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Abstract

This research project aims to develop a methodology to perform rock slope

stability analysis considering the aleatory and epistemic uncertainty when

the information on geomechanical parameters is limited. In rock mechanics,

deterministic and probabilistic approaches are widely used in the decision-

making process. However, the earlier does not consider the uncertainty, and

the latter has limitations to account for the epistemic uncertainty and requi-

res assumptions on probability distributions when robust data sets are not

available. Therefore, we resorted to the Evidence Theory as a tool to describe

the epistemic and aleatory uncertainty of input geomechanical variables and

propagate them trough limit equilibrium models, in which the geometry is

controlled by the joints orientation. To perform a better description of the

variability of the rock mas properties, the project utilized a short-range pho-

togrammetry system, which allowed us to have robust and reliable data sets

on joints geometry to be modeled as Kent distributed variables. Besides, we

suggested a procedure to update the reliability analysis acknowledging that

orientations follow a Kent distribution. The application of the methodology to

a rock slope in a sandstone mine showed its suitability to be applied in actual

engineering projects. Consequently, the main contribution of this project is an

rock slope evidence theory reliability-based framework for combining robust

data sets on joints orientation, with limited information on geomechanical

parameters, that can be updated as new information is available.

Key words: Theory of Evidence, Dempster Shafer Structure, reliability, epistemic

uncertainty, aleatory uncertainty, slope stability, limit equilibrium, rock wedge,

discrete fracture network (DFN), short-range photogrammetry, mixtures model .

Resumen

El objetivo de este proyecto de investigación es desarrollar una metodoloǵıa

para efectuar análisis de confiabilidad de la estabilidad de taludes rocosos,

teniendo en cuenta la incertidumbre cuando la información sobre los paráme-
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tros geomecánicos de entrada es limitada. En mecánica de rocas, los métodos

determińısticos y probabiĺısticos son ampliamente utilizados en el proceso

de toma decisiones. No obstante, el primero no considera la incertidumbre y

el segundo tiene limitaciones para representar la incertidumbre epistémica y

tiene que asumir la distribución de probabilidad de las variables de entrada.

Por lo tanto, se recurre a la Teoŕıa de la Evidencia como una herramienta

para describir la incertidumbre aleatoria y epistémica de los parámetros geo-

mecánicos y propagarla a través de modelos de equilibrio ĺımite, en los que

la geometŕıa es controlada por la orientación de las discontinuidades. Para

llevar a cabo una mejor descripción de la variabilidad en el macizo, el pro-

yecto utilizó fotogrametŕıa de corto alcance, lo que permitió obtener series

de datos robustas y confiables de la geometŕıa de las discontinuidades, que

fue modelada como una variable aleatoria con distribución Kent. Además,

se desarrolló un procedimiento para actualizar los análisis de confiabilidad

teniendo en cuenta la distribución de probabilidad de la orientación de las

discontinuidades. La aplicación de la metodoloǵıa en un talud rocoso de una

mina de arenisca mostró su aplicabilidad a proyectos reales. Consecuente-

mente, la principal contribución de este trabajo es la generación de un marco

de referencia para efectuar la evolución de confiabilidad de taludes rocoso

basado en la teoŕıa de la evidencia que permite combinar las series robustas

de la orientación de los planos de discontinuidad, con información limitada

de sus parámetros de resistencia, que puede ser actualizada a medida que se

genera nueva información.

Palabras clave: Teoŕıa de la Evidencia, Estructuras Dempster Shafer, confiabili-

dad, incertidumbre aleatoria, incertidumbre epistémica, estabilidad de taludes,

equilibrio ĺımite, cuñas de roca, redes discretas de fracturamiento, fotogrametŕıa

de corto alcance, modelo de mezclas.



Content

VII

Resumen IX

List of Figures XI

List of Tables XXI

1. Research Framework 2

1.1. Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2. Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1. Aim (General objective) . . . . . . . . . . . . . . . . . 8

1.3.2. Specific objectives . . . . . . . . . . . . . . . . . . . . . 9

1.4. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. Dempster-Shafer Theory of Evidence 13

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2. Theoretical background . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1. General concepts on probability . . . . . . . . . . . . . 17

2.2.2. Dempster - Shafer structures (DSS) . . . . . . . . . . . 18

3. Stability Analysis of Rock Wedges with Kent Distribution 31

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2. Modeling orientation of joints . . . . . . . . . . . . . . . . . . 33

3.2.1. Kent distribution parameters estimation . . . . . . . . 35

3.2.2. Kent distribution simulation . . . . . . . . . . . . . . . 39



xii Content

3.3. Probabilistic analysis of stability . . . . . . . . . . . . . . . . . 43

3.3.1. Deterministic wedge stability model . . . . . . . . . . . 44

3.3.2. Removable and unstable wedges . . . . . . . . . . . . . 49

3.4. Probabilistic analysis of rock wedge stability . . . . . . . . . . 51

3.4.1. Deterministic modeling . . . . . . . . . . . . . . . . . . 52

3.4.2. Joints: combinations, slope: probabilistic univariate, strength:

probabilistic . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.3. Joints: Kent, slope: Kent or probabilistic, strength: pro-

babilistic . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5. Probabilistic stability analysis of El Pedregal Mine . . . . . . 58

3.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4. Rock Wedge Stability Analysis by Dempster-Shafer theory of

evidence 75

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1. Joint orientation as combinations . . . . . . . . . . . . 77

4.1.2. Joint orientation simulated as Kent . . . . . . . . . . . 79

4.2. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4. Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5. Rock slope stability with DSS and DFN 94

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3. Example analysis . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6. Updating the Reliability Assessment of Rock Wedges 114

6.1. Updating the probability of failure of rock slopes . . . . . . . . 116

6.1.1. Dempster’s rule . . . . . . . . . . . . . . . . . . . . . . 120

6.1.2. Yager’s rule . . . . . . . . . . . . . . . . . . . . . . . . 120

6.1.3. Mixing rule . . . . . . . . . . . . . . . . . . . . . . . . 121



Content xiii

6.2. Proposed alternative for combining information . . . . . . . . 122

6.2.1. Theoretical Framework . . . . . . . . . . . . . . . . . . 123

6.2.2. Mixtures model description . . . . . . . . . . . . . . . 124

6.2.3. Updating the rock wedge reliability assessment by com-

bining directional data . . . . . . . . . . . . . . . . . . 126

6.3. Application Examples . . . . . . . . . . . . . . . . . . . . . . 131

6.3.1. Updating the stability of rock wedges by the mixing rule131

6.3.2. Updating the probability of failure of keyblocks . . . . 140

6.4. Updating clusters information . . . . . . . . . . . . . . . . . . 149

6.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7. Concluding remarks 159

A. Short Range Photogrammetry for Geotechnical Characteriza-

tion of Rock Masses 184

A.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.2. Conventional measurements . . . . . . . . . . . . . . . . . . . 185

A.3. Case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

A.3.1. Structural geology . . . . . . . . . . . . . . . . . . . . 189

A.3.2. Data adcquisition by conventional technique . . . . . . 190

A.3.3. Data acquisition by the remote system . . . . . . . . . 193

A.3.4. Measuring geometrical features . . . . . . . . . . . . . 197

A.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

A.4.1. Orientation . . . . . . . . . . . . . . . . . . . . . . . . 200

A.4.2. Spacing and joint trace length . . . . . . . . . . . . . . 201

A.4.3. Time and efficiency . . . . . . . . . . . . . . . . . . . . 203

A.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

B. Kent distribution vs Fisher distribution 206

C. Results supplement 213

D. Appendix: Scripts 226



List of Figures

1-1. Mineral production in Colombia in 2014, figures from UPME

[2015] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1-2. Fatalities associated with mining activities between 2005 and

July 2019 [Agencia Nacional de Mineria, 2019] . . . . . . . . . 7

1-3. Distribution of fatalities associated with mining activities bet-

ween 2005 and July 2019 [Agencia Nacional de Mineria, 2019] 7

1-4. Project methodology . . . . . . . . . . . . . . . . . . . . . . . 11

2-1. Example of multivalued mapping to generate a DSS . . . . . . 22

2-2. A random set induced by a multivalued mapping defined for a

set Z. After Tonon et al. [2000a] . . . . . . . . . . . . . . . . . 23

2-3. Any distribution probability can be assumed between the up-

per and lower bound of the ith focal element. After Tonon

et al. [2000a] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2-4. Upper bound (Pl) and lower bound (Bel) on precise probabi-

lity. After Schweiger and Peschl [2005b] . . . . . . . . . . . . . 25

2-5. DSS constructed from UCS test results. . . . . . . . . . . . . 27

2-6. Process to compute the bounded probability function of the

system response, based on Dempster Shafer structures . . . . . 29

3-1. Structural information collected in El Pedregal Mine in 1997.

Three joint sets can be clearly identified . . . . . . . . . . . . 32

3-2. Kent distribution shape for different values of eccentricity . . . 35

3-3. Ordered axis rotation to align data with reference coordinate

system. Adapted from Kasarapu [2015] . . . . . . . . . . . . . 36

3-4. Algorithm to estimate Kent distribution parameters from a

cloud of poles . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



List of Figures xv

3-5. Truncated exponetial envelope to simulate the Kent distribu-

tion [Kent, 2012] . . . . . . . . . . . . . . . . . . . . . . . . . 40

3-6. Algorithm to simulate a sample of N planes with a Kent dis-

tribution by an A/R algorithm . . . . . . . . . . . . . . . . . 43

3-7. Tetrahedral wedge model [Low, 1997], adapted from Jimenez-

Rodriguez and Sitar [2006] . . . . . . . . . . . . . . . . . . . . 45

3-8. Horizontal angles defined by Low’s wedge model . . . . . . . . 46

3-9. Plane triangle. Joints and slope planes set-up . . . . . . . . . 47

3-10.Plane triangle. Regions defined by joints combination . . . . . 48

3-11.Algorithm to calculate the wedge factor of safety . . . . . . . . 53

3-12.Algorithm to calculate the probability of failure . . . . . . . . 55

3-13.Algorithm to calculate the probability of failure of a wedge . . 56

3-14.Comparison among measured orientation and 10000 orienta-

tion planes simulated as Fisher and Kent distributions for sour-

ces of information 0 and 2 . . . . . . . . . . . . . . . . . . . . 62

3-15.Algorithm to calculate a probability function from the deter-

ministic factor of safety of each piece of evidence . . . . . . . . 64

3-16.Deterministic factor of safety computed expressed as a Dempster-

Shafer structure . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3-17.Selected probability functions for model: Joints: Combination.

Slope: Uniform distributed. Strength: Uniform distributed . . 66

3-18.Selected probability functions for model: Joints: Combination.

Slope: Normal distributed. Strength: Normal distributed . . . 67

3-19.Probability function for the factor of safety considering the

information collected in 2017 . . . . . . . . . . . . . . . . . . . 68

3-20.Probability of failure for information collected in 2017 . . . . . 70

3-21.Probability of factor of safety lower than 3.0 for information

collected in 2017. . . . . . . . . . . . . . . . . . . . . . . . . . 70

3-22.Probability functions for information collected in 2017. Slope

orientation modeled as deterministic . . . . . . . . . . . . . . 71

3-23.Effect of simulating orientation by Fisher rather than Kent

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



xvi List of Figures

4-1. Algorithm to perform reliability assessment of rock wedges

considering the combination of joint planes and strength pa-

rameters as DSS . . . . . . . . . . . . . . . . . . . . . . . . . 78

4-2. Algorithm to perform reliability assessment of rock wedges. . 79

4-3. Assessed scenarios. Stereographic projection of major planes

for mean orientations . . . . . . . . . . . . . . . . . . . . . . . 82

4-4. DSS for wedge factor of safety considering the combination of

collected planes . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4-5. Interval size of probability of failure (FS < 1,0) for a wedge

formed by joint set 1 and bedding (Scenarios 1 and 2). . . . . 86

4-6. Interval size of probability of failure (FS < 1,0) for a wedge

formed by joint sets 1 and 2 (Scenarios 3 and 4). On the left,

probabilistic simulated planes. . . . . . . . . . . . . . . . . . . 87

4-7. Interval size. Wedge formed by joint set 2 and bedding. Proba-

bility of having a factor of safety lower than N (N = 1, 2, ..., 10) 88

4-8. Area between FoS DSS for different analyzed scenarios. . . . . 90

4-9. Area between factor of safety DSS for different analyzed sce-

narios. Left, wedge formed by joint set 2 and bedding. Right,

wedge formed by joint sets 1 and 2 . . . . . . . . . . . . . . . 91

5-1. Proposed algorithm to compute the probability function of the

probability of failure . . . . . . . . . . . . . . . . . . . . . . . 101

5-2. Process followed to compare DFN geometry obtained from a

Fisher and Kent distribution . . . . . . . . . . . . . . . . . . . 103

5-3. Simulated planes with the same centroid coordinates but diffe-

rent orientations. Left: simulated as Fisher. Right: Simulated

as Kent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5-4. Examples of removable blocks bounded by the DFN for Fisher

and Kent distributed planes orientations. In green type III

block and yellow Type II blocks . . . . . . . . . . . . . . . . . 106

5-5. Summary of removable blocks with the total volume for DFN

simulation assuming a Fisher and Kent distribution for Station

1 at El Pedregal Mine . . . . . . . . . . . . . . . . . . . . . . 107

5-6. Cross sections of the discrete fracture network . . . . . . . . . 108



List of Figures xvii

5-7. Procedure to combine the probability of failure of several DFN

realizations based on DSS . . . . . . . . . . . . . . . . . . . . 109

5-9. Dempster Shafer structure built for the probability of having

unstable blocks from DFN . . . . . . . . . . . . . . . . . . . . 110

5-8. Examples of removable blocks bounded by the DFN simulation

for combination with DSS . . . . . . . . . . . . . . . . . . . . 111

6-1. Overview of input DSS updating process . . . . . . . . . . . . 118

6-2. Representation fo arbitrary evidence that consist of six pieces

of evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6-3. The methodology applied to compute and update the proba-

bility of failure . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6-4. Relative Sensitivity Index for Rock Wedge Failure . . . . . . 135

6-5. Effect of bedding plane dip direction on the factor of safety . 136

6-6. Combined bedding dip angle . . . . . . . . . . . . . . . . . . . 138

6-7. Bedding friction angle. Aggregation of information, only one

source per period . . . . . . . . . . . . . . . . . . . . . . . . . 139

6-8. Factor of safety DSS computed with the evidence collected in

1997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6-9. DSS for the factor of safety . . . . . . . . . . . . . . . . . . . 140

6-10.Concepts related to the formulation of the block theory model 141

6-11.Factor of safety DSS computed with the evidence collected in

2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6-12.Factor of safety DSS computed with the evidence collected in

2016 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6-13.Original DSS, before combining . . . . . . . . . . . . . . . . . 146

6-14.Cumulative probability distribution function computed from

information sources before aggregation . . . . . . . . . . . . . 147

6-15.DSS on inputs after combining . . . . . . . . . . . . . . . . . . 149

6-16.DSS of the block factor of safety . . . . . . . . . . . . . . . . . 150

6-17.Clustering resulting from applying the mixtures model to the

information collected in 1997 for the bedding plane . . . . . . 151



xviii List of Figures

6-18.DSS for the wedge factor of safety, obtained after updating the

orientation by the EM algorithm and the friction angle by the

mixing rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6-19.Comparison among DSS combination rules . . . . . . . . . . . 152

6-20.Comparison of the wedge DSS FoS for different combination

rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6-21.DSS of the block factor of safety . . . . . . . . . . . . . . . . . 155

6-22.DSS for the factor of safety for the information collected in 2017.157

A-1. Location of The Pedregal Mine . . . . . . . . . . . . . . . . . 188

A-2. Detailed view of the sandstone shale sequence in the main slope189

A-3. El Pedregal Mine. General plan view of the geological model.

After Geologia y Geotecnia [2011] . . . . . . . . . . . . . . . . 190

A-4. El Pedregal Mine. Typical cross section of the rock mass. After

Geologia y Geotecnia [2011] . . . . . . . . . . . . . . . . . . . 191

A-5. Componets of ShapeMetrix3D system. After GmbH [2010] . . 193

A-6. Slope characterization with ShapeMetrix3D . . . . . . . . . . 194

A-7. Surveyed points and orientation line used for image rotation. . 195

A-8. 3D image model reconstructed form two overlapping images.

After GmbH [2010] . . . . . . . . . . . . . . . . . . . . . . . . 195

A-9. 3D image form El Pedregal Mine generated by ShapeMetrix3D 196

A-10.El Pedregal Mine. Slope mapped with ShapeMetrix3D . . . . 197

A-11.Example of 3D image processing. Planes are highlighted ac-

cording to clustering . . . . . . . . . . . . . . . . . . . . . . . 199

A-12.Poles plotted on stereonet for Station 7 . . . . . . . . . . . . . 200

A-13.Poles measured in El Pedregal mine. Left: measured by com-

pass. Right: measured by ShapeMetrix3D . . . . . . . . . . . . 201

B-1. Joint planes and slope orientation assessed . . . . . . . . . . . 207

B-2. Simulation of orientation planes for joint 1. 194/44 . . . . . . 208

B-3. Probability of failure for different scenarios . . . . . . . . . . . 209

B-4. Variation of the probability of failure with respect to the Fisher

distribution value. c = 25 kPa . . . . . . . . . . . . . . . . . . 210

B-5. Variation of the probability of failure with respect to the Fisher

distribution values. c = 40 kPa . . . . . . . . . . . . . . . . . 211



List of Figures xix

B-6. Probability function for different values of concentration and

ovalness parameters. c = 40kPa, phi = 30 . . . . . . . . . . . 212

B-7. Probability function all combinations of concentration and oval-

ness parameters. c = 40kPa, phi = 30 . . . . . . . . . . . . . . 212

C-1. DSS for the factor of safety computed for the combinations of

measured planes . . . . . . . . . . . . . . . . . . . . . . . . . 214

C-1. DSS for the factor of safety computed for the combinations of

measured planes . . . . . . . . . . . . . . . . . . . . . . . . . 215

C-1. DSS for the factor of safety computed for the combinations of

measured planes . . . . . . . . . . . . . . . . . . . . . . . . . 216

C-2. DSS for the wedge factor of safety for the orientation simulated

as Kent distributed random variable . . . . . . . . . . . . . . 217

C-2. DSS for the wedge factor of safety for the orientation simulated

as Kent distributed random variable . . . . . . . . . . . . . . 218

C-2. DSS for the wedge factor of safety for the orientation simulated

as Kent distributed random variable . . . . . . . . . . . . . . 219

C-3. DSS for the factor of safety computed for the combinations of

measured planes . . . . . . . . . . . . . . . . . . . . . . . . . 220

C-3. DSS for the factor of safety computed for the combinations of

measured planes . . . . . . . . . . . . . . . . . . . . . . . . . 221

C-3. DSS for the factor of safety computed for the combinations of

measured planes . . . . . . . . . . . . . . . . . . . . . . . . . 222

C-4. DSS for the wedge factor of safety for the orientation simulated

as Kent distributed random variable . . . . . . . . . . . . . . 223

C-4. DSS for the wedge factor of safety for the orientation simulated

as Kent distributed random variable . . . . . . . . . . . . . . 224

C-4. DSS for the wedge factor of safety for the orientation simulated

as Kent distributed random variable . . . . . . . . . . . . . . 225



xx List of Figures



List of Tables

2-1. Example of multivalued mapping to generate a DSS . . . . . . 22

2-2. Example: UCS results . . . . . . . . . . . . . . . . . . . . . . 26

2-3. Example: DSS constructed from UCS test results. . . . . . . . 26

3-1. Main scenarios considered . . . . . . . . . . . . . . . . . . . . 52

3-2. El Pedregal mine. Input deterministic parameters . . . . . . . 59

3-3. El Pedregal mine. Uniform distribution parameters . . . . . . 60

3-4. El Pedregal mine. Truncated normal distribution parameters . 61

3-5. El Pedregal mine. Deterministic factor of safety for mean orien-

tation 1997, 2011, and 2016 . . . . . . . . . . . . . . . . . . . 61

3-6. Factor of safety. Analysis: Deterministic. Year: 2017. . . . . . 63

3-7. Probability of Failure according to information collected in

2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4-1. Joint strength parameters expressed as DSS . . . . . . . . . . 81

4-2. Rock wedges slope orientation and involved joint sets . . . . . 82

4-3. Area between bound of the factor of safety DSS . . . . . . . . 89

4-4. Descriptive statistics of area between bound of the factor of

safety DSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5-1. Kent and Fisher DFN simulation for station 1, keeping joint

planes centroids . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5-2. Joint strength parameters expressed as DSS . . . . . . . . . . 109

6-1. Mechanical properties measured on rock joints . . . . . . . . . 132

6-2. Joint plane and slope average parameters . . . . . . . . . . . . 133

6-3. Input random sets on bedding plane friction angle . . . . . . . 135

6-4. Input random sets on bedding dip and dip direction . . . . . . 137



List of Tables 1

6-5. Computed probability of failure . . . . . . . . . . . . . . . . . 141

6-6. Input DS structures, defined for the orientation of planes data 146

6-7. Combined DS structures according to mixing rule . . . . . . . 147

6-8. Combined DS structures according to Dempster rule . . . . . 148

6-9. Combined DS structures according to Yager rule . . . . . . . . 148

6-10.Weighting coefficients for the bedding planes orientation mea-

sured in El Pedregal mine in 1997, 2011 and 2016 . . . . . . . 150

6-11.FoS DSS area for the evidence collected in 1997, 2011 and

2016, along with its aggregation . . . . . . . . . . . . . . . . . 153

6-12.Wedge FoS DSS area . . . . . . . . . . . . . . . . . . . . . . . 154

6-13.Weigthing coefficients for pieces of information on joint 2 and

bedding orientations. Computed according to the algorithm

proposed in this reserach . . . . . . . . . . . . . . . . . . . . . 156

A-2. Summary of the main structural features identified in the mine 190

A-1. Description of lithological sequence reported in El Pedregal Mine191

A-3. Summary of the historical information collected by traditional

techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

A-4. Summary of information collected with ShapeMetrix3D . . . . 198

A-5. Mean orientation of planes using compass . . . . . . . . . . . . 201

A-6. Mean orientation of planes using ShapeMetriX3D . . . . . . . 202

A-7. Measured trace length . . . . . . . . . . . . . . . . . . . . . . 202

A-8. Measured joint spacing . . . . . . . . . . . . . . . . . . . . . . 203

B-1. Input shape parameters for rock joint planes simulation . . . . 207



1. Research Framework

Colombia is a developing country with active mining industry and growing

development of infrastructure. In most of these projects, engineered rock slo-

pes need to be excavated. Thus, engineers should be able to perform reliable

designs in rock masses, considering their nature and variability.

Rock masses are subjected to a long history of stresses such as tectonic loads,

earth-quakes, glaciations, subsidence, tidal effects, and gravity. In most cases,

these stresses bring fracturing to the rock mass, which controls the rock mass

response. Therefore, the main feature of rock masses that makes them diffe-

rent from other civil engineering materials is the presence of discontinuities.

Hence, rock joints should be explicitly accounted for in rock mass models

intended for predicting its response under perturbations. This can be achie-

ved by defining mechanisms of failure or by modeling the entire rock mass

structure explicitly.

Regarding the mechanisms of failure, the planar, wedge, and toppling failure

are widespread models utilized in rock slope practice. The block theory [Shi

et al., 1985] provides an alternative to identify arbitrary shape unstable blocks

within several joint sets. However, it does not consider the spatial location of

those joints. The discrete fracture networks (DFN) overcome the key block

limitations because they model each fracture plane, with its corresponding

location within a reference volume.

Regardless of the representation of the rock structure, each model is just a

realization of such an uncertain geometry. Hence, to have a better understan-

ding of the most likely response of the rock mass, several realizations of the

rock mass geometry are required along with the corresponding mechanical

analysis.

The reliability analysis provides a systematic framework to account for the

uncertainty and propagate it through the desired model. However, it requires
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a sound selection of the model because the computational cost constraints

the applicability of the reliability assessment when several realizations are

required.

Conventionally, reliability assessment is performed by probabilistic techniques

that need to know beforehand the probability distribution of the inputs.

However, this is not possible in many geotechnical problems, because of the

limited information on materials properties. Therefore, alternative concepts

have been developed to cope with uncertainty properly.

These alternative approaches are based mainly in interval estimates, inclu-

ding fuzzy sets, interval probability, and Evidence Theory, which have been

subsumed in the term imprecise probability. Among these approaches, the

Dempster Shafer Theory of Evidence, DST, is a suitable tool for taking into

account the uncertainty with limited information and can be conveniently

visualized [Oberguggenberger, 2012]

In consonance with the aforementioned, this research aims at developing a

methodology for performing reliability assessment of rock slopes considering

that discontinuities control the rock mass response. This is accomplished by

assessing the most common mechanism of failure and DFN, within a DST

framework.

At this point, it is worth to mention that this research was part of the pro-

ject ”Quantitative Risk Assessment in Mining Rock Slopes”funded by the

National University of Colombia and Colciencias. Hence, the results and con-

tributions of this research were relevant inputs to that project.

As for the structure of this document, this chapter presents the problem

statement and justification, objectives, methodology, and the main contri-

butions; in the second chapter, the Dempster Shafer Theory of Evidence,

DST, is introduced as a framework to deal with the epistemic and aleatory

uncertainty.

Subsequently, several wedge failure stability analyzes are conducted, in which

the uncertainty components are progressively added. Thus, in Chapter 3,

probabilistic approaches with Kent distribution are utilized to represent the

aleatory uncertainty of joints orientation. After, in Chapter 4, an algorithm

to combine structural with mechanical information for computing rock wedge

stability within the DST framework is presented. This procedure is extended
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to the stability analysis using Discrete Fracture Networks in Chapter 5.

Additionally, Chapter 6 explores the DST as probable reasoning for upda-

ting the reliability analysis of the stability of rock slopes. Finally, Chapter 7

compiles the main conclusions and recommendations for future research.

Each chapter is illustrated by examples, based on the information collected in

a sandstone mine (quarry) located in Une, Cundinamarca, Colombia, opera-

ted by Gravillera Albania that provided the information they have collected

since 1997, as part of their thorough supervision program. Besides, in this

project, a short range stereoscopy technique was introduced in Colombia to

gather structural information on the rock mass, as detailed in Appendix A.

1.1. Problem statement

Rock masses are natural geological materials affected by fractures at different

scales. These fractures highly influence the mechanical response of the rock

mass, even more, when fractures are filled with any fluid. Therefore, in most

cases, rock masses behave as a discrete medium, in which joints and blocks

are continuously interacting.

To mimic the response of rock slopes, several models are available at different

scales. For one to one mapping scale, numerical models are the more suitable

modeling technique. These models are mainly continuum and discontinuum

based. Considering the discrete nature of rock masses, the discontinuum ba-

sed methods are the most appropriate for modeling the performance of rock

slopes. The key concept of the discrete approach is that the problem domain

is treated as an assemblage of rigid or deformable blocks, and the contacts

between them need to be identified and continuously updated during the

entire deformation/motion process, and represented by proper constitutive

models [Jing, 2003]. In other words, multiple discrete blocks interact with

continuously changing contacts. Hence, such methods are computationally

expensive and time-consuming [Khan, 2010].

Alternatively, limit equilibrium based method, in which potentially unsta-

ble blocks are identified, and subsequently, their stability is assessed. This

approach is suitable when input parameters are uncertain, and several reali-

zations are required to capture and propagate such an uncertainty since this
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method is computationally less expensive than discrete elements.

The limit equilibrium method requires both mechanical and geometrical pro-

perties of rock masses. Nonetheless, the determination of these properties is

not straightforward, since the rock mass is a heterogeneous material, in which

physical and mechanical properties change from point to point. This varia-

bility introduces an aleatory uncertainty to the model. Moreover, there is an

epistemic uncertainty linked to the ’imperfect knowledge’ about the property.

Besides, given the nature of the information and technical and financial cons-

traints, the amount and quality of information are very heterogeneous as

well. In rock mechanics, there are robust data sets on rock mass geometri-

cal features (joints dip and dip direction, separation, and persistence), while

information on joints strength parameters is limited to a few results. This

feature should be considered when the rock mass response is analyzed.

There are several alternatives to deal with uncertainty. For engineers, the

most popular alternative is the purely probabilistic approach. However, the

classic probability cannot consider the epistemic uncertainty, and the input

probabilities are required to perform the reliability assessment. Otherwise,

simplifications and assumptions on the input probability distributions are

required. [Oberguggenberger, 2012].

In this context, alternative approaches have appeared since the early 90ies

under the name of imprecise probabilities and are based on interval analy-

sis, such as DST. These models of the data uncertainty should reflect and

incorporate the level of information available in the data and propagate it

through numerical computation and deliver an output whose uncertainty is

formulated in the same terms [Oberguggenberger, 2012].

Accordingly, the DST is a suitable tool to deal with uncertainty (aleatory

and epistemic) in rock slopes modeling, since these provide an output that

reflects the uncertainty of input parameters, even when these are the result

of limited information. Techniques such as DST allow defining bounds of the

probability of the model response.

Based on the above mentioned, there is a need to deal with uncertainty (un-

der limited information) in rock mass models that capture its discrete nature.

Consequently, an approach capable of coping with the uncertainty associated

with the geometry and mechanical properties of rock masses, based on limit
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equilibrium methods is required. Therefore, in this project, the capabilities

of DST as a tool to perform reliability assessment of rock slopes, articula-

ting robust data sets on rock slope geometry, and limited information on

geomechanical parameters were explored.

1.2. Justification

The mining industry in Colombia has had an increasing role in the economy

in the last 10 years. Nowadays, 8 % of GDP is provided by the mining activity.

In 2014 Colombia extracted 16.765.586 tons of minerals, mainly limestone for

cement production (92 %) [UPME, 2015], see Figure 1-1 . This figure includes

the production of mineral in Colombia aside from limestone.

Most of the limestone and coal is extracted in opencast excavations. Hence,

this industry has to deal with many rock slopes, which have to be properly

designed to guarantee a safe operation.

Figure 1-1.: Mineral production in Colombia in 2014, figures from UPME

[2015]

Unfortunately, the Colombian mining industry has a high rate of accidents

with many injuries and fatalities per year. As stated in Agencia Nacional de

Mineria [2019] between 2005 and 2019, 1272 emergencies related to mining

activity were reported, in which 1448 people died, see Figure 1-2. From these

casualties, 37 % of the fatalities are associated with excavation failures, either

underground or surface excavations, as can be observed in Figure 1-3.

On the other hand, Colombia is a developing country with 16700 km of
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Figure 1-2.: Fatalities associated with mining activities between 2005 and

July 2019 [Agencia Nacional de Mineria, 2019]

Figure 1-3.: Distribution of fatalities associated with mining activities bet-

ween 2005 and July 2019 [Agencia Nacional de Mineria, 2019]

primary road network in 2012 [DPN, 2013], in which 71 % of freight transport

was made by roads in 2010 (around 181.021 million tons) [Mintransporte,

2011] . This road network is concentrated in mountainous areas of the country

(Andean region of Colombia). Indeed, 52 % of the whole Colombian road
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network is located in highly undulating or mountainous terrain.

Consequently, there is an increasing need for developing more realistic and

reliable rock mass models to face the engineering challenges generated by

new infrastructure projects in Colombia, but also to reduce the number of

casualties associated to rock mass failure in mining.

Two key aspects of rock masses have to be considered to formulate more

realistic and accurate models: the discontinuum nature of rock masses and

the uncertainty associated with their heterogeneity.

So far, few pieces of research have been published on the analysis of the

mechanical behavior of the rock mass using probability-based methods to

consider the randomness of the discontinuity geometry [Ma and Fu, 2014].

Reliability assessment using probabilistic point estimate, response surface,

Monte Carlo, and Latin Hypercube methods were presented by Hammah

[2009]. An approach to consider the randomness of rock discontinuities with

robust block generation algorithms and the key block was proposed by Ma

and Fu [2013] and Ma and Fu [2014]. Gheibie et al. [2013] presented a 3D

DEM modeling of a rock slope in Turkey, defining a reliability index for the

input geomechanical parameters and considering the geometry of the joints

as deterministic. Shen and Abbas [2013] developed a 2D DEM model of a

landslide in China, in which the uncertainty of geomechanical parameters is

represented by random sets, again the discontinuities are assumed as deter-

ministic.

Although some efforts have been made to take into account the uncertainty

in rock mass modeling, none research has incorporated the geometrical and

geomechanical uncertainty, to perform reliability assessment in rock masses

taking advantage of the capabilities of Dempster Shafer Theory of Evidence.

1.3. Objectives

1.3.1. Aim (General objective)

The main objective of this project is to:

Develop a methodology to perform rock slope stability reliability assessment

considering both the epistemic and the aleatory uncertainty by Dempster
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Shafer Theory of Evidence, combining robust data sets on joint orientation

with limited information on geomechanical parameters.

1.3.2. Specific objectives

1. To model the aleatory and epistemic uncertainty of rock mass geome-

chanical parameters by directional probability distributions and Dem-

pster Shafer structures, respectively.

2. To assess the stability of rock slopes by Dempster Shafer Theory and

limit equilibrium models.

