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ABSTRACT

Stability Analysis and Control of Stochastic Dynamic Systems

Using Polynomial Chaos. (August 2008)

James Robert Fisher, B.S., Texas A&M University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Raktim Bhattacharya

Recently, there has been a growing interest in analyzing stability and developing

controls for stochastic dynamic systems. This interest arises out of a need to develop

robust control strategies for systems with uncertain dynamics. While traditional

robust control techniques ensure robustness, these techniques can be conservative as

they do not utilize the risk associated with the uncertainty variation. To improve

controller performance, it is possible to include the probability of each parameter

value in the control design. In this manner, risk can be taken for parameter values

with low probability and performance can be improved for those of higher probability.

To accomplish this, one must solve the resulting stability and control problems

for the associated stochastic system. In general, this is accomplished using sampling

based methods by creating a grid of parameter values and solving the problem for

each associated parameter. This can lead to problems that are difficult to solve and

may possess no analytical solution.

The novelty of this dissertation is the utilization of non-sampling based methods

to solve stochastic stability and optimal control problems. The polynomial chaos ex-

pansion is able to approximate the evolution of the uncertainty in state trajectories

induced by stochastic system uncertainty with arbitrary accuracy. This approxima-

tion is used to transform the stochastic dynamic system into a deterministic system

that can be analyzed in an analytical framework.
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In this dissertation, we describe the generalized polynomial chaos expansion and

present a framework for transforming stochastic systems into deterministic systems.

We present conditions for analyzing the stability of the resulting systems. In addition,

a framework for solving L2 optimal control problems is presented. For linear systems,

feedback laws for the infinite-horizon L2 optimal control problem are presented. A

framework for solving finite-horizon optimal control problems with time-correlated

stochastic forcing is also presented. The stochastic receding horizon control problem

is also solved using the new deterministic framework. Results are presented that

demonstrate the links between stability of the original stochastic system and the

approximate system determined from the polynomial chaos approximation. The so-

lutions of these stochastic stability and control problems are illustrated throughout

with examples.
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CHAPTER I

INTRODUCTION

A. Background

Recently there has been a growing interest in combining robust control approaches

with stochastic control methods to develop the so called field of probabilistic robust

control. This field arises from the need to a) understand how stochastic system uncer-

tainties affect state trajectories and, b) exploit it to design less conservative robust

control algorithms. Traditional robust control design techniques assume uniformly

distributed uncertainty over the parameter space and the controller is designed to be

robust for the worst case scenario. In the framework of probabilistic robust control,

the binary notion of robustness is discarded and the notion of a risk-adjusted robust-

ness margin tradeoff is adopted. This framework is more practical as in many cases

a control system designer may have knowledge of the distribution of the uncertainty

in the system parameters, and may be willing to accept a small well defined level of

risk in order to obtain larger robustness margins. It is also possible to stabilize the

system for all possible parameter values with non-zero probability of occurrence and

optimize performance with respect to the probability distribution of the parameters.

Both these design philosophies result in less conservative controllers in the proba-

bilistic sense. Therefore, it is important to consider not only the range of parameter

values but also the probability density function of the parameters in the controller

design.

Many approaches exist for stability analysis and controller design for stochastic

systems. In general, many of these approaches tend to take on one of two approaches.

The journal model is IEEE Transactions on Automatic Control.
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One approach deals with solution of equations of motion that result from Itô’s formula

[1]. In general, expressions of this type can be difficult to solve and solutions only exist

for certain special cases. Furthermore, these types of problems generally deal only

with systems with stochastic forcing and not with systems that contain stochastic

uncertainty in the parameters directly. In general, these problems tend to involve

white noise processes and do not address correlated inputs. The other approach to

solving stochastic stability and control problems involves sampling based methods.

These methods attempt to approximate a probability distribution by utilizing a large

number of points. This is generally accomplished by creating a mesh of values over

the support of the distribution and performing simulation and analysis for each of

the points in the mesh. In stability analysis for example, conditions for stability

might be tested for each of the points to determine if the system is stable for the

entire distribution. While this is certainly effective, this requires a large number

of computations and therefore can require a large amount of computational time.

Furthermore, if such methods are used to determine system trajectories, any changes

in initial conditions will void all calculations and require recomputation for each point

in the distribution because the trajectories are uniquely determined by their initial

conditions.

Much of the previous work has dealt with solving stochastic stability and control

problems with either stochastic forcing or probabilistic uncertainty in system param-

eters. Specifically, problems dealing with stochastic forcing assume that the unknown

forcing terms are Gaussian. When this is not the case, it is common to approximate

the distribution using a Gaussian closure. The problem of covariance control with

Gaussian excitation has also been investigated, by Skelton et al. [2]. The problem of

parametric uncertainty is treated separately from that of stochastic excitation. Much

of the work here deals with the utilization of sampling based methods. Stengel [3]
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introduces the idea of probability of stability and uses sampling based methods to en-

sure robustness and stability in a probabilistic sense [4]. The methodology is applied

to nonlinear systems, but requires a genetic algorithm to solve the resulting control

problem [5, 6]. In a similar approach Barmish et al. uses Monte-Carlo based methods

to analyze stability and control problems in an LMI framework [7, 8], however the

results are limited to a multidimensional uniform distribution with respect to the un-

certain parameters. An additional approach by Polyak et al. [9] develops an algorithm

to determine a control with guaranteed worst-case cost. This approach also requires

the uncertain system parameters to be linear functions of the random variable. Ad-

ditionally, a probabilistic design is applied to LPV control in [10]. Here, an algorithm

is developed that uses sequential random generation of uncertain parameters using

the associated probability distribution function to converge to an LPV solution that

is satisfied for the entire range of uncertainty. A sampling based technique is also ap-

plied to the H∞ problem in [11]. In this case a similar sequential solution technique

is employed to solve the H∞ problem.

The novelty of the framework presented in this work is that non-sampling based

methods are used to approximate, with arbitrary accuracy, the evolution of uncer-

tainty in state trajectories induced by uncertain system parameters. The framework

is built on the polynomial chaos theory which transforms stochastic dynamics into

deterministic dynamics in higher dimensional state space. However, this increase in

dimensionality is often significantly lower than the sampling based methods for com-

parably accurate representation of uncertainty. The benefit of this approach is that

stochastic linear and nonlinear systems are transformed into deterministic systems

and existing stability analysis and control theory can be used for design and analysis.

Polynomial chaos was first introduced in 1938 by Wiener [12] where Hermite poly-

nomials were used to model stochastic processes with Gaussian random variables. As
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the concept of chaos would not be developed until decades later, the concept of using

these polynomials to model stochastic behavior was termed “Homogeneous Chaos”.

According to Cameron and Martin [13] such an expansion converges in the L2 sense

for any arbitrary L2 functional. In terms of stochastic processes, this implies that the

expansion is able to converge to any arbitrary stochastic process with a finite second

moment. This applies to most physical systems. The original Homogeneous Chaos

expansion utilizes Hermite polynomials to model stochastic processes. Though these

polynomials can be used to model any stochastic process with arbitrary accuracy, the

convergence rate is exponential when they are used to model Gaussian processes [14].

This is because the Hermite polynomials associated with the Homogeneous Chaos

expansion are orthogonal with respect to the probability density function (pdf) of a

Gaussian distribution. Using this idea and applying it to other types of polynomials,

Xiu et al. [15] generalized the result of Cameron-Martin to various continuous and

discrete distributions using orthogonal polynomials from the so called Askey-scheme

[16] and demonstrated L2 convergence in the corresponding Hilbert functional space.

This is popularly known as the generalized polynomial chaos (gPC) framework. In

this work, it was demonstrated that when polynomials orthogonal with respect to

a given probability distribution are used, the convergence rate for the resulting ap-

proximation is exponential even when the process is the solution of a differential

equations.

The gPC framework has been applied to applications including stochastic fluid

dynamics [17, 18, 19], stochastic finite elements [20], and solid mechanics [21, 22]. In

general these works are applied to static problems, though in [20] application to a

dynamic system is presented briefly. Application of gPC to control related problems

has been surprisingly limited. Furthermore, there have been few if any attempts at

developing a generalized framework to understand the dynamics of the deterministic
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system obtained from utilizing the expansion. The work of Hover et al. [23] addresses

stability and control of a bilinear dynamical system, with probabilistic uncertainty on

the system parameters. The controller design problem considered involved determin-

ing a family of proportional gains to minimize a finite time integral cost functional.

Outside of the work of Hover, there has been additional work that has dealt with

applying polynomial chaos to estimation and control problems in power electronics

[24, 25]. Unfortunately, several of these papers seem to assume that the uncertainty

is time varying and governed by white processes, and thus apply the expansion in-

correctly as an infinite number of random variables would be required to model such

processes.

B. Content of This Dissertation

In this dissertation we focus on the application of the polynomial chaos expansion to

stability analysis and control of stochastic linear and nonlinear systems. In particu-

lar we assume that the uncertainty in the system dynamics is dependent on random

variable, governed by a known probability distribution. The uncertainty may enter

the system as linear or nonlinear functions of the random variable which may be gov-

erned by any continuous stationary probability distribution. Although it is certainly

possible to extend these results to discrete distributions, these have not been treated.

The benefit of the gPC approach is that it admits analytical solutions to stochastic

stability and control problems. In fact, we will show that known methods for stability

and control analysis can be readily applied to stochastic systems in this framework.

The main contribution of this dissertation lies in the application of the gPC ex-

pansion to linear and nonlinear stability analysis and control design problems. Con-

ditions for the solution of these problems are written in the gPC framework and
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demonstrated with several examples. The work is divided into seven chapters. The

second chapter deals with background on probability theory and outlines generalized

Polynomial Chaos theory. Many fundamental concepts such as that of a random vari-

able and a σ-algebra will be presented. We will also outline the Homogeneous Chaos

framework and show the extension of this concept to other polynomial sets. Finally, a

methodology for incorporating correlated noise into the analysis will be presented by

means of the Karhunen-Loéve (KL) expansion. This will allow us to analyze systems

with correlated process noise uncertainty.

Chapter III deals with modelling and stability analysis of stochastic systems

using the generalized Polynomial Chaos framework. The chapter will deal with re-

sults for both linear and nonlinear systems. A generalized framework for modelling

stochastic linear systems with the gPC expansion is presented. Next, a discussion on

the application of the gPC expansion for different types of nonlinearities is presented

and system form is presented for polynomial systems. The ability of the expansion

to accurately predict the statistics of these systems is demonstrated by application

to the non-dimensional longitudinal Vinh’s equations with uncertainty in initial con-

ditions. Stability results for linear and nonlinear systems are presented in terms of

the gPC framework. For linear systems results are presented for both continuous and

discrete time system. These results are verified with examples.

In Chapter IV, we focus on optimal control of stochastic linear and nonlinear

systems. For linear systems, we focus on optimal control in the L2 sense for sys-

tems with probabilistic uncertainty in the system parameters. A framework for mini-

mum expectation control is presented and the problem is solved for different feedback

structures. Conditions for feasibility and optimality are determined for each of these

structures. In addition, the minimum expectation control framework is applied to

nonlinear systems and the gPC expansion is used to generate optimal trajectories for
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nonlinear stochastic problems. Finally, the KL expansion is used to generate optimal

trajectories for systems with colored stochastic forcing.

In Chapter V the gPC methodology is utilized to solve the stochastic receding

horizon problem for linear systems. In particular, a proof is presented for stability

in terms of the gPC coefficients and several methods of performing receding horizon

control for stochastic systems are presented. Examples are presented that highlight

the differences in the application of these policies. Chapter VI presents several results

that help theoretically justify the usage of the gPC expansion for processes that

can be determined by solution of stochastic differential equations. Finally in the

last chapter the main contributions of the work are highlighted and areas of future

research are presented. Various probability distributions and their corresponding gPC

expansions are presented in the appendix along with a methodology for performing

analysis with respect to various confidence intervals. The gPC methodology is used

to demonstrate a method for solving problems that require properties to be satisfied

with a specific probability. Additionally, the gPC expansion is used to solve stochastic

problems involving independent random variables governed by different probability

distributions.
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CHAPTER II

POLYNOMIAL CHAOS

The methodology described in this dissertation utilizes orthogonal functionals to rep-

resent 2nd order random processes that are solutions of stochastic dynamic systems.

This approach is spectral with respect to the stochastic elements in the dynamic

system. It utilizes families of orthogonal polynomials, which we will refer to as Poly-

nomial Chaoses, to approximate the both the functions of random variables which

appear in the equations of motion for a dynamic system as well as the actual solution.

In this chapter, we define the structure of these orthogonal polynomials and present

some of their properties, which will be applied to analyze stochastic stability and

control problems.

A. Preliminary Concepts from Probability Theory

Before presenting a formal definition of Polynomial Chaos, we introduce a few im-

portant concepts from probability theory.

Let Ω be a set of events. This is a set of all possible outcomes and to these

outcomes we will assign probabilities. As we know intuitively, there are relationships

between the probability that a event occurs and the probability that it does not. To

account for the relationships between events we will need to introduce another set

called a σ-algebra [1, 26].

Definition II.1 A σ-algebra, B is a non-empty class of subsets of Ω such that

1. Ω ∈ B

2. B ∈ B implies Bc
∈ B

3. Bi ∈ B, i ≤ 1 implies ⋃∞i=1 Bi ∈ B
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One example of a σ-algebra is a set made of all possible combinations of elements in

Ω. We are now ready to define a probability space [1, 26].

Definition II.2 A probability space is a triple (Ω,B,P ) where

● Ω is the sample space

● B is a σ-algebra of subsets of Ω

● P is a probability measure, a function P ∶ B ↦ [0,1] such that

1. P (A) ≥ 0 for all A ∈ B

2. If {An, n ≥ 1} are events in B that are disjoint, then

P (
∞

⋃
n=1

An) =
∞

∑
n=1

P (An)

3. P (Ω) = 1

In this work we will deal with polynomials which are functions of random variables.

These random variables are functions that map between a probability space and

the probability space, (Rk,B(Rk), P ). We will next define the concept of a random

variable. To accomplish this, we first define an inverse image.

Definition II.3 Suppose Ω1 and Ω2 are two sets (Often Ω2 = R) and suppose that

∆ ∶ Ω1 ↦ Ω2. The inverse image of ∆ is defined by

∆−1(A2) = {ω ∈ Ω1 ∶∆(ω) ∈ A2}

This is similar to a function inverse, but more general as it is defined on sets. The

inverse image is defined to be all of the elements of Ω1 which correspond to elements

in Ω2 when mapped through ∆. We now define a random variable [1, 26]. A random

variable is defined between two measurable spaces (a measurable space is the pair

(Ω,B)).
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Definition II.4 Suppose (Ω1,B1) and (Ω2,B2) are two measurable spaces and the

function ∆ ∶ Ω1 ↦ Ω2. The function ∆ is said to be a measurable function if for every

set B2 ∈ B2,

∆−1(B2) ∈ B1

Definition II.5 If (Ω2,B2) = (Rk,B(Rk)) in definition II.4, we call the function ∆

a random variable.

In the above definition, B(Rk) is the σ-algebra generated by all the open subsets

of Rk. A random variable is therefore a function that associates a real number (or

vector) with outcomes of an experiment or events.

Next, we will define the expectation of a random variable, X [1, 26].

Definition II.6 Suppose (Ω,B, P ) is a probability space and X ∶ (Ω,B)↦ (R̄,B(R̄)),
where R̄ = [−∞,∞] (X can have ±∞ in its range). Define the expectation of X,

written E[X] as the Lebesgue-Stieltjes integral of X with respect to P or

E[X] = ∫
Ω

XdP = ∫
Ω

X(ω)P (dω)

The expectation of a random variable is its average value with respect to the prob-

ability space from which it maps. In general, we will be dealing with variables that

have an associated probability distribution (either continuous or discrete). When this

is the case and P (dω) = f(ω)dω we can write the expectation operator as

E[X(ω)] = ∫
Ω

X(ω)f(ω)dω (II.1)

when f(ω) is piecewise continuous and

E[X(ω)] = ∑
{ω∈Ω∶f(ω)≠0}

X(ω)f(ω) (II.2)
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when there are discrete events that occur with finite probability. In the discrete case,

the summation is over the values of ω ∈ Ω that occur with non-zero probability and

f(ω) is the probability associated the discrete point ω. This discrete formulation will

not be utilized in this work as we will mainly be dealing with continuous functions.

B. The Weiner-Askey Polynomial Chaos

One of the major difficulties in incorporating stochastic processes into analysis and

control of dynamic systems is the necessity of dealing with abstract measure spaces

which are usually infinite dimensional and are difficult to understand physically. In

particular it is difficult to understand the behavior of functions defined on this abstract

measure space, more specifically the random variables defined on the σ-algebra of

random events. In many applications a Monte-Carlo approach is used and the events

in the σ-algebra are sampled. This requires a large number of sample points to achieve

a good approximation. An alternative methodology is to approximate the function

with a Fourier-like series.

1. Askey Hypergeometric Orthogonal Polynomials

To approximate a stochastic process, a set of orthogonal polynomials will be employed.

In this section, we will present an overview of the theory of these polynomials as well

as provide details on the Askey scheme. There is a wealth of literature on orthogonal

polynomials and the interested reader is referred to [27, 28, 29].
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a. Generalized Hypergeometric Series

To begin, the generalized hypergeometric series as presented in [30] is introduced.

The generalized hypergeometric series, F r
s , is defined by

F r
s (a1, . . . , ar, b1, . . . , bs, z) =

∞

∑
k=0

(a1)k⋯(ar)k
(b1)k⋯(bs)k

zk

k!
, (II.3)

where the term (a)n is the Pochhammer symbol defined by

(a)n =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, n = 0,

a(a + 1)⋯(a + n − 1), n = 1,2, . . .
. (II.4)

The denominator terms, bi ∈ Z+, are positive to ensure that the denominator factors

for the series are nonzero. The radius of convergence of the series depends on the

relative values of r and s and is given by

ρ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 r > s + 1

1 r = s + 1

∞ r < s + 1

(II.5)

While the values in the denominator (bi) must be greater than zero, the terms in

the numerator, ai, may be negative. When one of the terms is negative, the series

terminates at the value of that term. For example, if a1 = −m,

F r
s =

m

∑
k=0

(−m)k⋯(ar)k
(b1)k⋯(bs)k

zk

k!
(II.6)

When this occurs, the order of z becomes finite resulting in a polynomial that is

mth order with respect to z. Table 1 provides a list of some polynomials and their

corresponding r and s values.
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Table 1. Examples of hypergeometric series

r s Hypergeometric Series

0 0 Exponential Series

1 0 Binomial Series

2 1 Gauss Series

b. Properties of Orthogonal Polynomials

In this section, some of the properties of series of orthogonal polynomials will be

discussed. Consider a set of polynomials, {Qn(x), n ∈ N} where the polynomial Qn(x)
is of degree n and the set N can be either N = {0,1,2, . . .} if the series is infinite or

N = {0,1,2, . . . ,N} for a finite series with N being a finite non-negative integer. The

system of polynomials is orthogonal with respect to a real positive measure, γ(x), if

∫
D

Qn(x)Qm(x)dγ(x) = h2
nδnm (II.7)

for n,m ∈ N , where D is the support for the measure, γ(x), and the values hn are

positive constants. If hn = 1, we say that the series of polynomials is orthonormal.

In general, the measure may have a continuous weighting function w(x) associated

with it or may have discrete weight values w(xi) at the points, xi. As a result, (II.7)

becomes

∫
D

Qn(x)Qm(x)w(x)dx = h2
nδnm (II.8)

for the case when the weighting function is continuous and

N

∑
i=0

Qn(xi)Qm(xi)w(xi) = h2
nδnm (II.9)

when the support is discrete. For the discrete case it is possible that N is finite

(positive) or N = ∞. In these expressions, n,m ∈ N . This weighting function will
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become important as we continue our development because for certain polynomials

the weights are identical to a probability distribution. This will be the foundation of

the ideas behind Polynomial Chaos.

An important characteristic of orthogonal polynomials is the fact that any three

consecutive polynomials are connected by a recurrent relation involving three terms.

There are several different ways to express this relationship. We will write the relation

as

−xQn(x) = AnQn+1(x) − (An +Cn)Qn(x) +CnQn−1(x), n ≥ 1 (II.10)

where the terms An,Cn ≠ 0 and Cn/An−1 ≥ 0. To initialize the series, Q−1(x) and

Q0(x) are required. These initialized as Q−1(x) = 0 and Q0(x) = 1. With these initial

polynomials, the rest of the terms can then be computed.

Continuous orthogonal polynomials also satisfy the second order differential equa-

tion

α(x)f ′′ + β(x)f ′ + λf = 0 (II.11)

where α(x) is a polynomial of second degree and β(x) is a polynomial of first degree.

The equation is a Sturm-Liouville type of equation, meaning that λ = λn is the

eigenvalue of the solution and the corresponding eigenfunctions are the polynomials,

f(x) = fn(x). The eigenvalues, λ, are given by

λ = λn = −n(β′ + n − 1

2
α′′) (II.12)

All orthogonal polynomials can be obtained by continuously applying a differential

operator known as the generalized Rodriguez formula. For continuous orthogonal

polynomials, the operator takes the form

Qn(x) = 1

w(x)
dn

dxn
(w(x)αn(x)) (II.13)
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For the discrete case, the differential relationship in equation (II.11) becomes a

difference relationship. To introduce the relationship, we first introduce the forward

and backward difference operators

∆y(x) = y(x + 1) − y(x) ∇y(x) = y(x) − y(x − 1) (II.14)

The discrete version of equation (II.11) is given by

α(x)∆∇f(x) + β(x)∆f(x) + λf(x) = 0 (II.15)

Furthermore, for discrete orthogonal polynomials, the Rodriguez formula is found by

replacing the derivative operator ( d
dx) with the backward difference operator, ∇.

c. Askey-Scheme

The Askey-scheme provides a classification for each of the hypergeometric polynomials

and also indicates the limit relation between each. The scheme can be represented

by the tree-like structure found in figure 1 [30]. The scheme demonstrates the limit

relationships between each element in the tree structure. The tree starts with the

polynomials of class F 4
3 . The Wilson polynomials are discrete polynomials and the

Racah polynomials are discrete. The lines represent the polynomials that can be

linked to others via limit relationships. The polynomials at the top can be used to

obtain the linked polynomials below it by use of a limit. For example, it is possible

to obtain Laguerre polynomials from Jacobi polynomials by using

lim
β→∞

P
(α,β)
n (1 − 2x

β
) = L

(α)
n (x) (II.16)

and it is possible to obtain Hermite polynomials from Laguerre polynomials

lim
α→∞
( 2

α
)

n/2
L
(α)
n ((2α)1/2x + α) = (−1)

n

n!
Hn(x) (II.17)
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Fig. 1. Askey-Scheme of hypergeometric orthogonal polynomials

2. Homogeneous Chaos

The concept of Homogeneous Chaos was first introduced by Wiener [12] and is an

extension of Volterra’s work on the generalization of Taylor series to functionals

[31, 32, 20]. The Homogenous Chaos utilizes Hermite polynomials to approximate

Gaussian random variables. Based on Wiener’s ideas, Cameron and Martin used Her-

mite functionals to create an orthogonal basis for nonlinear functionals and showed

that these functionals can approximate any functionals with finite second moment

in L2 and that these functionals in fact converge in the L2 sense [13]. Therefore,
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it is possible to use Hermite-Chaos to expand any second order process, that is a

process having finite second moment, in terms of orthogonal polynomials. While the

types of processes are limited by the finite second moment requirement, most physical

processes do in fact meet this requirement, meaning such a requirement is reasonable.

We now introduce the Homogeneous Chaos. Define the set of all square integrable

random variables to be Θ. Let {ξi(θ)}∞i=1 be a set of orthonormal Gaussian random

variables and let Γ̂p be the space of all polynomials in {ξi(θ)}∞i=1 of degree less than

or equal to p. In addition, Γp will represent the set of all polynomials in Γ̂p that are

orthogonal to the set Γ̂p−1. The space spanned by Γp is denoted Γ̄p. This space is a

subspace of Θ (Γ̄p ⊆ Θ) and is called the pth Homogeneous Chaos. We call Γp the

Polynomial Chaos (PC) of order p.

The Polynomial Chaoses are therefore polyvariate orthogonal polynomials of or-

der p of any combination of the random variables {ξi(θ)}∞i=1. Because the Polynomial

Chaoses must account for all combinations of the random variables, it is therefore

clear that the number of chaoses of order p which involve specific random variables

in the set increase as p increases. Furthermore, the Polynomial Chaoses are in fact

functionals since they are functions of random variables which in turn are functions

mapping from the event space to some real number.

