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Abstract

We present a morphometry method using models of brains taken from magnetic resonance

images (MRI) in T1 sequence using the probability distribution function (PDF), obtained

by the histogram of voxel intensity. A measure have been used to calculate the differences

between regions of interest taken from brain models. The weights found with these similarity

metric are characteristics to train a support vector machine (SVM).

This work shows the utility of this approach in medical imaging applications to make a clas-

sification between two classes. The methodology of this work is applied in an experimental

group extracted from a public set of brain sMRI data: Autism Brain Imaging Data Exchange

(ABIDE), classification between patients control and patients diagnosed with Autism Spec-

trum Disorder (ASD) shows a sensitivity and specificity of 70 %, which is comparable with

other studies performed with this neuropathology.

Keywords: Autism Spectrum Disorders, ABIDE, sMRI, Morphometry, Probability Desn-

sity Function.

Resumen

Presentamos un método de morfometŕıa que usa modelos de cerebros tomados de resonancia

magnética nuclear en secuencia T1 usando la función de distribución de probabilidad (PDF

por su nombre en inglés), obtenido mediante el histograma de intensidad de voxel. Una me-

dida ha sido utilizada para calcular las diferencias entre regiones de interés tomadas de los

modelos del cerebro. Los pesos hallados con esa métrica de similitud son caracteŕısticas para

entrenar una máquina de soporte vectorial.

Este trabajo muestra la utilidad de este enfoque en aplicaciones de imágenes médicas para

hacer una clasificación entre dos clases. La metodoloǵıa de éste trabajo se aplicó en un

grupo experimental extráıdos de un conjunto público de datos de sMRI de cerebro: Autism

Brain Imaging Data Exchange (ABIDE), la clasificación entre sujetos control y pacientes

diagnosticados con Trastorno del Espectro Autista (TEA) muestra una sensibilidad y una

especificidad del 70 %, la cual es comparable con otros estudios realizados previamente con

esta neuropatoloǵıa.

Palabras Clave: : ABIDE, Clasificación, Función de densidad de probabilidad, Morfo-

metŕıa, Resonancia magnética estructural, Trastornos del espectro Autista.
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1 Introduction

1.1. Autism Spectrum Disorders

Autism Spectrum disorders (ASD) 1 constitute a group of neuroevolutive alterations that

represent in a wide variety of clinical expressions, all of multifactorial disorders resulting in

the development of central nervous system.

It is estimated that in recent reviews, the median of the global prevalence of the problem

is 62/10 000, which means that one child in 160 has an ASD and subsequent disability.

This estimate represents average cipher, because the observed prevalence varies considerably

across studies.

It only has regional prevalence estimates for the European Region and the Region of the

Americas, but not statistically different: in Europe the median rate is 61,9/10000 (range:

30,0 to 116,1 / 10 000), and the Americas 65,5/10 000(range 34-90/10 000). On the con-

trary, in many areas of the world, particularly in Africa, the prevalence estimates are absent

or only provisional. Except China, countries with relatively ample evidence base are high-

income countries. They have carried out some studies in middle-income countries, but no

data on the prevalence in any of the low-income countries.[17].

It is estimated that about 16 % of the population under 15 years in Colombia has some kind

of development disorder, include ASD; according to the Sistema Integral de Información

de la Protección Social(SISPRO), in Colombia the following frequencies of diagnosis were

recorded in 2013 in the Pervasive Developmental Disorders group (CIE-10: D840-D848):[21]

1Use this nomenclature in all document
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Table 1-1: Diagnosed Population in Colombia

Diagnosis No.People

D840 – Child Autism 64530

D841 – Atypical Autism 2642

D842 – Rett Syndrome 12

D843 – Pervasive Developmental Disorder-Not Otherwise Specified 13

D844 – ADHD Mental Retardation 19

D845 – Asperger Syndrome 45

D848 – other developmental disorders 109

Autism affects more men than women in a ratio of 3-4: 1, although this ratio is lower in

patients with mild mental retardation; by contrast, it is higher in those with a high IQ[12].

In the international classification systems, the ASD are grouped under the epigraph of Perva-

sive Developmental Disorders (PDD). In all disorders of this group are observed qualitative

changes in social interaction, communication deficits and repetitive patterns, restricted and

stereotyped behaviour. The prototypical disorder of this group is autism, characterized by

the aforementioned triad of signs, but is much more common pervasive developmental disor-

der not otherwise specified (PDD-NOS), it does not have all the symptoms of autism and

usually less severe.[4].

