M

and minimizes the seminorm 

2

| |

[ ] | ( ) |x x
n

m

R u c u d


 

  ,    (7.2) 

with null space ; the 
!

!

m
c


  are chosen for obtaining a rotational invariant 

seminorm. As a consequence, we begin assuming ( )m nS BL , then by Sobolev 

embedding theorem, ( )m nBL is a linear subspace of ( )n
C  for 

2

n
m  . 

 

 The key idea is to apply theorems A.2 and A.3 on spaces of distributions and modify the 

semi inner product 
| |

!
[ , ] ( ) ( )

!
x x x

n

m

m
u v u v d 

 

    on ( )m nBL . We then obtain an 

inner product for building a complete space  . Once this is done, we are enabled to use 

all the machinery of Hilbert spaces (see Appendix). The inner product is defined as 

 

( , ) [ , ] ( ) ( )
i

i i

a

u v u v u a v a


  .     (7.3) 

 

The solution ( )S x  to the minimal norm interpolant is found using the projection operator 

technique on Hilbert Spaces. A linear transformation P of a linear space V  into itself is 

said to be a projection if 2P P . The range R  and the null space K  of P  are linear 

subspaces of V  such that V = R K  . If R K  then I P  is also a projection and it is 

written V = R K  
 

The ideas of the deduction are borrowed from Light [108] and Meinguet [122]. We give 

here the details necessary for showing the importance of fundamental solutions of 

differential operators.  

 

Let 1 2, , , Np p p  be the Lagrange basis for 1( )n

m  with respect to the points

1 2{ , , , }Na a a ; we define : P  with
1

( )
N

i i

i

f f a p


P . Then 1( )n

m  is the 

range ofP  and 0 { : ( ) 0, }j ju u a a     , its null space. By (7.3) it is seen that

0 1( )n

m , then we have the representation formula 0 1( )n

m= , now it is 

predictable that S  will be a term in 0  plus a polynomial. The idea is to find the 

1( )n

m
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representers 
iaR on  and then use theorem A.2(see Appendix). If 

iaR is the representer for 

ia on ( )m nBL  then 
i i ia a aR h p   where 

iah  and 
iap  are the representers on 0  and 1m

, respectively . Now we find 
iaR using the distributional approach. The image of  under 

the projection operator ( )I - P  is 0 , then ( )n   

 

( )( ) ( ( ), )xx h    P P  [ , ] [ , ]x xh h    P  

| |

( )( ) ,xn

m

c h 


 

      

 

using derivative in the distributional sense in the last expression and by (6.2), we have 
2

| | | |

( )( ) , ( 1) ,x xx m

m m

c h c h  

 

   

            P  

( 1) ,x

m mh    .    (7.4) 

 

It is also seen that  

( ) ( )

1 1

( )( ) ( ) ( ) ( ) ,xx x x
i

qN

i i i a

i i

f a p p
 

          P  ,  (7.5) 

 

so by equations (7.4) and (7.5) we have shown that hx  is a solution of the distributional 

differential equation 

( ) ( )

1

( 1) ( )x x x
i

q
m m

i a

i

h p


      .   (7.6) 

 

Using the fundamental solutions (6.7) of the iterated Laplacian 
( )( 1)m m K   x x

; then 

1

( )
i

l

i a

i

K p K


x x  is a particular solution of the differential equation (7.6) . We project this 

solution on 0  to obtain  

1

( ) ( ){ }x x x
i

l

i a

i

h K p K


 I - P  

1 1 , 1

( ) ( ) ( ) ( )
j

l l l

i a i a i j i

i i i i

K p K K a p K a p x p
  

     x xx . 

 

It can be shown that 
1

( )x
l

x i i

i

p p p


 then 
1

( )x
i i

N

a a i i

i

R h p p


  . Making some calculation 

we find the interpolant ,f AS  as a linear combination of translates of a fixed function plus a 

polynomial 
1

( ) ( )x x
N

j j

j

p p


 where 
1{ }N

j jp 
 is a base for 1( )n

m . Finally, it is obtained 

the following expression that solve the interpolation problem (7.1) 
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, ,

1

( ) (|| ||) ( )x x x
M

f A i m n i

i

S a p


    ,   

2

, 2

ln ,
( )

,

m n

m n m n

c r r n even
r

d r n odd






  


,  (7.7) 

 

where the constants ,c d are known but are not necessary because they are absorbed by the 

linear combinations in ,f AS . This interpolant is known as mD spline, polyharmonic spline, 

Thin Plate Spline (TPS) or surface spline. It is worth to say that ,f AS  is an orthogonal 

projection, therefore, is the best approximation with respect to the seminorm in the space

, i.e. 

,| | | |f A m mf S f S    ( )m nS BL  . 

 

Given the data 1{( , ) }n M

i i iD a z    , the interpolant ,f AS  is completely determined 

finding i ’s and i ’s. The interpolation conditions ( )i iS a z  1,i M produce M  

equations and the remaining N  degrees of freedom are absorbed by the condition  

 

1

( ) 0
N

i j i

i

c p a


  1j mp   ,    (7.8) 

yielding the system 

 

0

 
 
 

t

A P

P

 
 
 





 
  
 

z

0
,     (7.9) 

 

where ,i i   are found by solving this linear system, where, A  is an interpolation matrix 

(see Appendix), with  

 

 , , (|| ||)i j m n i ja a  A , , 1, ,i j M , ( )i j j ip aP 1, , , 1, ,i M j N     

1( , , )t

M  , 1( , , )t

Mz zz . 

 

It is interesting to note that ,f AS  may be written in terms of a convolution of a distribution 

with a function in the following way.  

 

Let  be the distribution ( )

1
i

M

i a

i

 


   such that 1m



 { ( ) 0}: =p   , then by 

condition (7.8), we have that ( ) 0p   if 1mp  . On the other hand, defining

( ) (|| ||)x x  , and using properties (6.3) of the delta function, the result is  

( ) ( ) ( )x xa a     ,  

 

thus, we can write 

( )m nBL
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1

( ) ( )x x
M

i i

i

a 


      .    

  

Therefore, taking 1mp  , 1m



 and 1 2supp { , , , }Ma a a   , the interpolant 

can be written as  

, ( )

1
i

M

f A i a

i

S p


 
    
 
  p    .  (7.10) 

 

This suggests that ,f AS  can be seen as a very general form of a low-pass filter. These 

properties are completed with the following result. 

 

Theorem 7.1 ([122]). If
2

n
m  , the mD spline interpolation problem is well-posed: its 

solution exits, is unique, and depends continuously on the data 1{( , ) }n M

i i iD a z     

 

Example 7.1 (Interpolation with mD -splines). In the space 
2 2( )BL the corresponding 

semi-norm is 

 

2

2 2 2
2 2 2

2 2
[ ] ( ) 2( ) ( )

u u u
R u dx dy

x yx y

  
  

   , 

 

that represents the bending energy of an infinitely extended plate. With
2( ) logr r r  , the 

interpolant (7.7) is  

1 2 3

1

( ) (|| ||)x x
M

i i

i

S a x y


       . 

 

This spline interpolation, whether in one or two dimensions, physically corresponds to 

forcing a thin elastic beam or plate to pass through the data constraints. Away from the data 

points or centres the curve (or surface) will take on the shape that minimizes the strain 

energy given by [ ]R u . Figure 7.1 shows the results of interpolating Franke’s test function 

( , )f x y  (7.11) [64], given by 
2

2 2 (9 1) (9 1)1
)((9 2) (9 2) )

49 104( , ) 0.75 0.75

x y
x y

f x y e e
 

    

   
2

2
2 2

(9 3)
(9 7)

((9 4) (9 7) )40.5 0.2

y
x

x ye e


  
     , (7.11) 

 

using scattered data 
2

1{( , ) }M

i i iD a z     . The linear system to solve is  
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11 12 1 1 1

21 22 2 2 2

1 2

1 2

1 2

1

1

1

1 1 1 0 0 0

0 0 0

0 0 0

M

M

M M MM M M

M

M

A A A x y

A A A x y

A A A x y

x x x

y y y

 
 
 
 
 
 
 
 
 
 
 

1

2

1

2

3

M













 
 
 
 
 
 
 
 
 
 
 

1

2

0

0

0

M

z

z

z

 
 
 
 
 

  
 
 
 
 
 

,  (7.12) 

 

where the coordinates of observation points are ),( iii yxa  , ,i jA  (|| ||)i ja a  . We 

solve this system to get the coefficients or weights ,i j  , 1, , , 1,2,3i M j  .  

 

 

       
(a)    (b)    (c) 

 

 

Fig. 7.1: Results interpolating Franke’s test function (7.11) without noise in the interval 

[0,1] [0,1]    (a) Original function. Interpolation with: (b) M 40 points. (c) M 100 points. 

The interpolation rapidly improves with an increasing number of random points. 

 

 

Example 7.2 (Reconstruction of surfaces with discontinuities). The following is the 

mathematical expression for Franke’s “landslide” in the interval [0,1] [0,1]   . 

