
Source code analysis on student
assignments using machine learning

techniques

Hugo Armando Castellanos Morales

Universidad Nacional de Colombia

Facultad de Ingenieŕıa

Departamento de Ingenieŕıa de Sistemas e Industrial

Bogotá, Colombia

2017

Source code analysis on student
assignments using machine learning

techniques

Hugo Armando Castellanos Morales

A thesis submitted to attain the degree of:

Maǵıster en Ingenieŕıa de Sistemas y Computación

Advisor:

Felipe Restrepo Calle, Ph.D.

Co-Advisor:

Fabio Augusto González Osorio, Ph.D.

Research line:

Machine learning, information retrieval, programming languages

Research group:

PLaS - Programming Languages and Systems

Universidad Nacional de Colombia

Departamento de Ingenieŕıa de Sistemas e Industrial

Facultad de Ingenieŕıa

Bogotá, Colombia

2017

v

Abstract

To increase the success in computer programming courses, it is important to understand

the learning process and common difficulties faced by students. Although several studies

have investigated possible relationships between students performance and self-regulated

learning characteristics, little attention has been given the source code produced by students

in this regard. Such source code might contain valuable information about their learning

process, specially in a context where practical programming assignments are frequent and

students write source code constantly during the course.

This poses the following research questions: What is the relationship between the characte-

ristics of students source code and their performance in a computer programming course?.

What is the relationship between source code features and self-regulated learning characte-

ristics (i.e., motivation and learning strategies) in a computer programming course?. How

the source code and self-regulated features can predict the students’ performance?

In order to answer these questions, a strategy to support the correlation analysis among

students performance, motivation, use of learning strategies, and source code metrics in

computer programming courses is proposed. A comprehensive case study is presented to

evaluate the strategy. Additionally, an automatic grading tool for programming assignments

was used, which facilitated to obtain the source code of the participants for further auto-

matic source code analysis. Moreover, self-regulated learning characteristics were collected

using the Motivated Strategies for Learning Questionnaire (MSLQ).

Results show that the main features from source code which are significantly related to

students performance and self-regulated learning features are: length-related metrics, with

mainly positive correlations; and Halstead complexity measures, correlated negatively. In

the light of the findings of this study, it is possible to understand better students source

code as an artifact that can be used to monitorize several characteristics related to self-

regulated learning, course performance, and in general, their learning process. In this way,

more research in the area is required to verify if these relationships could give to computing

educators new ways to identify and help students with problems.

Keywords: [Motivation, learning strategies, machine learning, source code analysis,

self-regulation].

vi

Resumen

Para mejorar el éxito de los estudiantes en los cursos de programación, es importante en-

tender el proceso de aprendizaje y las dificultades comunes que enfrentan los estudiantes.

Aunque muchos estudios han investigado las posibles relaciones entre el rendimiento de los

estudiantes y aspectos de la auto-regulación del aprendizaje, poca atención se le ha dado

al código fuente producido por los estudiantes. El cual puede contener información valiosa

acerca de su proceso de aprendizaje. Esto es especialmente cierto en contextos donde las ac-

tividades prácticas de programación son frecuentes y los estudiantes escriben código fuente

constantemente durante el desarrollo del curso.

Lo anterior, plantea las siguientes preguntas de investigación: ¿Cuál es la relación entre las

caracteŕısticas del código fuente de los estudiantes y su rendimiento en un curso de progra-

mación de computadores?. ¿Cuál es la relación entre las caracteŕısticas del código fuente y

caracteŕısticas de aprendizaje auto-regulado (motivación y estrategias de aprendizaje) en un

curso de programación de computadores?. ¿Cómo el código fuente y las caracteŕısticas de

aprendizaje auto-regulado pueden predecir el rendimiento de los estudiantes?

Para responder estas preguntas, se presenta una estrategia para realizar el análisis de corre-

laciones entre el rendimiento de los estudiantes, motivación, el uso de estrateǵıas de apren-

dizaje, y las métricas de código fuente en cursos de programación de computadores. Un

caso de estudio exhaustivo es presentado para evaluar la estrategia propuesta usando datos

recolectados de estudiantes. Además se usaba una herramienta de calificación automática

para evaluar las practicas, lo cual facilitaba la obtención de código fuente de estudiantes

para su análisis posterior. Las caracteŕısticas de aprendizaje auto-regulado fueron obtenidas

usando el cuestionario: Motivated Strategies for Learning Questionnaire Colombia (MSLQ-

Colombia).

Los resultados muestran que las principales caracteŕısticas del código fuente que estan re-

lacionadas con el rendimiento de los estudiantes y caracteŕısticas auto-reguladas son: las

métricas de longitud, que se correlaciona positivamente; y las medidas de complejidad de

Halstead, las cuales se correlacionan negativamente. Dados los resultados, es posible enten-

der mejor el código fuente de los estudiantes como un artefacto que puede ser usado para

monitorear caracteŕısticas relacionadas con el aprendizaje auto-regulado, rendimiento en el

curso, y en general, su proceso de aprendizaje. De esta forma, investigaciones adicionales son

necesarias para verificar si dichas relaciones pueden dar a los educadores nuevas herramientas

para identificar y ayudar a estudiantes con problemas.

Keywords: [Motivación, estrategias de aprendizaje, aprendizaje de máquina, análisis

de código fuente, auto-regulación].

Table of contents

Abstract V

Resumen VI

1. Introduction 2

2. Background 6

2.1. Text analysis . 6

2.2. Source code analysis . 7

2.2.1. Preprocessing and feature extraction 8

2.2.2. Training and classification . 8

2.2.3. Challenges . 10

2.3. Source code metrics . 10

2.4. Self-regulation learning . 12

2.4.1. Self-regulated learning on computer programming courses 13

2.5. Related works on student’s source code analysis 15

2.5.1. Cheat detection . 15

2.5.2. Automatic feedback and assessment 16

2.5.3. Programming expertise . 18

3. Strategy to analyze student assignments source code 19

3.1. Data sources and preprocessing . 19

3.2. Source code analysis . 21

3.3. Data analysis . 24

4. Data exploration 26

4.1. Source code metrics . 27

4.1.1. Length based metrics . 31

4.1.2. Complexity based metrics . 37

4.2. Program execution results . 43

4.3. Motivational traits and learning strategies 48

5. Correlations 53

5.1. Technical correlations . 53

5.2. Technical and motivational correlations . 57

Table of contents 1

6. Clustering 59

6.1. Hierarchical clustering of technical features 59

6.2. Hierarchical clustering of MSLQ questions 61

6.3. Bi-clustering of technical and MSLQ features 61

6.4. Correlations of groups of source code metrics, motivational learning strategies,

and students performance . 69

6.5. Spectral bi-clustering of technical and MSLQ features 71

7. Predictive model 76

7.1. Classification model . 76

7.2. Regression model . 78

8. Conclusions and Future Work 80

8.1. General conclusions . 80

8.2. Contributions . 80

8.3. Publications . 81

8.4. Future work . 81

Bibliography 83

A. Correlation tables 89

1. Introduction

In the last decades, computer programming has become an important subject in several

engineering areas. This importance has grown together with the improvement of compu-

ter systems and its use, and the interest of the governments to attract students to Science

Technology Engineering and Mathematics (STEM) careers [OCS, 2013]. Among the required

student’s competences are: analyze and understand how a computer program works; unders-

tand at least one programming language; be able to design, implement, test and debug a

computer program, among others [Sahami and Roach, 2014].

In the academic context, while several studies have investigated possible relationships bet-

ween students performance and their self-regulated learning characteristics (i.e., motivation

and learning strategies used by students) [Ramı́rez Echeverry et al., 2014], little attention

has been given to an exclusive aspect from computer programming courses, i.e., students

source code. Which might contain valuable information about their learning process. This

is particularly true in contexts where practical programming assignments are frequent and

students write source code constantly during the course. In these scenarios, instead of un-

derstand students source code as a unique final result, it can be seen as another mean to

monitorize the learning process.

Many studies have been carried out to better understand computer programming learning

processes [Pears et al., 2007, Robins et al., 2003]. These works are based on source code

analysis tools, including plagiarism detection [Bakker, 2014, Elenbogen and Seliya, 2008],

automatic feedback generation [Singh et al., 2013] for computer programming assignments,

automatic assessments [Ihantola et al., 2010], and authorship attribution (author identifica-

tion) [Caliskan-Islam et al., 2014, Frantzeskou et al., 2007] tools. Many works are intended

to detect cheating in the academic process. Although this is important, it is not the only

possible application of source code analysis at this context, specially because plagiarism has a

negative consequence on students and it does not help students directly to their improvement.

Feedback to computer programming students is reduced due to the teacher’s limited time

[Cheang et al., 2003]. This is particularly true in Massive Open Online courses (MOOC)

where the number of students can reach hundreds of thousands [Singh et al., 2013]. One

way to address the issue has been to use tools for automatic grading of programming as-

signments [Ihantola et al., 2010]. However, feedback is only indicating how good or bad was

3

the assignment submitted (i.e., source code of a computer program), but in most cases

it does not indicate students how to improve. Moreover, as there are evidence that com-

puter science related careers students have vocational orientation supported by self effi-

cacy and peer learning [Rosson et al., 2011], it would be valuable to know more information

about students self-regulated learning characteristics (i.e., motivation and learning strate-

gies) [Zimmerman, 1998]. Current tools do not provide any information about these aspects

besides technical aspects extracted from the source code (e.g. source code metrics).

The hypothesis of this work is that source code, as a human creation, contains implicit

information about its author (student), that can be extracted and make it explicit and

useful. Thus, this hypothesis poses the following research questions:

Can the source code characteristics be correlated with student’s performance?

Can the source code features be correlated with the student’s use of learning strategies?

Can the source code reveal groups of students with similar characteristics (e.g., per-

formance, source code style, motivation, the use of learning strategies)?

How the source code can predict the student’s performance?

Based on the research questions, the general objective of this thesis is to design and build

a framework for analyzing source code produced by students to support the correlation

analysis among coding style, students motivation, students use of learning strategies, and

student performance. This can be divided into the following specific objectives:

To develop a strategy for feature extraction from source code that captures lexical,

syntactical, and semantic characteristics.

To develop a method for non supervised analysis of a collection of student source code

using machine learning algorithms.

To develop a machine learning predictive model to do correlation analysis of coding

style, students motivation, students use of learning strategies, and student performance.

To evaluate the proposed method using actual students source code.

This work proposes the analysis of students source code and their performance, jointly

with the results from a self-report questionnaire for motivation and learning strategies (i.e.,

MSLQ-Colombia [Ramı́rez-Echeverry et al., 2016]). This data is consolidated and analyzed

to find relationships between individual variables, and later, using machine learning tech-

niques, detailed relationships among characteristics are grouped in clusters. Such clusters

give an indication of the main features to have into account to build a performance predic-

tive model. This predictive model allows the quick finding of a student presenting difficulties.

4 1 Introduction

Results show that the main features from source code which are related to students per-

formance in the course are: length metrics like lines of code, which is correlated positively;

and Halstead complexity measures, which are correlated negatively. Regarding to the re-

lationship between source code features and self-regulated learning characteristics, results

make evident some significant correlations of Halstead complexity measures with the use

of learning strategies such as: organization of ideas, and peer learning. In addition, there

are interesting results showing correlations among learning strategies like: effort regulation

and critical thinking, and source code metrics including length-based metrics and comple-

xity metrics. In addition, the predictive model results show that it is possible to predict the

students’ performance (final grade) through regression with a mean square error of 0,036.

The main contributions of this work are:

A software tool for analyzing source code produced by students that supports the

correlation analysis among coding style, students motivation, students use of learning

strategies, and student performance.

A better understanding of the student’s learning process in computer programming

subjects through the source code technical aspects, motivation and learning strategies.

A method to enable the teacher to give and receive feedback, allowing to focus on

students with problems in the learning process by detecting possible problems in early

stages of a computer programming course.

In addition to the mentioned contributions, as result of this thesis the following publications

were made:

1. Hugo Castellanos. Personality Recognition Applying Machine Learning Techniques

on Source Code Metrics. Working notes of FIRE 2016 - Forum for Information Retrieval

Evaluation/CEUR Workshop proceedings. Kolkata, India. Dec 7-10 2016.

2. Hugo Castellanos, Felipe Restrepo-Calle, Fabio A. González, Jhon Jairo Ramı́rez

Echeverry. Understanding the relationships between self-regulated learning and students

source code in a computer programming course. Frontiers In Education 2017. Indiana-

polis, USA. October 18-21 2017 (under revision).

The rest of this thesis is organized as follows. Chapter 2 presents the background which

consists in a conceptual framework and related works. Later, Chapter 3 describes the pro-

posed strategy for the extraction and analysis of source code jointly with motivation and

learning strategies aspects. Then, Chapter 4 presents the dataset and some descriptive sta-

tistics. Chapter 5 discusses the correlations between source code features, motivation and

learning strategies aspects. Then, machine learning methods are applied in Chapters 6 and

7. In Chapter 6 clustering algorithms are applied to confirm relationships found in Chapter

5

4, and to find out other hidden relationships. In Chapter 7, a predictive model is proposed,

tested and discussed. Finally, the conclusions of this work are presented and possible future

work is described in Chapter 8.

2. Background

This chapter presents the conceptual framework and related works. It is divided into five

main subjects: text analysis, source code analysis, source code metrics, self-regulation lear-

ning, and student’s source code analysis.

The Section 2.1, text analysis, describes the first works on text, including its purposes,

evolution, techniques, and main achievements. Later the Section 2.2, source code analysis,

indicates the close relationship with text analysis, its particular purposes and current appli-

cations. The same section briefly describes the process and techniques used along with some

of the challenges in the area. Later a general description on source code metrics is presented

in Section 2.3, showing its importance, definition, characteristics and scales. Next, Section

2.4 summarizes the most important concepts on self-regulation learning. Finally, Section 2.5

presents related works on student’s source code analysis and its applications. It is intended

to present some ways in which source code analysis is used to improve the academic process.

2.1. Text analysis

Text analysis began in the XIX century with the work described in [Stamatatos, 2009]. Such

work was done by Mendenhall in 1887 and used mainly the Shakespeare work to confirm

authorship. Later, [Yule, 1925] did statistical studies on natural text document, including

the frequency distribution of words. These were followed by work on text analysis with baye-

sian statistics published in [Mosteller and Wallace, 1963], which was one of the first methods

that did not depend on a human expert. Since then until now works have been focused on

identification and definition of features that make a text author recognizable. Among others

these features are: character and word frequency, vocabulary amount, length of words, ph-

rases and paragraphs [Rudman, 2012].

In the end of the eighties the proposed methods began to use the computer as a tool, but still

depending on human experience. A clear example of this was the CUSUM method proposed

in 1989 [Hardcastle, 1993], in that moment it was accepted as evidence in the court in spite

of its low reliability [Holmes and Tweedie, 1995]. In a study from 1991 says “all text do not

reveal multiple authorship even when we know this is the case” [de Haan and Schils, 1993].

That was because, among other reasons, text from unknown authors were used to train the

2.2 Source code analysis 7

models [Stamatatos, 2009].

In the nineties, new applications emerged in several domains [Genkin and Lewis, 2005], such

as:

Large scale author identification: used to identify an author on large and different

collections of text.

Intelligence and counter-terrorism applications: consist in checking text like e-mail or

documents related with terrorist activities and try to relate it with some author.

Authenticity verification: used when a given text is supposedly written by some author

but there are doubts about its truthfulness.

Intellectual property verification: when two parties claim copyright ownership over a

specific text.

The mentioned applications have been appearing with the progressive improvement in au-

tomatic systems, like machine learning and information retrieval [Ramyaa et al., 2004].

2.2. Source code analysis

Stylography is defined as ”the art or method of writing, drawing, or engraving with certain

style”1. Stylography research in natural language texts has been explored widely as discus-

sed in the previous section. Since the nineties, there is a growing interest to explore stylo-

graphy applied to software source code as well [Krsul and Spafford, 1995]. This kind of stu-

dies are motivated by similar reasons, and they also include additional fields like: plagiarism

[Bakker, 2014], tracking malware authors, fraud identification [Elenbogen and Seliya, 2008],

and others.

Some applications of stylography in source code include:

Software forensics: is the process of identifying, preserving, analyzing and presenting

digital evidence in a manner that is legally acceptable [Mckemmish, 1999].

Stylometric plagiarism detection: detection of non original source code segments. Sty-

lometry is defined by [Kumar Singh and Manimannan, 2013] as “the description of the

style by quantifying aspects of the writing that can be directly measured, like sentence

length (in words)”.

Copyright investigation: identify the right author comparing between two claiming

parties.

1Definition from https://www.collinsdictionary.com/dictionary/english/stylography

8 2 Background

Figure 2-1.: General author identification steps using stylography and stylometry

Authorship verification: with a set of documents and authors verify that a given source

was made by a specific author.

Figure 2-1 presents the general stylography application steps. Initially the source code files

(documents) must be preprocessed in a way that the new format can be easily used, this

depends heavily on the techniques that will be used. Later a feature extraction step is carried

out, in this step those features with little impact can be removed. After that, a model is

trained, and once it is done, it should be ready to perform the classification step.

In source code stylography the data set is a collection of software source code files, usually

from different authors. Table 2-1, which was adapted from [Stamatatos, 2009], shows the

main features used in text stylometry. The given features are common to those used in source

code analysis.

2.2.1. Preprocessing and feature extraction

To be able to analyze the data, it needs to be transformed. Such transformation is called

preprocessing and consists in data objects selection (or modification) to facilitate the next

steps. The exact way of preprocessing depends on several factors including: objective, tech-

niques to be used, type of data, etc.

Authors of different research do different preprocessing levels. Fon instance, in the work of

[Frantzeskou et al., 2007] the data sets are prepared to extract features training and merging

all source files from the same author in just a single file.

Authors like [Shevertalov et al., 2009] initially get the structural features, such as spaces and

indentation; [Caliskan-Islam et al., 2014] use all the mentioned features in Table 2-1 becau-

se they are contained in the abstract syntax tree (AST) of each file. Moreover, n-grams

are used in works like [Burrows, 2010, Frantzeskou et al., 2006, Frantzeskou et al., 2007,

Frantzeskou et al., 2008].

2.2.2. Training and classification

According to [Murphy, 2012] Machine learning is “a set of methods that can automatically

detect patterns in data, and then use uncovered patterns to predict future data, or to perform

2.2 Source code analysis 9

Table 2-1.: Stylometric features in text taken from [Stamatatos, 2009]

Features

Lexic

Token-based (word length, sentence length, etc.)

Vocabulary richness

Word frecuency

Word n-grams

Errors

Character

Character types (letters, digits, etc.)

Character n-grams (fixed length)

Character n-grams (variable length)

Compression methods

Syntactic

Part-of-speech (POS)

Chunks

Sentence and phrase structure

Rewrite rules frequencies

Errors

Semantic
Synonyms

Semantic dependencies

Application-specific

Functional

Structural

Content-specific

Language-specific

other kinds of decision making”. Under supervised models, such methods require a training

data to create a model and be able to perform classification. Usually the classification is

done assigning a class to an element, but there is also possible to assign several classes to a

single element.

Depending of the methods used in the feature extraction phase, different training and clas-

sification models are used. For instance, [Mckemmish, 1999] uses n-grams to build an author

profile. That is, the most frequent sequence of characters (n-gram) used by an author in a file

(the size of n-grams could be variable). Other authors use several different machine learning

techniques like support vector machines (SVM) [Wisse, 2014], K-nearest neighbors (KNN)

[Shevertalov et al., 2009], and C4.5 [Rosenblum et al., 2011].

The SCAP (Source Code Author Profile) method [Frantzeskou et al., 2007] does not use ma-

chine learning techniques, instead, a similitude measure is used to know how much similarity

exists between the author profile and the example code.

10 2 Background

2.2.3. Challenges

Source code stylography has the following challenges according to [Krsul and Spafford, 1995],

[Caliskan-Islam et al., 2014] and [Shevertalov et al., 2009]:

“The programming characteristics of programmers change and evolve” which makes

difficult the studies over time.

There are standards and conventions imposed by organizations which alters the per-

sonal stylography.

The styles change from one language to another.

The code reuse through code snippets alter the possible mark left in the document.

These challenges usually are avoided in the studies selecting controlled data sets.

In addition, [Brennan et al., 2012] suggest another stylography problem which is inherent

to itself, and it is “adversarial stylometry”. It means that an author does not want to be

identified and apply techniques to change a text without alter its meaning. So far this problem

has been explored only in natural language.

2.3. Source code metrics

According to [Malhotra, 2015], software metrics are used to assess the quality of the product

or process used to build it. As stated, it is usually understood as a industry process focused

on improve a product, or measure its quality. But it also provides information about the

person who wrote a particular piece of code, like the expertise, knowledge, among others.

And taking metrics over time can show how a person or group is improving over time.

Such metrics have the following general characteristics:

Quantitative: metrics have a value.

Understandable: the way the metric is calculated must be easy to understand.

Validatable: the metric must capture the attributes which by design should.

Economical: it must be economical to capture the metric.

Repeatable: if measured several times the resultant values should be the same.

Language independent: metrics should not depend on a specific language.

2.3 Source code metrics 11

Applicability: metrics should be applicable in any phase of the software development.

Comparable: the metric should correlate with another metric capturing the same con-

cept.

Moreover, source code metrics must have a scale which can be:

Interval: it is given by a defined range of values.

Ratio: it is a value which have an absolute minimum or zero point.

Absolute: it is a simple count of the elements of interest.

Nominal: it is a value which mainly defines a discrete scale of values, like 1–present or

0–not present.

Ordinal: it is a categorization which is intended to order or rank, for instance levels of

severity: critical, high, medium, etc.

Metrics can be classified according to the intended measure:

Size: usually intended to estimate cost and effort. The most popular metric in this

category is the source lines of code (SLOC). In object oriented languages the size can

be measured by the number of classes, methods, and attributes.

Software quality: intended to measure the quality of the software, this metric can be

divided in two main categories:

• Based on defects: consist in measure the level of defects. The main metrics in this

category are: defect density defined as number of defects by SLOC; defect removal

effectiveness which is defined as the defects removed in a phase divided by latent

defects. If the latent defects are unknown then they can be estimated based on

previous phases.

• Usability: this kind of metrics is intended to measure the user satisfaction using

the software. The satisfaction can be given be the ease to use and learn.

• Complexity metrics: they are oriented to produce a measure on the difficulty to

test or maintain a piece of source code. These metrics try to measure how complex

a source code is. The complexity can be defined in several ways, but is usually

intended to measure how many computational resources will be used in an algo-

rithm execution. For example, the McCabe complexity metric [McCabe, 1976].

• Testing: intended to measure the progress of testing over a software.

Object oriented metrics: intended to measure object oriented paradigm, which can be

divided in:

12 2 Background

• Coupling: measures the level of coupling (level of interdependence between clas-

ses), it is calculated counting the number of classes called by another class.

• Cohesion: measures how many elements of a class are functionally related to each

other.

• Inheritance: measures the depth of the class hierarchy.

• Reuse: measures the amount of times that a class is reused.

• Size: intended to measure the size but not only in lines of code but also in the

particularities of object oriented paradigm, like method count, attribute count,

class count, etc.

Evolutionary metrics: try to measure the evolution of a software based on different ele-

ments like revisions, refactorings, bug-fixes. How much lines of code are new, modified

or deleted.

2.4. Self-regulation learning

An important part of a student learning process is the self-regulation, which is defined as

the process done to control cognition, behavior and motivation with the purpose of reaching

a goal [Boekaerts et al., 2005]. Among several models, the general structure of self-regulated

learning from [Pintrich, 1999] defines the possibility to self-regulate:

Cognition: to apply strategies to learn about a subject, including the construction of

new concepts from previous knowledge.

Motivation: including self-reward, and auto-persuasion with the purpose to improve

interest in the subject.

Behavior: to manage the learning resources, especially time, and in general, the actions

which could help to improve the learning process, like study with peers.

Environment: to generate strategies to adapt or control the environment, understanding

this as the conditions in class, teacher behavior, etc.

To be able to self-regulate, a student must create strategies, which ease the learning process

[Weinstein and Mayer, 1983] and help to understand the reasons of failure or success. As

reported in [McKeachie, 1986] there are three main learning strategies: Cognitive, Metacog-

nitive, and Resource management.

The cognitive strategies are:

2.4 Self-regulation learning 13

Reharsal: consists in reciting names from a list to be learned mainly with memorization

purposes. This strategy influence attention but does not improve the integration of the

new knowledge with the old one.