Currently, scientific research has raised a multifactorial interaction in the etiology of autism,

including genetic and environmental factors, however, there is no evidence on which and how

these environmental factors on genetic susceptibility and development of the central nervous

system influence[22]. Some theories suggest that between environmental factors, found viral

infections such as rubella, herpes, cytomegalovirus, among others; obstetric complications at

childbirth, administering vaccines during the first months of life, intolerance to certain foods

and nutrients, consumption of unsuitable products during pregnancy, among others[21]. Is

disown in 90 % the causal factor because the scientific community has not succeeded in

proving that environmental factors are the cause of the disorder, the other 10 % of cases

have been identified in chromosomal and not chromosomal factors.[3].

1.1.1. Signs and symptoms

The triad of signs that are associated with ASD are: a) The abnormal or impaired develop-

ment in social interaction; b) The existence of problems in communication, which affects the

understanding and spoken language, and c) restricted repertoire of activities and interests
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of patients[20].

Social Interaction

Patients may have an inability to develop relationships with children of their age. You may

lack the spontaneous tendency of normal children to share enjoyment, interests or objecti-

ves, such as showing, bringing, or pointing to objects of common developmental age. The

lack of social or emotional reciprocity is evident when the child does not actively participate

in social games, and prefers to have only activities and uses inappropriate tools for the game.

Communication

Alterations in communication affects verbal and nonverbal skills. Children with ASD may

have a significant delay in language acquisition or total absence. Speaking patients do not

have the faculty to initiate or sustain a conversation with others, or have a stereotyped lan-

guage (echolalia), use repetitive words or speak idiosyncratically.

Restricted interests

Children with ASD often have patterns of behaviour, activities and restricted, stereotyped,

repetitive interests. The interest is very limited, and patients worry stubbornly however

restricted activities can be aligned over and over toys in the same way, or repeatedly imitate

a behaviour. A little old autistic child may have a tantrum, caused by slight changes in the

environment, such as the order of his toys or placing new curtains in his room. They can

show inflexible activities in the form of non-functional routines and rituals, as always follow

the same route at home or to go to school.

1.2. Diagnosis of AD

Since there is a large number of syndromes related to autism, it is strictly clinical diagnosis.

Most of these early disorders of brain function are not selective, causing the appearance of

autistic signs, combined with evidence of neurologic dysfunction[20].

The diagnostic category “autism” was described and implemented in the third edition of

the Diagnostic and Statistical Manual of Mental Disorders (DSM) (American Psychiatric

Association “APA”, 1980) within the deep problems that are evident in infancy, childhood,

or adolescence, bearing in mind that in the previous two versions symptoms associated with

autistic disorder were incorporated into childhood schizophrenia.

The six criteria set out in this manual diagnosis were:
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1. Starts before 30 months of age.

2. General absence of responsiveness capacity to other peoples.

3. Serious in the development of language deficit.

4. When speaks, peculiar speech patterns are presented (immediate echolalia, delayed,

metaphorical language or pronoun reversal).

5. Bizarre to various aspects of the environment such as resistance to change, peculiar

interest or attachments to animate or inanimate objects replies.

6. It is different from schizophrenia because there is absence of delusions, hallucinations,

loss of associations and incoherence.

After the third edition, the APA published the revision of DSM-III, adding autistic disorder

diagnosis criteria that was grouped into four broad criteria identified by the letters A, B, C

and D, consisting of 17 items or items (five in criterion A, six in B, five in C and one in D)[26].

The DSM-IV differences were the five conditions included in the diagnosis of autism and

correspond to the following categories[18]:

1. Autistic Disorder (AD)

2. Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS).

3. Asperger syndrome.

4. Rett syndrome.

5. Childhood disintegrative disorder.

Within the group of ASD, AD cases are more frequent and better defined, the rest of ASD

are confused with other disorders such as mental retardation, speech disorder, obsessive com-

pulsive disorder and schizophrenia among others. Clinical diagnostic tools developed on the

basis of DSM-IV, tried to separate the TA of the other categories, appealing to more objec-

tive observations (ADOS - Autism Diagnostic Observation and ADI-R - Autism Diagnostic

Interview-Revised, and others).