3. To develop a procedure for updating the reliability assessment of rock

wedges stability under a DST framework.

1.4. Methodology

The first part of the project comprised a detailed characterization of the

rock mass. El Pedregal Mine, located in Une Cundinamarca was selected

as a case study because they follow a thorough and responsible exploitation

process, which includes periodic inspections of the stability of the mine slopes.

Moreover, the company shared its database on geomechanical parameters

with the university.

This stage was supervised by an experienced geologist who developed a geo-

logical characterization of the area identifying the primary lithologies, geo-

logical structures, and joint sets, according to geological interpretation. It is

desirable to have information collected at different stages of the project or

locations since one of the objectives is to suggest an alternative for updating

the reliability assessment when new information is gathered.

Simultaneously, a field mapping of representative slopes is carried out to

collect detailed information on the joints dip and dip direction, spacing, and

trace length. Most of the mapping was performed by a contactless image

system. This technique assesses surface using three-dimensional images based

on digital photos. The method is intended to extract information to solve

engineering geology problems [3GSM GmbH, 2011]. The reconstruction of
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every point P(X, Y, Z) at the slope face is performed from a corresponding

pair of image points P(u,v) and the known camera orientations. This task

will be developed using the commercially available system: ShapeMetrix3D

[3GSM GmbH, 2011]. This is included in Appedix A.

When this method is properly calibrated, it allows collecting an important

and representative data set on joints geometry since the whole slope face

can be automatically recorded, which is not possible by traditional manual

surveying techniques.

Regarding the mechanical properties, block samples were taken from the slo-

pes. Then, rock cores were extracted from these blocks and strength parame-

ters along discontinuities measured. Unlike joints geometry, the information

obtained from these tests is limited in number, due to the conventional time

and budget constraints of almost every engineering project. This is one of the

main issues that will be studied in this project.

Once the information from the tests was gathered and processed alternatives

to represent the uncertainty of both the geometrical and geomechanical para-

meters of the rock mass were defined. The former is treated with directional

statistics, and the latter with DST, as shown in chapters 3 and 4, respectively.

After, based on the selected alternatives to represent the input information,

a framework to perform reliability assessment, according to DST, was develo-

ped. This is not straightforward since two types of input sets are considered,

one with a large amount of information (joint geometry) and one with li-

mited information (geomechanical parameters). This problem was addressed

involving Monte Carlo simulations and DST. The proposed methodology was

applied to rock slope stability problems, in which the stability is evaluated

by limit equilibrium, according to chapters 4 and 5.

Finally, with the information collected at different locations or times, an

alternative for updating the resulting distribution functions was proposed,

taking advantage of the capabilities of the DST and the mixture model, as

described in Chapter 6.

The resulting methodology to perform reliability assessment and the specific

results applied to the case study are a relevant input for the “Quantitative

Risk Assessment in Mining Rock Slopes”; since this will be the starting point

to assess the hazard.
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In Figure 1-4, a diagram of the methodology just described is presented.

Here, the shadowed regions show the relation of this procedure with the

specific objectives.

Figure 1-4.: Project methodology

The algorithms suggested in this research project were programmed in Pyt-

hon 3.6 available at www.python.org, using the integrated development envi-

ronment, IDE, PyCharm 2018.1 available at www.jetbrains.com. These algo-

rithms were coded as functions, which makes them flexible to be incorporated

into more general application codes. As for the project, these scripts make

feasible the reliability assessment that requires several realizations of the sta-

bility model, as shown in the following chapters. The scripts are included in
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Appendix D.

1.5. Contributions

This project deals with the issue of the uncertainty involved in rock engi-

neering coming from the inherent variability of the parameters, and limited

information. Accordingly, the main contributions of the project are:

1. An evidence theory-based reliability assessment framework for combi-

ning robust datasets on joints orientation that have an aleatory uncer-

tainty, with limited sets of information on geomechanical parameters.

2. A methodology for updating the reliability assessment of the factor of

safety as new information is available, based on evidence theory and

the mixture model.

Moreover, relevant algorithms were developed to accomplish the general ob-

jective of the project. These algorithms are contributions of this research as

well:

1. A Monte Carlo simulation of the rock wedge stability considering the

orientation of rock joints as a Kent-distributed random variable.

2. A modification of the rock wedge stability computation model proposed

by Low [1979, 1997] to consider a broader range of planes combination,

which is required for the above mentioned Monte Carlo simulations.

3. A framework for involving the generation of discrete fracture networks

within an evidence theory framework.
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2.1. Introduction

Decision making under uncertainty is one of the main challenges that a geo-

technical engineer has to face when dealing with rock slope stability. Any

rock mass is by itself a very complex material, which response is controlled

by the presence of discontinuities. Therefore, a proper characterization of

fracturing is required for design purposes. However, this is not a straightfor-

ward task, since rock masses are heterogeneous materials, in which physical

and mechanical properties are variable even for the same lithology.

Such a natural variability on properties introduces an aleatory uncertainty

to the problem. In addition, the ’imperfect knowledge’ resulting from the

limited amount of information available, brings an epistemic component to

the uncertainty. For making an informed decision, both epistemic an aleatory

uncertainty should be accounted for throughout the design process, which is

accomplished by performing a reliability assessment, that can be seen as a

systematic way to account for uncertainty.

The need for considering the uncertainty in civil engineering has been ack-

nowledged since the 1950ies [Freudenthal, 1956]. Later, Casagrande [1965]

highlighted the necessity of calculating and even more important, dealing

with uncertainty in geotechnical projects. Whitman [1984] presented a com-

prehensive description of the evaluation alternatives approaches to use proba-

bility theory in geotechnical applications, such as optimization of exploration

and design, risk assessment and reliability. Whitman stressed that the qua-

lity of probabilistic results is not better than the quality of the deterministic

model underlying and the quality of the inputs.

Reliability assessment has been used to solve rock slope stability problems

since 1970s [Glynn, 1979, McMahon, 1971], including the conditional proba-
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bility of failure, to account for the kinematics and kinetics of the failure. As

mentioned in Chapter 3, the primary trend to consider uncertainty has been

using the probabilistic approach to solve individual slopes, such as Low [1979,

1997], Park [1999], Park and West [2001], considering correlated non-normal

input parameters [Ahmadabadi and Poisel, 2016, Low, 2007] and failure as

a system of multiple blocks [Jimenez-Rodriguez and Sitar, 2006, Jimenez-

Rodriguez et al., 2006, Park et al., 2005], among others.

All these publications focus on developing a reliability assessment of rock

slope by probabilistic techniques. They model structurally controlled failures

with explicit formulations, which are suitable for performing several realiza-

tions of the model at a low computational cost. In fact, many of the proposed

methodologies are compared against Monte Carlo simulations. On the other

hand, researchers resort to secondary information or expert opinion to define

the probabilistic input parameters required for implementing these techni-

ques, due to the limited information available.

The main limitations of this purely probabilistic approach are the need for

information, which is not available in most geotechnical projects [Obergug-

genberger, 2012] and its limitations to capture epistemic uncertainty [Sentz

and Ferson, 2002]. Alternative concepts have been developed to properly

deal with uncertainty, considering that probabilistic models are limited to

deal with uncertainty in the geotechnical field. The concept behind those ap-

proaches is that the presence of epistemic uncertainty leads to a family of

probability functions, with a structure derived from a mathematical model

representing the aleatory uncertainty [Johnson et al., 2008].

These alternative approaches are based mainly on interval estimates, inclu-

ding fuzzy sets, interval probability, and evidence theory, which have been

subsumed in the term imprecise probability. Among these approaches, the

Dempster-Shafer structures provide a framework for bridging the gap between

probability and interval analysis and admitting easily accessible visualization

tools [Oberguggenberger, 2012].



2.2 Theoretical background 15

2.2. Theoretical background

The uncertainty evaluation in engineering modeling is a particular case of

error propagation. This concept implies that the uncertainty of input para-

meters corresponds to an error that has to be propagated throughout the cal-

culation process performed by the engineering model [Baecher and Christian,

2003]. Accordingly, the reliability assessment should be able to incorporate

the level of information available in the final result [Oberguggenberger, 2012].

There are several ways to refer to uncertainty and can be even categorized

[Baecher and Christian, 2003]. Hence, to avoid ambiguity, the term used in

this project are epistemic and aleatory uncertainty and the scope each type

is the following:

Aleatory uncertainty: inherent to the assessed process, in this case, the

natural variability of properties.

Epistemic uncertainty: which reflects the lack of knowledge on the as-

sessed event. Here the uncertainty linked to the limited information on

input parameters is addressed.

Other sources of uncertainty are beyond the scope of this project.

Peschl [2004] explains these types of uncertainty from the point of view of

two observers. If a parameter can behave in a random way (aleatory), its pro-

bability is taken to be in a frequency of occurrence in a long series of events.

Therefore, if two observers have the same evidence, they should obtain the

same value. On the contrary, when uncertainty refers to imperfect knowledge

(epistemic), two observes with the same information can get different values

of probability.

Regarding geological uncertainty, Baecher and Christian [2003] presented an

excellent example to clarify the concept: a die is an example of a randomizing

device, in which any information related to the way it is thrown is irrelevant

to predict its outcome. Conversely, the outcome of a deck of cards depends

entirely from the deck arrangement. If one knows this arrangement, knows

certainly the card outcome. Otherwise, additional information is required to

predict the outcome. Indeed, the more information, the more accurate the
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prediction. This could be taken as an analogy with a geological uncertainty

because a specific geological environment has a setup, but engineers and

geologists do not know what it is. Exploration is just a way to improve the

prediction of geological and geotechnical conditions.

In general sense, there are several ways to account for uncertainty. The selec-

tion of a particular approach will be conditioned by the type of modeling, the

desired accuracy of the analysis, the type and amount of information related

to the input parameters. Some of the available alternatives are [Oberguggen-

berger, 2012]:

1. Deterministic approach: this is the simplest way to model, in which any

parameter X is represented by a single value x. The modeler implicitly

considers the uncertainty by the selection of x. However, this approach

does not reflect the uncertainty associated with X. This is by far, the

most common approach used in Colombia nowadays. Fortunately, this

tendency is changing lately; in fact, lately the Colombian Geological

Service developed a guideline to perform hazard, vulnerability and risk

assessment in slopes involving probabilistic concepts [SGC, 2015]

2. Intervals: in this approach, a parameter X is described by an inter-

val [xL, xU ] that reflects the variability of the parameters. Nevertheless,

it does not give any additional information on its uncertainty. In me-

chanics, this approach has been applied using the concept of convex

intervals [Ben-Haim, 1994, Chen et al., 2017, Qiu et al., 2008, Wang,

2010] and has been extended to solve stability problems of rock wedges

in underground excavations [Dong et al., 2017].

3. Probability: this approach gives a more detailed description of the alea-

tory uncertainty of a parameter X, since it describes the variability and

uncertainty of X in terms of probability distributions. Since the 1960ies

there has been a geometric growth on the number of publications on this

topic. However, it requires enough information to define the probability

distribution of the variable.

4. Sets of probability measures: in this case, a single measure of probability

is replaced by a set of probability measures. Dempster-Shafer structures
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and fuzzy sets are particular prescriptions to obtain sets of probability

measures [Oberguggenberger, 2012].

Traditionally, uncertainty has been treated within a probabilistic framework.

This approach has some limitations when applying to rock mechanics mode-

ling with discrete elements [Oberguggenberger, 2012]:

The probability distributions of inputs has to be known, otherwise as-

sumed.

Techniques like Monte Carlo simulation, aside from inputs probability

distributions, require several realizations to compute the probability

distribution of the response. This is relevant when complex modeling

techniques are applied.

In rock mechanics, the information sources range from a limited number

of field and laboratory results to expert opinion. This sort of informa-

tion is not suitable for probabilistic analysis unless assumptions are

introduced.

Probabilistic approach can deal with aleatory uncertainty, rather than

epistemic.

Therefore, alternative approaches based on interval analysis has appeared in

engineering modeling since the end of the 20th century. Within those tech-

niques, Dempster-Shafer evidence theory arises as a promising alternative to

probabilistic approach, because it can deal with limited information on input

parameters, presented as intervals, without any assumption related to their

probability distribution. Moreover, it allows to represent both epistemic and

the aleatory uncertainty and propagate it through the engineering model.

2.2.1. General concepts on probability

Before introducing the concept of Dempster-Shafer evidence theory, some

general concepts on probability are required.
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Firstly, it is important to clarify that concepts are developed for random

experiments, but can be applied to phenomena in nature [Nguyen, 2006],

and accordingly to rock mass properties. The set of possible outcomes, Ω is

defined as a sampling space. A power set 2Ω corresponds to the set of all

subsets of the sampling space. A map is defined from the power set to the

interval [0,1], which assigns a probability, P , to any subset B⊆ Ω, which is

written as P : 2Ω → [0, 1].

A probability space is a triple (Ω,H, P ), in which H is a σ-algebra, σ-field

i.e.:

1. Ω ∈ H
2. If H ∈ H, then Hc ∈ H
3. If Hn ∈ Hforn ≥ 1, then ∪n≥1Hn ∈ H

A measurable space is a pair (Ω,H) and P:H → [0, 1] is a probability measure,

such that: P (Ø) = 0, P (Ω) = 1, P (∪iH i) = ΣiP (H i), ∀ subset H i in H. The

latter is a property referred as σ-additivity of P .

Given this probability space, a random variable X is a map from a set Ω to

<, such that X−1(B(<) ⊆ H i.e. ∀B ∈ B(<)), X−1(B) ∈ H

2.2.2. Dempster - Shafer structures (DSS)

Scientific literature refers to Dempster-Shafer structures and random sets

to name the same mathematical object. It makes the first approach to the

topic very challenging for engineering background researchers. Hence, some

clarification is needed.

The concept of Dempster-Shafer structure as presented in this document

corresponds to the interpretation of Dempster [1967] of the Belief function as

the lower probabilities induced by a multivalued mapping. According to this

approach, a multivalued mapping from a probability distribution generates a

set-valued random variable, that is a more complex object than the standard

random variable.

Likewise, this approach can be seen as the epistemic interpretation of a ran-

dom finite set, in which a random set is a natural representation of a set of

possible random variables, one of which is the actual one. This interpretation
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of random sets differs from the original application of random sets to conti-

nuous spaces to handle the uncertainty of spatial data, where random sets

are precisely located sets or regions[Couso et al., 2014].

This distinction is essential because the semantics of belief functions and

random sets is hard to approach, due to the different mathematical inter-

pretations and applications developed around each approach. Accordingly, in

order to avoid ambiguity in terminology and to stress the approach followed,

the set-valued random variable is referred to as Dempster-Shafer structures,

with the acronym DSS. This denomination has been already adopted in seve-

ral publications [Bernardini and Tonon, 2010, Ferson et al., 2002, Oberkampf

et al., 2004a,b, Sentz and Ferson, 2002, Tucker and Ferson, 2006], among

others.

The original work developed by Dempster was reinterpreted and generalized

by Shafer to develop their Evidence Theory [Shafer, 1976], which building

block is the probability distribution on the power set of a finite set Couso

et al. [2014], i.e., a Dempster-Shafer structure (DSS).

Shafer [1976] presented both, a theory on evidence and, a theory of probable

reasoning. A theory of evidence, because it copes with weights of evidence.

Also, a theory on probable reasoning because it allows the combination of evi-

dence. Back then, this combination was carried out according to Dempster’s

rule. The probable reasoning is one of the most relative advantages of the

Dempster-Shafer theory of evidence because uncertainty on rock mass pro-

perties is first weighted according to available information and subsequently

can be updated as new evidence is available. This will be explicitly addressed

in Chapter 6.

Although before Shafer [1976], there were no practical applications of Dempster-

Shafer theory, since 1990ies there has been a geometrical growth on the num-

ber DST applications [Beynon et al., 2000a]. Some examples of the most

recent publications on the topic include measuring uncertainty in big data

[Dutta, 2018], multisensor-based activity recognition in smart homes [Al Ma-

chot et al., 2018], skin diseases [Khairina et al., 2018], cancer detection [Kim

et al., 2018], fault in power transformers [Kari et al., 2018], heritage evalua-

tion[Liu et al., 2018], thermal plants monitoring [Moradi et al., 2018], natural

hazard risk assessment [Ballent et al., 2019b], GIS-based risk assessment ap-
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plied to hydrocarbon exploration [Seraj et al., 2019], structural reliability

assessment [Wang et al., 2019] and chemical risk assessment [Rathman et al.,

2018]. These are just a few examples to illustrate how relevant is this approach

to handle decision making under uncertainty. Unfortunately, this is not the

case in geotechnical engineering, where the technique has a huge potential.

The amount of publication on the geotechnical is by no means, comparable

to other fields like AI or medicine. However, there is a growing interest of

the civil engineering and geotechnical community in involving the evidence

theory in the decision-making process, since its applicability is evident.

The entry paper of the set-valued random variable was presented by Tonon

et al. [1996] to predict the rock mass response around a tunnel excavation.

Tonon and Bernardini [1999] pursued the problem of optimization of the li-

ning using DSS and fuzzy sets. Subsequently, Tonon et al. [2000a] presented

an application to compute rock mass parameters (RMR) of rock masses and

some examples. As well as, Tonon et al. [2000b] performed some calcula-

tions of plane failure and tunnel lining design with simple explicit models

using DSS and Monte Carlo simulation. They also showed the advantages of

using the concept of strictly monotonic functions to reduce the number of

computations, which reduces computational needs.

A framework to develop a reliability assessment of geotechnical problems by

finite element methods and DST was developed by Peschl [2004]. This work

presents a comprehensive methodology to perform reliability assessment, in

which inputs are expressed as Dempster-Shafer structures, leading to a boun-

ded probability function for the finite element model. This application was

named random sets finite element method, RS FEM. Subsequently, related

documents have been published with applications of the RS FEM [Schwei-

ger and Peschl, 2004, 2005a,a]. Besides, this method has been applied to the

analysis of tunnel excavations [Nasekhian and Schweiger, 2010, 2011].

A similar approach to the one given by Peschl [2004] was selected by Klap-

perich et al. [2012], Shen and Abbas [2013], but instead of finite elements,

distinct elements are applied. In this case, the deterministic reference model

is run using the discrete element software UDEC, according to the realiza-

tions defined by the combinations of the input Dempster-Shafer structures.

With the results, cumulative probability distributions are built.
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These are the most relevant publications on DST applied to geotechnical and

rock mechanics related problems. Based on these, DST can be applied to more

specific problems in geotechnics. For instance, so far, there are no publica-

tions on the probable reasoning involved in DST, i.e., on the combination of

information from different sources. Besides, although, there are applications

in rock mechanics, the problem of modeling spherical data under a framework

like this, has not been addressed yet. Besides, solutions to generate alterna-

tives to combine limited information from geomechanical parameters, with

more complete sets of information on joint planes orientations have not been

studied.

With this framework, the research project explores the possibilities of DST

the perform rock slope reliability assessment considering:

1. Rock joint orientation distributed as spherical data with a Kent distri-

bution (See Chapter 3).

2. Rock joint strength parameters as DSS (See Chapter 4).

DSS definition

Before giving a formal description of the Dempster-Shafer structures, some

intuitive concepts are presented to introduce the topic. As mention before,

the Dempster approach assumed multi-valued mapping from a probability

into a set space. This is a natural representation of uncertain information, as

presented in the following example.

A dog is hit by a car. One camera reports three cars close to the accident:

one blue, one red and one yellow. One witness says that he saw a blue car

hitting the dog. However, the witness is drunk 70 % of the time. During that

time his information is not considered reliable. Figure 2-1 schematizes the

situation.

The set of car colors defines the probability space. Then, there is multi-valued

mapping, from this to the sets of car. When the witness is drunk, the set with

the three cars is mapped. However, if the witness is sober, the evidence shows

that the blue car hit the dog. As a result, the Dempster-Shafer structure with

the focal elements and probability assignments listed in Table 2-1. These

concepts are described in the following.
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Table 2-1.: Example of multivalued mapping to generate a DSS

Focal elements Probability Assignment

Blue car, yellow car, red car 0.7 (drunk)

Blue car 0.3 (sober)

Figure 2-1.: Example of multivalued mapping to generate a DSS

To define a DSS, let suppose that M observations were made on a parameter

u ∈ U , each of which resulted in an imprecise (non-specific) measurement

given by a set A of values. Let ci denote the number of occurrences of the

set Ai ∈ U , and φ(U) the set of subsets of U. A frequency function m can be

defined such that [Tonon et al., 2000b]:

φ = {Ai : i = 1...n} (2-1)

m : φ(U)→ [0, 1] (2-2)

m[∅] = 0 (2-3)∑
A∈φ(U)

m(A) = 1 (2-4)

φ is called the support of the DSS, the subsets Ai are the focal elements and m

is the basic probability assignment. A pair (φ,m) defines a Dempster-Shafer

structure on U . Each set, Ai ∈ φ, contains possible values of the variable, u,

and m(A) is the probability associated to A [Schweiger and Peschl, 2005a].

In order to obtain the basic probability assignment, consider a probability

measure, φ(z), defined on a universal set Z (set of observations) related to



2.2 Theoretical background 23

U (Set of values of measurements) through a multivalued mapping Γ : Z →
φ(U), as is shown in Figure 2-2, for U corresponding to the real line [Tonon

et al., 2000a]: Then, the basic probabilistic assignment is:

m(Ai = P (zi)) =
ci
M

(2-5)

Figure 2-2.: A random set induced by a multivalued mapping defined for a

set Z. After Tonon et al. [2000a]

In fact, the probability assignment m(Ai) represents the extent to which all

available information supports the claim that a particular element belongs

to the set Ai alone and does not imply anything regarding subsets of Ai.

Any additional information on subsets of Ai must be represented by another

focal element with its corresponding probability assignment [Bernardini and

Tonon, 2010].

According to this multivalued mapping, it is not possible to assign a single

number to each observation, which means that the nature of the method is

imprecise. Hence, it is not possible to calculate the precise probability, Pro,

of a generic u ∈ U , but only lower and upper bounds of this probability

[Schweiger and Peschl, 2005b]. It means that in DST, instead of counting

outcomes of the singleton u ∈ U counts outcomes of subsets Ai ∈ U and an

observation of a subset Ai ∈ U indicates an event somewhere in Ai, without

any specification of the probability that the event be a specific point on Ai,

this is shown in Figure 2-3

When working in the space of real numbers, the support of the DSS is given

by intervals, with their corresponding probability assignment. In this chapter,

the uncertain parameters are considered as intervals (rock joints mechanical

properties), without any specific information related to the distribution or
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Figure 2-3.: Any distribution probability can be assumed between the upper

and lower bound of the ith focal element. After Tonon et al.

[2000a]

variation between the extremes of the interval, along with the probability

assignment.

As for the upper and lower probability calculation, the exact probability

should be somewhere in between the upper and lower bounds of a generic

subset E, this is:

Bel(E) ≤ Pro(E) ≤ PI(E) (2-6)

Where Bel corresponds to the lower bound and is known as the belief fun-

ction. Pl corresponds to the upper bound and is known as the plausibility

function

The belief function is a set value function which can be calculated through

the summation of the basic probability assignment of the subsets Ai included

in E, and the plausibility function is a set value function obtained through the

summation of basic probability assignments of subsets Ai having a non-zero

intersection with E. They are envelopes of all possible cumulative distribu-

tions compatible with the data, as can be seen in Figure 2-4 [Schweiger and
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Peschl, 2005b].

Bel(E) = F∗ =
∑

Ai:Ai⊂E

m(Ai) (2-7)

Pl(E) = F ∗ =
∑

Ai:Ai

⋂
E 6=∅

m(Ai) (2-8)

Figure 2-4.: Upper bound (Pl) and lower bound (Bel) on precise probability.

After Schweiger and Peschl [2005b]

In other words, to obtain the left envelope (upper bound), the distribution

function of each interval in the calculation matrix is assumed to be concen-

trated at the lower bound of each focal element. On the other hand, for the

right envelope (lower bound) the probability mass for each interval is assu-

med to be concentrated at the upper bound of the interval [Schweiger and

Peschl, 2005b]. The bounded distribution function defined by the upper and

lower bounds is referred to as BDF or DSS.

The following example illustrates the concept of a DSS. Let assume a layer of

sandstone, from which four block samples were taken. From each block, two

cores were taken and tested to measure the uniaxial strength, UCS. Table

2-2 summarizes the test results.
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Table 2-2.: Example: UCS results

Sample UCS 1 (MPa) UCS 2 (MPa)

Block 1 53.2 57.9

Block 2 49.3 51.8

Block 3 54.3 55.9

Block 4 60.1 66.3

Table 2-3.: Example: DSS constructed from UCS test results.

Focal elements

Focal element

UCS, MPa
Probability

assignment
Upper

bound

Lower

bound

1 53.2 57.9 0.45

2 49.3 51.8 0.10

3 54.3 55.9 0.35

4 60.1 66.3 0.10

The design team expects a UCS between 55MPa and 60PMa, since this is the

interval specified in technical reports for similar sandstones. Based on this

information, their experience and judgment, the design team defined a DSS

for the sandstone uniaxial compression, like the one shown in Table 2-3. Such

a DSS has four focal elements, Ai, defined by the strength intervals resulting

from each sample. The set of these intervals forms the support of the DSS.

Moreover, each focal element has a probability attached, i.e., the probability

assignment, m. This probability was assigned considering the expected values

and the engineers opinion.

In this example, the results from each block defined the focal elements. Ho-

wever, the selection of the focal elements and probability assignments should

be the result of sound engineering judgment.

The bounded probability distribution function (BDF) for the UCS of the

sandstone can be constructed according to Eqs. 2-7 and 2-8. Figure 2-5 shows

the BDF, where the original focal elements bounds are explicitly marked.
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Figure 2-5.: DSS constructed from UCS test results.

Green lines is the upper bound (left) bound of the UCS DSS and orange line corresponds to the lower (right) bound

Bounds of the system response

Once the DSS of input parameters are defined, the next step is propagating

the uncertainty, represented as DSS through a model, which means that from

the input DSS a DSS of the output is calculated.

Three main tasks should be performed to compute a bounded distribution

function (BDF) of the assessed system, i.e., the DSS for the response of the

model. Firstly, the image (output) of the input DSS through a function f has

to be established. Subsequently, a probability assignment should be assigned

to the computed image. Finally, a bounded cumulative distribution function

of the output is calculated, according to Eqs. 2-7 and 2-8. Below, a brief

description of these steps is presented.

Assume that the random set (R, ρ), which is the image of (T,m) through a

function f. The set (R, ρ) is described as follows:

R = {Rj = f(Ai), Ai ∈ T} (2-9)

f(Ai) = {f(x), x ∈ Ai} (2-10)
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ρ(Rj) =
n∑
i=1

mi(Ai), A1 × . . .× An ∈ R (2-11)

If A1, . . . , An are sets on X1×. . .×Xn, respectively, and x1, . . . , ξn are random

independent sets, then the joint probability assignment is measured by:

m(A1 × . . .× An) =
n∏
i=1

mi(Ai), A1 × . . .× An∈R (2-12)

If the focal element Ai is a closed interval of real numbers: f(Ai) = {x/x ∈
[li, ui]}, then the lower F∗(x), and upper, F ∗(x), probability mass function,

at some point x can be obtained as follows:

F∗ =
∑
i:x≥ui

m(Ai) (2-13)

F ∗ =
∑
i:x≥ui

m(Ai) (2-14)

Assuming that the function f(Ai) is continuous in all Ai ∈ T , and no extreme

points exist in this region, except at the vertices, the vertex method applies

to calculate the image (R, ρ) of the input random set through the function f .

Assume each focal element Ai is an N-dimensional box, whose 2N vertices are

indicated as vk, k = 1, . . . , 2N . If the vertex method applies then, the lower

and upper bounds Rj∗ and R∗j on each element Rj ∈ R will be located at one

of the vertices [Schweiger and Peschl, 2005b]:

Rj∗ = min{f(vk) : k = 1, . . . , 2N} (2-15)

R∗j = max{f(vk) : k = 1, . . . , 2N} (2-16)

Thus, the function f(Ai) has to be evaluated 2N times for each focal element

Ai. The number of realizations, nc, required for finding the bounds of the

system response is [Schweiger and Peschl, 2005b].
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nc = 2N
N∏
i=1

ni (2-17)

Where N is the number of basic variables and n is the number of information

sources available for each observation. Nevertheless, the number of calculation

can be reduced if the function is strictly monotonic with respect to each

parameter. In that case, it is possible to predict which combination or nodes

of the p-dimensional box will give the maximum and minimum output, prior

to the calculation.

The general procedure is summarized in Figure 2-6, in which input variables

expressed as DSS that go through a calculation model and as a result a DSS of

the model response is obtained. This DSS is a bounded distribution function

of the response, named as BDF in this document. The BDF is equivalent to

DSS.

Figure 2-6.: Process to compute the bounded probability function of the

system response, based on Dempster Shafer structures

The concepts presented in this chapter will be applied to represent and pro-

pagate the mechanical information on joint parameters through a wedge sta-
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bility model in Chapter 4). Moreover, this approach will be combined with

discrete fracture networks (DFN) in Chapter 5.



3. Stability Analysis of Rock Wedges

with Kent Distribution

3.1. Introduction

A systematic and reproducible technique for collecting information is required

to gather reliable information on rock mass structure. In this regard, this

project introduced the use in Colombia of a short range stereoscopy technique

to measure the geometrical features of the rock mass. This tehcnique was

implemented in a sandstone quarry in Une, Cundinamarca as described in

Appendix A.

The approach does not eliminate the variability of joint planes orientation.

But, allows to collect more robust data sets to describe properly such a va-

riability, as shown in this chapter.

A crucial step in the reliability analysis of rock wedges is a proper characteri-

zation of the variability of dip and dip direction of planes. This is a complex

task, considering that planes are described as sets of unit vectors. Hence,

traditional real-valued probability distributions are not suitable to represent

this sort of information.

Directional statistics provide a framework to accurately represent vectors, in

which distributions are described on surfaces, such as circles, spheres, or to-

rus. The Fisher distribution is a well-known spherical distribution, analogous

to the symmetric Gaussian distribution, wrapped around a unit sphere [Kasa-

rapu, 2015], which means that it has circular contours of constant probability

density. The Fisher distribution is commonly used to perform reliability as-

sessment in rock slopes, and more general distributions have received little

attention in rock mechanics for evaluating the stability of rock slopes.

However, the Gaussian symmetry condition is not always the best assum-
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ption. To illustrate this, Figure 3-1 depicts a set of poles collected in a

sandstone quarry in Une, Cundinamarca, Colombia. A simple visual inspec-

tion shows that at least the sets defined by green and red poles are not

symmetrically distributed about the mean. Here is evident the need for using

a more flexible distribution over the Fisher distribution.

Figure 3-1.: Structural information collected in El Pedregal Mine in 1997.

Three joint sets can be clearly identified

The Fisher-Bingham family distribution provides such a flexible framework,

particularly the 5-parameters Fisher-Bingham, referred to as Kent distribu-

tion. Nevertheless, the complexity for estimating the five parameters and

subsequent simulation have diminished the application in rock slope stability

assessment [Park, 2000].

As for the structure of the chapter, firstly, a theoretical framework is pre-

sented, including the selected approaches to estimate and simulate the Kent

distribution. This background is included because it is not a widespread to-

pic in rock mechanics, and because the algorithms were programmed and

incorporated in the subsequent reliability assessments. Then, the proposed

algorithms to compute the probability scenarios under different conditions

are introduced. Afterward, some examples illustrate those algorithms. The
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chapter closes with conclusions on the implications of using the Kent distri-

bution

3.2. Modeling orientation of joints

Modeling orientation data is part of a growing discipline of statistics that has

applications on earth sciences, meteorology, medicine, physics, and biology

[Kasarapu, 2015]. The concept is to define a distribution for a random variable

z ∈ Rd conditioned to lie on, or projected onto the unit sphere [Paine et al.,

2017]. Then, the cloud of orientations measured for a given joint set from

Figure 3-1 are expressed as a 3D vector lying on the unit sphere and fitted

to such distribution.

In the case of the general Fisher-Bingham distribution, a multivariate normal

distribution is conditioned to lie on the unit sphere. Hence, the probability

density function f at any point x on the sphere takes the form [Mardia, 1975]:

f(x; Θ) ∝ exp
{
κγT1x+ β2(γ

T
2x)2 + β3(γ

T
3x)2

}
(3-1)

where Θ is a parameters vector, the parameters γ1, γ2 and γ3 are unit vectors,

and β2 and β3 are real values. To formulate this distribution, 8 parameters

are required, thus, it is known as the 8-parameters Fisher-Bingham distri-

bution, FB8. However, there are difficulties to estimate and interpret the 8

parameters of this distribution[Kent, 1982]

This is because Kent [1980, 1982] suggested the alternative 5-parameters

Fisher-Bingham (FB5) distribution. For the purpose of this document, the

FB5 will be referred to as the Kent distribution. This distribution is an special

case of the FB8 and is obtained by assuming that γ1, γ2, γ3 from a orthogonal

system of vectors and are constrained by β2 = −β3 = β [Kasarapu, 2015].

