ON THE DEGREE OF APPROXIMATION BY POSITIVE LINEAR OPERATORS USING THE B-SUMMABILITY METHOD.*

by

A.S. RANADIVE and S.P. SINGH

ABSTRACT. The aim of this paper is to sharpen the results of censor [3] and Mahapatra [7] given on the degree approximation by positive linear operators.
§1. Introducción. Let $B=\left\{A_{(n)}^{(n)}\right\}=\left\{\left(a_{p m}^{(n)}\right)\right\}$ be a sequence of infinite matrices such that $a_{p m}^{(n)} \leq 0$ for $p, m, n=1,2, \ldots$ A sequence $\left\{x_{m}\right\}$ of real numbers is said to be B-summable to 1 [Bell 1973] if

$$
\lim _{p \rightarrow \infty} \sum_{m=1}^{\infty} a_{p m}^{(n)} x_{m}=1
$$

uniformly in $n=1,2, \ldots$ If, for some matrix $A, A^{(n)}=A$ for n $=1,2, \ldots$, then B-summability is just matrix summability by A. If for $n=1,2, \ldots$

$$
a_{p m}^{(n)}= \begin{cases}\frac{1}{\mathrm{p}} & \text { for } n+1 \leq m \leq n+p \\ 0 & \text { otherwise }\end{cases}
$$

[^0]then B-summability reduces to almost convergence.
Recently some results of Censor [3] and Mohapatra [7] on the rate of convergence of sequence of positive linear operators have been unified by Swetits [10] through the use of the B summability method. The object of this paper is to sharpen the results of Censor [3] and Mohapatra [7]. Corresponding estimates for some especial operators are also deduced.

Let $\left\{L_{m}\right\}$ be a sequence of positive linear operators on $\mathcal{C}[a, b]$ and let $\{A(n)\}=B$ be a sequence of infinite matrices with non negative entries. For $f \in \mathscr{C}[a, b]$, let $A_{p}^{(n)}(f ; x)$ denote the double sequence

$$
\begin{equation*}
A_{p}^{(n)}(f ; x)=\sum_{m=1}^{\infty} a_{p m}^{(n)} L_{m}(f ; x) ; p, n=1,2, \ldots \tag{1.1}
\end{equation*}
$$

Following Swetits [10], we define $\left\|A_{p} f\right\|$ to be

$$
\sup _{n} \sup _{x \in[a, b]}\left|A_{p}^{(n)}(f ; x)\right|
$$

We say that for $f \in \mathcal{C}[a, b],\left\{L_{m} f\right\}$ is B-summable to f, uniformly on $[a, b]$ if and only if $\left|\left|A_{p}\right| f\right|-f| | \rightarrow 0$ as $p \rightarrow \infty$. The following lemmas are from Anastassiou [1, page 264].

LEMMA 1.1. For all t, and $x \in[a, b]$ and $\delta>0$ one obtains

$$
\begin{equation*}
\int_{x}^{t}\left\lceil\frac{|\xi-x|}{\delta}\right\rceil d \xi \leq\left\{\frac{(t-x)^{2}}{2 \delta}+\frac{|t-x|}{2}+\frac{\delta}{8}\right\} \tag{1.2}
\end{equation*}
$$

where $\lceil .1$ denotes the ceiling of number.
LEMMA 1.2. Let f be a convex function in $C^{1}[a, b]$, then

$$
\begin{equation*}
\left|f^{\prime}(\xi)-f^{\prime}(x)\right| \leq w\left(f^{\prime}, \delta\right)\left\lceil\frac{|\xi-x|}{\delta}\right\rceil \tag{1.3}
\end{equation*}
$$

§2. Main result. Let $\left\{k_{p}\right\}$ be a sequence of positive numbers and $\left\{L_{m}\right\}$ be a sequence of positive linear operators on $\mathcal{C}[a, b]$. Let $f \in \mathcal{C}^{1}[a, b]$ be such that $\left|f^{\prime}(t)-f^{\prime}(x)\right|$ is a convex function in t and $w\left(f^{\prime} ;.\right)$ is the modulus of continuity of f^{\prime}. Let $B=\left\{A^{(n)}\right\}$ be a sequence of infinite matrices with non-negative real entries such that $\left\|A_{p} e_{o}\right\|<\infty$, where $e_{o}(x)=1$ for all $x \in[a, b]$. Then for each p :
$\left\|A_{p} f-f\right\| \leq\|f\|\left\|A_{p} e_{0}-1\right\|+\left\|f^{\prime}\right\|\left\|A_{p}(t-x)\right\|$