The current version of the DSM, the DSM-V, conceptually consolidated the autism, repla-

cing the current name of pervasive developmental disorders by Autism Spectrum Disorder

(ASD). This change has a scope that goes beyond a simple semantic adequacy of DSM-IV,

as a sustenance for the reformulation of the classification in the logic of the dimensional

approach.
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The diagnosis of ASD process has as main purpose to characterize, with the highest reliabi-

lity possible, the behaviour of the individual as belonging to a specific diagnostic category,

by identifying comorbid conditions and differentiation of other developmental or mental

disorders.

Firstly, relevant information should be collected through a detailed history of the indivi-

dual. Then it must implement a series of neuropsychological tests to understand better the

symptoms and complete the psychological profile of the person.

The most commonly used tests to diagnose or assess the severity of ASD are[2]:

1. ADI-R (Autism Diagnostic Interview-Revised) Lord et.al (1994):

It is a semi-structured interview designed to diagnose and assess key aspects of ASD

as: socialization, communication and restricted interests and stereotyped behaviors. It

consists of 93 items and it is applied to parents or people close to the patient by a

specialized clinician..

It is designed for individuals older than 18 months, that has psychometric measures of

specificity and sensivity of 75 % - 96 % and 86 % - 100 % respectively.

2. ADOS-G (Autism Diagnostic Observation Schedule-Generic) Lord et.al (2000):

The ADOS scale is a standardized assessment tool used to diagnose ASD. It evaluates

aspects of reciprocal social interaction and communication, play and use of imagination.

It consists of four modules, which are applied according to the patient’s verbal skills.

Each item receives a weighted value of 0 (zero, normal) to 3 (three severe symptoms).

It must be applied by a specially trained clinician.

It has a sensivity higher than 90 % and specificity from 80 % to 90 %

3. CARS (Childhood Autism Rating Scale) DiLalla y Rogers (1994):

It is an observational instrument developed to identify children with autism compared

with children with another deficit in the development and determine the severity of

symptoms. It is applied in children over two years.

It consists of 15 scales where the child’s behaviours are scored according to chronologi-

cal age. The sum of the item, placed the child in a continuum from ”without autism”to

”mild autism”to ”severe autism”. No training needed for your application.

It has a sensivity of 100 % and inter-rater reliability is 71 %
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4. M-CHAT (Modified Checklist for Autism in Toddlers):

It is an instrument that aims to properly discriminated children with normal neuro-

development and girls with autism spectrum disorders before two years of age. In the

new version of CHAT number of questions going from nine to 23 was modified.

It has a sensivity of 95 % and specificity of 99 %

5. GARS (Gilliam Autism Rating Scale) Gilliam (1995):

It is an instrument used to estimate the severity of symptoms, applies from three to

22 years. It is based on the DSM-IV and the items are grouped into four categories:

stereotypes, communication, social interaction and evolutionary changes. It contains

56 items divided into 4 subscales of 14 items. The items in the first three sub-scales

are valued using a Likert’s scale of 4 points ranging from never seen (0) to frequently

observed (3). The items of the sub-scale developmental disorders are evaluated using

a dichotomous scale and observed behaviors in the first 36 months of life[5].

1.2.1. Early Diagnosis

ASD do not have a cure and their diagnosis requires a wide deployment of professionals

who are properly trained in the assessment of the signs presented in these disorders. After

characterizing the disorder, and once the differential diagnosis has been made, it should be

ensured that it is as accurate as possible in order to avoid unnecessary waste of time and

money (efficient diagnosis); In turn should be concise so as not to cause discomfort to pa-

tients and their families. Difficulties in the diagnosis of ASD are reflected in the attribution

of imprecise or erroneous descriptive labels that prevent early attention to cases [19].

Even though neuropsychological tests are a valid tool for diagnosing autism at an early age,

there is no evidence for the use of medical imaging studies to support such a diagnosis [25].

Neuroimaging represents an opportunity to evaluate the relationships between the functio-

ning of the different areas or regions of the brain and the various cognitive alterations related

to this psychopathology, ie the analysis of the structure offers new possibilities to correlate

functional brain changes with the present signs in the ASD and, in turn, provide an early

intervention to improve the quality of life of both the patient and the people who surround

him.
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1.3. Medical Imaging in ASD

1.4. State-of-the-Art

Different researches have been done for the purpose of co-relate the functional alterations

presented in ASD and the anatomical structures that control these functions.