Elaboration: intended to help in long term memory, creating internal connections bet-

ween subjects.

Organizational: intended to select information and create connections among the avai-

lable information.

The metacognitive strategies are:

Planning activities: consist in setting goals and creating tasks to be able to reach such

goals.

Monitoring activities: are self monitoring activities like self testing. This allows the

verification of the progress made in a specific time.

Self regulation activities: consist in the adjustment of a task according with the results

in the monitoring activities.

The resource management strategies are:

Time management: is the scheduling done by the student to do his/her tasks. Because

of its nature is highly related to planning and regulation activities.

Study environment: the student defined area of study. This includes preparing an area

without distractions or with the resources to accomplish the goals.

Self-effort management: is the capability of a student to identify when he/she needs

help and how such help is obtained; for instance, studying with peers.

To be able to assess self-regulation learning, the Motivated Strategies for Learning Question-

naire (MSLQ) [Pintrich et al., 1991] is used in several studies, including this thesis. It is a

tool that measures “the motivational orientations and their use of learning strategies”. It is

divided in two sections: motivation and learning strategies, which are described in Tables

2-2 and 2-3, respectively. The row numbers in these tables will be used latter in this thesis

to reference each feature.

2.4.1. Self-regulated learning on computer programming courses

Self-regulation in computer programming learning in academic context has been identified

as an important matter in university context. Several studies have explored self-regulation

learning on computer programming courses. For instance, [Nelson et al., 2015] studied mo-

tivational and self regulation profiles adopted by students in computer science basic levels

14 2 Background

Table 2-2.: MSLQ Motivational features

Feature Description

0 Task value
It is the value a student gives to a certain task, in terms

of how interesting or how useful is the task.

1 Anxiety
Includes students negative thoughts that affect

performance.

2 Extrinsic goals
The perception to participate in a subject due to some

kind of reward (grade competition).

3 Control of learning beliefs
The belief that the positive outcomes are the result of

their own effort.

4 Intrinsic goals
The perception of the reasons why he/she likes the

subject.

5 Self-efficacy learning A self-evaluation of the ability to master a task.

6 Self-efficacy performance
It relates to the expectations about the performance in

the course.

Table 2-3.: MSLQ Learning strategies features

Feature Description

7 Time to study
It is related to management, planning and effective

use of the study time.

8 Peer learning

It refers to students learning with and from each other

as fellow learners without any implied authority to

any individual.

9 Meta-cognition method Continuous adjustment of the learning activities.

10 Elaboration of ideas
Remember information in long-term memory by

building connections among the items to learn.

11 Effort regulation Ability to control the effort avoiding distractions.

12 Meta-cognition monitoring
Includes self testing to be able to better

understand the subject.

13 Rehearsal Repeating items in a list in order to memorize it.

14 Critical thinking
How the student apply old knowledge to deal with

new situations.

15 Study environment
Management and organization of the place where

the person studies.

16 Meta-cognition planning Plan activities to ease the learning process.

17 Organization of ideas To select and organize the information properly.

2.5 Related works on student’s source code analysis 15

oriented to engineering. Their results show that students adopted profiles with limited per-

ception to learn the course contents, inadequate orientation of learning goals and not effective

behaviors for self-regulation. Moreover, [Ambrosio et al., 2012] presented a study of the pro-

file of 190 students in introductory programming courses in Brazil and Portugal with respect

to their attitudes and self-regulation behavior. Results suggest that these groups of students

have a very similar profile regarding to: learning strategies, self-efficacy perception, and study

organization activities. Some other studies suggest that vocational orientation to computer

science careers is determined in most cases by self-efficacy and social support (like pair lear-

ning) [Rosson et al., 2011]. Overall, although motivation and learning strategies have similar

traits among engineering students, these features have a strong personal and environmental

component, and therefore, it is necessary to do specific studies to characterize them.

Moreover, relationships between academic performance and self-regulation learning have

been reported in several studies, e.g., [Yukselturk and Bulut, 2007, DiFrancesca et al., 2016,

Cheng and Keung, 2011]. In general, good performance of programming students is charac-

teristic of students with better self-regulated learning skills [Alhazbi, 2014].

Taking into account the importance of self-regulation learning abilities in the students

performance, some tools have been developed to ease the self-regulation. For example,

[Manso-Vázquez and Llamas-Nistal, 2015, Ortiz et al., 2015] propose to foment these abi-

lities through monitoring the progress of students in computer programming learning. These

tools are oriented to teachers and students, which can use them to ease the planning, moni-

toring, and assessment of the learning process from both perspectives.

2.5. Related works on student’s source code analysis

This section presents the related works on source code analysis, which focus mainly on

analyzing source code developed by students in an academic context. The approximations

have different purposes, including: cheat detection, feedback and assessment support, and

programming expertise.

2.5.1. Cheat detection

As one of the main purposes in the academic context is the effective student learning, it is

important to have techniques which avoid cheating and any form of student plagiarism. To

carry out source code analysis in order to address this problem, several approximations have

been proposed. They can be grouped in two approaches: authorship attribution, and source

code style.

16 2 Background

Firstly, to detect cheating by authorship attribution, i.e., verifying that a source code pre-

sented by a student is effectively his/her creation. The same techniques used in foren-

sics applications can be used to carry out this approach. For instance, N-grams or other

information retrieval techniques like the ones proposed in the works of [Burrows, 2010,

Frantzeskou et al., 2006, Layton et al., 2013]. The approaches based on N-grams capture a

lot of information but they do not describe the source code structure. These techniques could

be highly affected when a single file has more than one author.

Secondly, there are a group of works that use source code style. These also commonly use ma-

chine learning or information retrieval techniques together with a representation form. In the

work of [Caliskan-Islam et al., 2014] it is used an Abstract Syntax Tree (AST) to represent

the source code, including the style features, and to identify authors they apply a random

forest classification. Moreover, [Elenbogen and Seliya, 2008, Joshi and Argiddi, 2013] extrac-

ted style features from the source code, including a lot of unused information, and with these

features a C4.5 algorithm was used to classify the author (students). Other works also use

style information but additionally perform static analysis over the source codes to use its out-

put as a feature, and based on those features identify the authors [Hayes and Offutt, 2010].

The main advantage of these methods consists on the ease to understand and identify the

discriminant features.

2.5.2. Automatic feedback and assessment

The automatic assessment is a way to evaluate and grade a student source code automati-

cally [Ihantola et al., 2010]. It usually consists on a specific assignment, and a known set of

inputs/outputs. In addition to help the teacher, it can be intended for assignment feedback.

This feedback could be as simple as a grade or more elaborated like a suggestion for impro-

vement.

There is a wide set of tools to accomplish the automatic feedback and evaluation. For exam-

ple, programming contest judges like DomJudge2. However, this kind of tools do not pro-

vide all the features of a Learning Management System (LMS). An integration to a LMS

like Moodle3, Blackboard4 or Sakai5, is highly desired, because it constitutes an integral

part of the learning process in many courses. This has been studied in [Radenski, 2008,

Rößling et al., 2008].

To be able to give some feedback the system must have a test framework. Depending on the

programming language it can be:

2http://www.domjudge.org
3https://moodle.org/
4http://www.blackboard.com
5http://www.sakaiproject.org

2.5 Related works on student’s source code analysis 17

Unit tests [Amelung et al., 2008]: tests defined to check a specific result in portions of

code.

Acceptance testing [Sauvé and Abath Neto, 2008]: tests defined in natural language-

like scripts.

Output comparison: refers to the traditional way that most programming contest jud-

ges use for the assessment. The system checks for an specific expected output given a

known input, and indicates if the program it is correct or not.

In addition, some authors like [Malmi et al., 2005] suggest the definition and use of a resub-

mission policy, depending on the purpose of the exercise. Among these policies are:

Limit number of submissions: to avoid trial and error approaches by students.

Limit amount of feedback: intended to force students to think after a submission with

errors.

Penalties: related to the maximum number of submissions, it is intended to force the

student to submit only when necessary.

Different exercise on every submission [Brusilovsky and Sosnovsky, 2005]: intended to

avoid trial and error, because the exercise changes on every submission.

The majority of the aforementioned approximations limit their automatic feedback to a co-

rrect/incorrect decision, which is a strong limitation because students do not have a way to

know how to improve [Pieterse, 2013]. Contrarily, when a student receives a useful feedback

related to the reasons why the submission failed, he/she will learn from it and will avoid to

repeat the same mistakes again.

An approximation to generate a valuable feedback from the learning process perspective

is proposed by [Singh et al., 2013]. A meta-language called Error Model Language (EML)

which contains a series of rules that can be used to generate feedback automatically. It is

based on the common errors that a student’s source code could have. Nonetheless, this is

also a limitation because an error not specified in the EML specification is an undetected

error, and therefore, there is not an appropriate feedback for this.

Another approach has been the source code style analysis. With the purpose of improving

coding standards and avoiding programming errors [Ala-Mutka et al., 2004], even when this

is not intended to provide a grade, this method provides continuous feedback about the

written code.

18 2 Background

2.5.3. Programming expertise

Measure the programming expertise is an application that is usually used in more advanced

programming related courses and in the professional practice. It is aimed at assessing how

good is a programmer and which are the best practices used by him/her. An example of this

approach can be found in [Kuric and Bieliková, 2014], in which are extracted some metrics

related to the programming expertise, or in the case of students, the grade.

Another proposal was presented by [De Lucia et al., 2011], in which is described an expe-

riment to identify the quality (how informative) of the comments and identifiers, and how

such quality improves the style and traceability of the code.

3. Strategy to analyze student

assignments source code

The success rate improvement of computer programming courses is a source of concern for

teachers. Understanding how students’ motivation and learning strategies are correlated to

the information available in their academic works, could give the teachers a path of impro-

vement.

The purpose of the framework presented in this thesis is to provide new ways to understand

how students’ motivation and learning strategies are correlated to the source code metrics.

Also, to be able to find groups of metrics and motivation and learning strategies which lead

to a predictive model.

The proposed framework is summarized in the Figure 3-1. It is divided in four main steps:

data collection and consolidation, source code analysis, correlation analysis, and knowledge

extraction by means of the use of machine learning techniques.

3.1. Data sources and preprocessing

For the purposes of this thesis, there are three different data sources:

Students’ source code: corresponds to each one of the attempts (correct or not) to

solve an assignment in a computer programming course. Each attempt is processed

no matter how much of the file is changed with respect to previous attempts, or if

a previous attempt was already correct. Such assignments are worked and submitted

throughout the course duration.

Student performance: it is measured through the final grades obtained by the students.

These are the official grades provided by the teachers and are based mainly on the

results of the programming assignments.

Motivation and learning strategies: corresponds to data which indicates the learning

strategies used by the students and their motivation in a moment during the develop-

20 3 Strategy to analyze student assignments source code

ment of the course. This is obtained through the application of an MSLQ test to the

participant students.

Figure 3-1.: Proposed strategy for the analysis of students source code

Once the three data sources are collected, they are consolidated in a single data set. This

consolidation consists in the verification of the students who submitted programming assign-

ments and answered the MSLQ test. This allows the students’ labeling and the confirmation

of various important information like:

3.2 Source code analysis 21

The student name: to be sure the students are correctly identified as a unique person.

This is specially important for those who in previous semesters abandoned or did not

approve the course.

Identify the real enrolled students: to be able to process only those students who were

really enrolled to the course and discard those who were only assistant to the class,

who could have submitted some of the assignments.

Identify students who abandoned: this students could have been enrolled in first place

but later decided to cancel or abandon the class. This students could submit some

assignments and get some grades because of this, but never finished the course.

The complete MSLQ survey response: to be able to work with trusted data, it is

verified that the students answered every single question from the MSLQ test. This is

important because incomplete answers can generate unexpected results at the moment

of analysis.

3.2. Source code analysis

Later, the source code analysis stage is performed. First, the consolidated data set of the

students’ source code is processed using a custom tool, designed to parse the source code

files and to extract the source code metrics for each one of the file for every student. Such

metrics are described in Table 3-1.

Table 3-1.: Information extracted from the source code

Metric Description

0 Amount of files The total amount of files sent to DomJudge

1 Average source lines of code

Is the sum of all source code lines

from all files divided by the number of files

sent by a student.

2 Average class number by file

The total amount of classes in all source

files divided by the number of files sent by

a student.

3 Average source code lines by class
The total amount of lines of all classes

divided by the total class amount.

4 Average attributes by class
The total number of attributes (static or

not) divided by the total class amount.

5 Average methods by class
The total number of methods (static or

not) divided by the total class amount.

Continued on next page

22 3 Strategy to analyze student assignments source code

Table 3-1 – Continued from previous page

Metric Description

6 Average class name length
The sum of the class name lengths divided

by the number of classes.

7 Average amount of for loops
The total amount of for loops divided

by the number of methods.

8 Average amount of while loops
The total amount of while loops divided

by the number of methods.

9 Average amount of if clauses
The total amount of if clauses divided by

the number of methods.

10 Average amount of if-else clauses
The total amount of if-else clauses divided

by the number of methods.

11 Cyclomatic complexity
Indicates the cyclomatic complexity

average

12 Average of static attributes
The average of static attributes contained

in a class

13 Average parameters

Average number of total number of

parameters divided by the total

number of methods in a class

14 Average of static methods The average of static methods per class

15 Average correct
The average number of files which were

correct according to the judge

16 Average wrong
The average number of files which were

wrong according to the judge

17 Average time limit
The average number of files which hit time

limit according to the judge

18 Average compilation error
The average number of files which had

compilation error according to the judge

19 Average execution error
The average number of files which had

execution errors according to the judge

20 Average no output
The average number of files which had

no output according to the judge

21 Average identifier length

The average identifier length by files,

this includes names of variables, classes,

parameters, etc.

22 Amount of correct files Total amount of correct files

23 Halstead: bugs delivered
Indicates the number of possible

bugs generated

Continued on next page

3.2 Source code analysis 23

Table 3-1 – Continued from previous page

Metric Description

24 Halstead: Difficulty An index which measure the difficulty

25 Halstead: Effort
An index which measure the necessary

effort to write the code

26 Halstead: Time to understand
An index which indicates the

time taken to write a software

27 Halstead: volume
Indicates how much information the reader

needs to get to understand the code

Average of overriden methods The average of methods overrided

Deep average The level in the hireachical tree

Average number of interfaces
The average number of interfaces which is

implemented

Efferent coupling

Is the amount of classes which a class depends

on, or the number of external types the class

knows

Specialization index

Is a relation given by the number of overriden

methods, the depth in the hireachical

tree and the number of methods.

Instability
Is the relation given by the efferent

coupling and the afferent coupling.

Lack of cohesion

Is an index which indicates the cohesion level

of a class, a high value indicates that

the class should be splitted

As mentioned before, when the source code analysis tool generates the values for each metric,

they are extracted and consolidated per student. These metrics are normalized to ease the

later stages of the framework. The metrics are classified in three groups:

Length metrics : contain the metrics related to some length/size measure and they are

calculated as the average among: amount of files, average source lines of code, classes

per file, source code lines per class, attributes per class, methods per class, class name

length, and the average number of parameters.

Complexity metrics : contain the metrics related with algorithm complexity and it is

calculated as the average of: amount of for loops, amount of while loops, amount of if

clauses, amount of if-else clauses, and the average identifier length.

Halstead : contains all the Halstead metrics extracted, it was calculated as the avera-

ge of: Halstead bugs delivered, Halstead difficulty, Halstead effort, Halstead time to

understand or implement, Halstead volume.

24 3 Strategy to analyze student assignments source code

3.3. Data analysis

Once the source code metrics have been consolidated, the correlations analysis can be per-

formed. Its purpose is to identify correlations between source code metrics, motivational

features and the student performance. To properly calculate the correlation, a normal dis-

tribution test is done over the values, in case of normality the Pearson correlation is used,

otherwise Spearman correlation is used. This stage shows traces of possible relationships

among the elements in the data sources.

The consolidated information jointly with the correlation analysis facilitates to:

Format the data: to be used as the input in the later stages.

Identify and analyze correlations: identify and analyze correlations among students per-

formance, motivation, learning strategies, and their metrics extracted from the source

codes. This allows to obtain an initial grouping and identification of groups of students

with certain labels.

Clustering: allows to confirm or discard the groups found in the correlations and the

groups the features. Such groups also give information about the learning strategies of

the best performing students.

Predictive model: allows the use of algorithms with previously labeled data to be able

to build a predictive model.

The final step in the proposed strategy is the knowledge extraction by means of the use

of machine learning techniques. Firstly, clustering analysis is performed, expecting to ob-

tain results consistent with the correlations obtained, and additional information which is

not evident in the correlation analysis. The clustering algorithm was hierarchical using the

Ward’s method. This allows an easier interpretation and analysis. Additionally, during this

stage a bi-cluster analysis is also carried out, allowing to find groups generated from two

different sources (source code metrics and MSLQ data), which allows to identify groups of

metrics related to motivation and learning strategies. Secondly, a predictive model is built

and validated. The predictive model is trained using the final grade as a label in a Support

Vector Regressor (SVR). In addition, as the grade indicates if a student approved or not,

this is used as a category to train a Support Vector Machine (SVM). This allows to predict

with an important accuracy if a student will approve based on the written source code and

the results of the MSLQ.

This tool could be used as an indicator to identify students with problems at an early stage

of the courses, allowing the teachers to take preventive or corrective measures with a stu-

dent. In this way, it is possible to understand better students source code as an artifact that

3.3 Data analysis 25

can be used to monitorize several characteristics related to self-regulated learning, course

performance, and in general, their learning process.

4. Data exploration

This chapter presents the description of the data used for this thesis. Such description in-

cludes: amount of students, grades, academic periods, descriptive statistics like mean and

standard deviation, comparison of features among semesters, and source code metrics des-

cription.

For the experimentation done throughout the development of the present document, a total

of 205 students opted in to participate voluntary. They were enrolled in Data Structures

course in Universidad Nacional de Colombia, which is a second year course for computer

science students. Participants were distributed in three different semesters during 2015 and

2016, i.e., 2015-I, 2015-II, and 2016-I. Each semester has a duration of 16 weeks.

Table 4-1 summarizes the students’ performance in the programming course. For the three

semesters, this table shows the number of students who participated in the study (n), and

some descriptive statistics for the final grade, i.e., mean (x̄) and standard deviation (σ).

Students are classified in three categories: approved, not approved, and dropout. Students

whose final grade was ≥ 3,0 were classified as approved; those whose final grade was < 3,0

were classified as not approved; and students who did not have a final grade at the end of

the course were categorized as drop out.

In average the approval rate of students among the three semesters was 59.8 %. The failure

rate (not approved) was 21.4 %, and the drop out rate was 18.8 %. As it can be seen, the

drop out rate was higher in semester 2015-I than in the other two periods. In addition, the

not approved rate was higher in semester 2016-I. Although this semester was the period

with more students, the standard deviation in the final grade is lower than in the previous

semesters for those who approved and slightly higher than 2015-II for those who did not.

Moreover, the motivational and learning strategies data was collected using MSLQ-Colombia

[Ramı́rez-Echeverry et al., 2016], which is an adaptation of the original questionnaire to Co-

lombia. Table 4-2 presents the descriptive statistics (x̄ and σ) found for each one of the

self-regulated learning features in the three academic periods. The questionnaire was ap-

plied in the fifth week of each one of the semesters.

In semesters 2015-I and 2015-II the standard deviation was less than 2.0 with small dif-

4.1 Source code metrics 27

Table 4-1.: Students performance in the programming course

2015-I 2015-II 2016-I

n %
Grade

n %
Grade

n %
Grade

x̄ σ x̄ σ x̄ σ

Approved 28 52.8 3.58 0.53 35 68.6 3.58 0.60 59 58.1 3.69 0.43

Not approved 9 16.9 1.13 0.93 7 13.7 2.00 0.74 34 33.6 1.97 0.8

Drop out 16 30.1 9 17.6 8 7.9

Total 53 51 101

ferences between semesters. However, in 2016-I it became higher, which can be explained

by the number of students during this semester (101 students), almost twice the amount

of students from other semesters. Furthermore, among the three semesters, some features

have a significant difference between them. For instance, the average in critical thinking in

2015-I is 4.54, while in 2016-I it is only 3.71; organization of ideas and rehearsal, had their

biggest averages (4.09 and 4.7 respectively) in 2015-II, and in 2016-I these values decreased

to 2.41 and 2.92, respectively. Moreover, the semester 2015-II presents the lowest averages

in motivational features. For example, the intrinsic goals is, in average, 3.06, which is low

for a self-motivation feature. Nevertheless, this semester shows the best approval rate.

Finally, the dataset is completed with all the source codes submitted by each one of the

students during the courses. Each row of the dataset will correspond to a single student. The

dataset columns contain the MSLQ features, the source code metrics, and student perfor-

mance. All data is normalized and consolidated in such a way that a single row corresponds

to a single student.

4.1. Source code metrics

The computer programming course was supported by an automatic grading tool for pro-

gramming assignments, namely DomJudge1 (online judge), which facilitated to obtain the

source code of the participants for further automatic source code analysis. The following

data was extracted from the DomJudge databases:

The team id: In this case the field corresponds to the student user name.

The problem id: To uniquely identify an specific assignment.

Source code: The assignment source code.

1http://www.domjudge.org

http://www.domjudge.org

28 4 Data exploration

Table 4-2.: MSLQ Data set description

2015-I 2015-II 2016-I

Feature x̄ σ x̄ σ x̄ σ

M
ot

iv
at

io
n

Task value 5.78 1.39 4.39 1.82 4.76 2.65

Anxiety 4.64 1.53 3.44 1.91 3.58 2.25

Extrinsic goals 4.77 1.42 3.39 1.81 3.62 2.38

Control of learning

beliefs
5.79 1.25 4.19 1.79 4.83 2.69

Intrinsic goals 4.50 1.55 3.06 1.61 3.89 2.38

Self efficacy

learning
5.44 1.31 4.09 1.80 4.40 2.57

Self-efficacy

performance
5.45 1.38 3.97 1.89 4.41 2.48

L
ea

rn
in

g
st

ra
te

gi
es

Time to study 3.80 1.56 4.86 1.84 3.16 2.12

Peer learning 3.93 1.86 4.21 1.68 3.45 2.23

Meta-cognition

method
4.15 1.65 4.18 1.72 3.33 2.10

Elaboration of ideas 4.47 1.41 4.18 1.73 3.77 2.27

Effort regulation 5.01 1.34 4.54 1.75 3.96 2.28

Meta-cognition

monitoring
5.25 1.26 4.58 1.80 4.26 2.40

Rehearsal 3.86 1.54 4.70 1.80 2.92 1.95

Critical thinking 4.54 1.32 4.27 1.67 3.71 2.18

Study environment 5.31 1.58 4.81 2.00 4.12 2.53

Meta-cognition

planning
4.50 1.57 4.13 1.60 3.46 2.12

Organization

of ideas
3.12 1.67 4.09 1.68 2.41 1.73

Result: The outcome of the assignment. For each source file, the result can be one of

the following:

• compiler-error: The source file could not be compiled.

• correct: The source code compiled, ran in the specified execution time, and ob-

tained the expected output.

• no-output: The source code compiled and ran but did not obtain any output.

• run-error: The source code compiled an ran but there was an execution error

(runtime exception).

• timelimit: The source code compiled an ran but took more time to complete the

4.1 Source code metrics 29

task than the specified in the assignment.

• wrong-answer: The source code compiled an ran but the result was not the ex-

pected one.

Once the extraction was performed, the source code files were processed with a custom source

code automatic analysis tool, which uses ANTLR [Parr, 2013]. Such tool, was written from

scratch using a Java 8 grammar to do an analysis and metric extraction from the source code

files. This grammar was chosen for two reasons: all the source codes submitted by students

were written in the Java programming language, and also due to this grammar in its version

8 is a superset of the previous versions (it supports also the versions 6 and 7 of the language).

The tool works parsing the source code file, and a specific process is done and for each senten-

ce which contributes to a metric. The mentioned process usually involve counting, measure

length and the context of several statements. For instance, its different a class identifier (class

name) to a variable identifier (variable name). Once the most basic data is obtained, some

formulas are applied to get the source code metrics. During the development of this chapter

the formulas used to get the results are explained.

Once all the values are calculated, the information per student is consolidated, calculating

the average of each metric among all the source code files. And later the data is also norma-

lized. Such normalization is needed to ease the analysis of the data, for instance to compare

the results among semesters.