 

2

2

1 2

2 5

1 25 2 2 1
( , ) 1 ( )

2 9 5 5 5

125 2 1
(1 ) (1 )

72 5 5

y

f x y y y x

y x y x





  

       
 


    

     (7.13)
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 (a)       (b)  

 

 

 

 

 

              
   

    

   (c)      (d) 

 

 

Fig. 7.2: (a) ( , )x y coordinates of 100 scattered data on Franke’s landslide surface (7.13) (b) 3D  

scatter plot of the points (c) The original surface (d) Interpolation of the scattered data. This is an 

extreme case very useful for testing approximation models in the reproduction of 

discontinuities. It has smooth zones as well as vertices, edges and faces.  
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n  mD  
2 2

| |

!
|| || | |

!
nmD

m

m
u u dx

 

 
 

1  2D  
2( ( ))u x dx  

1  3D  
2( ( ))u x dx  

2  2D  2

2 2 2
2 2 2

2 2
[( ) 2( ) ( ) ]

u u u
dxdy

x x y y

  
 

   
 

2  3D  2

3 3 3 3
2 2 2 2

3 2 2 3
[( ) 3( ) 3( ) ( ) ]

u u u u
dxdy

x x y x y y

   
  

       

3  2D  2

2 2 2 2 2 2
2 2 2 2 2 2

2 2 2 2
[( ) ( ) ( ) 2( ) 2( ) 2( ) ]

u u u u u u
dxdydz

x y z x y x z y z

     
    

        
 

 

 

Table 7.1: Duchon seminorm (7.2) for some values of ,m n ( 2,3m  ; 1,2,3n  ) m  represents 

the degree of derivatives and  n  the dimension of data.  

 

 

 
n  m  ( )xp  

1  2 0 1c c x  

1  3 
2

0 1 2c c x c x   

2  2 0 1 2c c x c y   

2  3 
2 2

0 1 2 3 4 5c c x c y c x c y c xy      

3  2 0 1 2 3c c x c y c z    

 

Table 7.2: Polynomial terms for 
mD splines. 

 

 

Now we will use the same variational approach to study other splines which are 

generalizarions of mD splines . The elements necessary to define these splines are a 

proper function space and semi-inner product. Once this is done is possible to find the 

explicit expressions for them on scattered data, solving systems of linear equations with the 

structure (7.9) and (7.12). 

 

 

7.3   Generalizations of  mD  splines and seminorms 

 
There are some important splines that can be seen as particular cases of our proposed 

framework (4.11), with 
1 2, ,min [ ]z

f
f

 

 , by extending the framework used for mD -

splines. For this, it is convenient to use Fourier analysis on the semi-inner product  

 

: nu 
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| |

!
( , ) ( )( )

!
x

n

n

m

m
u v u v d 

 

    .    (7.14) 

 

 By Parseval’s formula  

 

 ( ( ))( ( )) ( ( ))( ( ))x x x x x x
n n

u v d u v d         ,  

 

so,  it is natural to modify the mD  semi-inner product (7.14 )and try other inner products 

like  

 

| |

( ( ))( ( )) ( )x x x x
n

n

m

c u v w d 


 

   , 

 

In this way it is possible to show that the seminorm   

2 2

| |

[ ] | ( ( )) | ||ξ ξ|| ξ
n

n
s

m

R f c f d


 

   ,   (7.15) 

 

defines a space of continuous functions ,m sX  under the assumption / 2 / 2m n s n    (see 

[48,122,123]). The ( , )m s - spline   is the unique function in 
, ,m sX  which minimizes the 

seminorm [ ]R f  in (7.15) and interpolates f  on 1 2{ , , , }Ma a a , i.e. 

( ) ( )i i ia f a z   , 1, ,i M . The ( , )m s  spline is given in the form  

 

,

1

( ) ( ) ( )x x x
M

i m s i

i

a p


    ,    (7.16) 

 

where p  is a polynomial in 1( )n

m , the i ’s satisfy 
1

( ) 0x
M

ii
q


 , for any q  in 

1( )n

m  and ,m s  is the radial basis function, given for x n , by       

 

 
2 2

, 2 2

|| || log(|| ||), 2 2 2
( )

|| || , 2 2 2

x x
x

x

m s n

m s m s n

m s n

m s n

 

 

   
  

  
 .  (7.17) 

 

 

This is a generalization of mD spline, adding a new parameter s . 
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7.4   Splines in tension (  -splines) 
 

The thin plate spline with tension (TPST) [63] may be deduced from the model of a thin 

plate subjected to lateral loads and mid-plane forces. This equation may be found in 

Timoshenko’s book [180, 181] 

 
2 2 2

2

2 2

1
x y xy

f f f
f q N N N

D x yx y

   
     

   
, 

 

where f  is the lateral deflection, q is the lateral load, xN
yN xyN , are the mid-plane forces, 

and D  depends on the properties of the plate material. Setting xN
yN and xyN 0 . From 

the former expression is obtained an equation of the form 
2 f f p    . Where   is a 

tension parameter. In this case the seminorm is 

 

2

2 2 2
2 2 2

2 2
[ ] ( ) 2( ) ( )

f f f
R f dx dy

x yx y

  
  

   2

2 2( ) ( ) .
f f

dxdy
x y


 

 
   (7.18) 

 

It can be proved that there exist a Hilbert space subspace of ( )nC  where there is an 

element   called spline in tension, that minimize the seminorm (7.18).   is given in the 

form  

1

( ) (|| ||) ( ),x x x
M

i i

i

a p


       (7.19) 

 

where p  is a polynomial in 1( )n

m , the i ’s satisfy 
1

( ) 0x
M

ii
q


 , for any q  in 

1( )n

m  and ( )x  is the radial basis function, given for x n , by 

 

0( ) ( || ||) log(|| ||)x x x    ,   (7.20) 

 

when the data have the form 1{( , ) }n M

i i iD a z     with 2n  . It is possible to show 

[26] that the function  

 
|| ||( ) ( || ||),x

x xC e 

        (7.21) 

 
also gives a solution to the interpolation problem. 

 

 
7.5   Conclusions 

 
We have deduced an interpolating spline using a variational approach on Hilbert spaces. 

The most relevant features of these splines are their generalization and reproducing 
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properties applicable on scattered data, it is to say, there are not very restrictive conditions 

on the spatial distribution of centers. Following this method we show that ( , )m s  splines 

and tension splines are particular cases of our approach. These splines also minimize some 

seminorm with physical or geometrical interpretation. 
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Chapter 8 
 

 

 

 

Surface approximation from noisy data 
 

 

8.1   Introduction  
 

In the former chapter we have solved the minimal norm interpolation problem using the 

methods of reproducing kernels and projection on Hilbert spaces. Now, we consider the 

problem of smoothing of noisy data in the framework of Schwartz distributions. In other 

words, we want to solve the approximation problem (P2) proposed in (4.10b) 

 

2

1

,

1
min ( ( ) ) [ ]

M

i i
f

i

z f a z R f
M 




   , with  
1{ ( ) } .M

i i if a z   (8.1) 

 

That is, to solve the inverse problem of reconstruction by Tikhonov regularization, in 

particular, the reconstruction of surfaces from scattered data. We also study the most 

general results about regularization of inverse problems. In this case data are considered 

with or without noise. The interesting thing is that these results provide a general answer 

for several forms of data and can be found by solving a linear system. The splines we 

obtain here include all the case studied in chapter TPS and splines in tension. 

 

It was Hadamard [81], the first to speak about well-posed problems as having the properties 

of existence, uniqueness and stability of the solution. However, many important inverse 

problems in science and engineering lead to ill-posed inverse problems, though the 

corresponding direct problems are well posed. Frequently, existence and uniqueness can be 

forced by enlarging or reducing the solution space as we have done with distribution 

spaces.  

 

 

8.2   Solution of smoothing in 3D 
 

When the solution of a problem does not depend continuously on the data, the computed 

solution may be very different from the true solution. Again, we have that there is no way 

to overcome this difficulty unless additional information about the solution is available. 

Therefore, a reconstruction strategy requires additional a priori information about the 

solution.  

 

As we have said before, this can be done by Tikhonov regularization. The main idea 

supporting Tikhonov regularization theory is that the solution of an ill-posed problem can 
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be obtained using a variational principle, which contains both the data and prior smoothness 

information. 

 

Now we show the solution of (8.1) by finding the TPS for noisy point clouds, 
2

1{( , ) }M

i i iD a z     and the smoothing functional [ ]R f   from (7.2), with 2m   

 

2

2 2 2
2 2 2

2 2
[ ] ( ) 2( ) ( )

f f f
R f dx dy

x yx y

  
  

   . 

 

We then have to minimize   
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2

2( ( ) ) ( )i i

i

f z x a    x  
2

2 2 2
2 2 2

2 2
( ) 2( ) ( )

f f f
dx dy

x yx y

  
  

   . 