Based on this, the distribution takes the form:

f(x; Θ) = c(κ, β)exp
{
κγT1x+ β

[
(γT2x)2 − (γT3x)2

]}
(3-2)

In which parameters are interpreted as:
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γ1, γ2, γ3 orthogonal unit vectors that correspond to the mean, major and

minor axis, respectively. κ and β are shape parameters and represent the

concentration and the ovalness, respectively. The eccentricity, λ, is computed

as 2β/κ.

This spherical distribution is equivalent to the general Gaussian distribution,

which means that it has an ellipse like iso-probability contours on the sphere.

Consequently, the Kent distribution is not analogous to a symmetric Gaussian

distribution as Fisher is. Figure 3-2 shows the variation of the iso-probability

contours as the parameters κ and β change, where the density decreases from

the center outwards. The size of the circle/ellipse represents the concentration

of the data. Therefore, the higher κ and β, the more elongated the ellipse.

When β = 0, Kent distribution becomes the Fisher distribution [Fisher, 1953].

Its application for modeling joints orientation is widespread, given its sim-

plicity since it depends only on the concentration parameter and the mean

[Park, 2000, Park and West, 2001, Park et al., 2005, Priest, 1993]. In fact, the

popular software Swedge from Rocscience implements the Fisher distribution

for simulating joints orientation.

Despite its simplicity, the Fisher distribution is analogous to a symmetric

Gaussian distribution, which means that iso-probability contours on the sp-

here are circles rather than ellipses. This assumption can be inaccurate in

many cases, as illustrated in Figure 3-1, where red and green poles would

be represented more appropriately by ellipse like contours than circles. This

chapter presents the implications of assuming a Kent distribution, over a

Fisher distribution, on the probability function of a wedge factor of safety.

Given the flexibility of the Kent distribution, it has been used to model sets

of data in different fields such us describing protein chains [Boomsma et al.,

2006, Hamelryck et al., 2006, Kasarapu and Allison, 2015, Kent, 2012, Kent

and Hamelryck, 2005], machine learning in bioinformatics [Hamelryck, 2009],

and image processing [Lunga and Ersoy, 2011].

As for rock mechanics applications, the original work [Kent, 1980, 1982] esti-

mates Kent parameters for directions of magnetism. Besides, McLachlan and

Peel [1999], Peel et al. [2001], Yamaji [2016] utilized this distribution to iden-

tify rock joint sets by clustering. Other than these, the application of Kent

distribution has not been extensively applied in rock mechanics to model and
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Figure 3-2.: Kent distribution shape for different values of eccentricity

simulate sets of joints orientations. Even though Kent distribution has been

used to characterize rock joints sets, there are no publications that address

the assessment of the stability of rock slopes modeling the orientation with

this distribution.

3.2.1. Kent distribution parameters estimation

There are several alternatives to estimate the five parameters of the Kent

distribution such us, maximum likelihood estimates (MLE), Bayesian infe-

rence using minimum message length (MML) [Kasarapu, 2015]. Both MLE

and MML require an iterative process for parameters estimation.

On the other hand, Kent [1982] proposed the moment estimates as an alter-

native approximate method for estimating the five parameters of the Kent

distribution. This approach has the following properties :

1. The moment estimates are consistent estimates of the true parameters.

2. The orientation matrix can be calculated explicitly.
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3. If the eccentricity is small or the κ is large, the moment estimates are

closed to MLE.

4. If the concentration is large, the concentration parameters can be com-

puted explicitly.

The moment estimates was selected for estimating the five parameters of the

Kent distribution, not just because it is explicitly formulated, which sim-

plifies its implementation and reduces the linked computational cost: but,

also, because it can also be used as an alternative for mixture construction

[Peel et al., 2001] (See chapter 6). For the sake of clarity, in the following, a

description of the method is presented.

The parameters from the Kent distribution are three orientation parameters

γ1, γ2, γ3 and two concentration parameters. For computing the orientation

parameters (they are orthogonal), the idea is to align the reference coordinate

system as depicted in Figure 3-3. First, a rotation about X1 takes γ1 to

plane X1, X2. Then, a rotation about X3 aligns γ1 with X1. The process is

repeated until axes are fully aligned. A detailed description of this concept is

presented in Kasarapu [2015].

Figure 3-3.: Ordered axis rotation to align data with reference coordinate

system. Adapted from Kasarapu [2015]

The general aim is to compute the five parameters of Kent distribution,

having a set of measured joint planes expressed as the dip and dip direction,

as one of the three sets shown in Figure 3-1. The computation algorithm

is depicted in Figure 3-4 and follows the procedure described by Kasarapu

[2015], Kent [1980, 1982].
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Once planes are expressed in terms of colatitude (γ2) and longitude (γ1), the

unit cosines are computed for each plane as follows:

x1 = cos(γ2) x2 = sin(γ2) cos(γ1) x3 = sin(γ2) sin(γ1) (3-3)

Then, the sample mean x̄ and dispersion matrix S are computed:

x̄ =
1

N

N∑
i+1

xi (3-4)

S =
1

N

N∑
i+1

xix
T
i (3-5)

Assuming that κ̃, β̃, G̃ = (γ1, γ2, γ3) are the moment estimates of κ, β,G.

The normalization of x̄ yields the moment estimate γ̃1 and the diagonaliza-

tion of S return the moment estimates γ̃2 and γ̃3 [Kasarapu, 2015]. Hence,

the procedure to compute G̃ is:

1. Compute the rotation matrix H, about axis X1 and X3.

H =

 cos γ2 − sin γ2 0

sin γ2 cos γ1 cos γ2 cos γ1 − sin γ1

sin γ2 sin γ1 cos γ2 sin γ1 cos γ1

 (3-6)

2. Transform the dispersion matrix S, this defines the matrix B

B = HTSH (3-7)

3. Compute angle ψ between the transformed matrix B and X1. This is

accomplished by diagonalizing the lower 2× 2 submatrix of B.

tan 2ψ =
2b23

b22 − b33
(3-8)

4. Define the transformation matrix K, to rotate and angle ψ.

K =

1 0 0

0 cosψ − sinψ

0 sinψ cosψ


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Figure 3-4.: Algorithm to estimate Kent distribution parameters from a

cloud of poles

5. Calculate the matrix G̃ that is the moment estimate of (γ1, γ2, γ3).

This is also the transformation matrix that aligns the axes of FB5 with

the reference coordinate system.

G = HK = (γ1, γ2, γ3) (3-9)

6. Rotate the dispersion matrix by applying the transformation matrix G̃.

V = G̃TSG̃ (3-10)

W = v22 − v33 (3-11)
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7. Compute moment estimates κ̃ and β̃.

κ̃ = (2− 2R̄−W )−1 + (2− 2R̄ +W )−1 (3-12)

β̃ =
1

2

[
(2− 2R̄−W )−1 − (2− 2R̄ +W )−1

]
(3-13)

where R̄ is the resultant of input planes.

3.2.2. Kent distribution simulation

Estimation of input parameters is the first step to carry out the simulation.

Once these parameters have been established, a random sampling on the

distribution can be performed. Again, this is not straightforward, because

of the complexity of the function, which makes that an inverse transforma-

tion cannot be applied. This is because, a simulation technique based on

the acceptance-rejection, A/R, algorithm was selected to simulate samples

from a Kent distribution. The A/R is an efficient simulation algorithm. This

approach has been used for simulating the Fisher-Bingham distribution [Ga-

neiber, 2012, Kent, 2012, Kent et al., 2004, 2017, Kent and Hamelryck, 2005,

Wood, 1987].

An explanation of the algorithm in simple words is as follows. When it is not

possible to simulate a probability distribution f, but it is possible to find an

alternative probability function G, with a density function g, for which an

efficient simulation algorithm is available. Then, the density function f can

be simulated from g. Density functions f and g may be expressed as:

f(x) = cff
∗(x) g(x) = cgg

∗(x) (3-14)

where cf and cg are normalizing constants that can be unknown. However, it

is not necessary to know those constants to simulate f.

The algorithm is built based on the next assumption [Ganeiber, 2012]:

f ∗(x) = M ∗g∗(x) (3-15)

in which M ∗ is a known bound. With this assumption, the density function

f is simulated as follows:
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If M = f(x)/g(x) > 1, the efficiency of the algorithm is M−1. From this, two

important conclusions can be drawn. Firstly, the closer the auxiliary function

g to f, the more efficient the algorithm is. Secondly, to assess the efficiency

of the algorithm, the normalization constants have to be known. In addition,

the ratio h(x) = f(x)/(Mg(x)) has to be maximized in order to maximize the

efficiency of the algorithm. A demonstration of the algorithm can be found

in Ganeiber [2012], among others.

This general approach was followed to simulated the Kent distribution, f,

using a truncated exponential envelope as bounding function, g [Kent, 2012],

as shown in Figure 3-5. This function can be expressed in terms of parameters

σ and τ , for any x :

1

2
(σ|x| − τ)2 ≥ 0 (3-16)

Figure 3-5.: Truncated exponetial envelope to simulate the Kent distribu-

tion [Kent, 2012]

Eq3-16 is parametrized in terms of the variables t1 and t2 . Subsequently, they

will be related to Kent distribution variables and parameters.

In the following, the procedure developed by Kent [2012] to parametrize Eq.

3-16 is applied twice. First, σ = γ1/2, τ = 1 and x = t21, and then σ =

(a+ 2γ1/2)1/2, τ = 1 and x = t1. This leads to:

−1

2
(at21 + γt41) ≤

1

2
− 1

2
(a+ 2γ1/2)t21 ≤ c1 − λ1|t1| (3-17)
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where

c1 = 1 λ1 = (a+ 2γ1/2)1/2 (3-18)

In similar manner, Eq. 3-16 is parametrized in terms of t2, as follows:

−1

2
(bt21 + γt42) ≤ −

1

2
(b− γ)t22 ≤ c2 − λ2|t2| (3-19)

where

c2 =
B

2(b− γ)
λ2 = b1/2 (3-20)

In order to relate this parametrized function with the Kent distribution,

Eq. 3-2 has to be modified to be expressed as a Gaussian distribution. Under

high concentration, the FB5 has a bivariate normal distribution [Kent, 2012],

concentrated near x1 = 1, x2 = 0 and x3 = 0. Considering this and with the

following change of variable:

t1 = sin
γ2

2
B cos γ1 t2 = sin

γ2

2
B sin γ1 (3-21)

the Kent distribution in (t1, t2) coordinates takes the form:

f(t1, t2) = exp−1

2
[at21 + γt41 + bt22 − γt42] (3-22)

in which

a = 4κ− 8β b = 4κ+ 8β c = 8β (3-23)

Eq. 3-22 shows that Kent distribution can be expressed as two functions, one

in terms of t1 and the other in terms of t2. Hence, the simulation will be

performed separately. However, since the points are conditioned to lie within

the unit disc, the condition t21 + t22 < 1 is checked for each simulated pair.

The procedure for simulating t1 is sketched below.

First, Eq. 3-17 is exponentiated to obtain:

exp
1

2
+ γt41 ≤ exp c1 ∗ exp−λ1|t1| (3-24)
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From which

f(t1) = exp (
1

2
+ γt41) g(t1) = exp (−λ1|t1|) (3-25)

Based on the formulation above, Figure 3-6 shows the algorithm to perform

a simulation of random orientations from a Kent distribution. The algorithm

was programmed in Python. The input parameters correspond to the concen-

tration of κ and ovalness β for each joint set. In the following, a description

of the algorithm is presented:

1. Compute constants related to κ and β:

a) Eccentricity

b) a, b and γ from Eq. 3-23

c) c1, λ1 from Eq. 3-18 and c2, λ2 from Eq. 3-20

2. Maximize function hi(ti) = fi(ti)/(Migi(ti)). This means, calculating

the values ti that solve the cubic equation resulting from equalizing the

derivative of hi(ti) with respect to ti to zero.

3. Iterative process repeated until a simulation of size N is obtained.

a) j=0

b) Simulate Ui ∼ U(0, 1)

c) Compute ti = ln |Ui|/λi
d) Calculate f(ti), gti) from Eq. 3-25 and h(ti)

e) Independently simulate U ′i ∼ U(0, 1)

f ) If U ′1 ≤ h(t1) and U ′2 ≤ h(t2)

If yes: accept t1 and t2 and go to next step

If not: go back to step b)

g) Compute longitude and colatitude

h) Update j = j + 1

i) Repeat until j > N
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Figure 3-6.: Algorithm to simulate a sample of N planes with a Kent distri-

bution by an A/R algorithm

3.3. Probabilistic analysis of stability

This section presents a framework to evaluate the effect of modeling the

orientation of planes in the stability of a rock slope. This proposal has the

following features:
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1. Probabilistic method: Monte Carlo simulation. Hence, several realiza-

tions of the deterministic stability models are required

2. Deterministic model: Wedge failure. This mechanism of failure is fre-

quent in rock slopes and is widely accepted within rock mechanics

practitioners. Moreover, the model is complex enough to account for

the geometry of for different planes, two joint sets, and two joint pla-

nes. Hence, it is suitable to assess the impact of considering the Kent

distribution.

3.3.1. Deterministic wedge stability model

The geometry of the wedge analyzed in this chapter is defined by four pla-

nes, two discontinuities and two free surfaces (slope face and upper slope),

as shown in Figure 3-7. The stability assessment of wedges implies the for-

mulation of equilibrium of forces in a three-dimensional space. This problem

has been solved by using stereographic projections [Goodman and Taylor,

1966, Hoek et al., 1973]. However, when reliability assessment is performed,

an explicit solution is more suitable, because several realizations of the model

have to be computed. Low [1979] developed a closed-form equation without

using graphical assistance. Subsequently, Low [1997], Low and Einstein [1992]

extended the equation to an inclined upper slope. This solution has been ap-

plied to perform wedge failure reliability assessment [Jimenez-Rodriguez and

Sitar, 2006, Low, 1997, Low and Einstein, 1992]. Other solutions have been

applied to perform a probabilistic analysis of wedges [Park, 2000, Park and

West, 2001, Park et al., 2005], involving directional statistics, but assuming

Gaussian symmetry through the Fisher distribution.

The solution proposed by Low was selected to account for the uncertainty

in this chapter since it is convenient to perform several realizations of the

model. A brief description of this proposal is given below.

Figure 3-7 shows the geometry of a potentially unstable wedge. The model

can analyze four modes of failure in this sort of wedges: failure along the

intersection of both joint planes, failure along either joint plane 1 or plane 2,

and lifting failure.
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Figure 3-7.: Tetrahedral wedge model [Low, 1997], adapted from Jimenez-

Rodriguez and Sitar [2006]

To illustrate the model, the wedge factor of safety is computed according to

Eq.3-26, when the failure occurs along the intersection line.

Fs =

(
a1 −

b1Gw1

sγ

)
∗ tanφ1 +

(
a2 −

b2Gw2

sγ

)
∗ tanφ2 +3b1

c1

γh
+3b2

c2

γh
(3-26)

where, φ1 and φ2 are the friction angles of planes 1 and 2, respectively

c1 and c2 correspond to cohesion of planes 1 and 2, respectively

Gw water pressure coefficient of a pyramidal distribution.

h is the slope height, and H is the total height, including the upper slope

a1, a2, b1 and b2 are geometric coefficient, function of the following angles (for

a detailed description see [Low, 1997])

ζ1 is the horizontal angle between the strike line of plane 1 and the line of

intersection between the upper ground surface and the slope face. Idem for

ζ2 in plane 2 [Jimenez-Rodriguez and Sitar, 2006]

δ1 and δ2 are the dip angle of planes 1 and 2, respectively.

Eq.3-26 is straightforwardly programmable, it resorts to angles ζ1, ζ2, δ1 and

δ2. Low [1997] presents a graphical approach to compute these angles, based

on the strikes of joint and slope planes. Low [1997] applies the model to a

wedge that fails along the intersection line. However, there is no reference to
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a systematic way to compute those horizontal angles, which is crucial, since

they define the mode of failure.

For this project, a broad range of possible combinations of joint and slo-

pe planes are evaluated, considering the planes as a random variable Kent-

distributed. Hence, different modes of failure are expected (along intersection

lines, plane 1, plane 2 or lost on contact). Moreover, millions of realizations

of the model are carried out. Hence, a programable algorithm for computing

those horizontal angles is necessary to perform such probabilistic analysis.

Accordingly, an algorithm to compute angles ζ1, ζ2, δ1, and δ2 is proposed in

this section, based on the trend of the planes. The angles are obtained from

the construction of the horizontal triangle BCD plotted in Figure 3-8. Figure

3-9 shows a plan view of such a triangle, in which target angles are shown.

Figure 3-8.: Horizontal angles defined by Low’s wedge model

The first step is to generate a reference set-up of planes, which applies to all

possible relative orientation of input planes. The proposed procedure to find

this arrangement is the following:

1. Define two horizontal vectors ddi (plunge = 0) oriented as the dip

direction of joint planes

ddi = (αi, 0) (3-27)

2. Define the horizontal vector ti and express it according to their direction

cosines

ti = (sin(αi), cos(αi), 0) (3-28)
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Figure 3-9.: Plane triangle. Joints and slope planes set-up

3. Order joint planes in such a way that third component of the cross

product is positive. This condition guarantees that a unique order as-

signation for joint planes.

t1 × t2 = (0, 0, k) ∀t1, t2\k > 0 (3-29)

4. Then, considering that planes are vectors, rather than axis, a convenient

definition of the orientation of joint planes (ι1, ι2) and the slope (ιs)

ι1 = α1 − 90 ι2 = α2 + 90 ιs = α2 + 90 (3-30)

With the described algorithm, a set-up such as the one plotted in Figure 3-9

is obtained. With this arrangement, the angle between joint planes is always

less than 180°, which generates four regions where the slope line may lie, as

depicted in Figure 3-10. The regions correspond to:

1. Region I: Wedge slides along plane 1.

2. Region II: Wedge slides along plane 2. ι1 + 180 < ιs < ι2 + 180

3. Region III: wedge slides along intersection of planes. ι2 < ιs < ι2 + 180

4. Region IV: No sliding wedge is formed. ι2 + 180 < ιs < ι1
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Figure 3-10.: Plane triangle. Regions defined by joints combination

With the convention defined, the algorithm consists of identifying within

which region ιs falls, and then computing the angles ζ1, ζ2, δ1 and δ2. This task

requires some additional refinement, depending on within what quadrants

ι1 and ι2 are located. As an example, the results for 0 ≤ ι1 < 180 and

0 ≤ ι2 < 180 are presented below.

1. Region I: If ι1 < ιs < ι2, then:

ζ1 = ιs − ι1 ζ2 = ι2 − ιs δ1 = dip1 δ2 = dip2 (3-31)

2. Region II: If ι1 + 180 < ιs < ι2 + 180, then:

ζ1 = ιs − (ι1 + 180)ζ2 = (ι2 + 180)− ιsδ1 = dip1δ2 = 180− dip2 (3-32)

3. Region III: If ι2 + 180 < ιs < ι1 + 180, then:

ζ1 = (ι1 + 180)− ιs ζ2 = ιs − ι2 δ1 = dip1 δ2 = dip2 (3-33)

There are some commercial alternatives to compute the stability of wedges,

such as Swedge de Rocsicence (available at rocscience.com). However, none

of the available alternatives allows the simulation of planes with a Kent dis-

tribution. Besides, this project requires the assessment of a large variety of



3.3 Probabilistic analysis of stability 49

scenarios. Hence, a flexible way to input the information is required, which

is not available in commercial software. Finally, none of these commercial

software has the possibility of considering the input data as intervals, which

will be useful in subsequent chapters.

Considering the limitations of available software, in this project, the Low’s

approach to compute the wedges’ stability was programmed in Python, the

program includes the geometrical algorithm proposed to compute the invol-

ved angles. Besides, the script can be conveniently called from the adopted

probabilistic approach. The module is flexible enough to handle different ty-

pes of inputs, including deterministic and probabilistic, for both conventional

probability distributions and directional data.

3.3.2. Removable and unstable wedges

Two conditions have to be fulfilled for a wedge to fail. First, the concept of

removability [Goodman and Shi, 1985]. This condition refers to the possibility

that the combination of joint planes orientation, relative to slope face, makes

it feasible the slope to slide, which is the kinematic analysis [Park and West,

2001]. To avoid ambiguity, from now on, block kinematically unstable will be

referred to as removable blocks. In rock mechanics, the removable blocks are

also known as key blocks [Goodman and Shi, 1985].

The second condition defines if the block will effectively slide, this is ac-

complished by checking the balance of resisting and driving forces, under a

limit equilibrium framework, to compute the factor of safety (FOS). If the

acting forces exceed the resisting forces, the FOS < 1,0, which means that a

removable block fails. This is a kinetic analysis [Park et al., 2005].

Based on this, for this research project, the probability of failure of a block

is computed at two stages, considering a conditional probability, as the pro-

bability of having a factor of safety less than 1.0, given that the block is

removable. This approach was initially proposed by McMahon [1971] and

Glynn [1979]. From that standpoint, the mistake incurred when the analysis

focus only on the limit equilibrium analysis is evident since it assumes that

the probability of having removable blocks is already 1.0, so it would overes-

timate the probability of failure. This is discussed by Park and West [2001],
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Park et al. [2005].

In regarding the kinematic analysis, two conditions have to be fulfilled by a

wedge to be removable [Norrish and Willey, 1996]:

1. The trend of joints intersection and slope must be similar

2. The plunge of intersection line must be lower than slope dip

These conditions are normally checked graphically on stereonet. However,

for a large number of computations, the graphical assessment is not feasible.

Accordingly, Low and Einstein [1991] proposed that removable wedge are

those that meet:

ω < ε < α (3-34)

where ω is the upper slope, ε is the dip angle of the slope intersection and α

is the slope dip.

Subsequently, Park and West [2001] found that Eq. 3-34 may interpret as

removable, stable blocks for wedges where the angle between the trend of

intersection line, βi and slope dip direction, βs, is large. Hence, they modified

the condition, to compare the apparent slope dip, αapparent, in direction of the

intersection, rather than the real slope dip, as stated in:

ω < ε < αapparent (3-35)

in which:

αapparent = arctan(tanα cos(βi − βs)) (3-36)

With this approach, the probability of having unstable blocks would be the

probability of having removable blocks times the probability of getting a

factor of safety less than 1.0 given that is removable:

PF = P (FS < 1,0) = P (removable) ∗ P (FS < 1,0|removable) (3-37)
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3.4. Probabilistic analysis of rock wedge

stability

Up to this point, a full definition of the elements required for the probabilistic

analysis proposed in this chapter has been presented, including:

1. Estimation and simulation of spherical data through Fisher and Kent

distributions

2. Wedge stability deterministic model

3. Kinematic and kinetic analysis

4. Definition of the conditional probability of failure

This section presents a framework to perform probabilistic analysis of rock

wedges considering different scenarios. First, the input properties are divided

into four groups, to define the scenario to evaluate:

1. Joint plane orientation

2. Rock slope orientation

3. Rock joints strength parameters

4. Slope geometry

As for rock joint planes, they are first modeled as deterministic, assuming the

mean direction is the representative value for each piece of evidence. Then,

the stability is computed for all possible combinations of measured planes.

This case is referred to as a combination. Finally, joints are modeled as Kent

distributed random variables, with the parameters estimated according to

the above-described estimation algorithm.

The slope orientation, first, it is assumed as deterministic. The second scena-

rio considers the dip and dip direction as independent variables and models

them as a univariate uniform and normal distributions. Subsequently, the
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Table 3-1.: Main scenarios considered

Variable Assumption

Joint Orientation Deterministic Combinations Fisher/Kent

Slope Orientation Deterministic Probabilistic Fisher/Kent

Strength params Deterministic Probabilistic Probabilistic

Scenario 1 2 3

same slope orientation is modeled as a random variable following a Kent dis-

tribution. In this case, several combinations of concentrations and ovalness

can be assessed.

Regarding the strength parameters, they are modeled as deterministic and as

a random variable, assuming they follow a normal and uniform distribution.

Parameters of the assumed distribution were calculated based on the available

information.

Given that there is a wide range of scenarios and combinations of those, Ta-

ble 3-1 summarizes the most relevant scenarios considered. The algorithms

can be modified to consider any other combinations of input parameter as-

sumptions.

Below, a description of the most relevant cases is presented, starting with the

deterministic approach.

3.4.1. Deterministic modeling

Figure 3-11 includes the algorithm for each realization of the deterministic

stability model. This deterministic approach can be applied to information

from different sources since the main idea of this project is to deal with

uncertain information from different sources.

3.4.2. Joints: combinations, slope: probabilistic

univariate, strength: probabilistic

Regarding the joint planes information, this scenario is based entirely on

the information gathered during the field mapping work. Here, the stability
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Figure 3-11.: Algorithm to calculate the wedge factor of safety

of wedges formed from each possible combination of planes from each joint

set is computed. The number of combinations of planes N controls the total

number of realizations, N , as defined by Eq. 3-38. Below a description of the

algorithm is given:

N = Nj1 ∗Nj2 (3-38)

where Nj1 and Nj1 are the number of measured planes for joints 1 and 2,

respectively.
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The algorithm for this simulation is included in Figure 3-12. The computatio-

nal cost of this approach is low compared to scenario 3, since no simulation of

spherical data is required. However, the most consuming task is the simulation

of univariate parameters. Specially with the truncated normal distribution.

In the following a brief description of the computation algorithm is given.

1. For a piece of information i

2. Define a combination j of joint planes 1 and 2

3. Simulate the slope dip and dip direction, according to the univariate

probability distribution

4. Simulate the strength parameters, according to the asssumed probabi-

lity distribution

5. Verify the kinematic conditions for failure. If not removable go back

to 2. If kinematically unstable update number of removable blocks

Nremovable = Nremovable + 1.

6. Compute the factor of safety, FS. If FS < 1,0, update the number of

unstable blocks Nunstable = Nunstable + 1.

7. Go back to step 2, update j = j + 1

8. Repeat while j < N

9. Repeat for piece of evidence i+ 1

As a result, the factor of safety for each realization is obtained, along with

the number of removable and unstable blocks. Consequently, the probability

of failure can be computed, as described by Eq. 3-37, leading to:

PF =
Nremovable

N
∗ Nunstable

Nremovable
=
Nunstable

N
(3-39)

From these results, a probability function can be built for the removable

blocks, since the total cumulative probability must be equal to 1. Hence, for
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the wedge failure, the value PF computed as in Eq. 3-39 is always lower than

the one measured from this probability function. It is important to stress

that the meaningful probability distribution is the one defined by Eq.3-39.

Figure 3-12.: Algorithm to calculate the probability of failure

Joint combination of measure data and other parameters modeled as probabilistic

3.4.3. Joints: Kent, slope: Kent or probabilistic, strength:

probabilistic

Like Scenario 2, Scenario 3 is based on the information collected during the

field mapping. Nevertheless, these data are utilized to estimate the probability

distribution parameters, which will be the input for simulating planes, as the

algorithm depicted in Figure 3-13.

This scenario considers the slope face as an uncertain plane; consequently,

it is simulated as a spherical random variable. This assumption differs from
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Scenario 2, where slope dip and dip direction were considered independent

variables, each with its own univariate probability distribution.

When both joints and slope planes are modeled as Kent distributions, the

process for the probability of failure and slope computation is more resource

consuming. Firstly, parameters of Kent distribution to model joints have

to be estimated for each piece of available evidence. Then, a N number of

simulation of joint planes and slope has to be carried out. This means to

execute the A/R algorithm N times. Considering that the least number of

realization in this chapter is 1000, this is the most time-consuming part of

the process. Figure 3-13 shows the algorithm to work under these conditions.

Figure 3-13.: Algorithm to calculate the probability of failure of a wedge

Joints and slopes orientation, as well as, strength parameters are considered as random variables

Again, the algorithm is computed for each available piece of evidence. In

this case, several combinations of kappa and beta are evaluated. Hence, the

algorithm iterates over each scenario. Next, the algorithm is described:

1. For a piece of information i
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2. Estimate Kent distribution parameters for each plane, based on the

measured planes

3. For a scenario l, defined by a combination of slope κ and β

4. For each block realization j

5. Simulate a slope direction

6. Simulate the joint planes according to Kent

7. Simulate the strength parameters, according to the assumed probability

distribution

8. Verify the kinematic conditions for failure. If not removable go back

to 2. If kinematically unstable update number of removable blocks

Nremovable = Nremovable + 1.

9. Compute the factor of safety, FS. If FS < 1,0, update the number of

unstable blocks Nunstable = Nunstable + 1.

10. Go back to step 4, update j = j + 1

11. Repeated while j < N

12. Repeat for scenario l + 1. Next combination of slope κ and β

13. Repeat for piece of evidence i+ 1/

This algorithm implies the formulation of three nested loops. One for each

piece of evidence, one for each slope scenario and one for each block realiza-

tions. Therefore, the total number of realization of the block model is:

NtotalRealizations = NsourcesInfo ∗NslopeScenarios ∗Nrealizations (3-40)

The two cases just presented correspond to the most simple and most ela-

borated cases analyzed. In between, there are several possibilities such as

combining deterministic slope with Kent distributed joints orientation. Some



58 3 Stability Analysis of Rock Wedges with Kent Distribution

of these scenarios are illustrated by examples in the following section and

Appendix B.

In Appendix B a comparison between using Fisher and Kent distribution

in the probability of wedge failure is assessed. As a result, an important

influence of the ovalness factor in the probability of failure was detected,

which provides evidence on the suitablity of using Kent distribution instead

of Fiher’s for modeling the variability of orientation datasets.

3.5. Probabilistic stability analysis of El

Pedregal Mine

Information on rock mass geometry and mechanical properties was collected

in El Pedregal Mine as described in Appendix A.

Based on the information collected from different sources along the main

slope, during the last 20 years, a probabilistic analysis of the stability of

wedges generated for a slope with an average dip direction of 330.

Table 3-2 summarizes the values adopted for the deterministic computations.

A truncated normal and uniform distribution were assumed for the data other

than joints orientation.

The uniform distribution parameters (bounds) were extracted from the avai-

lable information at each period, as shown in Table 3-3. The truncated nor-

mal distribution has the same bounds, but with the mean and standard de-

viation included in Table 3-4. Concerning the orientation, Table A-3 sum-

marizes the mean orientation computed for each piece of information for the

planes involved in the wedge failure analyzed.

Joints simulation

This section shows results from the estimation of the probability distribution

for joint orientation, i.e., spherical data. The Kent distribution parameters

were computed by using the algorithm depicted in Figure 3-6, based on the

orientation measured at each period.

In order to illustrate the importance of considering the more general Kent

distribution, over the Fisher distribution, Figure 3-14 compares the measured



3.5 Probabilistic stability analysis of El Pedregal Mine 59

Table 3-2.: El Pedregal mine. Input deterministic parameters

Year Material Slope Dip Direction (°) Slope Dip (°) Friction 1 (°) Cohesion 1 (kPa)

1997 Claystone 330 70 23 22

2011 Sandstone 330 70 32 29

2016 Claystone 330 70 23 51

2017 Claystone 330 70 27 78

Sandstone 330 70 40 75

Year Friction 2 (°) Cohesion 2 (kPa) Height (m) Omega (°) Unit weight (gr/cm3)

1997 23 22 15 10 2.53

2011 32 29 15 10 2.42

2016 23 51 15 10 2.50

2017 27 78 15 10 2.59

40 75 15 10 2.55

data with the planes simulated using, firstly a Kent distribution with the

ovalness and concentration parameters estimated for the data, and secondly,

the simulated orientation assuming a Fisher distribution, i.e. with an ovalness

factor β = 0.

From a visual inspection of these plots can be concluded that the Kent dis-

tribution simulates better orientation where there is a higher variation in the

azimuth than in the dip. Indeed, the Fisher cannot account for the entire ran-

ge of measured dip directions, given the constraint imposed by the Gaussian

symmetry.

On the other hand, from the comparison between Figure 3-14a and Figure

3-14c it can be inferred that there is a reduction in the dip interval, i.e.,

planes at low densities away from the set mean are not simulated. This is

associated to the A/R algorithm for simulating the Kent planes. There, high

concentration was assumed, in order to model the FB5 as a bivariate normal

distribution [Kent, 2012], concentrated near x1 = 1, x2 = 0 and x3 = 0.

Hence, high concentration of the simulated planes is obtained.
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Table 3-3.: El Pedregal mine. Uniform distribution parameters

Slope Dip Direction (◦) Slope Dip (◦) Friction 1 (◦) Cohesion 1 (kPa)

Year Material Min Max Min Max Min Max Min Max

1997 Claystone 325 335 67 73 18 26 3 20

2011 Sandstone 325 335 67 73 24 40 0 87

2016 Claystone 325 335 67 73 19 25 23 68

2017 Claystone 325 335 67 73 17 37 41 146

Sandstone 325 335 67 73 29 49 19 183

Cohesion 2 (kPa) Height (m) Omega (◦) Unit weight (gr/cm3)

Year Min Max Min Max Min Max Min Max

1997 3 20 14 16 0 20 2.41 2.66

2011 0 87 14 16 0 20 2.41 2.44

2016 23 68 14 16 0 20 2.59 2.6

2017 41 146 14 16 0 20 2.59 2.6

19 183 14 16 0 20 2.5 2.61

Deterministic analysis

The analysis was performed for each piece of evidence, considering the infor-

mation collected on geomechanical parameters. Moreover, the factor of safety

was computed for the two defined materials, one for the claystone and one

for the sandstone, with the same joint orientation parameters at each piece

of information.