Additionally, the tool stores the resulting information, in a database. Such database contains

the raw data and normalized data. This allow to extract with different options the consoli-

dated data without repeating all the process over again.

The source code processing explained above is done for each file sent by a student. The set

of metrics calculated is presented in the Table 3-1. Table 4-3 presents the standard devia-

tion and average per source code metric, semester and final result (approved, not approved).

Dropout students were not considered because the data collected for them was not complete.

All values were normalized to ease the interpretation.

Although more details will be discussed in next subsections, there are some considerations

that are valuable to highlight at this point. In general, the values corresponding to length

related metrics (like file amount, average lines per, etc.) are greater for those who appro-

ved and this is consistent in all semesters. This behavior, however, is inverted regarding to

Halstead metrics, with exception of time to understand or implement. Other kind of metrics

obtain mixed results.

30 4 Data exploration

Table 4-3.: Average and standard deviation of source code metrics during the three semes-

ters
2015-I 2015-II 2016-I

A
p
p
ro
v
e
d

N
o
t
a
p
p
ro
v
e
d

A
p
p
ro
v
e
d

N
o
t
a
p
p
ro
v
e
d

A
p
p
ro
v
e
d

N
o
t
a
p
p
ro
v
e
d

x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ x̄ σ

File amount 0.54 0.14 0.14 0.11 0.56 0.13 0.5 0.24 0.36 0.12 0.24 0.23

Average lines per file 0.40 0.14 0.23 0.11 0.49 0.13 0.46 0.19 0.39 0.23 0.28 0.21

Average class per file 0.51 0.12 0.43 0.16 0.47 0.08 0.41 0.12 0.44 0.19 0.35 0.18

Average lines per class 0.70 0.2 0.42 0.12 0.65 0.15 0.61 0.15 0.45 0.19 0.38 0.19

Average attributes per class 0.62 0.12 0.46 0.04 0.41 0.12 0.38 0.09 0.55 0.20 0.32 0.24

Average methods per class 0.71 0.12 0.50 0.11 0.62 0.07 0.65 0.12 0.50 0.19 0.38 0.19

Average class name length 0.55 0.09 0.51 0.06 0.64 0.07 0.65 0.06 0.47 0.15 0.44 0.15

Average for loops per method 0.17 0.06 0.20 0.05 0.11 0.03 0.11 0.03 0.11 0.17 0.19 0.10

Average while loops per method 0.18 0.09 0.22 0.14 0.10 0.05 0.12 0.02 0.16 0.15 0.17 0.20

Average if per method 0.26 0.06 0.30 0.09 0.31 0.04 0.32 0.07 0.15 0.10 0.21 0.20

Average if-else per method 0.09 0.01 0.11 0.05 0.17 0.04 0.18 0.06 0.23 0.14 0.24 0.20

Cyclomatic complexity 0.36 0.12 0.39 0.18 0.38 0.11 0.32 0.08 0.20 0.11 0.25 0.20

Average static attributes 0.27 0.11 0.24 0.16 0.51 0.13 0.49 0.13 0.24 0.11 0.25 0.21

Average parameters per method 0.21 0.18 0.06 0.12 0.18 0.14 0.13 0.21 0.25 0.17 0.16 0.23

Average static methods 0.15 0.12 0.25 0.32 0.12 0.07 0.16 0.09 0.28 0.20 0.26 0.19

Average correct files 0.18 0.12 0.11 0.13 0.25 0.14 0.33 0.12 0.21 0.12 0.28 0.20

Average files with errors 0.06 0.20 0.00 0.00 0.06 0.13 0.14 0.34 0.04 0.11 0.05 0.19

Average file time limit 0.72 0.06 0.69 0.04 0.78 0.05 0.76 0.02 0.51 0.10 0.45 0.11

Average files with compilation error 0.57 0.18 0.20 0.14 0.67 0.14 0.56 0.31 0.32 0.14 0.18 0.18

Average files with execution error 0.53 0.09 0.53 0.10 0.67 0.07 0.67 0.07 0.49 0.09 0.51 0.14

Average files with no output 0.25 0.05 0.29 0.06 0.21 0.03 0.22 0.04 0.21 0.13 0.29 0.22

Average identifier length 0.13 0.10 0.09 0.14 0.21 0.17 0.11 0.04 0.19 0.19 0.14 0.23

Average amount of correct files 0.13 0.06 0.18 0.05 0.10 0.03 0.11 0.05 0.28 0.25 0.48 0.36

Halstead bugs delivered 0.02 0.00 0.24 0.32 0.01 0.00 0.02 0.01 0.01 0.01 0.10 0.23

Halstead difficulty 0.02 0.03 0.17 0.34 0.04 0.04 0.03 0.05 0.08 0.07 0.22 0.26

Halstead effort 0.05 0.10 0.16 0.34 0.02 0.03 0.03 0.06 0.07 0.12 0.14 0.24

Halstead time to understand implement 0.16 0.10 0.05 0.34 0.02 0.03 0.03 0.06 0.07 0.12 0.14 0.24

Halstead volume 0.01 0.02 0.17 0.34 0.03 0.03 0.03 0.04 0.04 0.03 0.15 0.20

Final grade 0.74 0.11 0.28 0.18 0.74 0.12 0.41 0.15 0.73 0.08 0.40 0.14

In next subsections, a figure is shown comparing the average values (red bars) and standard

deviation (blue lines in the middle of the average) obtained from students who approved and

those who did not approve the course for each source code metric, DomJudge result, and

MSLQ feature (from Figure 4-1 to Figure 4-31). The comparisons of the three semesters

are shown from left to right for 2015-I, 2015-II and 2016-I.

4.1 Source code metrics 31

4.1.1. Length based metrics

This kind of metrics are focused on measure the length (or amount) of a feature in the source

code. The length based metrics used for this thesis are described next and are calculated per

student. Later the students’ results are divided in those who approve a those who did not,

to be able to compare.

The amount of files, denoted as F , is the complete amount of files sent by a student, it

does not matter if the code compiles or not, neither if the solution is correct or not. A

comparison can be seen in the Figure 4-1, in all the three semesters the students who appro-

ved sent in average more files than those who did not approve. In the semesters 2015-II and

2016-I the standard deviation is high, around 20 %, which means there were students who did

not approve but who did several attempts trying to solve the assignments in the online judge.

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

File amount

Not approve Approve

Figure 4-1.: Comparison among semesters 2015-I, 2015-II and 2016-I of file amount

Moreover, the average source lines of code (Sa), as can be seen in equation (4-1), refers to

the total lines of code including empty lines, comments, and effective lines of code; where

N is the total number of lines of code, and F is the total number of files. Figure 4-2 shows

that the students which approved have in average more lines of code per file than those who

did not approve, which is a similar behavior to the file amount.

Sa =
N

F
(4-1)

The average class number by file (Ca), calculated using the equation (4-2), where cf is amount

of classes in a source code file, and F is the total number of files. In Figure 4-3 can be seen

that again the students which approved have more classes in a file in average than those

32 4 Data exploration

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

Average lines per file

Not approve Approve

Figure 4-2.: Comparison among semesters 2015-I, 2015-II and 2016-I of average lines per

file

who did not approve. In this case the difference is less evident. This can be explained by the

nature of the language and the nature of the problems proposed in the assignments. Java

allows one class per file, the other classes should be nested classes, which in many cases are

needed, because solutions must be sent to the online judge in a single file.

Ca =

∑
cf
F

(4-2)

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

Average class per file

Not approve Approve

Figure 4-3.: Comparison among semesters 2015-I, 2015-II and 2016-I of average classes per

file

The average source code lines by class (Sc), in equation (4-3), is calculated adding the source

code lines in a class (nc), and dividing it by the total amount of classes in all files C. In

4.1 Source code metrics 33

Figure 4-4 is shown the comparison of this metric among semesters. Again a pattern in all

long based metrics so far is kept, the students who approved have more average than those

who did not. This behavior persists in the three semesters.

Sc =

∑
nc

C
(4-3)

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

Average lines per class

Not approve Approve

Figure 4-4.: Comparison among semesters 2015-I, 2015-II and 2016-I of average lines per

class

The average attributes by class (Ac), in equation (4-4), is calculated by adding all the

attributes in each one of the classes and dividing it by the total number of classes. The

comparison among semester is shown in Figure 4-5. While the trend of other long based

metrics is kept, this metrics is more balanced in the semester 2015-II. In semester 2016-I the

standard deviation is higher.

Ac =

∑
ac
C

(4-4)

The average methods by class (Mc), in equation (4-5), is calculated by adding all the methods

in each one of the classes and dividing it by the total number of classes. Shown in the Figure

4-6, this metric breaks the pattern seen in the other length based metrics. In semester

2015-II the students who did not approve presented more methods per class than the better

performing students. However, the standard deviation is higher than in the approved group,

which could mean that was not a common feature for all the students.

Mc =

∑
mc

C
(4-5)

34 4 Data exploration

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

Average attributes per class

Not approve Approve

Figure 4-5.: Comparison among semesters 2015-I, 2015-II and 2016-I of average attributes

per class

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

Average methods per class

Not approve Approve

Figure 4-6.: Comparison among semesters 2015-I, 2015-II and 2016-I of average methods

per class

The average amount of static attributes (L) and the average amount of static methods (O),

in equations (4-6) and (4-7), are calculated adding the amount of static attributes in a class

(lc) or the amount of static methods in a class (mc), and dividing them by the number of

classes. The comparisons are shown in Figures 4-7 and 4-8, it can be seen that the difference

between approved and not approved is minimal in both metrics. In addition, the standard

deviation is high enough to consider the difference insignificant.

L =

∑
lc

C
(4-6)

4.1 Source code metrics 35

O =

∑
mc

C
(4-7)

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

Average static attributes

Not approve Approve

Figure 4-7.: Comparison among semesters 2015-I, 2015-II and 2016-I of average static at-

tributes per class

Not approve Approve

0.0

0.2

0.4

0.6

0.8

Not approve Approve

Average static methods

Not approve Approve

Figure 4-8.: Comparison among semesters 2015-I, 2015-II and 2016-I of average static met-

hods per class

The average identifier length (Q), as seen in equation (4-8), is the addition of the length of

all identifiers. This includes variable names, attribute names, parameter names but no the

class names. And divided by the total number of classes. The comparison between approved

and not approved is shown in Figure 4-9. Students who approved have longer identifiers,

36 4 Data exploration

which could mean that use meaningful names. However, the standard deviation is too high,

indicating that not all approved students used long identifiers and not all students who did

not approve used short identifiers.

Q =

∑
qc
C

(4-8)

Not approve Approve

0.0

0.2

0.4

0.6

0.8

Not approve Approve

Average identifier length

Not approve Approve

Figure 4-9.: Comparison among semesters 2015-I, 2015-II and 2016-I of average identifier

length

The average class name length (K), in equation (4-9), is calculated by length of each class

name, kc, and dividing it by the total number of classes. In Figure 4-10 can be seen that the

students who approved had greater average. Nevertheless, the difference is not significant as

the standard deviation is bigger than the difference.

K =

∑
kc
C

(4-9)

The average parameters per method (P) is calculated obtaining the average amount of

parameters of the methods and divided by the total number of methods, as seen in equation

4-10. The comparison of results for this metric is shown in Figure 4-11. Better performing

students used, in average, more parameters in their methods. Nonetheless, the standard

deviation is too high, indicating that this is no specific to approved or not approved students.

P =

∑
pm
M

(4-10)

4.1 Source code metrics 37

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

Average class name length

Not approve Approve

Figure 4-10.: Comparison among semesters 2015-I, 2015-II and 2016-I of average class name

length

Not approve Approve

0.0

0.2

0.4

0.6

0.8

Not approve Approve

Average parameters per method

Not approve Approve

Figure 4-11.: Comparison among semesters 2015-I, 2015-II and 2016-I of average parame-

ters per method

4.1.2. Complexity based metrics

This kind of metrics are focused on a concept called complexity [McCabe, 1976], which is an

indicator of source code quality and the algorithm execution time.

The average amount of if (I), if-else (X), for (L) and while (W) statements. In equations

(4-11), (4-12), (4-13) and (4-14) respectively. All the equations follow the same pattern, add

the amount of statements (if, if-else, for, while) and divide it by the total amount of methods

(M). The comparison between approved and not approved is shown in Figures 4-12, 4-13,

4-14 and 4-15 respectively. In the if and if-else clauses the difference is not significant, but

38 4 Data exploration

it can be seen that the average is a little bigger for those who did not approve. The same

pattern can be seen in the for-loops and while-loops, but the main difference is related to

the standard deviation, which is higher specially for the not approved average.

I =

∑
im
M

(4-11)

X =

∑
xm
M

(4-12)

L =

∑
fm
M

(4-13)

W =

∑
wm

M
(4-14)

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

Average if per method

Not approve Approve

Figure 4-12.: Comparison among semesters 2015-I, 2015-II and 2016-I of average if clauses

per method

In addition, the cyclomatic complexity (shown in Figure 4-16), which can be seen as a

summary of the previous discussed metrics, shows that even when it is tried to keep some

elements of it lower (like the loops) the complexity in some of the codes is higher than the

individual measures of the loops. Still, the values for the approved and not approved students

is too close and the standard deviation indicates that there is no significant difference.

4.1 Source code metrics 39

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

Average if-else per method

Not approve Approve

Figure 4-13.: Comparison among semesters 2015-I, 2015-II and 2016-I of average if-else

clauses per method

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

Average for loops per method

Not approve Approve

Figure 4-14.: Comparison among semesters 2015-I, 2015-II and 2016-I of average for loops

per method

The Halstead metrics [Halstead, 1977] consist of another way to calculate complexity in a

source code. The base to calculate these metrics are the operands (e.g., identifiers, numbers)

and operators (e.g., keywords, ++, +). Vocabulary (n, described in Equation 4-15) consists

in the sum of the unique operators (n1) and operands (n2). Length (N , described in Equation

4-16) is the sum of the total number of operands (N1) and operators (N2).

n = n1 + n2 (4-15)

40 4 Data exploration

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

Average while loops per method

Not approve Approve

Figure 4-15.: Comparison among semesters 2015-I, 2015-II and 2016-I of average while loop

per method

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

Cyclomatic complexity

Not approve Approve

Figure 4-16.: Comparison among semesters 2015-I, 2015-II and 2016-I of average cyclomatic

complexity

N = N1 +N2 (4-16)

The Halstead volume (V), described in Equation 4-17, is a measure of size but it is also

interpreted as the number of mental comparisons that were needed to write a program with

length N . Moreover, the difficulty (D), shown in Equation 4-18, describes the difficulty to

write a program. It is highly related to volume because as it increases the difficulty also does.

V = N log2 n (4-17)

4.1 Source code metrics 41

D =
n1

2
· N2

n2

(4-18)

In Figures 4-17 and 4-18 are shown the comparisons of the Halstead volume and difficulty,

respectively. It can be seen that the students who did not approve have a higher average

than those who did. Additionally the high standard deviation indicates that even with the

high average not all the not approved students followed the same pattern. For those who did

approve, the low standard deviation indicates that in this case there is a common result.

Not approve Approve
−0.2

0.0

0.2

0.4

0.6

0.8

Not approve Approve

Halstead volume

Not approve Approve

Figure 4-17.: Comparison among semesters 2015-I, 2015-II and 2016-I of Halstead volume

Not approve Approve
−0.2

0.0

0.2

0.4

0.6

0.8

Not approve Approve

Halstead difficulty

Not approve Approve

Figure 4-18.: Comparison among semesters 2015-I, 2015-II and 2016-I of average Halstead

difficulty

42 4 Data exploration

The effort (E) described in Equation 4-19, indicates the effort required to write a program

of high difficulty. In Figure 4-19 the comparison is shown, again the students who did not

approve got a bigger value in this metric, but the standard deviation is really high.

E = D · V (4-19)

Not approve Approve
−0.2

0.0

0.2

0.4

0.6

0.8

Not approve Approve

Halstead effort

Not approve Approve

Figure 4-19.: Comparison among semesters 2015-I, 2015-II and 2016-I of average Halstead

effort

Finally, the effort is the base to calculate the time to understand/implement (T) and bugs

delivered (B), as can be seen in Equations 4-20 and 4-21, respectively. The time metric

is related to the Stroud number [Shen et al., 1983], which is the “number of elementary

discrimination per second”. Stroud claimed that this number ranges from 5 to 20, but the

Halstead’s experiments indicated empirically that the best number in this case was 18.

T =
E

18
(4-20)

B =
E

2
3

3000
(4-21)

In Figures 4-20 and 4-21 are shown the comparisons of Halstead time to understand or

implement, and bugs delivered, respectively. As in all other Halstead metrics the students

who did not approve have a bigger average value of this metrics. The standard deviation

indicates that is not a “rule” but is still significant because all the Halstead metrics are an

indicator of quality. Therefore, one could expect to find less quality in the code of students

who did not approve the course.

4.2 Program execution results 43

Not approve Approve
−0.2

0.0

0.2

0.4

0.6

0.8

Not approve Approve

Halstead time to undestand implement

Not approve Approve

Figure 4-20.: Comparison among semesters 2015-I, 2015-II and 2016-I of average Halstead

time to understand or implement

Not approve Approve

0.0

0.2

0.4

0.6

0.8

Not approve Approve

Halstead bugs delivered

Not approve Approve

Figure 4-21.: Comparison among semesters 2015-I, 2015-II and 2016-I of average Halstead

bugs delivered

4.2. Program execution results

As part of the dataset, the program execution results from Domjudge are also extracted.

Given the total number of files sent (F), the total number of files: correct (R), wrong (W),

which hit time limit (T), with compilation errors (E), execution errors (X), and wrong

44 4 Data exploration

output (O). The averages are extracted as seen in equations (4-22).

R̄ =
R

F
W̄ =

W

F
T̄ =

T

F

Ē =
E

F
X̄ =

X

F
Ō =

O

F

(4-22)

Figure 4-22 illustrates the comparison of the average of correct files sent by students. Inter-

estingly, in 2015-II and 2016-I the average of correct files is higher for those students who

did not approve compared to the ones who approve the course. However, this could have

an explanation, the judge do not punish wrong submissions, so a student which approve

may have sent a lot of wrong attempts, causing a decrease in the general average. In ad-

dition, the standard deviation is high, so not all of those who approved sent a lot of attempts.

Not approve Approve

0.0

0.2

0.4

0.6

0.8

Not approve Approve

Average correct files

Not approve Approve

Figure 4-22.: Comparison among semesters 2015-I, 2015-II and 2016-I of average correct

files

In other words, the average value is obtained based on the total amount of files sent, if the

student sent few files but most of them were right could cause this result. This frequently

happens with students who did not drop out early in the course on time, and decided to

continue enrolled to the course without being really committed to it.

Moreover, Figure 4-23 shows the comparison of the files with errors among semesters. The

standard deviation is so high that it can not be conclusive as an indicator.

In Figure 4-24, it can be seen that approved students have in average more files which hit

time limit, but the values are close to the not approved, and standard deviation is big enough

4.2 Program execution results 45

Not approve Approve

0.0

0.2

0.4

0.6

0.8

Not approve Approve

Average files with errors

Not approve Approve

Figure 4-23.: Comparison among semesters 2015-I, 2015-II and 2016-I of average files with

files

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

Average file time limit

Not approve Approve

Figure 4-24.: Comparison among semesters 2015-I, 2015-II and 2016-I of average files which

hit time limit

to consider the difference not significant.

Figure 4-25 presents that the higher average is for those who approved, this can be explained

by the fact that there is no penalty per attempt be correct or wrong, this is also an indicator

that the students who approved are more persistent.

In Figure 4-26, is presented the comparison between students who approved and those who

did not during the three semesters studied. In this case it can be seen that is not statistical

difference, apparently the execution error rate is indifferent to the final result. This could be

46 4 Data exploration

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

Average files with compilation error

Not approve Approve

Figure 4-25.: Comparison among semesters 2015-I, 2015-II and 2016-I of average files which

had compilation error

explained by the fact that there was no penalty in send a file with this characteristics.

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

Average files with execution error

Not approve Approve

Figure 4-26.: Comparison among semesters 2015-I, 2015-II and 2016-I of average files which

had execution error

Figure 4-27 shows a higher value for those who did not approve in all the studied periods.

Still, the standard deviation is high enough to not consider this as statistically significant.

An important detail is seen in 2016-I, the standard deviation have a much more higher value.

Possibly due to the number of students.

In Figure 4-28, the amount of correct files comparison is presented. At first sight this may

seem contradictory, not approved students got higher values in average. Firstly, results on

4.2 Program execution results 47

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

Average files with no-output

Not approve Approve

Figure 4-27.: Comparison among semesters 2015-I, 2015-II and 2016-I of average files which

had no output during execution

average for the 2015-I and 2015-II semesters are very close between the better performing

students and those who did not approve the course, and therefore, there is no statistically

significant difference to draw conclusions. With regard to the 2016-I results, conclusions can

not be drawn either because the standard deviations are very high. Secondly, it is important

to clarify that the practical component of the course qualification has a value of 50 % of the

final grade; the other grades correspond to two partial exams.

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

Amount of correct files

Not approve Approve

Figure 4-28.: Comparison among semesters 2015-I, 2015-II and 2016-I of total amount of

correct files

Finally, Figure 4-29 presents the final grade comparison. The obtained results were the

expected ones. However, some details deserve attention. The average grade in 2015-II and

48 4 Data exploration

2016-I was very close, around 2.0, the standard deviations show that there were students

who were very close to the approval grade. In addition, in such semesters the students

who did not approve did not appear to get too low grades. Moreover, it can be seen that

approved students did not approve with the lower grade, but in average it was close to 4.0,

and according to the standard deviation there were several students who obtained grades

beyond 4.0.

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

Final grade

Not approve Approve

Figure 4-29.: Comparison among semesters 2015-I, 2015-II and 2016-I of final grade

4.3. Motivational traits and learning strategies

In the three semesters a Motivated Strategies for Learning Questionnaire was applied du-

ring the fifth week of the semester, after some homework was previously done in the first

weeks. The used questionnaire is an adaptation to Colombia proposed by Professor Jhon

Jairo Ramirez Echeverry called MSLQ-Colombia [Ramı́rez-Echeverry et al., 2016]. After the

test evaluation, 18 features are obtained which can be seen with a brief explanation in Tables

2-2 (7 motivational features) and 2-3 (11 learning strategies). In each item, students specify

their level of agreement or disagreement on a symmetric agree-disagree Likert scale from 1

(strongly disagree) to 7 (strongly agree).

In the Figure 4-30 is shown the comparison of the seven motivational features in MSLQ.

Task value (Figure 4-30a), self efficacy learning (Figure 4-30f) and self efficacy performance

(Figure 4-30g) presented a similar behavior; during the three periods the approved students

had more average for these features. However, the students who did not approve presented

also high values. The high standard deviations show that, even for the high averages, stu-

dents answered very different values.

4.3 Motivational traits and learning strategies 49

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

TaskValue

Not approve Approve

(a) Task value

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

Anxiety

Not approve Approve

(b) Anxiety

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

ExtrinsicGoals

Not approve Approve

(c) Extrinsic goals

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

ControlOfLearningBeliefs

Not approve Approve

(d) Control of learning beliefs

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

IntrinsicGoals

Not approve Approve

(e) Intrinsic goals

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

SelfEfficacyLearning

Not approve Approve

(f) Self efficacy learning

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

SelfEfficacyPerformance

Not approve Approve

(g) Self efficacy performance

Figure 4-30.: Comparison among semesters 2015-I, 2015-II and 2016-I

50 4 Data exploration

Figure 4-30b presents the comparison of anxiety. In the periods 2015-I and 2015-II the stu-

dents who did not approve had higher values of anxiety. Although it is an indicator to have

in mind in future sections, the standard deviation is also high.

In addition, Figures 4-30c and 4-30d and 4-30e show the comparison of extrinsic goals,

control of learning beliefs and intrinsic goals, respectively, among semesters. In this case,

during the periods 2015-I and 2016-I the students who did not approve had lower values,

and the difference in the averages was very low. The standard deviation is high as well.

Moreover, in the Figure 4-31 is shown the comparison of the features related to learning

strategies in MSLQ. In particular, the features time to study (Figure 4-31a), peer learning

(Figure 4-31b), meta cognition method (Figure 4-31c), and elaboration of ideas (Figure

4-31d) show a similar behavior among semesters. In 2015-I and 2015-II approved students

got higher averages, while in 2016-I the values are almost tied. The standard deviations are

very high in all cases.