$$
\begin{equation*}
+w\left(f^{\prime} ; k_{p} \mu_{p}\right) \mu_{p}\left\{\frac{1}{2 k_{p}}+\frac{1}{2}\left\|A_{p} e_{o}\right\|^{1 / 2}+\frac{k_{p}}{8}\left\|A_{p} e_{o}\right\|\right\} \tag{2.1}
\end{equation*}
$$

If an addition $\left(A_{p}{ }^{(n)} e_{0}\right)(x)=1$ and $\left(A_{p}{ }^{(n)} t\right)(x)=x$,

$$
\begin{equation*}
\left\|A_{p} f-f\right\| \leq\left(\frac{1}{2 k_{p}}+\frac{1}{2}+\frac{k_{p}}{8}\right) \mu_{p} \cdot w\left(f^{\prime}, k_{p} \mu_{p}^{\prime}\right) \tag{2.2}
\end{equation*}
$$

where $\quad \mu_{p}=\left\|A_{p}(t-x)^{2}\right\|^{1 / 2}$ and $\|\cdot\|$ norm being the sup over $[a, b]$ defined in $\S 1$.

Proof of main result. We know that

$$
\begin{equation*}
f(t)-f(x)=f^{\prime}(x)(t-x)+\int_{x}^{t}\left\{f^{\prime}(\xi)-f^{\prime}(x)\right\} d \xi \tag{2.3}
\end{equation*}
$$

Using (1.2), (1,3), (2,3) and the inequalities

$$
\left|A_{p}^{(n)} f\right| \leq A_{p}^{(n)}(|f|), A_{p}^{(n)}(f . g) \leq\left(A_{p}^{(n)} f 2\right)^{1 / 2} \cdot\left(A_{p}^{(n)} g^{2}\right)^{1 / 2}
$$

We get that

$$
\begin{gathered}
\left|\left(A_{p}^{(n)} f\right)(x)-f(x)\left(A_{p}^{(n)} e_{o}\right)(x)\right| \\
\leq\left|f^{\prime}(x)\left(A_{p}^{(n)}(t-x)\right)(x)\right|+\left(A_{p}^{(n)}\left\{\int_{x}^{t}\left(f^{\prime}(\xi)-f^{\prime}(x)\right) d \xi\right\}\right)(x)
\end{gathered}
$$

$$
\begin{align*}
& \leq\left|f^{\prime}(x)\right|\left|\left(A_{p}^{(n)}(t-x)\right)(x)\right|+\left(A_{p}^{(n)}\left\{\int_{x}^{t} \mid f^{\prime}(\xi)-f^{\prime}(x) d \xi\right\}\right)(x) \\
& \leq\left|f^{\prime}(x)\right|\left|\left(A_{p}^{(n)}(t-x)\right)(x)\right|+w\left(f^{\prime}, \delta\right)\left(A_{p}^{(n)}\left\{\int_{x}^{t}\left\lceil\frac{|\xi-x|}{\delta}\right] d \xi\right\}\right)(x) \\
& \leq\left|f^{\prime}(x)\right|\left|\left(A_{p}^{(n)}(t-x)\right)(x)\right|+ \\
& \quad w\left(f^{\prime}, \delta\right)\left(A_{p}^{(n)}\left\{\frac{(t-x)^{2}}{2 \delta}+\frac{|t-x|}{2}+\frac{\delta}{8}\right\}(x)\right) \\
& \leq\left|f^{\prime}(x)\right|\left|\left(A_{p}^{(n)}(t-x)\right)(x)\right|+w\left(f^{\prime}, \delta\right)\left\{\frac{1}{2 \delta}\left(A_{p}^{(n)}(t-x)^{2}\right)(x)\right. \\
& \left.\quad+\frac{1}{2}\left(A_{p}^{(n)}|t-x|\right)(x)+\frac{\delta}{8}\left(A_{p}^{(n)} e_{o}\right)(x)\right\} \\
& \leq\left\|f^{\prime}\right\| \| A_{p}(t-x) \left\lvert\,+w\left(f^{\prime}, \delta\right)\left\{\frac{1}{2 \delta}\left(A_{p}^{(n)}(t-x)^{2}\right)(x)\right.\right. \\
& \left.\quad+\frac{1}{2}\left(A_{p}^{(n)}|t-x|\right)(x)+\frac{\delta}{8}\left(A_{p}^{(n)} e_{o}\right)(x)\right\} \tag{2.4}
\end{align*}
$$