Deterministic results were selected to validate the results from the script de-

veloped in this project to compute the factor of safety of the wedge, based

on Low’s approach [Low and Einstein, 1991, Low, 1979, 1997]. Accordingly,

Table 3-5 shows the factor fo safety obtained by the code compared to tho-

se obtained by using the software Swedge v4.0 from Rocscience (available

at www.rocscience.com). As can be seen, both approaches yield the same

results. This verification is crucial because this deterministic model is the

reference case for the probabilistic approach in this chapter; hence, millions

of realizations of this model are computed.

Moreover, these results validate the proposal for the computation of the ho-

rizontal angles presented in Section 3.3.1, which is also essential because it

allows us to systematically assess and program the algorithm for the different

modes of failure.
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Table 3-4.: El Pedregal mine. Truncated normal distribution parameters

Slope Dip Direction (◦) Slope Dip (◦) Friction 1 (◦) Cohesion 1 (kPa)

Year Material Mean Std Mean Std Mean Std Mean Std

1997 Claystone 330 2.5 70 1.5 23 4 11 6

2011 Sandstone 330 2.5 70 1.5 32 6 29 9

2016 Claystone 330 2.5 70 1.5 23 5 51 26

2017 Claystone 330 2.5 70 1.5 27 10 78 30

Sandstone 330 2.5 70 1.5 40 6 75 30

Cohesion 2 (kPa) Height (m) Omega (◦) Unit weight (gr/cm3)

Year Std Mean Std Mean Std Mean Std Mean Std

1997 4 11 8 15 0.5 10 4 2.53 0.06

2011 6 29 9 15 0.5 10 4 242 0.02

2016 5 51 26 15 0.5 10 4 2.5 0.02

2017 10 78 38 15 0.5 10 4 2.59 0.005

6 75 30 15 0.5 10 4 2.55 0.03

Std: standard deviation

Table 3-5.: El Pedregal mine. Deterministic factor of safety for mean orien-

tation 1997, 2011, and 2016

Year Source ID
FS – Claystone FS – Sandstone

Script Swedge Script Swedge

1997

1 1.4 1.4 2.5 2.5

2 1.5 1.5 2.6 2.6

3 0.8 0.8 1.6 1.6

2011

1 0.9 0.9 1.7 1.7

2 1.1 1.1 2.1 2.1

3 1.0 1.0 1.9 1.9

4 1.1 1.1 2.0 2.0

2016 1 1.1 1.1 2.1 2.1

On the other hand, since joint claystone strength parameters are lower than

sandstone’s, the wedge factor of safety at each piece of information is lo-

wer. Hence, subsequent probabilistic computations will be carried out with

claystone strength parameters.
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(a) 1997. Piece of informa-

tion 0

(b) 1997. Piece of informa-

tion 0 as Fisher

(c) 1997. Piece of informa-

tion 0 as Kent

(d) 1997. Piece of informa-

tion 2

(e) 1997. Piece of informa-

tion 2 as Fisher

(f) 1997. Piece of informa-

tion 2 as Kent

Figure 3-14.: Comparison among measured orientation and 10000 orienta-

tion planes simulated as Fisher and Kent distributions for

sources of information 0 and 2

Table 3-6 summarizes results for the deterministic evaluation in 2017, for

each piece of information (The location of each piece of information is inclu-

ded in Appendix A). A comparison at each station for each lithology of the

information collected in 2017, between the mean orientation and the weighted

main orientation. The latter corresponds to the orientation weighted by size,

which is computed according to the size of the plane linked to each orien-

tation. The weighted orientation was computed using ShapeMetriX3D (see

GmbH [2010]).

These computations are the first evidence of the variability of the factor

of safety. Even though the information was collected at the same slope and



3.5 Probabilistic stability analysis of El Pedregal Mine 63

Table 3-6.: Factor of safety. Analysis: Deterministic. Year: 2017.

Piece of evidence Station
Mean Weighted Mean

Claystone Sandstone Claystone Sandstone

0 1 4.1 4.9 2.5 2.8

1 2 4.1 4.9 4.1 5.0

2 3 8.5 10.1 8.0 9.4

3 4 4.0 4.8 3.5 4.2

4 5 4.6 5.5 5.3 6.4

5 6 4.6 5.6 4.4 5.3

6 7 5.3 6.4 5.0 6.0

7 8 6.6 8.1 5.2 6.3

8 9 9.7 12.0 8.0 9.9

9 10 4.6 5.5 4.7 5.6

10 12 – Lower 4.6 5.5 4.2 5.0

11 12 – Upper 4.7 5.6 4.6 5.4

12 13 3.7 4.5 4.0 4.8

13 14 3.6 4.3 3.8 4.6

14 15 8.1 5.8 5.1 6.1

15 16 7.1 5.3 4.4 5.2

block, the factor of safety ranges from 2.5 to 8.5 for the claystone and between

2.8 and 12.0 for the sandstone.

Let p = 1/NsourcesInfo be the probability assigned to the factor of safety of

each piece of evidence. Then, a probability function for the factor of safety

can be computed according to the algorithm plotted in Figure 3-15. There,

the factors of safety are organized in ascending order, and the probability is

assigned as pi = pi−1 + p.

As a result, two probability functions are obtained, one for the mean orienta-

tion and one for the weighted mean orientation, as shown in Figure 3-16a for

the claystone and Figure 3-16b for the sandstone. These probability functions

are Dempster-Shafer structures.

This is a first approach to express the variability of the results, accounting for

the averaged information at each station. A first approach to a measurement

of the uncertainty is provided by the area between bounds. In this case, the

areas are 0.58 and 0.72, for claystone and sandstone, respectively.

At this point, it is important to note that the Dempster-Shafer structures

are a natural way to describe the variability of the information. Particularly,
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Figure 3-15.: Algorithm to calculate a probability function from the deter-

ministic factor of safety of each piece of evidence

these structures represent the natural variability of the orientation data and

the epistemic uncertainty associated with the computation of the factor of

safety using the mean and the weighted mean orientations.

Joints: combination of planes; slope and strength parameters:

probabilistic

In this section, the factor of safety of the wedge is computed considering the

combinations of orientation planes measured using, either, the compass or

ShapeMetrix3D, and the other inputs as probabilistic with the parameters

included in tables 3-3 and 3-4, for uniform and truncated normal distribu-

tions, respectively.

The assessment is carried out for every available source of information. As

a result, for each piece of evidence, a probability function, along with the

probability of failure in terms of the factor of safety, is obtained. At this

point, it is essential to remind that the probability of failure accounts for the
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(a) Material: Claystone. Year: 2017 (b) Material: Sandstone. Year: 2017

Figure 3-16.: Deterministic factor of safety computed expressed as a

Dempster-Shafer structure

number of failed wedges over the total number of realizations. Conversely,

the probability functions considering just the removable blocks.

Figures 3-17 and 3-18 illustrate the probability function resulting from the

removable blocks, with orientation and geomechanical properties modeled as

random variables with uniform and normal distribution. The first noticeable

difference is the shape. Some of them are nicely smooth functions (e.g., piece

of information 2 from 2017), while others are uneven (e.g., piece of infor-

mation 2 from 2011). This is controlled by the available amount of measure

planes and the total proportion of removable blocks. For example, in 2011 for

the piece of information 2, just 56 and 17 planes were measured, leading to

952 combinations of poles. Whereas, for the piece of information 2 from 2017,

120 and 86 joint were measured for planes 1 and 2, respectively, turning into

10320 realizations of the model. This difference clearly explains the uneven

and smooth behavior.
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(a) 1997. Piece of informa-

tion 2

(b) 2011. Piece of informa-

tion 2

(c) 2016. Piece of informa-

tion 1

(d) 2017. Piece of informa-

tion 2. (Station 2)

(e) 2017. Piece of informa-

tion 3. (Station 3)

(f) 2017. Piece of informa-

tion 10. (Station 10)

(g) 2017. Piece of infor-

mation . (Station 12-

upper)

(h) 2017. Piece of informa-

tion 13. (Station 13)

Figure 3-17.: Selected probability functions for model: Joints: Combination.

Slope: Uniform distributed. Strength: Uniform distributed



3.5 Probabilistic stability analysis of El Pedregal Mine 67

(a) 1997. Piece of informa-

tion 2

(b) 2017. Piece of informa-

tion 2. (Station 2)

(c) 2017. Piece of informa-

tion 3. (Station 3)

(d) 2017. Piece of informa-

tion 10. (Station 10)

(e) 2017. Piece of informa-

tion 13. (Station 13)

Figure 3-18.: Selected probability functions for model: Joints: Combination.

Slope: Normal distributed. Strength: Normal distributed

Regarding the variability of the probability function, Figure 3-19 shows the

probability function for the factor of safety computed for the information

collected in 2017 utilizing the measurement system ShapeMetrix3D and the

other parameters as uniform distributed. These functions were calculated

using the same uniform distribution parameters, which means that the pro-

bability function’s variation reflects just the change in the measured input

planes. This variation may be dramatic, only for illustration, according to

the information collected in 2017, the probability of having a factor of safety
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lower than 5.0, ranges between 0.18 and 0.75. Likewise, the probability of

getting a factor of safety lower than 10.0 is between 0.50 and 0.92.

Figure 3-19.: Probability function for the factor of safety considering the

information collected in 2017

Joints: Kent/Fisher distributed; slope and strength parameters:

probabilistic

Results from Section 3.5 showed the impact of modeling the joint orienta-

tion using the Kent distribution over the Fisher distribution. In this sen-

se, here, the probabilistic factor of safety is computed, considering the joint

orientations as a spherical distribution. In this case, the joint 1 is preferably

Kent-distributed, while the bedding is Fisher-distributed.

For each source of information, a total of 10000 planes orientation were simu-

lated according to the acceptance-rejection algorithm A/R. Hence, the factor

of safety was computed 10000 times for each source. The slope orientation

was considered as deterministic, while the other inputs were assumed to have
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a uniform distribution, with the bounds included in Table 3-3. With this as-

sumptions, Table 3-7 shows the probability of failure computed for the pieces

of information collected in 2017.

Moreover, Table 3-7 shows the probability of failure (P (FoS < 1,0))calculated

for the combinations of measured joint planes, instead of Kent simulated da-

ta. Figure 3-20 depicts the results included in Table 3-7, while Figure 3-21

shows the probability of having wedges with a factor of safety lower than 3.0.

As can be seen, there is a noticeable difference between the two approaches,

especially when the factor of safety is lower than 1.0.

Figure 3-22 shows the probability function constructed for the removable

blocks for the two scenarios described above. First, 3-22a presents the pro-

bability function for the combinations of planes and 3-22b shows the same

function, but with the planes simulated from the Kent distribution. Again,

there is no only one probability function, but many, even for the same slope.

It is important to highlight that the other input parameters are modeled as

uniformly distributed in both cases.

Table 3-7.: Probability of Failure according to information collected in 2017

Source Combinations Kent

1 0.00E+00 0.00E+00

2 5.08E-03 1.60E-03

3 0.00E+00 0.00E+00

4 1.28E-03 0.00E+00

5 3.98E-04 2.00E-04

6 4.25E-03 1.20E-03

7 1.70E-03 1.00E-03

8 4.89E-04 0.00E+00

9 2.35E-03 4.20E-03

10 5.16E-03 2.00E-04

11 6.30E-03 1.04E-02

12 0.00E+00 0.00E+00

13 5.54E-03 2.97E-02

14 1.07E-03 0.00E+00

15 7.94E-04 2.00E-04

16 1.45E-03 0.00E+00

Analysis: Joints modeled as combinations of planes and Ken distributed and other parameters as uniform distributed. Slope

modeled as deterministic



70 3 Stability Analysis of Rock Wedges with Kent Distribution

Figure 3-20.: Probability of failure for information collected in 2017

Stability computed with combinations of measured orientations and modeled as Kent distributed

Figure 3-21.: Probability of factor of safety lower than 3.0 for information

collected in 2017.

Stability computed with combinations of measured orientations and modeled as Kent distributed
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(a) Combinations of measured planes (b) Simulated orientations

Figure 3-22.: Probability functions for information collected in 2017. Slope

orientation modeled as deterministic

3.6. Discussion

Results presented in Appendix B showed an important difference between

modeling the variability of orientations with the Kent distribution instead

of the Fisher. Figure 3-23 presents an explanation for this; it illustrates the

contours generated by Fisher and Kent distributions schematically.

The central assumption of these distributions is that orientations are distri-

buted around a central value (the mean orientation). The probability density

reduces as the orientation is farther from the mean.

Firstly, Kent distribution fits the measure data better, compared to the Fis-

her’s, which is the case of many field measurements, as shown in the figure.

From the graph, two regions can be distinguished. In region I, the Fisher

distribution would lead to simulating some planes within this area, which

are not likely to happen, according to the measured data. This will generate

unrealistic combinations of planes and wedges that can trigger a failure.

On the other hand, Fisher distribution cannot simulate planes within region

II, because they fall out of the symmetry assumption behind this distribution.

In this case, several likely wedges are disregarded.

A first thought might suggest that these two regions compensate each other.

However, this is not true, since the probability function with the simulation
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Figure 3-23.: Effect of simulating orientation by Fisher rather than Kent

distribution

under Fisher distribution would include unlikely and exclude likely blocks.

Besides, the deterministic problem is nonlinear and involves several modes

of failure. Numeric results showed that the variation in the probability of

failure and the probability functions are as high as 700�, for high ovalness

parameter.

Several FOS probability functions were computed under different assum-

ptions for different pieces of information collected in El Pedregal mine. As a

result, different probability functions were obtained, which is also reflected

in different probabilities of failure. This variability results from the aleatory

and epistemic uncertainty of the inputs

It is important to highlight that when the target factor of safety is low, the

probability of failure is low, which means that many realizations of the model

are required to establish the probability of failure. Whereas, for a high target

probability of failure, the probability of failure is higher, so a lower number of
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realizations is required to get close results. This is because, when comparing

the combinations and the simulations results, there is a higher difference in

the probability of failure when the target factor of safety os 1.0 than when is

3.0.

The problem is highly nonlinear, in which several scenarios are involved. The

change of geometry at each realization can lead to different mechanisms of

failure, which makes it hard to predict the effect of κ and β on the final proba-

bility of failure. Sometimes it reduces, and sometimes it increases. However,

the effect has to be considered.

3.7. Conclusions

This chapter presented a framework to perform a reliability assessment of

the stability of rock wedges, considering the variability of joint planes orien-

tation with the Kent distribution (5-parameters Fisher-Bingham). This is an

alternative to the Fisher distribution, which is conventionally used to model

de variability of joint planes.

The Kent distribution is expressed in terms of 5 parameters, which have to

be calculated from the sampled planes. These parameters were computed

with the moments’ method, without resorting to an iterative process, which

reduces the complexity of the algorithm. Once the 5 parameter are estimated,

the simulation of planes is not straightforward since the distribution cannot

be directly inverted. Hence, the iterative acceptance-rejection algorithm using

a truncated bivariate normal envelope was implemented.

With the algorithms implemented in this chapter, in Appendix B it was

demonstrated that there is a significant effect of the probability distribution

selected to model the variability of joint planes in the probability distribution

function of the factor of safety.

In summary, there is an impact on the selection of the input probability

distribution on the factor of safety probability function, when joint sets fit

better the Kent distribution. Hence, the approach proposed in this chapter

will lead to a more suitable representation of the probability of failure, com-

pared to the conventional approach adopted in rock mechanics, in which the

variability of joints orientation is modeled by using the Fisher distribution.
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Several assessments were carried out for different pieces of evidence; here

the information is available and is used to estimate the input parameters

for the subsequent Monte Carlo simulation. Each piece of evidence led to a

different probability function, which means that there is no only one function,

even within a small area. Instead, there is a family of probability curves that

describe the variability of properties.

Therefore, a unique probability function based on a probabilistic descrip-

tion of the variability of the input parameters cannot fully represent by the

uncertainty linked to the geomechanical and orientation parameters. This

is because probability functions represent the aleatory uncertainty of joints

orientations, but not the epistemic uncertainty related to rock structure geo-

metry.

Based on the just mentioned, it makes sense to express the variability as

intervals rather than a unique probability function. In the coming chapters,

an alternative to evaluating the uncertainty with intervals of probability is

presented.



4. Rock Wedge Stability Analysis by

Dempster-Shafer theory of evidence

4.1. Introduction

In the last chapter, it was demonstrated that there is no unique probability

function for the factor of safety. Instead, there is a family of functions that

reflect the quality of the information available. In that chapter, the input

information had these features:

There were robust data sets on joints orientation. Hence, estimation of

parameters and subsequent simulation were feasible, according to the

moment estimates and acceptance-rejection algorithm, respectively.

There were several sources of information available, defined by the sta-

tions where information was gathered.

There was scarce information on joints mechanical properties. Hence,

their probability distributions were assumed. Besides, the same values

were utilized for several pieces of information on joint orientation.

These conditions are not ideal. However, this is the case in most rock enginee-

ring project, where technical and financial conditions constraint the amount

of information on joint strength parameters.

Under this context, this chapter focuses on modeling the stability of structu-

rally controlled failures in rock slopes. Both epistemic an aleatory uncertainty

are accounted for by using a Dempster-Shafer Theory of Evidence. The analy-

sis considers the limited information on geomechanical parameters, e.g., joints

strength parameters. Besides, this chapter addresses the issue of combining
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limited data on geomechanical parameters, with the more complete sets of

information on geometrical properties of joints, i.e., joints orientation. This

problem is tackled by resorting to the spherical statistics, modeling orien-

tation with a 5-parameters Fisher Bingham (Kent) distribution. The latter

problem has not been addressed for geotechnical application as described

below.

In regarding the structure of this chapter, first, an approach for performing

reliability assessment combining Dempster Shafer structures with Kent dis-

tributed orientations is presented. Then, the process is illustrated by an ap-

plication example utilizing information collected in El Pedregal mine and

reported in Appendix A.

This chapter aims at defining an alternative to perform reliability assessment

of rock slope stability taking in to account the uncertainty of input parame-

ters. Firstly, the nature of the input information should be considered. Hence,

a wedge stability model as shown in Section 3.2 is selected. For that model,

the input information can be divided into joints orientation and geomecha-

nical parameters. This classification is based on the amount of information

collected during current engineering projects. Usually, it is possible to gat-

her a robust data set on joint orientation, primarily when techniques like

short-range photogrammetry are utilized. On the other hand, the informa-

tion of joints strength parameters is limited to a few results taken either from

laboratory tests or back analysis.

The lack of knowledge induced by the limited amount of information brings

an epistemic uncertainty to the problem, that already has an aleatory uncer-

tainty linked to the variability of the joint strength given by its origin. Hence,

the geomechanical parameters are suitable to be represented as a Dempster-

Shafer structure.

In Chapter 3, an alternative to represent the rock mass joint orientation

using Fisher and Kent probability distribution was presented. Based on that

approach and, the concept of Dempster-Shafer structure (Chapter 2), a fra-

mework for performing rock wedges stability analysis is proposed, taking into

account the following considerations:

Only the epistemic uncertainty induced by the limited information on

joint strength parameters is considered.
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Joint strength parameters are represented by DSS, which represents

both the epistemic and the aleatory uncertainty. The earlier is expressed

by the probability assignment, and the latter by the interval defined at

each focal element.

Joint orientations have an aleatory uncertainty.

Wedge failure is considered as deterministic model.

The orientation of planes are accounted in two different ways. Firstly, the

stability of the wedge is computed considering the combinations of joint pla-

nes from each joint set. Secondly, each joint set orientation is simulated as a

Kent-distributed random variable.

4.1.1. Joint orientation as combinations

This project has included the use of the close-range photogrammetry to mea-

sure the joint planes on the slope face. The technique allows gathering a

robust and reliable database on joints orientation, as shown in Appendix A.

Based on this, the procedure described in Figure 4-1 is proposed as follows:

1. For a piece of evidence i.

2. For a simulated slope orientation l.

3. For each combination u of focal elements.

a) Define the combination j of planes.

b) Verify the kinematic conditions for failure. If not removable go

back to a. If kinematically unstable update number of removable

blocks Nremovable = Nremovable + 1.

c) Compute the factor of safety, FS. If FS < 1,0, update the number

of unstable blocks Nunstable = Nunstable + 1.

d) Go back to step a, update j = j + 1.

e) Repeat while j < N .
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Figure 4-1.: Algorithm to perform reliability assessment of rock wedges con-

sidering the combination of joint planes and strength parame-

ters as DSS

4. Go back to step 3, update u = u+ 1.

5. Repeat while u < F .

6. Go back to step 2, update l = l + 1.

7. Repeat while u < M .

8. Go back to step 1, update i = i+ 1.

9. Repeat for every available piece of evidence.

In this case the total number of realizations of the model is defined as follows:

nrealizations = N ∗ nc ∗M (4-1)
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where, N is the number of combinations and is computed as N =
∏2

i=1 ni,

nc corresponds to the total number of combinations of DSS and, M is the

number of simulated planes.

In the procedure presented here, the orientation of the slope face can be

modeled either, as a deterministic variable or probabilistic Kent distributed

variable.

4.1.2. Joint orientation simulated as Kent

Alternatively, the orientations of the planes are simulated as Kent distributed

variables. The general procedure is depicted in Figure 4-2. This approach is

suitable for performing Monte Carlo simulations to be combined with the

DSS of strength parameters as follows:

Figure 4-2.: Algorithm to perform reliability assessment of rock wedges.

The orientations area assumed as a Kent distributed random variable and strength parameters as DSS

1. For a piece of evidence i
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2. For a simulated slope orientation l

3. For each combination u of focal elements

a) Simulate plane orientations according to Kent distribution

b) Verify the kinematic conditions for failure. If not removable go

back to a. If kinematically unstable update number of removable

blocks Nremovable = Nremovable + 1.

c) Compute the factor of safety, FS. If FS¡1.0, update the number of

unstable blocks Nunstable = Nunstable + 1.

d) Go back to step a, update j = j + 1

e) Repeat while j < N

4. Go back to step 3, update u = u+ 1

5. Repeat while u < F

6. Go back to step 2, update l = l + 1

7. Repeat while u < M

8. Go back to step 1, update i = i+ 1

9. Repeat for every available piece of evidence

Now the total number of realizations of the model is defined as follows:

nrealizations = H ∗ nc ∗M (4-2)

where, H is the number of simulations of planes

In this case, the number of realization is nc higher than a conventional Monte

Carlo (MC) simulation, which means that a MC simulation is carried out for

each combination of focal elements of geomechanical parameters.
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4.2. Example

This section presents an application of the procedure just described. It invol-

ves the information collected in El Pedregal Mine and presented in Chapter

2. For illustration purposes, orientation parameters collected in 2017 by using

ShapeMetrix3D were utilized, along with the joint geomechanical parameters

for the claystone layers.

The amount of information on geomechanical parameters is limited to a few

results. Hence, this information was expressed as DSS, as shown in Table 4-1.

Here, it was assumed that the fiction angle of the rock joints is between 20

and 35 degrees, hence the same probability was assigned to the three focal

elements. It considers that the expected interval intersects the three focal

elements. As for the the cohesion, the same assumption was considered with

an expected interval between 50kPa and 60kPa.

Table 4-1.: Joint strength parameters expressed as DSS
Year Friction Cohesion (kPa) γ (ton/m3)

Lower Upper P.A. Lower Upper P.A. Lower Upper P.A.

2017 17 20 0.33 44 89 0.5 2.59 2.60 1

17 37 0.33 41 146 0.5

32 37 0.34

P.A. stands for probability assignment

In regarding the wedge geometry, two possibilities were taken into account.

First, the stability for every possible combination of measured planes. Then,

planes are simulated assuming that they follow a Kent distribution (See Chap-

ter 3). In both cases, two wedge geometries with two different slope orien-

tations were analyzed. The slope orientation was assumed as deterministic.

This assumptions lead to the scenarios listed in Table 4-2.

Figure 4-3 shows the major circles for the mean plane orientation for the

mentioned scenarios. As can be see, the wedge formed by joint set 2 and

bedding (scenarios 1 and 2) will have a failure mainly along bedding (Figure

4-3a), while the wedge formed by joint sets 1 and 2 (Scenarios 3 y 4) will

have a failure along the intersection line (Figure 4-3b). These are the cases
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Table 4-2.: Rock wedges slope orientation and involved joint sets

Scenario Slope Orientation Joint sets assumption Joint sets involved

1 330/70 Combinations of planes Joint set 2 Bedding

2 Kent distributed Joint set 2 Bedding

3 098/70 Combinations of planes Joint set 1 Joint set 2

4 Kent distributed Joint set 1 Joint set 2

for the mean direction, when variability is considered other modes of failure

become relevant.

(a) Scenarios 1 and 2. Wedge formed by

slope (red), joint set 2 (green) and

bedding (green)

(b) Scenarios 3 and 4. Wedge formed by

plane of slope (red), and joint sets 1

and 2 (green)

Figure 4-3.: Assessed scenarios. Stereographic projection of major planes for

mean orientations

Sixteen pieces of evidence (numbered 0-15) on orientation parameters we-

re collected in 2017 (i.e.regions were photographed and processed by using

ShapeMetrix3D. See Figure A-4 that presents the mean orientation at each

piece). A DSS for the factor of safety of the wedge, for each scenario and for

each piece of evidence was computed, which led to 64 factor of safety DSSs.
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4.3. Results

Based on the algorithm just described, the reliability assessment for the fac-

tor of safety of rock wedges was computed. For illustration and comparison

purposes, Figure 4-4 shows the DSS for the factor of safety of the rock wedge

formed by bedding and joint set 2 planes. Figure 4-4a depicts the DSS when

the combination of planes is assessed, while Figure 4-4b presents the DSS

when orientations are simulated as Kent distributed random variable.

Each DSS consist of an upper left (upper) bound in green and a right (lower)

bound in red. The area in between bounds represents the uncertainty linked

to the input data.

In Appendix C the DSSs for the sixteen pieces of evidence is presented in figu-

res C-1 and C-2. For the wedge defined by slope, joint set 1 and 2 (Scenarios

3 and 4), results are plotted in figures C-3 and C-4 for the combinations and

simulated cases, respectively.

(a) Combination of planes (b) Simulated as Kent

Figure 4-4.: DSS for wedge factor of safety considering the combination of

collected planes

Piece of evidence 0. Wedge formed by bedding and joint set 2 planes (Scenarios 1 and 2)
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4.4. Analysis of results

The first noticeable result is the variability of the calculated DSS of the

factor of safety (FoS DSS). It reflects two facts. First, the variability of rock

mass structure geometry, since in all cases, the focal elements were the same.

Second, different mechanisms of failure are analyzed, e.g., Figure C-1n, for

the piece of evidence 13, includes several wedges with a probability equals

zero. Such a factor of safety is obtained because contact is lost on both planes,

(see Chapter 3), while Figure C-1i, for the piece of evidence 8, does not report

any factor of safety of zero. This means that throughout the computation

none wedge lost contact on both planes. Indeed, the lowest factor of safety is

2.08.

On the other hand, in most cases, the probability function obtained is smooth,

which is the result of the large number of computations carried out for each

scenario. For the combination analysis, the factor of safety is computed for

every possible combination of planes, for a given combination of cohesion

and friction angle, i.e., focal elements. Subsequently, repeated for the next

combination of focal elements. For the Kent distributed assumption, 10.000

random orientations simulated plane orientations are computed, for every

focal element combination. If there are 36 focal element combinations, 360.000

computations are required for each piece of evidence, which turns 5.760.000

wedges assessed for scenarios 2 and 4.

From that analysis, it can be concluded that the amount of computations

required to propagate the uncertainty under this framework is much higher

than a Monte Carlo simulation. For instance, the number of computations for

a conventional Monte Carlo simulation would be 10.000 while for computing

the Dempster-Shafer structure is 10,000 ∗ nc, i.e. In other words, nc Monte

Carlo simulations are required to compute a Dempster-Shafer structure for

the factor of safety. In this case, 36 Monte Carlo simulations are performed

for a single FoS DSS.

With a 32 GB RAM and an Intel Core i7 standard laptop, it takes 15 minutes

to compute the 16 FoS DSS for the analyzed scenarios when combining the

measured planes (the stability of 1.188.864 wedges was carried out). While,

when planes are simulated as Kent, it took 64 minutes to compute 16 FoS DSS



4.4 Analysis of results 85

for 5760000 wedges, which demonstrate the suitability of the methodology

under the applied context.

In fact, this is one of the main limitations of Evidence Theory for propaga-

ting uncertainty through computation models. This makes many engineering

problems impractical from the computational cost standpoint [Ferson et al.,

2007]. However, for a wedge limit equilibrium assessment, the proposed met-

hodology is practical.

When comparing the Fos DSS from Kent simulated planes against those from

combinations of planes, there is a higher probability of failure when planes

are simulated. For instance, for the piece of information 8, the lowest factor

of safety reported, when only combinations of planes is considered, is 2.08,

while for the probabilistic case is 0, see figures C-1i and C-2i. Similar results

are calculated for pieces of information 0, 1, 6, 7, 9, 11, and 15. This difference

reflects the fact that the combination of the collected data does not account

for several planes that are still likely, but they do not daylight on the slope

face. From this standpoint, the analysis of just the combination of planes

underestimates the probability of failure, which evidently goes against the

safety of an engineering slope design.

This issue on the combination assessment is reflected in one of the most re-

levant results of the evidence theory. The DSS does not provide a unique

probability of failure, but a range within the actual probability lies based on

the input DSS. Since for the scenario 1 (combinations of planes) the probabi-

lity of failure is close to zero an underestimated, the size of the probability of

failure interval tends to zero, while for the scenario 2 (probabilistic simulation

of planes) it is higher than zero. This result is plotted in Figure 4-5, on the

left, the probability of failure for the probabilistic DSS is presented, on the

right, the comparison with combination analysis is depicted. It is evident that

the probability of failure interval is larger when orientations are simulated.
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Figure 4-5.: Interval size of probability of failure (FS < 1,0) for a wedge

formed by joint set 1 and bedding (Scenarios 1 and 2).

On the left, scenario 1. On the right comparison between scenario 1 (blue) and scenario 2 (orange)

Specifically, the largest interval size for the combination scenario is 0.004 for

the piece of information 13. While in the probabilistic simulation is 0.022,

which represents an increment of 240 % on the interval size. The largest in-

terval size for the probabilistic simulation was computed for the piece of

information 12 with 0.032 wide.

A similar result is obtained for the wedge formed by joint sets 1 and 2 as

shown in Figure 4-6. However, in this case, the interval size for the probability

of failure of the combinations scenario is higher than for scenario 1, e.g.,

the largest interval size is 0.0642 corresponding to the piece of evidence 3.

For scenario 1 such an interval measured is 0 because the upper and lower

probability of failure are equal (0.014).

The probabilistic analysis gives the same trend. i.e., interval size is larger for

the wedge formed by joint 1 and 2 rather than joint 2 and bedding. In fact,

for the earlier, the size can be as large as 0.36 (36 %) for the piece of evidence

5.

In rock engineering, aside from the probability of failure (expressed as the
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Figure 4-6.: Interval size of probability of failure (FS < 1,0) for a wedge

formed by joint sets 1 and 2 (Scenarios 3 and 4). On the left,

probabilistic simulated planes.

On the left, scenario 3. On the right comparison between scenario 3 (blue) and scenario 4 (orange)

probability of having wedges with a factor of safety lower than 1), there are

other target factors of safety that lead the geotechnical design and recom-

mendations. From the DSS the upper and lower probability of having any

target factor of safety can be computed and can assist the decision-making

process.

Hence, in figures 4-7 the upper and lower bound of the probability of ha-

ving a factor of safety lower than N (N = 1, 2, ..., 10) for the scenario 1 for

sources of information 0, 7 and 11 is depicted. Figure 4-7a, for source 0,

shows that for factors of safety higher than 1.0, the interval size is similar.

Conversely, for source 7 ( Figure4-7b), the probability intervals are larger for

the combination analysis than for the probabilistic simulated orientations,

but the upper bound keeps lower or similar values as the latter. Finally, 4-7c

presents, again, probability intervals from combinations larger than proba-

bilistic simulated planes. However, here the probabilistic case would lead to

lower probabilities of failure for N > 1.
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(a) 2017. Piece of information 0

(b) 2017. Piece of information 7

(c) 2017. Piece of information 11

Figure 4-7.: Interval size. Wedge formed by joint set 2 and bedding. Proba-

bility of having a factor of safety lower than N (N = 1, 2, ..., 10)

On the left, probabilistic simulated planes. On the right comparison between probabilistic simulated planes (blue) and the

combination of planes (orange)
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As can be seen, the interpretation of results is not straightforward, and it is

not possible to define beforehand trends or expected behavior in terms of the

size and shape of the resulting DSS, the analysis should be performed at each

specific site, considering the particular uncertainty linked to the problem.

As mentioned above, the area between bounds of the DSS is interpreted as

the uncertainty of such a DSS. Table 4-3 summarizes the areas calculated

for each piece of evidence for each hypothetical scenario. Areas higher than

250 were identified as outliers and disregarded.