Regarding the features effort regulation (Figure 4-31e), meta cognition monitoring (Figure

4-31f), meta cognition planning (Figure 4-31j) and critical thinking (Figure 4-31i), it can

be seen that between approved and not approved students the averages are almost tied.

Again the standard deviations are high.

In the Figure 4-31g, is shown the comparison of rehearsal among semesters. Keeping the

trend of other motivational features, the standard deviation is high. The semesters 2015-I

and 2016-I present higher average for students who did not approve, overcoming by little

margin the approved students.

In the Figures study environment (Figure 4-31h) and organization of ideas (Figure 4-31k)

the average values values are close for those who approve and those who did not. However,

the standard deviation is higher than the differences in all semesters.

During this chapter, the dataset was presented comprehensively. This allows to get insights

of the results obtained from the students. Source code metrics showed more clues about stu-

dent final results than MSLQ features. In more metrics the standard deviations were usually

lower comparing to the measures in MSLQ features. Furthermore, some patterns persisted

through semesters. For instance, the average identifier length was higher for the students

who approved. In MSLQ features this kind of analysis was not clear because the standard

deviations were always high; the highest or lowest average not in all cases belong to the

approved students; and, in some cases, the averages between approved and not approved in

all semesters were too close.

4.3 Motivational traits and learning strategies 51

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

TimeToStudy

Not approve Approve

(a) Time to study

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

PeerLearning

Not approve Approve

(b) Peer learning

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

MetaCognitionMethod

Not approve Approve

(c) Meta-cognition method

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

ElaborationOfIdeas

Not approve Approve

(d) Elaboration of ideas

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

EffortRegulation

Not approve Approve

(e) Effort regulation

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

MetacognitionMonitoring

Not approve Approve

(f) Meta-cognition monitoring

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

Rehearsal

Not approve Approve

(g) Rehearsal

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

StudyEnvironment

Not approve Approve

(h) Study environment

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

CriticalThinking

Not approve Approve

(i) Critical thinking

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

MetaCognitionPlanning

Not approve Approve

(j) Meta-cognition planning

Not approve Approve
0.0

0.2

0.4

0.6

0.8

1.0

Not approve Approve

OrganizationOfIdeas

Not approve Approve

(k) Organization of ideas

Figure 4-31.: Comparison among semesters 2015-I, 2015-II and 2016-I, the line in blue

represents the standard deviation.

Taking into account the presented results, it is difficult to draw conclusions. This motivates

the necessity to explore the dataset supported by machine learning techniques as it will be

52 4 Data exploration

presented in next chapters of this thesis. In addition, the relationships between source co-

de metrics (technical features) and MSLQ features is yet to be seen in the following chapters.

5. Correlations

This chapter presents and discusses the correlations results among source code metrics, moti-

vational and learning strategies features, and students performance. In the Section 5.1, only

the technical correlations are shown and relationships are presented among them, including

source code metrics and students performance. Later, in the Section 5.2, the correlations

between technical features (including performance as well) and the MSLQ features are ex-

plored. Finally, a discussion is done about the obtained correlations and possible reasons of

the relationships found.

To properly calculate the correlation coefficients, a normal distribution test was performed

over the values. In case of normality, the Pearson product-moment correlation coefficient was

calculated, otherwise, the Spearman correlation coefficient was used.

It is worth mentioning that correlations among all features will be represented by means of

heatmaps to facilitate the results interpretation. In this way, heatmaps clearly show which

features are correlated positively or negatively. Positive and negative correlations are repre-

sented in blue and red colors, respectively. The darker the color is, the correlation is closer

to 1,0 (dark blue) or −1,0 (dark red). This representation is used in this chapter from Figure

5-1 to Figure 5-4. For detailed values of the correlation coefficients please refer to Appendix

A from Table A-1 to Table A-6. The correlations highlighted in bold in these tables mean

that they are statistically significant, having a p-value ≤ 0,05.

5.1. Technical correlations

Using the source code metrics (technical information) jointly with the students performan-

ce data, a correlations analysis was performed. This shows traces of possible relationships

among the elements in the dataset.

The correlations between technical features in semester 2015-I can be visualized in the heat-

map presented in Figure 5-1. This figure presents the correlation of each technical feature

against each other. That is the reason because the diagonal of the heatmap shows a corre-

lation of 1,0. The numbers at left side (vertical axis) and on bottom (horizontal axis) of the

heatmap correspond to the numbers of the metrics presented in Table 3-1 in the Chapter 3.

54 5 Correlations

In addition, the number 28 corresponds to the final grade, which is the students performance.

For detailed values see Table A-1 in Appendix A.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

−0.8

−0.4

0.0

0.4

0.8

Figure 5-1.: Heatmap of correlations among technical features in semester 2015-I, the num-

bers of the metrics are presented in Table 3-1. Positive correlations are pre-

sented in blue, negative correlations in red.

As it can be seen, there are some important positive correlations among metrics related

with source code length (0 to 6), from now on Length metrics. Most of them have a p-value

≤ 0,05. Another important region is presented between Length metrics and the region re-

lated with Complexity (7 to 11), from now on Complexity metrics. This means that most

of these metrics are correlated to the cyclomatic complexity metric. In addition, the metric

average of static methods has a negative correlation with Length metrics.

Furthermore, another clear and visible group of correlations among technical features can

be seen in metrics related with Halstead (23 to 27). These metrics expose a strong positive

correlation to each other. In addition, Complexity metrics are correlated negatively with

5.1 Technical correlations 55

Halstead but these correlations are not as strong as the previous ones.

Regarding the students performance (28), it is correlated positively to Halstead effort and

time to understand/implement. Also, there is an interesting negative correlation between

final grade and Halstead bugs delivered. These metrics also present a p-value ≤ 0,05.

In the same way as in the previous figure, the heatmap shown in Figure 5-2 presents the

correlation for the semester 2015-II. To see in detail the correlation coefficients see Table

A-2 (Appendix A).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

−0.8

−0.4

0.0

0.4

0.8

Figure 5-2.: Heatmap of correlations among technical features in semester 2015-II, the num-

bers of the metrics are presented in Table 3-1. Positive correlations are pre-

sented in blue, negative correlations in red.

While it can be seen that the Length metrics group is still present showing high positive

correlations with a p-value ≤ 0,05. However, it is not as strong as in 2015-I. In addition,

the complexity metrics are also present with less intensity. Halstead metrics appear again,

but this time stronger than before. In this semester, the correlation between Halstead and

56 5 Correlations

Complexity metrics is stronger as well. In this case, the p-values are ≤ 0,05 and maintain

the negative correlation.

Moreover, the correlations between metrics for semester 2016-I are represented in the heat-

map in Figure 5-3. To see in detail the correlation coefficients see Table A-3 (Appendix A).
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

−0.8

−0.4

0.0

0.4

0.8

Figure 5-3.: Heatmap of correlations among technical features in semester 2016-I, the num-

bers of the metrics are presented in Table 3-1. Positive correlations are pre-

sented in blue, negative correlations in red.

In this semester, the groups mentioned before are present once again with stronger corre-

lations, specially Length metrics with respect to themselves, Length with Complexity, and

Halstead metrics with themselves. The p-values for those groups indicate that the correla-

tions are very significant. One of the possible explanations for this is that the amount of

students in this semester was 101, more than double than in the other semesters.

As conclusions for this section, there are some points to highlight. First, the apparent pre-

5.2 Technical and motivational correlations 57

sence of at least three groups of metrics: Length, Complexity and Halstead. This will be

confirmed in the next chapter together with the existence of other group.

Another important aspect found is the persistence of the groups in the three semesters. Alt-

hough the level of correlation varies, the presence of those correlations in all the semesters is

an indicator of the importance of those metrics. Furthermore, the correlation of such metrics

with respect to MSLQ features, which will be presented in the next section, can provide

more useful information.

Finally, the correlation between the final grade and Length, Complexity and Halstead metrics

show the impact of those metrics in the performance of students in the course. Notice that

Halstead and most of Complexity metrics are correlated negatively, while Length metrics

are correlated positively.

5.2. Technical and motivational correlations

This section presents and discusses correlations between technical (including source code

metrics and performance) and MSLQ features. As in the previous section a heatmap for

each semester is shown.

The heatmaps for all studied semesters are presented in Figure 5-4, from left to right, the

heatmaps correspond to 2015-I, 2015-II, and 2016-I. In this case, the numbers on the left

correspond to the source code metrics (28 is again the students final grade) and the ones at

the bottom of each heatmap correspond to the MSLQ features, numbered in Tables 2-2 and

2-3. For detailed correlation coefficients see the Appendix A in Tables A-4, A-5 and A-6

for 2015-I, 2015-II, and 2016-I, respectively.

In semester 2015-I, the Length metrics can be easily seen in the heatmap correlated positi-

vely with several MSLQ features. This means that Length based metrics are not exclusively

related to one or another MSLQ features. However, the p-values are not low enough to consi-

der them significant. With respect to Halstead metrics, they appear to be mostly negatively

correlated with motivational features. Nonetheless, similar to Length metrics, the p-values

are not ≤ 0,05, i.e., the correlations are not statistically significant.

In semester 2015-II, the Length metrics are not clearly seen in the heatmap, and some of

them are negatively correlated with almost all MSLQ features. In this semester, Halstead

metrics are more clearly visible, but in this case mostly correlated positively, and the corre-

lations are not as high as before. Similarly to Length metrics, the p-values are not low enough.

In semester 2016-I, the Length metrics can be seen again in the heatmap, however with mi-

xed results. They appear to be negatively correlated with motivational features, and mostly

58 5 Correlations
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

−0.4

−0.2

0.0

0.2

0.4

(a) 2015-I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

−0.4

−0.2

0.0

0.2

0.4

(b) 2015-II

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

−0.30

−0.15

0.00

0.15

0.30

(c) 2016-I

Figure 5-4.: Heatmap of correlations among technical and MSLQ features, numbers in the Y

axis corresponds to metrics in Table 3-1. Numbers in the X axis corresponds

to Tables 2-2 and 2-3. Positive correlations are presented in blue, negative

correlations in red.

positively correlated with learning strategies features. Halstead correlations can not be seen

clearly in this case, presenting mixed values, and in general, low correlation coefficients. Mo-

reover, unlike the other two semesters, in 2016-I the Complexity metrics can be seen, they

correlate negatively with several learning strategies, and have p-values ≤ 0,05 (significant).

Contrarily to the correlations between technical features themselves, which showed clearly

some regions that could be considered groups, the correlations between technical features and

MSLQ features are not clear enough. The technical features showed inconsistent correlations

with MSLQ features. However, this does not mean the lack of relationships, other methods

can be used to find out how the two kind of features relate to each other. In the following two

chapters of this thesis, machine learning methods will be applied to confirm certain groups,

and to find hidden relationships between technical and MSLQ features, together with the

students performance.

6. Clustering

Based on the correlations described in Chapter 5, different relationships are inferred between

the source code metrics (technical features), and between technical features and MSLQ stra-

tegies. To explore more in detail these relationships, a hierarchical clustering using the Ward

method was applied to: the technical features to all students, and technical and MSLQ fea-

tures to the students grouped by semesters. The hierarchical clustering was chosen due to it

is easier to visualize and interpret results than in other methods.

To apply the Ward method, it is needed that the input (I) has a positive number, thus, the

formula 6-1 was used, where C is the correlation matrix.

I = 1− |C| (6-1)

With the obtained input, the hierarchical clustering with Ward method was applied and the

resulting hierarchical clusters are presented and discussed in this chapter.

6.1. Hierarchical clustering of technical features

In the Chapter 5, it was inferred the existence of groups of source code metrics, due to

the high correlation and low p-value between some of the metrics. Figure 6-1 shows the

hierarchical clustering of technical features by means of a dendogram, note the numbers in

the leaves corresponds to the same numbers in Table 3-1.

First, three Halstead metrics appear on the left of the figure together: difficulty, effort, and

time to understand/implement. The other two Halstead metrics (volume and bugs delivered)

seem to be far, but a closer look reveals that Halstead volume is closer (in terms of similitu-

de) to the first Halstead metrics than, for instance, the average amount of “if” clauses per

method.

Another group that was not evident in the correlation analysis corresponds to the Dom-

Judge information. Metrics like amount of correct files, no-output, runtime errors, files with

compilation errors, and files which hit time-limit are very close. Only Total amount of files

60 6 Clustering

24

25

26

9

19

8

10

13

21

12

14

16

11

15

27

3

2

1

5

22

4

7

20

23

0

18

6

17

0 1 2 3 4 5 6
distance

H
ie
ra
rch

ica
l C

lu
ste

rin
g
 D
e
n
d
ro
g
ra
m

F
ig
u
re

6
-1

.:
H

ierarch
ical

clu
sterin

g
of

th
e

tech
n
ical

featu
res

from
all

stu
d
ied

sem
esters

u
sin

g
th

e
W

ard
m

eth
o
d
.
T

h
e

n
u
m

b
ers

corresp
on

d
s

to
m

etrics
in

T
ab

le
3
-1

6.2 Hierarchical clustering of MSLQ questions 61

and total amount of correct files are separated from the main DomJudge group.

The complexity related metrics, are distributed in the green and red branches. Still, creating

groups inside such branches. The green branch includes: the “if” related clauses, the average

amount of while clauses per method. In the red branch are close to each other cyclomatic

complexity, and amount of for loops per method. An interesting observation can be made

in that branch, the two mentioned complexity metrics are close to Halstead bugs delivered.

This can be explained because Halstead itself is considered a complexity metric.

Finally, the Length based metrics are also close to each other. These are concentrated in

the red branch of the hierarchy, where at least a complete sub-branch contains only Length

metrics.

6.2. Hierarchical clustering of MSLQ questions

To corroborate the MSLQ features, based on the questions (items in the questionnaire). The

clustering algorithm was also applied over the questions in MSLQ-Colombia. In Figure 6-2,

the clustering results are presented by means of a dendogram. To ease the reading of the

figure, each one of the questions has as suffix matching the MSLQ feature which the question

belongs to.

Notice that the questions of the same MSLQ feature tend to be together or close. For instan-

ce, see the leaves in the red branch. In particular, questions 4, 10, 17, 26, 27 which correspond

to task value are grouped together. Questions 3, 8, 14, 19, 28 which correspond to anxiety

are also together. Many of the other features tend to be together as well. Although some

questions from one kind of feature appear in the middle of a group of other feature, the

groups of features tend to be together or close to each other.

6.3. Bi-clustering of technical and MSLQ features

To facilitate the further analysis of correlations between source code metrics and MSLQ

features, a bi-clustering algorithm was applied to this data. Clustering results are shown in

Figures 6-3 (2015-I), 6-4 (2015-II), and 6-5 (2016-I). The figures presents a bi-clustering

analysis of the correlations by means of a heatmap for each semester. The clustering of

source code metrics is represented at the left side of each heatmap. In addition, a color in

the left indicates the group of metrics each row belongs according to the hierarchical cluste-

ring results. The clusters corresponding to the MSLQ features are presented on top of each

62 6 Clustering

P81_ElaborationIdeas

P24_IntrinsicGoals

P47_CriticalThinking

P58_PeerLearning

P44_Metacognicion

P78_Metacognicion

P64_ElaborationIdeas

P69_ElaborationIdeas

P57_Metacognicion

P61_Metacognicion

P60_EffortRegulation

P76_Metacognicion

P66_CriticalThinking

P51_CriticalThinking

P79_Metacognicion

P54_Metacognicion

P67_ElaborationIdeas

P55_Metacognicion

P56_Metacognicion

P62_ElaborationIdeas

P35_TimeToStudy

P65_TimeToStudy

P2_ControlOfLearningBeliefs

P73_TimeToStudy

P80_TimeToStudy

P48_EffortRegulation

P74_EffortRegulation

P40_PeerLearning

P45_PeerLearning

P50_PeerLearning

P68_PeerLearning

P34_PeerLearning

P75_PeerLearning

P43_TimeToStudy

P52_TimeToStudy

P70_TimeToStudy

P77_TimeToStudy

P71_CriticalThinking

P49_OrganizationIdeas

P63_OrganizationIdeas

P42_OrganizationIdeas

P46_Rehearsal

P59_Rehearsal

P72_Rehearsal

P32_OrganizationIdeas

P39_Rehearsal

P30_ExtrinsicGoals

P7_ExtrinsicGoals

P13_ExtrinsicGoals

P11_ExtrinsicGoals

P14_Anxiety

P19_Anxiety

P3_Anxiety

P8_Anxiety

P28_Anxiety

P20_SelfEfficacyPerformance

P23_TaskValue

P21_SelfEfficacyPerformance

P22_IntrinsicGoals

P4_TaskValue

P10_TaskValue

P27_TaskValue

P17_TaskValue

P26_TaskValue

P9_ControlOfLearningBeliefs

P18_ControlOfLearningBeliefs

P25_ControlOfLearningBeliefs

P12_SelfEfficacyLearning

P15_SelfEfficacyLearning

P41_Metacognicion

P1_IntrinsicGoals

P16_IntrinsicGoals

P29_SelfEfficacyLearning

P5_SelfEfficacyPerformance

P6_SelfEfficacyLearning

P31_SelfEfficacyPerformance

P37_EffortRegulation

P53_ElaborationIdeas

P33_Metacognicion

P36_Metacognicion

P38_CriticalThinking

0 2 4 6 8

1
0

distance
H
ie
ra
rch

ica
l C

lu
ste

rin
g
 D
e
n
d
ro
g
ra
m

F
ig
u
re

6
-2

.:
H

ierarch
ical

clu
sterin

g
of

th
e

M
S
L

Q
featu

res
from

all
stu

d
ied

sem
esters

u
sin

g
th

e
W

ard
m

eth
o
d

6.3 Bi-clustering of technical and MSLQ features 63

heatmap. Furthermore, the numbers on the vertical axis represent the source code metrics

(right side of the figure), which correspond to the numbers of the metrics in Table 3-1. The

horizontal axis represents the MSLQ features (bottom of the figure), which are represented

by the corresponding numbers in Tables 2-2 and 2-3. Finally, the heatmap contains four

highlighted regions of correlations which will be discussed next.

As mentioned before, clustering results show that several source code metrics tend to group

together. For instance, this is the case in four of the Halstead metrics. Metrics related to

length (like the average number of lines of code, and average methods by class, among others)

are close to each other as well (see the gray color at the left side of heatmap in Figures 6-3,

6-4 and 6-5). Therefore, the source code metrics were grouped as follows:

Length metrics (Gray): the amount of files, average source lines of code, the average

amount of classes by file, average lines by class, averages attributes by class, average

methods by class, average static attributes, and average static methods.

Complexity metrics (Purple): average amount of for and while loops, average amount

of if and if-else clauses, cyclomatic complexity, average identifier length, average class

name length, and method parameter average.

DomJudge result (Orange): average number of correct, wrong, time-limit, compiler

error, execution error, and no-output solutions.

Halstead (Green): bugs delivered, difficulty, effort, time to understand or implement,

and volume.

The correlation study is done over the source code metrics (technical features) and the MSLQ

features. Results are shown by means of the (previously mentioned) heatmap in Figure 6-3,

corresponding to semester 2015-I. Positive and negative correlations are represented in blue

and red colors, respectively. The darker the color is, the correlation is closer to 1,0 (dark

blue) or −1,0 (dark red). In addition, it is worth noting that regions of interest are high-

lighted using colors in the heatmap seen in Figure 6-3, which corresponds to the main areas

which will be discussed below (black at left, green on top, red in the middle, and orange the

remaining one).

The black rectangle covers an area which contains mainly Length metrics, which corresponds

to gray color on the left side. It also shows a positive correlation between these metrics and

three self-regulation items: Control of learning beliefs (3), Study environment (15), and Or-

ganization of ideas (17). This may suggest that a student with source code characterized

by high values in length-related metrics may believe that a positive outcome in the course

depends of his/her own effort. Also, it could suggest a good management in the use of the

64 6 Clustering

15 3 17 14 9 12 2 4 5 0 6 16 10 7 11 8 1 13

17
16

12
13

4
0

3
1

6
5

22
15

21
26

25
24

27
2

19
7

10
8

18
20

11
9

14
23

−0.4

−0.2

0.0

0.2

0.4

Figure 6-3.: Hierarchical bi-clustering between technical and MSLQ features for 2015-I.

Numbers in the Y axis corresponds to metrics in Table 3-1. Numbers in the X

axis corresponds to Tables 2-2 and 2-3. Positive correlations are presented in

blue, negative correlations in red. Groups of metrics are differenciated on the

left: Length (Gray), Complexity (Purple), DomJudge (Orange), and Halstead

(Green).

aforementioned learning strategies.

The green region of interest is mainly composed of negative correlations involving two groups

6.3 Bi-clustering of technical and MSLQ features 65

of metrics (i.e., Complexity and DomJudge). Complexity has a strong negative correlation

with self-efficacy learning (5). This fact may suggest little self-evaluation of the ability to

master the course tasks in students whose code present high values in the metrics related

to Complexity. Furthermore, there are two other motivational features involved, i.e., Task

value (0) and Self-efficacy performance (6). As these features give an indication of the course

importance to the students, this may suggest these students need more motivation during

the semester.

The red highlighted region shows mainly Halstead metrics which are mostly correlated po-

sitively with learning strategies features. Time of study (7), elaboration of ideas (10), effort

regulation (11) and meta-cognition planning (16) have a positive correlation with Halstead

metrics. However, peer learning (8) have a negative correlation with this metric. This is par-

ticularly interesting because it may be indicating that learning with and from peers improve

the value of these metrics, creating simpler code (in Halstead metrics the lower, the better).

Finally, the orange rectangle covers again correlations between metrics in the Length group

and the same MSLQ features than the green region of interest. Unlike the green rectan-

gle, in this case the correlation are mostly positive, particularly in the case of self-efficacy

learning (5). This may mean that length-related metrics indicate that students increase the

value of this kind of metric due to practicing (sending more files/attempts) or being more

explicit/verbose in code (e.g., long and explicative identifiers). This, in particular, should be

further studied to confirm this relationship and also the importance of frequent program-

ming practicing in this kind of courses. In addition, learning strategies features have mostly

a positive correlation, which could indicate a dependency between the use of these learning

methods and the length metrics in the source code.

Moreover, in the Figure 6-4, which shows the heatmap corresponding to semester 2015-II,

three areas or interest are highlighted: black on top, green in the middle, and orange at the

bottom. It is worth noting that during this semester the correlations were not as strong as

in the other semesters. Still, some interesting results can be observed.

The black region contains mainly negative correlations. The strongest correlations corres-

pond to Length metrics with motivational features.

The green region in the heatmap middle, corresponds mainly to DomJudge results and

Complexity metrics, the strongest correlation appears with anxiety (1). Being this positive,

it suggests that the amount of sent files and the higher Complexity values may be an indi-

cator of anxiety in the student.

The orange region contains mostly positive correlations, two particular points are worth to

66 6 Clustering

1 4 10 17 2 3 9 11 16 0 12 13 5 6 8 15 7 14

14
11

9
0

22
2

1
27

24
26

25
19

13
8

4
18

17
6

5
23

16
3

15
10

20
7

21
12

−0.4

−0.2

0.0

0.2

0.4

Figure 6-4.: Hierarchical bi-clustering between technical and MSLQ features for 2015-II.

Numbers in the Y axis corresponds to metrics in Table 3-1. Numbers in the X

axis corresponds to Tables 2-2 and 2-3. Positive correlations are presented in

blue, negative correlations in red. Groups of metrics are differenciated on the

left: Length (Gray), Complexity (Purple), DomJudge (Orange), and Halstead

(Green).

mention in this region. Halstead metrics (corresponding to green color at the left) correlate

positively with organization of ideas (17), and meta-cognition method (9). In addition, the

amount of files has a strong correlation with self-efficacy learning (5), self efficacy performan-

6.3 Bi-clustering of technical and MSLQ features 67

ce (6), and critical thinking (13). In the case of self-efficacy learning in this region, it shows

a positive correlation, even though it is not as strong as in 2015-I. This is an indicator of

the consistent relationship between Length metrics with the mentioned motivational feature.

Finally, it is worth to mention that the metric Average time limit (17) has a strong corre-

lation specially with learning strategies features. This is an indication about how was the

approximation taken during 2015-II by the students to improve their learning strategies.

Figure 6-5 presents the heatmap corresponding to semester 2016-I. Two areas or interest

are highlighted, black on top, green in the middle, and orange at the bottom. During this

semester stronger correlations appear again.

