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ON THE DEGREE OF APPROXIMATION BY POSITIVE LINEAR
OPERATORS USING THE B·SUMMABILITY METHOD.*

by

A.S. RANADIVE and S.P. SINGH

ABSTRACT. The aim of this paper is to sharpen the results of censor [3] and
Mahapatra [7] given on the degree approximation by positive linear
operators.

§l. Introducci6n. LetB = {A(n)} = {(a(n»)} be a sequence of
infinite matrices such that a (n) ~ 0 fof;, m , n = 1, 2, ... Apm
sequence {xm} of real numbers is said to be Brsummable to I [Bell
1973] if

lim ! a (n \ = 1
p ~oo m =1 p m m

uniformly in n = 1, 2, . .. If, for some matrix A, A (n) = A for n

= 1, 2, ... , then B -summability is just matrix summability by A.
If for n = 1, 2, ..

(n )
a

pm

for n +I ::; m ::; n +p

otherwise
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then B - s ummability reduces to almost convergence.

Recently some results of Censor [3] and Mohapatra [7] on the
rate of convergence of sequence of positive linear operators
have been unified by Swetits [10] through the use of the B-
summability method. The object of this paper is to sharpen the
results of Censor [3] and Mohapatra [7]. Corresponding estimates
for some especial operators are also deduced.

Let {Lm} be a sequence of positive linear operators on t: [a,b]

and let {A (n )} = B be a sequence of ~nfinite matrices with non
negative entries. For f« t: [a,b], let A~n (f;x) denote the double
sequence

00

A (n ) if .x) = ~ (n ) L if) 1 2, £..J a m;x ; p, n = , , ...
p m =1 pm

(1.1 )

Following Swetits [10], we define II A P fll to be

sup sup IAp(n)(f;X) I
n xE[a,b]

We say that for f E t: [ a,b] , {L m f} is B-summable
on [a,b] if and only if II Ap If I-fll ~ 0 as p ~ 00.

lemmas are from Anastassiou [1, page 264].

to f, uniformly
The following

LEMMA 1.1. For all t, and XE [a,b] and 0> 0 one obtains

{
U-X)2

20
It -x I

+
2

( 1.2)

where r.l denotes the ceiling of number.

LEMMA 1.2. Let f be a convex function in C 1 [a,b], then

1f'(~)-f'(x)1 s W(f',o)r~l s
(1.3) -
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§2. Main result. Let {kp} be a sequence of positive numbers
and {Lm} be a sequence of positive linear operators on r: [a,b].

Let fe r: 1 [a, b] be such that If'( t) -I' ( x) I is a convex function in t
and w(f'; .) is the modulus of continuity of 1'. Let B = {A(n)} be a
sequence of infinite matrices with non-negative real entries
such that IIApeoli < 00, where eo(x) = 1 for all XE [a,b]. Then for
each p :

IIAp/-fll s IIfliliApeo - 111+ Ilf' 1IIIAp(t-x)1I

(f''rk ) t1 1 1/2 k n } (2+w 'pllpll --+-IIA ell +- IIApeoll .1)p kp 2 p 0 8

If an addition (Ap(n )eo)(x) = 1 and (Ap(n)t)(x) = x,

IIAp! -! II s (2:p + ~ + ~P )~p .wr '.kp lip) (2.2)

where ~ = IIAp (t -x) 2111/2 and II· II norm being the sup over
[a, b] defined in §1.

Proof of main result. We know that

t

f(t)-f(x) = !,(x)(t -x) + f {f'(O-f '(x)}d ~ (2.3)
x

Using (1.2), (1,3), (2,3) and the inequalities

We get that

1~~n)f)(X) -f(X)(A~n)eo)(x)1

t

s If '(x) (A~n) (t -x))(x )1 + (A)n) {fu '(~)-f '(x))d ~} ) (x)
x
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t
:::;It '(X) I I (AJn)(t -x»)(x) I + (Ap(n){flt '(~)-t' (x)d ~}) (X)

X

:::;It '(x)II(A~n)(t -x»)(x)l+w(f',O) (A~n){Jr I~ ~X Ild~})(x)
x

w(f' O/A (n){<t-X)2 + It-xl +~}(X»)
, ~ p 28 2 8

:::;It '(x) I I (AJn)(t -x»)(x) I +W(f',O){do (AJn)(t -X)2)(X)

+ .1 (A (n )It -x I)(x) + ~ (A (n)e ) (X)}
2 p 8 p 0

:::;lit '111IAp(t -x)11 + w(f ',0) {;8 (AJrt)(t _x)2) (x)

+ .1 (A (n )It -x I)(X) + ~ (A (n)e ) (X)} (2.4)2 p 8 p 0

Choosing 0 = kp Ilp this reduces to

I (A ~ n) t ) ( x) - t (x) C<i ~ n) eO ) ( x) I
s lit IIIIA p (t-x)11 + u{r', kp IlP){ IIp + lllpllAp e011