 

Using the Euler Lagrange equation  
2 2

2
[ ]

x y xx x yu u u u uF F F F F F
x y x x y

   
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    
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, 

for this functional we obtain 

22 ( ( ) ) ( )i i

i

f z x a   x

4 4 4

4 2 2 4
2 0( )f f f

x x y y

  
    

   
, 

and simplifying  

 2( ( ) ) ( ) 0i i

i

f z x a f      x ,  

where 
4 4 4

2

4 2 2 4
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x x y y
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   

   
 is the biharmonic operator. In this way the differential 

equation 2
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( )

M
i

i

i

f z
f x a




   


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x
 is obtained and its solution is  
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i
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
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x
x , 

where 
2,2 2( ) (|| || )K   x,y x y  is again the fundamental solution of the operator 2 . Doing

( ( ) )i i

i

f a z






, we have  

 

( ) ( )x xi i

i

f K a     ( )xi i

i

K a   ( )xi i

i

K a  . 
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As the null space of (8.2) is 2

1( )  we have to add a term 2

1( ) ( )p x  to the final 

expression for the solution of the optimization problem 

 

( ) ( ) ( )x x xi i

i

S K a p    ,

1

(|| ||) ( ).x x
M

i m n i

i

a p


     

 

This is the same expression obtained in (7.6) but with a change in the interpolation 

matrix, which has the form  

 

0 0t

     
     

     

A I P z

P




,    (8.2) 

 

 and I is the identity matrix of dimension M . These results are valid for data points on n  

with 
1{( , ) }n M

i i iD a f    . It is also possible to show that the solutions ( )S x , with 

0   are approximations ( ( ) ( )i iS a f a  )  that converge to the interpolation. This means 

that lim ( )xS


 is the minimum square regression over 
1( )n

m  and 
0

lim ( )xS


 is the 

interpolant of the data D . In other words, the regularization approach gives a compact 

solution applied to both interpolation and approximation. This is shown in the following 

result for many kinds of data. 

 

 

8.3 Extending Tikhonov regularization  
 

Originally Tikhonov proposed the minimization of the functional.  
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 with 
2[ ] || ||R f f  . Later, other regularizers were introduced in the form 2[ ] | |R f P f , 

where | * |  is a seminorm and P  a differential operator. Now, we consider our proposed 

model in the form   
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Observe that if we add two functionals of the form 1 1 2 2[ ] [ ]R f R f  , we could write 

2

1 1 2

1

( [ ] [ ] )R f R f





 . So we will adopt this form. In particular our functionals are some 

instances of Duchon seminorm  
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  , 



 71 

for different values of m . The key idea is to combine functionals with different degree of 

smoothness. We first consider 2J  with 1J ( 1,2m  ), obtaining the functional 
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2 2
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Thus, applying the methods of variational calculus on 
1 2, , [ ]z f

   gives the PDE 

 

      
2 2

2( )K      ,     (8.5) 

 

where K is a fundamental solution. The solution to this and other equations of the 

regularization functionals are given in table 8.1. They have been chosen following the 

criteria designed in chapter five, about the global or local character of the functionals. We 

try to mix both characteristics in the same expression.  

 

The greater the value of ,m  the smoother the functional. Here it is important to remember 

that the variational derivative of [ ]mJ f  is mu . Due to the physical interpretation of 

parameters we have used 1   and 2  . 
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Tab. 8.1: Splines deduced from variational approach, to be applied on scattered data. Each spline 

can be obtained by solving the Partial Difeferential Equation (PDE) that appears in the second 

column. Due to their physical origin we have used 1  , 2   in (8.3). 
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0  is the modified Bessel function of the second kind with
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v v
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 
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   
  

   
  . For our case 0v  . 

 

 

8.5 The Relation with Radial basis functions  

 
The generalization of splines to higher dimensions are called surface splines or radial basis 

functions, they are obtained by minimization of norms or functionals and have the 

rotational and translation invariance properties. Radial basis approximators have the form  

 

1

( ) (|| ||) ( )x x x
M

j j

j

S a p


    ,    (8.6) 

 

where ( )xp  is a low degree polynomial. For example, the cubic spline may be expressed in 

this way with
3( )r r  . If we use the spline S  to interpolate the scattered data 

1 2{ , , , }Ma a a  then S  is completely determined by the scalars or weights i ’s.  This 

is done solving the linear system  
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such that 1( , , )M  M  1( , , )M  N and the polynomials
1{ }N

j jp 
 form a 

basis for 
1( )n

m . In this way the system can be written as 
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with , ( , )i j i jK a aA (|| ||)i ja a   , 1, ,i j M , ( )i j j ip aP 1, , , 1, ,i M j N 

1( , , )M  , 1( , , )Mz zz . Sometimes the spline does not have polynomial term

( )xp , then we have A z . 

 

We have seen (chapter 6) that under certain conditions ( , )x yK produce positive definite 

matrices 
, ( , )i j i jK a aA  and then the matrix is non-singular.  
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Chapter 9 
 

 

 

 

Applications, implementations and 

numerical experiments 
 

 

9.1   Introduction 
 

The variational framework we have built can be applied to multiple classes of data. In 

particular, this chapter is devoted to test and show the performance of our methods in the 

reconstruction of data coming from surfaces, given as point clouds or Cartesian 

coordinates. We analyze the splines of table 8.1, which can be derived using the theory of 

the last three chapters. For evaluating the performance of these splines we have chosen 

some 3D objects with different degree of complexity in their shape and topology. Our 

models are also analyzed in terms of the key ideas of approximation theory, density, 

convergence and error bounds of the approximators on scattered data. We also include 

some details about the algorithms developed, their implementation and condition number of 

the interpolation matrix. We obtain some results that may be surprising in current literature, 

because some of these splines may have an equal or better performance than thin plate 

splines.  

 

 

9.2   Representation of surfaces 
 

In real world problems we need a representation of surfaces in an operative form in order to 

be used into a computer. This representation is given as discrete points. Nevertheless it is 

important to represent a surface as a continuous set of points.  

 

Explicit representation ( , )z f x y  

 

This is the usual mathematical representation and corresponds to the definition of a 

function  
2:f  . It has the property that all the theories of functional analysis we develop in 

this work assume this representation. One disadvantage (fig.9.1) is that in many real point 

clouds there are points ( , )x y  with more than one value for z .  
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Fig. 9.1: This objects cannot be represented with an explicit form ( , )z f x y  

 

The idea of a function : n mf   is the basic tool for any mathematical model and can 

be adapted for being applied to any kind of object or data. 

 

Parametric representation ( , ) ( ( , ), ( , ), ( , ))r u v x u v y u v z u v  

 

This representation is more useful in the geometric methods described in chapter 2. It is the 

representation used in differential geometry, where any regular parametric surface can be 

described in the form, such that the vectors ru ,rv  generate the tangent plane at each point of 

the surface with 

 

( , , )
r

rv

x y z

u u u u

   
 
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,     ( , , ).
r

rv

x y z

v v v v

   
 
   

 

 

 

9.3   Models and objects analyzed 
 

Our purpose is to evaluate our regulation framework as well as its extensions. In order to 

make comparisons with the big amount of classical and new literature, this evaluation has 

been done using some well known objects given as point clouds, in the explicit form 

),( yxfz   or in parametric form. The first publications with some of these objects 

appeared in the early 80’s. Nowadays there exist a big repository and sources for point 

clouds that vary from very simple figures with thousands of points to very complex objects 

in the order of millions points. The models we have chosen by their relevance to our work 

are shown below. 

    

1. Franke’s data (“landslide”) 
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     (9.1) 
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2. Franke’s function 
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3.  Peaks surface 
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x
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4.  The Tube.  

3 6( , ) 1 sin sin
u u

z u v e v e v      

26( , ) 2( 1 )sin cos ( )
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u
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26( , ) 2(1 )cos cos ( ).
2

u
v

x u v e u 
   (9.4) 

 

 

 

 

 
    

     
  (a)       (b) 

 
Fig. 9.2: The surface in (a) represents the parametric equation (9.4). In (b) we show a set of 200 

sample points on this surface. 
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  (a)       (b) 

 

 

 

 

    
 

  (c)       (d) 

 

 
Fig. 9.3: The surface in (a) corresponds to equation (9.1), it is known as Franke´s data. This surface 

shares many features with the “fandisk” in (b). By their edges and vertices, they are both used to 

test reconstruction of discontinuities. The surface in (c) is generated by the function (9.3) and it is 

well known to MATLAB users with the name “peaks”.  The surface (d) is known as Franke’s 

function and is the graph of (9.2). It has been widely used in many publications and has become a 

standard test for surface reconstruction methods. 
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  (a)       (b) 

 

 
Fig. 9.4: The range scanning point cloud in (a) has 10.000 points and we have used it to test our 

method. In (b) is shown a reconstruction of these noisy data taking 2000 points from (a) and 

applying TPS. 

 

 

9.4   Interpolation and Smoothing with surface splines 
 

The theory developed in this thesis produce surface splines represented as radial basis 

functions. This property makes them very suitable for applications on scattered data. These 

splines have the form  

,

1

( ) (|| ||) ( )x x x
M

f A i i

i

S a p


    ,    (9.5) 

where ( )xp  is a low degree polynomial. Although we can use any base for these 

polynomial terms, it is common to use the base 1 2

1 2x n

nx x x
   , thus, },,1{ yx , 

},,,,,1{ 22 xyyxyx , },,,,,,,,,1{ 222 yzxzxyzyxzyx  are taken as basis for 2
1( ) , 2

2 ( )  

and 3
2 ( ) , respectively. In general,{ }x

 , nZ , | | k   is taken as a basis for 

( )n
k .  