Choosing $\delta=k_{p} \mu_{p}$ this reduces to

$$
\begin{align*}
& \left|\left(A_{p}^{(n)} f\right)(x)-f(x)\left(A_{p}^{(n)} e_{0}\right)(x)\right| \\
& \quad \leq\|f\|\left\|A_{p}(t-x)\right\|+w\left(f^{\prime}, k_{p} \mu_{p}\right)\left\{\frac{\mu_{p}}{2 \mu_{p}}+\frac{1}{2} \mu_{p}\left\|A_{p} e_{0}\right\|^{1 / 2}+\frac{k_{p} \mu_{p}}{8}\left\|A_{p} e_{0}\right\|\right\} \\
& \quad=\|f\|\left\|A_{p}(t-x)\right\|+w\left(f^{\prime}, k_{p} \mu_{p}\right) \mu_{p}\left\{\frac{1}{2 \mu_{p}}+\frac{1}{2} \left\lvert\, A_{p} e_{0}\left\|^{1 / 2}+\frac{k_{p}}{8}\right\| A_{p} e_{0}\right. \|\right\} \tag{2.5}
\end{align*}
$$

Clearly

$$
\begin{equation*}
\left|-f(x)+f(x)\left(A_{p}^{(n)} e_{0}\right)(x)\right| \leq\|f\|\left\|_{p} e_{0}-1\right\| \tag{2.6}
\end{equation*}
$$

On adding (2.5.) and (2.6) we get (2.1). In case $\mu_{p}=0$ then for every $\delta>0$ we get from (2.5) that

$$
\left(A_{p}^{(n)} f\right)(x)=f(x)\left(A_{p}^{(n)} e_{0}\right)(x)
$$

so

$$
\left|\left(A_{p}^{(n)} f\right)(x)-f(x)\right|=\left|f(x)\left(A_{p}^{(n)} e_{0}\right)(x)-f(x)\right| \leq\|f\|\left\|A_{p} e_{0}-1\right\|
$$

Again, if $\left(A_{p}^{(n)} e_{o}\right)(\mathrm{x})=1$ and $\left(A_{p}^{(n)} t\right)(\mathrm{x})=\mathrm{x}$, then $\left(\mathrm{A}_{p}^{(n)}(t-x)\right)(x)=$ 0 . So from (2.4), we get the rest of the proof.
§3. Applications to almost convergence. By choosing $a_{p m}^{(n)}=1 / p$ for $n+1 \leq m \leq n+p$ and $a_{p m}^{(n)}=0$ otherwise, in (2.1) and (2.2), we get an estimate on almost convergence which is sharper than that of Mohapatra [7]. Now we applicate the results to the Bernstein polynomials. For $f \in \mathcal{C}[0,1]$ the Bernstein polynomial of m -th order is defined as

$$
L_{m}(f)(x)=\sum_{k=0}^{m}\left(\frac{m}{k}\right) x^{k}(1-x)^{m-k} f\left(\frac{k}{m}\right)
$$

We know that $L_{m}(1)(x)=1 ; L_{m}(t)(x)=x$ and $L_{m}(t-x)^{2}(x)=$ $x(1-\mathrm{x}) / m$. So for $\mathrm{p} \geq 1$

$$
\begin{aligned}
\mu_{p}^{2} & =\|_{A_{p}(t-x)^{2}(x) \|} \\
& =\sup _{n \geq 1} \sup _{x}\left(A_{p}^{(n)}(t-x)^{2}\right)(\mathrm{x}) \\
& =\sup _{n \geq 1} \sup _{x} \frac{1}{\mathrm{p}} \sum_{n+1}^{n+p} \frac{x(1-x)}{m} \\
& =\frac{1}{4 \mathrm{p}} \sup _{n \geq 1} \sum_{n+1}^{n+p} \frac{1}{m} \leq \frac{1}{4 \mathrm{p}} \sup _{n \geq 1} \frac{p}{n+1} \leq \frac{1}{8} .
\end{aligned}
$$