1
(2 + k p IIp IIA p e oil}

21lp 2 8

= lit 1111 Ap (t-x) II + w(j', k p IIp) IIp {_I_ + LJlApe 0111
(2 + k p IIApe oil}

21lp 2 8 (2.5)

Clearly

I-t (x) + t (x) (A~n)e )(x) I :::; lit II IIA e - III (2.6)
o p 0

On adding (2.5.) and (2.6) we get (2.1). In case IIp = 0 then for
every 0 > 0 we get from (2.5) that
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so

I(A~n)f)(x),- f(x)I=Ir(X)(A~n)eo)(x) - f(x)l~ Ilrlll~peo- 111
. . (n) ) ( (n) ) «n»Again, If (A e 0 (x) = 1 and A t (x) = x, then A (t-x) (x) =p p p

O. So from (2.4), we get the rest of the proof.

§3. Applications to almost convergence. By choosing
a;~= lip for n+l~m ~n+p and a~n~=O otherwise, in (2.1) and
(2.2), we get an estimate on almost convergence which is shar-
per than that of Mohapatra [7]. Now we applicate the results to
the Bernstein polynomials. For f e C [0,1] the Bernstein poly-
nomial of m-th order is defined as

We know that Lm( 1) (x) = 1 ; Lm (t) (x) =x and Lm(t-x)2(x) =

x(l-x)/m. So for p ~ 1

Jl2 IIA (t _x)2(x)11p p

= sup sup (A (n) (t- x)2 )(x)
n ~1 x p

n+p
1 L x( I-x)= sup sup

n ~1 x p n +1 m

=
1 ~ 1 <sup L --

4p n ~1 n +1 m

Jlp :::< 1/2 (2. Choosing

1 sup
4p n ~1

---.l!...- 1< -n +1 - 8

Therefore kp = 2 we get from (2.2).

l14pf -f II s 2 h W (! ';A ) (3.1 )
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which appears to be a new constant in the case of almost con-
vergence on the Bernstein polynomials.

Now we apply the result to the positive linear operators obtai-
ned from the inversion of Weierstrass transformations. For a
measurable function I defined on (-00 ,00) the inversion ope-
rators are given by:

00

( m )1/2J ( 2 m )(Lm/)(x) = 41t exp -(t -x) 4 I (t)dt ; m ~ I (3.2)

- 00

We know that (Lmf)(x) = I, (Lmt)(x) = x and (Lm(t)2(x) = x 2 + 21m
and consequently (Lm(t-x)2)(x) = 21m (see [4]). So for p ~ 1,

~
1 nf s sup 1.- -l2.- :::;1= supn ~1 P m =n +1 n e 1 p n + 1

Therefore ~p ::::: 1. Choosing kp = 1 in (2.2) we get

IIA p I-I II s ~w (f'; 1) (3.3)

wich also appears to be a new constant in the case of Weierstrass
transformations.

§4. Aplication on convergence. We have deduced the follo-
wing estimates by choosing a~~?= c5~ in each one of the cases
given below:

Case 1. For IE C [ 0,1] let L m be the Bernstein operator of or-
der m. So for m ~ I ; ~m = 1/2~. By choosing km = 2 in (2.2) one
obtains for IE t: 1[0,1] and m ~ I.

I (' 1 )1ILml-/ll:::; I w f; I
Nm -q m
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wich is sharper than the corresponding estimate of Lorentz [5].
Again by choosing km = 2/"';-;;; in (2.2) we obtain for IE e 1 [0,1],
m ~1.

IlL I _I II :5; ([;;; + 1)
2

W (I I ; _1 )
m 8m m (4.1 )

This result is due to Schurer [8].

Case 2. For IE e [0,00], let

where

H2k (iA.) J.., (-l)Y(2i A.)2k -2y= l.,.--- , A.real,
k y=o Y (2k - 2y)

is the positive linear operator of order m introduced by Meir and
Sharma in [6]. We know that

(L A l)(x) = 1
m

so for m ~ 1, and any x E [o,a] ,

I!m = J P..2 : I) a + 1..[; (.)
~ tanh 2A.r;;;;;

2m vm

= (say).
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By choosing km = IN D m in (2.2), we get for fE t: 1 [0, a], and
m ~ 1

ilLA(f) -f II
m

1 r 1)-we ; I.r;;; vm
(4.2)

We note that by choosing A. = 0 in (4.2) one obtains for Szasz
operators

ilL0f-fll ~ (2.[;; + If _1_ w(f ; _1_),
m 8.r;;;,r;;;

which is sharper than the corresponding estimate of Stancu [9]:

IIL~f-fll ,; u: +a) j~ W (r'; );; ).
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