The first approaches to this theory dating from 1991, where Kemper and Bauman analyzed

the brains of six autistic patients, finding the main alterations at the level of the limbic

system, cerebellum and inferior olive. These brains showed no major morphological chan-

ges; however, there was a decrease in the size of neuronal cells and increasing in neuronal

density level of the amygdala and other limbic structures in the brain compared to controls[9].

With the development of new techniques of image processing it has managed to establish

more accurately the brain changes in patients diagnosed with ASD.

Webb, Et.Al(2009) Used structural magnetic resonance images (MRI) applied to 85 children

between three and four years old, divided into three groups: 45 diagnosed with ASD, 14

children with developmental delay and 26 children with typical development.

In their research they used volumetric measurements of the brain, the cerebellum and vermia-

nos lobes IV, VI-VII and VIII-X using software developed by the Johns Hopkins University

that allows simultaneous data visualization and interaction within multiple planes (coronal,

axial and sagittal).

The main finding of this study was a significant reduction in the sagittal-media vermian area

vermian vermianos lobe lobes IV and VI-VII when children with ASD is adjusted for increa-

ses in brain volume or the total cerebellum compared to children typically developing[27].

Schumann, Et.Al(2010) They conducted a study based on MRI scans of 118 children (87

males, 31 females) aged between 12 and 48 months (medium, 30 ± 10 month). The images

were processed using a combination semi anatomy manual guided using software FreeSurfer.

When performing a statistical analysis provided by the software, they found that the cova-

riance for all separated by age and gender, subjects showed a significant increase in total

brain volume in the ASD group compared to the controls on a 7 % [23].

Jockschat Et.Al(2011) They conducted a meta-analysis of fair changes in brain structure

reported in the literature. They used a revised approach to activation likelihood estimation

(ALE) for meta coordinates based on the results of neuroimaging. To mitigate small samples

used in previous studies, meta-analysis compiles information from 277 patients diagnosed

with ASD and 303 healthy controls. They found six sets of convergence indicating changes

in brain structure in patients with ASD including the occipital lobe, the paricentral region,
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the medial temporal lobe, basal ganglia and the right parietal lobe. The researchers found

evidence of structural abnormalities despite the variability of diagnostic criteria and hetero-

geneity of the method of voxel-based morphology (VBM) and in turn, a dependency between

the changes and the age of patients[16].

Jiao Et.Al(2011) In this study, they tested the hypothesis that diagnostic models can distin-

guish children with ASD from controls based on regional cortical thickness, and that these

models have greater accuracies than diagnostic models based on regional volumes. To test

this hypothesis, they computed average cortical thicknesses and volumes of 66 structures

defined on a brain atlas, for each subject. They then applied four data-mining approaches

to generate four diagnostic models based on either regional cortical thicknesses or regional

volumes. To avoid a model generation bias, they applied four machine learning methods

to generate the diagnostic model; the best classification performance throws an accuracy =

87 %, area under the receiver operating characteristic (ROC) curve (AUC) = 0.93, sensitivity

= 95 %, and specificity = 75 %. [8].

The use of support vector machines and machine learning techniques and statistical interpre-

tation of data is common for the analysis of neuroimaging because of its high dimensionality

and complexity. These approaches use features derived from volumes as inputs from a su-

pervised classification algorithm that are learned from previously assigned tags. As more

features are added to the classification algorithm, its discriminatory power increases; Redu-

cing the dimensionality of a neurological image is a basis for making a comparison between

two more classes. The patterns found in each characteristic of the image allow to differentiate

the disorders associated with the morphology of the brain.

Yaw Wee Et.Al (2014), they presented a novel approach to identify (ASD) using regional

and interregional morphological regions taken of sMRI. [28]

1.5. Proposed Approach

In the present work we propose a methodology that extracts morphological features infor-

mation of groups of Magnetic Resonance Images (MRI) taken the intensities in order to

condense this information into characteristic brain models.