The set of Polynomial Chaoses is a linear subspace of square integrable random

variables (Θ). This set, Γp, is also a ring with respect to the functional multiplication

ΓpΓq(x) = Γp(x)Γq(x). Denote the Hilbert space spanned by the set of random

variables {ξi(θ)}∞i=1 by Θ(ξ) and denote the resulting ring ΦΘ(ξ). This is the ring of

functions generated by Θ(ξ). It has been shown that under general conditions, this

ring is dense in Θ [33]. As a result, any square integrable random variable mapping

from Ω to R can be approximated as closely as desired. We can therefore write any



18

general second-order random process as

X(θ) =∑
p≥0

∑
n1+...+nr=p

∑
ρ1,...,ρr

Γp (ξρ1(θ), . . . , ξρr(θ)) (II.18)

or as a linear combination of all Polynomial Chaoses (Γp) of order p ≥ 0. The poly-

nomials in equation (II.18) involve r distinct random variables out of {ξi(θ)}∞i=1, with

the kth random variable having multiplicity nk, and the total number of random vari-

ables involved is equal to the order of the Polynomial Chaos, p. If we assume that the

Polynomial Chaoses to be symmetrical with respect to their arguments (symmetriza-

tion is always possible [20]), equation (II.18) can be simplified to give the following

expression for a random process

X(θ) =a0Γ0

+

∞

∑
i=1

ai1Γ1(ξi1(θ))

+

∞

∑
i1=1

i1

∑
i2=1

ai1i2Γ2(ξi1(θ)ξi2(θ))

+

∞

∑
i1=1

i1

∑
i2=1

i2

∑
i3=1

ai1i2i3Γ3(ξi1(θ)ξi2(θ)ξi3(θ)) + . . . (II.19)

where Γp(⋅) is the Polynomial Chaos of order p. For the case of Homogeneous Chaos

with the Gaussian variables, ξ having zero mean and unit variance, these polynomials

are Hermite Polynomials and we will henceforth express them as Γp = Hp (The term

ξ = (ξi1 , ξi2 , . . . , ξin)). These polynomials have the form

Hn(ξi1 , . . . , ξin) = e
1
2
ξT ξ(−1)n ∂n

∂ξi1⋯∂ξin

e−
1
2
ξT ξ (II.20)

The values of the upper limits are a reflection of the symmetry of each polynomial

with respect to its arguments. The polynomials of different orders are orthogonal

as are the polynomials of the same order, but with different arguments. Equation

(II.19) is a discrete version of the original Wiener polynomial chaos expression where
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the continuous integrals are replaced by summations. For notational convenience, we

can write equation (II.19) as

X(θ) =
∞

∑
i=0

âiΨi(ξ) (II.21)

where there is a one-to-one correspondence between Ψi(ξ) and Hp(ξi1 , . . . , ξin), and

also between the coefficients âi and ai1⋯ir . To help attain some insight into the form

of the summation in equation (II.19) as well as into how the Ψi’s in equation (II.21)

relate to the Hn’s, consider the following expansion for two random variables.

X(θ) = a0H0 + a1Hl(ξ1) + a2H1(ξ2)

+ a11H2(ξ1, ξ1) + a12H2(ξ2, ξ1) + a22H2(ξ2, ξ2)

+ a111H3(ξ1, ξ1, ξ1) + a211H3(ξ2, ξ1, ξ1) + a221H3(ξ2, ξ2, ξ1)

+ a222H3(ξ2, ξ2, ξ2) + . . . (II.22)

The terms in this expansion correspond with the terms in equation (II.21) such that

â0Φ0 = a0H0, â1Φ1 = a1H1(ξ1), â2Φ2 = a2H1(ξ2), and so forth.

The polynomials for the Homogeneous (Hermite) Chaos form an orthogonal basis,

which means

⟨ΨiΨj⟩ = ⟨Ψ2
i ⟩δij (II.23)

where δij is the Kronecker delta (δij = 0 if i ≠ j and δij = 1 when i = j) and ⟨⋅, ⋅⟩
denotes a weighted inner product. For Hermite Chaos, this is the inner product on

the Hilbert space determined by the support of the Gaussian variables

⟨f(ξ)g(ξ)⟩ = ∫ f(ξ)g(ξ)w(ξ)dξ (II.24)

where the weighting function is given by

w(ξ) = 1√
(2π)n

e−
1
2
ξT ξ (II.25)
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The variable n is the size of the random variable vector, ξ. This weighting function

is equivalent to the probability density function for an n-dimensional independent

Gaussian distribution. Therefore, the basis polynomials of the Hermite Chaos are

orthogonal with respect to a Gaussian distribution and the variables in the expansion

are Gaussian random variables. Therefore, Homogeneous Chaos (Hermite-Chaos) is

used in situations where the stochastic uncertainty in the system is known to be

Gaussian.

3. Generalized Polynomial Chaos

The Hermite-Chaos discussed in the previous section is very useful for solving stochas-

tic differential equations for systems with Gaussian inputs as well as systems with

certain non-Gaussian inputs [20, 18, 21]. While the Cameron-Martin theorem guar-

antees that this type of polynomial converges to a function with finite second moment

in the L2 sense [13], it does not guarantee the rate of convergence. The Homogeneous

Chaos for systems with Gaussian inputs has an exponential rate of convergence. This

is because the polynomials are orthogonal with respect to the probability distribution

of the inputs. For systems without Gaussian inputs, the rate of convergence can be

drastically deteriorated [15].

As a result the Wiener-Askey polynomial chaos expansion will be presented. This

is a generalization of the original Wiener-Chaos expansion, but uses the complete

polynomial basis from the Askey-scheme presented earlier. Let {∆i(θ)}∞i=1 be a set of

orthonormal random variables of any continuous distribution. As with Homogeneous
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Chaos, we model a second order process in the following manner

X(θ) =a0I0

+

∞

∑
i=1

ci1I1(∆i1(θ))

+

∞

∑
i1=1

i1

∑
i2=1

ci1i2I2(∆i1(θ)∆i2(θ))

+

∞

∑
i1=1

i1

∑
i2=1

i2

∑
i3=1

ci1i2i3I3(∆i1(θ)∆i2(θ)∆i3(θ)) + . . . (II.26)

where Ii(∆i1 , . . . ,∆in) denotes the Wiener-Askey polynomial chaos of order n in terms

of the random variables ∆ = (∆i1 , . . . ,∆in). Unlike the Homogeneous Chaos expan-

sion where the polynomials were Hermite polynomials, Ii can be any polynomial in

the Askey-scheme shown in figure 1. As in the previous section, equation (II.26) can

be put into the more notationally convenient form

X(θ) =
∞

∑
i=0

ĉiΦi(∆) (II.27)

Again, the basis function in equation (II.27) have a one-to-one relationship with the

polynomials in equation (II.26) as do the coefficients. Using this formulation and

the fact that each basis, Φi, is orthogonal, the inner product of any two polynomials

becomes

⟨ΦiΦj⟩ = ⟨Φ2
i ⟩δij (II.28)

where as before, δij is the Kronecker delta and ⟨⋅, ⋅⟩ denotes the weighted inner product

on the Hilbert space of the variables, ∆. Similarly to the previous section, this inner

product is defined by

⟨f(∆)g(∆)⟩ =∑
∆

f(∆)g(∆)w(∆) (II.29)
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for polynomials with discrete support or

⟨f(∆)g(∆)⟩ = ∫ f(∆)g(∆)w(∆)d∆ (II.30)

when the weight function has continuous support. Previously, the weighting function,

w(∆) corresponded to the weight for the Hermite basis, but in this more general

setting w(∆) is the weighting function associated with the particular choice of basis

from the Wiener-Askey polynomial chaos.

The choice of basis function for the Wiener-Askey chaos scheme is dependent

on the probability distribution that is to be modeled. Several of the polynomials in

the Askey-scheme are orthogonal with respect to well-known probability distributions.

When modeling a system with uncertainty governed by a specific type of distribution,

we can choose the corresponding polynomial in the scheme to model it. Because each

type of polynomial from the Askey-scheme forms a complete basis in the Hilbert

space determined from their support, each type of polynomial in the Wiener-Askey

expansion will converge to an L2 function in the L2 sense. This result can be obtained

as a general result of the Cameron-Martin Theorem [13, 34]. Table 2 shows some

common probability distributions and their corresponding polynomial basis in the

Askey-scheme.

Table 2. Correspondence between choice of polynomials and given distribution of

∆(ω).
Random Variable ∆ φi(∆) of the Wiener-Askey Scheme

Gaussian Hermite

Uniform Legendre

Gamma Laguerre

Beta Jacobi
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The basis functions in table 2 are all orthogonal with respect to their associated

distribution. As a result, this gives physical insight into the inner products in equa-

tions (II.28-II.30). Therefore, w(∆(ω))d∆ = dP (∆(ω)) where P is the corresponding

probability measure. It becomes clear that the inner product is an expectation oper-

ator, or

⟨f(∆)g(∆)⟩ = ∫ f(∆)g(∆)w(∆)d∆ = E[f(∆)g(∆)] (II.31)

Therefore, the inner product of the orthogonal polynomial basis functions becomes

E[ΦiΦj] = E[Φ2
i ]δij (II.32)

where the expectation operator has been taken with respect to the probability density

function associated with the polynomial basis.

C. Building Sets of Orthogonal Polynomials

While in theory it is easy to assume that all distributions fall into one of the types

listed in table 2, in practice this may not be the case. Furthermore, it may not be

desirable to use Hermite polynomials in practice as their support is infinite. As a

result it is often necessary to generate a set of orthogonal polynomials with desired

support. This can be accomplished several ways. One method is the Gram-Schmidt

process which we will briefly describe here. This process involves determining a set of

orthogonal (not necessarily orthonormal) functions, {Φi(x)}∞i=0, from a set of linearly

independent functions, {ui(x)}∞i=0 with a given weighting function, w(x) [35]. To

begin, let

Φ0(x) = u0(x) (II.33)

We will build on this function to create orthogonal functions from the linearly inde-

pendent ones. The order in which we perform the operation with respect to the u′is
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is unimportant since each ui is linearly independent. The next function, Φ1(x), can

be determined from Φ0(x) by subtracting off the projection of u1(x) onto Φ0(x).

Φ1(x) = u1(x) − ⟨u1(x)Φ0(x)⟩
⟨Φ0(x)2⟩ Φ0(x) (II.34)

where ⟨f(x)g(x)⟩= ∫ f(x)g(x)w(x)dx. To verify that Φ1(x) is in fact orthogonal to

Φ0(x), consider the inner product

⟨Φ0(x)Φ1(x)⟩ = ⟨Φ0(x)u1(x)⟩ − ⟨u1(x)Φ0(x)⟩
⟨Φ0(x)2⟩ ⟨Φ0(x)Φ0(x)⟩

= ⟨Φ0(x)u1(x)⟩ − ⟨Φ0(x)u1(x)⟩ = 0

In general, we have

Φi(x) = ui(x) −
i−1

∑
k=0

⟨ui(x)Φk(x)⟩
⟨Φk(x)2⟩ Φk(x) (II.35)

This gives us a way to systematically compute and orthogonal basis with respect to

some weighting function.

The sets of polynomials from the Askey-scheme can also be generated in this

manner. For example, let us consider generation of a set of orthogonal polynomials

orthogonal with respect to w(x) = e−x
2/2 over the domain x ∈ (−∞,∞). We will take

ui(x) = xi for i = 1, . . . ∞. The first polynomial, Φ0(x) = u0(x) = 1. To find Φ1(x),

Φ1(x) = x −
⟨x ⋅ 1⟩
⟨1 ⋅ 1⟩ (II.36)

Now ⟨1,1⟩= ∫ ∞−∞ e−x
2
dx =

√
2π and ⟨x,1⟩= ∫ ∞−∞ xe−x

2
dx = 0, so Φ1 = x. To find Φ2(x),

Φ2(x) = x2
−

⟨x2⟩
⟨1⟩ −

⟨x3⟩
⟨x2⟩x (II.37)

where ⟨x2⟩=√2π and ⟨x3⟩= 0. This gives

Φ2(x) = x2
− 1 (II.38)
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This process could be continued for as many terms as desired. Upon examination

of the first three terms, it becomes clear that the orthogonalization is recovering the

Hermite polynomials, which is what should be expected for the given weight function.

D. Karhunen-Loéve Expansion

The polynomial chaos approach is useful when the statistics of the solution are un-

known and for stationary processes. When dealing with time-varying (or spatially

varying) processes with known covariance, the Karhunen-Loéve expansion becomes

the expansion of choice [36, 1, 20]. In a manner similar to equation (II.21), define an

expansion of the form

X(t, ω) =
∞

∑
n=0

√
λnfn(t)Zn(ω) (II.39)

where {Zn(ω)} is a set of random variables that will be determined, λn is a constant,

and {fn(t)} is an orthonormal set of deterministic functions. The functions, Zn(ω) ∶
Ω↦ R are random variables and can be written as functions of ∆(ω). The functions

fn(t) can be spatial, temporal, or both depending on the elements in the vector t

and have support on D. For the present work these will usually be a function of time

only. For the present discussion, denote X̄(t) as the expectation of X(t, ω) over all

realizations of the process and let R(t1, t2) be the covariance function. The covariance

function is symmetric and positive definite. It can be written as

R(t1, t2) =
∞

∑
n=0

λnfn(t1)fn(t2) (II.40)

where λn is an eigenvalue of the covariance and fn(t) is the associated eigenvector or

eigenfunction. These quantities are solutions of

∫
D

R(t1, t2)fn(t1)dt1 = λnfn(t2) (II.41)
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The eigenfunctions are orthogonal and can be chosen to satisfy the relationship

∫
D

fn(t)fm(t)dt = δnm (II.42)

The random process, X(t, ω) can be rewritten as

X(t, ω) = X̄(t) +
∞

∑
n=0

√
λnfn(t)Zn(ω) (II.43)

We wish to determine properties of the functions, Zn(ω). Define X̃(t, ω)= ∑∞n=0 (
√

λn

fn(t)Zn(ω)), where X̃ has zero mean and let its covariance function be written as

R(t1, t2) = ⟨X̃(t1, ω)X̃(t2, ω)⟩

=

∞

∑
n=0

∞

∑
m=0

√
λnλmfn(t1)fm(t2)⟨Zn(ω)Zm(ω)⟩ (II.44)

Multiplying both sides of the above expression by fk(t2) and integrating over the

domain, D, gives (recall equation (II.41))

∫
D

R(t1, t2)fk(t2)dt2 =
∞

∑
n=0

∞

∑
m=0

√
λnλm⟨Zn(ω)Zm(ω)⟩fn(t1)fm(t2)fk(t2)

=

∞

∑
n=0

√
λnλk⟨Zn(ω)Zk(ω)⟩fn(t1)

= λkfk(t1) (II.45)

Multiplying this expression by an additional basis vector fj(t) and once more inte-

grating over the domain, D gives

∞

∑
n=0

⟨Zn(ω)Zk(ω)⟩
√

λnλkδnj = λk ∫
D

fk(t1)fj(t1)dt1 (II.46)

therefore
√

λkλj⟨Zj(ω)Zk(ω)⟩ = λkδkj (II.47)
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From the previous equation, it becomes clear that

⟨Zj(ω)Zk(ω)⟩ = δjk (II.48)

Therefore the KL expansion of the function X can be written as

X(t, ω) = X̄(t) +
∞

∑
n=0

√
λnfn(t)Zn(ω) (II.49)

where λn and fn(t) are the eigenvalues and eigenfunctions of the covariance and

⟨Zn(ω)⟩ = 0 ⟨Zn(ω)Zm(ω)⟩ = δmn (II.50)

The expressions for the random variables, Zn(ω) can be obtained from

Zn(ω) = 1√
λn
∫

D
fn(t)X(t, ω)dt

The KL expansion is able to model a random process with covariance R(t1, t2)
over finite time with arbitrary accuracy. The expansion convergence in the L2 sense

is guaranteed by Mercer’s theorem [1]. This expansion is particularly useful because

it allows us to represent colored processes in terms of random variables Zn(ω). These

random variables can be used in conjunction with the gPC expansion described in

the previous section to include time-varying processes in our analysis. This will allow

us to examine problems such as that of stochastic forcing in the gPC framework. The

key is that each term in the KL expansion defines a new random variable that must

be included in the PC expansion. This will be discussed in more detail in Chapter

IV.
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E. Summary

In this chapter, we have covered many of the preliminary concepts that will be utilized

throughout the rest of the dissertation. We have presented a general overview of the

Polynomial Chaos expansion that will be used to transform stochastic stability and

control problems into deterministic problems in higher dimensional space.
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CHAPTER III

MODELLING AND STABILITY ANALYSIS OF STOCHASTIC DYNAMIC

SYSTEMS

A. Introduction

In this chapter, we apply some of the concepts introduced in the previous chapter

to modelling and stability analysis of stochastic dynamic systems. This chapter will

deal with analysis of both linear and nonlinear stochastic systems. The first part of

the chapter will deal with creating a general framework for modelling of stochastic

systems in the generalized Polynomial Chaos framework. A generalized framework

will be presented for linear systems as well as nonlinear polynomial systems.

The latter portion of the chapter deals with stability analysis of linear and non-

linear stochastic systems. For linear systems, if the parameters are bounded linear

functions of the random variable that governs the uncertainty, then it is only neces-

sary to test the extreme values of the parameters [9]. However, if the uncertainty does

not appear linearly, this method is no longer valid. Stability analysis for nonlinear

systems is more difficult than for linear systems. In general, for linear systems if in

the “worst-case”, the system is stable, then the system will be stable for the entire

range of possible parameter variations. For nonlinear systems, this may not be true.

As a result, we must not only ensure that the system is stable for the worst-case

uncertainty, but for the entire parameter distribution. For nonlinear systems in gen-

eral, stability has been addressed for deterministic systems with stochastic forcing

[37, 38]. In our stability discussion, we will restrict our attention to systems with

stochastic parameters, i.e. systems with probabilistic uncertainty in system param-

eters. For such class of systems, sampling based approaches are often used to solve
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the stochastic problem in a deterministic setting. The drawback of this approach is

that it can result in the solution of very large problems for accurate characterization

of uncertainty.

As a result, we apply non-sampling based methods to approximate, with arbi-

trary accuracy, the evolution of uncertainty in state trajectories induced by uncertain

system parameters. As mentioned previously, the framework is built on the polyno-

mial chaos theory which transforms stochastic dynamics into deterministic dynamics

in higher dimensional state space. We assume that the system uncertainty is a func-

tion of random variables governed by known stationary distributions. The benefit

of this approach is that stochastic linear and nonlinear systems are transformed into

deterministic systems and existing system theory can be used for stability analysis.

B. Wiener-Askey Polynomial Chaos

Let (Ω,F , P ) be a probability space, where Ω is the sample space, F is the σ-algebra of

the subsets of Ω, and P is the probability measure. Let ∆(ω) = (∆1(ω),⋯,∆d(ω)) ∶
(Ω,F) → (Rd,Bd) be an Rd-valued continuous random variable, where d ∈ N, and

Bd is the σ-algebra of Borel subsets of Rd. A general second order process X(ω) ∈
L2(Ω,F , P ) can be expressed by polynomial chaos as

X(ω) =
∞

∑
i=0

xiφi(∆(ω)) (III.1)

where ω is the random event and φi(∆(ω)) denotes the gPC basis of degree p in

terms of the random variables ∆(ω). The functions {φi} are a family of orthogonal

basis in L2(Ω,F , P ) satisfying the relation

∫
D∆(ω)

φiφjw(∆(ω))d∆(ω) = h2
i δij (III.2)
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where δij is the Kronecker delta, hi is a constant term corresponding to ∫D∆
φ2

i w(∆)d∆,

D∆ is the domain of the random variable ∆(ω), and w(∆) is a weighting function.

Henceforth, we will use ∆ to represent ∆(ω). For random variables ∆ with certain

distributions, the family of orthogonal basis functions {φi} can be chosen in such a

way that its weight function has the same form as the probability density function

f(∆). When these types of polynomials are chosen, we have f(∆) = w(∆) and

∫
D∆

φiφjf(∆)d∆ = E[φiφj] = E[φ2
i ]δij (III.3)

where E[⋅] denotes the expectation with respect to the probability measure dP (∆(ω)) =
f(∆(ω))d∆(ω) and probability density function f(∆(ω)). The orthogonal polyno-

mials that are chosen are the members of the Askey-scheme of polynomials [16], which

forms a complete basis in the Hilbert space determined by their corresponding sup-

port. Table 3 summarizes the correspondence between the choice of polynomials for

a given distribution of ∆ [15].

Table 3. Correspondence between choice of polynomials and given distribution of

∆(ω).
Random Variable ∆ φi(∆) of the Wiener-Askey Scheme

Gaussian Hermite

Uniform Legendre

Gamma Laguerre

Beta Jacobi
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C. Stochastic Linear Dynamics and Polynomial Chaos

Define a linear stochastic system in the following manner

ẋ(t,∆) = A(∆)x(t,∆) +B(∆)u(t,∆) (III.4)

where x ∈ Rn, u ∈ Rm. For the case of a discrete time system, the system is defined as

x(k + 1,∆) = A(∆)x(k,∆) +B(∆)u(k,∆) (III.5)

The system has probabilistic uncertainty in the system parameters, characterized by

A(∆) and B(∆), which are matrix functions of random variable ∆ ≡∆(ω) ∈ Rd with

certain stationary distributions. Due to the stochastic nature of (A,B), the system

trajectory will also be stochastic. The control u(t) may be deterministic or stochastic,

depending on the implementation.

Let us represent components of x(t,∆),A(∆) and B(∆) as

x(t,∆) = [x1(t,∆) ⋯ xn(t,∆)]T (III.6)

A(∆) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11(∆) ⋯ A1n(∆)
⋮ ⋮

An1(∆) ⋯ Ann(∆)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(III.7)

B(∆) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B11(∆) ⋯ B1m(∆)
⋮ ⋮

Bn1(∆) ⋯ Bnm(∆)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(III.8)

By applying the Wiener-Askey gPC expansion to xi(t,∆),Aij(∆) and Bij(∆), we get

x̂i(t,∆) =
p

∑
k=0

xi,k(t)φk(∆) = xi(t)T Φ(∆) (III.9)

ûi(t,∆) =
p

∑
k=0

ui,k(t)φk(∆) = ui(t)T Φ(∆) (III.10)
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Âij(∆) =
p

∑
k=0

aij,kφk(∆) = aT
ijΦ(∆) (III.11)

B̂ij(∆) =
p

∑
k=0

bij,kφk(∆) = bT
ijΦ(∆) (III.12)

where xi(t),aij,bij,Φ(∆) ∈ Rp are defined by

xi(t) = [xi,0(t) ⋯ xi,p(t)]T (III.13)

ui(t) = [ui,0(t) ⋯ ui,p(t)]T (III.14)

aij = [aij,0(t) ⋯ aij,p(t)]T (III.15)

bij = [bij,0(t) ⋯ bij,p(t)]T (III.16)

Φ(∆) = [φ0(∆) ⋯ φp(∆)]T (III.17)

When ui(t,∆) is a feedback control, it follows that it must also be probabilistic

(depending on the implementation), and if the control is not probabilistic, this implies

ui(t) = ui,0(t) with all other coefficients as zero.

The number of terms p is determined by the dimension, d, of ∆ and the order,

r, of the orthogonal polynomials {φk}, satisfying p + 1 = (d+r)!d!r! . The coefficients aij,k

and bij,k are obtained via Galerkin projection onto {φk}pk=0 given by

aij,k =
⟨Aij(∆), φk(∆)⟩
⟨φk(∆)2⟩ (III.18)

bij,k =
⟨Bij(∆), φk(∆)⟩
⟨φk(∆)2⟩ (III.19)

The inner product or ensemble average ⟨⋅, ⋅⟩, used throughout this work, utilizes the

weighting function associated with the assumed probability distribution, as listed

in table 3. The n(p + 1) time varying coefficients, {xi,k(t)}; i = 1,⋯, n;k = 0,⋯, p,

are obtained by substituting the approximated solution in the governing equation

(eqn.(III.4)) and conducting Galerkin projection on the basis functions {φk}pk=0, to
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yield n(p + 1) deterministic linear differential equations, given by

Ẋ =AX +BU (III.20)

for the continuous time case. For the discrete time case the projection yields the

linear difference equations

X(k + 1) =AX(k) +BU (III.21)

In both expressions, X ∈ Rn(p+1), A ∈ Rn(p+1)×n(p+1), B ∈ Rn(p+1)×m, and

X = [xT
1 xT

2 ⋯ xT
n ]T (III.22)

U = [uT
1 uT

2 ⋯ uT
m]T (III.23)

While it is possible to derive many forms for the A and B matrices, a convenient form

can be obtained in the following manner. Define êijk =
⟨φi,φjφk⟩
⟨φ2

i ⟩
. The linear equations

of motion can be expressed as

ẋi,l =

n

∑
j=1

p

∑
k=0

p

∑
q=0

aij,kxj,qêlkq+

m

∑
j=1

p

∑
k=0

p

∑
q=0

bij,kuj,qêlkq

Here we will only deal with continuous time systems as the development in the discrete

time is identical. Define the matrix Ψk as

Ψk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ê0k0 ê0k1 ⋯ ê0kp

ê0k1 ê1k1 ⋯ ê1kp

⋮ ⋮ ⋱ ⋮

ê0kp ê1kp ⋯ êpkp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(III.24)
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The matrices A and B can be written as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 ⋯ A1n

A21 A22 ⋯ A2n

⋮ ⋮ ⋱ ⋮

An1 An2 ⋯ Ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(III.25)

Aij =

p

∑
k=0

aij,kΨk (III.26)

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B11 B12 ⋯ B1m

B21 B22 ⋯ B2m

⋮ ⋮ ⋱ ⋮

Bn1 Bn2 ⋯ Bnm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(III.27)

Bij =

p

∑
k=0

bij,kΨk (III.28)

More convenient expressions for A and B are given by

A =
p

∑
k=0

Ak ⊗Ψk (III.29)

B =
p

∑
k=0

Bk ⊗Ψk (III.30)

where ⊗ is the Kronecker product and the matrices Ak, Bk are the projections of

A(∆),B(∆) on the polynomial chaos basis functions. Therefore, transformation of a

stochastic linear system with x ∈ Rn, u ∈ Rm, with pth order gPC expansion, results

in a deterministic linear system with increased dimensionality equal to n(p + 1).
Example: Consider the system

ẋ(t,∆) = a(∆)x(t,∆)

where a(∆) = ā0 + ā2∆2 with ∆ ∈ [−1,1] governed by a uniform distribution and āi,
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i = 0,2 is known. Because ∆ is governed by a uniform distribution, we use Legendre

polynomials to model each of the processes. For this example, we will use up to order

3. The expansion of x is therefore x(t,∆) = ∑3
i=0 xi(t)φi(∆) and the expansion of

a(∆) is a(∆) = ∑3
i=0 aiφi(∆). The first 3 Legendre polynomials (unnormalized) are

given by

φ0 = 1

φ1 = ∆

φ2 =
3

2
∆2
−

1

2

φ3 =
5

2
∆3
−

3

2
∆

It is clear from the form of a(∆) that it can be expressed as

a(∆) = (ā0 +
1

3
ā2)φ0 +

2

3
ā2φ2

The equation of motion then becomes

3

∑
j=0

ẋjφj = (
3

∑
k=0

akφk)(
3

∑
i=0

xiφi) =
3

∑
i=0

3

∑
k=0

akxiφkφi

If we take the projection of both sides onto φj and divide by ⟨φ2
j⟩ we obtain

ẋj =
1

⟨φ2
j⟩

3

∑
i=0

3

∑
k=0

akxi⟨φkφiφj⟩

=
1

⟨φ2
j⟩
(

3

∑
k=0

ak [ ⟨φkφjφ0⟩ ⟨φkφjφ1⟩ ⟨φkφjφ2⟩ ⟨φkφjφ3⟩ ])X

where X = [ x0 x1 x2 x3 ]
T

. The structure above can be easily identified as the

jth row of the Ψk matrix described in the previous section in (III.24). Now, because

there are only two non-zero coefficients in the expansion of a(∆), our equations of
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motion now can be written as

Ẋ = (a0Ψ0 + a2Ψ2)X = ((ā0 +
1

3
ā2)Ψ0 +

2

3
ā2Ψ2)X

In this manner we are able to describe the dynamics of the stochastic linear sys-

tem. The procedure can be repeated for any order of polynomial to obtain better

approximations.