Therefore $\mu_{p} \simeq 1 / 2 \sqrt{2}$. Choosing $k_{p}=2$ we get from (2.2).

$$
\begin{equation*}
\left\|A_{p} f-f\right\| \leq \frac{1}{2 \sqrt{2}} w\left(f^{\prime} ; \frac{1}{\sqrt{2}}\right) \tag{3.1}
\end{equation*}
$$

which appears to be a new constant in the case of almost convergence on the Bernstein polynomials.

Now we apply the result to the positive linear operators obtained from the inversion of Weierstrass transformations. For a measurable function f defined on $(-\infty, \infty)$ the inversion operators are given by:

$$
\begin{equation*}
\left(L_{m} f\right)(\mathrm{x})=\left(\frac{m}{4 \pi}\right)^{1 / 2} \int_{-\infty}^{\infty} \exp \left(-(t-x)^{2} \frac{m}{4}\right) f(t) d t ; m \geq 1 \tag{3.2}
\end{equation*}
$$

We know that $\left(L_{m} f\right)(x)=1,\left(L_{m} t\right)(x)=x$ and $\left(L_{m}(t)^{2}(x)=x^{2}+2 / m\right.$ and consequently $\left(L_{m}(t-x)^{2}\right)(x)=2 / m$ (see [4]). So for $\mathrm{p} \geq 1$,

$$
\mu_{p}^{2}=\sup _{n \geq 1} \frac{1}{p} \sum_{m=n+1}^{n+p} \leq \sup _{n \geq 1} \frac{2}{p} \cdot \frac{p}{n+1} \leq 1
$$

Therefore $\mu_{p} \simeq 1$. Choosing $k_{p}=1$ in (2.2) we get

$$
\begin{equation*}
\left\|A_{p} f-f\right\| \leq \frac{9}{8} w\left(f^{\prime} ; 1\right) \tag{3.3}
\end{equation*}
$$

wich aiso appears to be a new constant in the case of Weierstrass transformations.
§4. Aplication on convergence. We have deduced the following estimates by choosing $a_{p m}^{(n)}=\delta_{m}^{p}$ in each one of the cases given below:

Case 1. For $f \in \mathcal{C}[0,1]$ let L_{m} be the Bernstein operator of order m. So for $m \geq 1 ; \mu_{m}=1 / 2 \sqrt{\mathrm{~m}}$. By choosing $k_{m}=2$ in (2.2) one obtains for $f \in \complement^{1}[0,1]$ and $m \geq 1$.

$$
\left\|L_{m} f-f\right\| \leq \frac{1}{2 \sqrt{m}} w\left(f^{\prime} ; \frac{1}{\sqrt{m}}\right)
$$

wish is sharper than the corresponding estimate of Lorentz [5]. Again by choosing $\mathrm{k}_{m}=2 / \sqrt{m}$ in (2.2) we obtain for $f \in \mathcal{C}^{1}[0,1]$, $m \geq 1$.

$$
\begin{equation*}
\left\|L_{m} f-f\right\| \leq \frac{(\sqrt{m}+1)^{2}}{8 m} w\left(f^{\prime} ; \frac{1}{m}\right) \tag{4.1}
\end{equation*}
$$

This result is due to Schurer [8].

Case 2. For $f \in \mathcal{C}[0, \infty]$, let

$$
\left(L_{m}^{\lambda} f\right)(x)=e^{-m x} \operatorname{sech}(2 \lambda \sqrt{m x}) \sum_{k=0}^{\infty} \frac{(-1)^{k} H_{2 k}(i \lambda)}{k}(m x)^{k} f(k / m)
$$

where

$$
\frac{H_{2 k}(i \lambda)}{k}=\sum_{\gamma=0}^{k} \frac{(-1)^{\gamma}(2 i \lambda)^{2 k-2 \gamma}}{\gamma(2 k-2 \gamma)}, \lambda \text { real },
$$

is the positive linear operator of order m introduced by Meir and Sharma in [6]. We know that