2 Automatic Classification of Autism

Spectrum Disorders using low level

features

The method comprises as basic steps, pre-processing, elastic registration to represent the

brains in the MNI normalized space and characterization of each region by its normalized

histogram of intensities. Each of the segmented regions can then be compared with the others

by computing the distance between Probability Distribution Functions (Normalized intensity

histograms) with the Kullback-Leibler divergence. Finally, a conventional Support Vector

Machine (SVM) classifier, using the KL distance as input and a linear kernel, separates the

two studied classes. Figure 2-1 outlines the steps of the proposed methodology, next sections

describe further detail.

Figure 2-1: Pipeline to proposed methodology
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2.1. Pre-Processing

First, the field bias was corrected and the intensity is normalized using the FSLMATH

tool provided by the Oxford University[15], since images were not captured with the same

resonator. The skull was removed using (Brain Extraction Tool) BET tool [24].

2.2. Registration

The MNI152 space (Stereotaxic Registration Model) [14] was used as template to register

the T1 images of both patient groups. The process starts by an affine rigid registration with

respect to the MNI152 template, under 12 degrees of freedom. Spatial errors are corrected

using FLIRT (FMRIB ’s Linear Image Registration Tool)[11]. A more accurate registration

is achieved by an elastic registration using the FNIRT[15] tool with a quadratic spline which

optimizes the processing time and ensures that the register is as accurate as possible.

Once the template MNI152 has been registered towards the brains, the transformation matrix

resulting is used in order to segment all brains in regions of interest using an atlas.

2.3. Feature representation

A drastic dimensionality reduction is achieved by mapping the anatomical structures to a

space in which these complex objects can be compared. The different low level characteristics

associated to a region should describe either geometrical or structural properties representing

the region. Orientation is a very global feature that depends on the particular brain size

and shape. Edges in this case are very variable. Intensities in contrast represent the local

resonance properties of particular tissue locations and should be in consequence proportional

to the amount of tissue[19]. Since the ASD is considered as a complex disorder with variable

patterns, this work uses an intensity based descriptor as the distribution of gray values within

a particular region using the histogram in order to evaluate the probability distribution

function per each region.

2.4. Similarity Measure

2.4.1. Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence, also known as the relative entropy, is a widely used

measure of the difference between probability density functions. Given two discrete pro-

bability distributions P and Q, the KL divergence between P and Q is a measure of the

information lost when q is used to approximate p and is defined by:
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DKL(P ‖ Q) =
N∑
i=1

P (i)ln

(
P (i)

Q(i)

)
(2-1)

Provided that DKL(P‖Q) 6= DKL(Q‖P ), this measure is not symmetric and cannot be a
true metric. The version used in the present investigation corresponds to the blended version

as the DKL taken as the mean of the two possible measurements

DKL = (
1

2
){DKL(P ‖ Q) +DKL(Q ‖ P )}

2.4.2. Gaussian Mixture Models

A Gaussian Mixture Model (GMM) is a parametric probability density fun-

ction represented as a weighted sum of Gaussian component densities. GMMs

are commonly used as a parametric model of the probability distribution of

continuous measurements or features in a biometric system, such as vocal-

tract related spectral features in a speaker recognition system. GMM pa-

rameters are estimated from training data using the iterative Expectation-

Maximization (EM) algorithm or Maximum A Posteriori (MAP) estimation

from a well-trained prior model.

A Gaussian mixture model is a weighted sum of M component Gaussian

densities as given by the equation 2-2,

p(x|λ) =
M∑
i=1

wig(x|µi,Σi) (2-2)

where x is a D-dimensional continuous-valued data vector (i.e. measurement

or features), wi, i=1, . . . , M, are the mixture weights and g(x|µi,Σi), i = 1,

. . . , M, are the component Gaussian densities.

2.5. Classifier

SVM (Cristianini and Shawe-Taylor, 2000) is a type of machine learning al-

gorithm, originally introduced by Vapnik and co-workers (Boser et al., 1992;
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Vapnik, 1998) and successively extended by a number of other researchers.

Their remarkably performance with respect to sparse and noisy data is ma-

king them the system of choice in a number of applications including the

protein function prediction, patters in histopathological images, and others.

Those are used for classification, they separate a given set of binary labeled

training data with a hyper-plane that is maximally distant from them (known

as ”the maximal margin hyper-plane”).