D. Stochastic Nonlinear Dynamics and Polynomial Chaos

As was done in the previous section, let (Ω,F , P ) be a probability space, where Ω

is the sample space, F is the σ-algebra of the subsets of Ω, and P is the probability

measure. We again let ∆(ω) = (∆1(ω),⋯,∆d(ω)) ∶ (Ω,F)→ (Rd,Bd) be an Rd-valued

continuous random variable, where d ∈ N, and Bd is the σ-algebra of Borel subsets of

Rd.

1. Preliminaries

In the previous section, the gPC expansion was used to transform linear stochastic

differential equations into higher dimensional linear ordinary differential equations.

In this section we will explore a similar transformation of the nonlinear problem. Here

we consider certain types of nonlinearities that may be present in the system model.

The nonlinearities considered here are rational polynomials, transcendental functions

and exponentials. We outline the process for representing these nonlinearities in terms

of polynomial chaos expansions.

If x, y are random variables with gPC expansions similar to eqn.(III.9) then the

gPC expansion of the expression xy can be written as

xy =
p

∑
i=0

p

∑
j=0

xiyjφiφj
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The gPC expansion of x2 can be derived by setting y = x in the above expansion to

obtain

x2
=

p

∑
i=0

p

∑
j=0

xixjφiφj

Similarly x3 can be expanded as

x3
=

p

∑
i=0

p

∑
j=0

p

∑
k=0

xixjxkφiφjφk

This approach can be used to derive the gPC expansions of any multi-variate whole

rational monomial in general.

The gPC expansion of fractional rational monomials of random variables is il-

lustrated using the expression z = x
y . If x, y are random variables then z is also a

random variable with gPC expansions similar to eqn.(III.9). The expansions of x, y

are known. The gPC expansions of z can be determined using the following steps.

Rewrite

z =
x

y
as yz = x

Expanding yz and x in terms of their gPC expansions gives

p

∑
i=0

p

∑
j=0

ziyjφiφj =

p

∑
k=0

xkφk

To determine the unknown zi we project both sides of the equation on the subspace

basis to obtain a system of p + 1 linear equations

1

⟨φk, φk⟩
p

∑
i=0

p

∑
j=0

ziyj⟨φiφjφk⟩ = xk, k = 0, . . . , p

to solve for the p unknowns zi. This can be generalized to obtain the gPC expansion

of any fractional rational monomial.

For dynamic systems that can be expressed as polynomial systems with stochastic

coefficients, we can develop a framework for obtaining the gPC expansion. The gPC
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methodology is useful because it preserves the order of polynomial systems. In other

words, a qth-order polynomial remains a qth-order polynomial after the substitution.

While the order of the dynamics is preserved, as with linear systems the number of

states is increased.

2. Stochastic Polynomial Systems

Consider a system of the form

ẋi(t,∆) =
m

∑
j=1

aij(∆)xαj(t,∆) (III.31)

where m represents the number of terms in the expression, i = 1, . . . , n represents the

number of states, aij are the coefficients, x = [x1 ⋯ xn]T , and αj = [αj1 ⋯ αjn]T

with αjk ∈ N+ is a vector containing the order of each term in the monomial. For

example the term given by x2
1x

3
2x3 = xα with α = [2 3 1]T . Note that without loss of

generality, this vector does not need to depend upon i because we can add zeros to

aij for any terms that do not appear in the equations of some state xi. To apply the

gPC expansion to this equation of motion, we write

xi(t,∆) =
p

∑
k=0

xi,k(t)φk(∆) (III.32)

aij(∆) =
p

∑
k=0

aij,kφk(∆) (III.33)

where these forms are familiar as they are identical to those of the linear system.

These expressions can be utilized to derive the equations of motion in a fashion
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similar to that utilized in the previous section. Consider the term

aij(∆)xαj(t,∆) =
∑p

k=0∑
p
k11=0
⋯∑p

k1αj1
∑p

k21=0
⋯∑p

knαjn
[

aij,kx1,k11⋯x1,k1αj1
x2,k21⋯xn,knαjn

φk⋯φknαjn
]

While this expression involves a large number of summations (the number depends

upon the order of each polynomial term), clearly, the order of the polynomial in terms

of the vector x is preserved; however, the number of terms in the polynomial has

increased dramatically. As was done in the linear case, the equations of motion can

be projected onto each polynomial subspace to obtain a system of ordinary differential

equations in terms of our coefficients. Each equation of motion is then given by

ẋi,q =

m

∑
j=1

p

∑
k=0

[êq,k,k11,...,knαjn
aij,k

n

∏
r=1

αjr

∏
m=1

xrkm] (III.34)

where

êq,k,k11,...,knαjn
=

1

⟨φ2
q⟩
⟨φqφkφk11⋯φknαjn

⟩

and ∑p
k=0 [⋅] = ∑p

k=0∑
p
k11=0
⋯∑p

knαjn=0
[⋅]. As an example, consider a polynomial of the

form ax2
1x2 with x1, x2, and a as random variables. For this term, α = [2 1]T . The

gPC expansion of this term is written as

ax2
1x2 =

p

∑
k=0

akx1,k11x1,k12x2,k21φkφk11φk12φk21

In general, we can write the expanded system in the following form

Ẋ =
m̂

∑
j=1

âijX
α̂j (III.35)

where X has been previously defined in (III.22). The term, m̂, represents the new

number for terms based on the addition of more variables, âij is the coefficient of

each new term, and α̂j contains the orders of each of the monomials. The stochastic
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polynomial dynamics are thus written as deterministic polynomial dynamics of state

dimension Rn(p+1).

When nonlinearities involve non polynomial functions, such as transcendental

functions and exponentials, difficulties occur during computation of the projection

on the gPC subspace. The corresponding integrals may not have closed form solu-

tions. In such cases, the integrals either have to be numerically evaluated or these

nonlinearities are first approximated as polynomials using Taylor series expansions

and then the projections are computed using methods described above. While Taylor

series approximation is straightforward and generally computationally cost effective,

it can become severely inaccurate when higher order gPC expansions are required to

represent the physical variability. A more robust algorithm is presented by Debuss-

chere et al.[39] for any non polynomial function u(x) for which du
dx can be expressed

as a rational function of x,u(x).

3. Nonlinear Systems Example

In this section we will outline a brief example that demonstrates the ability of the

gPC expansion to accurately capture the statistics of even nonlinear systems. We will

consider uncertainty in initial conditions as parametric uncertainty will be considered

as part of another example in a later section.

Consider the following set of longitudinal non-dimensionalized Vinh’s equations

for a vehicle passing through the atmosphere.

ḣ = V sinγ

V̇ = −ρV 2 R0

2Bc

−

gR0

V 2
c

sinγ

γ̇ =
gR0

V 2
c

cosγ
V 2
− 1

V
+ ρ

R0

2Bc

V
L

D

ẋ = V cosγ
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In these equations, V represents the non-dimensionalized velocity, h represents the

non-dimensionalized altitude, γ is the flight path angle and x is the non-dimensionalized

lateral distance. The term R0 represents the radius of the body (in this case the Mars),

Bc is the ballistic coefficient, g is the acceleration due to gravity at the surface of the

body, and Vc is the circular orbit velocity of the body which can be approximated as
√

gR0. Finally, L
D is the lift to drag ratio. For the purposes of this example we will

assume that this is a constant. The density, ρ is a function of the altitude given by

ρ = ρ0e
(h2−hR0

h1
)

For the purposes of this example we assume that the vehicle is entering the atmosphere

of Mars, meaning R0 = 3397km, g = 3.7116m/s2, ρ0 = 0.0019km/m3, h1 = 9.8km,

and h2 = 20km. The vehicle is assumed to have a ballistic coefficient of 72.8kg/m2

and a lift to drag ratio of 0.3.

For this example, we will consider initial condition uncertainty in the altitude

parameter. Assume that the initial condition uncertainty appears as a linear per-

turbation to the nominal initial condition and that the value of the perturbation is

governed by a beta distribution with 20% uncertainty. In other words, at the start

of the simulation the height of the vehicle is unknown and the starting altitude may

be anywhere within 20% of the mean value. The α and β parameters of the beta

distribution are chosen to be equal and to be 2. This produces a Gaussian-like curve

with the highest probability associated with the mean. The total range of uncertainty

is governed by a single random variable. We will utilize the gPC expansion for each
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of the states to obtain the equations

p

∑
i=0

ḣiφi = (
p

∑
i=0

Viφi) sin(
p

∑
j=0

γjφj)
p

∑
i=0

V̇iφi = −ρ
R0

2Bc

p

∑
i=0

p

∑
j=0

ViVjφiφj −
gR0

V 2
c

sin(
p

∑
i=0

γiφi)
p

∑
i=0

γ̇iφi =
gR0

V 2
c

cos(
p

∑
i=0

γiφi)(
p

∑
i=0

Vjφj −
1

∑p
k=0 Vkφk

) + ρ
R0

2Bc

L

D

p

∑
i=0

Viφi

p

∑
i=0

ẋiφi = (
p

∑
i=0

Viφi) cos(
p

∑
j=0

γjφj)

Additionally, since ρ is a function of the altitude it must also be written as a gPC

variable.

ρ = ρ0e
(h2−(∑p

i=0
hiφi)R0

h1
)

The gPC variables in this equation are all written with respect to the random variable

that governs the initial condition uncertainty. These equations are non-linear and

non-polynomial. This means that we have no means of determining gPC projections

for the system directly. As a result, at each time step numerical integration will be

used to perform the Galerkin projection and determine the equations of motion. The

initial condition can be written as

h(0) = h0 +∆

The other initial conditions are assumed to be known perfectly for this example so

we write V (0) = V0, γ(0) = γ0, and x(0) = x0. It is easy to write the other initial

conditions as functions of the same or additional random variables. Adding additional

random variables adds more dimensionality to the problem. To test the accuracy of

the gPC expansion we examine the time response of each set of states for a polynomial

order of p = 7.

Figures 2(a) and 2(b) demonstrate the response of the body’s altitude and veloc-
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(a) Time response of altitude with
20% uncertainty in h0

(b) Time response of velocity with
20% uncertainty in h0

Fig. 2. Altitude and velocity response for longitudinal Vinh’s equations with uncer-

tainty in h0

(a) Time response of γ with 20%
uncertainty in h0

(b) Time response of dR with 20%
uncertainty in h0

Fig. 3. γ and horizontal position response for longitudinal Vinh’s equations with un-

certainty in h0

ity over time due to the uncertainty in the initial value for the altitude. Figures 3(a)

and 3(b) show the response of γ and the horizontal position respectively. In these

figures the gray area represents the trajectories generated through Monte-Carlo. The

Monte-Carlo trajectories are generated by successive solution of the equations of

motion with different initial conditions which have values governed by a Beta distri-
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bution. The solid black line in the figures represents the predicted mean value from

Fig. 4. Variance of altitude response for Monte-Carlo and gPC predicted trajectories

gPC and the dashed lines on the edges represent the maximum and minimum trajec-

tory values predicted from gPC. The figures demonstrate that the predictions of the

mean as well as the uncertainty bounds are very accurate. As the evolution of the

equations demonstrate, the initial condition uncertainty in h results in uncertainty

in all of the other parameters as time progresses. The uncertainty in γ is very large

(57 degrees) by the time the body is nearing the surface (h = 0). Despite the large

uncertainty, the gPC approximation is able to capture the bounds very accurately. To

further demonstrate the accuracy of the expansion, consider figures 4 and 5. The top

portions of these figures show the variance of the altitude and velocity respectively. In

each of the figures it is clear that the variance obtained from Monte-Carlo simulation

and that obtained by the gPC approximation are very close.
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Fig. 5. Variance of velocity response for Monte Carlo and gPC predicted trajectories

As an additional comparison, the bottom portions of figures 4 and 5 show the

normalized error between the variances predicted by Monte-Carlo simulation and

those predicted by the gPC approximation. In each case the errors in predicted

variance are at least four orders of magnitude smaller than the actual variance. The

largest errors are observed when the variance is near zero. This is because the actual

variance error is beginning to approach the tolerances of the integration scheme.

Next, we quantify the relationship between the observed error and the number

of terms used in the polynomial chaos expansion. In particular, it has been observed

that the expansion converges exponentially [15], but we wish to verify this. Figure 6

shows the errors between the predicted altitude mean and variance values for gPC

versus the Monte-Carlo results. The figure shows the trends in these errors as the

polynomial order is increased. It is important to note that the error in the variance
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Fig. 6. Altitude mean and variance errors between gPC and Monte-Carlo for various

polynomial orders

prediction is higher that of the predicted mean for the same polynomial order. This

is to be expected as the variance is second order while the mean is first order. A more

accurate prediction of the variance will therefore require higher order polynomials.

As an example of this, consider a trajectory that can be completely modeled with

three polynomials. We can write this trajectory as xt(∆) = x0φ0 + x1φ1 + x2φ2. The

mean of the trajectory is simply x0. Therefore, only a single gPC term is needed to

capture the mean, though with differential equations higher-order terms can influence

the evolution of x0 meaning these will be required to accurately predict the mean.

To compute the variance, we need to compute

E[(x −E[x])2] = E[(x1φ1 + x2φ2)2] = E[x2
1φ

2
1 + x1x2φ1φ2 + x2

2φ
2
2]

= x2
1⟨φ2

1⟩ + x2
2⟨φ2

2⟩

The first term, x0, is cancelled from the expression because it is the mean. So, we

can see that even while the mean can be captured accurately with just one term,

to capture the variance we indeed need all three terms. Therefore, to predict the
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variance with high accuracy, we will require polynomials of higher order than would

be needed to produce equivalent accuracy in the mean. Fortunately, figure 6 shows

that the errors associated with the gPC approximation go to zero exponentially as

the order of the polynomials is increased. This means that we will require only a

few polynomials to obtain a high accuracy. In fact, accuracy to 3 significant figures

is nearly obtained for third order polynomials (corresponding to p + 1 = 4). While

the errors will continue to decrease indefinitely as the polynomial order is increased,

this might not always be observed in practice. If higher order terms were added to

figure 6, the errors would remain constant and no improvement would be observed

past p+1 = 8. This is because the errors in the variance are approaching the integration

tolerances of the solver. If higher accuracy is required, the solver accuracy should be

increased.

E. Stochastic Stability Analysis of Linear Systems

By representing the stochastic system in a deterministic framework, we are able to

analyze stability properties of the stochastic system using tools developed for de-

terministic systems. This enables definition of stability conditions in terms of the

augmented state vector, which results in a larger linear matrix inequality (LMI), as

opposed to many smaller LMI’s in the case of sampling based approaches.

Proposition III.1 The system in (III.20) with u = 0 is stable if and only if there

exists a P = P T
> 0 such that

AT P + PA ≤ 0

Proof Choose V =XT PX and utilize the standard Lyapunov argument.

For the discrete time case, we have a similar result.
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Proposition III.2 The system in (III.21) with u = 0 is stable if and only if there

exists a P = P T
> 0 such that

AT PA − P ≤ 0

Proof Choose V =XT PX and again utilize the standard Lyapunov argument.

This result is presented to demonstrate the power of the approach to enable the study

of system stability in terms of well known methodologies.

Remark III.3 The number of polynomials should be chosen to accurately represent

the stochastic process in finite dimensional process, as the validity of the stability

arguments only relates to the approximated random process.

Remark III.4 The stability condition in the previous propositions only guarantee

stability of the Galerkin projection of the linear system. This is an approximation

and as such does not guarantee that the original stochastic system is indeed stable for

all ∆. For more discussion see Chapter VI.

The closed-loop stability of a system can be analyzed by utilizing similar arguments.

Proposition III.5 Given a feedback control u(t,∆) =Kx(t,∆), the feedback gain K

asymptotically stabilizes the projection of the family of systems, parameterized by ∆,

if the condition

AT P + PA + (KT
⊗ Ip+1)BT P + PB(K ⊗ Ip+1) < 0

is satisfied for some P = P T
> 0.

Proof First, let us look at u(t,∆) = Kx(t,∆). When x(t,∆) is approximated by a

gPC expansion, u(t,∆) =Kx̂(t,∆), and

ui(t,∆) =
p

∑
l=0

ui,lφl =

n

∑
j=1

p

∑
k=0

kijxj,kφk
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By projecting, we find that

U = (K ⊗ Ip+1)X (III.36)

Therefore, the closed loop system is given by

Ẋ =AX +B(K ⊗ Ip+1)X

Using the Lyapunov function V =XT PX, where P = P T
> 0, and taking its derivative

implies that the system is asymptotically stable (exponentially stable since this is a

linear system) if

XT (AT P + PA + (K ⊗ Ip+1)BP + PB(K ⊗ Ip+1))X < 0.

This completes the proof.

For discrete time, we can formulate a similar proposition.

Proposition III.6 Given a feedback control u(k,∆) = Kx(k,∆), the feedback gain

K asymptotically stabilizes the projection of the family of systems, parameterized by

∆, if the condition

(AT
+ (KT

⊗ Ip+1)BT )P (A +B(K ⊗ Ip+1)) − P < 0

is satisfied for some P = P T
> 0. Determination of stability can be solved via the LMI

feasibility problem

⎡⎢⎢⎢⎢⎢⎢⎣

P (AT
+ (KT

⊗ Ip+1)BT )P
P (A +B(K ⊗ Ip+1)) P

⎤⎥⎥⎥⎥⎥⎥⎦
> 0

Proof As was determined in the previous proposition, U = (K ⊗ Ip+1)X. To analyze

the stability we use the Lyapunov function V (k) = X(k)T PX(k). For stability of

linear systems with a Lyapunov function of this form we require V (k + 1)−V (k) < 0.
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It is simple to see that substitution of X(k + 1) in terms of X(k) yields

XT (k) ((AT
+ (KT

⊗ Ip+1)BT )P (A +B(K ⊗ Ip+1)) − P )X(k) < 0

which implies that if P = P T
≻ 0 is found, the system is stable. Using Schur Com-

plements, it is easy to write this condition as an LMI [40]. This completes the proof.

This result allows us to test the stability of a control law for a family of systems

by the analysis of a single deterministic system. It does not make sense to examine

marginal stability (λ(A) = 0 for continuous and ∣λi(A)∣ = 1 for discrete systems) for

these systems because any inaccuracy in the approximation of the system could lead

to instability. Therefore, the amount of uncertainty in the approximation should be

considered when analyzing stability margins. It is also worth noting that for stability

analysis, the probability density function being considered is not important. For

the system to be stable with probability one, it must be stable for any parameter

values that occur with non-zero probability. Thus, for a continuous pdf the system

must be stable over the entire support with non-zero measure. For certain types

of distributions this can be impractical. For example, when considering a Gaussian

distribution the polynomial support is for ∆ ∈ (−∞,∞), meaning that it could be

practically impossible to ensure stability with finite probability. In such cases it is

more practical to consider stability metrics such as 6σ.

F. Linear Stability Example

Here we consider a flight control problem, based on an F-16 aircraft model, where

a feedback control K has been designed for the nominal system. We wish to verify

the robustness of the controller in the presence of parametric uncertainty in the F-
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16 model. For simplicity, we assume that the variation in the system parameters are

dependent on a single random variable, ∆, i.e. the variation in these parameters is not

independent. In general, these parameters could be independent random processes.

In this example, we consider the short-period approximation of an F-16. The model

is given by

ẋ = Ax +Bu

y = Cx

where the state vector x = [α q xe]T ; α is the angle of attack, q is the pitch rate, and

xe is an elevator state which captures actuator dynamics. The control, u = δec, is the

elevator command in degrees. The matrix parameters are

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.6398 0.9378 −0.0014

(−1.5679) (−0.8791) (−0.1137)
0 0 −20.2000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B = [ 0 0 20.2 ]

T

C = [ 0 180
π 0 ]

The values in parenthesis are assumed to be uniformly distributed with 10% deviation

about their nominal values. A frequency-domain control has been designed based on

feedback of q for the nominal system. The control is of the form

u =
0.3122s + 0.5538

s2
+ 2.128s + 1.132

q

which is designed to be a pitch-rate tracking controller. This is converted to state-

space form (Ac, Bc, Cc) and augmented to the system to arrive at the closed loop
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system

ẋa = Aclxa +Bclu

where

Acl =

⎡⎢⎢⎢⎢⎢⎢⎣

A BCc

BcC Ac

⎤⎥⎥⎥⎥⎥⎥⎦

Bcl =

⎡⎢⎢⎢⎢⎢⎢⎣

0

Bc

⎤⎥⎥⎥⎥⎥⎥⎦
The accuracy of the gPC based approach, for finite dimensional approximation of

linear stochastic dynamics, can be inferred from figure 7. The circles (black) represent

the eigenvalues of the gPC system with ten terms. The solid (red) dots represent the

eigenvalues of the system obtained by sampling the stochastic system over ∆. It is

interesting to note that the range of eigenvalues of the stochastic system is accurately

captured by the eigenvalues of the gPC system. It should be noted that λ(A) does

not give the distribution of eigenvalues of the actual system. This would require the

solution of a different problem. Regardless, this gives us confidence in the use of

polynomial chaos for stability analysis and control of stochastic dynamical systems.

Furthermore, we are able to understand how the uncertainty in system trajectories

evolve over time. Figure 8 shows the pitch rate response of the system in the presence

of ±10% system uncertainty in the aforementioned parameters. The predicted mean

and trajectory bounds from gPC are represented by the dark solid and dashed lines

respectively. The Monte-Carlo responses of each system are depicted in gray. We

observe that the bounds predicted by the gPC system are in excellent agreement with

the responses of the Monte-Carlo simulations. As an additional point of comparison,

figure 9 shows the normalized errors in the mean and variance for the pitch rate

response of the aircraft. This figure is generated for p = 3. This demonstrates that
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Fig. 7. Closed loop eigenvalue distributions of short-period mode for ±20% parameter

uncertainty

Fig. 8. Predicted and Monte-Carlo system response to ±10% parameter uncertainty
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Fig. 9. Normalized mean and variance errors between gPC prediction and Monte Carlo

observation

for linear systems, high accuracy can be obtained with a relatively small number of

polynomials. In this manner, we are able to predict the statistical behavior of the

system through simulation of the gPC system, which is computationally far superior

than Monte-Carlo methods.

G. Stability of Nonlinear Systems

1. Methodology

In the section on nonlinear modelling, we showed that stochastic polynomial systems

of n variables could be modelled as deterministic polynomial systems of the same order

with n(p + 1) variables. Transforming stochastic dynamic systems into deterministic

systems allows us to utilize previously existing techniques to test the stability of such

a system. Because the resulting system is deterministic, any stability technique for

nonlinear systems can be utilized to analyze the stability of the projected gPC system.
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In general, for nonlinear systems the number of polynomials required to approximate

the system behavior (especially if extreme accuracy in variance is required) can be

large. For this reason, it can become difficult to analyze the stability of the system

using traditional analytical techniques. The larger set of system dynamics makes

numerical or “automated” stability analysis tools much more attractive. One such

technique is Sum-of-Squares (SOS) programming. We can utilize the SOS framework

to discuss the stability of these new polynomials. For details on this approach, see

[41, 42, 43] Let X (X) be a vector of monomials with the property that X = 0 if and

only if X = 0. Define a function

V = X T PX (III.37)

Furthermore, define a function W (X) that is positive definite in X and is a sum-of-

squares polynomial in terms of monomials of X.

Proposition III.7 The approximation of the family of polynomial systems is stable

when a function, V , can be found such that

V (X) −W (X) is SOS (III.38)

−V̇ (X) is SOS (III.39)

Proof For proof see[41].