 

We have shown (chapter 6, 7, 8) that these interpolants are linear combinations in terms of 

the fundamental solutions of some partial differential equations. In particular, we studied 

splines related with the PDE’s of table 8.1, where 0  is the modified Bessel function of the 

second kind (besselk in Matlab) and where ( )r  is one of the functions in (9.2). 
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  (9.6) 

 

 

From this list, we have already studied thin plate spline 2

0 ( ) logr r r  in our paper 

[129]; showing that it has a very good performance for interpolation and smoothing of 

scattered data. Our results are similar to those quoted in the literature. However there exist 

few reports or no one about the application and performance of the other functions in (9.6), 

so in this chapter we are going to develop algorithms and numerical tests to measure the 

performance of these functions and compare it with thin plate spline, which is considered 

up to now one of the most efficient interpolators. It is possible to show that the functions of 

this family are conditionally positive definite [27]. 

For finding the explicit expression of the spline 
,

1

( ) (|| ||) ( )x x x
M

f A i i

i

S a p


     it is 

necessary to determine the coefficients
i ’s in the first term and ic ’s for the polynomial 

1( ) ( )n

mp x . This is done solving the ( )M N system (8.5) of linear equations, where 

1dim ( )n

mN   . In real cases N is always very small compared to M  so the complexity 

of solving the system is 3( )O M . 

 

Other source for increasing the  computer time is represented by the evaluation of 
, ( )f AS x  

on a grid. When the grid is very large there exist different strategies and fast algorithms 

[15]. We have implemented numerical algorithms for solving the system and evaluating the 

spline using Matlab with M   2000. It is worth to observe in fig.9.5 that a relatively small 

number of points produce a good visualization. This fact suggests splines as a good method 

for mesh and image compression. 

 

9.5   How to choose an interpolant  
 

There are three very useful criteria to judge effectiveness of an interpolant or approximator: 

density, interpolation and order of convergence. 
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Density 

 

A subset U  in a normed space  is said to be fundamental if the set of all linear 

combinations from U  is dense in . Otherwise, f  and 0   there is a vector 

1

M

j jj
u

  with 
ju U , such that 

     
1

M

j jj
f u 


  . 

 

This is crucial because our interpolators are constructed on linear combinations of translates 

of a fixed function. It is known that if   is a compact subset of n  and  is the subspace 

of ( )C  defined by { (|| || ) : }x xispan x a     then  is dense in ( )C  for 

functions ( )r  of (9.6), among others. For example, it can be proved [7,109] that the space 

1( )n
m  is dense in the space ,m s

X  of ( , )m s -splines.  

 

Interpolation and error bounds 

 

The splines S we have studied are interpolating, that is ( ) ( )i iS a f a  1, ,i M or simply 

|S f . One important observation is that we can always interpolate uniquely with 

conditionally positive definite functions if we add polynomials to the interpolant and if the 

only polynomial that vanishes on our set of data centers is zero, that is,  is 
1( )n

m -

unisolvent.  

 

Theorem 9.1 ([191]) Let  be a conditionally positive definite function of order m  on 
n , and let the data set 1 2{ , , , }Ma a a   be 

1( )n

m -unisolvent. Then the 

system (8.10) is uniquely solvable. 

 

The accuracy of the interpolant can be estimated applying the setting of theorem A.2 (see 

appendix) with { : ( ) 0, 1,..., }iu L u i M   V . We have  

 

Theorem 9.2.  Let ( ) ( )i if f aL , 1, ,i M , be continuous linear functionals on such 

that xu is the representer for the point x . Let f   have minimal norm interpolant S  with 

1

M

i ii
S 


 u . Let P   be the orthogonal projection from onto V , then  

 

    ( ) ( ) [ , ]xx xf S f fPu  . 

 

Convergence 

 

 The convergence of interpolants on scattered data can be studied in terms of the spatial 

density of the set of nodes 1 2{ , , , }Ma a a  . For this purpose the Hausdorff or fill 

distance 
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, : sup min || ||
j

A j
a Ay

h y a


  ,       (9.7) 

 

of the set  within an enclosing domain   is used. ,Ah   gives the radius of the largest 

ball without data sites or “data-site free ball” in  .  

 

 

   
(a) MAX     (b) RMS    (c) ,Ah   

 

Fig. 9.5: Illustration of the convergence of 
,f AS . (a) The Maximum Error MAX  and (b) Root 

Mean Square Error RMS  decrease when the Hausdorff measure  (c)
, 0Ah   as a consequence of 

increasing M .  

 

 

A central  idea in the interpolation problem is that as the set  “fills”  , the error between 

the function and its interpolant should go to zero.; this is seen in the values of ,Ah   . If 

( )f C   say, and 
fS  is the interpolant, then one might hope to obtain || || ( )k

ff S h   

as 0h , where k  is some measure of the smoothness of f . If we take a sequence of 

observational data such that ,Ah   tends to zero, the reproduction error always behaves like 

a power ,
k
Ah  , where 0k   increases with the smoothness of ( ).r  If ( )r  is an analytic 

function as the Gaussian and Multiquadrics, the error decreases exponentially like 
/c hce  

with 0c   as shown by Madych and Nelson [112].  

 

But sometimes things are not so easy because this excellent convergence may have the 

problem of an ill-conditioned system, when 0h  . In some cases it is necessary to apply 

additional techniques as preconditioning. Duchon [48] showed that under certain conditions  

 

    
,

, ,
0

lim || || 0
A

f A m s
h

S f





  , 

 

where f  denotes the unique element of minimal seminorm  [ ] [ ]mR u J u
 
 in the set  

   
,{ : | }.m su X u f 

 
 



 81  

There exist similar results for interpolating and smoothing splines that include (9.6) [7]. 

 

Example 9.1 Testing interpolation and convergence  by splines. In this example we test the 

convergence behavior of TPS for interpolating the peaks surface on different number of 

scattered data in the region  [ 4,4] [ 4,4]     . We have obtained the model (9.1) for TPS 

using a set 2{ , , , }i Ma a a  of M scattered data, then this spline is used to approximate 

the peaks surface with explicit representation  

 

2 2 2( , ) 3(1- ) exp(- - ( 1) )f x y x x y  3 5 2 2- 10( )exp(- )
5

x
x y x y   2 21

exp( ( 1) ),
3

x y   
 

 

on a second fixed set of points . In the fig. 9.3 the improvement of accuracy with 

decreasing values for max error ( MAX ) (see equation 9.9) and Root Mean Square Error   

( RMS ) (9.10) as the Hausdorff measure 
, 0Ah    is observed. This behavior is also 

illustrated in table 9.1. 

 

 

Test M ,Ah 
 RMS MAX 

1 50 1,6653 1,0076 6,4676 

2 100 1,4504 1,4760 4,0028 

3 200 1,1573 0,2146 1,8246 

4 300 1,1573 0,1769 1,6232 

5 400 0,9695 0,1044 1,3003 

6 500 0,7486 0,0420 0,4374 

 
 

Tab.  9.1: Results of numerical experiment for interpolation of peaks surface. Increase in the 

number of points M , implies decreasing values in 
,Ah 

, RMS  and MAX .  

 

 

Most of the existing results about interpolation, convergence and error bounds for radial 

basis functions depend on the variational properties and  positive definiteness of ( ),r  so 

they are applicable to the interpolants studied here, for more details see [191]. 

 

 

9.6 Reconstruction of data without noise 

 
Although real point clouds are commonly noisy, the interpolation of exact data it is an 

important criteria for surface reconstruction methods and it is the first numerical test 

performed on the splines studied here. In this case our splines have a very similar behavior 

in their reproducing quality of the tested functions but they may have great differences in 

the execution time.  
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The table 9.2 shows the  execution time in seconds of the splines in (9.6). For obtaining the 

data in this table we have interpolated peaks surface, taking M  300 scattered points ( , )x y

in the region   [ 3,3] [ 3,3]   .  

 

The time includes all the steps from the generation of the points up to the visualization of 

the spline. Obviously the interpolation improves with an increasing number of points .M  

 

 

 

M  0 ( )TPS  
1  

2  
3    

50 6.5310 37.5780 37.5630 70.5000 6.5150 

100 6.5310 76.0160 76.0000 144.4220 6.9840 

300 40.8910 240.7660 240.8590 451.6400 41.0930 

600 90.8280 525.5470 518.2500 975.7660 90.2180 

1000 168.6720 958.2190 951.3910 1783.3750 171.4220 

 

 

Tab. 9.2: Execution time (in seconds) of interpolation with splines.  