Table 4-3.: Area between bound of the factor of safety DSS

Piece of info Scenario 1 Scenario 2 Scenario 3 Scenario 4

0 1.51E+01 9.14E+00 4.46E+01 1.07E+01

1 1.65E+01 8.40E+00 2.44E+01 1.15E+02

2 2.05E+01 1.37E+01 2.70E+01 8.11E+00

3 5.78E+00 8.66E+00 7.38E+00 2.68E+01

4 9.47E+00 1.05E+01 2.98E+03 4.36E+01

5 2.14E+01 1.63E+01 3.90E+01 2.06E+00

6 2.30E+01 8.32E+00 6.78E+01 2.83E+00

7 1.38E+01 1.47E+01 2.05E+01 3.92E+01

8 3.59E+01 1.55E+01 6.12E+01 4.64E+00

9 7.26E+00 1.13E+01 2.44E+01 2.78E+01

10 8.06E+00 1.11E+01 2.21E+01 2.33E+01

11 4.73E+00 5.15E+01 1.57E+01 6.22E+01

12 3.95E+00 2.12E+01 1.69E+01 2.98E+01

13 2.84E+02 1.40E+01 1.35E+01 3.73E+01

14 1.38E+01 9.17E+00 8.65E+01 4.81E+00

15 1.21E+01 9.92E+00 1.50E+01 2.81E+01

Figure 4-8 shows the area measurements summarized in violin plots. These

plots show the distribution of data along with the median. From these charts,

it can be inferred that the computed area is truncated at the lower side with

median values very close.

Table 4-4 summarizes some descriptive statistics for the calculated area. As

a relevant result, the mean area is very similar. For wedges formed by joint
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set 2 and bedding, the area is 14.09 and 14.59, while for the wedge defined

by joint sets 1 and 2 the areas are 22.23 and 27.21.

(a) Wedges formed by slope, joint set 2 and

bedding plane

(b) Wedges formed by slope, joint sets 1 and

2

Figure 4-8.: Area between FoS DSS for different analyzed scenarios.

Left, wedge formed by joint set 2 and bedding. Right, wedge formed by joint sets 1 and 2

Table 4-4.: Descriptive statistics of area between bound of the factor of sa-

fety DSS

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Mean value 14.09 14.59 32.40 29.14

Standard deviation 8.26 10.14 22.23 27.71

Median 13.79 11.20 24.40 27.30

Finally, it should be highlighted that there is no correlation between the dis-

persion of the Kent distribution, represented by parameter κ and the area

between FoS DSS. Figure 4-9 illustrates this point. This result can be explai-

ned by the fact that the area between bounds does not reflect the aleatory

uncertainty of the input parameters expressed as a Kent distributed random

variable, rather the uncertainty of the DSS structure.
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(a) Wedges formed by slope, joint set 2 and

bedding plane

(b) Wedges formed by slope, joint sets 1 and

2

Figure 4-9.: Area between factor of safety DSS for different analyzed sce-

narios. Left, wedge formed by joint set 2 and bedding. Right,

wedge formed by joint sets 1 and 2

4.5. Conclusions

This chapter proposes an alternative to assess the stability of rock wedges

considering the orientation as a spherical Kent distributed random variable

and the joint geomechanical parameters as DSS. This approach acknowled-

ges the fact that in conventional rock mechanics applications, it is feasible

to gather a robust database on rock joint geometry, either by using the tra-

ditional compass and tape measurements or remote sensing techniques, e.g.,

short-range photogrammetry.

The approach presented allows considering both the epistemic and the alea-

tory uncertainty leading to a bounded probability function, rather than a

unique probability function. The obtained envelope bounds all the poten-

tial probability distribution feasible according to the information collected

on joint strength parameters.

The proposed methodology demonstrated a high computational cost linked to

the implementation of the DSS along with planes modeled as Kent distributed

random variables. Nevertheless, this chapter showed that the application for

the wedge model is still practical, from the computational time required. It

is important to highlight that up to now, Evidence Theory analysis reported

for geotechnical applications does not involve this amount of information and

computations since the combination of robust datasets and limited informa-
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tion has not been addressed within a geomechanical assessment framework.

Results showed that for the extreme case defined by a low factor of safety (e.g.,

FoS < 1,0) the probability of failure is underestimated when only measured

planes are measured. It happens because several possible orientations that

lead to critical wedges do not daylight on the slope and consequently are

not measured. This is overcome by performing several realizations of the

orientation planes assuming a Kent distribution. Besides, as shown in Chapter

3, the Kent distribution guarantees that a more realistic simulation of the rock

mass orientation is performed.

The FoS DSS calculated in this chapter showed to have a large variability of

results, which was reflected in the variety of interval size for different target

factor of safety (See section 4.3). This is the result of utilizing a relatively

simple model (wedge stability), but under a high uncertainty context, with

limited information. In other words, the stability of rock slopes is a complex

problem with a high variability on input parameters so that no general result

can be predicted and simulations and considerations on uncertainty should

be performed for each specific case.

Despite the variability, the FoS DSS the mean and the median area within

bounds calculated for different pieces of evidence had similar values. So, the

mean area value might be used to compare the uncertainty linked to different

wedges geometry. In this case, the uncertainty of FoS DSS formed by joint

set 2 and bedding is lower than the one formed by joint sets 1 and 2.

The approach presented in this chapter yields a broader framework to decision-

makers in comparison to the deterministic and probabilistic approach. The

earlier does not account for explicitly for the variability of input informa-

tion; while the second one does not involve the epistemic uncertainty linked

to the lack of information. Consequently, although more computations are

required, the DST based approach allows us to have a full overview of the

model uncertainty adjusted to the quality of input information, which gives

more confidence in the final design decision.

So far, the wedge geometry is explicitly defined by the joint and planes rela-

tive positions as input parameters. However, in rock slopes engineering the

geometry is much more arbitrary. Hence, a more general approach should

be implemented to identify such removable and unstable blocks, considering
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variables as joint length and location. Therefore, in the next chapter, this

analysis will be performed under an Evidence Theory framework.

A significant result stated here, is that the DSS analysis combined with Mon-

te Carlo simulation of Kent distributed variables weights each Monte Carlo

simulation by the probability assignment given to each focal element. In the

following chapters and alternative for finding a weighting factor, based on

the probability distribution of input information is presented. This approach

might be used for updating the reliability analysis.



5. Rock slope stability with DSS and

DFN

5.1. Introduction

Up to now, the stability of rock wedges has been analyzed considering the

orientation variability by Kent distribution and the geomechanical informa-

tion as Dempster-Shafer structures. Besides, a short-range photogrammetry

system was introduced to collect information on joints geometry. However,

information on the location of joints has not been accounted for, since the

wedge model considers just orientation of joints and the maximum wedge

based on the slope height.

The orientation, location, size, and separation of joint are uncertain in the

rock mass because field measurements either by conventional surveying or

image interpretation gather information only on the surface, and no informa-

tion is provided on the variation with depth of these features. Therefore, the

collected information can be fitted to different distributions to consider the

epistemic variability of each parameter.

From this standpoint, each measurement captures only one realization of the

joint setup. Consequently, it is not possible to know certainly the joints setup

at a different location within the rock mass, only realizations of that setup

can be considered.

The network of joints established for one realization is known as a discrete

fracture network, DFN, and will be the result of a stochastic simulation of

the joint orientation, separation, length, and location expressed as random

variables, which parameters are established based on the collected informa-

tion.

From the beginning, an essential point to highlight is that the 3D representa-
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tion of fractures is performed from 1D (boreholes) or 2D(outcrop mapping).

Since direct observation of the 3D fracture network is not possible at the

moment. Consequently, an entirely realistic representation of the 3D fracture

network is still an unresolved issue [Lei et al., 2017].

This problem has been addressed by stereological analysis of fracture net-

works [Berkowitz and Adler, 1998, Warburton, 1980]. The analysis consists

of solving the inverse problem of finding the distribution of planes, based on

the distribution of the measured traces [Berkowitz and Adler, 1998].

The main assumptions are that the geometrical parameters, as joints orien-

tation, separation, and length are distributed as random variables. Hence, as

for any probabilistic simulation, each realization of the fracture network will

lead to different fracture networks. This will be explicitly shown in the next

section.

For the generation of the fracture system, the three main geometrical features

to be considered are [Baecher, 1983]:

1. Density: separation and frequency

2. Size: joint length, area

3. Joint orientation

Some of the simplifications are: the separation and the length of the joint are

independent, which is arguably [Pahl, 1981] but contributes to the simplicity

of the problem [Baecher, 1983].

The 3D distribution of size and spacing can be deducted from the traces,

based on the stereological analysis. Hence, from the probability distributions

of the density, size, and orientation, a stochastic realization of the discrete

fracture network (DFN) can be carried out. This approach is known as the

Poisson DFN model or Baecher model [Lei et al., 2017].

The seminal work developed by Einstein et al. [1978], and Baecher [1983]

presents a starting point on the generation of DFN from stochastic simulation

the geometrical parameters aforementioned. Early applications of fracture

networks were presented by Balberg and Binenbaum [1983], Robinson [1983]

to solve 2D percolation problems.
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Since then, the model has been implemented for generation of fracture net-

work for several problems, just for mentioning some examples: fractures con-

nectivity [Bour and Davy, 1997, 1998], hydraulic properties of rock masses

[Baghbanan and Jing, 2007, 2008, de Dreuzy et al., 2001a,b, Ebigbo et al.,

2016, Min and Jing, 2004], modeling water flow through fractured media

[Ahmed et al., 2014, Andersson et al., 1984, Berrone et al., 2018, Dershowitz

and Einstein, 1988, Dershowitz and Fidelibus, 1999, Endo, 1984, Faille et al.,

2016, Karimi-Fard et al., 2004, Long et al., 1982, Sandve et al., 2012], solu-

te transport [Zhao et al., 2013], block identification and simulation [Zhang

and Lei, 2013], identification of removable blocks [Zhang and Lei, 2014] and

geomechanical upscaling [Elmo et al., 2014].

Even though the use of this sort of simulation is broadly used and accepted,

it has some limitations linked to the simplifications during the generation

process, such as homogeneous spatial distribution, planar fractures, and in-

dependence among geometrical parameters [Lei et al., 2017]. Hence, some

comparisons with natural fracture networks have turned discrepancies [Be-

layneh et al., 2009, Lei et al., 2014].

Research to overcome these limitations focuses on the inhomogeneity of frac-

ture spatial distribution [Billaux et al., 1989, Fadakar, 2014, Long and Bi-

llaux, 1987, Xu and Dowd, 2010]. A comprehensive state of the art of the

discrete fracture network, including applications to geomechanics is presen-

ted by Lei et al. [2017].

The stochastic generation or rock wedges is based on the conceptual model of

joint geometry developed by Baecher et al. [1977], built based on the following

assumptions:

1. Joints are 2D circles

2. Joints center locations correspond to a Poisson process

3. Circles radii are lognormally distributed

4. Joint radius and dip are uncorrelated

5. Joint radius and spatial location are uncorrelated
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The generation of the fracture pattern provides input for geotechnical analy-

sis. However, this sort of analysis requires the identification of blocks as des-

cribed below. Once blocks are defined, a first pass geotechnical analysis [El-

mouttie et al., 2013] i.e., key block, rock fall, and volume estimation.

The polyhedral modelers provide the bridge between the fracture networks

and the block identification required for geotechnical analysis. These modelers

can be classified in [Jing and Stephansson, 2007, Zhang et al., 2010]:

1. Constructive Solid Geometry

2. Successive Space Division

3. Boundary Representation

4. Element-Block Assembling

Constructive solid geometry

Simple geometry solids (spheres, discs, or cubes) are combined by topological

transformations and identification to form more complex shapes. This is the

approach used by bonded particle methods.

Successive space division

Warburton [1983] presented one of the first studies on this method. In this

method, a predefined geometry block is divided by adding successively new

discontinuities. The procedure turns out conceptually and computationally

straightforward. However, it has some limitations:

1. All generated blocks are convex

2. Artificial boundaries included to simulates excavations generates a more

complex behavior than the actual one.

Hence, the method has essential limitations to model actual rock masses,

primarily flow through joints [Jing and Stephansson, 2007]. Moreover, this

method overestimates the amount of removable block, which bias the stability

analysis result. Thus, a method capable of modeling convex and concave block

shape formed by finite size joint should be presented.
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Element block assembling

The method was originally proposed by Zhang et al. [2010] and Zhang et al.

[2012]. This block identification method first treats all joint as infinite in the

domain. Hence, at this stage, it identifies all block as convex. Subsequently,

all convex blocks are analyzed further to account for the finiteness of the

joints. In fact, the method identifies finite joints and merge all the convex

blocks that form a concave block. Recently, the method has been extended

to consider curved fractures [Zheng et al., 2015].

Boundary representation

The method is based on principles of closed surfaces and polyhedra in com-

binational topology to represent the block surface [Jing and Stephansson,

2007]. Conceptually and computationally this method is more complicated

than successive space division. Nevertheless, it can model finite joints, which

makes it more suitable for modeling actual rock masses.

Shi [1988] initially developed the method. Topological concepts explicitly

introduced by Lin et al. [1987] to identify 3D rock assemblages. This proposal

involves concepts from set theory. Subsequently, the method was extended

to account for a block with interior holes, so that multiple connected blocks

can be treated [Jing and Stephansson, 1994]. This approach is very similar

to the original proposal of Shi [1988] but involves less topological concepts

than Lin’s approach.

The steps required to identify the block assemblage are:

1. Inputting individual joints and joint sets

2. Defining joint intersections

3. Performing edge regularization

4. Generating of appropriate data sets for block tracing

5. Block identification (block tracing)
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Based on these concepts, Elmouttie et al. [2010] presents a robust and mo-

re efficient polyhedral modeler that allows modeling thousands of fractures

and blocks, non-planar discontinuities, and arbitrary excavation shapes. Sub-

sequently, the capability for handling topological errors is improved by El-

mouttie et al. [2013].

Once the blocks are defined, it is possible to perform a first pass geotechni-

cal analysis, for defining block size distribution [Elmouttie et al., 2010], key

block identification [Shi, 1988] and the subsequent stability analysis by limit

equilibrium.

The bottom line is that the generation of fracture network is subjected to

several uncertainties, mainly because it is not possible to observe the actual

3D fracture network. Besides, given the geological origin of rock masses, both

geometrical and mechanical properties are variable. Hence, stochastic DFNs

are a suitable alternative for representing the rock mass fracturing pattern,

to be included in the subsequent mechanical analysis of the rock mass res-

ponse. Although, simplifications involve additional epistemic uncertainty to

the models.

This means that a large number of realizations of the DFN is needed, con-

sidering the same probabilistic input parameters [Jing, 2003]. However, each

realization is an input for the stability analysis, in which the geomechanical

input parameters are uncertain as well.

Following the same approach, each realization of the DFN should be analyzed

several times for different geomechanical parameters. This process can be

described as a nested Monte Carlo simulation, which means that the total

number of realizations would be the number of DFN realizations times the

number of random simulations of the geomechanical parameters.

A direct application of this approach is not practical considering the compu-

tational cost involved for each realization of the DFN and subsequent geo-

mechanical model.

In this context, this chapter presents an alternative to perform a stability

analysis of rock masses, in which the rock mass structure is modeled by using

DFN. Subsequently, the fracture system is used to perform limit equilibrium

stability analysis, in which the strength parameters are considered as uncer-

tain and modeled as Dempster Shafer structures.
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In the following, a description of the methodology suggested to perform re-

liability assessment considering DFN and DSS is presented.

5.2. Methodology

This section proposes a framework to explore the capabilities of performing

stability analysis combining DFN along with DSS. The project resorts to the

Open Pit Simulator, OPS-SIROMODEL [SCIRO, 2015]., developed by the

Large Open Pit Mine Slope Stability Project. At the moment, the software is

under development and is available for the project partners and researchers.

The license was kindly provided by Marc Elmouttie from the Commonwealth

Scientific and Industrial Research Organisation (CSIRO). For this research,

OPS-SIROMODEL allowed generating the DFN, the identification of blocks,

and the stability analysis of each block.

The proposed algorithm is depicted in Figure 5-1. The general idea of the

process is generating several realizations of the stochastic fracture network,

then identifying the removable blocks and performing the stability analysis for

a given combination of focal elements of the strength parameters, according

to the input DSS. Hence, the probability of failure for a given realization of

the fracture network is defined for every focal element combination. Finally,

the DSS for the probability of failure is computed.

A description of the algorithm shown in Figure 5-1 is presented in the follo-

wing:

1. Define the geometric parameters (separation, size, and orientation) as

random variables.

2. Define the joint strength parameters as Dempster Shafer structures.

3. Establish the Q combinations of focal elements, counter m.

4. For each combination m:

5. Simulate the i realization of the discrete fracture network. K is the

total number of realizations.
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Figure 5-1.: Proposed algorithm to compute the probability function of the

probability of failure
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6. Identify the N blocks formed for this realization, counter j.

7. Loop through the N block to identify the M removable blocks, counter

t.

8. Loop through the M removable blocks and compute the factor of safety,

FS, for the corresponding combination m of focal elements.

a) If FS > 1 block is stable.

b) If FS < 1 the block is unstable. Update the number of unstable

blocks, u = u+ 1.

9. Compute the probability of failure PoF for DFN realization i as PoF =

u/N .

10. Calculate the probability assignment for the PoF .

11. Go back to step 5 and update i = i+ 1.

12. Repeat until i > K.

13. Go back to step 4 and update m = m+ 1.

14. Repeat until m > Q.

15. Compute the Dempster Shafer structure for the PoF .

5.3. Example analysis

Before applying the procedure described above, an example to compare dif-

ferent geometries by using a Fisher distribution against a Kent distribution

is carried out. The process followed to compare results is the following:

1. Location of joint centroids is generated by using the DFN generator

from SIROMODEL

2. Joint orientation is generated based on the algorithm implemented in

this project, both for Fisher distribution and Kent distribution
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Figure 5-2.: Process followed to compare DFN geometry obtained from a

Fisher and Kent distribution

3. DFN are generated again, keeping the centroids generated in step 2.

4. Then, blocks are identified by the SIROMODEL polyhedral modeler.

5. Identify removable blocks Identify removable blocks

As mentioned above, the initial simulation process utilizes the joint planes

centroid coordinates generated by the DFN generator of SIROMODEL. Then,

those points are fixed, and the orientation is changed.

For the specific case of this example, joint centroids were modeled considering

orientation measured at Station 1 (piece of evidence 0) and included in Table

A-4. This simulation matches each centroid with a joint set. Subsequently,

joint orientations for each joint set were simulated and assigned to each cen-

troid according to the original matching. For these simulation the joint length

is also constant to guarantee that just the orientations are varying.

The model was built for a 40m long and 10m high slope a face with a strike

of 240◦ and a plunge of 70◦. Then, 188 joint planes were simulated by the

DFN generator. Based on this, 40 DFN were simulated. The first 20 assumed
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a Fisher distribution. Likewise, the next 20 simulations were carried out as-

suming that join set 1 and bedding follow a Kent distribution, while joint 2

keeps a Fisher distribution. These parameters were calculated as presented

in Chapter 3.

Figure 5-3 shows two simulations of planes for the same Kent distributed

parameters and with the same location of joints centroids. These two models

have the same joint planes centroids and length, just the orientations changed,

but using the same statistical parameters, κ, and β. However, both yield

different DFN and consequently to different sets of removable blocks.

Figure 5-3.: Simulated planes with the same centroid coordinates but dif-

ferent orientations. Left: simulated as Fisher. Right: Simulated

as Kent

Accordingly, each simulation would generate a different geometry, as shown

in Figure 5-4. There, removable blocks are highlighted in green and yellow.

Key block theory [Goodman and Shi, 1985] defines finite blocks based on the

intersection of semi spaces and divides them into nonremovable and remo-

vable. The latter are classified as Type I or unstable, Type 2 or stable with

friction, and Type 3 or stable without friction.

From these definitions, in Figure 5-4 yellow and green blocks correspond to

Type 2 and Type 3 blocks, respectively. As expected, blocks located on the

horizontal upper slope correspond to Type 3, while those on the slope face

are Type 2.

Beyond this classification, Figure 5-4 stresses the variability induced invol-

ving different simulations on the analysis. For instance, Figure 5-4c has the

largest type 3 blocks, while 5-4d shows the smallest blocks on the slope.
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Based on the context mentioned above, the total number of blocks along

with the removable blocks were extracted from each simulation. Results are

summarized in Table 5-1 and plotted in Figure 5-5.

Table 5-1.: Kent and Fisher DFN simulation for station 1, keeping joint

planes centroids
Fisher Kent

Simulation ID

Number of

removable

Blocks

Volume of

removable

blocks

m3

Number of

removable

Block

Volume of

removable

blocks

m3

1 278 203 316 257

2 301 164 342 84

3 309 91 243 145

4 282 137 332 244

5 320 315 300 200

6 291 220 297 319

7 321 201 323 233

8 282 206 266 162

9 278 153 318 187

10 285 195 277 141

11 285 234 286 252

12 266 136 302 182

13 273 119 309 176

14 281 201 319 217

15 312 202 326 198

16 293 185 315 151

17 269 178 291 175

18 315 238 300 175

19 318 161 307 230

20 339 154 310 223

Mean 294.9 184.65 303.9 197.6

Standard deviation 20.5 49.2 23.3 51.7

The first inspection of these results shows that there is not a significant

difference between the number of removable blocks and volume obtained by

Kent and Fisher distributions. Indeed, the mean number of blocks are 295

and 304 for Fisher and Kent planes orientation distributions, respectively.

To verify if the mean of the 20 realizations of the number of removable blocks

simulated as Fisher is the same as the simulated as Kent , a T-student test

was performed. In this case, the null hypothesis is that mean samples are
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(a) Simulation 1. Planes simulated as Fis-

her

(b) Simulation 10. Planes simulated as Fis-

her

(c) Simulation 1. Planes simulated as Kent

(d) Simulation 10. Planes simulated as

Kent

Figure 5-4.: Examples of removable blocks bounded by the DFN for Fisher

and Kent distributed planes orientations. In green type III block

and yellow Type II blocks

equal. Based on the information summarized in Table 5-1, the test turned

that the null hypothesis should be accepted. Hence, the samples have the

same mean number of removable blocks.

This evidence allows concluding that there is no a significant difference in

the amount of removable blocks resulting from simulating the orientations of

the joint planes based on a Fisher or Kent distribution, for the information

collected at El Pedregal Mine in station 1.

In Figure 5-6, cross sections of the same realization of the discrete fractu-

re network are presented. These figures illustrate the complexity of the rock

joints simulation process and the uncertainty involved. In fact, each cross sec-

tion might correspond to the information collected from a single measurement

on a rock face. Hence, it is not possible to know for certain the distribution
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(a) Planes simulated as Fisher distributed (b) Planes simulated as Kent distributed

Figure 5-5.: Summary of removable blocks with the total volume for DFN

simulation assuming a Fisher and Kent distribution for Station

1 at El Pedregal Mine

in depth of the rock joints by using surface mapping techniques.

Since only single measurements of the traces are possible, several realizations

of the DFN are required to consider as many probable setups as possible.

For this example, and based on the results from the comparison between Fis-

her and Kent distribution, the procedure described in Figure 5-1 to involve

the DSS with a DFN simulation process is applied for the information collec-

ted with ShapeMetrix3D (See Appendix A). The model utilizes the available

information efficiently for the systematic generation of different scenarios defi-

ned according to evidence. The information on joints geometry is significantly

larger than the joint strength parameters since the earlier was collected by

using ShapeMetrix3D.

The orientation parameters were modeled as Fisher distributed. The mean

and concentration parameters were computed as described in Section 3.2.1.

Conversely, joint friction angle, and cohesion were inputted as Dempster Sha-

fer structures as listed in Table 5-2.

Figure 5-7 shows the procedure suggested in Figure 5-1 as two nested loops.

The outer takes as input the geomechanical parameters (cohesion, friction

angle, and unit weight) as DSS from and combines them as stated in Section

4.2.2.

Subsequently, the inner loop operates for a given combination of input DSS.
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Figure 5-6.: Cross sections of the discrete fracture network

It generates a DFN from the input geometrical random variables (orientation,

separation, and trace length). Then, the removable blocks are identified, and

for these, the factor of safety is computed. The procedure keeps going until

N = 300 DFN simulations were carried out.

The proportion of removable (Pr) and unstable blocks (probability of failure,

PoF) is computed as follows:

Pr = M/NPoF = u/N (5-1)

Here, M and N represent the number of formed and removable blocks for

each realization of the discrete fracture network. u is the number of unstable
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Table 5-2.: Joint strength parameters expressed as DSS
Year Friction Cohesion (kPa) γ (ton/m3)

Lower Upper P.A. Lower Upper P.A. Lower Upper P.A.

2017 17 20 0.33 44 89 0.5 2.59 2.60 1

17 37 0.33 41 146 0.5

32 37 0.34

P.A. stands for probability assignment

Figure 5-7.: Procedure to combine the probability of failure of several DFN

realizations based on DSS

blocks (Type I).

Once the analysis is computed for all required realizations of the model, a

DSS the probability of failure is built, PoF DSS, as follows.

For each combination of input parameters, defined according to the input

DSS, 300 realizations of the DFN were simulated. Each one yields some re-

movable and unstable blocks, from which the PoF is computed. Hence, 300

probabilities of failures are obtained, each one with a probability assignment,

mDFN1/300. Subsequently, the probability assignment, m, for each PoF, for

this particular combination of focal elements (friction, cohesion, and unit

weight) is:

m = mDFN ∗mφ ∗mc ∗mγ (5-2)

where mφ, mc, and mγ are the friction angle, cohesion, and unit weight pro-
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bability assignment, respectively.

The procedure mentioned above is repeated for every combination of focal

elements defined by the strength parameters input DSS. For this example,

3600 DFNs were generated, which turned into the identification of 7.544.957

blocks, from which 7.063.808 were removable. Therefore, the stability of those

7.063.808 was computed. This whole computation process took about 24h of

continuous work in a 32Gb RAM Intel i7 (7920) processor laptop.

Finally, a DSS of the PoF for the blocks defined by a systematic realization of

the discrete fracture network is generated. The final DSS is built according to

the procedure already described. Figure 5-8 shows 4 random selected DFNs

out of the 3600 DFNs. In this case, green blocks are Type 3, yellow are Type

2, and red are Type 1 (Unstable blocks). Also, it is important to keep in mind

that the joint planes are modeled as random variables, while in Figure 5-4,

such a length was constant.

Figure 5-9 shows the results DSS obtained for unstable blocks. It is essen-

tial to note that the DSS for the probability of failure is obtained from the

combination of input DSS with different realizations of DFN.

Figure 5-9.: Dempster Shafer structure built for the probability of having

unstable blocks from DFN
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Figure 5-8.: Examples of removable blocks bounded by the DFN simulation

for combination with DSS
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A significant result has to do with the probability of failure computed for

the different realizations. It ranges from 0 up to 25 %. This high variability

is the result of the uncertainty of the rock mass geometry. However, 90 % of

the simulations have less than 6 % of unstable blocks, which might provide

valuable information for decision-making during the design process

In addition, the resulting PoF DSS has a very narrow band, which indicates

that upper and lower bounds are very close to each other. This is an interes-

ting result, since for this example, and after 3600 realizations of the model,

the strip can be narrow enough to work with mean values instead of the DSS

5.4. Conclusions

This chapter presented an alternative to performing a reliability analysis of

rock slopes involving discrete fracture networks, DFN, and evidence theory.

The integration is accomplished by modeling the geometrical parameters of

the rock slope structure as random variables, including spherical distributions

for joint orientations, this was possible because the short-range photogram-

metry system, ShapeMetrix3D was utilized for measuring geometrical featu-

res on the slope face. On the other hand, rock joint strength parameters were

modeled as Dempster-Shafer structures, DSS. The software OPS SIROMO-

DEL was used to generate the DFNs, identify removable blocks, and perform

the stability analysis of each block.

The comparison between assuming a Kent distribution instead of Fisher dis-

tribution showed for the example analysis that there is no statistical signi-

ficance difference on the number of removable blocks between these distri-

butions, which allowed to perform the subsequent DFN simulations using a

Fisher distribution. This simplification contributed to reducing the compu-

tational cost linked to the computation process.

DFNs cross-section provided additional evidence on the complexity of the

problem, given the inherent uncertainty of the rock joints geometry and the

limitations to predict its evolution beyond the slope (or outcrop) face. Hence,

the analysis methodology suggested here performs several realizations of the

DFN for each DSS combination, to compute the response of the system,

rather than 1 realization. The computation capacity restricts the number of
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simulations. For the example, a total of 3600 DFN were simulated and the

computation process took 24h.

A DSS for the probability of failure was built, from the number of unstable

blocks from each simulation. Results from the example showed that upper

and lower bounds are almost overlapping. Hence, mean strength parameters

could be used instead of the input strength parameters DSS. However, it is

not possible to generalize this conclusion in such a complex and uncertain

framework. The shape of the resulting PoF DSS depends on the factors listed

below, and each case should be evaluated carefully.

1. The uncertainty of input parameters (Focal elements of input DSS)

2. Mechanisms of block failures. i.e., if lost of contact on planes (lifting)

dominates, the joint strength parameters are not relevant

3. DFN geometrical features



6. Updating the Reliability Assessment

of Rock Wedges

As mentioned in Chapter 4, Shafer [1976] presented both a theory on evidence

and a theory of probable reasoning. A theory of evidence, because it copes

with weights of evidence. Also, a theory on probable reasoning because it

allows the combination of evidence.

So far, the technique potential as a theory of evidence has been assessed in

Chapter 4 (wedge stability analysis) and Chapter 5 (DFN models). However,

the possibilities as a theory of probable reasoning for combining information

coming from different sources have not been considered in this research. This

capability of the evidence theory is very relevant for engineering projects since

the information comes from different sources, i.e., expert opinion, laboratory

tests, field tests. Moreover, the evidence is collected at different stages of the

project.

Mining projects illustrate this point because they have project life cycles lon-

ger than 30 years and are subjected to strict supervision from public agencies.

This control means that technical monitoring is performed regularly. Hence,

new information is required and generated at different stages of the project.

El Pedregal mine is an example of this monitoring process, which has provi-

ded several pieces of information on joints geometry and strength parameters

over 20 years.

Engineers involved in the geotechnical field and specifically in rock mechanics

are aware of the importance of considering different sources of information on

the input parameters, given the technical and financial constraints associated

with the characterization of rock masses in civil and mining projects.

A reference approach for dealing with geotechnical problems is provided by

the observational method [Peck, 1969], developed for working under uncer-
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tain conditions. Indeed, as shown in Chapter 5, the joints setup keeps unk-

nown even as the excavation progress. Under this uncertain context, several

scenarios should be accounted for, ranging from average conditions to the

worst-case scenario. Hence, the selected approach should be able to deal with

those scenarios. The probable reasoning offers such a flexible alternative to

adjust the input parameters and have alternative measures when different

input conditions appear.

In previous chapters, a framework to perform reliability assessment conside-

ring both epistemic and aleatory uncertainty of rock slopes has been presen-

ted within an Evidence Theory Framework, in which the input information is

expressed as DSS and probability functions. Nevertheless, these inputs have

been considered independent sources of information, and each one yields its

independent FoS DSS. This means that the reliability analysis has not been

updated as new information is available. Therefore, this chapter addresses

the process of updating the reliability analysis by properly weighting and

articulating the information from several pieces of evidence.

The main objective of combining information is to meaningfully summarize

and simplify a corpus of data whether the data is coming from a single source

or multiple sources [Sentz and Ferson, 2002]. Within the DST, there are more

than ten alternatives to combine different pieces of evidence [Zargar et al.,

2012] depending on the way they handle the evidence. However, none of those

alternatives copes with the combination of uncertain spherical data regarding

the orientation of fracture planes within the rock mass.

An expert should be able to translate the uncertainty into probabilities [Aven,

2010]. In DST, this is accomplished when focal elements and their correspon-

ding probability assignments are defined. This definition is not straightfor-

ward for spherical data, even more, when data sets are robust.

Based on this framework, this chapter investigates the DST as probable reaso-

ning for updating the reliability analysis of the stability of rock slopes. The

chapter is divided into three parts. First, the concept of combination in-

formation is introduced, along with three rules for aggregating information.

Second, an alternative to combine several pieces of evidence of spherical data

on the orientation of joints is developed, given that they have an underlying

probability distribution. Finally, three examples to illustrate the combination
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process under DST and the proposed algorithm are presented.

6.1. Updating the probability of failure of rock

slopes

The combination of several pieces of information has been studied since the

1980s. Zadeh [1986] presents a relational view of the available combination

technique back then, the Dempster’s rule, attempting to clarify the concept

for people familiar with artificial intelligence, AI, applications. This sort of

description is handy for engineers, given the high-level background on pro-

bability theory required to understand the DST.

Subsequently, several applications have been presented. The Dempster’s com-

bination rule was utilized for clustering, using the k-nearest neighbor algo-

rithm [Denoeux, 1995, Denœux, 2008]. The author highlights the capabilities

of DST to handle ambiguity on the information, which can be seen as conflic-

ting evidence. DST for the combination of information has been applied to

sensor fusion architecture in computing [Huadong Wu et al., 2007, 2003], as a

multi-criterion decision-making tool [Beynon et al., 2000b], for the selection

of wireless networks [Wang and Jing, 2012], on the path followed by ships for

maritime safety assessment [Talavera et al., 2013]

The problem of combining several pieces of information is addressed by

Dempster-Shafer Theory of evidence and is suitable to consider the limi-

ted information. Besides, it allows handling both epistemic and aleatory

uncertainty [Sentz and Ferson, 2002], even when expert opinion is involved

[Torkzadeh-Mahani et al., 2018]. This type of information is assessed in this

section, which deals with information from different sources, at different sta-

ges of the project.