Remark III.8 This result is straight-forward but powerful. It enables the analysis of

uncertainty in nonlinear systems in an algorithmic manner that does not require case-

by-case analysis of the various changes in the terms. The drawback is that stability is

only proven for the approximation governed by the projected system and not for the

actual stochastic system.
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2. Example

For linear systems with parametric uncertainty appearing linearly in the parameters

(as in the previous example), it is possible to determine system stability by examining

the stability of the vertex set [9]. While for many nonlinear systems, this may be

the case, one cannot in general assume that the stability of the vertex set implies

stability of the nonlinear system over the entire range. As a result, it becomes even

more important to ensure that stability is guaranteed for the entire distribution of

parameters. The gPC methodology, in this context, is very useful in the analysis

of stability for uncertain nonlinear systems. Proof of stability for the gPC system

ensures that the stochastic nonlinear system is stable for the entire distribution of

parameter uncertainty with non-zero measure. This is exemplified by the following

analysis. Consider the system

ẋ1 = x2

ẋ2 = −x1 + a(∆)x3
2

we want to understand the stability of this system when a is uncertain and its value

is based on a uniform distribution around a mean value of −0.5. For this case, we

consider the distribution that varies by ±0.4 (a(∆) ∈ [−0.9,−0.1]). The nominal

system is stable, and by utilizing SOSTOOLS (see[44, 45]), we are able to show

stability and obtain a Lyapunov function of the form

V = .79602x2
1 + .70839x2

2

To verify the stability of the system, we introduce the gPC expansion and determine

the stability of the deterministic system. The deterministic system is another polyno-

mial system of the same order, but with increased dimensionality. To demonstrate the
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methodology, stability certificates were generated for various values of p, the number

of gPC expansions. For a specific case of p = 4, the Lyapunov function is given by,

V = ZT QZ

where Z = [x23 x22 x21 x20 x13 x12 x11 x10]T , and

Q =

⎡⎢⎢⎢⎢⎢⎢⎣

Q11 0

0 Q22

⎤⎥⎥⎥⎥⎥⎥⎦
The sub-matrices are given by

Q11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5230 0.1472 −0.0659 0.0239

0.1472 0.6272 0.1509 −0.0949

−0.0659 0.1509 0.6814 0.1377

0.0239 −0.0949 0.1377 0.7589

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Q22 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.6581 0.0510 −0.0242 0.0086

0.0510 0.7073 0.0590 −0.0385

−0.0242 0.0590 0.7376 0.0567

0.0086 −0.0385 0.0567 0.7772

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
It is interesting to note that for this system, the structure of the Q matrix takes a

block diagonal form. The Lyapunov function for the gPC system retains the original

structure, i.e. it is also block diagonal. This suggests ways of examining stability

and generating certificates for gPC systems. It is important to note that the number

of terms in the certificate increases significantly as more coefficients are added. If

the structure of the Lyapunov function is unknown, then guessing all possibilities of

monomials can lead to problem formulations with large numbers of variables, which

are extremely computationally intensive in the SOSTOOLS framework.
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H. Summary

In this chapter we have presented a generalized framework for the analysis of stochas-

tic linear and nonlinear systems within the gPC framework. A general formulation for

writing a stochastic system in terms of a higher dimensional deterministic system was

presented for linear systems as well as nonlinear polynomial systems. Stability prob-

lems for linear systems with stochastic parameter uncertainty have been reduced to

the solution of an LMI feasibility problem. For nonlinear polynomial systems, stabil-

ity problems are solved using a sum of squares programming approach. The chapter

also presents several examples that highlight the application of the new deterministic

stability conditions to analysis of linear and nonlinear stability problems.
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CHAPTER IV

OPTIMAL CONTROL OF STOCHASTIC SYSTEMS

A. Introduction

In the previous chapter, the discussion was centered around modelling and stability

analysis of linear and nonlinear stochastic systems. We now take some of the same

concepts and apply these ideas to the study of control design of stochastic systems.

In this chapter we will use the modelling results from the previous chapter to solve

linear and nonlinear stochastic optimal control problems.

As mentioned previously, control of stochastic systems is receiving a heightened

amount of attention as of late. The more prevalent approaches in the literature

tend to utilize sampling based methods. For linear systems, the work of Barmish et

al. utilizes Monte-Carlo based methods to analyze stability and control problems in an

LMI framework [7, 8]. The results are somewhat limited, however as they can only

be applied to systems where the uncertain parameters are governed by a uniform

distribution. Polyak et al. [9] develops an algorithm to determine a control with

guaranteed worst-case cost. Unfortunately, this approach is also limited to systems

with uncertainty governed by a uniform distribution and appearing linearly in the

parameters. A sampling based technique is also applied to the H∞ problem in [11].

These sampling based results are extended to linear parameter varying (LPV) control

problems in [10].

For linear problems we are interested in obtaining optimal feedback laws for un-

constrained infinite horizon optimal control problems. We will also examine finite-

horizon constrained problems for both linear and nonlinear systems.

The main focus of this chapter is on optimal control in the L2 sense for linear and
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nonlinear systems with probabilistic uncertainty in system parameters. It is assumed

that the probability density functions of these parameters are known. These parame-

ters may enter the system dynamics in any manner. In the beginning of the chapter,

we address minimum expectation feedback control for linear systems. We will discuss

the formulation of the stochastic L2 optimal problem of the Bolza type in terms of the

polynomial chaos expansion. To solve this problem we will consider several different

feedback structures for continuous and discrete time systems. Several examples will

be presented to highlight the various feedback laws. The latter part of the chapter

deals with the transformation of finite-time constrained open-loop stochastic optimal

control problems to equivalent deterministic optimal control problems in higher di-

mensional state space. These problems are solved using standard numerical methods

available for deterministic optimal control problems. For these problems, uncertainty

is assumed to be in the system parameters as well as in stochastic forcing terms.

We will assume that for each type of uncertainty, the probability distribution func-

tion is known. In particular, nonlinear dynamical systems are considered though the

methodology could easily be applied to linear systems.

B. Stochastic LQR Design

In this section we address feedback control of linear stochastic dynamical systems with

probabilistic system parameters, in the gPC framework. Here we consider optimal

control with respect to expected value of a quadratic cost function, that depends on

the state and control vectors. We will examine the solution of this problem for both

deterministic and stochastic feedback control laws, and highlight salient features of

each.
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1. Minimum Expectation Control

Minimum expectation optimal trajectories are obtained by minimizing the following

cost function, which is analogous to the Bolza form,

min
u

E [∫
∞

0
(xT Qx + uT Ru)dt] (IV.1)

where x ≡ x(t) ∈ Rn, u ≡ u(t) ∈ Rm, Q = QT
> 0,R = RT

> 0, S = ST
> 0. For discrete

time systems, the following cost function is used

min
u

E [
∞

∑
k=0

xT (k)Qx(k) + uT (k)Ru(k)] (IV.2)

For scalar x, the quantity E[x2] in terms of its gPC expansions is given by

E[x2] =
p

∑
i=0

p

∑
j=0

xixj ∫
D∆

φiφjfd∆ = xT Wx (IV.3)

where D∆ is the domain of ∆ , xi are the gPC expansions of x, f ≡ f(∆) is the

probability distribution of ∆; W ∈ R(p+1)×(p+1) = {wij}, with wij = ∫D∆
φiφjfd∆ =

E[φ2
i ]δij (note: W is a diagonal matrix), and x = (x0 ⋯ xp)T . Because the polynomials

of the PC expansion or orthogonal, we can write

W = diag (⟨φ2
0⟩, ⟨φ2

1⟩, . . . , ⟨φ2
p⟩) (IV.4)

where diag(⋅) is a diagonal matrix with its diagonal terms given by the values in

parenthesis. The expression E[x2] can be generalized for x ∈ Rn where E[xT x] is

given by

E[xT x] =XT (In ⊗W )X (IV.5)

In ∈ Rn×n is the identity matrix and ⊗ is the Kronecker product, and X is given by

eqn.(III.22). The cost function in eqn.(IV.1) can now be written in terms of the gPC



63

expansions as

min
u

J =min
u
∫
∞

0
(XT Qx̄X +E [uT Ru])dt (IV.6)

where Qx̄ = Q⊗W . The discrete time cost becomes

min
u

Jd =min
u

∞

∑
k=0

(XT (k)Qx̄X(k) +E [uT (k)Ru(k)]) (IV.7)

The expected value of uT Ru will depend upon the control implementation discussed

in subsection 2. It is also possible to write variance control and moment control

problems in a similar fashion. This is discussed in more detail in section C.

2. Feedback Solutions

In this section, we will discuss conditions for optimality for various feedback structures

as they apply to a quadratic cost of the form developed in the previous section.

a. Augmented Deterministic State Feedback with Constant Deterministic Gain

The first implementation we will discuss involves the assumption that the control

is probabilistic and augmented state vector X is used for feedback. If we assume

u = ∑p
k=0 ui,k(t)φk(∆)

E [uT Ru] =UT RūU (IV.8)

where Rū = R⊗W .

Proposition IV.1 The cost function in eqn. (IV.6) is minimized with a control of

the form

U = −R−1ū BT PX (IV.9)

where P ∈ Rn(p+1)×n(p+1) is the solution to the Riccatti equation

AT P + PA − PBR−1ū BT P +Qx̄ = 0 (IV.10)
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Proof As per the usual solution to the LQR problem, we can write the cost function

as J = XT PX. From Euler-Lagrange (by substituting for the Lagrange multiplier),

we obtain 0 = RūU +BT PX, giving

U = −R−1ū BT PX

where U is defined by eqn.(III.23). Substituting this into the cost function and taking

the derivative of both sides gives

Ṗ +AT P − PBR−1ū BT P + PA − PBR−1ū BT P =

−Qx̄ − PBR−1ū BT P

For the infinite horizon problem Ṗ = 0, completing the proof.

Remark IV.2 The solution to this expression yields a constant gain matrix, but

implementation requires knowledge of gPC expansions of the states. The control vector

U = −R−1ū BT PX with

U = [ u1(t)T u2(t)T ⋯ um(t)T ]
T

(IV.11)

defines u(t,∆) = {ui(t)T Φ(∆)}mi=1, a family of control laws, parameterized by ∆.

Appropriate u(t) can be determined based on the knowledge of ∆, as a result ∆ must

also be known during implementation.

Remark IV.3 This control scheme can also be used to simultaneously design optimal

controls for all ∆. This is equivalent to solving the LQR problem for each value of

∆. This will be demonstrated numerically in an example in the next section.

For discrete time systems, the equivalent control strategy is outlined in the fol-

lowing proposition
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Proposition IV.4 The cost function in eqn. (IV.7) is minimized with a control of

the form

U(k) = − (Rū +BT PB)−1 BT PAX(k) (IV.12)

where P ∈ Rn(p+1)×n(p+1) is the solution to the Riccatti equation

P = Qx̄ +AT (P − PB(Rū +BT PB)−1BT P )A (IV.13)

Proof Again, following the solution to the LQR problem we can write the cost func-

tion as Jk = XT (k)P (k)X(k). Examining the cost at time k in terms of the cost at

k + 1 gives

XT (k)P (k)X(k) = XT (k)Qx̄X(k) +UT (k)RūU(k) +XT (k + 1)P (k + 1)X(k + 1)

But the cost at time k + 1 can be written as a function of the state and control at

time k as

XT (k + 1)P (k + 1)X(k + 1) = (UT (k)BT
+XT (k)AT )P (k + 1) (AX(k) +BU(k))

From this expression, we can see that

U(k) = − (Rū +BT P (k + 1)B)−1 BT P (k + 1)AX(k)

where P (k + 1) is the solution of

P (k) = Qx̄ +AT (P (k + 1) − P (k + 1)B(Rū +BT P (k + 1)B)−1BT P (k + 1))A

For the infinite horizon problem we have that P (k+1) = P (k) = P and this completes

the proof.

Remark IV.5 As in the continuous time case, implementation requires both knowl-

edge of the gPC expansion of the states as well as knowledge of ∆. Furthermore,
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solution of this equation can be written in terms of an LMI using the Schur Comple-

ment.

b. Stochastic State Feedback with Constant Deterministic Gain

In this formulation, the state trajectory x(t,∆) is used to generate the control law

that is not explicitly parameterized by ∆. This approach does not require estimation

of the gPC expansions of the state and hence doesn’t require the knowledge of ∆. We

propose feedback of the form

u(t,∆) =Kx(t,∆) (IV.14)

where K is a deterministic constant gain. Once again the control is stochastic, due

to stochastic state trajectory, and enters the cost function as E [uT Ru]. The control

vector in gPC framework then becomes

U = (K ⊗ Ip+1)X. (IV.15)

In this manner, we are selecting a feedback structure that results in a problem similar

to the output feedback problem in traditional control. The modified cost function

becomes

J = ∫
∞

0
XT (Qx̄ + (KT

⊗ Ip+1)Rū (K ⊗ Ip+1))Xdt (IV.16)

for the continuous case and

Jd =

∞

∑
k=0

XT (k) (Qx̄ + (KT
⊗ Ip+1)Rū (K ⊗ Ip+1))X(k) (IV.17)

for the discrete time case.

Proposition IV.6 For a feedback law of the form in eqn.(IV.14), the cost function
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in eqn.(IV.16) is minimized for a matrix K ∈ Rm×n solving

AT P + PA + PB(K ⊗ Ip+1) + (KT
⊗ Ip+1)BT P+

Qx̄ + (KT
⊗ Ip+1)Rū(K ⊗ Ip+1) = 0 (IV.18)

subject to P = P T
> 0. Furthermore, a solution exists for some Qx̄ and Rū if the

feasibility condition

AT P + PA + (KT
⊗ Ip+1)BT P + PB(K ⊗ Ip+1) < 0 (IV.19)

is satisfied.

Proof Let J = XT PX. Taking the derivative of the cost function gives rise to the

matrix equation

Ṗ + PA + PB(K ⊗ Ip+1) +AT P + (KT
⊗ Ip+1)BT P =

−Qx̄ − (KT
⊗ Ip+1)Rū(K ⊗ Ip+1)

For an infinite time interval, let Ṗ → 0, giving the first condition. Now, we must

show the second part of the proposition. The feasibility condition implies that we

can select some stabilizing gain, K and that we can select some M = MT
> 0, and

find a P = P T
> 0 such that

AT P + PA + (KT
⊗ Ip+1)BT P + PB(K ⊗ Ip+1) = −M

Select M = M̂ ⊗W . Let M̂ = Q+KT RK. Because K makes the system Hurwitz, use

of Lyapunov’s theorem guarantees the existence of a P . This completes the proof.

Remark IV.7 The bilinear matrix inequality (BMI) in eqn.(IV.19) does not have

any analytical solution and must be solved numerically to obtain K and P . The BMI

can be solved using solvers such as PENBMI [46].
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Proposition IV.8 For a feedback law of the form in eqn.(IV.14), the cost function

in eqn.(IV.17) is minimized for a matrix K ∈ Rm×n solving

Qx̄ + (KT
⊗ Ip+1)Rū(K ⊗ Ip+1) + ((KT

⊗ Ip+1)BT
+AT )P (A +B(K ⊗ Ip+1)) − P = 0

subject to P = P T
> 0. Furthermore, a solution exists for some Qx̄ and Rū if the

feasibility condition

((KT
⊗ Ip+1)BT

+AT )P (A +B(K ⊗ Ip+1)) − P < 0 (IV.20)

is satisfied.

Proof Let J = XT PX. Examining the cost function at time k, as was done previ-

ously, gives rise to the matrix equation

P (k) = Qx̄ + (KT
⊗ Ip+1)Rū(K ⊗ Ip+1) + ((KT

⊗ Ip+1)BT
+AT )P (k + 1) (A +B(K ⊗ Ip+1))

For an infinite time interval, let P (k + 1) = P (k) = P , giving the first condition. The

feasibility condition implies that we can select some stabilizing gain, K and that we

can select some M =MT
> 0, and find a P = P T

> 0 such that

((KT
⊗ Ip+1)BT

+AT )P (A +B(K ⊗ Ip+1)) − P = −M

As in the previous proposition, select M = M̂ ⊗W . Let M̂ = Q +KT RK. Because K

makes the system stable, use of Lyapunov’s theorem guarantees the existence of a P .

This completes the proof.

Remark IV.9 The condition in proposition IV.8 can also be written as a bilinear

matrix inequality though this is less intuitive. The BMI has the form

⎡⎢⎢⎢⎢⎢⎢⎣

Y (KT
⊗ Ip+1)(Rū +BT PB)

(Rū +BT PB)(K ⊗ Ip+1) Rū +BT PB

⎤⎥⎥⎥⎥⎥⎥⎦
≥ 0
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where

Y = Qx̄ +AT PA + (KT
⊗ Ip+1)BT PA +AT PB(K ⊗ Ip+1) − P

Remark IV.10 Unlike in the previous design, the variation in the state trajectories

directly maps to a corresponding deterministic control and does not require explicit

knowledge of ∆. This can lead to computational benefits during implementation. This

feedback structure mimics the traditional robust control approach where a single con-

troller guarantees robust performance for the entire range of parameter variation. The

advantage here is that it admits any arbitrary distribution, where traditional robust

control is limited to uniform distribution only.

At first glance it would seem that these bilinear equations could be reduced

to linear equations through standard substitutions as in [40]. This is not the case,

however, because the Kronecker product creates more equations than unknowns. Such

substitutions require an inverse to solve for the gain, K, but such a procedure would

not preserve the Kronecker structure.

c. Stochastic State Feedback with Stochastic Gain

This section deals with the optimality of a control law that involves feedback of the

form u = K(∆)x(t,∆), where the constant gain depends on the random variable

∆. In terms of the gPC expansions, K(∆) can be written as K(∆) = {kij(∆)} and

kij(∆) = ∑p
h=0 kij,hφh(∆). This feedback structure is also analogous to output feedback

control, but with increased degree of freedom. Implementation of this control law

requires knowledge of ∆. To determine the values ui,j, we project the control onto

the polynomial subspace

ui,l =
1

⟨φ2
l ⟩

n

∑
j=1

p

∑
h=0

p

∑
q=0

kij,hxj,q⟨φl, φhφq⟩
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giving

U = (
p

∑
h=0

Kk ⊗Ψh)X =KX (IV.21)

When the control K is not a function of ∆, this corresponds to kij,h = 0 for h ≥ 1.

The matrix Ψ0 = Ip+1, so the previous case is recovered. The cost function is written

in terms of this feedback strategy as

J = ∫
∞

0
XT (Qx̄ +KT RūK)Xdt (IV.22)

Proposition IV.11 The feedback law in eqn.(IV.21) optimally drives the system to

the origin with respect to the cost function in eqn.(IV.22) for K(∆) solving

AT P + PA + PBK +KTBT P+

Qx̄ +KT RūK = 0 (IV.23)

subject to P = P T
> 0. Furthermore, a solution exists for some Qx̄ and Rū if the

feasibility condition

AT P + PA +KTBT P + PBK < 0 (IV.24)

is satisfied.

Proof The proof is similar to the previous proposition and is therefore omitted.

For the discrete time case, the cost function becomes

Jd =

∞

∑
k=0

XT (k) (Qx̄ +KT RūK)X(k) (IV.25)

Proposition IV.12 The feedback law in eqn.(IV.21) optimally drives the system to

the origin with respect to the cost function in eqn.(IV.25) for K(∆) solving

Qx̄ +KT RūK + (KTBT
+AT )P (A +BK) − P = 0
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subject to P = P T
> 0. Furthermore, a solution exists for some Qx̄ and Rū if the

feasibility condition

(AT
+KTBT )P (A +BK) − P < 0 (IV.26)

is satisfied.

Proof The proof is similar to the previous proposition for a discrete time optimal

control policy and is therefore omitted.

Remark IV.13 This control strategy provides more flexibility for solving the neces-

sary condition for optimality at the expense of more complexity in implementation,

i.e. the necessity for knowledge of ∆.

d. Deterministic Control with Augmented State Feedback

In this feedback structure, the augmented gPC states of the stochastic system are used

to derive a deterministic control. This corresponds to a control with ui(t,∆) = ui,0.

As a result, the system B matrix becomes

B̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11,1 b12,1 ⋯ b1m,1

b11,2 b12,2 ⋯ b1m,2

⋮ ⋮ ⋮

b11,p b12,p ⋯ b1m,p

b21,1 b22,1 ⋯ b2m,1

⋮ ⋮ ⋮

bn1,p bn2,p ⋯ bnm,p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
or B̂ can be written in the form of eqn.(III.27), where

B̂ij =

p

∑
k=0

bij,kδ1k
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The δ1k is a vector of zeros with a 1 at the kth position. Since u is a deterministic

control,

E[uT Ru] = uT Ru (IV.27)

Unlike previous cases, the dimension of B̂ is n(p+1)×m instead of n(p+1)×m(p+1).
The optimal control problem for this case involves selecting a control structure of the

form

u =KX (IV.28)

where K ∈ Rm×n(p+1).

Proposition IV.14 Assume the matrix pair (A, B̂) is stabilizable. The control law

in eqn.(IV.28) with a gain given by

K = −R−1B̂T P (IV.29)

where P = P T
> 0 is the solution of the algebraic Riccatti equation

AT P + PA − P B̂R−1B̂T P +Qx̄ = 0 (IV.30)

and optimizes the performance index in eqn.(IV.6) for a deterministic feedback law.

Proof This is the solution to the standard LQR problem.

The above result gives a feedback law for the continuous time case. We now give a

result for the discrete time case.

Proposition IV.15 Assume the matrix pair (A, B̂) is stabilizable. The control law

in eqn.(IV.28) with a gain given by

K = −(R + B̂T P B̂)−1B̂T PA (IV.31)
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where P = P T
> 0 is the solution of the algebraic Riccatti equation

P = Qx̄ +AT (P − P B̂(R + B̂T P B̂)−1B̂P )A (IV.32)

and optimizes the performance index in eqn.(IV.7) for a deterministic feedback law.

Proof This is the solution to the standard LQR problem.

Remark IV.16 The solution to this control problem maps X, the gPC expansions of

the states, directly to deterministic control u(t). Hence, knowledge of ∆ is necessary

to compute X during implementation.

As the number of PC terms is increased, the system becomes less controllable with

respect to a single deterministic control vector (ui,0). However, if the system is stabi-

lizable with respect to the feedback, then the higher-order uncontrollable PC states

will decay to zero as well. Thus a solution to the optimization problem still exists.

This type of system dynamics (with respect to the control input matrix, B̂) is impor-

tant because the system would behave in this manner under the influence of open-loop

optimal control. Therefore, if the system is stabilizable with respect to K, then an

open-loop optimal solution may exist. If the pair (A, B̂) is not stabilizable, then

stochastic feedback may be needed and the approaches of the previous propositions

will be required.

3. Examples

a. Deterministic State Feedback Example

As a simple example, consider the following model of an F-16 aircraft at high angle

of attack

ẋ = Ax +Bu
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with states x = [V α q θ T ]T where V is the velocity, α the angle of attack, q

the pitch rate, θ its angle, and T is the thrust. The controls, u = [δth δe]T , are the

elevator deflection δe, and the throttle δth. The A and B matrices are given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1658 −13.1013 (−7.2748) −32.1739 0.2780

0.0018 −0.1301 (0.9276) 0 −0.0012

0 −0.6436 −0.4763 0 0

0 0 1 0 0

0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −0.0706

0 −0.0004

0 −0.0157

0 0

64.94 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Similar to the analysis of Lu[11], the terms in parenthesis in the A matrix are assumed

to be uncertain and are functions of a single random variable, ∆. The uncertainty in

these terms is assumed to be distributed uniformly by ±20% about the nominal values

−7.2748 and 0.9276 respectively. This uncertainty corresponds to the uncertainty

in the damping term Cxq. The control design objective is to keep the aircraft at

trim, given perturbation in the initial condition, in the presence of such parametric

uncertainty. This is accomplished with an LQR design, using the control law in

eqn.(IV.9), which results in a ∆ parameterized family of optimal feedback gains. We

compare the performance of the stochastic LQR design with Monte-Carlo designs,

where LQR designs were performed for a family of systems sampled over uniformly

distributed ∆. The cost function for the Monte-Carlo designs is kept identical to that

in the stochastic design, i.e. matrices Q and R were the same for all the designs.
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Fig. 10. Family of α trajectories from Monte-Carlo and predicted mean and uncer-

tainty from PC.

Figure 10 shows the performance of the Monte-Carlo LQR designs, represented in

gray, as well as the performance of the gPC based design. The variance and mean of

the state trajectories, computed from the gPC expansions, are shown as dashed and

solid line respectively. We observe that the statistics obtained from stochastic LQR

design are consistent with those obtained from the Monte-Carlo simulations. The key

advantage in the gPC based design framework is that the stochastic control design

problem is solved deterministically and by a single design. The controller obtained

is statistically similar to the family of LQR designs over the sample set of ∆, but

synthesized in a computationally efficient and statistically consistent manner. If the

LQR problem is solved for each value of ∆ and the expected cost is computed, this

gives

E[J] = E[x(∆)T P (∆)x(∆)]

= ∫
∆

p

∑
i=0

p

∑
j=0

p

∑
k=0

xT
i Pjxkφiφjφk f d∆

=XT (
p

∑
k=0

Pk ⊗Wk)X =XT PmcX (IV.33)
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where we define eijk = ⟨φiφjφk⟩ and let Wk =W T
k be defined by

Wk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e00k e01k ⋯ e0nk

e10k e11k ⋯ e1nk

⋮ ⋱ ⋮

en0k en1k ⋯ ennk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The term, W0 corresponds to W in eqn.(IV.5). The question naturally arises, “How

does the gPC solution relate to the expected cost of solving the LQR problem for each

value of ∆?” To determine this relationship we consider the two cost functions and

more specifically, their corresponding P matrices. The matrix, Pmc, has the same

dimensionality as the solution of the Riccatti equation in eqn.(IV.10). Comparing

the cost incurred by the controller in equation (IV.9), J =XT PX, with the expected

cost of each LQR solution, XT PmcX, we expect P to tend to Pmc as the number of

terms in the PC expansion is increased. To compare these two matrices, we solve the

traditional LQR problem for a large sample of ∆ and obtain the corresponding matrix

P (∆). This is then projected onto the polynomial chaos basis functions, giving Pk,

and Pmc is then calculated. Figure 11 shows the Frobenius norm of Pmc − P as a

Fig. 11. Frobenius norm of Pmc − P normalized by ∥P ∥F
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function of the number of terms included in the gPC expansion. We can see that

P tends to the projection of the Monte-Carlo solution exponentially as the number

of terms is increased. This means that the LQR solution we obtain for the gPC

system for the control in eqn.(IV.9) represents the solution of the LQR problem at

each value of ∆ when its uncertainty is uniform in distribution. A formal exposition

of this observation will be addressed in our future work.

b. Stochastic State Feedback with Constant Gain Example

The previous example demonstrates the ability of the gPC framework to be used

to perform optimal control design over a distribution of parameters but requires

knowledge of xi,j, the gPC expansions of the state vector, as well as ∆. In many

systems it may not be feasible to measure or estimate ∆, but rather to utilize a

constant feedback solution that is optimal with respect to the distribution of the

uncertain parameters. For these cases, the control design in eqn.(IV.14) is used

where the gain is calculated as the solution of a BMI. As an example of this design

approach consider the following problem.