In the black region, Length metrics are the most present group, which correlates positively

with learning strategy features, and negatively with extrinsic goals (2) which is a motivatio-

nal feature. This feature indicates that the students are expecting a reward (or in this case

a good grade). Moreover, the strongest correlation is observed with critical thinking. This

suggests the use of old knowledge to solve the assignments from the course.

DomJudge results are also observable in the black region. Although most of the correlations

with self-regulation features are low, the correlations with meta-cognition monitoring (12)

and critical thinking (14) have higher values, specially average wrong. Again, this correlation

suggest the use of old knowledge to solve the current assignments, and additionally, this may

suggest that the students use the submitted tasks as a method of self-testing.

In the orange region, is mainly composed by Complexity metrics (purple), most of the region

corresponds to negative correlations. Being the only positive when correlated to anxiety. The

strongest correlations between anxiety and Complexity are average of static attributes (12),

average parameters (13), and average static methods (14). This is consistent with the results

observed in 2015-II. The strongest negative correlations is between critical thinking (14) and

Complexity metrics: average amount of while loops (8), average amount of if clauses (9),

cyclomatic complexity (11), and average of static methods (14). This suggests that the use

of old knowledge in the current task reduces code complexity. Additionally, Halstead bugs

delivered also appears with a strong negative correlation. While no other Halstead metric

appear in this region, the appearance of these metrics here is consistent with the hierarchical

clustering seen in Figure 6-1 (2015-I).

The green region is mostly composed by Halstead metrics showing negative correlations.

Control of learning beliefs (3) is the only self-regulated feature with positive correlations,

indicating that students with low Halstead metrics expect a positive outcome. Moreover,

the negative correlations are stronger with respect to intrinsic goals (4) and self-efficacy

68 6 Clustering

2 14 12 9 17 11 7 13 4 5 3 10 16 15 0 6 1 8

27
24

26
25

15
19

8
12

10
11

9
7

23
14

13
20

16
0

5
1

2
4

3
22

21
6

17
18

−0.30

−0.15

0.00

0.15

0.30

Figure 6-5.: Hierarchical bi-clustering between technical and MSLQ features for 2016-I.

Numbers in the Y axis corresponds to metrics in Table 3-1. Numbers in the X

axis corresponds to Tables 2-2 and 2-3. Positive correlations are presented in

blue, negative correlations in red. Groups of metrics are differenciated on the

left: Length (Gray), Complexity (Purple), DomJudge (Orange), and Halstead

(Green).

learning (5), suggesting that students with low Halstead values like the subject and self-

evaluate themselves constantly to improve. Furthermore, this region shows a better use of

some learning strategies for those students with lower Halstead metrics in their source codes.

6.4 Correlations of groups of source code metrics, motivational learning strategies, and
students performance 69

6.4. Correlations of groups of source code metrics,

motivational learning strategies, and students

performance

Using the groups obtained for the source code metrics, the correlation coefficients were again

calculated between these technical groups (source code metrics) and MSLQ features, inclu-

ding also students performance (i.e., final grade). Results are presented in Table 6-1. The

first column includes the number of the MSLQ feature (see Tables 2-2 and 2-3), and also

the final grade. To focus only on statistically significant results, presented correlations co-

rrespond only to those coefficients with a p-value ≤ 0,1. Correlations with an asterisk (*)

in the Table corresponds more significant results where the p-value is ≤ 0,05. In this way,

features and semesters without any significant correlation were removed from the Table.

Table 6-1.: Correlation coefficients between MSLQ features (and students

performance−FG) and groups of technical source code metrics
Length Compl. DomJudge results Halstead

MSLQ 2015-I 2015-II 2016-I 2016-I 2015-I 2015-II 2016-I 2015-I 2015-II 2016-I

2 −0,22

3 −0,27* −0,33

4 0,23* −0,19

5 0,40*

7 0,33 0,32

8 0,30 −0,45* 0,27

9 −0,21

10 0,32

11 0,30 0,17 0,33

12 −0,28

13 0,18

14 0,23* −0,22* −0,19

15 0,53*

17 −0,19 −0,32 0,38*

Final

Grade

0,62* 0,44* −0,30*

Correlations with an asterisk (*) means a p-value ≤ 0,05

As it can be seen in Table 6-1, source code metrics related to length are highly correlated

with MSLQ features and student performance in the course. In particular, effort regulation

(11) and final grade (FG) show a positive correlation with the same tendency in two se-

mesters (2015-I and 2016-I). These results suggest that length metrics have a correlation

70 6 Clustering

with the students’ performance in the class, which could be considered as a indicator to be

monitored during the development of programming courses. Moreover, this kind of metrics

has the biggest number of significant correlations with motivational and learning strategies,

many of them with p-value ≤ 0,05 (marked with *).

Moreover, Halstead metrics have during two semesters a significant correlation in peer lear-

ning (8) and organization of ideas (17). It can be seen that Halstead metrics have only one

correlation with motivational features (4, intrinsic goals) and the rest are with learning stra-

tegies. This suggests that students exposing source code with high values in Halstead metrics

(often associate to low quality code) may need to develop better learning strategies. This is

consistent with the results observed in the Figure 6-3, which suggests that students whose

source codes present high Halstead metrics need to improve their use of different learning

strategies; for example, the organization of ideas.

The complexity metrics have a negative correlation with three learning strategies: meta-

cognition method (9), critical thinking (14), and organization of ideas (17). As a high com-

plexity metric is a bad indicator in software quality, this correlation may be understood as

an indicator of which learning strategies a student needs to improve. Therefore, this could be

a way to identify students which may need additional help. Furthermore, such improvements

may lead to improving Halstead metrics which are also correlated with organization of ideas

(17).

The DomJudge results present correlations with control of learning beliefs (3) in 2015-I,

peer learning (8) in 2015-II, and intrinsic goals (4) in 2016-I, suggesting mainly a relations-

hip with motivational features. It is consistent with the data shown in Table 4-2, where

control of learning beliefs obtained the biggest average in 2015-I, and the maximum peer

learning result was obtained in 2015-II. Intrinsic goals, however, did not obtain the biggest

average in 2016-I, but it might be caused due to the standard deviation, as in that semester

it was higher than the others due to the large number of students in that semester.

Finally, students performance, i.e., final grade shows correlations with length and Halstead

metrics. These correlations have a p-value ≤ 0,05, which is a strong indicator of the im-

portance of those source code metrics in the students performance. As the correlation with

Halstead metrics is negative, and the correlations with length metrics are positive, this could

mean that good performing students write code with some of the following characteristics:

easily readable, which causes a low value in Halstead metrics; with meaningful identifier na-

mes, which are more descriptive, causing a bigger value in length-related metrics. Therefore,

measuring these metrics during the course could indicate which students may have problems

to approve and may need additional assistance, which could be given based on other metrics.

For instance, checking if the source codes have a high complexity, which suggests problems

6.5 Spectral bi-clustering of technical and MSLQ features 71

in some of the learning strategies.

6.5. Spectral bi-clustering of technical and MSLQ

features

To support the bi-clusters found previously, spectral bi-clustering was used. This is a par-

titional method. Contrary to the previous bi-clustering, which used the consolidated self-

regulated features, here all the MSLQ items are used.

The spectral bi-clustering method needs the selection of the number of clusters for both set

of features (metrics and self-regulated features). To calculate such numbers, the silhouette

score was obtained based on the results of a K-Means algorithm with K ∈ [2, 20), indepen-

dently for technical features and MSLQ features. The input data used in this algorithm are

the absolute values of the correlations, because a high correlation value are those close to

1 or -1. The silhouette value must be in a range of [−1, 1]. Values closer to 1 indicate a

good match among the elements of the cluster. Therefore, K, is selected based on the higher

silhouette value.

Figure 6-6 shows the silhouette measure for source code metrics. The horizontal axis repre-

sents the number of clusters, and the vertical axis represent the silhouette value. According

to the figure, the number of clusters over source code metrics is 5.

2 4 6 8 10 12 14 16 18 20
0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

Figure 6-6.: Silhouette measures of source code metrics

72 6 Clustering

In the Figure 6-7, is shown the silhouette measure for MSLQ features. According to the

figure, the best number of clusters over the MSLQ features is 2, which has the higher value.

2 4 6 8 10 12 14 16 18 20
0.10

0.15

0.20

0.25

0.30

0.35

Figure 6-7.: Silhouette measures from self-regulated features

Once the number of clusters have been chosen, the spectral bi-clustering algorithm is ap-

plied. In the Figure 6-8 at top is shown the original data, at the bottom is the data after

the bi-clustering. The horizontal axis represents the MSLQ questions, and the vertical axis

includes the source code metrics. According to the number of cluster chosen, there are 10

clusters. To choose the most important clusters, all the values from each cluster are added,

the results are presented in Table 6-2. This indicates that the most important clusters are

number 4, 5 and 1 (in descendant order).

It was found that the following source code metrics were present in the clusters 4 and 5 (top

2):

Average while loops per method

Average correct files

Average identifier length

Cyclomatic complexity

Average of static attributes

Average of static methods

6.5 Spectral bi-clustering of technical and MSLQ features 73

Figure 6-8.: Before and after biclustering, note the grouping in the darker blues at left.

Halstead difficulty

In the cluster 4, 24 questions from MSLQ appear. The most frequent features are: peer

learning and elaboration of ideas, both with four questions each. This is consistent with the

results found in 2015-I were Halstead had a negative correlation with peer learning, and a

positive correlation with elaboration of ideas.

In the cluster 5, 53 question from MSLQ appear. The mos frequent features are: time to

study, task value, and organization of ideas. That is consistent with the results found in

semester 2015-I, where task value and elaboration of ideas have a negative correlation with

complexity metrics.

Another observation concerning the clusters 4 and 5 has to do with the appearance of Com-

74 6 Clustering

Table 6-2.: Result of adding internal cluster values (top 3 values are highlighted in bold)

Cluster Value

0 33.49

1 38.90

2 11.50

3 21.02

4 50.29

5 41.76

6 13.04

7 17.33

8 7.60

9 24.65

plexity metrics and Halstead difficulty. Such metrics appear in both clusters. As seen in the

analysis of hierarchical bi-clusters, those metrics are negatively correlated to most learning

strategies and with task value in the motivational features. This could support the impor-

tance of the mentioned metrics in the better use of learning strategies. In addition, results

suggest that most self-regulated features are highly influenced by the metrics found in both

clusters.

Moreover, in the cluster 1, which is the third in importance, the source code metrics found

were:

Average class lines

Average amount of if clauses

Average of wrong files

Average of execution error files

Average no-error files

Amount of correct files

Halstead effort

Halstead time to understand/implement.

In the cluster 1, 54 questions from MSLQ appear. The most frequent features are: time to

study, task value and anxiety. The source code metrics found are related to Length metrics

(average class lines, amount of correct files) which are related with better performance. Ac-

cording to the results in Figure 6-3, a strong correlation exists with at least 10 self-regulated

6.5 Spectral bi-clustering of technical and MSLQ features 75

features. DomJudge metrics also appear in this clusters. It is interesting to see the rela-

tionship with questions related to task value (5 questions from 6 in the MSLQ). As seen

before, task value has positive correlations with Length metrics and negative correlations

with Complexity and close to zero with Halstead.

7. Predictive model

In this chapter, two predictive models will be presented. Such models are proposed based on

the results found in the previous chapters, where the existence of groups of metrics and self-

regulated features were found. Such predictive models apply machine learning algorithms to

find out: if a student will approve the course based on the students’ source code metrics and

the answers of the MSLQ. It is worth to mention that the input values were normalized.

7.1. Classification model

For classification, a support vector machine (SVM) was used. The experiment was performed

using a ten-fold cross validation, which consists in dividing the data set in ten subsets, nine

of them are used to train the model and the remaining one is used to test. In the SVM, a

RBF (Radial basis function) kernel was used to obtain the best results. The cross validation

was applied to all the variations of parameters such as: penalty (C) and gamma (γ) within

certain range. C ranges between 2−2 and 250, and gamma was from 2−4 to 26. For each one

of these validations, the confusion matrix was calculated together with the error measures

(i.e., accuracy, precision, and recall).

The target values were defined as approved (1) and not approved (0). As the amount of drop

out students were too low, they were not considered. The features vector is comprised of the

source code metrics and MSLQ data for each student.

The behavior of precision with different values of γ in the best C value during the cross

validation is presented in the figure 7-1. The horizontal axis is in a logarithmic base 2 scale.

As can be observed, the best precision is γ = 2−3 = 0,125, which means a precision of 0,765.

After this value, precision begins to decrease, but it precision stays close to 0,725.

Thus, the cross validation indicates that the best values were C = 21 = 2 and γ = 2−3 =

0,125. Table 7-1 shows the confusion matrix obtained given the mentioned values. It can

be seen that most of the students approved, and because of that, it was easier and more

accurate to classify correctly a student who approve the course.

7.1 Classification model 77

2-4 2-3 2-2 2-1 20 21 22 23 24 25

γ

0.725

0.730

0.735

0.740

0.745

0.750

0.755

0.760

0.765

P
re
ci
si
o
n

Figure 7-1.: Gamma value (γ) versus Precision in best C value during cross validation

Table 7-1.: Confusion matrix classification model

Predicted class

Not Approved Approved

Actual class
Not approved 13 28

Approved 16 93

Based on the confusion matrix, three error measures were obtained. These are presented in

Table 7-2. The accuracy, which indicates the amount of correctly classified instances over

the total amount, was 0,70. Moreover, the precision, which indicates how many elements

are correctly classified over all the elements which were classified into a class, a value of 1,0

indicates that all elements were correctly classified. The resulting value in this for precision

was 0,76. Finally, the recall is the sensitivity of the model. The value obtained in this case

was 0,85.

Being the precision and recall close to each other, and at the same time, being close to 1,0;

this indicates that the model seems to have obtained good performance in the cross valida-

tion. However, checking the details in the confusion matrix, most of the students who did

78 7 Predictive model

Table 7-2.: Error measures for classification model

Measure Value

Accuracy 0,70

Precision 0,76

Recall 0,85

not approve were misclassified (28 students). To explain this, the approval rate has to be

reviewed, in Table 4-1, can be observed that from 172 students in the course during the three

semesters, 71 % approved, and 29 % did not. In addition, in Section 4.2 it was mentioned that

the practical component of the course represented the 50 % of the final grade, this means,

that in this case the model only have half of the information required to predict the approval

of a student. Still, the results of the confusion matrix suggest that the practical component

is very important to approve the course, even if it is not determinant to get an approval grade.

7.2. Regression model

For regression, a support vector machine (SVM) was used. The experiment was done using

a ten-fold cross validation, using a RFB kernel. In regression, it has an additional parameter

ε, which specifies a distance where no penalty is given to a predicted point. In the cross

validation, the parameters C and γ vary in the same way than for the classification model.

The ε value varies in the range (2−200, 2−1).

The behavior of Mean Square Error (MSE) with different values of γ during the cross vali-

dation is presented in the figure 7-2. It can be observed the best MSE is with C = 2−2 = 4,

and from this value, it begins to increase up to γ = 2 and remains constant.

As result of the cross validation, the best parameters were C = 2−2 = 0,25, γ = 2−2 = 0,25

and ε = 2−10 = 0,00097 with a MSE of 0,036184 and standard deviation 0,01, which, in

terms of final grade in the course, represents a MSE of 0,18 and a standard deviation of 0,05.

According to the results, regression results are better at prediction than classification. The

MSE and standard deviation values are enough to cross the approval boundary. There were

39 students with final grade between 2,8 and 3,2. This is a close to the 44 misclassified.

The results obtained in both models suggest that features used in the prediction models

effectively have discriminant values. In addition, it supports the results obtained in Chap-

ters 5 and 6, where high correlations were found between source code metric groups and

7.2 Regression model 79

2-8 2-7 2-6 2-5 2-4 2-3 2-2 2-1 20 21 22 23

γ

0.036

0.037

0.038

0.039

0.040

0.041

0.042

0.043

M
S
E

Figure 7-2.: γ values versus Mean Square Error (MSE) during cross validation in the best

C value during cross validation

self-regulated features. The fact that the practical assignments only represent 50 % of the

final grade could have affected the classification results. However, even with this impact, the

results show that the source code metrics and the self-regulated features are useful features

to predict student performance.

8. Conclusions and Future Work

8.1. General conclusions

Previous studies have focused in finding correlations between the self-regulated learning fea-

tures and students performance in computer programming course. Although correlations were

found in these studies, they provide few clues to give meaningful feedback to students on how

to improve in their programming assignments in order to get better final grades. This thesis

provides an initial evidence that source code metrics in computer programming courses not

only have correlations with the students performance but also with their self-regulated lear-

ning characteristics. This suggests that source code metrics could be a source of information

about the students motivation and their adequate use of learning strategies. However, furt-

her investigations are necessary to explain the cause-effect relationships of these correlations.

The general conclusions of this work can be summarized as follows:

1. There is evidence indicating that some source code metrics in a computer programming

course are correlated with student performance, i.e., length-based metrics and Halstead.

2. Results suggest that source code metrics could be a source of information about stu-

dents self-regulated characteristics, including some motivational features and the use

of learning strategies.

3. The correlations found lead to identify groups of source code metrics which in turn

have relationship with self-regulated characteristics and performance in the course.

4. Prediction through regression, obtain a low MSE. This indicates that applying regres-

sion over source code metrics and self-regulated features can make a close prediction

to the final grade.

8.2. Contributions

In the light of the findings of this study, it is possible to understand better students sour-

ce code as an artifact that can be used to monitor several characteristics related to self-

regulated learning, course performance, and in general, their learning process. In this way,

more research in the area is required to verify if these relationships could give to computing

8.3 Publications 81

educators new ways to identify and help those students with problems. In the future, the

proposed strategy could be used as a base to build a tool which enables the teacher to give

feedback to specific students early in the academic period.

The main contributions of this work can be summarized as follows:

1. A software tool for analyzing source code produced by students that supports the

correlation analysis among coding style, students motivation, students use of learning

strategies, and student performance in a computer programming course.

2. A better understanding of the students’ learning process in computer programming

subjects through the source code technical aspects, motivation and use of learning

strategies.

3. The foundations to additional research on education in computer programming courses

based on source code metrics and self-regulation characteristics.

4. The foundation to enable the teacher to give and receive feedback, allowing to focus

on students with problems in the learning process by detecting possible problems in

early stages of a computer programming course.

8.3. Publications

As a result of this thesis, the following papers have been published:

1. Hugo Castellanos. Personality Recognition Applying Machine Learning Techniques

on Source Code Metrics. Working notes of FIRE 2016 - Forum for Information Retrieval

Evaluation/CEUR Workshop proceedings. Kolkata, India. Dec 7-10 2016.

2. Hugo Castellanos, Felipe Restrepo-Calle, Fabio A. González, Jhon Jairo Ramı́rez

Echeverry. Understanding the relationships between self-regulated learning and students

source code in a computer programming course. Frontiers In Education 2017. Indiana-

polis, USA. October 18-21 2017 (accepted).

8.4. Future work

Several interesting correlations and groups were found when the clustering algorithms were

applied. However, additional studies are needed to confirm the behavior of the self-regulated

characteristics bases on the source code metrics extracted. Specially, those which indicates

problems in the students’ motivation and use of learning strategies.

82 8 Conclusions and Future Work

As future work, the source code metrics considered in this work can be extended to other

kinds. Due to the nature of the programming course studied in this paper, some metrics

could not be applied. However, in more advanced courses, other metrics related to object-

oriented programming could be considered, such as: coupling, cohesion, reuse, testing, etc.

In addition, source code metrics related to readability will be considered as well.

Finally, more research is needed to verify the ways a teacher can identify students with

problems based on the relationships found. Identifying students with problems may be not

enough, additional research in automatic feedback based on the results of this thesis, could

help all students. This could further improve the performance of the students in computer

programming courses in general.

Bibliography

[Ala-Mutka et al., 2004] Ala-Mutka, K., Uimonen, T., and Jarvinen, H.-M. (2004). Sup-

porting students in c++ programming courses with automatic program style assessment.

Journal of Information Technology Education, 3(1):245–262.

[Alhazbi, 2014] Alhazbi, S. (2014). Using e-journaling to improve self-regulated learning in

introductory computer programming course. In Global Engineering Education Conference

(EDUCON), 2014 IEEE, pages 352–356. IEEE.

[Ambrosio et al., 2012] Ambrosio, A. P., Almeida, L., Franco, A., Martins, S., and Georges,

F. (2012). Assessment of self-regulated attitudes and behaviors of introductory program-

ming students. In Frontiers in Education Conference (FIE), 2012, pages 1–6. IEEE.

[Amelung et al., 2008] Amelung, M., Forbrig, P., and Rösner, D. (2008). Towards generic

and flexible web services for e-assessment. In ACM SIGCSE Bulletin, volume 40, pages

219–224. ACM.

[Bakker, 2014] Bakker, T. (2014). Plagiarism Detection in Source Code. PhD thesis, Uni-

versiteit Leiden.

[Boekaerts et al., 2005] Boekaerts, M., Maes, S., and Karoly, P. (2005). Self-Regulation

Across Domains of Applied Psychology: Is there an Emerging Consensus? Applied Psy-

chology, 54(2):149–154.

[Brennan et al., 2012] Brennan, M., Afroz, S., and Greenstadt, R. (2012). Adversarial sty-

lometry. ACM Transactions on Information and System Security, 15(3):1–22.

[Brusilovsky and Sosnovsky, 2005] Brusilovsky, P. and Sosnovsky, S. (2005). Individualized

exercises for self-assessment of programming knowledge: An evaluation of quizpack. Jour-

nal on Educational Resources in Computing (JERIC), 5(3):6.

[Burrows, 2010] Burrows, S. D. (2010). Source Code Authorship Attribution. PhD thesis,

RMIT University.

[Caliskan-Islam et al., 2014] Caliskan-Islam, A., Harang, R., Liu, A., Narayanan, A., Voss,

C., Yamaguchi, F., and Greenstadt, R. (2014). De-anonymizing Programmers via Code

Stylometry.

84 Bibliography

[Cheang et al., 2003] Cheang, B., Kurnia, A., Lim, A., and Oon, W.-C. (2003). On auto-

mated grading of programming assignments in an academic institution. Computers &

Education, 41(2):121–131.

[Cheng and Keung, 2011] Cheng, C. and Keung, E. (2011). The role of self-regulated lear-

ning in enhancing learning performance.

[de Haan and Schils, 1993] de Haan, P. and Schils, E. (1993). The qsum plot exposed. In

Proceedings of the 14th ICAME Conference.

[De Lucia et al., 2011] De Lucia, A., Di Penta, M., and Oliveto, R. (2011). Improving source

code lexicon via traceability and information retrieval. IEEE Transactions on Software

Engineering, 37(2):205–227.

[DiFrancesca et al., 2016] DiFrancesca, D., Nietfeld, J. L., and Cao, L. (2016). A comparison

of high and low achieving students on self-regulated learning variables. Learning and

Individual Differences, 45:228–236.

[Elenbogen and Seliya, 2008] Elenbogen, B. S. and Seliya, N. (2008). Detecting Outsourced

Student Programming Assignments. Journal of Computing Sciences in Colleges, 23(3):50–

57.

[Frantzeskou et al., 2008] Frantzeskou, G., MacDonell, S., Stamatatos, E., and Gritzalis, S.

(2008). Examining the significance of high-level programming features in source code

author classification. Journal of Systems and Software, 81(3):447–460.

[Frantzeskou et al., 2007] Frantzeskou, G., Stamatatos, E., Gritzalis, S., Chaski, C. E., and

Howald, B. S. (2007). Identifying Authorship by Byte-Level N-Grams: The Source Code

Author Profile (SCAP) Method. International Journal of Digital Evidence Spring, 6(1).

[Frantzeskou et al., 2006] Frantzeskou, G., Stamatatos, E., Gritzalis, S., and Katsikas, S.

(2006). Source code author identification based on N-gram author profiles. IFIP Interna-

tional Federation for Information Processing.

[Genkin and Lewis, 2005] Genkin, A. and Lewis, D. D. (2005). Author Identification on the

Large Scale. In Proc. of the Meeting of the Classification Society of North America.

[Halstead, 1977] Halstead, M. H. (1977). Elements of Software Science (Operating and Pro-

gramming Systems Series). Elsevier Science Inc., New York, NY, USA.

[Hardcastle, 1993] Hardcastle, R. (1993). Forensic linguistics: An assessment of the cusum

method for the determination of authorship. Journal of the Forensic Science Society,

33(2):95–106.