2.6. Experimental Setup

2.6.1. MRI Data

The data used for the current study is part of the Autism Brain Imaging

Data Exchange ABIDE. Data were fully anonymized as required by HIPAA

regulations [6]. The ABIDE database contains aggregated MRI T1 scans of

539 ASD individuals and 573 typical controls aged 6–65 years which were

scanned as part of 20 international studies. Analyses were performed on 2

samples from the database, including only male cases with MRI resolutions of

1×1×1 and ages between 18 and 35 years, aiming to test on an homogeneous

population. The analysis was then carried out with 104 subjects (52 subjects

diagnosed with ASD and 52 controls) as shown in Table 2-1.

Table 2-1: Strict sample phenotypic information.

Group Age Total Mean Standard Desviation Variance Coefficient

Autism 18 - 35 years 52 24,3 5,21 21,36 %

Control 18 - 35 years 52 24,6 4,75 19,3 %

2.6.2. Registration

The Harvard - Oxford atlas [13] was used as the reference to segment each

brain of the experimental group into 96 cortical (48 per hemisphere) and 21

sub-cortical regions. The lateralized template was elastically registed to each



14 2 Automatic Classification of Autism Spectrum Disorders using low level features

of the brains. The final labeling was adjusted by a simple Nearest neighbour

interpolation.

Overlapping after registration was estimated by a Dice Score coefficient, com-

puted as

QS =
2|X ∩ Y |
|X|+ |Y |

(2-3)

Where: X is the MNI152 template and Y the evaluated brain.

Once the elastic registration is performed, each brain is compared with the

deformed template to verify that there is a high correspondence. Results are

shown in Table 2-2.

Table 2-2: Overlap Analysis

Group Analyzed Cases Register Total Overlap ± SD in %

Control 52
Affine 95.31 ± 0.78

Elastic 97.36 ± 0.65

Autism 52
Affine 95.08 ± 0.99

Elastic 97.27 ± 0.79



3 Results

For each iteration of the validation procedure, the SVM classier returns a

value that is often interpreted as the probability of the test subject belonging

to the positive class. With the values collected from the whole experimental

group, a receiver operating characteristic (ROC) curve was constructed since

this is the metrics more used in case of binary classiffication problems. The

area under the curve (AUC), a global measure of the classication performance,

and the equal error rate (EER), the rate for which both false positive rate

(type I error) and false rejection rate (type II error) are equal, were calculated.

The EER value means that there is a decision threshold in which it is possible

to achieve simultaneously sensibility and specicity rates of 1 EER.

3.1. Using Kullback-Leibler Divergence

Once the cortical and sub-cortical brain regions are segmented, each region

defines a set of individual constituted by the 104 cases. Afterward, the his-

togram of intensities per region is computed and normalized to have the

probability distribution function. The number of bins was set to 128, aiming

to obtain the best homogeneous intensity representation.

The experimental group is described in Table 2-1

The Kullback-Leibler divergence to calculate the centroid in the control group

is used in order to find, for each ROI,a case that had the minimum distance

between them and then take that case as a reference to assess the autism

cases and determine whether there are regions where differences are presen-

ted.Those distances were compared with the centroid and finally stored in

a vector. raphics for each analyzed region; Figure 3-4 and Figure 3-2, for

instance, show the distances obtained between the centroid of Control cases
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regarding to Autistic cases evaluated in the cortical region Right Frontal Pole

and sub-cortical region Left pallidum.

Figure 3-1: Graph of all cases the centroid in the cortical region Right Frontal Pole

Figure 3-2: Graph of all cases the centroid in the subcortical region Left pallidum

Using a Gaussian kernel, the probabilistic model is obtained to adjust the

parameters of support vector classification, to achieve this, the method of
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cross validation is used taken 75 % of cases (78 in total), the remaining 25 %

was used to test the sensitivity and specificity of the method. This process

was performed three times in order to obtain the best fit parameters in the

SVM.

Once set the classification algorithm was calculated for each region analyzed

the area under the curve (AUC) and confirmed using the equal error rate.

It is noteworthy that the regions that showed greater accuracy were sub-

cortical regions, especially in the basal ganglia and the amygdala which play

an important role in brain morphological changes such autistic patients and

as reported in previous researchs.[10]. In Table 3-2 we present some results

for classification using the Kullback-Leibler Divergence for cortical and sub-

cortical regions.