A =

⎡⎢⎢⎢⎢⎢⎢⎣

2 +∆ 2

−3 −4

⎤⎥⎥⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎢⎢⎣

1

1

⎤⎥⎥⎥⎥⎥⎥⎦
C = [ 1 0 ]

where ∆ ∈ [−1 ,1] is a random variable. We wish to design a single control that

stabilizes the system and minimizes the expected cost. Solving the resulting BMI

for the optimization condition yields the desired control. In addition to the mini-

mum expectation solution proposed in this work, we also design an optimal control

using standard LQR for the nominal system, i.e. ∆ = 0. Figure 12 shows the closed

loop eigenvalues for both control laws. There is a much larger distribution of system
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Fig. 12. Closed loop eigenvalues of minimum expectation control and nominal optimal

control
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eigenvalues for the nominal control law, and the system behavior varies significantly

over the range of the random variable, ∆. This example demonstrates the benefit

of optimizing with respect to a distribution as opposed to a single nominal point.

Figure 13 shows the cost of each control law for given values of ∆. As an additional

comparison, the cost for minimizing the worst case is shown as well. With respect

Fig. 13. Comparison of cost of nominal and minimum expectation control as a function

of ∆

to the distribution of the parameters, the expected cost of the gPC solution is lower,

though the nominal optimal solution is optimal at ∆ = 0, which is expected.

Utilizing a uniform distribution for parameter uncertainty does not always result

in a realistic representation. If the uncertainty in a parameter is represented by a

uniform distribution, this means that knowledge of the value is limited to a range, but

there is no value more likely than another. In practice, parameter values exhibit more

Gaussian behavior, however the support of the Gaussian distribution is ∆ ∈ (−∞,∞),
making them impractical for use in stability analysis. There are two approaches

that can be used to alleviate this problem. The distribution can be truncated and

new orthogonal polynomials generated through an algorithm such as Gram-Schmidt



80

Fig. 14. Closed loop eigenvalues of minimum expectation control for Beta distribution

(top). Cost functions associated with various values of α as a function of ∆

(bottom)

orthogonalization, or a similar distribution with finite support can be used. For this

example, we chose a Beta distribution with α = β as this produces a Gaussian like

curve with support on ∆ ∈ [−1,1]. The two parameters, α and β are varied on

the line α = β and optimal controllers are generated. Figure 14 shows the closed
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Fig. 15. Beta distribution for various values of α = β. Distribution approaches δ func-

tion as α →∞.

loop eigenvalue locations of the system for values of ∆ between −1 and +1. The

eigenvalue locations are generated for several values of α. As α is increased, the range

of eigenvalues increases and in the limiting case, these become the eigenvalues of the

closed loop system with the nominal design. The corresponding distribution curves

are shown in figure 15. As α = β →∞, the distribution, weighted properly, becomes

a δ function, or a single point with probability one. Finding an optimal control for

the nominal case is then equivalent to finding the optimal expectation control for a

system where the probability distribution is f(∆) = δ(∆ = 0). As the value of α

is decreased, to zero, the distribution widens and tends to a uniform distribution.

Figure 14 also depicts the cost function for various values of α. As the value of α is

increased from 0 (corresponding to a uniform distribution) to ∞ (corresponding to

the nominal case), the corresponding pointwise cost evolves from that of a uniform

distribution to the cost associated with the nominal design. As α is increased, the

extreme values of ∆ occur with lower probability, making it acceptable to take more

risk for these values.
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C. Optimal Control with Probabilistic System Parameters

In this section we discuss generation of trajectories for dynamical systems in the

optimal control theoretic framework. Optimality with probabilistic uncertainty in

system parameters results in stochastic optimal control problems. In this section,

we derive two standard cost functions that are encountered in stochastic optimal

control problems, in terms of the polynomial chaos expansions. Here we consider

minimum expectation and minimum variance cost functions. In the following analysis,

we assume x(t) is stochastic and u(t) is deterministic.

1. Minimum Expectation Trajectories

Minimum expectation optimal trajectories are obtained by minimizing the following

cost function, analogous to the Bolza form,

min
u

E [∫
tf

0
(xT Qx + uT Ru)dt + xT

f Sxf] (IV.34)

where x ≡ x(t) ∈ Rn, u ≡ u(t) ∈ Rm and xf = x(tf),Q = QT
> 0,R = RT

> 0, S = ST
> 0.

Unlike the cost function in equation (IV.1), this function is finite time and also has

a terminal cost function. Following steps similar to those for the infinite horizon

problem in the previous section, the cost function in eqn.(IV.34) can now be written

in terms of the gPC expansions as

min
u
∫

tf

0
[XT Qx̄X + uT Ru]dt +XT

f Sx̄Xf (IV.35)

where Qx̄ = Q⊗W,Sx̄ = S ⊗W and Xf =X(tf).
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2. Minimum Covariance Trajectories

For x ∈ R, the variance σ2(x) in terms of the gPC expansions is given by

σ2(x) = E[x −E[x]]2 = E[x2] −E2[x] = xT Wx −E2[x]

where

E[x] = E [
p

∑
i=0

xiφi] =
p

∑
i=0

xiE[φi] =
p

∑
i=0

xi∫
D∆

φifd∆

or

E[x] = xT F, where F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫D∆
φ0fd∆

⋮

∫D∆
φpfd∆

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Therefore, σ2 for scalar x can be written in a compact form as

σ2
= xT (W − FF T )x (IV.36)

which may enter the cost function in integral form or as final cost.

The covariance of a vector process x(t) ∶ R↦ Rn is given by

Cxx(t) = E[(x(t) − x̄(t)) (x(t) − x̄(t))T ]

= E[(x(t)x(t)T ] − x̄(t)x̄(t)T

where

x̄(t) = E[x(t)] =

⎛
⎜⎜⎜⎜⎜⎜
⎝

xT
1

⋮

xT
n

⎞
⎟⎟⎟⎟⎟⎟
⎠

F
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and xi is defined by eqn.(III.13). Therefore

x̄(t)x̄(t)T =

⎛
⎜⎜⎜⎜⎜⎜
⎝

xT
1

⋮

xT
n

⎞
⎟⎟⎟⎟⎟⎟
⎠

FF T

⎛
⎜⎜⎜⎜⎜⎜
⎝

xT
1

⋮

xT
n

⎞
⎟⎟⎟⎟⎟⎟
⎠

T

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xT
1 FF Tx1 ⋯ xT

1 FF Txn

⋮ ⋮

xT
nFF Tx1 ⋯ xT

nFF Txn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Similarly,

E[xxT ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xT
1 Wx1 ⋯ xT

1 Wxn

⋮ ⋮

xT
nWx1 ⋯ xT

nWxn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Therefore, in terms of gPC coefficients, Cxx can be written as

Cxx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xT
1 (W − FF T )x1 ⋯ xT

1 (W − FF T )xn

⋮ ⋮

xT
n(W − FF T )x1 ⋯ xT

n(W − FF T )xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(IV.37)

An important metric for covariance analysis is Tr[Cxx], which can be written in a

compact form as,

Tr[Cxx] =XT Qσ2X (IV.38)

where Qσ2 = In ⊗ (W − FF T ).

3. Example - Van der Pol Oscillator

In this section we apply the polynomial chaos approach to solve an example stochas-

tic optimal control problem based on the Van der Pol oscillator, which highlights

numerical solution of stochastic optimal control problems. Consider the well known
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forced Van der Pol oscillator model

ẋ1 = x2

ẋ2 = −x1 + µ(∆)(1 − x2
1)x2 + u

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(IV.39)

where µ is a random variable with uniform distribution in the range µ(∆) ∈ [0,1]. For

uniform distribution the basis functions are Legendre polynomials and D∆ = [−1,1].
Since the dimension of ∆ in this case is one, p is equal to the order of the Legendre

polynomial. For this example we chose p = 4. Representing the gPC expansions of

x1, x2, µ similar to eqn.(III.9), the dynamics of the Van der Pol oscillator in terms of

the gPC expansions can be written as

ẋ1,m = x2,m

ẋ2,m = −x1,m +
1

⟨φm, φm⟩ (
p

∑
i=0

p

∑
j=0

µix2,jeijm−

p

∑
i=0

p

∑
j=0

p

∑
k=0

p

∑
l=0

µix1,jx1,kx2,leijklm + ⟨u,φm⟩)

for m = {0,⋯, p}; where eijm = ⟨φiφjφm⟩ and eijklm = ⟨φiφjφkφlφm⟩. Note that the

projection ⟨u,φm⟩ = u for m = 0, and ⟨u,φm⟩ = 0 for m = {1, ⋯, p}. Therefore the

deterministic control only enters the equation for x2,0.

The stochastic optimal control problem for this example is posed as

min
u(t)

E [∫
5

0
(x2

1 + x2
2 + u2)dt] (IV.40)

subject to stochastic dynamics given by eqn.(IV.39) and constraints

x1(0) = 3

x2(0) = 0

E[x1(5)] = 0

E[x2(5)] = 0
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In the posed problem, we have assumed that there is no uncertainty in the initial

condition of the states and the terminal equality constraint is imposed on the expected

value of the states at final time. In terms of the gPC expansions, the constraints are

x1,0(0) = 3

x1,m(0) = 0, m = {1, ⋯, p}
x2,m(0) = 0, m = {0, ⋯, p}

E[x1(5)] = x1,0(5) = 0

E[x2(5)] = x2,0(5) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(IV.41)

The optimal control problem was solved using OPTRAGEN [47], a MATLAB toolbox

that transcribes optimal control problems to nonlinear programming problems using

B-Spline approximations. The resulting nonlinear programming problem was solved

using SNOPT [48]. Figure (16(a)) shows the trajectories of the optimal solution in the

subspace spanned by B-Splines. The solid (red) state trajectories are the mean tra-

jectories of x1(t), x2(t) and they satisfy the constraints defined by eqn.(IV.41). The

dashed (blue) state trajectories are the remaining gPC expansions of x1(t), x2(t). The

suboptimal cost for these trajectories is 15.28 and took 10.203 seconds to solve for

in MATLAB environment. The trajectories were approximated using B-Splines con-

sisting of ten 5th order polynomial pieces with 4th order smoothness at the knot points.
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(a) Optimal gPC trajectories for the
Van der Pol oscillator

(b) Verification of stochastic optimal con-
trol law using Monte-Carlo simulations.

Fig. 16. Comparison of trajectories obtained from gPC expansions and Monte-Carlo

simulations.
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(a) Evolution of pdf and mean trajectory.

(b) Evolution of uncertainty in state due to uncertainty in µ.

Fig. 17. Evolution of the probability density function of the state trajectories due to

µ(∆). The solid (red) line denotes the expected trajectory of (x1, x2). The

circles (blue) denote time instances, on the mean trajectory, for which the

snapshots of pdf are shown.
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To verify the optimal control law for the stochastic system, we applied u∗(t) to

the Van der Pol oscillator for various values of µ, uniformly distributed over the inter-

val [0,1], and computed the expected value of the state trajectories from the Monte-

Carlo simulations. Figure (16(b)) shows the comparison of the expected trajectories

E[x∗1(t)],E[x∗2(t)], obtained from gPC and Monte-Carlo methods. The trajectories

are identical. Thus, the generalized polynomial chaos framework provides a powerful

set of tools for solving stochastic optimal control problems.

Figure (17) shows the evolution of uncertainty in state trajectories due to un-

certainty in µ. The evolution of probability density functions (pdf), obtained via

sampling, are shown in fig. (17(b)). The mean trajectory with the time varying pdf

is shown in fig. (17(a)). From these figures, it can be inferred that the trajectories

satisfy the terminal constraint in an average sense. However, none of the individual

trajectories arrive at the origin. This is not surprising, as the constraints were only

imposed on the expected value of the trajectories. For nonlinear systems the uncer-

tainty evolves in a non-Gaussian manner. Therefore, analysis based on expectation

can lead to erroneous interpretations and it is important to include higher order mo-

ments in the analysis. For this problem, localization of the state about the origin at

final time can be achieved by including a terminal cost or constraint related to the

covariance at final time.

Figure (18) shows the probability density function at final time when a termi-

nal constraint Tr[Cxx] < 0.2 was imposed in the optimal control problem. Figure

(18) also shows the probability density function, at final time, obtained without the

terminal constraint. It is clear from the figure that inclusion of terminal covariance

based constraint has localized the covariance about the origin. Although none of the

trajectories for µ ∈ [0,1], even for the constrained case, arrive at the origin.

This terminal constraint however incurred a higher cost of 128.79. The state and
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Fig. 18. PDF at final time, due to the terminal constraint based on covariance.

control trajectories are shown in fig. (19(a)). We observe that introduction of terminal

constraint Tr[Cxx] < 0.2 results in higher control magnitudes. The optimal control

obtained in this case also agrees with the Monte-Carlo simulations over µ ∈ [0,1], and

is shown in fig. (19(b)).

(a) Optimal gPC trajectories for the
Van der Pol oscillator with terminal co-
variance constraint

(b) Verification of stochastic optimal con-
trol law using Monte-Carlo simulations.

Fig. 19. Comparison of trajectories obtained from gPC expansions and Monte-Carlo

simulations.
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D. Optimal Control with Stochastic Forcing

In this section we consider optimal control of dynamical systems with stochastic forc-

ing. The stochastic forcing is assumed to be a random process with known covariance.

Such processes can be approximated using the Karhunen-Loéve expansion functions

[20]. If the correlation window of the forcing function is zero, i.e. if it is white noise,

then the number of terms of the expansion will be infinite. For this reason, we as-

sume that the stochastic forcing function has a non-zero correlation window, making it

amenable for finite dimensional approximation. This is not an unrealistic assumption

as there are many disturbance inputs in engineering systems with non-zero correla-

tion windows. One notable example is the Dryden gust model which uses colored

(correlated) noise inputs. The gPC expansion used in the previous sections of the pa-

per does not utilize information related to the correlation of the noise inputs. When

this information is known the Karhunen-Loéve (KL) expansion is used to include this

time based information in the dynamics. This is accomplished by adding additional

random variables to the system in the following manner. Let Z(t, ω) be a zero-mean

random process with known covariance function R(t1, t2), the KL expansion is given

by

Z(t, ω) =
∞

∑
k=1

√
λkfk(t)∆k (IV.42)

where ∆k is a random variable governed by the distribution that governs Z(t, ω).
For example, if Z(t, ω) is a correlated Gaussian process, each random variable, ∆k is

governed by a Gaussian distribution. The functions, fk(t) are eigenfunctions of the

covariance function or

∫
b

a
R(t1, t2)fk(t2)dt2 = λkfk(t1) (IV.43)

The scalars, λk, are the associated eigenvalues of the orthonormal functions fk(t).
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This expansion is important because it allows us to write a correlated stochastic

process as a summation of random variables with time-varying coefficients. Coupling

this expansion with the projection techniques of the gPC gives a means of solving

optimization problems with stochastic forcing. To return to the example of the Van

der Pol Oscillator, consider the oscillator forced with the stochastic forcing function

w(t,∆). The dynamics of the oscillator are then governed by

(IV.44)

ẋ1 = x2

ẋ2 = −x1 + µ(∆0) (1 − x2
1)x2 + u +w(t,∆) (IV.45)

where ∆0 corresponds to the random variable associated with uncertainty in µ. The

change in notation will become clear in the following text. The covariance of w(t,∆)
is given by

Rw(t1, t2) = e−a∣t1−t2∣ (IV.46)

This covariance can be obtained by passing white noise through a first order filter

with time constant a. To determine the new set of approximate dynamics, we first

expand w(t,∆) with its truncated KL expansion as

w(t,∆) =
M

∑
k=1

√
λkfk(t)∆k (IV.47)

The time derivative of x2 then becomes

ẋ2 = µ(∆0) (1 − x2
1)x2 + u +

M

∑
k=1

√
λkfk(t)∆k (IV.48)

The reason for the notation ∆0 now becomes clear. Each term in the KL expansion

adds a new random variable to the equations of motion so that we now have a vector

of random variables, ∆ = [ ∆0 ∆1 ⋯∆k ]. Expanding our state variables in terms
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of KL gives

xi(t,∆) = xi,0(t,∆0) +
M

∑
k=1

fxi,k(t)χi,k (IV.49)

Because the covariance of x is not known, the new random variables are written in

terms of a new gPC expansion. For simplicity, the two summations in the previous

equation are combined into one single summation that starts with k = 0. Then we

write each χi,k as a gPC expansion of the random variables from the vector ∆, or

χi,k =

p

∑
j=0

aj,i,kφj(∆) (IV.50)

The gPC expansion has p+1 terms, which can be determined as p+1 = (M+1+r)!(M+1)!r! , where

r is the desired order of the polynomials and M is the order of the KL expansion. The

resulting basis, φj, is therefore an orthogonal basis with respect to M +1 independent

random variables. Therefore, xi becomes

xi(t,∆) =
M

∑
k=0

[fxi,k(t)
p

∑
j=0

aj,i,kφj] (IV.51)

This can be rewritten as

xi(t,∆) =
p

∑
j=0

xi,j(t)φj (IV.52)

where xi,j(t) = ∑M
k=0 fx,k(t)aj,k. Because the covariance of xi is unknown, the functions

fx,k are unknown as well. Therefore, we can utilize the variables xi,j as the states of

a differential equation and solve for these as we have done in previous sections. With

the equations in this form, the Galerkin projection utilized throughout the paper can
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now be used to arrive at the projected dynamics. These have the form

ẋ1,m = x2,m

ẋ2,m = −x1,m +
1

⟨φm, φm⟩ (
p

∑
i=0

p

∑
j=0

µix2,jeijm−

p

∑
i=0

p

∑
j=0

p

∑
k=0

p

∑
l=0

µix1,jx1,kx2,leijklm+

⟨w,φm⟩ + ⟨u,φm⟩
⎞
⎟
⎠

The terms for these expressions are the same as those obtained previously with the

exception being the term ⟨w,φm⟩. This term is the projection onto the forcing.

Because the forcing terms are first order in ∆k, in general this term will only be

non-zero for M terms. For most sets of orthogonal polynomials in one variable (and

in particular the traditional sets), the random variable ∆ corresponds to φ1. When

these sets are generalized to multiple random variables, ∆j corresponds to φj+1 where

j = 0 corresponds to the parametric uncertainty and j = 1, . . .M corresponds to the

KL variables. Therefore the inner product can be written as

⟨w,φm⟩ =
M

∑
j=1

√
λjfj(t)⟨φ2

m⟩δ(j+1),m

As an example, consider the same cost function used in the previous section

in eqn. (IV.40) subject to the constraints given in eqn. (IV.41), namely an initial

constraint and constraints on the final expected value.

We now solve the same optimal control problem that we solved previously, except

with a stochastic forcing term. For this example, we consider a uniform noise input

with covariance R(t1, t2) = e−
1
20
∣t2−t1∣. The eigenfunctions of this covariance can be

found analytically for a finite time interval (in our case t ∈ [0,5] and the first three

corresponding eigenvalues are λ1 = 4.61, λ2 = 0.23, and λ3 = 0.06. Because the eigen-
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Fig. 20. Eigenvalues (λn) of the KL expansion for various window lengths (1/a).

values decay as the number of terms is increased, only the first few terms are needed

to obtain a good approximation. This is because the eigenfunctions are orthonormal

and therefore have unit amplitude. For our case, the eigenfunctions are sines and

cosines. Figure 20 shows the eigenvalues of the first 11 terms of the KL expansion.

For larger correlation window sizes (smaller values of a), the first eigenfunction is

dominant as one would expect. For a window size of a = 1/20, the first term is several

orders of magnitude larger than the second term, meaning for this example we can

create a good approximation by only including the first term.

Furthermore, to reduce the problem size and complexity we use only polynomials

up to order r = 2, meaning that we have p = 5. To test the accuracy of the solution,

we examine the expected trajectory of x1 and x2 along with the variance of each one.

These are compared to Monte-Carlo simulations for various values of ∆0 and colored

noise input.

Figure 21(a) shows the optimized trajectories of each state along with the control.

The trajectory in red is the expected trajectory (corresponding to xi,0) and those in

blue are the remaining states corresponding to xi,k with k ≥ 1. This figure also shows
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(a) Optimal gPC trajectories for the Van
der Pol oscillator with stochastic forcing

(b) Verification of stochastic optimal
control law using Monte-Carlo simula-
tions.

Fig. 21. Comparison of trajectories obtained from gPC expansion and Monte-Carlo

simulations for 2nd order gPC expansion
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Fig. 22. Comparison of trajectories obtained from gPC expansion and Monte-Carlo

simulations for 8th order polynomials.

the open loop optimal control solution. To determine the accuracy of the optimal

solution and it’s predicted expected values and variances, we compare it to a Monte-

Carlo simulation with the same control input. The Monte-Carlo solution utilizes

uniformly distributed values of µ ∈ [0,1] as well as a uniformly distributed colored

noise, w ∈ [−1,1] where the covariance is given by R(t1, t2) = e−
1
20
∣t2−t1∣. Figure 21(b)

shows the comparison of the optimal control solutions of E[x∗1] and E[x∗2] using gPC

to the Monte-Carlo solution. The expected values predicted by gPC are accurate

when compared to the Monte-Carlo solution. The predicted variances of each state

are also shown. These are also accurate, although there is some error, especially

in x2. The inaccuracy in the variance estimates is a result of the low-order PC

approximation that is used. If we increase the polynomial order, the accuracy in the

variance estimate can be drastically improved. Figure 22 shows the expected value
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as well as the variance estimates for the PC system when a polynomial order of 8 is

used. Here the variance estimates are much closer to the Monte Carlo results. This

result demonstrates that for PC systems to capture variance accurately, higher-order

polynomials are usually required. While using higher order polynomials is helpful

for prediction purposes, it can make the optimal control problem much more difficult

to solve. Solving these more complex problems is a topic of future research. It is

important to note that the optimal solution for the problem with stochastic forcing

is not identical to that of the previous (parameter uncertainty only) case. This is in

large part due to the nonlinearities in the problem.

E. Summary

In this chapter, we have solved stochastic optimal control problems for linear and

nonlinear systems using the concept of Polynomial Chaos. The gPC expansion allows

us to analyze linear and nonlinear stochastic differential equations in a deterministic

framework. For infinite horizon linear optimal control problems, feedback laws are

determined for several different choices of a feedback strategy. The other major result

presented in this chapter involves the framing of a stochastic trajectory generation

problem as a deterministic optimal control problem. This allows us to use well known

techniques to solve this problem. In addition, a method of incorporating uncertainty

in the form of a stochastic process was also introduced. Combining the KL expansion

with the gPC approach enabled the generation of optimal trajectories for systems

with parametric uncertainty as well as correlated stochastic forcing. These problems

are very difficult to solve using a sampling based approach.
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CHAPTER V

RECEDING HORIZON CONTROL

A. Introduction

Generating optimal state and control trajectories for constrained linear and nonlin-

ear systems has been a topic of interest for researchers for a long time. While there

have been many tools developed to generate optimal control solutions for linear and

nonlinear systems, only under certain assumptions is it possible to obtain analytical

feedback solutions. This problem is made more complex with the addition of con-

straints to the control requirements as well as the state trajectories. Often times,

the only method of solving such problems is to find a numerical solution which is

generally open loop and difficult to solve for long horizon lengths. To help alleviate

some of these difficulties and adapt to changes in system behavior the idea of receding

horizon control was developed.

Receding horizon control, also known as model predictive control, has been pop-

ular in the process control industry for several years [49, 50]. It is based on the

simple idea of repetitive solution of an optimal control problem and updating states

with the first input of the optimal command sequence. The repetitive nature of the

algorithm results in a state dependent feedback control law. The attractive aspect of

this method is the ability to incorporate state and control limits as hard or soft con-

straints in the optimization formulation. When the model is linear, the optimization

problem is quadratic if the performance index is expressed via a L2-norm, or linear

if expressed via a L1/L∞-norm. Issues regarding feasibility of online computation,

stability and performance are largely understood for linear systems and can be found

in [51, 52, 53, 54]. For nonlinear systems, stability of RHC methods is guaranteed
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by using an appropriate control Lyapunov function [55, 56]. For a survey of the

state-of-the-art in nonlinear receding horizon control problems the reader is directed

to reference [57].

More recently, the receding horizon control strategy is being extended into the

realm of stochastic systems. This extension arises out of a need to create control laws

that are robust to probabilistic system uncertainty. Traditional receding horizon laws

perform best when modeling error is small as in many cases certain types of system

uncertainty can lead to oscillatory behavior [58]. Furthermore, it is possible that even

with slight uncertainty, the control strategy may not be robust [59]. Consequently,

many approaches have been taken to improve robustness of the policy in the presence

of unknown disturbances [60, 61, 62, 63, 64]. Many of these approaches involve the

computation of a feedback gain to ensure robustness. The difficulty with this approach

is that, even for linear systems, the problem can become more difficult to solve from a

computational standpoint. This is because the feedback gain transforms the quadratic

programming problem into a nonlinear programming problem. While the area of

robust receding horizon control is not necessarily a new one, approaching the problem

from a stochastic standpoint has only recently aroused interest. In particular, there

have been many approaches that seek to determine solutions to receding horizon

problems for stochastic systems [65, 66, 67, 68, 69]. These approaches deal with

systems under parametric uncertainty that appears as a white noise process. There

is little work on stochastic receding horizon control when uncertainty in the system

parameters is governed by a random variable, as opposed to a white process.