In this regard, the information gathered at different stages or coming from

different sources will be known as a piece of evidence or piece of information.

As mentioned in Chapter 4, DST has not had received widespread attention

in civil engineering, which leads to a few publications on the capabilities of the

combination of evidence within this field. However, recently, some examples

are reported in technical literature, as described below.
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Several combination rules have been evaluated for aggregating two highly

conflicting data sets of snow water equivalent in hydrological modeling [Zar-

gar et al., 2012]. As for transportation, the Dempster’s rule has been applied

to assess different transportation modes under uncertainty from the user’s

standpoint. It allowed reducing the uncertainty linked to the subjectivity of

expert judgment [Altieri et al., 2017].

As for structural engineering, new combination algorithms based on Demps-

ter’s rule have been introduced to assess structural damage; the technique

named data fusion algorithm demonstrated to improve the structural da-

mage diagnostic [Ding et al., 2019]. The combination of information using

DST has also been used for combining the judgment of different experts on

post-seismic structural damage, showing that DST is a suitable framework to

represent ignorance and evidence-based assessments [Ballent et al., 2019a].

As for mining engineering, a modified combination rule, including the hie-

rarchy process for underground water hazard assessment, was defined by

Ruan et al. [2019].

Regarding geotechnical application, the mixing rule has been utilized for

combining several sources of information on applications related to finite

elements [Peschl, 2004, Schweiger and Peschl, 2005b].

The combination process under DST attempts simplifying or summarizing

information that comes from several sources, into one set of evidence [Sentz

and Ferson, 2002]. In a DST framework, each piece of information is expressed

as a DSS and then combined with other pieces of information by redefining

the focal elements and allocating different probability assignments. Figure

6-1 sketches the process. Here, three different DSS structures corresponding

to three different pieces of information on the same input parameters are

combined, and an updated DSS is obtained.

The above-described process summarizes the general idea of combining dif-

ferent pieces of evidence when they are expressed as DSS. The expression

’same input parameters’ technically means that several sources offer a diffe-

rent assessment of the same discernment framework [Sentz and Ferson, 2002],

assuming that those sources are independent. In this case, the discernment

framework is the rock mass, and the sources correspond to information co-

llected by different crews, or at a different location or time.
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Figure 6-1.: Overview of input DSS updating process
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Figure 6-2.: Representation fo arbitrary evidence that consist of six pieces

of evidence

The mathematical formalism behind the combination process relies on the

reliability of the sources and the conflict among them. A straightforward

explanation of this concept can be given in Figure 6-2. There, six sets repre-

sent six pieces of evidence. The evidence is arbitrary since there is consistent

and conflicting evidence. The piece of evidence C is consistent with B, but

conflicting with the other four sources.

As for the reliability of the sources, when two samples are reliable, the conjun-

ctive operation applies for the combination, while when one is more reliable,

the disjunctive approach applies [Dubois and Prade, 1992]. Within this range,

the combination rules under DST offer alternatives to combine the informa-

tion; this operation was named tradeoff by Dubois and Prade [1992]. These

alternatives are known as combination rules.

The original combination rule is the Dempster’s rule [Dempster, 1967]; follo-

wing this rule, several modifications of the rule have been proposed, depen-

ding on the way they handle and assign conflicting information. For instance,

the Dempster’s rule disregards the conflicting information. In the following,

three of these rules are described. First, the original rule, then the Yager’s

rule that re-allocates the conflict and the mixing rule.
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6.1.1. Dempster’s rule

This technique takes out all the probability assignments linked to the con-

flicting evidence and distributes it among the intersecting sets by using a

normalization factor K. In other words, Dempster’s rule ignores the conflic-

ting evidence and attributes it to the null set [Yager, 1987]. Accordingly, the

combined probability assignment, m12, of two pieces of evidence B and C,

with intersection A, is computed as follows:

m12(A) =

∑
B∩C=Am1(B)m2(C)

1−K
(6-1)

and

m12(∅) = 0 (6-2)

where

K =
∑

B∩C 6=∅

m1(B)m2(C) (6-3)

Eq. 6-1 indicates that two pieces of evidence, with both consistent (inter-

section) and conflicting evidence, turn into a combined set defined by the

intersection of the original sets, with a probability assignment defined by the

weighted product of the probability assignments of the initial sets. Hence, the

conflicting information is disregarded. An example will be presented later to

clarify this point.

6.1.2. Yager’s rule

This rule is an essential modification of the Dempster’s rule, since it does

not disregard the conflicting evidence, but attributes it to the universal set.

The rule was initially proposed by Yager [1987]. He stressed the importance

that a combination rule allows us to update an already combined structure

when new information is available [Sentz and Ferson, 2002]. This feature is
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crucial in the problem addressed in this chapter since it is expected to have

new information on geomechanical parameters as the project progress.

Yager’s rule resorts to the concept of the ground probability assignment, q(A).

This ground probability assignment is attributed to the intersection A of two

sets B and C, with basic probability assignments m1 and m2, as follows:

K =
∑

B∩C=A

m1(B)m2(C) (6-4)

In order to account for the conflicting evidence, this rule allows the ground

probability assignment of the null set q(∅) to be higher than 0. q(∅) is calcu-

lated in the same way as factor K in Dempster’s rule (Eq. 6-4). Then, the

value q(Ø) is added to the ground probability assignment of the universal

set. Hence, the probability mass of the conflicting evidence is assigned to the

universal set.

6.1.3. Mixing rule

This technique generalizes the averaging operation frequently used for pro-

bability distributions, which is widespread in civil engineering. Hence, it is

reasonable to consider this approach to average DSS. This combination ru-

le has been applied to geotechnical problems, including the finite element

method [Peschl, 2004, Schweiger and Peschl, 2004, 2005b]).

The method modifies the probability assignments, mi, as follows:

m∗i (A) =
1

n

n∑
i=1

wimi(A) (6-5)

In which wi are weights assigned according to the reliability of the sources

and m∗i is the probability assigned to the combined focal element.

In Section 6.3, three application examples will be presented to illustrate the

application of these concepts.
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6.2. Proposed alternative for combining

information

Above, three rules for combining evidence under the DST framework were

described. The first two (Dempster’s and Shafer’s rule) account for the con-

flicting information and accordingly re-allocates the probability assignment

in the aggregated DSS. The third (mixing rule) averages the probability as-

signments of the original DSS and assigns this average to the updated DSS.

An overview of other alternatives for combining information can be found in

Sentz and Ferson [2002] and Zargar et al. [2012].

Even though the presented rules consider alternatives to aggregate bodies of

information, none of them addresses the issue of combining evidence of sp-

herical data, i.e., combining several data sets on orientation planes collected

from different sources or different locations. Hence, this section suggests an

alternative to combine this information, based on the nature of the informa-

tion and the findings reported in chapters 3 and 4. In this context, the main

assumptions are:

1. The discernment framework is the rock mass

2. There are several independent pieces of information on the orientation

of planes collected in such a framework at different locations and times,

by different crews and by using different mapping techniques (compass,

boreholes, and remote techniques)

In Chapter 3, it was shown that many sets of collected points fit better the

Kent distribution instead of the Fisher distribution. Indeed, the Fisher distri-

bution is a particular case of the Kent distribution. Besides, the probability

distribution for the factor of safety of the stability of rock wedges is affec-

ted by selecting the Fisher distribution instead of the more realistic Kent

distribution.

On the other hand, in Chapter 4, an algorithm for computing DSS of rock

wedges, involving orientation parameters as Kent distributed variables and

strength parameters as DSS. From this procedure, it was concluded that a

nested reliability analysis was carried out. In the inner loop, a Monte Carlo
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simulation is carried out for each combination of focal elements. Then in the

outer loop, the resulting probability functions are weighted according to the

DSS combination.

Within this framework, the proposed process for aggregating the sets on

orientation proposes a weighting factor, w∗i for each joint set, which is updated

as new bodies of evidence are incorporated into the analysis. The weighting

factor acknowledges that the orientation of the poles has a ’latent’ Kent

probability distribution.

Once w∗i are computed, a DSS for the factor of safety of a wedge can be

calculated and updated by systematically computing DSS for the aggregated

sets of information adjusted according to the weighting coefficients.

6.2.1. Theoretical Framework

Since rock joints orientations follow a Kent distribution, each piece of evi-

dence can be treated as a cluster with a ’latent’ Kent distribution. When a

new set of evidence (a new cluster with another ’latent’ Kent distribution)

is mapped, the two sets can be aggregated appropriately within a new clus-

ter. The question is: how to combine those variables considering the latent

probability distribution?.

Hence, the aggregation requires a mathematical technique capable of explai-

ning pieces of evidence by combining probability distributions. The clustering

based on the mixtures model provides such a capability.

When the mixture model was proposed, clustering the same feature for the

input clusters, were restricted to Gaussian distributions and did not identify

noise [Banfield and Raftery, 1993]. The mixtures model overcome these limi-

tations and allows aggregating clusters with different probability distributions

and recognizing outliers as noise.

These features make this approach suitable to be used along with DSS to

combine sets of directional data with different ’latent’ Kent distributions.

This ’latent’ distribution corresponds to the probability distribution of the

components that will be aggregated [Kasarapu and Allison, 2015].

The mixture modeling has been used successfully for modeling random pheno-

mena in astronomy, biology, ecology, engineering [Peel and Mclachlan, 2000],
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radiation therapy [Bangert et al., 2010], and rock mass joint sets identification

[Peel et al., 2001]. It has also been applied extensively in machine learning

[Kasarapu and Allison, 2015]

Most of the applications deal with Gaussian mixtures as ’latent’ probabi-

lity distributions [Kasarapu and Allison, 2015]. Nevertheless, the model can

involve different probability distributions for the components, and several al-

gorithms have been proposed for different probability distributions [Kasarapu

and Allison, 2015], e.g., t-distribution [Peel and Mclachlan, 2000], exponential

[Seidel et al., 2000], and Weibull [Wang et al., 1996].

In regarding directional data, the Watson distribution has been used for clus-

tering trough a mixture model as an alternative to the Fisher distribution

[Sra and Karp, 2013]. Likewise, a clustering algorithm has been presented

based on the angular Gaussian distribution and applied to fiber composites

and ceramic foam [Franke et al., 2016].

As for rock mechanics applications, the mixtures model has been used for

modeling rock fractures direction and paleo stress analysis using the Bing-

ham distribution [Yamaji and Sato, 2011]. Besides, it has been utilized for

clustering joint sets with the Kent distribution [Peel et al., 2001].

6.2.2. Mixtures model description

Let assume that the updated (combined) set of information consists of a p-

dimensional random sample x1...xn of size n taken from l groups. Based on

this, the mixture model defines that each point is a realization of the random

p-dimensional vector X, which has probability density function [Kasarapu,

2015, Peel et al., 2001]:

f(x : Ψ) =
l∑

i=1

wjcj(x : Θj) (6-6)

In which cj corresponds to the probability function of the original data sets

(pieces of evidence), wj are the mixing proportions, Ψ = (π1...πn, θ
T
j ), and θj

represents the five parameters of the Kent distribution.
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Traditionally, the parameters of Eq. 6-6 are estimated by minimizing the log-

likelihood function of the data [Kasarapu, 2015], which requires and expectation-

maximization algorithm (EM) [Dempster et al., 1977], which comprises these

steps:

1. Expectation: The membership of each observation xi ∈ D in a mixture

component (piece of evidence) i is defined by a responsibility index, rij,

as follows:

rij =
wj ∗ c(xi; θj)∑l
k=1wkc(xi; Θk)

(6-7)

and

nj =
N∑
i=1

rij (6-8)

In order to account for noise, the responsibility is modified as follows

[Peel et al., 2001]:

rij =
wj ∗ c(xi; θj)∑l

k=1wkc(xi; Θk) + w0f0(x)
(6-9)

In which f0 =
1

4π
stands for a uniform distribution on the sphere.

The matrix rij is named the responsibility matrix.

nj is the effective membership of the jth component Kasarapu [2015].

2. Maximization: At this step, the observations are updated by the maxi-

mum likelihood estimates Kasarapu [2015]. The log likelihood function

for Ψ is:

logL(Ψ) =
n∑
j=1

log
l∑

i=1

wi ∗ ci(xi; θi) (6-10)
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The maximum likelihood requires to compute the root of the function

Peel et al. [2001]:

∂ logL(Ψ)

∂Ψ
= 0 (6-11)

As mentioned above, several alternatives for the original information

probability distribution. Different alternatives are available to perform

this maximization step using the Kent distribution [Kasarapu and Alli-

son, 2015, Peel et al., 2001].

In the maximization step, the approximate moment method (Chapter

3) was utilized, as reported by Peel et al. [2001]. Hence, each obser-

vation is updated by the respective responsibility coefficient, and the

mean orientation and rotation matrix are recomputed. Afterward, the

parameters of the Kent distribution are recomputed as well, based on

the updated parameters. With this, the responsibility matrix is recal-

culated.

As a result of the EM algorithm, the aggregated information is clustered, and

the mixing proportion, wi are defined. Hence, updated sets of information are

considered, each one with its corresponding mixing proportion. This work

proposes to use these clusters along with the mixing proportion to update

the reliability assessment of rock wedges. The procedure is described below.

6.2.3. Updating the rock wedge reliability assessment by

combining directional data

This section describes the methodology proposed in this research work to

carry out an updating process of the reliability assessment of rock wedges,

within a Dempster Shafer Theory of Evidence, taking into account the follo-

wing considerations:

1. The amount of information is limited to a few data.
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2. Robust databases on joints orientation are usually available and are

collected either by compass or remote sensing techniques.

3. Joints orientation are random variables that follow a Kent distribution.

4. There are several pieces of evidence collected at different locations or

time.

5. The discernment framework is the rock mass, and the pieces of evidence

are assumed as independent.

6. Information on joints orientation is updated by using a mixture model

fitted by the EM algorithm with the Kent distribution and the moment

methods at the maximization step.

Let c = c1, c2, ..., cj, ..., cg represent a set of l pieces of evidence on fractures

planes orientation collected on a rock mass. Each piece of evidence is a random

variable with a Kent distribution.

On the other hand, let φ, C, and γ represent DSS structures for joint friction

angle and cohesion, and rock unit weight respectively.

The sets of information are combined into a mixture model by using the EM

algorithm. For the expectation step, the responsibility matrix is computed

according to Eq. 6-9. Consequently, 3-2 is replaced into 6-9. Eq. 3-2 is included

below, for a detailed description of the Kent model and its parameters, see

Section 3.2.

f(x; Θ) = c(κ, β)exp
{
κγT1x+ β

[
(γT2x)2 − (γT3x)2

]}
(6-12)

The initial values for the mixing proportion are defined by the number of

orientation measurements in cj divided by the total number of orientation

measurements, i.e., the portion of observation within the total number of

observations, Q.

This step leads to a Q+1 by g responsibility matrix. It has Q+1, rather than

Q, because it considers an additional component (cluster) for identifying the

noise.
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In the maximization step, for a fix cluster cj all Q observations are upda-

ted by multiplying each unit cosine (Eq. 3-3) from each orientation by the

responsibilities in column j form the responsibility matrix, hence:

x∗1ic = x1ic ∗ ric x∗2ic = x2ic ∗ ric x∗3ic = x3ic ∗ ric (6-13)

Where x1, x2, and x3 are the original unit cosines, while x∗1, x
∗
2, and x∗3 are

the updated unit cosines

As explained above, the responsibility coefficients measure the membership

of a single observation to a cluster c. This means that if an observation

is strongly explained by the cluster c, the responsibility value is high. On

the contrary, if this cluster does not correctly explain an observation, the

responsibility is low.

Based on the adjusted unit cosines, the Kent parameters are recomputed

according to the procedure described in Section 3.2.1. This means that a new

set of moment estimates (γ∗
1 , γ

∗
2 , γ

∗
3).

Hence, a modified set of parameters for the Kent distributions are computed,

based on the moment estimates (See section 3.2).

Then, the mixing coefficients are updated, for a cluster cj as follows:

wj =
nj
Q

(6-14)

Once, both mixing proportion and Kent distribution parameters are adjusted,

an iteration step h is over, and the next iteration h+ 1 takes place, until:

wh −wh+1 < t (6-15)

In which, wh and wh + 1 are the mixing proportion vectors with l+ 1 com-

ponents, for iteration h and h+ 1, respectively.

Once the EM algorithm iteration process is ready, a set of clusters with

its corresponding mixing proportion is obtained. This set of information is

considered the updated body of evidence on joints orientation, which will

be included in the reliability analysis along with the DSS on geomechanical

information.
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Before describing the procedure to compute the factor of safety DSS, a remark

on joint set clusters should be stated. As presented in Chapter 4, the basic

probability assignment of a DSS meets three requirements:

m : φ(U)→ [0, 1] (6-16)

m[∅] = 0 (6-17)∑
A∈φ(U)

m(A) = 1 (6-18)

In this research, the mixing proportion vector w is treated as a basic pro-

bability assignment for each updated piece of evidence on joints orientation

(clusters). Hence, w is slightly modified to meet the probability assignment

requirements.

The definition of the mixing proportion guarantees that:

l∑
j=0

wj = 1 (6-19)

However, given that the number of initial clusters l is controlled by the num-

ber of available pieces of information, the EM algorithm might yield some

empty clusters with very low mixing proportions. Besides, a w0 was defined

to account for the noise in the data. Hence, a residual wr is defined as:

wr =
∑
A=∅

wj + w0 (6-20)

Then, wr is proportionally assigned to the other mixing proportions, which

yields a probability assignment-like weighting factor w∗j that meets the basic

probability assignment, according to DST.

w∗j = wj(1 +
wj

1− wr
) (6-21)



130 6 Updating the Reliability Assessment of Rock Wedges

Under this assumption, the set of clusters defined by the EM algorithm under

the mixture model for an underlying Kent distribution can be considered an

updated DSS, generated from the aggregation of pieces of evidence on joints

orientation that follow a Kent distribution. Each of these DSS consists of a

set of orientations (clusters) with a probability assignment w∗j .

Those DSS of directional data are combined with conventional DSS of real

numbers that represent the geomechanical parameters. The procedure to per-

form the reliability assessment by computing the DSS of the factor of safety

is the following:

1. Two updated orientation clusters j and t are selected, then the factor

of safety of the wedges formed by the combination of all joint planes,

according to the procedure depicted in Section 4.3.1, considering the

strength parameters as DSS.

2. Compute the probability assignment as the product of the probability

assignments of the corresponding focal elements of the DSS on geome-

chanical parameters. This step leads to a FoS DSS for clusters j and t.

Each focal element of this DSS has a probability assignment PAFoS

3. The probability assignment PAFoS is updated as:

PAjt
FoS = w∗j ∗ w∗t ∗ PAFoS (6-22)

Where w∗j∗ and w∗t ∗ are the weigthing coefficients for cluster j and t.

Therefore, PAjt
FoS is the updated probability assignmet for the combi-

nation of cluster j and t.

4. Repeat step 1 and 2 for every possible combination of two clusters on

joints orientation

5. Construct a list of focal elements (ranges of the factor of safety) with

their corresponding PAjr
FoS

6. Build an updated DSS for the factor of safety with the information ge-

nerated in the previous step. This will lead to the updated DSS on FoS

accounting for the updated orientation because the probability assign-

ments were modified to meet the requirements of the DST.
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6.3. Application Examples

In this section, some practical applications of the combination of several pie-

ces of evidence applied to the stability of rock blocks are presented, based on

the information collected in El Pedregal Mine. This mine is in a sedimentary

rock mass, formed mainly by alternating layers of sandstone and shales. The

mine has been operated since the 1990s until nowadays. A description of the

geology and collected information is presented in Appendix A.

6.3.1. Updating the stability of rock wedges by the

mixing rule

This example presents a reliability assessment of wedge stability with infor-

mation collected in 1997, 2011, and 2016. Table 6-1 shows the results of

strength parameters along discontinuities in claystone layers. Regarding the-

se results, some values of cohesion were measured in the laboratory. As for

the samples tested in 2016, the cohesion is apparent and associated with the

texture of the joint, rather than any filling within the joint. No information

is provided related to cohesion from samples collected in 1997 and 2011.

Table 6-2 summarizes joint planes dip and dip direction and slope geometry.

Sources of information listed in tables 6-1 and 6-2 are assumed to be inde-

pendent. In this case, this assumption is reasonable, since the information was

collected at different times, by different groups of people and with different

tools.

Once the input information is defined, the steps followed to perform and

update the probability of failure are depicted in Fig. 6-3.

The wedge failure model selected has been developed for wedges delimited

by two joint sets, the slope face and the upper slope. Based on this infor-

mation, the model has 13 variables, including geomechanical and geometrical

parameters. The wedge model is described in Section 3.3.1.
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Table 6-1.: Mechanical properties measured on rock joints
Year Sample Peak cohesion (kPa) Residual Cohesion (kPa) Peak friction angle (°) Residual friction angle (°) Unit weight (kN/m3)

1997 1 32.5 2.9 22.5 22 26.2

8.2 - 29.5 - -

2 - - 26.3 17.6 23.6

7.8 - 23.6 - -

2011 1* - 18 - 18 26

- 6 - 20 -

1 87.3 39.6 29.2 23.9 24.3

2 89.2 25.5 34.8 32.8 23.6

3 17.6 - 40.4 36.6 23.9

2016 1 48 - 31.8 - 24.2

2 69 - 22 - 24.8

3 97 - 18.5 - 24.8

Figure 6-3.: The methodology applied to compute and update the probabi-

lity of failure
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Table 6-2.: Joint plane and slope average parameters
Plane Dip direction (°) Dip (°) Height (m)

Bedding 306 26 -

Joint set 1 57 82 -

Slope 329 70 25

Before performing the reliability assessment, a selection of the most influen-

cing variables is required. These variables are modeled as DSS, while the

others as deterministic, which is a crucial step since the number of DSS de-

fines the number of realizations of the model. For instance, if there are N

DSS, each one with k focal elements, the number r of realizations of the

model would be:

r = 2N ∗ kN (6-23)

The sensitivity analysis also allows knowing the variation of the response

of the model with the different variables. With this information, the proper

combination of input variables can be defined at each N-dimensional box to

define the maximum and minimum results of the model, without computing

every combination at that box. Hence, the number of computations reduces

to:

r = 2 ∗ kN (6-24)

To perform reliability assessment in geotechnical problems applying the DST,

Peschl [2004] adopted a methodology based on a central difference approach,

in which a sensitivity ratio (ηSR) is computed [EPA, 2002].

ηSR =

f(xL,R)− f(x)

f(x)
xL,R − x

x

(6-25)

Where x is the reference value, and xL,R and f(x) and f(xL,R) are the outputs

of the functions at those points. The sensitivity ratio is local, varying xL a
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small amount from the reference value, and general changing xR across the

whole range. Therefore, if there are N variables,(ηSR) should be computed

4N + 1 times.

The sensitivity ratio is normalized, according to Eq. 6-26, then a total relative

sensitivity index, α(xi) is computed for each input variable (Eq. 6-27 ). The

index varies between 0 and 1 and measures the influence of a given variable

in the function. The higher α(xi), the more the influence of the variable in

the output.

ηSS = ηSR
max(xR)−min(xR)

x
(6-26)

α(xi) =

∑
ηSS,i∑N

i=1

∑
ηSS,i

(6-27)

The sensitivity analysis also provides a few realizations of the model, within

a representative interval. Hence, it is possible establishing the local variation

of the function for each input variable. In other words, the sensitivity analy-

sis allows establishing if the model is increasing or decreasing concerning a

variable within an interval, which reduces the number of computations to

define the upper and lower bounds for combinations of focal elements.

For this example, the factor of safety was computed with Eq. 3-28, and the

weighted sensitivity indexes, αi, were computed and plotted in Figure 6-4.

The three variables with the highest αi were selected as DSS and the rest as

deterministic. Hence, the DSSs are the dip and dip direction of the bedding,

as well as its friction angle. Besides, the factor of safety reduces as the dip

direction increases, as shown in Figure 6-5.

The next step is defining the DSS. For the information collected in 1997 and

2011, the DSS were defined assuming that the actual value of the friction

lies somewhere between the peak and the residual friction. These values are

conservative compared with the focal elements selected for 2016, in which only

peak friction angle was considered, as there are no residual values reported.

Table 6-3 shows the selected DSS.
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Figure 6-4.: Relative Sensitivity Index for Rock Wedge Failure

Table 6-3.: Input random sets on bedding plane friction angle
Year Bedding plane friction angle (ş)

Lower Upper PA*

1997 22 22.5 0.33

22 26.3 0.33

17.5 23.6 0.34

2011 23.9 29.2 0.33

32.8 34.8 0.33

36.6 40.4 0.34

2016 22 31.8 0.5

18.5 22 0.5

On the other hand, the dip direction and dip were assumed as independent

variables. Hence, a DSS for the bedding dip and dip direction was defined,

and the same probability assignment was given to all of them, as shown in

Table 6-4.

Subsequently, the factor of safety was computed for each piece of evidence

for the combinations defined by the focal elements of each random set.

The next step is combining different sets of evidence to update the boun-

ded probability of failure computed according to random sets. The pieces of

evidence were combined as follows:

The mixing or averaging rule was applied
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Figure 6-5.: Effect of bedding plane dip direction on the factor of safety

At each period, the information was combined sequentially

Then, the information at each period was combined until all sources of

information were aggregated

Figure 6-6a shows the DSSs associated with the bedding dip collected in

1997. From that, it can be concluded that the information is very conflicting

since source 1 yields dip measurements up to three times higher than those

reported by sources 2 and 3. The aggregated information combined by the

mixing rule (plotted in black) re-allocates the probability assignment of the

original focal elements. As a result, a more robust (higher number of focal

elements) set of inputs is available. However, this combination rule does not

account for the conflicting information; it averages the original probability

assignments.

Figure 6-6b presents a step forward in the evidence combination (updating).

Here again, the bedding dip is depicted, but in this case, the updating se-

quence is shown. First, in black is the already 1997 combined information.

Then, in green, the information from 1997 aggregated with the data collec-

ted in 2011 is shown. Finally, in red is the latter set, now updated with the
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Table 6-4.: Input random sets on bedding dip and dip direction
Year ID Bedding

Dip direction (°) Dip (°)

Lower Upper PA Lower Upper PA

1997 1 313 318 0.25 27 32 0.25

318 323 0.25 32 37 0.25

323 328 0.25 37 41 0.25

328 333 0.25 41 47 0.25

2 273 281 0.25 6 13 0.25

281 293 0.25 13 25 0.25

293 305 0.25 25 37 0.25

305 312 0.25 37 45 0.25

3 286 296 0.25 5 15 0.25

296 305 0.25 15 23 0.25

305 313 0.25 23 32 0.25

313 323 0.25 32 42 0.25

4 300 305 0.25 11 16 0.25

305 312 0.25 16 23 0.25

312 319 0.25 23 29 0.25

319 324 0.25 29 35 0.25

2011 1 295 300 0.25 10 16 0.25

300 307 0.25 16 22 0.25

307 314 0.25 22 29 0.25

314 319 0.25 29 34 0.25

2 281 286 0.25 11 18 0.25

286 293 0.25 18 24 0.25

293 299 0.25 24 31 0.25

299 304 0.25 31 35 0.25

2016 1 288 293 0.25 18 20 0.25

293 299 0.25 20 22 0.25

299 304 0.25 22 24 0.25

301 310 0.25 24 26 0.25

2 313 318 0.25 27 32 0.25

318 323 0.25 32 37 0.25

323 328 0.25 37 41 0.25

328 333 0.25 41 47 0.25

evidence collected in 2016. With this last robust random set, the updated

wedge factor of safety can be computed.

Regarding the friction angle, the amount of information is much smaller,

since there is only one piece of information at each period. Because of this, a

smaller updated random input set is obtained as can be seen in Figure 6-7

Figure 6-8 depicts the DSS for the wedge factor of safety computed with

the evidence collected in 1997. First, results with the information considered

separately are plotted in red, green, and magenta for the sources 1, 2, and 3,

respectively. These curves reflect the conflict linked to the input parameters,

since the factor of safety is highly variable, depending on the considered

source of information. The lowest factors of safety are obtained from the first

source 1997-1 (red) that has the highest dip and dip direction measurements.
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(a) Bedding dip. Aggregation of 1997 infor-

mation by mixing rule

(b) Bedding dip. Step by step updating

Figure 6-6.: Combined bedding dip angle

On the contrary, the highest factor of safety comes from the piece of evidence

1997-2 (green), which combines the lowest dip with the lowest bedding dip

direction.

Considering the evidence collected in 1997 separately might lead to a biased

conclusion on the actual stability condition of the rock wedge. If the informa-

tion first collected (1997-1) is involved, a conservative conclusion is drawn,

while 1997-2 source could be riskier. This issue justifies the need for combi-

ning information, to get a more reliable representation of the actual stability

condition.

In Figure 6-8, the black curves represent the factor of safety obtained when

the combined input DSSs are considered. These lines balance the biased in-

formation provided by independent sources and a result in between the most

conservative and the riskiest DSS is obtained. This sort of response is directly

linked to the combination rule utilized to aggregate (update) the pieces of

evidence, which averages the probability assignments of the original DSS.

The averaging effect of the mixing combination rule is much more evident

when the input pieces of evidence are more consistent (less conflicting) than

those from 1997, which is the case of the information collected in 2011 and

2016. The resulting DSS are plotted in Figs. 6-9a and 6-9b, respectively. As

can be seen, the combined curves (in black) are located entirely between the

curves obtained from the original sources. Information collected in 2011 yields
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Figure 6-7.: Bedding friction angle. Aggregation of information, only one

source per period

Figure 6-8.: Factor of safety DSS computed with the evidence collected in

1997
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(a) Factor of safety DSS computed with the

evidence collected in 2011

(b) Factor of safety DSS computed with the

evidence collected in 2016

Figure 6-9.: DSS for the factor of safety

the best agreement between BDF computed from individual and aggregated

pieces of evidence. These pieces of evidence are the least conflicting (See

tables 6-3 and 6-4).

So far, a noticeable difference in the cumulative probability function of the

factor of safety has been presented. Now, to make it more objective, the

probability of failure when considering different sources of information has

been computed and included in Table 6-5 for FS < 1,0. This chart shows

different probabilities of failure as different pieces of evidence are considered,

e.g., for the information from source 1 in 1997, the probability of failure

ranges between 67 % and 100 %, therefore failure is almost sure. On the other

hand, the source 2 of the information collected in 1996 yields a probability of

failure of 0, which is not valid, since a slope instability was already reported

in 2000. When combining all available information, a probability of failure

between 4 % and 25 % is computed.

6.3.2. Updating the probability of failure of keyblocks

In this section, three combination rules for aggregating information from

different sources are applied to the stability of a block by using the block

theory to identify the key block and then assess its stability.
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Table 6-5.: Computed probability of failure

Year Probability of failure ( %)

Source Lower Upper

1997 1 67 100

2 7 28

3 5 35

Combined 18 52

2011 1 0 8

2 0 6

Combined 0 6

2016 1 0 9

2 0 0

Combined 0 7

Combined 4 25

Goodman and Shi [1985] originally proposed the block method. The main

objective is identifying key blocks from a given joint arrangement on an ex-

cavation face. Key blocks are those in a position to move, and as soon as they

have done so, other blocks that were previously restrained will be liberated

Goodman and Shi [1985], see Figure 6-10a.

(a) Key blocks on a tunnel

walls

(b) Half-space concept
(c) Block pyramid

Figure 6-10.: Concepts related to the formulation of the block theory model

The method assumes planar and infinite discontinuities and rigid blocks [Haz-

tor, 1992]. The approach distinguishes between non-removable and removable
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blocks and states a systematic way to define removable blocks. First, the fi-

nite blocks are identified, and from these, removable blocks are established,

which are the potentially unstable blocks.

Two concepts are essential to identify unstable blocks. Firstly, any plane in

the space defines an upper and a lower half-space. In Figure 6-10b, point A

is located in the upper half-space of plane P, while point B belongs to the

lower half-space. With this concept, a block can be seen as the intersection of

half-spaces linked to a given joints arrangement. Secondly, a block pyramid

(BP) is defined by the set of block planes, but shifted to the origin, as shown

in Figure 6-10c.

Based on these definitions, a finite block is a convex block, which BP is empty.

If JP denotes the joint pyramid and the shifted excavation half-spaces are

represented by EP (Excavation pyramid), then the block pyramid (BP) is

defined as:

BP = JP ∩ EP (6-28)

And the block is finite when:

JP ∩ EP = ∅ = BP (6-29)

A block is removable when it is finite, and its joint pyramid is not empty

[Goodman and Shi, 1985]. Once the removable blocks have been identified,

their stability is assessed. The block theory also offers a generalization of

the limit equilibrium method to any block shape. The method computes

the factor of safety as the ratio between resisting and acting forces. A very

detailed explanation of the block theory is presented in Goodman and Shi

[1985] and Haztor [1992].