 

 

 

 

 
 

 

 

Fig. 9.6: Visual comparison of execution times for splines. As we can see the execution times for 

the interpolation are longer for 1 , 2 , 3  due to the evaluation of Bessel function in these 

splines. As we can see in table 9.2,  the values of 1 and 2  are very similar, so their graphs are 

superimposed . A similar situation occurs for TPS and tension spline. 
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 (a) M   200      (b) M  200, 0 (TPS) 

 

 

 

 

 

    
(c) M  200, 1 , 0.1      (d) M  40, 1 , 0.1   

 
 

Fig. 9.7: (a) Three dimensional scatter plot of   M = 200 points on Franke’s surface. These points 

are used to reconstruct the surface. Figures (b), (c) ,(d) show a similar accuracy for TPS and spline 

1 ; nevertheless, the performance of 1 can be improved  by tuning the parameter  . 
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(a) M  40,  , 0.1       (b)M  40   0  (TPS) 

 

 

 
 

    
(c) M  40, 2 , 0.1      M  40, 3 , 1  , 0.001   

 

 

 
Fig. 9.8   In these figures, we see that it is only required a small number of points for obtaining a 

good reproduction with all the splines listed in (9.6). In general, the numerical experiments show a 

very similar behavior. As we show later, the great differences appears when dealing with noisy data. 
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(a)       (b) 

 

Fig. 9.9: Many numerical experiments have been run for surface interpolation. Figure (a) shows a 

typical scatter plot for points on Franke’s surface  and  (b) the exact surface. 

 

 

 

An important test for visualization is to reconstruct a surface by  interpolation from a small 

number of scattered data. We have run many numerical experiments for surface 

interpolation. In figures 9.7 and 9.8 we show some remarkable cases. For this task, we have 

used Franke´s function with different values for M in the region [0,1] [0,1]   .  

  

 

9.7  Condition numbers and error bounds 
 

Associated with the solution of a linear system x = bA  there is a number ( ) A  called the 

condition number of the matrix A and is defined as a product of the magnitudes of A  and 

its inverse; that is  
1( ) || || || ||A A  A ,   (9.8) 

 

where || ||  is a matrix norm. If the solution of x = bA  is insensitive to small changes in the 

right-hand side b  then small perturbations in b  result in only small perturbations in the 

computed solution x . In this case, A  is said to be well conditioned and corresponds to 

small values of ( ) A . If the condition number is large then A is ill conditioned and the 

numerical solutions of x = bA  cannot be trusted.  

 

To understand the numerical behavior of the spline approximations it is essential to have 

bounds on the approximation error and on the condition numbers of the interpolation matrix 

in the system  

 

0

 
 
 

t

A P

P

 
 
 





 
  
 

z

0
.  
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These bounds are usually expressed employing two different geometric measures. For the 

approximation error is crucial to know how well the data sites 1 2{ , , , }Ma a a   fill 

the region  . This can be also measured by the Hausdorff distance (9.7), which gives the 

radius of the largest “data-site free” ball in  . 

 

   

M  0 ( )TPS
 

108
 1

 
1012

 2
 

109 
3

 
1010 

  
1016 

50 0,002479 0,002831 0,000207 0,271619 0,001333 

100 0,027472 0,005665 0,000239 0,554171 0,002685 

300 0,742896 0,279228 0,010356 1,684353 0,008065 

600 0,656841 0,217310 0,285977 3,379575 0,016223 

1000 8,446342 1,707619 1,335015 5,640198 2,390499 

 

 

 
Tab. 9.3: Condition numbers for the interpolation matrix of splines. It is remarkable that although 

these values may be very high, the regularization parameters control the ill-posedness of the 

interpolation matrix.  

 

 

The condition number, however, will obviously only depend on the data sites  and not 

on the region  . Moreover, if two data sites tend to coalesce then the corresponding 

interpolation matrix has two rows which are almost identical. Hence, it is reasonable to 

measure the condition number in terms of the separation distance  

1
: min || ||

2
A j k

j k
q a a


  . 

 

In the table 9.3 we report the behavior of the condition number ( ) A  of the interpolation 

matrix for every spline from the list (9.6). We observe an increasing value of ( ) A  with 

respect to an increasing number of scattered data and in comparison with TPS. In spite of 

these large values, the solution of the system and the reconstruction of the surface are 

possible under very general conditions. 

 

 

9.8  Evaluation Criteria for the approximation methods 
 

 

9.8.1 Accuracy 
 

 For these criteria we use known surfaces defined in the form ),( yxfz  , taking samples 

with or without noise and approximating the whole surface, using the spline obtained from 

the scattered data. We then compare exact and approximated values of the function. 

Certainly in the usual and real applications of reconstruction methods we do not have a 
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representation of the object in the form ),( yxfz  , nevertheless, if the method makes a 

faithful approximation of a variety of surfaces; we expect it to give reasonable results in 

other instances. In order to test the accuracy of interpolation of exact data with splines in 

(9.6) We have taken a fixed test set  1 2, , , NB b b b  and interpolated the function peaks 

using M scattered data points 1 2{ , , , }MA a a a  in such a way that A  and B  are disjoint 

sets, its to say they have no common point, then A B  . We use the indicators 

 

Maximum Error ( MAX ) 

 

( )( , )MAX S f   
1

max ( ) ( ) ,
M

i i i
S b f b


     (9.9)

 
 

and  Root Mean Square Error ( RMS ) 

 

2

1

1
( )( , ) | ( ) ( ) | .

N

i ii
RMS S f S b f b

N 
      (9.10) 

 

 

 

M  0 ( )TPS  1  
2  

3    

50 0.8963 0.9087 0.9829 0.6876 0.7530 

100 0.5725 0.6096 0.4666 0.4988 0.4739 

300 0.1108 0.0928 0.1677 0.2837 0.0647 

600 0.0684 0.0180 0.0148 0.0611 0.0092 

1000 0.0144 0.0226 0.0060 0.0161 0.0090 

 

 
Tab. 9.4: Results for RMS  interpolating Matlab peaks function. A remarkable fact it is the high 

degree of accuracy of  2  and  , better than TPS. 

 

 

 

M  0 ( )TPS  1  2  3    

50 4,6211 5,2151 3,4896 4,8581 3,6658 

100 3,2655 2,4901 1,1351 2,5254 1,0782 

300 0,5999 0,4793 1,0159 2,6755 0,5417 

600 0,4003 0,1051 0,1226 0,2318 0,0486 

1000 0,0721 0,1728 0,0447 0,1151 0,1114 

   

 
Tab. 9.5: Results for MAX  interpolating Matlab peaks function. 
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Fig. 9.10: This figure shows the accuracy of surface reconstruction with our splines. The vertical 

axis shows the values of RMS  for each spline using data without noise. The results tend to be 

different as increases the number of points M. As we shall see later, the differences are more 

evident when dealing with noisy data. 

 

 

 

On tables 9.4 and 9.5 we can see some of the typical results obtained in testing the accuracy 

of splines compared with TPS. Here is evident that our splines are sometimes equal or 

better than TPS for the reproducing quality. The performance of Tension splines is again 

very remarkable. 

 

 

9.8.2 Visual Aspects 
 

As we said in the beginning of this work, human visual perception is a very powerful skill 

in our comprehension of reality. Point clouds come from laser scanning of real objects, so 

visualization is a critical task in the performance of the models.  

 

In general we observe that the visual aspects are similar for all the splines when we use 

exact data. As an example, we can see (fig 9.11) the excellent interpolation of Franke’s 

function by TPS. Nevertheless the differences between TPS and the rest of splines may be 

remarkable when dealing with noisy data. In figure 9.11(b) we can observe that the 

performance of TPS for interpolating the noisy “peaks” surface is very poor; but is very 

good using the spline corresponding to 3 . In general this is the typical behavior of our 

family of splines (9.6).  
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 (a)        (b)  

 

 

 

 

 

 
(c)       (d) 

 

 

 
Fig. 9.11: In this numerical experiment we have taken a very noisy peaks surface (a) and applying 

TPS we obtain the surface in (b). But tuning the parameters of 3 , we finally obtain the improved 

surface (c) that can be compared with the exact surface (d).  
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(a)        (b) 

 

 

    
 
(c)       (d) 

 

 
Fig. 9.12: We use the point cloud in (a) to test our splines in the reconstruction of free form objects. 

In this example, applying TPS, with 0.00002   and an increasing number of points: (b) 100 points 

(c) 800 points  (d) 2000 points. 
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9.8.3 Sensitivity to parameters 
 

Tuning of parameters permits to enhance or decrease some features of the object. The 

models based on regularization have this remarkable property. Tuning of parameters is very 

useful for fitting different requirements on different applications and it is essential for noisy 

data. TPS doesn’t have parameters into its mathematical expression, the rest of splines have 

one or two parameters we denoted ,  . The main trend of the curves shows that the 

optimal ,   value seems to fall in an interval where the accuracy behavior of the 

interpolant may be unstable. If the same experiment is performed with a slightly different 

data point resolution or different ,   resolution, the main trend of the resulting curves 

remains similar, but the oscillatory segments change. This sawtooth instability has not yet 

been well understood although it has been recognized in the literature studying other radial 

basis functions [57]. Nevertheless, our numerical experiments show that it is always 

possible to tune the values of parameters for obtaining good approximators. 

 

In our experiment we have evaluated splines by calculating RMS  and MAX  on noisy data. 

The values of RMS  show a similar performance as in the graphs of figure 9.7. They show 

an oscillatory behavior and then grows rapidly. These experiments have shown us that the 

best values for ,   are in the interval [0, 1] and sometimes in a larger interval but not 

larger than [0,10]. 