In this chapter, we present a receding horizon methodology for linear systems

with uncertainty that appears as functions of a random variable in the system matri-

ces. This approach guarantees stability of the approximated system when modeled

using the polynomial chaos technique that we have described throughout the work.
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We begin by presenting the receding horizon policy and discussing the implementa-

tion of different types of constraints in terms of our gPC states. The receding hori-

zon strategy is developed for linear discrete time systems with stochastic parametric

uncertainty. Next we present a proof for the policy and finally we present several

examples that highlight the implementation issues associated with the method. In

particular we present three different policies which can be used depending on the

types of measurements collected from the actual system or family of systems.

B. Stochastic Receding Horizon Control

Here we present the formulation of the receding horizon problem for linear systems

in terms of the states of the gPC system. In particular, we discuss various implemen-

tation issues that may arise when dealing with constraints and prove stability of the

methodology.

1. Receding Horizon Policy

In this work, we are interested in determining stable solutions to control problems for

discrete-time systems of the form

x(k + 1,∆) = A(∆)x(k,∆) +B(∆)u(k) (V.1)

where x(k) ∈ Rn are the states of the system at time k and u(k) ∈ Rm is the control

vector at time k. In particular, we assume that the uncertainty of the system ∆ is a

random variable governed by a given probability distribution. We will assume that

the full state information is available for feedback. As we have done throughout the

work, we can express this linear equation in terms of gPC states. The dynamics then
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become

X(k + 1) =AX(k) +BU(k) (V.2)

Consider the following receding horizon policy computed from initial state, x,

P(x) ∶ V ∗N =min VN({x(k)},{u(k)}) (V.3)

subject to ∶

x(k + 1,∆) = A(∆)x(k,∆) +B(∆)u(k) k = 0, . . . ,N − 1 (V.4)

x(0) = x (V.5)

u(k) ∈ U k = 0, . . . ,N − 1 (V.6)

x(k) ∈ X k = 0, . . . ,N (V.7)

x(N) ∈ Xf ⊂ X (V.8)

The optimization is performed over the horizon length, N . In the above expression U

and X are feasible sets on u(k) and x(k) with respect to control and state constraints.

The set Xf is a terminal constraint set. A key assumption is that within the terminal

set, there exists a feasible stabilizing control strategy. This will be described in more

detail later. The control u(k) may be deterministic or stochastic depending on how it

is determined. If state feedback is used, the control u(k) will be a stochastic variable.

At the beginning of each horizon, we will assume that the state is known exactly or

E[x(0)] = x(0) (V.9)

The cost function VN is given by

VN = E [
N−1

∑
k=0

xT (k,∆)Qx(k,∆) + uT (k)Ru(k)] +Cf(x(N)) (V.10)

where Cf(x(N)) is a terminal constraint. Unlike traditional receding horizon policies

where u(k) is determined directly, we will assume a specific structure for u(k). The
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control at each time step will be determined by

u(k) = ū(k) +Kk (x(k) −E[x(k)]) (V.11)

The main reason for this structure is that in general, an open loop control strategy

cannot be used to effectively stabilize an entire family of systems. If the system

matrix were stable for all values of ∆, then even with u(k) = 0 the family of systems

would be stable, but might incur high cost. For unstable systems this is not the case

and driving an expected value to zero does not ensure stability of the entire family of

systems. Therefore, in general we require use of a feedback gain to ensure stability

for the entire family of systems.

With the control law in equation (V.11), the system dynamics become

x(k + 1) = A(∆)x(k) +B (ū(k) +Kk (x(k) −E[x(k)])) (V.12)

When written in terms of the gPC states, these equations become

X(k + 1) =AX(k) +B (Ū(k) + (Kk ⊗ Ip+1) (X(k) − X̄(k))) (V.13)

where Ū(k) = ū(k) ⊗ [1 01×p]T and X̄ = E[x(k)] ⊗ [1 01×p]T . For the gPC system,

the expected value of x(k) is given by the first term in the gPC expansion, or x0(k).
Therefore, X̄(k) = x0(k)⊗ [1 01×p]T . Because the system is written in terms of gPC

states, the cost function becomes

VN =

N−1

∑
k=0

[XT (k)Q̄X(k) + (ŪT (k) + (XT (k) − X̄T (k)) (KT
k ⊗ Ip+1)) R̄ (Ū(k)+

(Kk ⊗ Ip+1) (X(k) − X̄(k)))] +Cf(x(N)) (V.14)

In the above expressions Q̄ = Q ⊗W0 and R̄ = R ⊗W0. In other stochastic receding

horizon implementations, the terminal cost is written as an expectation of a function
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of the final state, x(N). The receding horizon policy that we present requires the final

state to be in a given terminal region where there exists a feasible, stabilizing control

law. Unlike other implementations [70], we implement this constraint specifically in

terms of the gPC states as

Cf(x(N)) =XT (N)PX(N) (V.15)

where X(N) is a vector of the terminal gPC states and P is a n(p + 1) × n(p + 1)-
dimensional matrix that is determined from the terminal control law. In this manner

the expected cost of the stochastic system can be expressed in terms of deterministic

gPC states. This will allow us to utilize a standard methodology to prove the stability

of the control strategy.

2. State and Control Constraints

In this section we present the state and control constraints for the receding horizon

policy and expand on the expressions in equations (V.6) and (V.7).

a. Expectation Constraints

In general for stochastic systems, it is difficult to handle control and state constraints.

Typically, constraints are enforced on the expected values of the state and control.

We consider constraints of the following form

E [xT (k)Hi,xx(k) +Gi,xx(k)] ≤ αi,x i = 1 . . .Nx (V.16)

E [uT (k)Hi,uu(k) +Gi,uu(k)] ≤ αi,u i = 1 . . .Nu (V.17)

E

⎡⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎣

x(k)
u(k)

⎤⎥⎥⎥⎥⎥⎥⎦

T

Hi,xu

⎡⎢⎢⎢⎢⎢⎢⎣

x(k)
u(k)

⎤⎥⎥⎥⎥⎥⎥⎦
+Gi,xu

⎡⎢⎢⎢⎢⎢⎢⎣

x(k)
u(k)

⎤⎥⎥⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦
≤ αi,xu i = 1 . . .Nxu (V.18)
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for k = 0 . . .N . In these expressions, Hi,x ⪰ 0, Hi,u ⪰ 0, and Hi,xu ⪰ 0. These constraints

are on the expected value of the quadratic functions. Instead of requiring that the

constraint be met for all trajectories, they instead imply that the constraints should

be satisfied on average. This means that there may be some trajectories that violate

the constraints with finite probability. Following a procedure similar to the previous

chapters, we express these constraints in terms of the gPC states. The constraints

become

X(k)H̄i,xX(k) +Gi,xx0(k) ≤ αi,x i = 1 . . .Nx (V.19)

U(k)H̄i,uU(k) +Gi,uū(k) ≤ αi,x i = 1 . . .Nu (V.20)

⎡⎢⎢⎢⎢⎢⎢⎣

X(k)
U(k)

⎤⎥⎥⎥⎥⎥⎥⎦

T

H̄i,xu

⎡⎢⎢⎢⎢⎢⎢⎣

X(k)
U(k)

⎤⎥⎥⎥⎥⎥⎥⎦
+Gi,x

⎡⎢⎢⎢⎢⎢⎢⎣

x0(k)
ū(k)

⎤⎥⎥⎥⎥⎥⎥⎦
≤ αi,xu i = 1 . . .Nxu (V.21)

where H̄i,x = Hi,x ⊗W0, H̄i,u = Hi,x ⊗W0, and H̄i,xu = Hi,xu ⊗W0. Furthermore, the

stochastic control vector U(k) is given by U(k) = Ū(k)+ (Kk ⊗ Ip+1) (X(k) − X̄(k)).
When Hi,u = 0, the constraint is linear and constraints on the control only act on the

expected open loop control ū(k).

b. Covariance Constraints

In many practical applications, it is desirable to constrain the variances of the tra-

jectory at each time step. One means of achieving this is to use a constraint of the

form

Tr (E [(x(k) −E[x(k)])(x(k) −E[x(k)])T ]) ≤ ασ2 (V.22)

In terms of the gPC states, this becomes

XT (k)Qσ2X(k) ≤ ασ2 (V.23)
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where Qσ2 = In⊗(W0−FF T ). In terms of the gPC states, this condition is equivalent

to constraining the trajectories to an ellipsoid about the expected value (W0−FF T is

a singular matrix). This type of constraint highlights the power of the gPC approach

in that it allows us to frame variance and covariance constraints in terms of convex

constraints of gPC states. If it is desired to constrain only the variance of a particular

state, the constraint can be written as

E [(xi(k) −E[xi(k)])2] ≤ αi,σ2 (V.24)

where the term i is used to denote the specific state with which the constraint is

concerned. This in turn can be written in terms of the gPC states as

XT (k)Qi,σ2X(k) ≤ αi,σ2 (V.25)

where Qi,σ2 = diag (δi,p)⊗W0 −FF T . The expression δi,p denotes a vector of length p,

consisting of all zeros with a one located at the ith element. The diag(⋅) term denotes

a diagonal matrix with the argument as the diagonal. The composition of the Qi,σ2

matrix is such XT (k)Qi,σ2X(k) = XT
i (k)(W0 − FF T )Xi(k) where Xi(k) is a vector

of the gPC states corresponding to the ith state.

c. Probability One Constraints

In many applications, it might be desirable to enforce constraints almost everywhere

in ∆. For example, if RHC were used to determine optimal paths for a path planning

problem, we would desire that the vehicle avoid obstacles with probability one. In

general for stochastic systems, this is not possible because the information available

is generally only mean and variance of the states and controls. The only means to

obtain this information traditionally is to use a Monte-Carlo technique and ensure

that the trajectories of each sample satisfy the constraints. This involves generating
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a series of trajectories as part of the optimization routine and ensuring that each of

these satisfy the state and control constraints. For systems modeled using gPC, if the

parameter variation (and hence the associated probability distribution) is bounded,

then we have a means of imposing constraints with probability one. First consider

constraints imposed on a single state or control variable such as

P (x(k,∆) ≤ γx,ub) = 1 (V.26)

P (x(k,∆) ≥ γx,lb) = 1 (V.27)

P (u(k,∆) ≤ γu,ub) = 1 (V.28)

P (u(k,∆) ≥ γu,lb) = 1 (V.29)

In general, there may be a set of measure zero in ∆ where these constraints are

violated. However, when the states and controls are modeled as continuous polyno-

mials in ∆, the constraints must hold for all ∆. This is summarized by the following

proposition.

Proposition V.1 Let x(k,∆) and u(k,∆) be modelled as continuous polynomials in

∆. Then the constraints in (V.26)-(V.29) must hold for all ∆.

Proof To prove this proposition, we will show it is true first for (V.26). We know

that P (x(k,∆) ≤ γ) = 1 ⇒ P (x(k,∆) > γ) = 0. Let ∆̄ exist such that P (∆̄) = 0 and

x(k, ∆̄) = ∑p
i=0 xi(k)φi(∆̄) > γ. We know

x(k, ∆̄) =
p

∑
i=0

xi(k)φi(∆̄) > γ ⇒ x(k, ∆̄) = γ + ε

where ε > 0. By continuity of the polynomials, φi, the state, x(k,∆), is continuous

with respect to ∆. Therefore, ∃ a δ such that ∣∆̄ − ∆̃∣ < δ ⇒ ∣x(k, ∆̄) − x(k, ∆̃)∣ < ε.

In other words, ∀ ∆̃ ∈ B(∆̄, δ), x(k, ∆̃) > γ. Here, B(∆̄, δ) is an open ball of radius δ
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centered at ∆̄. Therefore,

P (x(k,∆) > γ) = P (∆̃ ∈ B(∆̄, δ)) = ∫
∆

1∆̃∈B(∆̄,δ)f(∆)d∆

= ∫
∆∈B(∆̄,δ)

f(∆)d∆ > 0

Because the state is a continuous polynomial, B(∆̄, δ) has a non-empty interior, thus

the above inequality is strict. This means

0 < P (x(k,∆) > γ) = 1 − P (x(k,∆) ≤ γ)⇒ P (x(k,∆) ≤ γ) < 1

Thus by contradiction, the proposition is proven. The other three constraint can be

proven in the same manner.

The benefit of the gPC framework is that it gives us a means of writing out the state

and control trajectories as known functions of the random variable, ∆. In other words,

we can write x(k) = ∑p
i=0 xi(k)φi(∆) and u(k) = ū(k)+Kk (∑p

i=0 xi(k)φi(∆) − x0(k)).
As a result of the previous proposition, the constraints in equations (V.26)-(V.29)

can be written as

x(k,∆) =
p

∑
i=0

xi(k)φi(∆) ≤ γx,ub (V.30)

x(k,∆) =
p

∑
i=0

xi(k)φi(∆) ≥ γx,lb (V.31)

u(k,∆) =
p

∑
i=0

ui(k)φi(∆) ≤ γu,ub (V.32)

uk(∆) =
p

∑
i=0

ui(k)φi(∆) ≥ γu,lb (V.33)

Because these constraints must hold for all ∆ ∈ Ω, without loss of generality, we

can replace them with maximum and minimum values of x(k) and u(k) for upper
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bounds and lower bounds respectively. The constraints can then be written as

max
∆∈Ω

x(k,∆) =max
∆∈Ω

p

∑
i=0

xi(k,∆) ≤ γx,ub (V.34)

min
∆∈Ω

x(k,∆) =min
∆∈Ω

p

∑
i=0

xi(k,∆) ≥ γx,lb (V.35)

max
∆∈Ω

u(k,∆) =max
∆∈Ω

p

∑
i=0

ui(k,∆) ≤ γu,ub (V.36)

min
∆∈Ω

u(k,∆) =min
∆∈Ω

p

∑
i=0

ui(k,∆) ≥ γu,lb (V.37)

The functions, φi(∆) are known, bounded functions of ∆ (boundedness follows from ∆

being constrained to a finite interval). In general we will assume that the polynomials

are constrained such that φi(∆) ∈ [−1,1]. This is a valid assumption as it is always

possible to normalize φi so that this is the case. As an example, figure 23 shows

the first six Legendre polynomials on the interval ∆ ∈ [−1,1]. It is clear that these

Fig. 23. Legendre polynomials as a function of ∆ on the interval [−1,1]

polynomials are bounded on the interval and that they are also bounded by −1 from

below and +1 from above. Therefore the problems posed in equations (V.34-V.37)
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have solutions. When there are a small number of φi terms and only one random

variable, ∆, these can be solved analytically. However, this would require finding

the zeros of the derivative of the function x(k,∆) (a polynomial in ∆) which is in

general difficult problem to solve. We therefore present several alternative methods

to approximate the solution to equations (V.34-V.37).

Method 1: One approach is to use bounds of the form

X0(k) +
p

∑
i=1

∣Xi(k)∣ ≤ γx,ub

X0(k) −
p

∑
i=1

∣Xi(k)∣ ≤ γx,lb

U0(k) +
p

∑
i=1

∣Ui(k)∣ ≤ γu,ub

U0(k) −
p

∑
i=1

∣Ui(k)∣ ≤ γu,lb

This bound will always be conservative and the presence of the ∣ ⋅ ∣ operator makes

this nonlinear.

Method 2: A second method of approximating the constraints is to only enforce

them at specific values of ∆. For linear systems, this amounts to enforcing the

constraints for values of ∆ that correspond to the minimum and maximum values of

the parameter. For example if the system matrix is such that

A =

⎡⎢⎢⎢⎢⎢⎢⎣

−0.9 +∆ −.5

1 0

⎤⎥⎥⎥⎥⎥⎥⎦
For this system, we have plotted trajectories of the fist state corresponding to various

values of ∆ in figure 24. The extremal uncertainty values in the A matrix occur for

∆ = 1 and ∆ = −1. The trajectories corresponding to these values of ∆ are displayed as

thick blue lines and are labelled in the figure. We can see that the trajectories for these

values of ∆ make up a good approximate bound throughout the simulation. However,
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Fig. 24. Trajectories generated for various values of ∆ and their bounds approximated

at extreme values of ∆

there are points where this approximate bound is violated. This is demonstrated by

the circled region of the figure. This method is more computationally efficient than

the previous method as it results in linear constraints, but this comes at the cost

of making errors in the approximation. Since this approximation makes it possible

for the bounds to be violated by some systems, if this method is to be used, it is

necessary to be overly conservative in determining constraints.

Method 3: A final method is to enforce the constraints on a grid of ∆ values.

Define a grid of ∆ values

D = {∆1,∆2, . . . ,∆nd
} (V.38)
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For every constraint in equations (V.34-V.37), we set up nd new constraints, each

evaluated at ∆i, for i = 1, . . . , nd. In other words, we write the constraints as

x(k,∆i) =
p

∑
j=0

Xj(k)φ(∆i) ≤ γx,ub

x(k,∆i) =
p

∑
j=0

Xj(k)φ(∆i) ≥ γx,lb

u(k,∆i) =
p

∑
j=0

Uj(k)φ(∆i) ≤ γu,ub

u(k,∆i) =
p

∑
j=0

Uj(k)φ(∆i) ≥ γu,lb

for i = 1, . . . , nd. This has the advantages of being less conservative than method 1 as

well as being more accurate than method 2. The disadvantage of this method is that

it adds a large number of constraints to the system. While enforcing the constraints

in this manner requires a form of “sampling”, the usage of gPC methods still retains

an advantage over Monte-Carlo methods because enforcing these constraints does not

require generation of a large family of trajectories. Instead the gPC trajectories can

be used directly to generate the “sampled” data.

Remark V.2 Expectation and variance constraints result in first and second order

constraints on the gPC states. As implemented in this section, probability constraints

retain a “sampling” implementation that is similar to the traditional robust control

approach. This is presented for completeness and to demonstrate that the gPC ap-

proach retains the ability to enforce more traditional types of constraints while having

the advantage of simple enforcement of expectation and variance constraints.

3. Stability of the RHC Policy

At this point, we are ready to show stability for the receding horizon policy P(x)
when it is applied to the gPC system. Before proceeding a few assumptions must be
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made about the cost function and system constraints.

Assumption 1 Let the terminal cost matrix satisfy P ≻ 0 and let there exist a control

u∞(k) =K∞x(k) such that for all x(k) ∈ Rn

XT (k)PX(k) ≥ E [xT (k)Qx(k) + (u∞(k))T Ru∞(k)] +XT (k + 1)PX(k + 1) (V.39)

where x(k + 1) = A(∆)x(k) + B(∆)u∞(k) which when written in terms of the gPC

dynamics (see eqn. (V.2)) gives X(k + 1) =AX(k) +B (K∞ ⊗ Ip+1)X(k).

This assumption guarantees that the system is stabilizable with respect to a con-

stant gain control. In addition, it guarantees that without control constraints, the

system under the control policy u∞ is globally asymptotically stable. We next make

an assumption about the terminal constraint (x(N) ∈ Xf ). In particular, we need to

ensure that the control strategy satisfying assumption 1 is feasible when the terminal

constraint is met.

Assumption 2 The terminal constraint is given by

XT (N)PX(N) ≤ β (V.40)

and the parameter β is such that for any family of trajectories at time N , x(N,∆),
(corresponding to X(N)) satisfying equation (V.40), the state trajectory x(k) (and

corresponding X(k)) under the terminal control u∞(k) in Assumption 1 will be feasible

for the state and control constraints for all k ≥ N .

The formulation of the terminal cost as XT (k)PX(k) is more general than a cost of
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the form E[xT (k)P̂ x(k)] with P̂ = P̂ T
≻ 0. An expected cost formulation will result

in a structure imposed on P of the form P = P̂ ⊗W0. This constraint on the structure

of the terminal cost matrix is restrictive and as a result of this imposed structure

makes the determination of a terminal controller more difficult.

These two assumptions guarantee that once the system trajectories enter a given

ellipsoid, there will exist a feasible linear state feedback controller to bring a family of

trajectories (corresponding to X(N)) to the origin. In essence this constraint defines

a region in which all possible trajectories must be contained.

Remark V.3 If the terminal constraint is satisfied then we are guaranteed that at

time N the gPC states lie in an ellipsoid. This translates to a constraining the final

value of the systems for all ∆. This is possible because the parameter uncertainty is

dependent on a random variable not on a white noise process. When a system has

uncertainty that is dependent on a white noise process (particularly if the parameter

variation has the ability to be unbounded), this might induce a jump outside of the

constraint space. Because the uncertain parameter is governed by a random variable,

it is in effect constant for each individual system, meaning that this type of behavior

is not possible.

These assumptions will enable us to prove a stability for a stochastic receding horizon

policy in a similar manner to the traditional methodology [71]. The result is summa-

rized in the following theorem.

Theorem V.4 Consider the receding horizon policy P(x) where the dynamics are

governed by that of the gPC system in equation(V.2). If Assumptions 1 and 2 hold
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and a feasible solution exists for x0, then for the stochastic gPC dynamics,

1. The feasible set is positively invariant.

2. The resulting control policy is asymptotically stable.

Proof The stability proof will be performed for the projected (gPC) system.

1. To prove the invariance of the feasible set, we define the following sequences. Let

the optimal control sequence and state sequences be defined as U∗ = {U∗(0),
U∗(1), . . . ,U∗(N − 1)} and X∗ = {X∗(0),X∗(1), . . . ,X∗(N)}. By assumption,

these sequences are feasible (U∗ ∈ U and X∗ ∈ X). To show invariance of the

feasible set, consider the feasibility of the system after one iteration of the map.

The projected state after one iteration is X(1) = AX(0) +BU(0). Now define

sets Ũ = {U∗(1), . . . ,U∗(N −1),U∞(N)} and X̃ = {X∗(1), . . . ,X∗(N),X∞(N +
1)} where U∞(N) = (K∞⊗ Ip+1)X∗N (the terminal control policy) and X∞(N +
1) = AX∗(N) +BU∞(N). Though these trajectories may not be optimal so-

lutions of VN , the iterated sets are feasible by assumptions 1 and 2. Therefore

positive invariance of the feasible set is proven.

2. Next, we prove asymptotic stability of the control policy. We will use the

cost function V ∗N(x) as a Lyapunov function. Consider a trajectory starting

at x, satisfying the assumptions of the theorem. The trajectory at the next

time step is given by x+ = Ax + Bu where u is the first control input in the

sequence obtained from the receding horizon policy. Define the state and control

sequences

{x̃} = {
p

∑
i=0

X∗i (1)φi, . . . ,
p

∑
i=0

X∞i (N + 1)φi}
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{ũ} = {
p

∑
i=0

U∗i (1)φi, . . . ,
p

∑
i=0

U∞i (N)φi}

{x∗} = {
p

∑
i=0

X∗i (0)φi, . . . ,
p

∑
i=0

X∗i (N)φi}

{u∗} = {
p

∑
i=0

U∗i (0)φi, . . . ,
p

∑
i=0

U∗i (N − 1)φi}

Examining the difference between V ∗N(x+) and V ∗N(x) gives

V ∗N(x+) − V ∗N(x) ≤ VN({x̃},{ũ}) − VN({x∗},{u∗})

= VN(X̃, Ũ) − VN(X∗,U∗)

= −XT (0)Q̄X(0) −U(0)R̄U(0) +XT (N)Q̄X(N)

+UT (N)R̄U(N) −XT (N)PX(N) +XT (N + 1)PX(N + 1)

The inequality is a result of V ∗N(x+) being optimal and VN({x̃},{ũ}) being

simply a feasible solution. The definition of X̃ and Ũ result in cancellations for

all terms except those corresponding to time k = 0 and k = N . We now utilize

Assumption 1 to obtain

V ∗N(x+) − V ∗N(x) ≤ −XT (0)Q̄X(0) −UT (0)R̄U(0) ≤ −XT (0)Q̄X(0)

≤ −λmin(Q̄)∥X(0)∥2

The matrix Q̄ is positive definite, thus the right hand side is strictly less than

zero for all X(0) ≠ 0. The functions VN(x) and VN(x+) can be rewritten in

terms of gPC states to give the resulting asymptotic stability guarantee for the

coefficients.

The theorem shows that the states of the gPC system go to zero asymptotically when

a receding horizon policy is employed.
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4. RHC Policy Description

In this section we will describe three receding horizon policies that can be shown to

be stable via the preceding arguments. The two policies will depend on the type of

constraints employed. If linear expectation constraints are employed then we will use

a policy that utilizes open loop generation of the gPC states and the expected value

of the state vector. When expectation constraints are not employed, then we can

implement the receding horizon policy in a more traditional fashion. This distinction

is made as a result of feasibility issues with various types of constraints. Consider

the sample trajectories shown in figure 25. At time 0, the initial condition is known

Fig. 25. Sample trajectory paths to demonstrate possible constraint violations

exactly. Therefore, the initial condition is in fact the expected value of the state at

time 0. As time progresses, the mean and trajectory bounds are indicated on the

figure. At time k = 2, though the expectation constraint is satisfied there are some

trajectories that violate the constraint. In the figure, we use the red curve (denoted

“Actual Trajectory” in the figure) to denote a system trajectory for a specific value of

∆. Assume that the actual system follows this red curve. If at time 2, a measurement

were taken and this was set to be the new expected value, then this state would be
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in violation of the constraint and thus the feasibility conditions in the proof would be

violated. For this reason the gPC states must be generated by open loop simulation

of the gPC system to obtain accurate estimates of the expected value for the entire

family of systems.