The curve in Figure 3-3 has an AUC of 0.67, the good performance of the

classier even when our experimental group is relatively small and has an

important imbalance of classes, likewise the aging distribution is quite hete-

rogeneous in the two classes.

Figure 3-3: Performance of classification with Area Under Curve (AUC)
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Table 3-1: Area Under Curve and Equal Error Rate for cortical and sub-cortical regions

classification were found with Kullback-Leibler Divergence

Region AUC EER

Cortical Regions

Right Superior Temporal Gyrus, anterior division 0,670 0,615

Right Central Opercular Cortex 0,643 0,634

Left Superior Temporal Gyrus, anterior division 0,635 0,596

Left Middle Temporal Gyrus, anterior division 0,630 0,596

Sub-Cortical Regions

Right Thalamus 0,609 0,615

Left Cerebral White Matter 0,601 0,557

Left Lateral Ventrical 0,595 0,557

Left Thalamus 0,588 0,557

3.2. Using Gaussian Mixture Model

In this step, the Gaussian Mixture Model(GMM) in order to represent the

gray and white matter for each region is used, and the parameters for both

probability function are concatenated on a matrix. Graphics for each analyzed

region; Figure 3-4, for instance, show the two Gaussian Distributions (Gray

Matter and White Matter).

The algorithm returns the mean and the Standard Deviation for each distri-

bution model; this features are used as weights for the classification step.
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Figure 3-4: Graph of two Gaussian distribution obtained for the intensity histogram. The

cyan distribution represent the white matter, the red distribution represent the

gray mater

In Table 3-2 we present some results for classification using the Gaussian

Mixture Models for cortical and sub-cortical regions.

Table 3-2: Performance of classification for cortical and sub-cortical regions classification

were found with Gaussian Mixture Models

Region AUC Sensitivity Specificity F Score

Cortical Regions

Right Middle Temporal Gyrus

posterior division
0,719 0,704 0,590 0,666

Left Lateral Occipital Cortex

inferior division
0,701 0,647 0,647 0,647

Left Inferior Temporal Gyrus

anterior division
0,686 0,6 0,666 0,620

Left Cingulate,Gyrus,

anterior division
0,676 0,676 0,590 0,648

Sub-Cortical Regions

Left Pallidum 0,653 0,580 0,647 0,600

Left Amydgala 0,644 0,6 0,628 0,608

Right Accumbens 0,634 0,561 0,647 0,587

Right Amydgala 0,602 0,638 0,561 0,614
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Figure 3-5 show the most discriminant region found using Gaussian Mixture

Model.

Figure 3-5: Area Under Curve (AUC) for the most discriminant region found using GMM



4 Discussion

In this work we presented an useful method to classify patients who have been

diagnosed with ASD and they differ from control patients. The variability of

the disorder and methods used by clinicians to diagnose could not be entirely

reliable. The method used in this research works with low-level features on

MRI in order to represent the latent information in it and using a measure

of probability distributions functions. We reduced the dimensionality of the

presented information in the brain stem which is related to higher order fun-

ctions structure.

The results obtained correspond to regions reported in the state of the art

studied with other methods of image analysis based on high-level features.

Cortical regions are still relevant in the study of autism due to the anatomical

variability of the brain; the methodology used in this study showed good re-

sults, it could be determined differences in cortical regions of autistic patients

compared to controls specially in the Right and Left Temporal Gyrus, present

on the Broka’s and Wernnike’s areas, both related with the normal language

function, which represents a direct relationship with the signs present in the

disorder[7].

4.1. Products

While developing this thesis, two works were presented in international con-

ferences:

’A multidimensional feature space for automatic classification of autism

spectrum disorders (ASD)’ in XII International Symposium on Medical

Information Processing and Analysis - SIPAIM (2016)[1].
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’Gaussian Mixture Models for detection of Autism Spectrum Disorders

(ASD) using magnetic resonance imaging.’ in XIII International Sympo-

sium on Medical Information Processing and Analysis - SIPAIM (2017).

4.2. Future Work

As future work we want to do an inter-class classification to determine auto-

matically the existing classes in Autism spectrum disorder described by the

DSM-V, using other descriptor features such as edges, shape and volume of

the ROI.
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