Bibliography 85

[Hayes and Offutt, 2010] Hayes, J. H. and Offutt, J. (2010). Recognizing authors: An exa-

mination of the consistent programmer hypothesis. Software Testing Verification and

Reliability, 20(4):329–356.

[Holmes and Tweedie, 1995] Holmes, D. I. and Tweedie, F. J. (1995). Forensic Stylometry: A

Review of the {CUSUM} Controversy. Revue Informatique et Statistique dans les Science

Humaines, pages 19–47.

[Ihantola et al., 2010] Ihantola, P., Ahoniemi, T., Karavirta, V., and Seppälä, O. (2010).

Review of recent systems for automatic assessment of programming assignments. In Pro-

ceedings of the 10th Koli Calling International Conference on Computing Education Re-

search, pages 86–93. ACM.

[Joshi and Argiddi, 2013] Joshi, R. R. and Argiddi, R. V. (2013). Author Identification :

An Approach Based on Style Feature Metrics of Software Source Codes. 4(4):564–568.

[Krsul and Spafford, 1995] Krsul, I. and Spafford, E. H. (1995). Authorship Analysis : Iden-

tifying The Author of a Program . 2 Statement of the Problem . 1 Introduction 4 Survey

of Related Work. In 8th National Information Systems Security Conference.

[Kumar Singh and Manimannan, 2013] Kumar Singh, A. and Manimannan, G. (2013). Li-

terary Analysis using CUSUM Technique on Bharathiar Writings. IOSR Journal of Mat-

hematics, 8(4):42–50.

[Kuric and Bieliková, 2014] Kuric, E. and Bieliková, M. (2014). Estimation of Student’s

Programming Expertise. In Proceedings of the 8th ACM/IEEE International Symposium

on Empirical Software Engineering and Measurement, number 1, page 35. ACM.

[Layton et al., 2013] Layton, R., Watters, P., and Dazeley, R. (2013). Local n-grams for

author identification: Notebook for PAN at CLEF 2013. In CEUR Workshop Proceedings,

volume 1179.

[Malhotra, 2015] Malhotra, R. (2015). Empirical Research in Software Engineering: Con-

cepts, Analysis, and Applications. CRC Press.

[Malmi et al., 2005] Malmi, L., Karavirta, V., Korhonen, A., and Nikander, J. (2005). Ex-

periences on automatically assessed algorithm simulation exercises with different resub-

mission policies. Journal on Educational Resources in Computing (JERIC), 5(3):7.

[Manso-Vázquez and Llamas-Nistal, 2015] Manso-Vázquez, M. and Llamas-Nistal, M.

(2015). A monitoring system to ease self-regulated learning processes. IEEE Revista

Iberoamericana de Tecnologias del Aprendizaje, 10(2):52–59.

[McCabe, 1976] McCabe, T. J. (1976). A complexity measure. IEEE Transactions on soft-

ware Engineering, (4):308–320.

86 Bibliography

[McKeachie, 1986] McKeachie, W. J. (1986). Teaching and Learning in the College Class-

room. A Review of the Research Literature (1986) and November 1987 Supplement. Na-

tional Center for Research to Improve Postseconotoxy Teaching and Learning.

[Mckemmish, 1999] Mckemmish, R. (1999). What is Forensic Computing? Australian Insti-

tute of Criminology., (118).

[Mosteller and Wallace, 1963] Mosteller, F. and Wallace, D. (1963). mosteller.pdf. Journal

of the American Statistical Association, 58(302):275–309.

[Murphy, 2012] Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT

press.

[Nelson et al., 2015] Nelson, K. G., Shell, D. F., Husman, J., Fishman, E. J., and Soh, L.-K.

(2015). Motivational and self-regulated learning profiles of students taking a foundational

engineering course. Journal of Engineering Education, 104(1):74–100.

[OCS, 2013] OCS (2013). Science, technology, engineering and mathematics in the national

interest: A strategic approach.

[Ortiz et al., 2015] Ortiz, O., Alcover, P. M., Sánchez, F., Pastor, J. Á., and Herrero, R.

(2015). M-learning tools: The development of programming skills in engineering degrees.

IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, 10(3):86–91.

[Parr, 2013] Parr, T. (2013). The definitive ANTLR 4 reference. Pragmatic Bookshelf.

[Pears et al., 2007] Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen,

J., Devlin, M., and Paterson, J. (2007). A survey of literature on the teaching of intro-

ductory programming. SIGCSE Bulletin, 39(4):204–223.

[Pieterse, 2013] Pieterse, V. (2013). Automated assessment of programming assignments.

In Proceedings of the 3rd Computer Science Education Research Conference on Computer

Science Education Research, pages 45–56. Open Universiteit, Heerlen.

[Pintrich, 1999] Pintrich, P. R. (1999). The role of motivation in promoting and sustaining

self-regulated learning. International Journal of Educational Research, 31(6):459–470.

[Pintrich et al., 1991] Pintrich, P. R., Smith, D. A. F., Garcia, T., and McKeachie, W. J.

(1991). A Manual for the Use of the Learning Questionnaire Motivated Strategies for

(MSLQ). Mediterranean Journal of Social Sciences, 6(1):156–164.

[Radenski, 2008] Radenski, A. (2008). Digital cs1 study pack based on moodle and python.

In ACM SIGCSE Bulletin, volume 40, pages 325–325. ACM.

Bibliography 87

[Ramı́rez-Echeverry et al., 2016] Ramı́rez-Echeverry, J. J., Garćıa-Carrillo, A., and Olarte

Dussán, F. A. (2016). Adaptation and Validation of the Motivated Strategies for Learning

Questionnaire -MSLQ- in Engineering Students in Colombia. International Journal of

Engineering Education, 32-4.

[Ramı́rez Echeverry et al., 2014] Ramı́rez Echeverry, J. J., Olarte Dussan, F. A., and Garćıa

Carrillo, A. (2014). Estrategias de aprendizaje usadas por estudiantes de ingenieŕıa eléctri-

ca e ingenieŕıa electrónica de primer semestre. Educación en ingenieŕıa, 9(18):216–227.

[Ramyaa et al., 2004] Ramyaa, C., Rasheed, K., and He, C. (2004). Using Machine Learning

Techniques for Stylometry. Conference on Machine Learning, (Proceedings of Internatio-

nal Conference on Machine Learning).

[Robins et al., 2003] Robins, A., Rountree, J., and Rountree, N. (2003). Learning and tea-

ching programming: A review and discussion. Computer Science Education, 13(2):137–172.

[Rosenblum et al., 2011] Rosenblum, N., Zhu, X., and Miller, B. P. (2011). Who wrote

this code? Identifying the authors of program binaries. In Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics).

[Rößling et al., 2008] Rößling, G., Joy, M., Moreno, A., Radenski, A., Malmi, L., Kerren, A.,

Naps, T., Ross, R. J., Clancy, M., Korhonen, A., et al. (2008). Enhancing learning mana-

gement systems to better support computer science education. ACM SIGCSE Bulletin,

40(4):142–166.

[Rosson et al., 2011] Rosson, M. B., Carroll, J. M., and Sinha, H. (2011). Orientation

of undergraduates toward careers in the computer and information sciences: Gender,

self-efficacy and social support. ACM Transactions on Computing Education (TOCE),

11(3):14.

[Rudman, 2012] Rudman, J. (2012). The State of Non-Traditional Authorship Attribution

Studies - 2012: Some Problems and Solutions. English Studies, 93(3):259–274.

[Sahami and Roach, 2014] Sahami, M. and Roach, S. (2014). Computer science curricula

2013 released. Communications of the ACM, 57(6):5–5.

[Sauvé and Abath Neto, 2008] Sauvé, J. P. and Abath Neto, O. L. (2008). Teaching software

development with atdd and easyaccept. ACM SIGCSE Bulletin, 40(1):542–546.

[Shen et al., 1983] Shen, V. Y., Conte, S. D., and Dunsmore, H. E. (1983). Software science

revisited: A critical analysis of the theory and its empirical support. IEEE Transactions

on Software Engineering, (2):155–165.

88 Bibliography

[Shevertalov et al., 2009] Shevertalov, M., Kothari, J., Stehle, E., and Mancoridis, S. (2009).

On the use of discretized source code metrics for author identification. In Proceedings -

1st International Symposium on Search Based Software Engineering, SSBSE 2009.

[Singh et al., 2013] Singh, R., Gulwani, S., and Solar-Lezama, A. (2013). Automated feed-

back generation for introductory programming assignments. ACM SIGPLAN Notices,

48(6):15–26.

[Stamatatos, 2009] Stamatatos, E. (2009). A survey of modern authorship attribution met-

hods. Journal of the American Society for Information Science and Technology, 60(3):538–

556.

[Weinstein and Mayer, 1983] Weinstein, C. E. and Mayer, R. E. (1983). The teaching of

learning strategies. In Innovation abstracts, volume 5, page n32. ERIC.

[Wisse, 2014] Wisse, W. (2014). Authorship Identification and Verification of JavaScript

Source Code. PhD thesis, Delft University of technology.

[Yukselturk and Bulut, 2007] Yukselturk, E. and Bulut, S. (2007). Predictors for student

success in an online course. Educational Technology & Society, 10(2):71–83.

[Yule, 1925] Yule, G. U. (1925). A Mathematical Theory of Evolution, Based on the Con-

clusions of Dr. J. C. Willis, F.R.S.

[Zimmerman, 1998] Zimmerman, B. J. (1998). Developing self-fulfilling cycles of academic

regulation: An analysis of exemplary instructional models.

A. Correlation tables

In this appendix, the correlation tables mentioned in Chapter 5 are presented. Tables A-1,

A-2 and A-3 correspond to the correlation coefficients of technical features (source code

metrics). The correlation values are in the range [−1,0, 1,0], being 1,0 the maximum correla-

tion value, 0 no correlation at all, and −1,0 the maximum inverse correlation. The values in

bold are those which have a p-value ≤ 0,05, meaning that these correlations have statistical

significance. The numbers on top and at the left of the tables are the same presented in Table

3-1 with the addition of the number 28 which means final grade (students performance).

Moreover, Tables A-4, A-5, and A-6, present the correlation coefficients between technical

features and self-regulated features. In these tables the correlation values have the same ran-

ge mentioned before, and the values in bold have the same meaning as in the previous tables.

The numbers on top of the tables corresponds to technical features (presented in Table 3-1)

with the addition of the number 28 which means final grade. The numbers at the left of the

tables corresponds to self-regulated features, and are the same presented in Tables 2-2 and

2-3.

90 A Correlation tables

T
a
b
le

A
-1

.:
C

orrelation
s

am
on

g
sou

rce
co

d
e

m
etrics

in
2015-I

Metric

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

F
G

0
1
.0
0

0
.3
8

0.15
0
.5
1

0
.6
1

0
.5
7

0.03
-0.21

-0.02
-0.07

-0.01
-0.13

0.20
-0.07

-0.31
-0.23

0.19
0.21

0.09
0
.3
5

0.21
0.22

0
.7
5

-1
.0
0

-0.02
0.05

0.05
-0.20

0
.5
7

1
0
.3
8

1
.0
0

0
.7
9

0
.8
4

0
.5
6

0
.7
8

0
.7
0

-0
.7
2

-0.22
-0
.3
8

-0.08
-0
.6
2

0.23
-0.16

-0
.6
8

0.09
0.06

0.23
0.05

-0.13
-0.12

0
.5
6

0
.4
4

-0
.4
2

0.18
0.23

0.23
0.12

0
.5
7

2
0.15

0
.7
9

1
.0
0

0
.4
9

0
.3
5

0
.5
3

0
.4
7

-0
.6
5

-0.19
-0
.4
2

-0.34
-0
.6
5

-0.10
-0.27

-0
.7
6

-0.21
-0.19

0.19
0.17

-0.02
-0.20

0
.3
5

0.21
-0.15

0
.4
8

0
.5
1

0
.5
1

0
.4
1

0
.3
6

3
0
.5
1

0
.8
4

0
.4
9

1
.0
0

0
.6
4

0
.8
3

0
.6
8

-0
.6
8

-0.26
-0
.3
7

-0.06
-0
.5
5

0
.4
6

-0.31
-0
.5
9

0.11
0.14

0.10
0.05

-0.05
-0.09

0
.6
4

0
.5
0

-0
.4
9

-0.00
0.04

0.04
-0.09

0
.5
6

4
0
.6
1

0
.5
6

0
.3
5

0
.6
4

1
.0
0

0
.6
6

0.30
-0.33

-0.17
-0
.4
0

-0.16
-0
.4
2

0.31
-0.05

-0
.4
3

-0.19
-0.14

0.11
0.27

0.31
-0.06

0.25
0
.5
4

-0
.6
1

0.09
0.14

0.14
-0.05

0
.5
9

5
0
.5
7

0
.7
8

0
.5
3

0
.8
3

0
.6
6

1
.0
0

0
.5
8

-0
.6
9

-0.14
-0.34

-0.07
-0
.5
5

0
.3
6

-0.14
-0
.6
1

0.16
0.13

0.04
0.12

-0.00
-0.03

0
.5
6

0
.5
9

-0
.5
4

0.12
0.18

0.18
0.04

0
.5
3

6
0.03

0
.7
0

0
.4
7

0
.6
8

0.30
0
.5
8

1
.0
0

-0
.6
4

-0.32
-0
.4
7

-0
.3
6

-0
.6
6

0.24
-0
.4
3

-0
.6
5

0.29
-0.10

-0.12
0.13

-0.29
-0.26

0
.7
1

0.24
-0.06

0.19
0.20

0.20
0.20

0.16

7
-0.21

-0
.7
2

-0
.6
5

-0
.6
8

-0.33
-0
.6
9

-0
.6
4

1
.0
0

0.14
0
.5
8

-0.05
0
.7
2

-0.15
0.07

0
.6
4

-0.26
-0.17

-0.09
0.13

-0.04
0.17

-0
.5
6

-0.25
0.21

-0.04
-0.07

-0.07
-0.04

-0.28

8
-0.02

-0.22
-0.19

-0.26
-0.17

-0.14
-0.32

0.14
1
.0
0

0
.4
8

0.21
0
.5
2

0.01
0
.4
0

0.14
-0.03

-0.11
-0.21

0.24
-0.14

-0.08
-0.16

0.05
-0.01

-0.07
-0.06

-0.06
-0.05

-0.06

9
-0.07

-0
.3
8

-0
.4
2

-0
.3
7

-0
.4
0

-0.34
-0
.4
7

0
.5
8

0
.4
8

1
.0
0

0.19
0
.8
7

-0.03
0.18

0
.4
3

0.08
0.03

-0.11
0.05

-0.26
0.26

-0.13
-0.03

0.07
-0.05

-0.03
-0.03

-0.03
-0.10

1
0

-0.01
-0.08

-0.34
-0.06

-0.16
-0.07

-0
.3
6

-0.05
0.21

0.19
1
.0
0

0
.4
3

0.02
0
.4
6

0.26
0.14

0.12
-0.00

-0.23
0.11

0.20
0.01

-0.02
0.01

-0
.5
5

-0
.5
1

-0
.5
1

-0
.4
7

-0.09

1
1

-0.13
-0
.6
2

-0
.6
5

-0
.5
5

-0
.4
2

-0
.5
5

-0
.6
6

0
.7
2

0
.5
2

0
.8
7

0
.4
3

1
.0
0

-0.06
0.33

0
.6
6

0.00
-0.01

-0.14
0.02

-0.15
0.21

-0
.3
6

-0.08
0.14

-0.25
-0.24

-0.24
-0.21

-0.24

1
2

0.20
0.23

-0.10
0
.4
6

0.31
0
.3
6

0.24
-0.15

0.01
-0.03

0.02
-0.06

1
.0
0

-0
.3
6

-0.06
-0.01

0.33
0.09

-0.01
-0.05

0.00
0.33

0.16
-0.20

-0.21
-0.20

-0.20
-0.27

0.15

1
3

-0.07
-0.16

-0.27
-0.31

-0.05
-0.14

-0
.4
3

0.07
0
.4
0

0.18
0
.4
6

0.33
-0
.3
6

1
.0
0

0
.4
5

0.05
0.05

-0.02
-0.08

0.18
0.08

-0
.4
7

-0.17
0.07

-0.23
-0.23

-0.23
-0.16

-0.07

1
4

-0.31
-0
.6
8

-0
.7
6

-0
.5
9

-0
.4
3

-0
.6
1

-0
.6
5

0
.6
4

0.14
0
.4
3

0.26
0
.6
6

-0.06
0
.4
5

1
.0
0

-0.02
0.14

-0.12
-0.15

0.06
0.13

-0
.6
5

-0
.4
0

0
.3
5

-0
.3
4

-0
.3
8

-0
.3
8

-0.25
-0
.3
8

1
5

-0.23
0.09

-0.21
0.11

-0.19
0.16

0.29
-0.26

-0.03
0.08

0.14
0.00

-0.01
0.05

-0.02
1
.0
0

-0.05
-0.33

-0.17
-0
.3
5

-0.16
0.16

0
.3
5

0
.3
6

0.05
0.04

0.04
0.20

0.07

1
6

0.19
0.06

-0.19
0.14

-0.14
0.13

-0.10
-0.17

-0.11
0.03

0.12
-0.01

0.33
0.05

0.14
-0.05

1
.0
0

0
.3
7

-0
.6
7

-0.11
-0.07

-0.01
-0.06

-0.01
-0
.3
6

-0
.3
6

-0
.3
6

-0.32
0.00

1
7

0.21
0.23

0.19
0.10

0.11
0.04

-0.12
-0.09

-0.21
-0.11

-0.00
-0.14

0.09
-0.02

-0.12
-0.33

0
.3
7

1
.0
0

-0
.4
6

0.15
0.04

-0.23
-0.01

-0.21
-0.04

-0.04
-0.04

-0.11
0.13

1
8

0.09
0.05

0.17
0.05

0.27
0.12

0.13
0.13

0.24
0.05

-0.23
0.02

-0.01
-0.08

-0.15
-0.17

-0
.6
7

-0
.4
6

1
.0
0

-0.08
-0.06

0.13
0.04

-0.09
0.27

0.29
0.29

0.24
0.02

1
9

0
.3
5

-0.13
-0.02

-0.05
0.31

-0.00
-0.29

-0.04
-0.14

-0.26
0.11

-0.15
-0.05

0.18
0.06

-0
.3
5

-0.11
0.15

-0.08
1
.0
0

0.28
-0.13

0.04
-0
.5
2

-0.17
-0.18

-0.18
-0.34

0.08

2
0

0.21
-0.12

-0.20
-0.09

-0.06
-0.03

-0.26
0.17

-0.08
0.26

0.20
0.21

0.00
0.08

0.13
-0.16

-0.07
0.04

-0.06
0.28

1
.0
0

-0.06
0.10

-0.21
0.05

0.08
0.08

0.03
0.06

2
1

0.22
0
.5
6

0
.3
5

0
.6
4

0.25
0
.5
6

0
.7
1

-0
.5
6

-0.16
-0.13

0.01
-0
.3
6

0.33
-0
.4
7

-0
.6
5

0.16
-0.01

-0.23
0.13

-0.13
-0.06

1
.0
0

0
.3
8

-0.28
0.09

0.13
0.13

-0.01
0.25

2
2

0
.7
5

0
.4
4

0.21
0
.5
0

0
.5
4

0
.5
9

0.24
-0.25

0.05
-0.03

-0.02
-0.08

0.16
-0.17

-0
.4
0

0
.3
5

-0.06
-0.01

0.04
0.04

0.10
0
.3
8

1
.0
0

-0
.7
0

0.19
0.25

0.25
0.07

0
.7
6

2
3

-1
.0
0

-0
.4
2

-0.15
-0
.4
9

-0
.6
1

-0
.5
4

-0.06
0.21

-0.01
0.07

0.01
0.14

-0.20
0.07

0
.3
5

0
.3
6

-0.01
-0.21

-0.09
-0
.5
2

-0.21
-0.28

-0
.7
0

1
.0
0

0.02
-0.05

-0.05
0.20

-0
.5
7

2
4

-0.02
0.18

0
.4
8

-0.00
0.09

0.12
0.19

-0.04
-0.07

-0.05
-0
.5
5

-0.25
-0.21

-0.23
-0
.3
4

0.05
-0
.3
6

-0.04
0.27

-0.17
0.05

0.09
0.19

0.02
1
.0
0

0
.9
9

0
.9
9

0
.9
5

0.33

2
5

0.05
0.23

0
.5
1

0.04
0.14

0.18
0.20

-0.07
-0.06

-0.03
-0
.5
1

-0.24
-0.20

-0.23
-0
.3
8

0.04
-0
.3
6

-0.04
0.29

-0.18
0.08

0.13
0.25

-0.05
0
.9
9

1
.0
0

1
.0
0

0
.9
5

0
.3
9

2
6

0.05
0.23

0
.5
1

0.04
0.14

0.18
0.20

-0.07
-0.06

-0.03
-0
.5
1

-0.24
-0.20

-0.23
-0
.3
8

0.04
-0
.3
6

-0.04
0.29

-0.18
0.08

0.13
0.25

-0.05
0
.9
9

1
.0
0

1
.0
0

0
.9
5

0
.3
9

2
7

-0.20
0.12

0
.4
1

-0.09
-0.05

0.04
0.20

-0.04
-0.05

-0.03
-0
.4
7

-0.21
-0.27

-0.16
-0.25

0.20
-0.32

-0.11
0.24

-0.34
0.03

-0.01
0.07

0.20
0
.9
5

0
.9
5

0
.9
5

1
.0
0

0.23

2
8

0
.5
7

0
.5
7

0
.3
6

0
.5
6

0
.5
9

0
.5
3

0.16
-0.28

-0.06
-0.10

-0.09
-0.24

0.15
-0.07

-0
.3
8

0.07
0.00

0.13
0.02

0.08
0.06

0.25
0
.7
6

-0
.5
7

0.33
0
.3
9

0
.3
9

0.23
1
.0
0

91

T
a
b
le

A
-2

.:
C

or
re

la
ti

on
s

am
on

g
so

u
rc

e
co

d
e

m
et

ri
cs

in
20

15
-I

I

Metric

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

F
G

0
1
.0
0

0.
24

0.
14

-0
.0

4
0.

19
-0

.0
5

-0
.2

1
0.

06
-0

.0
5

0
.3
7

-0
.0

5
0.

19
0.

01
-0

.1
7

-0
.0

5
-0
.4
7

0
.3
4

0.
12

0.
07

0.
22

0.
19

-0
.1

0
0.

14
-1
.0
0

0.
03

0.
06

0.
06

-0
.0

9
-0

.0
3

1
0.

24
1
.0
0

0
.7
5

0
.6
6

0
.4
7

0
.7
0

0.
03

-0
.2

6
-0

.3
1

-0
.1

9
-0
.6
3

-0
.4
8

0.
04

-0
.0

7
-0
.5
2

-0
.2

6
0
.3
8

-0
.0

0
-0

.0
8

-0
.0

4
0.

23
0.

21
-0

.2
1

-0
.2

4
0.

31
0.

30
0.

30
0.

27
0.

08

2
0.

14
0
.7
5

1
.0
0

0.
29

0
.6
9

0
.4
8

0.
02

-0
.5
1

-0
.0

2
-0
.3
7

-0
.5
5

-0
.6
2

0.
26

0.
08

-0
.4
9

-0
.0

1
0.

06
0.

00
0.

02
-0

.0
6

0.
14

0.
26

-0
.0

3
-0

.1
4

0
.5
5

0
.5
5

0
.5
5

0
.5
0

0.
19

3
-0

.0
4

0
.6
6

0.
29

1
.0
0

-0
.0

1
0
.5
8

0.
23

-0
.0

4
-0
.4
5

-0
.0

4
-0

.3
1

-0
.2

5
0.

01
-0

.2
0

-0
.4
3

-0
.0

4
0
.3
5

0.
09

-0
.2

0
-0

.1
4

0.
13

0.
31

-0
.0

2
0.

04
0.

06
0.

05
0.

05
0.

06
0.

16

4
0.

19
0
.4
7

0
.6
9

-0
.0

1
1
.0
0

0.
32

0.
07

-0
.3
6

0.
10

-0
.3
7

-0
.3

1
-0
.4
9

0
.3
4

0.
12

-0
.3
5

-0
.1

3
0.

07
-0

.0
6

0.
17

0.
07

0.
01

-0
.0

2
-0

.0
7

-0
.1

9
0.

30
0.

31
0.

31
0.

27
0.