When the constraints are enforced on the actual state values or in the form of

variance constraints, then it is possible to use a more traditional receding horizon

policy. In this implementation, whenever the receding horizon controls are recalcu-

lated, the gPC states will be reset and the current state will be deemed the expected

value at time 0. This reflects a more realistic implementation. The main issue of

importance for this implementation is to ensure that when the new state is taken to

be the initial variable in the RHC policy, there still exists a feasible control law. We

will now briefly describe the two policies that will be employed.

a. Policy A

The first receding horizon strategy we discuss differs from traditional RHC policies

in that utilizes open loop terms as well as a closed loop term. The actual control law

is given by

u(k) = ū(k) +Kk (x(k) −E[x(k)])

In this control law, ū(k) and E[x(k)] must be either measured or computed. If

the control strategy is implemented simultaneously on a family of systems, then it

would be possible to estimate the distribution and thus take measurements of the

gPC states. If the control strategy is implemented on a single system, this is not

possible and we must in turn rely on open-loop estimation of the statistics to obtain

the control law. This is accomplished by an open-loop simulation of the gPC states
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that begins at the system initial condition at time 0. At each time step, the values

of ū(k), E[x(k)], and Kk are taken from the simulation of the gPC system. The

specific value of x(k) is taken from a measurement of the states of the actual system.

The terms coming from the RHC framework are in some sense all open loop as they

depend upon iteration of the gPC dynamics. The gPC dynamics by their formulation

include all of the modeled uncertainty, so they are in this sense robust. The diagram

in figure 26 provides insight into this control strategy. The term x(0) represents the

Fig. 26. Receding horizon strategy with open loop statistics prediction

initial condition when the control strategy is applied. This is used to initialize the

generation of the statistics and gains for the control strategy. At each step using

the gPC data new values of ū(k) and Kk are generated from the RHC policy and

these coupled with E[x(k)] are used to compute the control for the plant. The only

feedback comes in the form of x(k). This strategy avoids the feasibility problem

that results from the application of expectation constraints but requires many of the

quantities to be generated in an open-loop manner.
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b. Policy B

Here we discuss a receding horizon policy that is more traditional in the sense that it

does not rely on open-loop generation of statistics. In Policy A, we assumed that the

measurements were available for all ∆ simultaneously. This could be the result of state

measurements for the entire family of systems or the result of open-loop simulation of

the entire family. In Policy B we will not take measurements for a family of systems.

Instead, when the receding horizon law is recomputed, we will take a measurement

for a single system and compute a new control assuming all systems start from this

newly measured value. The important consideration for this policy is the impact of

the reset of the state values on the feasibility of the next iteration. Namely, we need to

ensure that when the expected value is reset to the current value, the control strategy

for the next RHC iteration is indeed feasible. Figures 27(a) and 27(b) demonstrate

the response of the system under the receding horizon policy at two separate time

instances. Figure 27(a) demonstrates a sample response at time 0. At time 2, the

optimization process is restarted from the new point (as shown in figure 27(b)). When

this occurs, the current state is set as the expected value as it is a measured quantity.

We therefore start the new policy with the family of systems originating at this point.

For this policy to meet the conditions of the previous proof, we must show that when

the reset is performed there still exists a feasible solution.

Because the uncertainty in the family of systems is governed by a random vari-

able, it is a constant with respect to time. This is crucial to the feasibility of policy B.

To verify the feasibility of the policy we must keep in mind that the uncertainty in the

actual system corresponds to a single value of ∆ for all time. As a result the controls

determined at the start of the algorithm will produce a feasible solution throughout
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(a) System trajectories under RHC policy at
time 0

(b) System trajectories under RHC policy
after update at time 2

Fig. 27. First two steps of receding horizon feedback policy

the horizon. Denote the gPC states at time k corresponding to the policy computed

at time 0 by X0(k) and the controls as U0(k). Now, these states and controls give

the states and controls at time k as functions of ∆, or

X0(k) ⇒ x0(k,∆)

U0(k) ⇒ u0(k,∆)

For each value of ∆, there is therefore a feasible solution for the state and control. The

difficulty occurs with the recomputation of the new control law at a time k. Let ∆̂ be

the value of ∆ corresponding to the actual system. If the RHC policy is recomputed

at time k, then xk(k) = x0(k, ∆̂). The new initial state xk(k) is not dependent on
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Fig. 28. Block diagram of “closed loop” receding horizon policy

∆. For ∆ = ∆̂ (the actual system) we can ensure feasibility for this specific value of

∆ by setting uk(k + j, ∆̂) = u0(k + j, ∆̂) ∀j ≥ 0 and computing appropriate ūk(k + j)
and Kk

k+j values. However, while this ensures feasibility for the actual system, it does

not ensure feasibility for all values of ∆ with an initial condition of x0(k, ∆̂). It is

therefore not possible to guarantee feasibility of the policy in general. Generally, this

situation can occur when state and control bounds are very strict but if the problem

is well posed this does not occur.

The feedback control policy described in this section can be represented by the

diagram in figure 28. As the figure demonstrates, this policy is more traditional than

policy A. The feed-forward or open-loop terms ū(k) and E[x(k)] as well as the gain

Kk are provided from the optimally predicted policy.
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c. Policy C

To alleviate the possibility of an infeasible solution that can occur using Policy B, we

propose a hybrid policy. This policy is the same as Policy B but with one exception.

When the RHC optimal solution is recomputed at a time k, if a feasible solution exists

Policy B is utilized. If a feasible solution does not exist, the control strategy from

the previous RHC computation is utilized. Because we assume the existence of an

initial feasible solution, this strategy is always feasible. In the worst-case, this means

that the initial RHC strategy will be employed and the control will use open-loop

generation of ū(k), Kk, and E[x(k)] until the terminal region is reached (for at most

N steps). This strategy, however guarantees stability. This hybrid approach also

allows for Expectation constraints to be employed.

C. Examples

In this section, we will consider two different examples that will highlight the RHC

policies presented in the previous section.

1. Example 1

For the first example, consider the following linear system (which is similar to that

considered in [70]).

x(k + 1) = (A +G(∆))x(k) +Bu(k) (V.41)
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where

A =

⎡⎢⎢⎢⎢⎢⎢⎣

1.02 −0.1

.1 .98

⎤⎥⎥⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎢⎢⎣

0.1

0.05

⎤⎥⎥⎥⎥⎥⎥⎦

G =

⎡⎢⎢⎢⎢⎢⎢⎣

0.04 0

0 0.04

⎤⎥⎥⎥⎥⎥⎥⎦
∆

The system in consideration is open-loop unstable and the uncertainty appears lin-

early in the G matrix. In this example, the uncertainty ∆ will assumed to be in the

range [−1,1] and the actual value of ∆ is governed by a uniform distribution. As

a result, Legendre polynomials will be utilized. Polynomials up to 4th order will be

used to formulate the control (this corresponds to p = 4). For this example, we will

place an expectation constraint on x(k) of the form

E [[ 1 0 ]x(k)] ≥ −1

In terms of the gPC states, this corresponds to

[ 1 01×2p+1 ]X(k) ≥ −1

Because of the expectation constraint, we will be required to utilize the open-loop

RHC policy to solve this problem. This means that the statistics of the problem will

be predicted in open-loop as described by Policy A.

To implement the receding horizon policy, we will need to design a terminal

control that will ensure the stability of the policy inside of a terminal region. This

can be accomplished using the techniques described in Chapter III of this work, so it

will not be discussed here. The cost matrices used to determine the optimal control



125

policy are

Q =

⎡⎢⎢⎢⎢⎢⎢⎣

2 0

0 5

⎤⎥⎥⎥⎥⎥⎥⎦
R = 1

With this information, we can now design a receding horizon policy to bring

the system to the origin while keeping the constraints satisfied. To simulate the

system, the RHC policy is determined at each step using open-loop simulation of

the gPC dynamics. For each system corresponding to each value of ∆, the resulting

control law is used to control the system. Figure 29 shows the phase plane response

of the systems corresponding to each value of ∆. The figure demonstrates a few

Fig. 29. Trajectories for open loop RHC policy for various values of ∆ ∈ [−1,1]

important concepts that are associated with stochastic receding horizon control. It

is important to note that not all of the individual trajectories satisfy the constraint.

This is because the constraint has been enforced as an expected (or average) value.

Therefore, the constraint is not necessarily satisfied for any single system, but is only

satisfied on average. For this reason, if we were using the Policy B, the problem would
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quickly become infeasible if the actual trajectory corresponded to one that violated

the constraint. Figure 30 shows the mean predicted by gPC compared to the actual

Fig. 30. Expected trajectories for open loop RHC policy obtained by Monte Carlo

simulation and predicted by gPC

mean obtained from Monte-Carlo simulation of the closed loop system. The figure

demonstrates that the mean tracks very well and is predicted very accurately. This

gives confidence that the policy will work very well, even though its statistics have

been generated in an open loop fashion.

To highlight the difference between the two policies presented, this example is

again solved but with probability one constraints using Policy B. For this example

instead of the expectation constraint considered above, we will use the constraint

P ([ 1 0 ]x(k) ≥ −1) = 1

Because this translates to a constraint on the gPC expansion of x(k), it must hold

for all values of ∆. For this example, several approaches to enforcing this can be

taken. Because the problem is small and there are only a small number of states,
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we choose to test the maximum value of x(k) when it is evaluated on a grid of ∆

values. The phase plane response of the system is shown in figure 31. Unlike the

Fig. 31. Trajectories for closed loop RHC policy for various values of ∆ ∈ [−1,1]

responses of figure 29, there are no trajectories that violate the constraint. This is

to be expected as the constraint has been changed from an expectation constraint to

a probability one constraint. Because of the enforcement of this constraint, the cost

is much higher for systems corresponding to values of ∆ that violate the constraint

in figure 29. Furthermore, these systems take much longer to reach the origin. The

other notable difference in this figure involves the average trajectory. It should be

noted that no systems actually follow this trajectory. This is in large part because

the systems that are less likely to violate the constraint converge to the origin much

faster than those for which the constraint is active. The result is a large variation in

the system response at each time step.

This variation helps illustrate the conceptual difference between the two ap-

proaches. Policy A treats the variation of systems in the same instant in time. It
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is concerned with the simultaneous performance of a family of systems. If measure-

ments for all systems are available, then these measurements can be used to calculate

the pdf of the family of systems meaning that open loop generation of statistics will

not be required. Policies B and C are concerned with the performance of a single

system. For this implementation, the uncertainty is merely used to help predict and

optimize the actual system trajectory given information about its current state. For

most physical systems, this will be the policy of choice as multiple systems will not

be asked to perform the same tasks in the same manner all at the same time. As the

example demonstrates, the gPC approximation has enabled the design of a control

strategy that drives an unstable system to the origin even in the presence of large

(predicted) variations in plant dynamics.

2. Example 2

The above example illustrates the difference between the two types of control strate-

gies discussed in this work. Now, as a more real-world example, consider an autopilot

design for an F-16 aircraft. The design will be performed for the linearized short

period dynamics of the aircraft with first-order actuator dynamics included.

ẋ = Ax +Bu (V.42)

The system states are given by x = [α, q, δe] where α is the angle of attack, q is the

pitch rate, and δe is the angle of the pitch actuator (in degrees). The control input
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into the system is an actuator command, u = δec. The system matrices are given by

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−.6398 .9378 −0.0014

(−1.5679) (−0.8791) (−0.1137)
0 0 −20.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B = [ 0 0 −20.2 ]

T

The terms in parenthesis, (⋅), refer to the terms for which there is uncertainty. For

this case, we assume a 20% linear uncertainty in these terms. The uncertainty is

assumed to be constant (not time varying) and the value of the perturbation will

be governed by a uniform distribution. For this example, we assume that all of the

system states are available and measured accurately. Because the receding horizon

formulation is done in discrete time, we will need to discretize the system to obtain a

difference equation. This is accomplished by applying a zero order hold to the input

and output of the system at a sampling time of Ts. The system then becomes

x(k + 1) = Adx(k) +Bdu(k) (V.43)

where

Ad = eATs

Bd = ∫
Ts

τ=0
eA(Ts−τ)B

For this problem, we assume that the input and output zero order holds are sampled

at a rate of 50 Hz. Using this sampling rate, the Ad and Bd matrices for the short
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period dynamics of the F-16 become

Ad =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9870 0.0185 0

−0.0309 0.9823 −0.0019

0 0 0.6676

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bd =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−0.0004

0.3324

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Because the model originates as a continuous time model, we must also translate

the uncertainty from the continuous time model to variation in the discrete time

model. While it is possible to determine the mapping of the uncertainty through the

exponential mapping, we will instead employ an approximation. For small sampling

times, we can write

x(k + 1) ≈ x(k) +A(∆)Tsx(k)

Since the uncertainty varies linearly, we can write A(∆) = A + ∆Ã. This means

x(k+1) ≈ (I + (A+∆Ã)Ts)x(k) and therefore the uncertainty appears linearly in the

discrete system but is additionally scaled by Ts.

For this example, the open loop policy will not be employed, only the closed loop

policy. The Q and R matrices are given by

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

100 0 0

0 1 0

0 0 0.01

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
R = 0.01

These same Q and R matrices can be used in the manner described in Chapter IV
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to design the terminal control strategy for the aircraft. A terminal constraint is also

placed on the aircraft to ensure that it always travels to a point where there is a

stabilizing controller. This is designed to be an ellipsoid where all trajectories within

meet constraints when the terminal control strategy is applied. It is important to

ensure that for any control strategy, the response of the actuators is smooth and

there are no large oscillations in the actuator response. For this reason, a control

designer must take special care to ensure that the design not only meets traditional

performance specifications, but that it meets pilot approval. For an autopilot, this is

not as important, but it is important to ensure that the response is smooth (especially

the actuator response) and that the usage of the actuators is fairly small. In general

for autopilot designs, the position or rate limits imposed on actuators are accounted

for by ensuring gains are small. However if there is a large amount of error, this can

still lead to rate limiting. As such, we can use the receding horizon strategy to ensure

stability while ensuring that control position limits are not exceeded. To ensure this,

we will place the control constraint

u2(k) ≤ 1.52

meaning that the actuator command is constrained to be within ±1.5 degrees of trim.

As mentioned in the previous section, this can be enforced using the gPC states

by testing the constraint at various values of ∆ to ensure that it is satisfied. To

demonstrate the control method, the aircraft is perturbed to an angle of attack 6

degrees from trim and the receding horizon strategy is used to bring the aircraft back

to trim. Figure 32 shows the responses of each of the states of the aircraft to the angle

of attack perturbation. The response of the aircraft is generated for twenty values of

∆ in the interval [−1,1]. The angle of attack response is shown in the top portion, the

pitch rate is shown in the middle and the actuator response is shown on the bottom.
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Fig. 32. Response of the linearized F-16 model under RHC control for twenty values

of ∆ ∈ [−1,1] with control constraint

The actuator response is smooth and it does not violate the constraint for any of

the trajectories. The angle of attack and pitch rate also demonstrate very smooth

responses for each of the systems. It is important to note that other than resetting

the distribution every time a new solution of the RHC policy is generated (every 0.1

seconds), there is no alteration to the control design for any value of ∆. Therefore, the

RHC policy is able to provide robust stability for any modelled uncertainty governed

by any probability distribution provided that feasibility conditions are satisfied and

a terminal controller exists. Another important consideration when designing the

receding horizon strategy is the horizon length. For the preceding example, a horizon

length of 1 second was used with the control implemented for the first 5 steps or

0.1 seconds. We now examine the effect of shortening the horizon length. While the

terminal constraint guarantees stability (so long as the problem is feasible), shortening

the horizon length can alter the control response. In particular, when the value of the

horizon length is shortened, this can lead to an oscillatory response in the control [72].



133

This can be partially attributed to the interaction between the terminal cost function

and the integral cost. As an example consider the unconstrained response of the F-16

to the same angle of attack perturbation of 6 degrees. When a horizon length of 1

second is used, the control responses are smooth as shown in figure 33. When the

Fig. 33. Unconstrained response of the linearized F-16 model under RHC control for

twenty values of ∆ ∈ [−1,1] with horizon length of 1 second

horizon length is reduced to 0.6 seconds the system responses are demonstrated by

those in figure 34. While the angle of attack and pitch rate responses are smooth,

oscillation is observed in the actuator command. The oscillation that is observed is

caused by the resetting of the distribution at each of the time steps as well as the

recalculation of the optimization problem at each of these steps. While this does not

lead to any instability in the aircraft response, it is undesirable as it may lead to

structural vibrations in the aircraft.
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Fig. 34. Unconstrained response of the linearized F-16 model under RHC control for

twenty values of ∆ ∈ [−1,1] with horizon length of 0.6 seconds

D. Summary

In this section a receding horizon control strategy was developed for linear discrete

time stochastic systems. We have used the concept of Polynomial Chaos to frame

stochastic problem in a deterministic setting and guarantee stability with an RHC

approach. Additionally, because the gPC expansion gives us a deterministic solution

to the stochastic problem we are able to enforce constraints that would be difficult

to enforce in more traditional approaches. The ability of the control strategy to

effectively stabilize the stochastic system is demonstrated with several examples.
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CHAPTER VI

STABILITY OF STOCHASTIC SYSTEMS

A. Introduction

Up until this point, we have only examined the stability of the states of the gPC

system. At this point, the question naturally arises, “What does the stability of the

gPC approximation imply about the stability of the original stochastic system?” In

this section, we will attempt to answer these questions.

We will refer to the projected system as the system obtained after the Galerkin

projection of the dynamics onto the polynomial basis. For linear systems, this is

S l
pc ∶ Ẋ =AX (VI.1)

and for nonlinear systems this is

Snl
pc ∶ Ẋ = F(X) (VI.2)

where X has been defined in equation (III.22). For stability analysis, we consider

open loop systems. In general, this will apply to closed loop systems as well since

they can be written in one of the forms given above. The pre-projected system will

be defined as the system before the Galerkin projection is performed, or

Ŝ l
p ∶

˙̂xp − Âp(∆)x̂p = Rl(t,∆) (VI.3)

for linear systems and

Ŝnl
p ∶

˙̂xp − f̂p(x̂p,∆) = Rnl(t,∆) (VI.4)

for nonlinear systems where x̂p(t,∆) = ∑p
i=0 Xi(t)φi(∆), Âp(∆) = ∑p

i=0 Aiφi(∆), and
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f̂(x̂p,∆) corresponds to the nonlinear function when all parameters that depend on

the random variable ∆ have been written in terms of a gPC expansion. The terms

Rl(t,∆) and Rnl(t,∆) are residue terms that account for the approximation error.

The system, S l is related to Ŝ l
p by taking the Galerkin projection of the system onto

{φ0, φ1, . . . , φp} and setting the projection of the residue to zero, or

⟨ ˙̂xp − Âp(∆)x̂p, φi⟩ = ⟨Rl(t,∆), φi⟩ = 0

for i = 0,1, . . . , p. The nonlinear counterparts are related in a similar fashion. Next, we

define the approximate system as the system obtained by approximating the system

dynamics with the finite dimensional polynomial basis. This system is written as

Ŝ l
∶

˙̂x = Âp(∆)x̂ (VI.5)

for linear systems and

Ŝnl
∶

˙̂x = f̂p(x̂,∆) (VI.6)

for nonlinear systems. Where Âp and f̂p are the same as those in Ŝ l
p and Ŝnl

p respec-

tively. Finally, the actual system is the original stochastic system, or

S l
∶ ẋ = A(∆)x (VI.7)

for the linear case and

Snl
∶ ẋ = f(x,∆) (VI.8)

for the nonlinear case. At this point, we are ready to present stability and convergence

properties of each of these systems.



137

B. Convergence Results

Now we present certain convergence properties that relate Ŝ l and Ŝnl to S l and Snl

respectively. The first result is to demonstrate the finite-time convergence of the

solution of Ŝ l to the solution of S l as p→∞. We start with a scalar linear system.

Proposition VI.1 Consider the linear system given by ẋ = a(∆)x and assume that

the initial state, x0 is known. The solution of this equation is given by x(t,∆). Let an

approximate system be governed by ˙̂x = âp(∆)x̂ with its solution as x̂(t,∆). Assume

that âp(∆) converges to a(∆) in the mean squared sense (Cameron-Martin [13]) and

that all moments of a and âp are finite. Then for a finite time, t, x̂(t,∆) → x(t,∆)
in the L2 sense.

Proof To prove this, we use the solution of x for each value of ∆, or

x(t,∆) = ea(∆)tx0

For the rest of the proof, we will let a ∶= a(∆) and â ∶= âp(∆). The approximate

solution is given by

x̂(t,∆) = eâtx0 = (1 + ât +
(ât)2

2
+ . . .)x0

Now, consider

E[∣x − x̂∣2] = E[∣eatx0 − eâtx0∣2] = E[∣eat
− eât∣2]x2

0

Since x0 does not depend on ∆, it can be taken outside of the expectation operator.

Furthermore, we represent the exponential terms with their Taylor series approxima-



138

tions to obtain

E[∣eat
− eât∣2] = E[∣1 + (at) + (at)2/2 + . . . − 1 − (ât) − (ât)2/2 − . . . ∣2]

= E[∣at − ât + 1/2(at)2 − 1/2(ât)2 + . . . ∣2]

≤ E[∣at − ât∣2] +E[∣(at)2 − (ât)2∣2] + . . .

= E[∣a − â∣2]t2 +E[∣a2
− â2∣2]t4 + . . . (VI.9)

Now, E[∣a − â∣2]→ 0 as p→∞ by assumption. Now consider E[∣a2
− â2∣2].

E[∣a2
− â2∣2] ≤ E[∣a2∣∣a2

− â2∣] +E[∣â2∣∣a2
− â2∣]

≤ E[∣a2∣∣a − â∣∣a + â∣] +E[∣â2∣∣a − â∣∣a + â∣]

≤ E[â4∣a + â∣2]1/2E[∣a − â∣2]1/2

+E[a4∣a + â∣2]1/2E[∣a − â∣2]1/2 (VI.10)

In the above derivation, we have made use of the Minkowski inequality and the

Schwartz inequality. Finally, the term E[a4∣a+ â∣2]1/2 by the Schwartz inequality and

again the Minkowski inequality becomes

E[a4∣a + â∣2]1/2 ≤ E[a8]1/4E[∣a + â∣4]1/4 ≤ E[∣a∣4]1/4E[∣â∣4]1/4 <∞

This is because moments of a and â are finite. In turn, this implies that (VI.10) can

be written as

E[∣a2
− â2∣2] ≤ C0E[∣a − â∣2]1/2

where C0 is a finite constant. The right-hand side of this expression tends to zero

as p → ∞ by assumption. Derivation of the remaining terms in equation (VI.9) is

similar and will result in terms on the right-hand side of (VI.9) which all tend to zero

as p → ∞ for finite t. This in turn implies that x̂ tends to x in the mean squared



139

sense. This completes the proof.

Therefore for scalar systems, over a finite time, the solution of Ŝ l converges to the

solution of the S l as p→∞. This case easily extends to the higher dimensional case.

Proposition VI.2 Consider the linear system given by ẋ = A(∆)x (x ∈ Rn) and

assume that the initial state, x0 is known. Assume that Âp(∆) converges to A(∆) in

the mean squared sense (Cameron-Martin [13]) and that all moments of A(∆) and

Âp(∆) are finite, then for a finite time, t, x̂(t,∆)→ x(t,∆) in the L2 sense.

Proof The proof of this is similar to that of the previous proposition and is therefore

omitted.

The above proposition depends upon the finite moment assumption for the values

of A(∆) and Â(∆). The next result utilizes the continuous dependence of the solution

x(t,∆) on A(∆) to prove convergence in probability.

Proposition VI.3 Consider the linear system given by ẋ = A(∆)x with random

initial state, x0(∆). Assume that Âp(∆) converges to A(∆) in the mean squared

sense and x̂0,p(∆) converges to x0(∆) in the mean squared sense as p→∞. Then for

any given time, t, x̂(t,∆) converges to x(t,∆) in probability.

Proof For each value of ∆, the evolution of x(∆) is governed by x = eA(∆)T x0(∆).
Similarly, for each value of ∆, denote x̂p as the solution to

˙̂x = Âpx̂

Since Âp(∆) → A(∆) in the mean squared sense, this implies that they also con-

verge in probability [26]. Because e(⋅) is a continuous function of its arguments, then

eÂp(∆)t → eA(∆)t in probability for each value of t by Corollary 6.3.1 in [26]. Also, since



140

x̂0,p(∆) → x0(∆) in the L2 sense, this implies they converge in probability. Finally,

we know that since the terms eÂp(∆)t and x̂0,p(∆) converge in probability to eA(∆)t

and x0(∆) respectively,

x̂p = eÂptx̂0,p
P
→ eA(∆)tx0(∆) = x

This completes the proof.

This difference between proposition VI.3 and propositions VI.1 and VI.2 is the type of

convergence. The convergence in proposition VI.2 is L2 which is stronger and implies

convergence in probability. This comes at the added cost of assuming all moments

are finite, which is generally the case for the systems we consider. Proposition VI.3

makes no such assumptions but only guarantees convergence in probability, which is

weaker. The above propositions relate S l to Ŝ l. In many cases, we might be able

to model A(∆) exactly using a gPC expansion in which case these are not needed.

Furthermore, these propositions do not give us a means of relating the gPC projected

system (S l
pc) to S l or even Ŝ l. To relate the results obtained in the previous chapters

using the gPC expansion to those of the S l and Snl, we will need to develop additional

results.