Based on the three joint sets reported in El Pedregal mine, block models

were built to define the key block for a given slope dip direction and dip

(329/70). The model was built utilizing the software VisKBT (available at

www.ddamm.org), which presents a graphical solution according to Goodman

and Shi [1985].
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With slope orientation defined, the key block was defined based on the mean

orientation of the three joint sets reported in el Pedregal mine. As a result,

the block defined by the intersection of the upper half-spaces of bedding and

joint 2, with the lower upper space of joint 1 is the key block. The solution is

presented in Figure 6-11. As can be seen, the key block is defined by the half-

space intersection (block pyramid) that falls entirely within the circle that

represents the slope (excavation pyramid). Hence, the block is removable.

Based on this block geometry, the relative sensitivity indexes plotted in 6-12

allowed to define the joint 2 dip direction, the bedding dip, as well as, its

friction angle as a random variable to be inputted as DSS. For all of them

α(xi) ≥ 0,20.

Following the sensitivity analysis, the information sources collected on these

variables were utilized to define the input DSS for the key block stability

model. The DSS for the friction angle is included in Table 6-3. Table 6-6

presents the DSS for the joint 2 dip direction and the bedding dip. For the

orientations, two focal elements with the same probability assignment were

selected for the analysis.

DSSs for the bedding dip and friction angle are shown in Figure 6-13. The-

se plots were included to illustrate the difference between highly conflicting

pieces of evidence (friction angle in Figure 6-13a) and more consistent sets

of information (dip direction in Figure 6-13b). Shadowed areas on the plots

attempt to show the intervals were the information is consistent (green) and

conflicting (red). It is important to mention that the conflict and agreement

among pieces of information cannot be read directly from this cumulative

probability mass function.

The DSSs for the factor of safety are included in Figure 6-14. The first evi-

dent result is that there is no agreement among the factors of safety computed

at different years. For instance, the left bound (higher factor of safety) pre-

dicted by the evidence collected in 2011 ranges between 3.5 and 5.9, while

those computed with the information from 1997 ranges between 0.9 and 5.6.

The narrowest stripe between the left and right bounds is given by informa-

tion from 1997. This high variability of the factor of safety comes from the

variability of parameters collected at different stages of the mine excavation,

which leads to a high uncertainty on inputs.
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Figure 6-11.: Factor of safety DSS computed with the evidence collected in

2016

However, more important questions arise from these results: which one is

the best result? What piece of information is more reliable? For this specific

project, it is not possible to know which information is the most reliable,

since the author was not part of the mine project since its beginning. Hence,

a proper combination of the available information can give a better overview

of the expected stability condition of the key block.

Therefore, the evidence was combined following the Demspter, Yager and

mixing rules. The resulting DSSs are included in tables 6-7, 6-8 and 6-9.

From that combination, it is important to mention:

1. The resulting combined DSS corresponds to the aggregation of the three

pieces of information available

2. Mixing rule has the highest number of focal elements for the resulting

combined structure, since it just averages the probability assignments

of the original sources, and does not account for the conflicting evidence

3. Since Dempster rule disregards the probabilities linked to the conflicting

evidence, it takes out all the corresponding focal elements. Hence, the
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Figure 6-12.: Factor of safety DSS computed with the evidence collected in

2016

bedding friction angle combined DSS consist of only one focal element

that has a probability assignment of 1. This means that information is

lost during the updating process, which is an issue when computing the

factor of safety since many likely combinations of inputs would not be

considered.

In order to illustrate the effect of the way that the conflicting evidence is taken

into account, Figure 6-15a shows the friction angle DSSs for the Demster

and Yager rule, along with the independent sources (before combining). This

information is very conflicting. The aggregated DSS are entirely different.

While the Dempster rule yields only one interval, the Yager rule yields a more

complete DSS, since it does not disregard the conflicting evidence. Instead,

it assigns that probability to the universal set. It means that there is no

significant loss of information on inputs.

On the other hand, when the arbitrary information is more consistent, as the

bedding dip, the difference between the Dempster’s and Yager’s combination

rules are less dramatic. An example of this is shown in Figure 6-15b, where

the combined structures for the bedding dip are depicted. As a result, there is

only a slight difference in the probability assignments, and the focal elements

are the same. In that figure, the results of the mixing rule are included as
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Table 6-6.: Input DS structures, defined for the orientation of planes data

Year Source ID Joint 2 dip direction (°) Bedding dip (°)

Lower Upper m Lower Upper m

1997 1997-1 30 48 0.5 27 47 0.5

1997-2 20 35 0.5 5 42 0.5

2011 2011-1 54 65 0.5 11 35 0.5

2011-2 51 68 0.5 10 34 0.5

2016 2016-1 58 88 0.5 13 38 0.5

2016-2 35 51 0.5 18 26 0.5

(a) Bedding dip (b) Bedding friction angle

Figure 6-13.: Original DSS, before combining

well. Since it does not deal with the conflicting evidence, it consists of the

same focal elements of the inputs, with a weighted probability assignment.

With this new combined input DS structures, the factor of safety DDSs were

computed for the identified key block. Now, the number of computations re-

quired to reproduce the bounded probability distributions functions is higher

since there are more focal elements involved. For instance, when combining

with mixing rule, there are 6 focal elements for the bedding dip and joint 2

dip direction, as well as 8 for the bedding friction angle. It means that the

factor of safety should be calculated 2304 times. However, since the sensiti-

vity analysis allows to identify the trends of the factor of safety concerning
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Figure 6-14.: Cumulative probability distribution function computed from

information sources before aggregation

Table 6-7.: Combined DS structures according to mixing rule
Joint 2 dip direction (°) Bedding dip (°) Bedding friction angle (°)

Lower Upper m Lower Upper m Lower Upper m

30 48 0.166 27 47 0.166 22.15 22.5 0.125

20 35 0.166 5 42 0.166 22 26.3 0.125

54 65 0.166 11 35 0.166 17.5 23.6 0.125

51 68 0.166 10 34 0.166 23.9 29.2 0.125

58 88 0.166 13 38 0.166 32.8 34.8 0.125

35 51 0.17 18 26 0.17 36.6 40.4 0.125

22 31.8 0.125

18.5 22 0.125

the variation of inputs, the number of computations reduces to 576. For the

Dempster and Yager rules, the factor of safety was computed 42 and 192

times, respectively.

As for the results, first in Figure 6-16a is depicted the DSS resulting from

the mixing rule, along with the results computed from independent sources.

Below 80 %, the mixing rule results attempt to find a balance among the

highly variable factors of safety computed from separated sources. However,

above 80 % factors of safety are much higher than those computed from inde-

pendent sources. This is because more favorable combinations of parameters

are possible when considering the whole body of mixed information, which
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Table 6-8.: Combined DS structures according to Dempster rule
Joint 2 dip direction (°) Bedding dip (°) Bedding friction angle (°)

Lower Upper m Lower Upper m Lower Upper m

54 58 0.33 27 35 0.143 23.9 26.3 1

51 54 0.33 26 27 0.143

51 58 0.34 27 34 0.143

13 35 0.143

13 34 0.143

18 26 0.285

27 35 0.143

Table 6-9.: Combined DS structures according to Yager rule
Joint 2 dip direction (°) Bedding dip (°) Bedding friction angle (°)

Lower Upper m Lower Upper m Lower Upper m

54 58 0.25 27 35 0.125 23.9 26.3 0.0544

51 54 0.25 26 27 0.125 22 31.8 0.3911

51 58 0.25 27 34 0.125 18.5 22 0.3911

35 88 0.25 13 35 0.25 17.5 40.4 0.1634

13 34 0.125

18 26 0.25

yields higher factors of safety.

In Figure 6-16b, results of the probability functions for the three combina-

tion rules are presented. The first interesting result is that the Yager’s and

Dempster’s rules narrow DSS. This is a favorable result, since the narrower

the stripe, the lower the uncertainty of the DSS.

The main reason for this effect is the treatment of conflicting information

because the number of focal elements is reduced as the conflict increases. In

fact, the narrowest stripe is given by the Dempster’s rule, that disregarded

most of the focal elements of the bedding friction angle, due to the highly

conflicting information. As a result, the highest factor of safety computed

was 2.52, which is 80 % lower than 9,9 comported with the mixing rule. In

between the Dempster and the mixing rule is the Yager rule. This one has a

more honest way to deal with conflict [Sentz and Ferson, 2002], since it does

not disregard conflicting information, but allocates its probability assignment

to the universal set. It means that even when some focal elements are missing

during the combination process, the extreme values remain because these

define the universal set.
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(a) Comparison between Yager and Demps-

ter aggregation rules for a highly conflic-

ting evidence

(b) Comparison among Mixing, Yager and

Demspter for more consistent information

sources

Figure 6-15.: DSS on inputs after combining

This result is evident in Figure 6-16b at the right bound of the DSS. There,

most of the results for Yager’s rule are between 1 and 3. However, there are

some results higher than 5 and even up to 6.6.

6.4. Updating clusters information

So far, the evidence on joint planes orientation has been considered indepen-

dently, i.e., the dip and dip direction as separated variables and the combi-

nation process and reliability analysis have been performed consequently.

Therefore, in this section, two examples of the updating process proposed in

this project are presented. Here, the orientation of joint planes is considered as

a random variable that follows the Kent distribution. Then, the information is

clustered utilizing the EM algorithm, as stated in Section 6.2. Subsequently,

the nested reliability analysis described in Section 6.2.3 was followed to come

up with the probability assignment.

For the first example, the rock wedge model presented in sections 3.6 and

6.4.2, for the information collected in 1997, 2011 and 2016. Again, the bed-

ding dip, dip direction, and friction are expressed as non deterministic va-

riables. However, unlike that example, the orientation planes are modeled as
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(a) Comparison between independent sources

and mixing rule

(b) DSSs computed from the combined in-

puts DSS

Figure 6-16.: DSS of the block factor of safety

Kent distributed variables. The clusters after applying the mixture model by

the EM algorithm are presented in Figure 6-17. As can be seen, the EM al-

gorithm threw three clusters, with two outliers (white points). The weighting

coefficients w∗, adjusted according to Eq 6-21, are included in Table 6-10.

Cluster 3 (in orange) carries most of the weight since 102 of the 136 measured

poles belong to that cluster.

Table 6-10.: Weighting coefficients for the bedding planes orientation mea-

sured in El Pedregal mine in 1997, 2011 and 2016

Cluster w*

1 0.17

2 0.15

3 0.68

With this updated set of information on joints orientation, the factor of sa-

fety DSS is computed with the friction angles combined according to the

mixing rule (see Table 6-7). This computation is performed according to the

procedure described in Section 6.2.

As a result, the DSS showed in Figure 6-18 was obtained. Besides, in Figure

6-19, this DSS is compared with those obtained when dip and dip direction
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Figure 6-17.: Clustering resulting from applying the mixtures model to the

information collected in 1997 for the bedding plane

were considered as independent variables.

Evidently, the proposed model reduces the area between DSS bounds. There-

fore, the uncertainty linked to the FoS DSS is reduced, compared to original

pieces of evidence (dotted lines in Figure 6-19), and the combination of orien-

tations by the mixing rule (in blue). Table 6-11 summarizes these areas. The

proposed alternative means a reduction of 50 % in the uncertainty expressed

as this area.

Likewise, for the updated orientation set, the FoS DSS was calculated for

the friction angle DSS combined (updated) according to the Dempster’s and

Yager’s rules, as included in tables 6-8 and tables 6-9, respectively. The

corresponding FoS DSS are depicted in Figure 6-20.

In this case, the Dempster rule yielded the lowest area, as a consequence of

the information lost during the combination process. On the contrary, Yager’s
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Figure 6-18.: DSS for the wedge factor of safety, obtained after updating

the orientation by the EM algorithm and the friction angle by

the mixing rule

Figure 6-19.: Comparison among DSS combination rules

DSS generated from the sources before updating (dotted lines), the mixing rule assuming that dips and dip direction are

independent (blue) and the proposed combination rule (black)
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Table 6-11.: FoS DSS area for the evidence collected in 1997, 2011 and 2016,

along with its aggregation

Evidence DSS area

1997 1.3

2011 1.07

2016 0.83

Combined (orientation by mixing rule) 1.14

Combined (Proposed algorithm) 0.57

rule turned the most significant area, i.e., the highest uncertainty. Table 6-12,

shows these results.

Figure 6-20.: Comparison of the wedge DSS FoS for different combination

rules

Comparison among strength parameters updated according to Dempster, Yager and mixing rules when orientation is combined

by the algorithm proposed in this work. Information collected in 1997, 2011 y 2016
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Table 6-12.: Wedge FoS DSS area

Combination rule DSS area

Dempster 0.18

Yager 0.724

Mixing 0.57

Comparison among strength parameters updated according to Dempster, Yager and mixing rules when orientation is combined

by the algorithm proposed in this work. Information collected in 1997, 2011 y 2016

On the other hand, the proposed updating algorithm was applied to the

information collected in 2017, for the pieces of evidence of joint orientations

that yielded the highest uncertainty for the FoS DSS, according to Table 4-5.

The assessed wedge is defined by joint set 2 and bedding plane, according to

Table 4-6.

This updating process means the combination of information from different

locations along the main slope, at the stations mapped by ShapeMetrix 3D.

As explained in Chapter 4, each location yielded a different DSS for the

factor of safety depending on the variability of the mapped planes, since the

geomechanical input DSS were the same at each location.

Hence, this example attempts to systematically combine the different sets of

information, acknowledging that they have a Kent distribution. This is ac-

complished by applying the combination algorithm proposed in this research.

Hence, the updated sets of orientation data, for the wedge failing along the

bedding plane (See Scenario 1 in Section 4-4), by using the EM algorithm are

plotted in figures 6-21a and 6-21b. Again, outliers are shown in white. The

corresponding weighting factors (adjusted mixing proportion) are included in

Table 6-13.

Based on these updated pieces of evidence, along with the DSS for the

strength parameters collected in 2017, the updated DSS for the factor of

safety was computed, as shown in Figure 6-22.

In this figure, the updated FoS DSS (in black) is included, along with the

DSS resulting from computing the DSS for each piece of evidence separately.

When information is considered separately, it is evident the variability of

the DSS at different locations, as stated in Chapter 4. Hence, combining the
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information systematically into a representative DSS is a challenging task,

but also because orientation data follow a Kent distribution.

This task is accomplished by the suggested algorithm, which leads to the FoS

DSS in black in Figure 6-22. This DSS attempts to represent the stability of

wedges along the slope, accounting for both, the aleatory and the epistemic

uncertainty linked to the complexity of rock masses.

(a) Clustering resulting from applying the

mixtures model to the information collec-

ted in 2017 for the Joint 1

(b) Clustering resulting from applying the

mixtures model to the information collec-

ted in 2017 for the bedding

Figure 6-21.: DSS of the block factor of safety

6.5. Conclusions

The capabilities of DST for combining evidence as a tool for updating the

reliability assessment of the stability of rock wedges were studied in this

chapter. First, existing alternatives for combining evidence under DST, ba-

sed on the distribution of the conflict were considered. Then, an alternative

for combining orientation data expressed as Kent distributed random varia-

bles, within mixture models aided by the EM algorithm was suggested. The
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Table 6-13.: Weigthing coefficients for pieces of information on joint 2 and

bedding orientations. Computed according to the algorithm

proposed in this reserach

Joint 1 Bedding

Cluster w* Cluster w*

1 0.0156 1 0.146

2 0.18 2 0.077

3 0.115 3 0.261

4 0.115 4 0.089

5 0.106 5 0.427

6 0.111

7 0.0806

8 0.048

9 0.168

10 0.0607

latter is the main contribution of this chapter. Finally, the concepts and algo-

rithms presented were illustrated by practical examples with the information

gathered at El Pedregal Mine. From this analysis, the following conclusions

were drawn:

When the pieces of evidence were considered separately, noticeable dif-

ferences in the FoS DSS were obtained, which justified the need for

aggregating the information into a representative set of updated evi-

dence.

Very conflicting pieces of evidence have a noticeable effect on the cu-

mulative probability functions obtained. Indeed, Dempster and Yager

combination rules lose information during the combination. This effect

is dramatic in Dempster’s rule because it disregards the focal elements

from the conflicting evidence.

The mixing rule balances the results obtained from individual sources,

without dealing with conflicting information.
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Figure 6-22.: DSS for the factor of safety for the information collected in

2017.

Information from independent sources is included, along with the updated DSS, where the evidence is combined. Left bound

in blue, lower bound in magenta and updates DSS in black

When combining several sources of information by Yager’s rule, the

model is giving more importance to the consistent information. This

evidence is expected to be the closest to the mean value and measured

by different sources. Nevertheless, this approach does not disregard the

possible extreme values that might affect the rock mass response, which

is done by assigning the conflict to the universal set.

The approach presented in this chapter is an alternative to systemati-

cally include new information in the design process as it is available.

This procedure allows us to update the model predictions and to assist

the decision making at different project stages. Nevertheless, sound en-

gineering judgment is required to define the input DSS and the proper

models to be utilized.

The proposed approach for combining information successfully subsu-

med information collected at different times. Besides, since this method
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considers the orientation as a Kent distributed variable, it reduces the

uncertainty of the FoS DSS, compared to the one resulting from assu-

ming dip and dip direction as independent variables.

Besides, this algorithm combined highly conflicting sets of orientation

data collected in 2017 by ShapeMetriX3D, into a single DSS that repre-

sents the stability of rock wedges, considering the aleatory and epistemic

uncertainty inherent to the rock mass and the mapping techniques.



7. Concluding remarks

Fulfilling the proposed objectives, this research developed a framework to

deal with uncertainty in rock slope problems, in which the presence of joints

discontinuities controls the stability. This approach overcomes the limitations

of deterministic and probabilistic techniques to deal with uncertainty, since

it handles both epistemic and aleatory uncertainty through the Evidence

Theory. In fact, the conventional probabilistic analysis is a particular case of

the proposed framework, in which the epistemic uncertainty is not considered.

Accordingly, the main contribution of this research are:

1. A methodology for combining robust datasets on joints geometry with

limited information on geomechanical parameters within a rock wedge

stability model. The variability of planes orientation is modeled as a

Kent distributed random variable, while strength parameters are ex-

pressed as DSS. As a result, a DSS of the factor of safety is computed.

This DSS reflects both the epistemic and the aleatory uncertainty of

the input parameters.

2. A novel approach for updating sets of directional data that follow a

Kent distribution. This approach resorts to the mixture models and the

EM algorithm for clustering and defining weighting coefficients. These

factors were treated as probability assignments for the updated eviden-

ce on orientation. The algorithm allowed to compute an updated FoS

DSS, with less uncertainty than the DSSs obtained from the evidence

considered separately.

The framework allows us to consider systematically the whole available in-

formation to compute a DSS of the factor of safety, without disregarding

information or missing likely scenarios. This DSS provides a broader frame of
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discernment since it presents an honest overview of the problem uncertainty,

adjusted by expert sound engineering judgment. Besides, it explicitly shows

the effect of including new information by updating the resulting DSS on the

uncertainty of the model output.

The developed approach is supported by the following algorithms, that are

contributions of this project as well:

1. A procedure to perform Monte Carlo simulation within a rock wedge

stability analysis, modeling the planes’ orientations as Kent distributed

variables.

2. A modification of the Low’s model to compute the horizontal wedge

angles accounting for any mode of wedge failure.

3. An alternative for combining DFN with strength parameters expressed

as DSS.

Further work

As the project was developed, the following opportunities for further research

were identified:

1. Explore alternatives to adjust the parameters extracted from the remote

sensing tool utilized in this project to improve its potential to mimic

the actual rock mass structure by DFN.

2. Assess the suitability of algorithms other than the moments’ method

to estimate the Kent distribution parameters and perform the maximi-

zation step in the EM algorithm, within the stability analysis of rock

wedges.

3. Study the spatial variability of rock mass structures, considering ad-

ditional information extracted from the three-dimensional images by

image processing techniques.

4. Explore alternatives for communicating to the stakeholders, the results

as intervals of probability
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Gheibie, S., Duzgun, S., and Akgun, A. (2013). Probabilistic-Numerical Mo-

deling of Stability of a Rock Slope in Amasya-Turkey. In 47th U.S. Rock



Bibliograf́ıa 169

Mechanics/Geomechanics Symposium, volume 1, pages 341–346. American

Rock Mechanics Association.

Glynn, E. F. (1979). A probabilistic approach to the stability of rock slopes.

GmbH, G. (2010). ShapeMetrix3D Manual. Technical report, Graz, Austria.

Goodman, R. E. and Shi, G. (1985). Block Theory and its Application to

Rock Engineering. Prentice Hall, New Jersey, 1 edition.

Goodman, R. E. and Taylor, R. L. (1966). Methods Of Analysis For Rock

Slopes And Abutments: A Review Of Recent Developments.

Hagan, T. (1980). A case for terrestrial photogrammetry in deep-mine rock

structure studies. International Journal of Rock Mechanics and Mining

Sciences & Geomechanics Abstracts, 17(4):191–198.

Hamelryck, T. (2009). Probabilistic models and machine learning in structu-

ral bioinformatics. Statistical Methods in Medical Research, 18(5):505–526.

Hamelryck, T., Kent, J. T., and Krogh, A. (2006). Sampling Realistic Protein

Conformations Using Local Structural Bias. PLoS Computational Biology,

2(9):e131.

Hammah, R. (2009). Numerical modelling of slope uncertainty due to rock

mass jointing. In Proceedings of the international conference on rock joints

and jointed rock masses.

Haztor, Y. (1992). Validation of block theory using field case histories. PhD

thesis, University of Berkeley.

Hoek, E., Bray, J. W., and Boyd, J. M. (1973). The stability of a rock slope

containing a wedge resting on two intersecting discontinuities. Quarterly

Journal of Engineering Geology and Hydrogeology, 6(1):1–55.

Huadong Wu, Siegel, M., and Ablay, S. (2007). Sensor fusion using Dempster-

Shafer theory II: static weighting and Kalman filter-like dynamic weighting.

In Proceedings of the 20th IEEE Instrumentation Technology Conference

(Cat. No.03CH37412), volume 2, pages 907–912. IEEE.



170 Bibliograf́ıa

Huadong Wu, Siegel, M., Stiefelhagen, R., and Jie Yang (2003). Sensor fusion

using Dempster-Shafer theory [for context-aware HCI]. In Proceedings of

the 19th IEEE Instrumentation and Measurement Technology Conference,

pages 7–12.

Jimenez-Rodriguez, R. and Sitar, N. (2006). A spectral method for clustering

of rock discontinuity sets. International Journal of Rock Mechanics and

Mining Sciences, 43(7):1052–1061.

Jimenez-Rodriguez, R., Sitar, N., and Chacón, J. (2006). System reliability

approach to rock slope stability. International Journal of Rock Mechanics

and Mining Sciences, 43(6):847–859.

Jing, L. (2003). A review of techniques, advances and outstanding issues in

numerical modelling for rock mechanics and rock engineering. International

Journal of Rock Mechanics and Mining Sciences, 40(3):283–353.

Jing, L. and Stephansson, O. (1994). Topological identification of block as-

semblages for jointed rock masses. International Journal of Rock Mechanics

and Mining Sciences & Geomechanics Abstracts, 31(2):163–172.

Jing, L. and Stephansson, O. (2007). Case Studies of Discrete Element Met-

hod Applications in Geology, Geophysics and Rock Engineering. In Engi-

neering, L. J. and in Geotechnical, O. S. B. T. D., editors, Fundamentals of

Discrete Element Methods for Rock Engineering Theory and Applications,

volume Volume 85, pages 447–538. Elsevier.

Johnson, J. D., Helton, J. C., Oberkampf, W. L., Sallaberry, C. J., Johnson,

J. D., Oberkampf, W. L., Sallaberry, C. J., Helton, J. C., Johnson, J. D.,

Oberkampf, W. L., and Sallaberry, C. J. (2008). Representation of analy-

sis results involving aleatory and epistemic uncertainty. Technical report,

Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore,

CA.

Kari, T., Gao, W., Zhao, D., Zhang, Z., Mo, W., Wang, Y., and Luan, L.

(2018). An integrated method of ANFIS and Dempster-Shafer theory for



Bibliograf́ıa 171

fault diagnosis of power transformer. IEEE Transactions on Dielectrics

and Electrical Insulation, 25(1):360–371.

Karimi-Fard, M., Durlofsky, L., and Aziz, K. (2004). An Efficient Discrete-

Fracture Model Applicable for General-Purpose Reservoir Simulators. SPE

Journal, 9(02):227–236.

Kasarapu, P. (2015). Modelling of directional data using Kent distributions.

arXiv preprint arXiv:1506.08105.

Kasarapu, P. and Allison, L. (2015). Minimum message length estimation

of mixtures of multivariate Gaussian and von Mises-Fisher distributions.

Machine Learning, 100(2-3):333–378.

Kent, J. T. (1980). The Fisher-Bingham Distribution on the Sphere. Tech-

nical report, Department of Statistics, Princeton University, New Jersey.

Kent, J. T. (1982). The Fisher-Bingham Distribution on the Sphere.

Kent, J. T. (2012). Statistical Modelling and Simulation Using the Fisher-

Bingham Distribution. pages 179–188. Springer, Berlin, Heidelberg.

Kent, J. T., Constable, P. D., and Er, F. (2004). Simulation for the complex

Bingham distribution. Statistics and Computing, 14(1):53–57.

Kent, J. T., Ganeiber, A. M., and Mardia, K. V. (2017). A new unified

approach for the simulation of a wide class of directional distributions.

Journal of Computational and Graphical Statistics, pages 0–0.

Kent, J. T. and Hamelryck, T. (2005). Using the Fisher-Bingham distribution

in stochastic models for protein structure. Quantitative Biology, Shape

Analysis, and Wavelets, 24(1):57–60.

Khairina, D. M., Hatta, H. R., Rustam, R., and Maharani, S. (2018). Automa-

tion Diagnosis of Skin Disease in Humans using Dempster-Shafer Method.

E3S Web of Conferences, 31:11006.

Khan, M. S. (2010). Investigation of Discontinuous Deformation Analysis for

Application in Jointed Rock Masses. PhD thesis, University of Toronto.



172 Bibliograf́ıa

Kim, D. H., Gratchev, I., and Balasubramaniam, A. (2015). Back analysis

of a natural jointed rock slope based on the photogrammetry method.

Landslides, 12(1):147–154.

Kim, J. K., Choi, M. J., Lee, J. S., Hong, J. H., Kim, C.-S., Seo, S. I., Jeong,

C. W., Byun, S.-S., Koo, K. C., Chung, B. H., Park, Y. H., Lee, J. Y., and

Choi, I. Y. (2018). A Deep Belief Network and Dempster-Shafer-Based

Multiclassifier for the Pathology Stage of Prostate Cancer. Journal of

Healthcare Engineering, 2018:1–8.

Klapperich, H., Rafig, A., and Wu, W. (2012). Non-Deterministic Analysis

of Slope Stability based on Numerical Simulation.

Lai, X.-P., Shan, P.-F., Cai, M.-F., Ren, F.-H., and Tan, W.-H. (2015). Com-

prehensive evaluation of high-steep slope stability and optimal high-steep

slope design by 3D physical modeling. International Journal of Minerals,

Metallurgy, and Materials, 22(1):1–11.

Lei, Q., Latham, J.-P., and Tsang, C.-F. (2017). The use of discrete fracture

networks for modelling coupled geomechanical and hydrological behaviour

of fractured rocks. Computers and Geotechnics, 85:151–176.

Lei, Q., Latham, J.-P., Xiang, J., Tsang, C.-F., Lang, P., and Guo, L. (2014).

Effects of geomechanical changes on the validity of a discrete fracture net-

work representation of a realistic two-dimensional fractured rock. Interna-

tional Journal of Rock Mechanics and Mining Sciences, 70:507–523.

Lin, D., Fairhurst, C., and Starfield, A. (1987). Geometrical identification of

three-dimensional rock block systems using topological techniques. Inter-

national Journal of Rock Mechanics and Mining Sciences & Geomechanics

Abstracts, 24(3):331–338.

Lin, J., Tao, H., Wang, Y., and Huang, Z. (2010). Practical application of

unmanned aerial vehicles for mountain hazards survey. In IEEE 18 th

Geoinformatics Int. Conf.



Bibliograf́ıa 173

Liu, F., Zhao, Q., and Yang, Y. (2018). An approach to assess the value of

industrial heritage based on Dempster–Shafer theory. Journal of Cultural

Heritage.

Long, J. C. S. and Billaux, D. M. (1987). From field data to fracture network

modeling: An example incorporating spatial structure. Water Resources

Research, 23(7):1201–1216.

Long, J. C. S., Remer, J. S., Wilson, C. R., and Witherspoon, P. A. (1982).

Porous media equivalents for networks of discontinuous fractures. Water

Resources Research, 18(3):645–658.

Low, B. (2007). Reliability analysis of rock slopes involving correlated non-

normals. International Journal of Rock Mechanics and Mining Sciences,

44(6):922–935.

Low, B. and Einstein, H. (1991). Simplified Reliability Analysis for Wedge

Mechanisms in Rodk Slopes. In Sixth International Symposium on Lands-

lides, pages 199–507, Christchurch, New Zealnd. A. A. Balkema.

Low, B. K. (1979). Reliability of rock slopes with wedge mechanisms. PhD

thesis, Massachusetts Institute of Technology.

Low, B. K. (1997). Reliability Analysis of Rock Wedges. Journal of Geotech-

nical and Geoenvironmental Engineering, 123(6):498–505.

Low, B. K. and Einstein, H. H. (1992). Simplified reliability analysis for

wedge mechanisms in rock slopes. In Proc., 6th Int. Symp. on Landslides,

pages 499–507. Balkema, Rotterdam The Netherlands.

Lucieer, A., de Jong, S. M., and Turner, D. (2014). Mapping landslide displa-

cements using Structure from Motion (SfM) and image correlation of multi-

temporal UAV photography. Progress in Physical Geography, 38(1):97–116.

Lunga, D. and Ersoy, O. (2011). Kent Mixture Model for Hyperspectral

Clustering via Cosine Pixel Coordinates on Spherical Manifolds. Technical

report, Purdue University, West Lafayette, IN.



174 Bibliograf́ıa

Ma, G. and Fu, G. (2014). A rational and realistic rock mass modelling

strategy for the stability analysis of blocky rock mass. Geomechanics and

Geoengineering, 9(2):113–123.

Ma, G. W. and Fu, G. Y. (2013). Stochastic key block analysis of under-

ground excavations. In Frontiers of Discontinuous Numerical Methods and

Practical Simulations in Engineering and Disaster Prevention - Proceedings

of the 11th Int. Conf. on Analysis of Discontinuous Deformation, ICADD

2013, pages 51–60.

Mardia, K. V. (1975). Statistics of Directional Data, volume 37. Academic

Press.
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A. Short Range Photogrammetry for

Geotechnical Characterization of

Rock Masses

A.1. Introduction

The three primary sources of uncertainty in rock mechanics problems are the

inherent spatial variability of properties, the error induced in measuring and

estimating engineering properties and inaccuracies in modeling [Einstein and

Baecher, 1982].

The first two sources can be handled by improving the data collection process.

The collection of a higher number of observations will not reduce the number

of computations but will improve the characterization of such variability. On

the other hand, involving alternative and reproducible methods for collecting

observations on the rock mass will contribute to reduce the uncertainty linked

to the second source of uncertainty, the measurement error.

With this framework, in this project two alternatives were used to collect

the information on joints geometry. First, the orientation of joint planes was

measured by using a compass. Subsequently, a short-range photogrammetry

system was used to gather information on rock joints structure.

The applied method integrates an extensive experimental plan in both, field

and computer laboratory, to collect structural data such as orientation, per-

sistence, and spacing of discontinuities in a rock mass taken as a case study.

Simultaneously, an intensive work of data collection in the field was carried

out by conventional methodologies using compass and tape, for comparative

purposes and statistical validation. The results allow establishing the advan-

tages of using unconventional techniques, in terms of quality and quantity
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of information, as well as efficiency in terms of time spent on field data co-

llection. Through the semi-automatic analysis of three-dimensional images,

geological mapping and objective characterization of discontinuities for geo-

technical purposes were achieved, constituting a powerful tool with great

potential for use in road and mining projects in Colombia.

A.2. Conventional measurements

The two main conventional techniques for collecting rock mass structure

are boreholes and compass measurements. Boreholes provide information on

joints geometry in depth, beyond the exposed area. However, it is relatively

expensive and time-consuming. Besides, given the small size of the sample,

the information provided is very limited, and a proper interpretation of the

information is required.

Conversely, the compass and tape for measuring information in outcrops and

engineering rock slopes, provide an important amount of information at a

much lower cost. However, by itself, it does not provide information on the

evolution of geometry with depth, as boreholes. Hence a combination of both

approaches is desirable.

In both cases, direct access to the observation area is required, which inter-

mediately generates the following limitations:

1. Limited access

2. Information limited by operators height and ability to access some

points

3. Time-consuming activity, which can be a drawback, especially in mining

operations, where operation constrains access to slopes

4. Measurements depend on the operator ability to position and read the

compass. e.g., Most measurements are taken up to the operator’s height.