01

5
-0

.0
5

0
.7
0

0
.4
8

0
.5
8

0.
32

1
.0
0

0.
29

-0
.2

6
-0
.3
6

-0
.4
7

-0
.3
6

-0
.6
0

-0
.0

3
-0

.2
7

-0
.7
3

-0
.2

3
0.

26
-0

.1
5

0.
17

0.
05

0.
17

0.
18

-0
.2

9
0.

05
0.

22
0.

14
0.

14
0.

22
0.

01

6
-0

.2
1

0.
03

0.
02

0.
23

0.
07

0.
29

1
.0
0

-0
.2

7
-0

.3
0

-0
.3

0
0.

01
-0

.3
1

0.
31

-0
.3
9

-0
.2

9
-0

.0
3

-0
.2

0
-0

.0
8

0.
10

-0
.0

3
0.

23
0
.5
2

-0
.0

8
0.

21
-0

.1
5

-0
.1

7
-0

.1
7

-0
.1

0
0.

06

7
0.

06
-0

.2
6

-0
.5
1

-0
.0

4
-0
.3
6

-0
.2

6
-0

.2
7

1
.0
0

-0
.1

8
0
.3
4

0.
08

0
.6
2

0.
11

-0
.0

9
0
.5
2

-0
.1

9
-0

.0
8

0.
13

-0
.1

9
0.

25
0.

15
-0

.3
0

-0
.1

4
-0

.0
6

-0
.1

2
-0

.1
1

-0
.1

1
-0

.1
1

-0
.0

9

8
-0

.0
5

-0
.3

1
-0

.0
2

-0
.4
5

0.
10

-0
.3
6

-0
.3

0
-0

.1
8

1
.0
0

0
.3
5

0
.3
7

0
.4
1

-0
.2

3
0
.4
7

0
.4
2

0.
02

-0
.2

4
0
.3
7

-0
.0

4
0.

04
-0

.2
0

-0
.0

8
0.

05
0.

05
-0

.0
2

-0
.0

2
-0

.0
2

-0
.0

0
-0

.2
5

9
0
.3
7

-0
.1

9
-0
.3
7

-0
.0

4
-0
.3
7

-0
.4
7

-0
.3

0
0
.3
4

0
.3
5

1
.0
0

0
.3
3

0
.8
2

-0
.3
3

0.
12

0
.4
3

-0
.2

6
0.

10
0
.5
7

-0
.3
4

0.
20

0.
17

-0
.1

8
0.

04
-0
.3
7

-0
.3

1
-0

.3
0

-0
.3

0
-0

.3
1

-0
.3

0

1
0

-0
.0

5
-0
.6
3

-0
.5
5

-0
.3

1
-0

.3
1

-0
.3
6

0.
01

0.
08

0
.3
7

0
.3
3

1
.0
0

0
.6
1

-0
.0

9
0.

23
0
.5
0

0.
26

-0
.1

5
0.

09
0.

16
-0

.2
5

-0
.1

8
0.

06
0
.3
4

0.
05

-0
.4
1

-0
.4
1

-0
.4
1

-0
.3
9

-0
.0

3

1
1

0.
19

-0
.4
8

-0
.6
2

-0
.2

5
-0
.4
9

-0
.6
0

-0
.3

1
0
.6
2

0
.4
1

0
.8
2

0
.6
1

1
.0
0

-0
.1

5
0.

20
0
.7
1

-0
.1

1
-0

.1
1

0
.4
1

-0
.1

8
0.

15
0.

03
-0

.1
7

0.
05

-0
.1

9
-0
.3
5

-0
.3
7

-0
.3
7

-0
.3
6

-0
.2

1

1
2

0.
01

0.
04

0.
26

0.
01

0
.3
4

-0
.0

3
0.

31
0.

11
-0

.2
3

-0
.3
3

-0
.0

9
-0

.1
5

1
.0
0

-0
.2

8
0.

10
0.

04
-0

.2
8

-0
.0

3
0.

17
-0

.0
3

0.
09

0.
25

-0
.0

1
-0

.0
1

0
.3
9

0
.3
9

0
.3
9

0
.4
1

0
.3
2

1
3

-0
.1

7
-0

.0
7

0.
08

-0
.2

0
0.

12
-0

.2
7

-0
.3
9

-0
.0

9
0
.4
7

0.
12

0.
23

0.
20

-0
.2

8
1
.0
0

0
.3
8

0.
19

-0
.0

7
0.

20
-0

.0
5

-0
.2

6
-0

.0
5

-0
.1

5
0.

10
0.

17
0.

13
0.

08
0.

08
0.

17
-0

.1
9

1
4

-0
.0

5
-0
.5
2

-0
.4
9

-0
.4
3

-0
.3
5

-0
.7
3

-0
.2

9
0
.5
2

0
.4
2

0
.4
3

0
.5
0

0
.7
1

0.
10

0
.3
8

1
.0
0

0.
22

-0
.3
3

0.
32

-0
.2

1
-0

.0
4

-0
.0

8
-0

.0
3

0.
13

0.
05

-0
.2

2
-0

.1
8

-0
.1

8
-0

.2
1

-0
.0

4

1
5

-0
.4
7

-0
.2

6
-0

.0
1

-0
.0

4
-0

.1
3

-0
.2

3
-0

.0
3

-0
.1

9
0.

02
-0

.2
6

0.
26

-0
.1

1
0.

04
0.

19
0.

22
1
.0
0

-0
.4
3

-0
.2

2
-0

.1
0

-0
.6
9

-0
.3

1
0
.3
4

0
.7
3

0
.4
7

-0
.0

0
-0

.0
1

-0
.0

1
-0

.0
1

0
.5
7

1
6

0
.3
4

0
.3
8

0.
06

0
.3
5

0.
07

0.
26

-0
.2

0
-0

.0
8

-0
.2

4
0.

10
-0

.1
5

-0
.1

1
-0

.2
8

-0
.0

7
-0
.3
3

-0
.4
3

1
.0
0

-0
.0

3
-0

.3
1

-0
.1

1
0.

18
-0

.1
3

-0
.1

6
-0
.3
4

-0
.1

2
-0

.0
6

-0
.0

6
-0

.1
1

-0
.1

3

1
7

0.
12

-0
.0

0
0.

00
0.

09
-0

.0
6

-0
.1

5
-0

.0
8

0.
13

0
.3
7

0
.5
7

0.
09

0
.4
1

-0
.0

3
0.

20
0.

32
-0

.2
2

-0
.0

3
1
.0
0

-0
.4
0

0.
06

0.
09

0.
17

-0
.2

1
-0

.1
2

0.
27

0.
26

0.
26

0.
24

0.
09

1
8

0.
07

-0
.0

8
0.

02
-0

.2
0

0.
17

0.
17

0.
10

-0
.1

9
-0

.0
4

-0
.3
4

0.
16

-0
.1

8
0.

17
-0

.0
5

-0
.2

1
-0

.1
0

-0
.3

1
-0
.4
0

1
.0
0

-0
.0

7
-0

.2
2

-0
.1

3
-0

.0
5

-0
.0

7
0.

01
-0

.0
3

-0
.0

3
-0

.0
3

-0
.0

5

1
9

0.
22

-0
.0

4
-0

.0
6

-0
.1

4
0.

07
0.

05
-0

.0
3

0.
25

0.
04

0.
20

-0
.2

5
0.

15
-0

.0
3

-0
.2

6
-0

.0
4

-0
.6
9

-0
.1

1
0.

06
-0

.0
7

1
.0
0

0.
22

-0
.4
1

-0
.6
5

-0
.2

2
-0

.0
5

-0
.0

0
-0

.0
0

-0
.0

3
-0
.5
7

2
0

0.
19

0.
23

0.
14

0.
13

0.
01

0.
17

0.
23

0.
15

-0
.2

0
0.

17
-0

.1
8

0.
03

0.
09

-0
.0

5
-0

.0
8

-0
.3

1
0.

18
0.

09
-0

.2
2

0.
22

1
.0
0

0.
14

-0
.1

7
-0

.1
9

0.
02

0.
02

0.
02

0.
00

-0
.0

1

2
1

-0
.1

0
0.

21
0.

26
0.

31
-0

.0
2

0.
18

0
.5
2

-0
.3

0
-0

.0
8

-0
.1

8
0.

06
-0

.1
7

0.
25

-0
.1

5
-0

.0
3

0
.3
4

-0
.1

3
0.

17
-0

.1
3

-0
.4
1

0.
14

1
.0
0

0.
25

0.
10

0.
16

0.
16

0.
16

0.
17

0
.5
0

2
2

0.
14

-0
.2

1
-0

.0
3

-0
.0

2
-0

.0
7

-0
.2

9
-0

.0
8

-0
.1

4
0.

05
0.

04
0
.3
4

0.
05

-0
.0

1
0.

10
0.

13
0
.7
3

-0
.1

6
-0

.2
1

-0
.0

5
-0
.6
5

-0
.1

7
0.

25
1
.0
0

-0
.1

4
-0

.0
1

-0
.1

8
-0

.1
8

-0
.0

5
0
.6
4

2
3

-1
.0
0

-0
.2

4
-0

.1
4

0.
04

-0
.1

9
0.

05
0.

21
-0

.0
6

0.
05

-0
.3
7

0.
05

-0
.1

9
-0

.0
1

0.
17

0.
05

0
.4
7

-0
.3
4

-0
.1

2
-0

.0
7

-0
.2

2
-0

.1
9

0.
10

-0
.1

4
1
.0
0

-0
.0

3
-0

.0
6

-0
.0

6
0.

09
0.

03

2
4

0.
03

0.
31

0
.5
5

0.
06

0.
30

0.
22

-0
.1

5
-0

.1
2

-0
.0

2
-0

.3
1

-0
.4
1

-0
.3
5

0
.3
9

0.
13

-0
.2

2
-0

.0
0

-0
.1

2
0.

27
0.

01
-0

.0
5

0.
02

0.
16

-0
.0

1
-0

.0
3

1
.0
0

1
.0
0

1
.0
0

0
.9
9

0.
22

2
5

0.
06

0.
30

0
.5
5

0.
05

0.
31

0.
14

-0
.1

7
-0

.1
1

-0
.0

2
-0

.3
0

-0
.4
1

-0
.3
7

0
.3
9

0.
08

-0
.1

8
-0

.0
1

-0
.0

6
0.

26
-0

.0
3

-0
.0

0
0.

02
0.

16
-0

.1
8

-0
.0

6
1
.0
0

1
.0
0

1
.0
0

0
.9
8

0.
21

2
6

0.
06

0.
30

0
.5
5

0.
05

0.
31

0.
14

-0
.1

7
-0

.1
1

-0
.0

2
-0

.3
0

-0
.4
1

-0
.3
7

0
.3
9

0.
08

-0
.1

8
-0

.0
1

-0
.0

6
0.

26
-0

.0
3

-0
.0

0
0.

02
0.

16
-0

.1
8

-0
.0

6
1
.0
0

1
.0
0

1
.0
0

0
.9
8

0.
21

2
7

-0
.0

9
0.

27
0
.5
0

0.
06

0.
27

0.
22

-0
.1

0
-0

.1
1

-0
.0

0
-0

.3
1

-0
.3
9

-0
.3
6

0
.4
1

0.
17

-0
.2

1
-0

.0
1

-0
.1

1
0.

24
-0

.0
3

-0
.0

3
0.

00
0.

17
-0

.0
5

0.
09

0
.9
9

0
.9
8

0
.9
8

1
.0
0

0.
20

F
G

-0
.0

3
0.

08
0.

19
0.

16
0.

01
0.

01
0.

06
-0

.0
9

-0
.2

5
-0

.3
0

-0
.0

3
-0

.2
1

0
.3
2

-0
.1

9
-0

.0
4

0
.5
7

-0
.1

3
0.

09
-0

.0
5

-0
.5
7

-0
.0

1
0
.5
0

0
.6
4

0.
03

0.
22

0.
21

0.
21

0.
20

1
.0
0

92 A Correlation tables

T
a
b
le

A
-3

.:
C

orrelation
s

am
on

g
sou

rce
co

d
e

m
etrics

in
2016-I

Metric

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

F
G

0
1
.0
0

0
.6
7

0
.6
0

0
.6
2

0
.7
1

0
.6
5

0
.4
3

-0
.5
3

-0
.3
0

-0
.3
7

-0
.2
2

-0
.5
2

0.16
-0
.2
7

-0
.5
5

-0.06
0
.4
0

0
.5
2

0.03
-0.12

0.09
0
.5
4

0
.7
5

-1
.0
0

-0
.4
8

-0
.2
5

-0
.2
5

-0
.5
7

0
.5
0

1
0
.6
7

1
.0
0

0
.8
9

0
.8
9

0
.8
1

0
.9
2

0
.5
6

-0
.7
9

-0
.5
6

-0
.5
7

-0
.4
7

-0
.7
6

-0.06
-0
.5
7

-0
.8
7

0.18
0.09

0
.4
4

0.05
-0.14

0.08
0
.5
0

0
.7
0

-0
.6
7

-0.04
0.17

0.17
-0.12

0
.4
1

2
0
.6
0

0
.8
9

1
.0
0

0
.6
9

0
.8
0

0
.8
2

0
.4
7

-0
.8
6

-0
.5
8

-0
.6
8

-0
.5
3

-0
.8
5

-0.14
-0
.5
9

-0
.9
0

0
.2
8

0.09
0
.3
1

-0.00
-0.15

0.13
0
.4
0

0
.7
1

-0
.6
0

0.04
0
.2
4

0
.2
4

-0.04
0
.4
3

3
0
.6
2

0
.8
9

0
.6
9

1
.0
0

0
.6
7

0
.8
6

0
.5
7

-0
.6
3

-0
.4
5

-0
.4
0

-0
.3
9

-0
.6
1

0.02
-0
.4
8

-0
.7
1

0.14
0.11

0
.4
1

0.00
-0.10

0.11
0
.5
4

0
.6
0

-0
.6
2

-0.13
0.05

0.05
-0.19

0
.4
0

4
0
.7
1

0
.8
1

0
.8
0

0
.6
7

1
.0
0

0
.7
5

0
.3
9

-0
.7
0

-0
.4
7

-0
.5
3

-0
.3
7

-0
.7
0

0
.2
2

-0
.4
8

-0
.7
2

0.15
0.16

0
.4
3

0.06
-0.19

0
.2
2

0
.4
2

0
.6
8

-0
.7
1

-0.18
0.01

0.01
-0
.2
6

0
.5
0

5
0
.6
5

0
.9
2

0
.8
2

0
.8
6

0
.7
5

1
.0
0

0
.5
2

-0
.8
3

-0
.6
1

-0
.6
9

-0
.5
1

-0
.8
5

-0.04
-0
.5
4

-0
.8
3

0.15
0.10

0
.4
5

0.09
-0.16

0.08
0
.5
3

0
.6
7

-0
.6
5

-0.08
0.12

0.12
-0.15

0
.4
4

6
0
.4
3

0
.5
6

0
.4
7

0
.5
7

0
.3
9

0
.5
2

1
.0
0

-0
.3
9

-0
.4
6

-0
.4
0

-0
.3
0

-0
.4
6

-0.01
-0
.3
3

-0
.4
7

0.06
0.13

0
.2
6

-0.04
-0.17

0.06
0
.8
3

0
.3
8

-0
.4
3

-0.07
0.04

0.04
-0.13

0
.2
3

7
-0
.5
3

-0
.7
9

-0
.8
6

-0
.6
3

-0
.7
0

-0
.8
3

-0
.3
9

1
.0
0

0
.5
5

0
.7
5

0
.4
5

0
.9
0

0.16
0
.5
0

0
.8
2

-0.15
-0.08

-0
.3
4

-0.09
0.15

-0.08
-0
.3
4

-0
.5
9

0
.5
3

-0.07
-0
.2
3

-0
.2
3

0.00
-0
.3
9

8
-0
.3
0

-0
.5
6

-0
.5
8

-0
.4
5

-0
.4
7

-0
.6
1

-0
.4
6

0
.5
5

1
.0
0

0
.6
8

0
.6
1

0
.7
1

0
.2
7

0
.4
1

0
.5
1

-0.09
-0
.2
3

-0.05
0.13

0
.2
7

-0.05
-0
.3
6

-0
.3
6

0
.3
0

-0.19
-0
.2
7

-0
.2
7

-0.13
-0.11

9
-0
.3
7

-0
.5
7

-0
.6
8

-0
.4
0

-0
.5
3

-0
.6
9

-0
.4
0

0
.7
5

0
.6
8

1
.0
0

0
.5
4

0
.9
1

0
.2
2

0
.4
7

0
.6
6

-0.01
-0.14

-0.17
-0
.2
5

0.20
-0.04

-0
.4
1

-0
.3
9

0
.3
7

-0.18
-0
.3
1

-0
.3
1

-0.10
-0.14

1
0

-0
.2
2

-0
.4
7

-0
.5
3

-0
.3
9

-0
.3
7

-0
.5
1

-0
.3
0

0
.4
5

0
.6
1

0
.5
4

1
.0
0

0
.6
6

0.17
0
.4
6

0
.5
2

-0
.2
3

-0.03
-0.04

-0.01
0
.2
4

-0.01
-0
.2
5

-0
.2
9

0
.2
2

-0.19
-0
.2
9

-0
.2
9

-0.14
-0.04

1
1

-0
.5
2

-0
.7
6

-0
.8
5

-0
.6
1

-0
.7
0

-0
.8
5

-0
.4
6

0
.9
0

0
.7
1

0
.9
1

0
.6
6

1
.0
0

0.14
0
.5
6

0
.8
2

-0.13
-0.13

-0
.2
6

-0.16
0.19

-0.09
-0
.4
3

-0
.5
6

0
.5
2

-0.08
-0
.2
5

-0
.2
5

0.00
-0
.2
8

1
2

0.16
-0.06

-0.14
0.02

0
.2
2

-0.04
-0.01

0.16
0
.2
7

0
.2
2

0.17
0.14

1
.0
0

0.14
0.12

0.04
-0.12

0.03
-0.02

0
.2
5

0.15
0.06

0.14
-0.16

-0
.4
2

-0
.4
0

-0
.4
0

-0
.4
1

0
.2
5

1
3

-0
.2
7

-0
.5
7

-0
.5
9

-0
.4
8

-0
.4
8

-0
.5
4

-0
.3
3

0
.5
0

0
.4
1

0
.4
7

0
.4
6

0
.5
6

0.14
1
.0
0

0
.7
1

-0.06
-0.02

0.02
0.09

-0.03
-0.10

-0.18
-0
.2
9

0
.2
7

-0.07
-0.15

-0.15
-0.05

-0.10

1
4

-0
.5
5

-0
.8
7

-0
.9
0

-0
.7
1

-0
.7
2

-0
.8
3

-0
.4
7

0
.8
2

0
.5
1

0
.6
6

0
.5
2

0
.8
2

0.12
0
.7
1

1
.0
0

-0
.2
4

-0.01
-0.21

-0.08
0.08

-0.07
-0
.3
9

-0
.6
4

0
.5
5

-0.05
-0
.2
4

-0
.2
4

0.02
-0
.3
8

1
5

-0.06
0.18

0
.2
8

0.14
0.15

0.15
0.06

-0.15
-0.09

-0.01
-0
.2
3

-0.13
0.04

-0.06
-0
.2
4

1
.0
0

-0
.2
7

-0.00
-0.21

-0
.3
5

0.03
-0.05

0
.4
9

0.06
0.17

0.20
0.20

0.17
0
.3
8

1
6

0
.4
0

0.09
0.09

0.11
0.16

0.10
0.13

-0.08
-0
.2
3

-0.14
-0.03

-0.13
-0.12

-0.02
-0.01

-0
.2
7

1
.0
0

0.04
-0
.3
1

-0
.3
4

0.15
0.12

0.19
-0
.4
0

-0.17
-0.13

-0.13
-0
.2
3

0.03

1
7

0
.5
2

0
.4
4

0
.3
1

0
.4
1

0
.4
3

0
.4
5

0
.2
6

-0
.3
4

-0.05
-0.17

-0.04
-0
.2
6

0.03
0.02

-0.21
-0.00

0.04
1
.0
0

0.03
-0.16

-0.02
0
.4
3

0
.4
0

-0
.5
2

-0
.2
3

-0.10
-0.10

-0
.2
8

0
.4
6

1
8

0.03
0.05

-0.00
0.00

0.06
0.09

-0.04
-0.09

0.13
-0
.2
5

-0.01
-0.16

-0.02
0.09

-0.08
-0.21

-0
.3
1

0.03
1
.0
0

-0.07
-0.21

0.05
-0.05

-0.03
-0.04

0.00
0.00

-0.07
-0.10

1
9

-0.12
-0.14

-0.15
-0.10

-0.19
-0.16

-0.17
0.15

0
.2
7

0.20
0
.2
4

0.19
0
.2
5

-0.03
0.08

-0
.3
5

-0
.3
4

-0.16
-0.07

1
.0
0

-0.04
-0.08

-0
.3
4

0.12
-0.11

-0.12
-0.12

-0.07
-0.20

2
0

0.09
0.08

0.13
0.11

0
.2
2

0.08
0.06

-0.08
-0.05

-0.04
-0.01

-0.09
0.15

-0.10
-0.07

0.03
0.15

-0.02
-0.21

-0.04
1
.0
0

-0.00
0.06

-0.09
-0.13

-0.12
-0.12

-0.15
0.05

2
1

0
.5
4

0
.5
0

0
.4
0

0
.5
4

0
.4
2

0
.5
3

0
.8
3

-0
.3
4

-0
.3
6

-0
.4
1

-0
.2
5

-0
.4
3

0.06
-0.18

-0
.3
9

-0.05
0.12

0
.4
3

0.05
-0.08

-0.00
1
.0
0

0
.3
7

-0
.5
4

-0.20
-0.06

-0.06
-0
.2
6

0
.2
9

2
2

0
.7
5

0
.7
0

0
.7
1

0
.6
0

0
.6
8

0
.6
7

0
.3
8

-0
.5
9

-0
.3
6

-0
.3
9

-0
.2
9

-0
.5
6

0.14
-0
.2
9

-0
.6
4

0
.4
9

0.19
0
.4
0

-0.05
-0
.3
4

0.06
0
.3
7

1
.0
0

-0
.7
5

-0
.2
6

-0.06
-0.06

-0
.3
4

0
.6
5

2
3

-1
.0
0

-0
.6
7

-0
.6
0

-0
.6
2

-0
.7
1

-0
.6
5

-0
.4
3

0
.5
3

0
.3
0

0
.3
7

0
.2
2

0
.5
2

-0.16
0
.2
7

0
.5
5

0.06
-0
.4
0

-0
.5
2

-0.03
0.12

-0.09
-0
.5
4

-0
.7
5

1
.0
0

0
.4
8

0
.2
5

0
.2
5

0
.5
7

-0
.5
0

2
4

-0
.4
8

-0.04
0.04

-0.13
-0.18

-0.08
-0.07

-0.07
-0.19

-0.18
-0.19

-0.08
-0
.4
2

-0.07
-0.05

0.17
-0.17

-0
.2
3

-0.04
-0.11

-0.13
-0.20

-0
.2
6

0
.4
8

1
.0
0

0
.9
6

0
.9
6

0
.9
8

-0
.3
1

2
5

-0
.2
5

0.17
0
.2
4

0.05
0.01

0.12
0.04

-0
.2
3

-0
.2
7

-0
.3
1

-0
.2
9

-0
.2
5

-0
.4
0

-0.15
-0
.2
4

0.20
-0.13

-0.10
0.00

-0.12
-0.12

-0.06
-0.06

0
.2
5

0
.9
6

1
.0
0

1
.0
0

0
.9
1

-0.20

2
6

-0
.2
5

0.17
0
.2
4

0.05
0.01

0.12
0.04

-0
.2
3

-0
.2
7

-0
.3
1

-0
.2
9

-0
.2
5

-0
.4
0

-0.15
-0
.2
4

0.20
-0.13

-0.10
0.00

-0.12
-0.12

-0.06
-0.06

0
.2
5

0
.9
6

1
.0
0

1
.0
0

0
.9
1

-0.20

2
7

-0
.5
7

-0.12
-0.04

-0.19
-0
.2
6

-0.15
-0.13

0.00
-0.13

-0.10
-0.14

0.00
-0
.4
1

-0.05
0.02

0.17
-0
.2
3

-0
.2
8

-0.07
-0.07

-0.15
-0
.2
6

-0
.3
4

0
.5
7

0
.9
8

0
.9
1

0
.9
1

1
.0
0

-0
.3
5

F
G

0
.5
0

0
.4
1

0
.4
3

0
.4
0

0
.5
0

0
.4
4

0
.2
3

-0
.3
9

-0.11
-0.14

-0.04
-0
.2
8

0
.2
5

-0.10
-0
.3
8

0
.3
8

0.03
0
.4
6

-0.10
-0.20

0.05
0
.2
9

0
.6
5

-0
.5
0

-0
.3
1

-0.20
-0.20

-0
.3
5

1
.0
0

93

T
a
b
le

A
-4

.:
C

or
re

la
ti

on
s

b
et

w
ee

n
te

ch
n
ic

al
fe

at
u
re

s
an

d
M

S
L

Q
fe

at
u
re

s
on

20
15

-I

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

0
0.