 

 

   
             (a)       (b) 
 

Fig.. 9.13: We made a lot of experiments varying randomly the values for   and   in the intervals 

[0,1] and
5[1,10 ]  . They all have tend to stabilize in the interval [0,1]. (a) RMS .  (b) MAX . 

 

 

In Fig. 9.14 we show more results with reconstruction (interpolation) for the Franke’s data 

with 100 scattered points for different values of  and  . 
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(a) 3 1  0.00001   (b) 3 1  1010   

 

                   
(c) 2  eps   (machine)                       (d) 2 , 1                          

 

 

                                                     
(e) 1 , 1                                                            (f) 0 TPS   0   

 

 

 

 
Fig. 9.14: This figure shows some results from different tests on regularization parameters. We 

have used Franke´s data for testing an extreme case of discontinuities reconstruction. The results 

show how to preserve discontinuities by tuning the values of parameters. 
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                  (a)                                            (b)                                              (c) 

 

 

Fig. 9.15  Figures (a), (b) shows 100 points, taken randomly on Franke’s data (c). 

 

 

 

9.8.4 Timing 
 

The execution time of an algorithm is measured by its computational complexity which, as 

we said in chapter 3, it is an intrinsic problem in reconstruction. Nevertheless a method that 

is slow now, may be not so much in a better hardware, or if the method worth the effort, we 

can develop faster algorithms. This is the case of all our splines; although they may require 

a huge number of floating points operations in a computer, the results on reconstruction 

capabilities are very encouraging.  In table 9.2 we show some typical performance times (in 

seconds) of our splines family (9.6). It is easily observed, as we may hope, that the splines 

containing Bessel function 0  are very time consuming, specially 3 . They have the form  

,

1

( ) (|| ||) ( )x x x
M

f A i i

i

S a p


    , 

where M  is the number of centres, so this evaluation is proportional to M  and may take 

very long time.  

 

 

9.8.5 Ease of implementation.  

 

Our purpose has been to obtain explicit analytic expressions for approximators in order to 

develop better applications. From this point of view our splines are very well-suited for 

implementation in any computer language. They are linear combinations of a fixed function 

 , given in terms of polynomials, exponentials and logarithms. Nevertheless TPS and 

tension spline require simpler expressions than 1 , 2 , 3  which contain the Bessel 

function 0 .  
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9.9  Reconstruction from noisy data. Cross validation 
 

Other important task is the determination of the smoothing parameter  . Visual appearance 

is a good criterion for visualization problems, so in these case the values for   may be 

determined by trial and error.   is a very sensitive parameter, so small changes in its values 

may cause large changes in the visualization of the surface as observed in former figures.   

is penalizing large values of the functional [ ]R f . The functional contains a great amount of 

derivatives such that should assume large values for non smooth functions and small for 

smooth functions. It is possible to find optimal values ̂  for the smoothing parameter in the 

sense of some criteria. One of them is cross validation. 

 

The basic idea of cross validation for evaluating the performance of an approximator of the 

data 
1D {( , ) }n M

i i ia z     is to build the approximator over the set { : }ia i k , that is, 

without considering the knot ka  and then repeat this procedure for 1, ,k M . Let [ ]kf  be 

the minimizer of  

2

1

1
[ ] ( ( ) ) [ ],

M

i i

i
i k

H f f a z R f
M





    

then it is reasonable to look for the model which minimizes the ordinary cross validation 

function 0 ( )V  , defined as 

[ ] 2

0

1

1
( ) ( ) ,( )

M
k

k k

k

V z f a
M




   

The minimizer of 0 ( )V   is known as the “leaving-out-one” estimator of  . However, in 

computational terms, finding this value is very expensive. An alternative is to use the 

influence matrix B , which may be found [188] with  
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( )M

f a
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It can be shown that [ ] ( )( )k

k kz f a
( )

(1 ( ))

( )k k

kk

z f a

b








 , then  

2

0

1

( )1
( )

(1 ( ))

( )M
k k

k kk

z f a
V

M b








 . 

 

Minimization of the function 0 ( )V   is a powerful criterion for the choice of an optimal  . 

But there exist an even easier method called Generalized Cross Validation (GCV), where 

 
2

2

(1/ ) || ( ) ||
( )

[(1/ ) ( ( ))]

I B z

I B

M
V

M tr










, 
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and ( )B  is the M M  “hat” matrix of the ridge regression [13,188] 
1( ) ( )B X X X I X

T TM    . At first glance, optimization of ( )V   seems a formidable 

computational problem since each value of  has its corresponding ( )B . However, [13] 

gave a method of expressing ( )V  as an easily-calculated rational function based in the 

singular value decomposition (SVD) X=UDV
T

, where U is M p  with orthonormal 

columns, V  is p p  and orthogonal, and D is p p  and diagonal with diagonal elements 

1 2 0pd d d    , which are the nonnegative square roots of the eigenvalues of X X
T

. Finally we obtain the expression 
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



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









 
 
  


 
 
  





.             (9.11) 

 

 

Example 9.2: Interpolation and Cross validation. The results for this example are shown 

in Figure 9.16. For this experiment we have taken  400 noisy points
1 2

{ , , , }
M

a a a  on 

Franke’s function in [0,1] [0,1]     to be approximated with the Thin Plate Spline. We 

can allow the surface to pass close to, but not necessarily through, the known data points, 

by setting 0  . When 0  , the function interpolates the data points. As   approaches 

zero, the surface becomes rougher because it is constrained to pass closer to the data points. 

At 0  , the surface interpolates the data, and overshoots are much more evident . The 

optimum value 
0
  for   is determined minimizing the GCV function ( )V   to obtain a 

smooth surface with fidelity to data.  

 

At larger values of (
0

  ), the reconstructed model is smoother and approaches an 

amorphous bubble (e). It has been calculated an error (Error =0.01082745537985) for this 

experiment with   

 

1

1
| ( ) |

M

j i

j

Error z f a
M 

  ,  

 where ( )jf a  are the exact values on the data points and 
jz  obtained using GCV. In 

example 9.4 we study a case in which we apply the other splines to data with higher  degree 

of noise. 

 

Example 9.3 Testing regularization parameters. The approximator TPS, has also been 

tested using k -fold cross validation. In this method the data set (Fig.9.11 (a)) is divided 

into k subsets whose points are chosen randomly. Each time, one of the k  subsets is used 

as the test set and the other ( 1)k   subsets are put together to form a training set. 
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(a)       (b) 

 

 

                      
 

(c)       (d) 

 

 

 
Fig. 9.16: This example shows the potential of splines to smooth a noisy surface by tuning 

regularization parameters by Generalized Cross- validation (GCV). Figure (a) depicts the noisy data 

near the surface. In (b) we see the interpolation of the original data with 0  , without smoothing. 

(c) The optimum value 
0
 for the regularization parameter  is found by minimizing the function 

( )V  and the resulting surface is shown in figure (d). 
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(a)      (b) 

 

Fig. 9.17: When the surface is reconstructed by using values larger than
0
 the surface is too 

smoothed and loses fidelity to data as it is the case shown in figure (a), with 1  . The data used 

for k-fold cross validation are shown in (b). 

 

 

The function approximator fits a function using the training set only. Then the function 

approximator is asked to predict the output values for the data in the testing set. In this case 

we have taken k =5. In figure 9.11 (f) is shown one case for training set (red) and test set 

(green) The errors for each test set were very similar, showing the robustness of the method 

to different degrees of complexity of the surface or data. The errors were accumulated to 

give a mean absolute test set error (0.010559412144). 

 

 

 

 

                                    

 

 

 

 

 

 
Tab. 9.6: Results for k-fold Cross Validation. 

 

 

Test 

set 

Error 

1  1.0671e-002 

2  1.0374e-002 

3  1.0110e-002 

4  1.0562e-002 

5 1.1080e-002 
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(a)         (b) 

 

 

 

     
(c) 

0
 (TPS), GCV       (d)

3
 , 1  ,

4
10


 , 

4
10


  

 

 
Fig. 9.18. Figure (a) shows a noisy point cloud from Franke’s surface. (b) interpolation of the 

former data. In (c) we reconstruct the surface with TPS and choosing 
0

   by GCV,but the result 

still has noise. In (d) we try the same problem with 
3

  but the result is similar to TPS. 

Nevertheless, as we show next (see Fig. 9.19), it is possible to choose adequate values for 

regularization parameters to obtain high accuracy in surface reconstruction even in highly noisy 

data. 
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(e) 

3
  , 1   0.0001  , 0.01      (f)  , 0.1  , 0.0002   

 

 

 

     
 

(g) 
1

 , 0.1  , 0.009       (h) 
1

 , 0.05  , 0.001   

 

 
Fig. 9.18 (cont.): Now, we show a successful surface reconstruction that remarkably improves the 

performance of TPS. Figure (e) shows that although 
3

  fails to smooth the noise in (d), the 

parameters can be tuned to obtain good results.  In (f), we show that   not only eliminates the 

noise on data, it also gets a high accuracy in the reconstruction of the original surface. The other 

splines have a similar performance, as seen in (g) and (h).   
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Example 9.4: Regularization of an extremely noisy data set. Now we take a more noisy 

point cloud for Franke’s function in fig 9.12(a). In this case we take 400 highly noisy data 

on Franke’s surface. In figure 9.12 (b) is depicted the interpolation of the noisy surface. The 

reconstruction of the surface is done using the regularization parameter   by GCV. We 

observe in (c) and (d) that TPS and 
3

 have a similar quality and it is really remarkable the 

smoothing done by the spline in tension  . The picture (f) shows that   performs much 

better than TPS when treating very noisy data.. Furthermore, (f), (g), (h) show how these 

splines eliminate the noise from data by tuning the values of regularization parameters. 