The abovementioned drawbacks have two main consequences: results are bia-

sed, and reproducibility is not guaranteed [Gaich et al., 2004]. Image proces-
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sing systems are a relatively new approach to characterize rock mass joint

geometry, overcoming referred limitations.

In practice, the selection of sampling sector is conditioned by the availability

of accessible outcrops and engineered slopes and depends upon expert opinion

based on its interpretation of the geological conditions of the rock mass and

the subjectivity for the selection of sampling points.

In order to overcome and reduce the uncertainty linked to the joints geo-

metry sampling process, new technologies based on remote measurements

have been developed [Campbell and Wynne, 2011]. Bhreasail et al. [2018]

developed a revision of the remote techniques available for geotechnical pur-

poses, to be implemented in roads management in England, such as multis-

pectral and hyperspectral images, Synthetic Apertura Radar Interferometry

(InSAR) [Cigna et al., 2013], passive microwave radiometry and cameras with

motion sensors. Besides, there are several examples of applications of the la-

ser with LIDAR [Martinez et al., 2005], a combination of techniques, [Chen

et al., 2015, Park et al., 2016, Salvini et al., 2013] , and comparative analysis

[Riquelme et al., 2017].

As for photogrammetry applied to rock structure, measurements Wickens and

Barton [1971] published a pioneering work to measure the roughness profile

on rocks. Then, the Topographical Survey Directorate of the Surveys and

Mapping Branch, Department of Energy, Mines and Resources in Canada,

carried out a research to measure joints geometry and slope face movements

by using photogrammetry [Mosaad Allam, 1978]. Subsequently, Hagan [1980]

utilized pictures taken from a setup of two cameras to compute the position of

five points along a single discontinuity. With this information, the orientation

of the plane is computed.

Several works have focused on the measurement of geometrical features of

rock slopes by photogrammetry [Birch, 2006, Ruzic et al., 2014, Sturzenegger

and Stead, 2009, Vasuki et al., 2014], for hazard assessment [Lin et al., 2010,

Yang et al., 2012] for landslide mapping Lucieer et al. [2014], and monitoring

[Marek et al., 2015, Stumpf et al., 2015, Torrero et al., 2015].

Information collected using photogrammetry has been used as input informa-

tion for further geotechnical stability assessment [Bonilla-Sierra et al., 2015,

Booth and Meyer, 2013, Francioni et al., 2014, Kim et al., 2015, Lai et al.,
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2015, Ortega et al., 2013]

This list does not pretend to be exhaustive, but it shows a broad variety of

applications of photogrammetry in rock mechanics and geology-related acti-

vities. The most relevant advantages of implementing this sort of techniques

in engineering applications, compared to mapping with compass or lidar ins-

truments are [Tannant, 2015]:

1. Quick and cost-effective (camera less expensive than lidar instruments)

2. Hazardous areas can be safely measured

3. Fieldwork has no impact on construction or mining activities

4. The technique provides a detailed images form the rock surface

For researchers and practitioners in the rock mechanics field, the last advan-

tage is relevant, since images can have a permanent and close view of the

rock mass they are dealing with. This information does help to get acquain-

ted with the rock mass features and conditions. This characteristic can not

be quantified, but it can improve the quality of the design and will assist the

designer during the decision making process.

As for Colombia, Arango Velez [2014] used image form radar, interferometry,

and satellite in rock mechanics applications. However, there are no references

to the use of photogrammetry in rock mechanics applications.

Considering the need for developing more reliable models and introducing

up-to-date technologies to daily engineering activity. This project resorts to

ShapeMetrix3D that is a short-range photogrammetry system that builds a

3D image of the rock face based on two overlapping images, using the principle

of stereoscopy. The system is based on the original work of Gaich et al. [2003]

and then commercialized by the Austrian company 3GSM..

A.3. Case study

The Pedregal mine is a sandstone quarry situated in Une, Cundinamarca,

Colombia, as shown in Figure A-1 . This mine is in a sedimentary rock mass,
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formed mainly by alternating layers of sandstone and shales. The mine has

been operated since mid 1990ies until today. Holcim Colombia S.A. opera-

ted the mine until 2013, then Gravillera Albania S.A. took over control of

the operation. Both companies have had a responsible follow-up program on

geological and geotechnical aspects, according to Colombian legislation.

Figure A-1.: Location of The Pedregal Mine

As for the geology, the mine is located on a sedimentary complex from Are-

nisca de Une formation. The rock mass is on monoclinal dipping northwest

with variable dip ranging between 18°and 30 °. A 1500m length scarp bounds

the east side of the monoclinal. On the north edge of the scarp is located

the mine exploration. The main exploitation slope has approximately 270m

length and 25m high.

Regarding the stratigraphy, sandstone layers are identified with inter-bedded

layers of shale. These are followed by inter-bedded strata of quartzitic sands-

tone of variable grain size (layers F, G1, and G2), carbonaceous shales (F1m1,

G1m1, and G2m2). On the lower part of the sequence, there are strata of

medium to fine-grained gray sandstone (H1 and H2), with thin layers of car-

bonaceous shales (H1m1 and H2m2). Figure A-2 shows a detail view of the

lithologies identified in the main mine slope.

The sequence is summarized in Table A-1. Besides, in Figure A-3 a general

plan view of the surface geological model is depicted, along with a typical
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Figure A-2.: Detailed view of the sandstone shale sequence in the main slope

cross-section of the main rock slope is depicted in Figure A-4. Gravillera Al-

bania S.A. provided the information on the mine geology included in Geologia

y Geotecnia [2011].

A.3.1. Structural geology

Regarding the structural geology, the mine is located in a tectonic compressive

stresses area, resulting from the interaction between the continental South

American and oceanic Nazca plates. This interaction has generated several

events of rock crust rupture that are evident by the presence of faults, which

control the fracturing pattern of the mine.

There are two NE-SW strike faults, as can be seen in Figure A-3. The north

fault has a predominant orientation N-60-E and is dipping between 60° and

65°. The south fault presents and orientation N-58-E and a dip that varies

from 80° and 85° [Geologia y Geotecnia, 2011]. Aside from these faults, the

analysis of the structural information collected in the mine has allowed iden-

tifying three main joint sets, on the main slope. A summary of these structural

features is presented in Table A-2.
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Figure A-3.: El Pedregal Mine. General plan view of the geological model.

After Geologia y Geotecnia [2011]

Table A-2.: Summary of the main structural features identified in the mine

Structure Dip direction/Dip Comments

D1 158/76 Joint set 1

D2 056/75 Joint set 2

E 309/19 Bedding

F1 148/62 North Fault

F2 148/84 South Fault

A.3.2. Data adcquisition by conventional technique

An extensive experimental campaign was carried out both in the field and

computational laboratory to gather information on rock mass geometry, i.e.

joints orientation, size, and persistence. Compass and tape were used to va-

lidate the planes orientation computed from the 3D images, as well.
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Table A-1.: Description of lithological sequence reported in El Pedregal Mi-

ne

Lithology

E Sandstone with inter-bedded thin layers of shales

F
Quartzitic medium to fine grained sandstone with siliceous cement.

There are some thin layers of carbonaceous material

F1m1 Carbonaceous shale

G1 Quartzitic medium to fine grained light gray sandstone with siliceous cement

G1m1 Carbonaceous shale, with transitions to sandstone

G2 Quartzitic medium to fine grained light gray sandstone with siliceous cement

G2m2 Carbonaceous shale, with transitions to sandstone

H1 Quartzitic fine grained gray sandstone. Highly cemented

H1m1 Strata of shale with transitions to quartzitic sandstone

H2 Quartzitic fine grained gray sandstone. Highly cemented

H2m2 Strata of shale with transitions to quartzitic sandstone

Figure A-4.: El Pedregal Mine. Typical cross section of the rock mass. After

Geologia y Geotecnia [2011]

As mentioned above, the mine has had a follow-up on geology and geotechnics.

As a result, a data set on joints dip and dip direction are available. The

first pieces of information were collected in 1997 when the operation started.

Then in 2011 a detailed geotechnical assessment to update the mine design

was carried out, which included a back-calculation of a rock slope failure

reported in 2000. The information was complemented in 2016 by this study.

The fieldwork has focused on two main aspects, the measurement of joint

planes and geomechanical characterization. The latter has been carried out

mainly by block sampling and a few results from boreholes.

The collection of information on joints geometry has been addressed using
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Table A-3.: Summary of the historical information collected by traditional

techniques

Year Suorce N
Mean

Dip direction Dip

1997

1

116 138.1 83.7

163 68.9 84.5

23 292.8 25.0

2

43 140.5 71.8

56 107.5 88.7

17 323.7 39.7

3

87 132.3 76.6

42 207.2 86.9

13 304.7 23.3

2011

1-Central

23 154.3 76.6

10 53.3 79.2

6 305.3 29.0

2-South

30 150.9 81.2

26 62.5 78.0

17 307.1 20.7

2-North

71 157.2 76.8

75 59.0 75.0

34 308.7 23.7

3-South

14 161.3 82.1

19 62.5 74.5

8 325.4 17.7

2016

1

25 132.7 82.4

23 70.8 75.7

20 292.8 24.3

2
15 124.5 77.7

38 53.4 84.6

conventional compass measurements. In 1997 just a compass and approximate

location were used. Then in 2011, the GPS location was added. Since then,

information was collected by the author of this thesis. Then in 2016 and 2017,

new information was collected following the same procedure.

Initially, orientations were clustered using a k-means algorithm. Then, mean

orientation was defined. This procedure was carried out in Orient softwa-

re [Vollmer, 2015]. A summary of the information collected by traditional

techniques is included in Table A-3, where N corresponds to the number of

measured orientations.
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A.3.3. Data acquisition by the remote system

The author, a civil engineer with experience in rock mechanics, carried out

the data acquisition by the remote system, assisted by a research assistant.

As preparing task, the author took a training course in Graz, Austria for

operating ShapeMetrix3D.

The characterization of the rock slope with ShapeMetrix3D consists of four

steps [Gaich et al., 2004]:

1. Image data acquisition

2. Generation of 3D images

3. Assessment of 3D slopes

4. Derivation of descriptive rock mass parameters

Figure A-5 shows the parts of the imaging system. It consists of a calibrated

camera to capture the images, a range pole to scale the images, and processing

software divided into components to construct the 3D image, normalize, trim

and reference the image and perform the mapping. With this system, the

current operation of the slope was characterized following the steps depicted

in Figure A-6.

Figure A-5.: Componets of ShapeMetrix3D system. After GmbH [2010]

The slope was divided into 20 regions. At each region, the range pole is

located on one side of the measurement area as shown in Figure A-7 to
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Figure A-6.: Slope characterization with ShapeMetrix3D

prevent interference with the measurements. The range pole is kept vertically

aided by an incorporated bubble level. It is crucial that this reference element

appears in both pictures.

In Figure A-7 two disks are distinguished. Those elements are separated a

fixed distance (2.35m). This distance allows scaling the image to the actual

size during processing.

Aside from scale, the range pole is also used for orientating the information

to the magnetic north (although the kinematic analysis might be carried

out using local coordinates). The ShapeMetrix3D manufacturer recommends

measuring the orientation of a line within the image area by using a compass.

Then data can be rotated based on this measurement.

In order to reduce the bias induced by this procedure, two target points on

the slope were surveyed (see Figure A-7). Based on the orientation of the

line defined by these points the image was rotated.

Then, the operator takes two consecutive overlapping images with the ca-

librated camera, as shown in Figure A-8. The separation between pictures

(baseline) must range between 0,125 ∗ d and 0,20 ∗ d, where d is the distance
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Figure A-7.: Surveyed points and orientation line used for image rotation.

from the camera to the slope.

Figure A-8.: 3D image model reconstructed form two overlapping images.

After GmbH [2010]

Subsequently, the SMX ReconstructionAssistant software component inter-

polates the pair of photographs to construct a 3D image of the slope. Then,

the SMX Normalizer scales and rotates the image. First, the discs of the range
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pole are located on both pictures and scaled based on the 2.35m separation.

Likewise, surveyed points are located on both pictures, and the reconstructed

image is rotated accordingly. Besides, editing options are available including

trimming. A detailed description of the processing software is included in

GmbH [2010].

Once the 3D reconstructed image is appropriately scaled and rotated, the

next step is to identify and measure the geometrical features of the rock

mass. Figure A-9 shows a reconstructed 3D image using ShapeMetrix3D.

Figure A-9.: 3D image form El Pedregal Mine generated by ShapeMetrix3D

The described procedure was applied in slope highlighted in Figure A-10,

in which the operation focused back then. A summary of the information

collected on joints orientations is included in Table A-4.
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Figure A-10.: El Pedregal Mine. Slope mapped with ShapeMetrix3D

A.3.4. Measuring geometrical features

The measurements of rock mass structure are carried out by JMX Analyst

module. This is a semi-automatic process, in which a trained operator iden-

tifies every joint trace and/or plane.

For traces, the operator defines polylines for each trace. Then the software

defines the best-fit plane to that 3D polyline. In this case, at least three off

plane points are required. As for planes, a polygon surrounding each plane is

defined. This is done automatically or by the user. For each identified feature,

the software defines the mean plane orientation, as well as its extension.

With the procedure just described, detailed information on the joint planes

of the main slope plane was obtained. In fact, it was possible to measure

the orientation of 2152 planes, during one day of fieldwork. This represents

an increment of 91 % on the number of planes, compared with the informa-
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Table A-4.: Summary of information collected with ShapeMetrix3D

Station N Joint set
Mean

Alpha Beta

Station 1

15 1 Fault 137.2 82.2

46 2 19.0 83.8

22 3 Bedding 301.9 14.8

Station 2

41 1 Fault 97.5 78.6

120 2 14.1 80.8

86 3 Bedding 279.2 15.3

Station 3

20 1 Fault 144.2 85.1

44 2 11.6 88.1

40 3 Bedding 228.9 16.0

Station 4

60 1 Fault 184.0 87.7

13 2 66.9 70.6

21 3 Bedding 342.5 16.2

Station 5

82 1 Fault 353.8 88.6

92 2 58.0 78.9

71 3 Bedding 302.2 17.6

Station 6

54 1 Fault 0.2 86.1

64 2 58.7 88.3

49 3 Bedding 321.5 14.1

Station 7

42 1 Fault 174.9 88.1

42 2 54.8 85.2

35 3 Bedding 296.6 15.3

Station 8

33 1 Fault 152.2 77.4

62 2 45.5 82.1

24 3 Bedding 290.7 11.3

Station N Joint set
Mean

Alpha Beta

Station 9

49 1 Fault 169.8 81.9

26 2 67.1 80.9

18 3 Bedding 280.0 13.8

Station 10

36 1 Fault 151.9 74.2

70 2 41.8 79.1

42 3 Bedding 287.5 17.8

Station 12 lower

28 1 Fault 151.9 74.2

34 2 41.8 79.1

9 3 Bedding 287.5 17.8

Station 12 upper

20 1 Fault 157.4 76.4

23 2 37.6 78.0

30 3 Bedding 281.9 17.8

Station 13 lower

40 1 Fault 145.4 65.3

22 2 55.4 84.4

22 3 Bedding 328.7 17.1

Station 14

48 1 Fault 165.1 81.7

39 2 43.2 82.6

21 3 Bedding 309.2 19.2

Station 15

84 1 Fault 150.3 84.8

75 2 44.3 80.9

30 3 Bedding 289.9 16.4

Station 16

48 1 Fault 164.9 78.8

43 2 43.4 80.0

50 3 Bedding 294.2 17.5

tion collected manually, during the field campaigns in 1997, 2011 and 2016

altogether, covering a larger area.

Additional advantages that were evident during the fieldwork were:

1. Planes dip and dip direction can be weighted by size. This is important,

because there is a high variability on the size of planes that can be

measured

2. An average orientation of planes is obtained, which is an essential im-

provement compared to the compass that measures small areas, and so,

the average orientation becomes subjective

3. An actual image of the slope is obtained. Then, both engineers and

geologist grasp a better idea of the features of the rock mass

4. The SMX analyst generates an objective and reproducible measurement

of separation of joints
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5. Results are conveniently described and stored to subsequent reliability

computations.

A sample of the information obtained from the image processing with Shape-

Metrix is included in Figure A-11. ShapeMetrix3D also generates a stereonet

with the information resulting from each 3D image and performs a k-means

clustering. An example of this is presented in Figure A-12

Figure A-11.: Example of 3D image processing. Planes are highlighted ac-

cording to clustering

A.4. Results

In the following, a description of the information collected by using Shape-

Metrix3D is presented, as well as, a comparison with the results obtained by

traditional compass technique.

One of the first noticeable differences has to do with the area measured by the

remote system. Here, the entire area can be mapped, which ranges between

150m2 and 450m2, while with the compass up to 2m high was reachable,

which means that only 13 % or the area is sampled.
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Figure A-12.: Poles plotted on stereonet for Station 7

A.4.1. Orientation

Orientations measured by using the compass and the remote system are

shown in Figure A-13. At first glance, the poles diagrams show similar trends,

i.e. There are three joint sets: one for the bedding (blue) and two steep joint

sets (green and red).

Statistics about the measured data are included in tables A-5 and A-6.

Other than the amount of information collected, it is important to highlight

how the information is distributed among the different joint sets. For the

compass, most of the data (90 %) belong to joint sets 2 and 3, only 56 poles

were measured on the bedding. It was complicated to locate the compass

along such a discontinuity.

This bias is less evident for ShapeMetrix, where 35 % of the information

belong to Joint set 1, 38 % to joint set 2 and 27 % to the bedding. The

difference on the information distribution has to do with the drawbacks to

measure bedding planes, since most of the are not suitable to be measured
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Figure A-13.: Poles measured in El Pedregal mine. Left: measured by com-

pass. Right: measured by ShapeMetrix3D

by compass, since only the trace can be mapped.

In regard the measured angles, the highest difference is obtained for joint set

1, where the dip direction difference is 18°, and the dip difference is 10°. This

is the result of the difficulties for measuring vertical angles in this rock mass.

This is the case for the bedding dip direction. It also reflects the difficulties

to measure these planes.

Results demonstrate that there are similar trends in the joint sets orientation.

Table A-5.: Mean orientation of planes using compass

Joint set 1 Joint set 2 Joint set 3 (bedding)

Number of poles 272 235 56

Dip direction(°) 152.7 58.9 288.2

Dip(°) 76.5 74.5 25.7

Confidence cone 2.8 3.0 3.7

A.4.2. Spacing and joint trace length

Tables A-7 and A-8 summarize trace length and spacing results respecti-

vely. The first evident result is the amount of information collected. For the
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Table A-6.: Mean orientation of planes using ShapeMetriX3D

Joint set 1 Joint set 2 Joint set 3 (bedding)

Number of poles 657 732 521

Dip direction(°) 171.5 51.6 297.39

Dip(°) 86.2 80.4 15.1

Confidence cone 1.1 1.2 1.1

nonconventional technique 1810 measurements of length were collected, whi-

le 465 for the tape. As for spacing, this difference is even more dramatic;

5338 orientations were measured by ShapeMetriX3D and just 408 by tape.

Moreover, as orientations, spacing, and trace length measurement are evenly

distributed when collected by ShapeMetriX3D.

The image system provides more reliable spacing measurements than tradi-

tional tape because there is no chance for defining actual distances directly

during the field work. Only apparent spacing can be measured. Instead, Sha-

peMetriX3D defines objectively the distance between two planes based on

the normal vector. This task requires computing beforehand the joint plane

orientation.

Table A-7.: Measured trace length

Technique Parameter Set 1 Set 2
Set 3

(Bedding)

Trace length Number of measurements 233 225 7

Mean (m) 1.91 1.66 0.93

Standard deviation (m) 2.61 1.68 0.73

ShapeMetriX3D Number of measurements 590 721 499

Mean (m) 1.16 1.03 2.71

Standard deviation (m) 0.93 0.93 1.97

Beyond the amount of information, results on spacing are more reliable than

those obtained by conventional tape measurements, since there is no chance

for defining objective actual separation during the field work. Only apparent
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Table A-8.: Measured joint spacing

Technique Parameter Set 1 Set 2
Set 3

(Bedding)

Spacing Number of measurements 205 200 3

Mean (m) 0.26 0.32 0.58

Standard deviation (m) 0.33 0.35 0.65

ShapeMetriX3D Number of measurements 1690 2098 1550

Mean (m) 1.77 1.40 1.28

Standard deviation (m) 2.63 2.13 1.75

spacing can be measured. This is overcome by the image technique, since

it defines objectively the distance between two planes based on the normal

vector. This task requires defining beforehand the joint plane orientation.

A.4.3. Time and efficiency

Concerning the time spent collecting the information, for the conventional

technique it took 10 days performing the field work, plus 2 days of work

office to process the information.

Regarding ShapeMetrix3D, it took 6 hours to take the required pictures in the

slope. Depending on the expertise, the time spent in processing the images

and measuring ranges between two and five days.

A.5. Conclusions

In this work, a short-range stereoscopy technique (ShapeMetriX3D) for co-

llecting remotely structural information from a rock mass has been utilized.

Results were compared with the traditional compass and tape technique.

One of the main advantages is related to contactless measurements. It makes

accessible the whole exposed rock mass face (slope or outcrop). In conventio-

nal compass measurements, the access is constrained by the operators’ ability

to access and measure exposed planes. Hence, a larger area is mapped using
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the short-range stereoscopy technique.

Consequently, the amount of collected information by the 3D image system is

larger compared to the compass. Specifically for case studied in this project

9058 data were gathered with ShapeMetriX, including 1910 orientations, 5338

spacing, and 1810 trace length records, while with compass and tape 1436

data were measured distributed in 563 orientation, 408 spacing, and 465

length records.

Aside from the bias induced by access restriction, the remote system reduces

bias generated by preference to measure only clearly exposed planes, the

ability to measure traces orientation directly from the slope face, and changes

in mean slope orientation in the same exposed plane.

Besides, it reduces the fieldwork time required to collect the information,

which means less time for the operator to be exposed to an eventual slo-

pe instability event, rock fall or an accident, the latter is crucial in mining

activities.

Regarding orientations, mean joint set orientation measured with ShapeMe-

triX3D and compass are consistent, despite the difference in the amount of

evidence. This validates the applicability of this 3D image technique for mea-

suring rock mass structure features.

The 3D image technique allows having reproducible and objective measure-

ments of joint planes spacing, based on the normal distance between planes,

using the same algorithm over and over. This is a significant advantage com-

pared to tape measurement, where only apparent spacing is measured and

depends on the operator expertise.

The comparative advantages of the short-range stereoscopy technique over

compass and tape make it a suitable alternative to be implemented in routine

geomechanical applications for rock slope design in Colombia.

Once the image is generated, it is available at any time. Hence, additional

measurements or assessment may be carried out without going back to the

site. Besides, it allows the geotechnical engineer to have a close and detailed

view of the rock slope, which improves his/her understanding of the rock

slope potential behavior.

Finally, the application of this tool in the investigation resulted in improve-

ments in the reliability of the data used for rock mass structural characteriza-
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tion, as a fairly robust, representative and repeatable database was achieved.



B. Kent distribution vs Fisher

distribution

This appendix shows the calculation of the factor of safety of rock wedges, in

which the joints are modeled as Kent distributed variables. The concentration

and ovalness parameters are varied to verify their influence on the probability

of failure and the probability function.

The deterministic wedge’s geometry corresponds to a wedge failure in join-

ted andesite near Ankara Castle in the Bent Deresi region of Ankara City,

Turkey, reported by ?. Orientations of planes 1 and 2 are 194/44 and 103/71,

respectively, and slope orientation 162/69. This geometry leads to a failure

along the intersection line, as can be seen in Figure B-1, where joints are

plotted in red and the slope in red. This orientation generates a failure of

the mean wedge along plane 1. A friction angle of 30°was reported. Values

of cohesion of 25kPa, 35kPa, 40kPa, and 45kPa were assumed. Figure B-1

shows the major planes for the average joint planes and the slope face.

Both joint planes were simulated as bi-variate random variables with a Kent

distribution, considering the scenarios included in Table B-1. These values

cover a broad spectrum of possibilities, including the Fisher distribution, i.e.,

β = 0. For each scenario, 10000 simulations of planes were performed, by the

A/R algorithm implemented according to the flowchart included in Figure

3-6.

Given that the aim is to evaluate the influence of the shape of the distribution

of joint planes on the probability function and probability of failure, only

these variables were modeled as probabilistic. Other properties were assumed

as deterministic.
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Figure B-1.: Joint planes and slope orientation assessed

Information reported in Ankara Castle in the Bent Deresi region of Ankara City, Turkey by ?. Joints in green, slope in red

Table B-1.: Input shape parameters for rock joint planes simulation

kappa beta Lambda

100 0 0

100 1 0.01

100 10 0.1

100 25 0.25

100 40 0.4

100 49 0.49

kappa beta Lambda

500 0 0

500 5 0.01

500 50 0.1

500 125 0.25

500 200 0.4

500 245 0.49

kappa beta Lambda

10000 0 0

10000 100 0.01

10000 1000 0.1

10000 2500 0.25

10000 4000 0.4

10000 4900 0.49

Joints simulation

In order to illustrate the importance of considering the more general Kent

distribution, over the Fisher distribution, Figure B-2 compares the simulated

data with the planes simulated using both distributions. This planes were

simulated using the algorithm depicted in Figure 3-6, firstly assuming β = 0

and then β = 25 and β = 49. This figure also shows the effect of increasing

the concentration parameter κ. The higher κ, the closer the simulated planes

to the mean orientation.
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The procedure to compute the probability of failure is as follows. Each com-

bination i of the simulated joint planes defines a realization. Then, the factor

of safety is computed according to Eq. 3-26. The procedure is repeated for

each combination of planes. As a result, a factor of safety linked to each remo-

vable wedge is obtained. From those removable blocks, the number of wedges

with FS < 1,0 leads to the probability of failure. Moreover, the probability

distribution function of the FOS can be computed as well.

As for the probability of failure, Figure B-3 shows the results of different sce-

narios. Each line defines the probability of failure for the same concentration

parameters with variable ovalness factors, which is reflected in the parameter

λ.

(a) κ = 100 and β = 0 (b) κ = 100 and β = 25 (c) κ = 100 and β = 49

(d) κ = 500 and β = 0 (e) κ = 500 and β = 125 (f) κ = 500 and β = 245

Figure B-2.: Simulation of orientation planes for joint 1. 194/44
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(a) c = 25 kPa

(b) c = 40 kPa

(c) c = 45 kPa

Figure B-3.: Probability of failure for different scenarios
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Two facts can be distinguished from these results. First, the probability of

failure changes as the concentration parameter changes, which is expected,

since the wedge geometry changes at each realization. However, the varia-

tion is not straightforwardly defined. First, for the cohesion of 25kPa, as

the concentration increases, the probability of failure increases. On the other

hand, for values of cohesion above 35kPa, as the concentration increases, the

probability of failure decreases.

Second, the ovalness has a noticeable effect on the probability of failure. For

a given concentration parameter κ concentration, when the cohesion is less

than 25kPa, the probability of failure reduces as the ovalness factor increases.

The opposite occurs for cohesion is higher or equal to 35 kPa.

Figures B-4 and B-5 show the change of the probability of failure in percent,

with respect to the Fisher distribution, against the eccentricity lambda. Here,

when the cohesion equals 25kPa, there is a reduction in the probability of fai-

lure of 25 %, falling from 0.97 for Fisher to 0.73 for Kent with an eccentricity

of 0.4. Conversely, when the cohesion equals 40kPa, and the concentration is

10000, the variation of the probability is as high as 709 %, going from 0.04

to 0.36.

Figure B-4.: Variation of the probability of failure with respect to the Fisher

distribution value. c = 25 kPa
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Figure B-5.: Variation of the probability of failure with respect to the Fisher

distribution values. c = 40 kPa

So far, the variation of the probability of failure has been explicitly presented.

Nevertheless, these variations are evident throughout the probability function

for different values of the shape parameters of the Kent distribution. Figu-

res B-6a, B-6b, B-6c presents the probability function for κ equals to 100,

500 and 10000, respectively, and B-7 gathers all probability functions. These

graphs reinforce the fact that there is an effect on the probability of failure

of wedge stability of the input parameters selected to model the variability of

input orientation. Even more, the assumption of a Gaussian symmetry distri-

bution around the mean, has a noticeable effect on the probability function

and consequently on the probability of failure.
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(a) kappa = 100 (b) kappa = 500 (c) kappa = 10000

Figure B-6.: Probability function for different values of concentration and

ovalness parameters. c = 40kPa, phi = 30

Figure B-7.: Probability function all combinations of concentration and

ovalness parameters. c = 40kPa, phi = 30



C. Results supplement

In this appendix the resulting DSS computed for the factor of safety at El

Pedregal Mine are included
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(a) 2017. Piece of information 0 (b) 2017. Piece of information 1

(c) 2017. Piece of information 2 (d) 2017. Piece of information 3

(e) 2017. Piece of information 4 (f) 2017. Piece of information 5

Figure C-1.: DSS for the factor of safety computed for the combinations of

measured planes

Wedge formed by bedding and joint set 2 planes (Scenario 1)



215

(g) 2017. Piece of information 6 (h) 2017. Piece of information 7

(i) 2017. Piece of information 8 (j) 2017. Piece of information 9

(k) 2017. Piece of information 10 (l) 2017. Piece of information 11

Figure C-1.: DSS for the factor of safety computed for the combinations of

measured planes

Wedge formed by bedding and joint set 2 planes(Scenario 1)
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(m) 2017. Piece of information 12 (n) 2017. Piece of information 13

(ñ) 2017. Piece of information 14 (o) 2017. Piece of information 15

Figure C-1.: DSS for the factor of safety computed for the combinations of

measured planes

Wedge formed by bedding and joint set 2 planes (Scenario 1)
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(a) 2017. Piece of information 0 (b) 2017. Piece of information 1

(c) 2017. Piece of information 2 (d) 2017. Piece of information 3

(e) 2017. Piece of information 4 (f) 2017. Piece of information 5

Figure C-2.: DSS for the wedge factor of safety for the orientation simulated

as Kent distributed random variable

Wedge formed by bedding and joint set 2 planes (Scenario 2)
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(g) 2017. Piece of information 6 (h) 2017. Piece of information 7

(i) 2017. Piece of information 8 (j) 2017. Piece of information 9

(k) 2017. Piece of information 10 (l) 2017. Piece of information 11

Figure C-2.: DSS for the wedge factor of safety for the orientation simulated

as Kent distributed random variable

Wedge formed by bedding and joint set 2 planes (Scenario 2)
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(m) 2017. Piece of information 12 (n) 2017. Piece of information 13

(ñ) 2017. Piece of information 14 (o) 2017. Piece of information 15

Figure C-2.: DSS for the wedge factor of safety for the orientation simulated

as Kent distributed random variable

Wedge formed by bedding and joint set 2 planes (Scenario 2)
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(a) 2017. Piece of information 0 (b) 2017. Piece of information 1

(c) 2017. Piece of information 2 (d) 2017. Piece of information 3

(e) 2017. Piece of information 4 (f) 2017. Piece of information 5

Figure C-3.: DSS for the factor of safety computed for the combinations of

measured planes

Wedge formed by joint sets 1 and 2 planes (Scenario 3)
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(g) 2017. Piece of information 6 (h) 2017. Piece of information 7

(i) 2017. Piece of information 8 (j) 2017. Piece of information 9

(k) 2017. Piece of information 10 (l) 2017. Piece of information 11

Figure C-3.: DSS for the factor of safety computed for the combinations of

measured planes

Wedge formed by joint sets 1 and 2 planes (Scenario 3)
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(m) 2017. Piece of information 12 (n) 2017. Piece of information 13

(ñ) 2017. Piece of information 14 (o) 2017. Piece of information 15

Figure C-3.: DSS for the factor of safety computed for the combinations of

measured planes

Wedge formed by joint sets 1 and 2 planes (Scenario 3)
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(a) 2017. Piece of information 0 (b) 2017. Piece of information 1

(c) 2017. Piece of information 2 (d) 2017. Piece of information 3

(e) 2017. Piece of information 4 (f) 2017. Piece of information 5

Figure C-4.: DSS for the wedge factor of safety for the orientation simulated

as Kent distributed random variable

Wedge formed by joint sets 1 and 2 planes (Scenario 4)
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(g) 2017. Piece of information 6 (h) 2017. Piece of information 7

(i) 2017. Piece of information 8 (j) 2017. Piece of information 9

(k) 2017. Piece of information 10 (l) 2017. Piece of information 11

Figure C-4.: DSS for the wedge factor of safety for the orientation simulated

as Kent distributed random variable

Wedge formed by joint sets 1 and 2 planes (Scenario 4)
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(m) 2017. Piece of information 12 (n) 2017. Piece of information 13-4

(ñ) 2017. Piece of information 14 (o) 2017. Piece of information 15

Figure C-4.: DSS for the wedge factor of safety for the orientation simulated

as Kent distributed random variable

Wedge formed by joint sets 1 and 2 planes (Scenario 4)



D. Appendix: Scripts

In this Appendix the scripts generated for the algorithms proposed in this

research project are included. The algorithms suggested were programmed in

Python 3.6 available at www.python.org, using the integrated development

environment, IDE, PyCharm 2018.1 available at www.jetbrains.com.




















































