29
-0

.1
3

0.
04

0.
02

0.
08

0
.4
4

0.
24

0.
21

0.
22

0.
04

0.
09

0.
02

0.
07

-0
.2

3
0.

04
0.

17
-0

.1
0

0.
15

1
0.

15
0.

08
0.

05
0
.3
7

0.
26

0
.3
5

0.
08

0.
30

-0
.0

9
0.

00
0.

27
0
.3
7

0.
04

-0
.2

0
0.

26
0
.5
2

0.
25

0.
23

2
0.

10
0.

09
0.

10
0.

18
0.

27
0.

19
-0

.0
5

0.
08

-0
.2

9
-0

.0
6

0.
09

0.
24

-0
.0

1
-0

.2
3

0.
12

0.
33

0.
25

-0
.0

1

3
0.

21
-0

.0
2

-0
.1

3
0.

32
0.

20
0.

33
0.

21
0.

32
0.

16
0.

11
0
.3
5

0.
25

-0
.0

2
-0

.2
9

0.
16

0
.5
2

0.
22

0.
26

4
0.

34
-0

.1
7

-0
.1

0
0.

03
0.

12
0
.4
6

0.
24

0.
10

-0
.1

1
-0

.0
6

0.
24

0.
12

0.
02

-0
.1

9
0.

05
0.

33
0.

07
0.

03

5
0.

28
0.

08
0.

04
0
.4
1

0.
22

0
.3
6

0.
27

0
.3
6

0.
02

0.
10

0
.4
6

0
.3
7

0.
11

-0
.2

3
0.

06
0
.4
6

0.
19

0
.4
1

6
0.

24
0.

05
-0

.0
8

0
.3
7

0.
14

0.
28

0.
28

0
.3
6

-0
.1

2
0.

17
0
.4
5

0
.3
9

0.
01

-0
.0

7
0.

13
0
.3
9

0.
32

0.
31

7
-0

.2
7

-0
.1

3
0.

07
-0

.2
6

-0
.1

2
-0

.3
3

-0
.2

3
-0
.4
2

-0
.0

1
-0

.2
4

-0
.3
7

-0
.4
0

-0
.1

9
0.

09
-0

.2
2

-0
.4
6

-0
.3
8

-0
.3

2

8
-0

.0
9

-0
.0

5
-0

.1
0

-0
.0

8
-0

.3
1

-0
.1

5
0.

01
-0

.1
3

0.
05

0.
04

-0
.0

7
0.

01
0.

23
-0

.0
1

-0
.0

6
-0

.0
4

0.
02

0.
11

9
-0

.2
1

0.
06

0.
18

0.
03

0.
01

-0
.3

4
-0

.1
7

0.
00

0.
18

-0
.0

1
-0

.1
7

-0
.2

1
0.

03
0.

07
-0

.0
1

-0
.1

0
-0

.0
8

-0
.0

6

1
0

-0
.1

5
0.

15
-0

.0
2

0.
17

-0
.0

9
-0

.2
5

-0
.1

1
-0

.0
5

0.
26

0.
02

-0
.0

1
-0

.0
1

0.
21

-0
.0

5
0.

15
0.

01
-0

.0
7

0.
19

1
1

-0
.3

3
-0

.0
6

0.
03

-0
.1

1
-0

.1
2

-0
.4
3

-0
.2

4
-0

.2
0

0.
22

-0
.0

4
-0

.3
0

-0
.3

3
0.

00
0.

00
-0

.0
3

-0
.2

6
-0

.2
4

-0
.1

7

1
2

-0
.0

5
-0

.1
3

-0
.1

3
-0

.0
7

-0
.0

4
0.

04
0.

10
0.

17
0.

23
0.

16
0.

01
0.

25
0.

16
0.

09
-0

.1
1

0.
20

0.
11

0.
24

1
3

0.
06

0.
09

-0
.0

1
-0

.0
3

0.
18

0.
14

0.
21

-0
.0

4
0.

21
0.

08
0.

02
-0

.1
3

0
.3
9

0.
14

0.
25

0.
07

0.
21

0.
09

1
4

-0
.2

6
0.

09
-0

.0
5

-0
.2

5
-0

.0
9

-0
.2

6
-0

.1
9

-0
.2

3
0.

29
0.

06
-0
.4
2

-0
.3

0
0.

07
0.

28
0.

04
-0

.3
4

-0
.0

3
-0

.1
9

1
5

0.
00

0.
12

0.
09

0.
32

0.
18

0.
05

0.
19

0
.4
1

-0
.0

8
0.

26
0.

27
0
.3
8

0.
16

0.
13

0.
14

0.
25

0.
30

0.
24

1
6

-0
.0

7
-0

.2
6

-0
.0

3
-0

.0
0

0.
24

0.
14

0.
05

0.
20

0.
16

0.
14

-0
.1

5
0.

08
0.

13
-0

.0
7

0.
12

0.
23

-0
.1

1
-0

.0
6

1
7

0.
13

-0
.1

1
0.

00
-0

.2
4

0.
27

0.
18

-0
.0

5
0.

16
0.

13
-0

.0
4

0.
07

0.
18

0.
13

0.
03

0.
22

0.
32

-0
.0

5
-0

.1
3

1
8

-0
.0

5
-0

.2
0

-0
.1

1
0.

11
-0

.1
0

-0
.1

2
-0

.1
4

-0
.2

5
0.

04
0.

12
0.

07
-0

.1
7

-0
.2

1
-0

.1
2

-0
.1

1
-0

.1
1

0.
07

-0
.0

0

1
9

0.
02

0.
20

-0
.1

5
-0
.3
9

-0
.0

9
0.

04
-0

.1
0

-0
.3

3
0.

02
-0

.2
6

-0
.1

6
-0
.4
0

-0
.0

8
-0

.0
0

-0
.1

4
-0

.1
0

-0
.3
6

-0
.0

3

2
0

-0
.0

8
0.

22
0.

03
-0

.1
7

0.
03

-0
.1

1
-0

.1
0

0.
13

0.
13

0.
05

0.
01

-0
.1

7
0.

00
-0

.1
7

-0
.1

7
-0
.3
8

0.
05

-0
.0

9

2
1

-0
.0

6
-0

.0
6

0.
03

0.
24

0.
07

0.
02

0.
08

0.
23

-0
.1

1
0.

11
0.

32
0.

08
-0

.0
5

-0
.1

9
0.

01
0
.4
3

0.
09

0
.3
7

2
2

0.
22

-0
.0

4
0.

18
0.

23
0.

14
0
.4
0

0.
31

0
.3
6

-0
.0

1
0.

11
0.

31
0.

21
0.

09
-0

.1
4

0.
12

0.
27

0.
08

0.
32

2
3

-0
.2

9
0.

11
-0

.0
4

-0
.0

2
0.

00
-0
.4
4

-0
.2

4
-0

.1
2

-0
.1

9
0.

02
-0

.0
9

-0
.0

0
-0

.0
7

0.
23

0.
01

-0
.0

8
0.

04
-0

.0
7

2
4

0.
06

-0
.1

3
0.

10
-0

.1
5

0.
15

0.
02

-0
.0

1
0.

19
-0
.4
2

-0
.0

2
0.

07
0.

21
0.

05
-0

.1
5

-0
.1

3
-0

.1
5

0.
20

-0
.2

5

2
5

0.
12

-0
.1

2
0.

14
-0

.0
9

0.
17

0.
05

0.
01

0.
23

-0
.4
1

0.
00

0.
09

0.
23

0.
06

-0
.1

7
-0

.1
1

-0
.1

3
0.

22
-0

.2
5

2
6

0.
12

-0
.1

2
0.

14
-0

.0
9

0.
17

0.
05

0.
01

0.
23

-0
.4
1

0.
00

0.
09

0.
23

0.
06

-0
.1

7
-0

.1
1

-0
.1

3
0.

22
-0

.2
5

2
7

0.
01

-0
.1

3
0.

09
-0

.0
4

0.
17

0.
00

-0
.0

1
0.

26
-0
.4
1

0.
01

0.
06

0.
29

0.
06

-0
.1

8
-0

.1
0

-0
.2

1
0.

25
-0

.3
0

94 A Correlation tables

T
a
b
le

A
-5

.:
C

orrelation
s

b
etw

een
tech

n
ical

featu
res

an
d

M
S
L

Q
featu

res
on

2015-II

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

0
0.25

0.24
0.25

0.22
0.06

0
.3
8

0
.4
7

0.06
0.05

0.02
-0.12

0.16
0.19

0
.3
3

0.06
0.12

0.05
0.03

1
-0.10

0.04
-0.01

-0.19
0.04

0.16
0.13

0.28
0.14

-0.04
-0.17

0.08
0.00

0.13
0.13

0.16
0.09

0.16

2
-0.03

0.13
0.20

0.09
0.13

0.18
0.16

0.14
0.07

0.07
-0.09

0.09
0.05

0.10
0.15

0.10
0.05

0.31

3
-0.09

-0
.3
6

-0.31
-0
.4
1

-0.16
-0.09

-0.03
0.22

0.07
-0.11

-0.29
-0.22

-0.19
0.03

-0.03
0.05

-0.22
-0.14

4
-0.18

0.31
0.11

0.02
0.10

0.07
0.09

0.02
-0.06

0.07
-0.13

0.17
-0.14

0.08
-0.10

-0.09
-0.04

0.14

5
-0.25

-0.16
-0
.4
0

-0
.3
9

-0.19
-0.17

-0.27
0.03

-0.14
-0.18

0.01
-0.18

-0.27
-0.11

-0.12
0.03

0.03
-0.01

6
-0.30

-0.32
-0.17

-0.27
0.05

-0.24
-0.20

-0.00
-0.12

-0.23
-0.07

-0.17
-0.24

0.06
-0.04

-0.05
-0.15

-0.12

7
0.10

-0.20
-0.06

-0.17
-0.01

-0.11
0.05

-0.21
0.21

0.05
-0.12

0.01
0.06

0.06
-0.01

0.10
0.03

-0.14

8
-0.00

0
.3
5

0.11
0.22

-0.00
0.15

-0.00
0.03

0.07
-0.01

0.14
0.16

0.01
0.11

0.12
-0.21

0.11
0.18

9
0.29

0.25
0.15

0.27
0.24

0.22
0.29

0.12
0.30

0.08
0.10

0.24
0.19

0.17
0.15

-0.08
0.19

-0.07

1
0

0.05
0.00

-0.19
0.06

-0.14
0.00

-0.07
-0.17

-0.24
-0.05

-0.08
-0.13

-0.04
-0.10

-0.12
-0
.3
2

-0.14
-0.19

1
1

0.18
0.10

0.07
0.10

0.02
0.06

0.14
-0.11

0.14
-0.01

0.00
0.07

0.14
0.09

0.05
-0.11

0.11
-0.13

1
2

-0.06
-0.25

0.01
-0.22

-0.02
-0.06

-0.00
-0.06

0.04
-0.00

-0
.3
4

-0.12
-0.10

0.17
-0.03

-0.05
-0.21

0.15

1
3

-0.05
0
.3
6

0.15
0.27

-0.18
0.16

0.01
0.08

0.13
0.11

-0.04
-0.00

-0.02
-0.00

0.01
-0.14

-0.04
0.16

1
4

0.18
0.08

0.22
0.14

-0.01
0.07

0.18
-0.04

0.23
0.01

-0.10
0.06

0.22
0.10

0.06
-0.05

0.08
-0.04

1
5

0.02
-0.23

-0.01
0.02

-0.04
-0.04

-0.08
-0.00

-0.18
-0.03

-0.04
-0.16

0.01
-0.03

0.08
-0.08

-0.21
-0.01

1
6

-0.08
0.02

-0
.3
3

-0.25
-0.26

-0.01
-0.05

0.02
-0.11

-0.13
-0
.3
5

-0.14
-0.11

-0.13
-0.13

-0.01
-0.24

-0.29

1
7

0
.3
4

0.09
0.09

0.26
0.17

0.30
0.31

0
.3
3

0
.5
6

0.30
0.10

0.31
0.24

0
.3
4

0.24
-0.05

0.26
0.21

1
8

-0.25
0.24

0.04
0.08

-0.11
0.10

-0.05
-0.26

-0.31
-0.08

0.19
-0.03

-0.16
0.02

-0.26
-0.14

0.07
0.09

1
9

0.10
0.09

0.21
0.06

0.26
-0.09

0.02
-0.05

0.08
0.03

0.25
0.22

0.04
-0.03

0.02
0.16

0.30
0.11

2
0

-0.13
-0.06

-0.20
-0.20

0.00
-0.07

-0.06
-0.07

-0.02
-0.05

0.03
0.01

-0.12
-0.05

0.07
0.04

0.03
-0.17

2
1

-0.14
-0.30

-0.07
-0.23

0.04
-0.01

0.03
0.15

-0.10
-0.18

-0.24
-0.10

0.13
0.25

0.30
0.08

-0.05
0.07

2
2

0.16
-0.03

0.13
0.18

0.03
0.23

0.19
0.04

-0.20
-0.07

-0.12
-0.07

0.12
0.21

0.15
-0.04

-0.12
-0.04

2
3

-0.25
-0.24

-0.25
-0.22

-0.06
-0
.3
8

-0
.4
7

-0.06
-0.05

-0.02
0.12

-0.16
-0.19

-0
.3
3

-0.06
-0.12

-0.05
-0.03

2
4

0.15
-0.05

0.10
0.15

-0.15
0.17

0.19
0.19

0.27
0.30

-0.07
0.16

0.11
0.19

0.16
0.19

0.06
0
.4
0

2
5

0.13
-0.12

0.13
0.09

-0.15
0.12

0.11
0.18

0.26
0.23

-0.09
0.10

0.15
0.15

0.17
0.15

-0.01
0
.3
8

2
6

0.13
-0.12

0.13
0.09

-0.15
0.12

0.11
0.18

0.26
0.23

-0.09
0.10

0.15
0.15

0.17
0.15

-0.01
0
.3
8

2
7

0.13
-0.06

0.10
0.14

-0.14
0.15

0.15
0.19

0.27
0.29

-0.08
0.14

0.08
0.16

0.15
0.18

0.03
0
.3
9

95

T
a
b
le

A
-6

.:
C

or
re

la
ti

on
s

b
et

w
ee

n
te

ch
n
ic

al
fe

at
u
re

s
an

d
M

S
L

Q
fe

at
u
re

s
on

20
16

-I

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

0
-0

.0
1

-0
.1

5
-0
.2
8

0.
09

0.
09

0.
13

0.
03

0.
17

0.
03

0.
18

0.
12

0
.2
6

0.
11

0.
18

0
.3
6

0.
14

0.
17

0.
12

1
-0

.0
8

0.
02

-0
.3
1

0.
04

0.
01

-0
.0

8
-0

.1
1

0.
13

-0
.0

2
0
.2
2

0.
07

0.
16

0.
09

0.
12

0
.2
9

0.
01

0.
02

0.
16

2
-0

.0
9

0.
07

-0
.1

7
0.

04
0.

02
-0

.1
1

-0
.1

3
0.

17
-0

.0
0

0
.2
5

0.
01

0.
17

0.
09

0.
11

0
.2
5

0.
08

0.
02

0.
14

3
-0

.1
2

0.
06

-0
.3
3

-0
.0

5
-0

.0
1

-0
.1

0
-0

.1
3

0.
07

-0
.0

3
0.

11
0.

04
0.

05
0.

07
0.

15
0.

19
-0

.0
7

-0
.0

2
0.

13

4
-0

.0
2

-0
.0

1
-0

.1
5

0.
07

0.
07

-0
.0

2
-0

.0
1

0.
13

-0
.0

5
0.

17
0.

02
0
.2
3

0.
05

0.
10

0
.2
4

0.
03

-0
.0

3
0.

16

5
-0

.0
6

0.
05

-0
.2
5

0.
01

0.
05

-0
.0

4
-0

.0
7

0.
09

-0
.0

1
0.

21
0.

10
0.

14
0.

09
0.

14
0
.3
3

-0
.0

2
0.

05
0.

14

6
0.

06
0.

01
-0

.1
2

0.
18

0.
15

0.
11

0.
03

0.
03

0.
06

0.
03

0.
01

0.
08

0.
15

0.
18

0
.2
7

-0
.0

8
-0

.0
2

0.
05

7
-0

.0
4

0.
01

0.
07

-0
.0

6
-0

.1
3

-0
.0

5
0.

02
-0

.1
7

0.
04

-0
.2
9

-0
.1

1
-0
.2
2

-0
.1

8
-0

.1
3

-0
.3
4

-0
.0

4
-0

.1
2

-0
.1

2

8
0.

16
0.

04
0.

10
-0

.0
0

0.
00

0.
02

0.
05

-0
.0

3
-0

.1
0

-0
.1

3
0.

04
-0

.1
1

-0
.1

9
-0

.0
7

-0
.2
3

0.
14

0.
10

-0
.0

6

9
0.

01
-0

.0
4

0.
08

-0
.1

2
-0

.0
9

-0
.0

2
0.

00
-0

.0
9

-0
.1

2
-0
.2
4

-0
.1

5
-0
.2
2

-0
.1

8
-0

.1
9

-0
.3
8

-0
.0

1
-0

.1
5

-0
.1

8

1
0

0.
21

-0
.1

1
0.

06
0.

08
0.

08
0.

10
0.

03
-0

.0
3

-0
.1

2
-0

.1
1

0.
04

-0
.0

2
-0

.0
0

-0
.1

4
-0

.0
7

0.
05

-0
.0

7
-0

.2
1

1
1

0.
07

-0
.0

5
0.

12
-0

.0
4

-0
.0

8
0.

00
0.

03
-0

.1
2

-0
.0

9
-0
.2
5

-0
.1

3
-0

.2
0

-0
.1

2
-0

.1
6

-0
.3
4

-0
.0

2
-0

.1
1

-0
.2

1

1
2

0.
10

0.
09

0.
18

0.
01

0.
10

0.
14

0.
13

0.
12

-0
.0

1
-0

.0
7

0.
02

0.
01

-0
.1

3
0.

08
-0

.0
7

0
.2
2

0.
02

-0
.0

3

1
3

-0
.0

1
-0

.1
2

0.
19

-0
.0

9
0.

04
0.

15
0.

09
-0

.1
0

-0
.0

7
-0

.1
3

-0
.0

6
-0

.1
1

-0
.1

9
-0

.1
4

-0
.1

3
-0

.0
2

0.
03

-0
.2
3

1
4

0.
02

-0
.0

6
0
.2
4

-0
.0

8
-0

.0
1

0.
13

0.
08

-0
.1

5
-0

.0
3

-0
.2
8

-0
.0

8
-0

.1
6

-0
.0

9
-0

.1
1

-0
.2
7

-0
.0

3
-0

.0
5

-0
.2
3

1
5

-0
.1

5
0.

17
0.

03
-0

.1
0

-0
.1

9
-0
.3
8

-0
.2
9

-0
.0

7
0
.2
4

0.
00

-0
.1

9
-0

.1
6

-0
.2

0
-0

.0
5

-0
.1

7
-0

.0
2

-0
.1

6
-0

.1
5

1
6

-0
.0

7
-0

.2
1

-0
.0

4
-0

.0
3

0.
10

0
.2
2

0.
03

0.
17

0.
09

0.
11

0.
06

0
.2
6

0
.3
3

0.
21

0
.3
3

-0
.0

1
0.

10
0
.2
2

1
7

0.
03

-0
.0

1
-0

.0
6

0.
07

0.
11

0.
18

0.
00

-0
.1

0
-0

.1
0

0.
00

0.
06

0.
11

-0
.0

2
0.

03
0
.2
4

-0
.0

6
0.

02
-0

.1
2

1
8

0.
06

0.
07

-0
.1

6
0.

19
0.

08
-0

.0
0

0.
11

-0
.0

7
0.

06
0.

04
0.

19
0.

10
-0

.0
6

-0
.1

0
0.

12
0.

01
0.

16
0.

04

1
9

0.
10

0.
05

-0
.0

3
-0

.1
3

-0
.0

1
0.

04
0.

16
0.

08
-0
.2
6

-0
.0

2
0.

09
-0

.0
4

-0
.0

8
0.

00
-0

.2
1

0.
19

-0
.0

4
-0

.0
7

2
0

-0
.0

7
0.

01
0.

14
-0

.2
0

0.
12

0.
03

-0
.0

7
-0

.0
3

-0
.0

4
-0

.1
4

-0
.0

2
-0

.0
7

-0
.1

2
0.

04
0.

03
-0

.1
5

-0
.0

7
0.

12

2
1

0.
05

0.
04

-0
.1

4
0.

16
0.

09
0.

15
0.

09
0.

00
-0

.0
2

0.
04

0.
13

0.
12

0.
13

0
.2
5

0
.2
8

-0
.0

5
0.

14
0.

05

2
2

-0
.1

7
-0

.0
2

-0
.1

9
-0

.0
2

-0
.0

3
-0

.0
9

-0
.1

4
0.

16
0.

20
0.

15
-0

.0
9

0.
18

-0
.0

0
0.

13
0
.2
2

0.
05

-0
.0

6
0.

06

2
3

0.
01

0.
15

0
.2
8

-0
.0

9
-0

.0
9

-0
.1

3
-0

.0
3

-0
.1

7
-0

.0
3

-0
.1

8
-0

.1
2

-0
.2
6

-0
.1

1
-0

.1
8

-0
.3
6

-0
.1

4
-0

.1
7

-0
.1

2

2
4

-0
.0

4
0.

08
0.

06
0.

08
-0

.1
9

-0
.1

3
-0

.0
7

-0
.0

2
-0

.0
2

0.
12

-0
.0

6
0.

00
0.

14
-0

.0
4

-0
.2

0
-0

.0
7

-0
.0

5
0.

05

2
5

-0
.0

5
0.

08
-0

.0
3

0.
11

-0
.1

9
-0

.1
3

-0
.0

7
0.

03
0.

01
0.

17
-0

.0
2

0.
07

0.
16

0.
02

-0
.1

1
-0

.0
5

-0
.0

2
0.

08

2
6

-0
.0

5
0.

08
-0

.0
3

0.
11

-0
.1

9
-0

.1
3

-0
.0

7
0.

03
0.

01
0.

17
-0

.0
2

0.
07

0.
16

0.
02

-0
.1

1
-0

.0
5

-0
.0

2
0.

08

2
7

-0
.0

1
0.

07
0.

10
0.

08
-0

.1
9

-0
.1

2
-0

.0
7

-0
.0

2
-0

.0
3

0.
10

-0
.0

8
-0

.0
2

0.
14

-0
.0

6
-0
.2
3

-0
.0

7
-0

.0
6

0.
03

	Abstract
	Resumen
	Introduction
	Background
	Text analysis
	Source code analysis
	Preprocessing and feature extraction
	Training and classification
	Challenges

	Source code metrics
	Self-regulation learning
	Self-regulated learning on computer programming courses

	Related works on student's source code analysis
	Cheat detection
	Automatic feedback and assessment
	Programming expertise

	Strategy to analyze student assignments source code
	Data sources and preprocessing
	Source code analysis
	Data analysis

	Data exploration
	Source code metrics
	Length based metrics
	Complexity based metrics

	Program execution results
	Motivational traits and learning strategies

	Correlations
	Technical correlations
	Technical and motivational correlations

	Clustering
	Hierarchical clustering of technical features
	Hierarchical clustering of MSLQ questions
	Bi-clustering of technical and MSLQ features
	Correlations of groups of source code metrics, motivational learning strategies, and students performance
	Spectral bi-clustering of technical and MSLQ features

	Predictive model
	Classification model
	Regression model

	Conclusions and Future Work
	General conclusions
	Contributions
	Publications
	Future work

	Bibliography
	Correlation tables