$$
\begin{gathered}
\left(L_{m}^{\lambda} 1\right)(x)=1 \\
\left(L_{m}^{\lambda}(t-x)\right)(x)=\lambda \sqrt{\frac{x}{m}} \tanh (2 \lambda \sqrt{m x}) \\
\left(L_{m}^{\lambda}(t-x)^{2}\right)(\mathrm{x})=\frac{\left(\lambda^{2}+1\right)}{m} x+\frac{\lambda \sqrt{x}}{2 m \sqrt{m}} \tanh (2 \lambda \sqrt{m x})
\end{gathered}
$$

so for $m \geq 1$, and any $x \in[0, a]$,

$$
\begin{aligned}
\mu_{m} & =\sqrt{\frac{\left(\lambda^{2}+1\right) a}{m}+\frac{\lambda \sqrt{a}}{2 m \sqrt{m}} \tanh (2 \lambda \sqrt{m a})} \\
& \left.=\sqrt{\frac{D m}{m}} \quad \text { (say }\right) .
\end{aligned}
$$

By choosing $k_{m}=1 / \sqrt{D_{m}}$ in (2.2), we get for $f \in \mathcal{C}^{1}[0, a]$, and $m \geq 1$

$$
\begin{equation*}
\left\|L_{m}^{\lambda}(f)-f\right\| \leq \frac{\left(2 \sqrt{D_{m}}+1\right)^{2}}{8} \frac{1}{\sqrt{m}} w\left(f^{\prime} ; \frac{1}{\sqrt{m}}\right) \tag{4.2}
\end{equation*}
$$

We note that by choosing $\lambda=0$ in (4.2) one obtains for Szâsz operators

$$
\left\|L_{m}^{0} f-f\right\| \leq \frac{(2 \sqrt{a}+1)^{2}}{8} \frac{1}{\sqrt{m}} w\left(f ; \frac{1}{\sqrt{m}}\right)
$$

which is sharper than the corresponding estimate of Stancu [9]:

$$
\left\|L_{m}^{0} f-f\right\| \leq(\sqrt{a}+a) \frac{1}{\sqrt{m}} w\left(f^{\prime} ; \frac{1}{\sqrt{m}}\right) .
$$

Acknowledgement. The autors are thankful to Prof. D.N. Tewari, Kulpati, Guru Ghasidas University, Bilaspur (M.P.), for his constant inspirations.

REFERENCES

[1] Anastassiou, G.A. A Study of Positive Linear Operators by the Method of Moments, One-Dimensional Case. J. Approx. Theory 45(1985), 247-270.
[2] Bell, H.T., Order Summability and Almost Convergence, Proc. Am. Math. Soc. 38 (1973), 548-552.
[3] Censor, E., Quantitative Results for Positive Linear Approximation Operators, J. Approx. Theory 4 (1971, 442450.
[4] Ditzian, Z., Convergence of a Sequence of Positive Linear Operators, J. Approx. Theory, 14 (1975), 296- 301.
[5] Lorentz, G.G., Bernstein Polynomials, University of Toronto Press, Toronto, 1953.
[6] Meir, A., and Sharma, A., Approximation Methods by Polynomials and Power Series, Nederl. Akad. Wetensch. Proc. Ser. A 70 (1967), 395-403.]

ON THE DEGREE OF APPROXIMATION BY ...

[7] Mohapatra, R.N. Quantitative Results on Almost Convergence of a Sequence of Positive Linear Operators, J. Approx. Theory, 20 (1977), 239-250
[8] Schurer, F., Sikkema, P.C. \& Steutel, F.W., On Degree of Approximation With Bernstein Polynomials, Nederl, Akad. Wetensch. Proc. Ser, A. 79 (1976), 231-239
[9] Stancu, D.D., Use of Probabilistic Methods in the Theory of uniform Approximation of continuous functions, Rev. Roumaine Math. Pures, Appl. 14 (1969), 673-691
[10] Swetits, J., A note on Summability and Positive Linear Operators, J. Approx, Theory. 25 (1979), 186- 188.

Department of Mathematics
Guru Ghasidas University
Bilaspur (M.P.) 495009
INDIA.
(Recibido en Febrero de 1990, la versión revisada en Septiembre de 1990)

[^0]: * This paper was presented in the conference on "Recent Developments in Analysis, Manifolds \& Application", organised by the Department of Mathematics, B.H.U., Varanasi (U.P.), India.