 

 

Example 9.5: Reconstruction with larger number of points. Now we show the 

performance of regularization of data coming from free form objects and taken by range 

scanners, so in general, we assume the data are noisy. We show some results obtained by 

splines in tension with parameter   around 0.1 and   0.0001. Further experiments with 

the other splines have shown similar behavior. A sample is shown in Fig. 9.19 

 

 

 

 

             
 

 

 
Fig. 9.19: Example of reconstruction of the “face” from a large point cloud with tension spline. 
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9.10    Comparisons with other methods 
 

 

From the splines tested here only thin plate splines have been extensively studied and 

although other authors have studied splines in tension, this has been commonly done for 

data without noise and mainly for curves [38,153]. After the success of thin plate splines at 

the 1970’s there has been a great interest in improving its performance in regularization 

problems. Basically, from the physical interpretations in chapter 5, we can understand the 

limitations of TPS because the material aspects of an elastic plate are rather limiting with 

respect to its physical reality. That is, one may abstract from its third dimension; it is 

elastic, hence it doesn’t deform, only bend, and it is a plate, not a membrane, which means 

it is stiff. Its behaviour is rather that of steel than that of gum. The splines studied in this 

work deal with this problem integrating local and global features in regularization model. 

 

One of the first to propose surface in tension was Franke [63,64], who made extensive 

study of different splines. Nevertheless, the research of Franke was done only for 

interpolation. Perhaps due to the limited computational resources of the 1980’s, there is not 

much research comparing the properties of the splines we study here. The studies of Franke 

were done around 1982, so we can say that the availability of better computational 

resources we have today allowed us a better analysis and visualization. 

 

 

9.11 Conclusions 
 

In this chapter we have performed numerical tests that show how an adequate choice of 

regularization functionals conduct to stable solutions of severely ill posed inverse problems, 

with a high degree of accuracy. We have shown that our spline family (9.6) is a set of 

adequate approximators of surfaces given as scattered data; including free form objects 

coming from range scanners. It is possible to find intervals for adjusting regularization 

parameters and we can find their values by GCV or by trial and error. This last option does 

not mean chaotic choice, because we provide some intervals and key values that become 

very useful in practical problems. Comparing with other works as Franke’s, our numerical 

tests have similar performance in some cases, and in other cases we find better results.  
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Chapter 10  
 

 

 

 

Conclusions and open problems 
 

 

10.1   General conclusions of the thesis 

 
In the first part of the thesis, we mainly focused on building a general framework for 

solving reconstruction problems with different kinds of data, in that way we obtained a 

formulation that joins the classical inverse problems theory with ideas from Schwartz 

distribution theory. This general formulation can be applied to a wide class of inverse 

problems, in particular we dealt with Lagrange data. 

 

Constructing this formulation we encountered and solved the following issues: 

 

 In order to select the most appropriate framework, we have applied inverse theory to 

determine and classify the most relevant problems that arise in reconstruction 

problems. In this way we saw that the most critical point is how to include local and 

global features in the approach to be applied. We found that the regularization 

framework has enough generality for fulfilling these requirements. We found that it 

is possible to include multiple functionals in order to capture local and global 

properties on the data. 

 

 We found that the inclusion of regularization functionals can be conducted by 

physical and geometrical criteria. We have chosen as regularizers the family of 

Duchon seminorms which have an interpretation in elasticity theory. A very 

important idea is the resolution of the functional, given by its null space. This space 

should not be too large in order to capture the complexity of data.  

 

 In deciding what kind of functional spaces are adequate for solving reconstruction 

problems we found Schwartz distribution theory as a powerful mathematical tool 

for designing splines. By converting the addition of functionals into an optimization 

problem, we obtain solutions that satisfy local and global properties which can be 

tuned using regularization parameters. This method is not only for particular cases, 

it can be generalized to n -dimensional data and different kind of problems. We 

obtained explicit expressions in the form of robustly implementable radial basis 

functions. 
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In the second part of the thesis we explore applications of the regularization framework to 

problems of surface reconstruction and visualization. In this field, ill-posedness appears in 

the form of having to decide a trade-off between a good fit of the data and some model 

requirements that comes expressed in the degree of localness (or globalness) of 

regularization functionals. 

 

We drew the following conclusions: 

 

 The splines family studied here unifies several spline formulations and yields radial 

basis functions which produce practical implementations. These splines perform, in 

some cases, equal results to thin plate splines and better results in other cases. The 

results are similar for all the splines when dealing with data without noise and they 

are really better in reconstruction of noisy data.  

 

 The splines studied have two terms. The first one contains a linear combination of 

translates of a fixed function (parametric part in statistical language) and a linear 

polynomial term, that are implementable in stable form.  

  

 The optimum regularization parameters are determined by generalized cross 

validation and others are found to belong to short-length intervals. The tuning of 

these parameters permit us to obtain a trade-off between local an global features.  

 

 The concepts of regularization theory give a comprehensive framework to 

formulation of the problems in vision: at all three levels of problem, algorithm, and 

implementation. Furthermore, the mathematical theory of regularization provides a 

useful theory for incorporating prior knowledge, constraints, and quality of solution. 

The exciting prospect is that the analogies with elasticity theory and physics will 

continue to provide fruitful ideas for development of regularization theory and for 

understanding human perception. 

 

 

10.1   Future research and open problems 
 

We have given a wide theoretical framework for dealing with many kinds of reconstruction 

problems whose data are given as a set 1 2{ ( ), ( ) , ( )}MD f f f L L L  of bounded linear 

functionals. Applying this theory on surface reconstruction, very good results are obtained, 

that promise similar performance applied to other kind of data and non linear functionals

( )i fL . So, we have a great amount of possibilities for future work in the following 

subjects. 

 

Non linear inverse problems 

 

In reconstruction problems the relationship between object and image has the most general 

representation in the form of a non linear integral equation ( ) ( , , ( )) ,g s h s t f t dt   where h  

is a continuous function. This equation gives the solution of the direct problem and the 



 104 

inverse problem is obtained by exchanging the roles of the data and the solution: in these 

cases we must find the object f for a given image g . The solution of this equation is very 

difficult from both the theoretical and practical points of view. No general theory exists for 

such a non linear integral equation and each problem requires specific analysis, moreover 

the problem may be ill posed and no general regularization theory exists for wide classes of 

non linear problems. 

 

 

Biomedical imaging 

 

In general the new techniques of medical imaging are based on the interrogation of the 

human body by means of radiation transmitted, reflected or emitted by the body: the effect 

of the body on the radiation is observed and a mathematical model for the body-radiation 

interaction is developed. The invention of computed tomography (CT) by G. H. Hounsfield 

at the beginning of the seventies was a breakthrough in medical imaging. The conception of 

CT is based on ideas which opened new and wide perspectives. CT requires a mathematical 

model of X-ray absorption.  

 

A specific feature of medical imaging is that the problems to be solved are ill-posed in the 

sense of Hadamard; this means that although the available data contains a big amount of 

information, the fact that the problem is ill posed, combined with the presence of noise, 

implies that the extraction of this information is not trivial. This is a very important 

challenge for the future. 

 

 

Fast algorithms 

 

During this work we have faced problems regarding the algorithmic complexity of splines, 

especially for those expressions that contains the Bessel function of the second kind 0 . 

The applications of radial basis functions imply two basic problems:  

 

1. The solution of very large linear systems, and  

2. The evaluation of very long linear combinations on a very large amount of points. 

 

These two facts could be sometimes disappointing; nevertheless the methods are very 

promising, so they deserve the analysis and design of algorithms able to lower its 

complexity. Fortunately, this has been done for some radial basis functions, but there 

remains more research about these algorithms, which become necessary when dealing with 

thousands or millions of data. 
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Appendix 
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The reconstruction problem on Hilbert 

spaces 
 

 

Regularization problems in finite or infinite-dimensional spaces can be modeled under the 

following framework [35]. 

 

Let be a normed linear space and 1 2{ ( ), ( ) , ( )}MD f f f L L L  are linear “information 

functionals” on . The idea is that for a given f  , the following information 

 

( )i if zL   1, , ,i M   

 

is available. From this information we want to compute a value ( )fL  where L  is another 

linear functional. In particular, for reconstruction of point clouds the iL ’s are point 

evaluation functionals of the form ( ) ( ).i if f aL  

 

From the information given by the iL ’s, the goal is to "learn" f  (i.e. to find a good 

approximation of f ) from random samples. But without any restrictions on the class of 

functions f , there is no hope of controlling ( )fL , simply by knowing the values 

1 2( ), ( ) , ( )Mf f fL L L . So, we will look for an approximation to f  on a Hilbert space 

. At first instance the only information is that the desired element is in the linear manifold  

 

    { : ( ) ( ), 1,... }i iu u f i M   U L L . 

 

Then the problem may be treated as a minimal norm interpolation on the manifold ,U  

where U  is a translate of the subspace { : ( ) 0, 1,..., }.iu u i M   V L
 
If S  is the 

element of minimal norm, then S V  and ( ) ( ), 1,..., .i iS f i M L L   

 

Theorem A.1 (Riesz representation theorem). If L is a bounded linear functional on a 

Hilbert space  there exists exactly one 0 x  such that 0( ) ( , )x x xL  x . The 

element 0x  is called the representer of L  in . 

 

In other words, this theorem reveals that bounded linear functionals on a Hilbert space have 

a very simple form and the representers of the functionals ( )i fL
 
can be used to find the 

minimal norm interpolant .S  

 

Theorem A.2. Let 1 1( ), ( ), , ( )Mf f fL L L  be continuous linear functionals on , with 

representers 1 2, , , ,Mu u u
 
respectively. Let f   have minimal norm interpolant S  on 

1 2( ), ( ) , ( )Mf f fL L L . Then  
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1
,

M

i ii
S 


 u  

 

where the coefficients i  are chosen to solve the system of linear equations  

 

1
( , ) ( , ),

M

i i j ij
f


 u u u        1,...,i M . 

 

Proof.  Using representers, 1( ) ( , ),if fL u  then  

 

1{ : ( ) 0}M

i iu u   V L  

1{ : ( , ) 0}M

i iu f   u
1

M

i

i

K 



 1 2{ , , , }Mspan u u u . 

On the other hand S V  then 
1

( )
M

i

i

S  



 u 1 2{ , , , }Mspan u u u , hence it is possible to  

write 
1

M

i ii
S 


 u . 

 

The second part of the theorem comes from ( ) ( ),i if SL L 1,...,i M , then  

 

( , ) ( )i if fu L ( )i S L
1

( )
M

i j jj



 L u

1
( )

M

j i jj



 L u

1
( , )

M

j i jj



 u u , 

 

and finally 

  
1

( , ) ( , )
M

i i j ij
f


 u u u . 

 

 

Let us now suppose that  has a semi-inner product [ , ]   with null space N such that 

dim( ) NN . Now let us choose this same number of elements 1 2{ ( ), ( ) , ( )}Nf f fL L L  

from the original data 1 2( ), ( ) , ( )Mf f fL L L  and suppose the inner product ( , )  of  

can be expressed as  

1

( , ) [ , ] ( ) ( )
N

i i

i

u v u v u v


 L L . 

 

Theorem A.3. The set of representers 1 2{ , , , }Nu u u
 
of 1 2{ ( ), ( ) , ( )}Nf f fL L L  is an 

orthonormal base for ,N  and N V . 

 

This can be seen by  

1

( , ) [ , ] ( ) ( )
N

i i

i

u v u v u v


 L L
1

( ) ( )
N

i i

i

u v


L L
1

( , )( , )
N

i i

i

u v


 u u
1

( , ) ,
N

i i

i

u v


 
  
 
 u u , 
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then 
1

( , )
N

i i

i

u u


 u u hence 1 2{ , , , }Nu u u
 
generates ,N  and is a basis since dim( ) .NN  

On the other hand 
1

( , ) ,
N

j j i i

i

u u u u  then ( , )i j i ju u  and 1 2{ , , , }Nu u u  is 

orthonormal. 
j u V  because ( , ) ( ) 0j jv v u L ,v V  thus N V . 

 

 

Definition A.1. A Hilbert space  is called a Hilbert function space if the elements of 

 are complex valued functions on a set   and for each x , there exists a positive 

constant xC  such that | ( ) | || ||xxf C f  for all f in .  

 

It is to say; in a Hilbert function space the point evaluation functionals ( ) ( )x xf fL  are 

bounded. Then it is possible to apply the Riesz representation theorem. For each x  in   

there exists a unique representer xK   such that 

 

( ) ( , ) ( )x x xf f K f L . 

 

Definition A.2. The mapping :K   such that ( , ) ( )xx y yK K  is called the 

reproducing kernel (or simply kernel) of . The reproducing kernel is so called because 

it has the potential of reproducing each function in : ( , ) ( )x xf K f  for all f  in and 

all x  in  . Some properties of a kernel are  

 

 ( , ) ( , )x yx yK K K      ,x y   in  .    

  ( , ) ( , )x y y xK K       ,x y   in  .  

  ( , ) 0x xK             x in  .         

 

 
Positive definite functions 
 

Usually, we have to deal with approximation on an arbitrary set   1{ , , , }2 Ma a a
n  of  M distinct centres or knots and a symmetric kernel ( , )x yK  on  . We can 

form linear combinations 

 

    
1

( ) ( , )x x
M

j jj
S K a


 , x . 

 

With such a set we can form the symmetric M M matrix   1 .( ( , ))j k j k MA K a a   and pose 

the interpolation problem 

        ( )k kS a z    1 k M   

1
( , )

M

j j kj
K a a


 . 
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From these interpolation conditions we obtain the matrix linear system A z , with  

1( , , )M  , 1( , , )y My y  and the interpolation matrix 

 

1 1 1

1

( , ) ( , )

( , ) ( , )

M

M M M

K a a K a a

K a a K a a

 
 


 
  

A .    (A.1) 

 

 

Definition 4.2. We say the function ( , )x yK is positive definite if for any M  points 

1 2, , , Ma a a  n ,  and 1 2( , , , )M   \ {0}M  the quadratic form 

 

t A 
, 1

( , ) 0,
M

i j i j

i j

K a a 


   (A.2a) 

and strictly positive definite if “>” holds. More generally we say that  

 

 

Definition A.3. ( , )x yK is a conditionally positive  definite kernel of order m ( m-CPD) on 

  if for any choice of finite subsets  of M  different points 

and all 1 2( , , , ) \{0}M

M      satisfying  

1

( ) 0
M

j j

j

p x


 , 1( )n

mp   ,   (A.2b) 

the quadratic form  
, 1

( , )
M

i j i j

i j

K a a 


 is positive. If 0m  , this definition is reduced to the 

case of positive definite functions and the condition (A.2b) is empty. 

 

 

Definition A.4. The points 1 2{ , , , }MA a a a n  with  M N  dim ( )n

m  are 

called ( )n

m - unisolvent if the zero polynomial is the only polynomial from ( )n

m  

that vanishes in all of them. 

 
 

Theorem A.4 ([26]). Let us consider the space , ,m l sX  and a family 1 2{ , , , }ML L L of 

compactly supported distributions representing our data, with M N
1dim ( ).n

m   We 

assume: 

 

 The iL ’s are of order r , i.e. continuous linear functionals defined on 
rC , where r  

satisfies the condition 
2 2

n n
m r s      

1 2{ , , , } n

MA a a a  
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 The family  is linearly independent in 'D and contains a subfamily  which is 1m

-unisolvent. 

 

And let 
1 2( , , , )t

Mz z zZ be a given vector in M . Consider the following interpolation 

problem  

 

(P1). Find    , ,m l sX  such that  

     
, , , ,

min [ ]
m l s m l s

R u u     

, ,m l su X  

, , 1, ,i iL u z i M     

and the smoothing problem  

 

(P2). Find    , ,m l sX  that minimize  

 

2

1

[ ] ( ( ) )
M

i i

i

H u L u z


  [ ]R u ,  2

. .[ ] | |m l sR u u  

 

The solutions to problems (P1) and (P2) are given explicitly by an spline of the form  

 

  
, ,

1

M

i i m l s

i

L K


   
1

N

j j

j

p


 ,   (A.3) 

 

where 
1{ }N

j jp 
 is a basis for 1m  and 

, ,m l sK is a fundamental solution in 2rC  of  the 

operator 
, ,m l s , i.e. 

, , , ,m l s m l sK   .  

 

In the interpolation problem (P1), the coefficients i  1, ,i M , 
j  1, ,j N  satisfying 

the interpolating conditions and the orthogonal conditions, are solutions of the following 

system of linear equations 

 

 

, ,
1 1

1

, , , 1, ,

, 0, 1, ,

M N

i i j jk m l s k k
i j

N

i i j
j

L L K L p z k M

L p j N

 



 











       

   

 


   (A.4) 

 

 

 

The system can be written in the form  
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 
 
 

t

K P

P 0

 
 
 

α

β

 
 
 

Z
=

0
,    (A.5) 

where  

 

 1 ,, ,[ , ]i j i j Mm l sL L K     K  is an M M  matrix 

 1 ,1[ , ]j i M j NiL p      P  is an M N  matrix 

 
1 2( , , , )t

M    

 
1 2( , , , )t

N    

 
1 2

( , , , )t
Mz z zZ  is the data vector. 

 

In case of smoothing problem (P2) we have to solve the system 

 

     
     

    

M

t

α ZK + I P
=

β 0P 0
 ,    (A.6) 

 

where MI  is the identity matrix. 
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