To assess the convergence of x̂p (governed by the dynamics of S l
pc and Snl

pc) to the

states of S l and Snl, we will again return to a first order linear system. When the A(∆)
matrix is a polynomial function of ∆, then we can express A(∆) exactly with a gPC

expansion. For illustration purposes, we will assume that a(∆) = âp(∆) = a0φ0+a1φ1.
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Then the actual solution for each value of ∆ becomes

x = e(a0φ0+a1φ1)tx0

x = (1 + (a0φ0 + a1φ1)t + 1

2
(a0φ0 + a1φ1)2t2 + 1

3!
(a0φ0 + a1φ1)3t3

+

1

4!
(a0φ0 + a1φ1)4t4 + 1

5!
(a0φ0 + a1φ1)5t5 + . . .)x0 (VI.11)

Because orthogonal polynomials span the space of all polynomials, it is always possible

to express products of polynomials as linear combinations of the basis functions. In

fact, because x is a function of the random variable ∆ with finite second moment,

it can be approximated x to arbitrary accuracy in the mean squared sense by x̂p =

∑∞j=0 Xjφj [13]. To determine the coefficients, Xj, we take the projection of this

solution onto the basis φj, which gives

⟨x,φ0⟩ = (1 + a0t +
1

2
a2

0t
2
+

1

2
a2

1⟨φ2
1⟩t2 +

1

3!
a3

0t
3
+

1

3!
a0a

2
1⟨φ2

1⟩t3 + . . .)x0(VI.12)

⟨x,φ1⟩ = (a1⟨φ2
1⟩t + a0a1⟨φ2

1⟩t2 +
1

2
a2

0a1⟨φ2
1⟩t3 +

1

3!
a3

1⟨φ4
1⟩t3 + . . .)x0 (VI.13)

In the above expression, we have assumed ⟨φ2
0⟩ = 1. Taking the time derivative of the

response x, we get

ẋ = (a0φ0 + a1φ1) + (a0φ0 + a1φ1)2t + 1

2
(a0φ0 + a1φ1)3t2 . . .

Projecting this onto φ0(∆) gives

⟨ẋ, φ0⟩ = a0 + a2
0t + a2

1⟨φ2
1⟩t +

1

2
a3

0t
2
+

3

2
a0a

2
1⟨φ2

1⟩t2 + . . . (VI.14)

Examining the first few terms of this expression and comparing them to the terms of

⟨x,φ0⟩ and ⟨x,φ1⟩, we can see that the following expression is obtained by simplifying

equation (VI.14).

⟨ẋ, φ0⟩ = a0⟨x,φ0⟩ + a1⟨x,φ1⟩ (VI.15)
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The above expression is in fact exact for the usual sets of orthogonal polynomials

(Jacobi, Hermite, Legendre, etc.). If we were to continue the process, we would find

⟨ẋ, φ1⟩ = a1⟨φ2
1φ0⟩⟨x,φ0⟩

⟨φ2
0⟩
+ a0⟨φ2

1⟩
⟨x,φ1⟩
⟨φ2

1⟩
+ a1⟨φ2

1φ2⟩⟨x,φ2⟩
⟨φ2

2⟩
⟨ẋ, φ2⟩ = a1⟨φ2

1φ2⟩⟨x,φ1⟩
⟨φ2

1⟩
+ a0⟨φ2

2⟩
⟨x,φ2⟩
⟨φ2

2⟩
+ a1⟨φ1φ2φ3⟩⟨x,φ3⟩

⟨φ2
3⟩

⋮

⟨ẋ, φp⟩ = a1⟨φp−1φ1φp⟩⟨x,φp−1⟩
⟨φ2

p−1⟩
+ a0⟨φ2

p⟩
⟨x,φp⟩
⟨φ2

p⟩
+ a1⟨φ1φpφp+1⟩⟨x,φp+1⟩

⟨φ2
p+1⟩

⋮

Writing these expressions in a matrix form gives

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨ẋ, φ0⟩
⟨ẋ, φ1⟩
⟨ẋ, φ2⟩
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 0 0 0 ⋯

a1
⟨φ2

1φ0⟩
⟨φ2

0⟩
a0
⟨φ2

1⟩
⟨φ2

1⟩
a1
⟨φ2

1φ2⟩
⟨φ2

2⟩
0 0 ⋯

0 a1
⟨φ2

1φ2⟩
⟨φ2

1⟩
a0
⟨φ2

2⟩
⟨φ2

2⟩
a1
⟨φ1φ2φ3⟩
⟨φ2

3⟩
0 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⟨x,φ0⟩
⟨x,φ1⟩
⟨x,φ2⟩
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(VI.16)

From here, we can see a clear tri-diagonal structure emerge. This will be the case

for any orthogonal polynomials when the system uncertainty is linear in ∆. This

series can be extended to infinite terms and if this is done, we can see that the

resulting solution in fact converges to the original x because the set of polynomials

makes up a Hilbert space. This means that in the limit, this projection approach

captures the behavior of the original system (S l). If we relate this back to the gPC

approximations that were determined in previous chapters and replace ⟨x,φj⟩ by Xj

we will find that the system matrix we have determined from this procedure is exactly

the matrix determine by performing the gPC approximation. If we truncate the series

at p, this is equivalent to setting ⟨x,φp+1⟩ = 0 for all time. We can see that this will

induce errors in the equations of motion for ⟨ẋ, φj⟩ with j ≤ p and that this error will
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in fact enter in through the pth equation in (VI.16). However, because the system

matrix has a banded structure, this means the states have a cascaded effect and the

error must pass through all of the previous states to influence the first few terms.

Furthermore, because the gPC expansion exhibits exponential convergence [15] when

the proper polynomials are used, we expect the terms associated with the higher order

projections to be small. For stable systems, this error will indeed die out quickly.

The previous example shows that given enough terms in the gPC expansion, the

equations of motion of the states in Ŝ l
p and S l

pc begin to converge to those of S l. For

the next result, we will assume this convergence and show that if this is true, then

if in finite time the projected system is driven to zero, then the actual system will

also be driven to zero in the mean squared sense. This is summed up in the following

proposition.

Proposition VI.4 Let x̂p = ∑p
i=0 Xiφi be the approximation of x determined from so-

lution of Spc with dimension p. If we assume that the solution of the projected system,

x̂p converges to the solution of the x̂ in the mean squared sense and all moments of

A and Â are finite, then

xp(t,∆) L2
→ x(t,∆)

for a given value of t.

Proof To test the convergence, we examine the limit as p→∞ of

E[(x̂p − x)2]1/2 = E[(x̂p − x̂ + x̂ − x)2]1/2

≤ E[(x̂p − x̂)2]1/2 +E[(x̂ − x)2]1/2

Now, the first term tends to zero by assumption and the second term tends to zero

by proposition VI.2. This completes the proof.
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While this result demonstrates convergence, if it were to be used for stability it

would require the system matrix to be of infinite dimension so its practical usage

is limited. The benefit of this proposition is that it gives us confidence that if our

system approximation is valid, then the behavior of the real system should match our

truncated system for short times. We will discuss another approach to showing this

later.

While the propositions in this section provide converge results between the var-

ious systems, the convergence is only guaranteed for a given time. For finite-time

problems such as a trajectory generation problem, these results are useful. However,

for stability analysis we are concerned about the system behavior as t → ∞. There-

fore, we will need to take another approach to relate the stability of S l
pc and Snl

pc to

S l and Snl.

C. Stability Results

In the previous section, discussion was centered around convergence of the gPC ap-

proximation for finite time. In this section we will relate the behavior of the projected

system to the behavior of the actual system as t →∞. The first result provided will

be a general result that relates the stability of Snl
pc and S l

pc to the actual states of Ŝnl
p

and Ŝ l
p respectively.

Proposition VI.5 Let S l
pc (or Snl

pc) be asymptotically stable for all orders of approx-

imation, p, then the response of the state x̂p converges to 0 in the mean squared (L2)

sense with respect to ∆ as t→∞.

Proof The solution of Ŝp converges to zero in the mean-squared sense as t → ∞ if
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limt→∞E[(x̂p − 0)2]→ 0. We can write this as

lim
t→∞

E[(x̂p − 0)T (x̂p − 0)] = lim
t→∞

E[x̂T
p x̂p]

= lim
t→∞

E [(
p

∑
i=0

XT
i φi)(

p

∑
j=0

Xjφj)]

= lim
t→∞

p

∑
i=0

p

∑
j=0

XT
i Xj ∫

D∆

φiφjf(∆)d∆

= lim
t→∞

X(t)T (In ⊗W )X(t)

where W has been defined in equation (IV.4). But, we know that the projected

system is asymptotically stable, so limt→∞XT (In ⊗W )X = 0. This completes the

proof.

The result is straightforward, but is presented to illustrate an important point.

This is that stability of the Spc does not imply stability of the Ŝp (and later also S)

for all ∆. The stability guarantees are instead given in the L2 sense, meaning that

there may be some measure zero subset ∆ ∈ Ω where the result does not hold. By

definition of measure zero, these values will have zero probability of occurring.

To show stability of the actual system we will need to understand the relationship

between the Galerkin projection of the system and the Hilbert projection of the

system. The Galerkin projection of the system can be obtained by assuming the

system trajectories have the form

x(t,∆) =
∞

∑
i=0

Xi(t)φi(∆) (VI.17)

This series is truncated at p to get an approximate solution (x̂p). The residue of the

projection of the dynamics onto each polynomial direction is set to zero to determine

the equations of motion for each Xi. This can be expressed as

⟨
p

∑
i=0

Ẋiφi −A(∆)(
p

∑
i=0

Xiφi) , φj⟩ = 0 (VI.18)
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This gives us the familiar equations of motion for the coefficients X

Ẋj⟨φ2
j⟩ =

p

∑
i=0

⟨A(∆)Xiφi, φj⟩ (VI.19)

This gives us p+1 equations (one for each j = 0,1, . . . , p). By assumption, we are deal-

ing with systems with finite second order moments. This translates to systems that

are in L2(∆). The space of all orthogonal functions over ∆ makes up a Hilbert space

and the sequence of all orthogonal functions is complete. By the projection theorem,

we can compute the Hilbert projection to this subspace of orthogonal functions [73].

This projection is in fact the best in the mean squared sense. Let x(t,∆) correspond

to the true solution. We have denoted x̂p(t,∆) as the approximation obtained from

solution of the equations of motion associated with the Galerkin projection. We will

denote x̄(t,∆) as solution obtained from equations of motion associated with the

Hilbert (minimum distance) projection. This projection is obtained by

⟨x(t,∆), φi⟩ = x̄i (VI.20)

We can write the true solution as

x(t,∆) = x̄(t,∆) + ε =
p

∑
i=0

x̄iφi + ε (VI.21)

It is important to note that by the projection theorem, ⟨ε, φi⟩ = 0 for i = 0, . . . , p. If

we take the derivative of the Hilbert projection, we arrive at

⟨ẋ(t,∆), φi⟩ = ˙̄xi (VI.22)

For linear systems, this becomes

⟨A(∆)x(t,∆), φi⟩ = ˙̄xi (VI.23)

We now state the following Lemma.
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Lemma VI.6 Assume that the system S l
pc is asymptotically stable for all p as p→∞

and that the error in the Hilbert projection is bounded (ε ≤ ε∞). Then the Galerkin

projection tends toward the Hilbert Projection as p → ∞ and t → ∞. Moreover, the

actual stochastic system is stable for all ∆ in the L2 sense.

Proof We begin by examining the evolution of the error between the Galerkin and

Hilbert projections. This is given by

⟨ẋ(t,∆), φj⟩ − Ẋj⟨φ2
j⟩ = ⟨A(∆)x(t,∆), φj⟩ − ⟨A(∆)x̂p(t,∆), φj⟩ (VI.24)

Now, we can define ei = x̄i−Xi. Furthermore, recall x(t,∆) = ∑p
i=0 x̄iφi+ε. Performing

these substitutions gives

ėj =
1

⟨φ2
j⟩

p

∑
i=0

⟨A(∆)eiφi, φj⟩ + 1

⟨φ2
j⟩
⟨A(∆)ε, φj⟩

These can be rewritten as

ė =Ae + ⟨A(∆)ε, φj⟩

where e is a vector of ej terms and A is the same matrix obtained from the gPC

projection of order p. Recall that ⟨ε, φj⟩ = 0 for j ≤ p. Now, we know that A is stable,

so we can write the solution for the error directly in terms of the error in the Hilbert

projection, ε.

e = eAte0 + ∫
t

0
eA(t−τ)⟨A(∆)ε, φj⟩dτ

Thus, the error between the projections is related to the error in the Hilbert projec-

tion. The first term, eAte0 → 0 as t → ∞ by stability of A. If ε(t) ≤ ε∞, then we

know that ∣⟨A(∆)ε, φj⟩∣ ≤ C0ε∞. This coupled with the stability of A means that the

second term tends to a constant function of ε∞ as t→∞. This gives

lim
t→∞
∣e∣ ≤ C1ε∞
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where ∣ ⋅ ∣ is applied element-wise and C1 is a vector. Therefore the error is in fact

bounded and proportional to the bound on ε. As the accuracy of the Hilbert projection

is increased, the error decreases and the Galerkin projection tends toward the Hilbert

projection as t→∞.

Now, x̂p(t,∆) ∈ L2(t) × L2(∆), where L2(∆) is with respect to the random

variable ∆ and L2(t) is over t ∈ [0,∞). Because both of these spaces are Banach

spaces, every Cauchy Sequence has its limit in the product space. Therefore, because

the x̂p → x̄ as p → ∞ and as t → ∞, x̄ ∈ L2(t) × L2(∆). By the same argument,

x ∈ L2(t)×L2(∆) since x̄→ x as p→∞. Additionally, since x̂p → 0 as t→∞ for all p,

it’s limit must also tend to zero. This means that the actual stochastic system does

in fact decay to zero asymptotically.

The previous lemma requires the assumption that there is a bound on the error

in the Hilbert projection for all time. When the actual system is stable or bounded,

assumption is not restrictive. This assumption is justified because the Lemma above

deals with case where the gPC system is stable. Since the gPC system is stable, when

we increase the number of terms, the evolution of ε is included in A and this matrix

is stable by assumption. We now discuss the case when ε is not bounded.

Lemma VI.7 Assume that S l is unstable such that in at least one polynomial direc-

tion, ∣xi∣→∞. Then S l
pc will be unstable after some finite number of terms.

Proof We can without loss of generality write x = ∑∞i=0 xiφi since the basis functions

form a complete set in ∆. Furthermore, the Hilbert projection is equivalent to taking

the first p terms of this expansion. The Hilbert projection gives

˙̄X =AX̄ +
∞

∑
i=p+1

⟨A(∆)φiΦ⟩xi
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where X̄ corresponds to the vector of terms of the Hilbert projection, and Φ is a

vector of φj’s for j = 0, . . . , p. The terms for i ≥ p + 1 correspond to ε in the previous

arguments. If the system is unstable then by assumption, at least one xi must tend

to infinity. If this is the case, we can without loss of generality assume that this

direction corresponds to some φk. Now, if all other directions are stable and p ≥ k,

this implies A is unstable for all p ≥ k. Another way of approaching this is to write

the system in a matrix form

⎡⎢⎢⎢⎢⎢⎢⎣

˙̄X

ε̇

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

A Axε

Aεx Aεε

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

X̄

ε

⎤⎥⎥⎥⎥⎥⎥⎦
Again, the matrix A is the matrix obtained from gPC. Now, if this system is unstable

then there are at most a finite number of upper left hand blocks that have all negative

eigenvalues [74]. This means that there will be at most a finite number of terms in

the gPC expansion required to determine that the original system is unstable.

The above Lemma tells us that if S l is unstable, S l
pc will be unstable. This

means that if the gPC system remains stable for as p → ∞, the original system is

stable as well. The main difficulty in the previous Lemma is the assumption that

at least one xi must tend to infinity. Because the expansion is infinite, it is also

possible to have x → ∞ and have each xi < ∞. When this occurs for infinite terms,

the expansion will also be infinite. This case, however, does not make sense for linear

systems. For a linear system, the only possible equilibrium point is the origin. For

linear systems, non-zero steady state values in the state can only be achieved when

the system matrix has a zero eigenvalue. Furthermore, we would require that the

initial condition x0 = ∑xi,0φ(∆) to be infinite with xi,0 < ∞. However, this means the
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initial condition would not have a finite second moment as

E[(x0 −E[x0])T (x0 −E[x0])] =
∞

∑
i=0

xT
i xi⟨φ2

i ⟩ =∞

This violates the basic assumptions of the gPC expansion and is therefore not a

practical situation.

Finally, we introduce one final Lemma.

Lemma VI.8 Assume that S l is asymptotically stable, then S l
pc will be stable for all

truncations of order p.

Proof As in the previous Lemma, write the system matrix of the Hilbert projection

and its associated error as the following.

⎡⎢⎢⎢⎢⎢⎢⎣

˙̄X

ε̇

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

A Axε

Aεx Aεε

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

X̄

ε

⎤⎥⎥⎥⎥⎥⎥⎦
If S l is asymptotically stable, then every upper left-hand block of this matrix above

must have negative eigenvalues [74]. Therefore for every truncation p, λ(A) < 0 and

therefore S l
pc must be stable. This completes the proof.

The two previous lemmas allow us to use a contradiction argument to assess

the stability of S l in terms of the stability of S l
pc. If S l

pc is stable for all p, then

it is not possible for the original system to be unstable as Lemma VI.7 provides a

contradiction. Similarly, if S l
pc is unstable then we can determine that the S l is not

asymptotically stable by drawing a contradiction from Lemma VI.8.

D. Summary

This chapter has provided preliminary results for linking the stability of the gPC

system to that of the actual stochastic system. It should be noted that when we
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discuss stability for the actual system, there is always a possibility that there may

be a measure zero set of ∆ for which the system is not stable. It should also be

noted that in reality many of the stability and convergence results require conditions

to be enforced as p →∞. These conditions are not possible to test in practice. The

goal of this chapter is to provide confidence that the results obtained from the gPC

expansion are accurate when enough terms are used and that results obtained from

analysis of S l
pc can be applicable to S l. Extending these results to include more rigor

and strengthening them is a topic of future research. In particular, these ideas open

the door for analysis of controllability, observability, and optimality. Extending these

ideas to nonlinear systems is also a topic of future research.
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CHAPTER VII

CONCLUSIONS

A. Dissertation Summary

This dissertation has presented a novel framework for solving stochastic stability

analysis and control problems in a deterministic setting. These problems arise out

of a need to assess the stability of and design control laws for systems that have

uncertainty in their dynamics. In practice, the dynamics of a system are not known

perfectly and the system parameters may be estimated to within some associated

probability distribution. The traditional control design approach is to design a control

law for the average value of the uncertain parameters and ensure robustness for the

entire range of parameter variation. This approach, however, does not take into

account the likelihood of the value of the uncertain parameter. This can generally

lead to conservative control laws that place a large amount of weight on outcomes with

low probability. As a result, a control designer might wish to increase performance

for parameter ranges with high probability and sacrifice performance for parameter

values that occur with low probability.

In general, these stochastic stability and control problems can be difficult to

solve analytically. As a result, sampling based methods are usually employed to

approximate and solve such problems. Unfortunately, these methods can require the

solution of large problems that do not have analytical solutions.

The main focus of this work is the use of the generalized Polynomial Chaos

(gPC) expansion to transform the solution of stochastic problems into the solution

of deterministic problems. In this manner, we are able to solve stochastic stability

and control problems using well-known and well-established methodologies. In this
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dissertation, the gPC approach has been used to solve a number of stability and

control problems with high accuracy.

In order to apply the gPC expansion to dynamic system analysis, we first de-

veloped a general framework for the modelling of gPC systems. A general system

formulation for transforming the stochastic problem into a deterministic problem was

presented. We have shown that linear systems can be written as linear systems in

higher dimensional state space and that polynomial systems can be written as poly-

nomial systems of the same order in higher dimensional state space.

After developing a methodology for the transformation of a stochastic system into

a deterministic system of higher dimension, we then developed stability conditions for

linear open and closed loop systems as well as nonlinear systems. These conditions

were demonstrated with several examples and the ability of the gPC approximation to

accurately predict the statistical behavior of the stochastic system was demonstrated.

Next, conditions for the solution of stochastic optimal control problems were de-

veloped. We are interested in solving minimum expectation problems of the Bolza

form. Several feedback laws for the solution of infinite horizon linear minimum expec-

tation control problems have been developed. Additionally, a framework for solving

open-loop optimal control problems was also developed. These were demonstrated

with several examples.

Additionally, a framework for solving the stochastic receding horizon control

problem was presented. Here we developed several receding horizon policies that

guarantee the stability of the stochastic system using the gPC approach. These

enabled us to compute control strategies for stochastic dynamic systems with different

types of state and control constraints.

Finally, we developed preliminary results that justify the use of the gPC approach

and relate the stability of the gPC system to that of the original stochastic system
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that we have approximated. In general we have presented several convergence results

and demonstrated the link between the stability of the original stochastic system and

that of the gPC system for linear systems.

B. Future Work

1. Controllability and Observability

Many of the conditions that have been developed in this dissertation present sufficient

conditions for determining optimal control laws. However, we have not discussed the

controllability of these stochastic systems. The feasibility conditions guarantee that

if the system is uncontrollable, then the uncontrollable modes are stable and thus a

solution to the optimization problems exists. However, an important problem is that

of determining conditions for understanding the controllability (and observability) of

the original stochastic systems in terms of the controllability (and observability) of

the gPC projected system.

2. Computational Efficiency

The largest drawback of the gPC approach is the higher dimensional state space

that results from the Galerkin projection. When high accuracy is needed or when

there are multiple random variables, the number of polynomials can become very

large. For linear systems, this is not extremely challenging. However, for nonlinear

systems this becomes a computational problem. For polynomial systems, the gPC

projection results in equations of motion involving higher order tensors. It is possible

that the structure can be exploited to reduce computational complexity and improve

the speed of simulation. Additionally, the large number of states created by the

gPC approximation can make the solution of nonlinear optimization problems very
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difficult. This is also a topic of future research.

3. RHC Formulation

The stochastic RHC formulation presented in Chapter V presents a generalized strat-

egy for solving stochastic RHC problems. Although the strategy is effective, addi-

tional steps should be taken to reduce the computational time of the strategy and

formulate the problem in such a way that on-line solution of the problem is possible.

Furthermore, this strategy should be extended to nonlinear systems. Additionally,

the probability one constraints discussed in the RHC chapter can be extended to cover

more general cases of the form, P (x ∈ A) ≥ P̄ . To further develop this formulation,

a better means of handling these constraints (and associated the indicator function)

should be developed.

4. Robust Control

The approach in this work should be compared to traditional robust control method-

ologies. A fair comparison will require formulation of stochastic problems in the

frequency domain. This can then be used to improve the tendency of robust control

methods to be conservative. This provides a means of further developing the concept

of risk-sensitive control.
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APPENDIX A

SOME COMMON SETS OF ORTHOGONAL POLYNOMIALS

In this section, we cover a few sets of orthogonal polynomials that are used in the gPC

framework. In this appendix, we will discuss the weighting functions with which each

set of polynomials is orthogonal and relate these to their corresponding probability

distribution.

Hermite Polynomials (Gaussian Distribution)

As is mentioned in Chapter II, the concept of Polynomial Chaos was initially devel-

oped using Hermite polynomials. These polynomials are orthogonal with respect to

the weighting function

f(∆) = 1√
2π

e−
∆2

2 (A.1)

This weighting function corresponds to a Gaussian distribution with zero mean and

variance 1. The polynomials themselves can be determined from Rodriguez Formula

Hn(∆) = (−1)ne∆2/2 dn

d∆n
e−∆

2/2 (A.2)

Table 4 gives the listing of polynomials for ∆ ∈ R1 up to 8th order. The domain of

these polynomials is ∆ ∈ (−∞,∞). The weighting function above corresponds to unit

variance. If a different variance is required there are several methods of dealing with

this. One is to change the weighting function to

fσ(∆) = 1

σ
√

2π
e−

∆2

2σ2

where σ2 is the desired variance. This method requires recomputing a new set of

orthogonal polynomials. This is equivalent to substituting ∆ = ∆̂/σ into the expres-
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Table 4. One-dimensional Hermite polynomials up to 8th order

n Hn

0 1

1 ∆

2 ∆2
− 1

3 ∆3
− 3∆

4 ∆4
− 6∆2

+ 3

5 ∆5
− 10∆3

+ 15∆

6 ∆6
− 15∆4

+ 45∆2
− 15

7 ∆7
− 21∆5

+ 105∆3
− 105∆

8 ∆8
− 28∆6

+ 210∆4
− 420∆2

+ 105
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sions in table 4 where ∆̂ has variance σ2. An additional method for using a non-unit

variance is to multiply ∆ by σ everywhere it appears in the actual equations. It

is always possible to write a random variable with non-unit variance in terms of a

random variable of unit variance multiplied by a constant (σ).

When the dimension of ∆ is greater than one, we can use the weight function

corresponding to the multi-dimensional Gaussian distribution. This function is given

by

f(∆) = 1

(2π)m/2 e−
∆T ∆

2 (A.3)

where ∆ ∈ Rm. This weight function corresponds to a multivariate Gaussian dis-

tribution where all of the random variables are independent and therefore have no

correlation. If correlation were allowed, then a different weighting function would

be required and a different set of polynomials obtained. The polynomials can be ob-

tained by using products of the one-dimensional Hermite polynomials for each ∆i. For

example, the set of second order polynomials are given by H2(∆1), H1(∆1)H1(∆2),
and H2(∆2). Table 5 gives the Hermite polynomials up to 4th order for ∆ ∈ R2. For

the single dimensional case, the number of polynomials is p+ 1 where p is the desired

order. For the multivariate set, the relationship between the number of polynomials

and the desired order is given by N = (m+p)!m!p! . For the case above, we have m = 2 and

p = 4 which means we require 15 polynomials (Ĥn).

Legendre Polynomials (Uniform Distribution)

Legendre polynomials are orthogonal with respect to the weighting function

f(∆) = 1

2
(A.4)
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Table 5. Two-dimensional Hermite polynomials up to 4th order

n p Ĥn

0 0 1

1 1 ∆1

2 ∆2

3 2 ∆2
1 − 1

4 ∆1∆2

5 ∆2
2 − 1

6 3 ∆3
1 − 3∆1

7 ∆2
1∆2 −∆2

8 ∆2
2∆1 −∆1

9 ∆3
2 − 3∆2

10 4 ∆4
1 − 6∆2

1 + 3

11 ∆3
1∆2 − 3∆2∆1

12 ∆2
1∆

2
2 −∆2

1 −∆2
2 − 1

13 ∆3
2∆1 − 3∆1∆2

14 ∆4
2 − 6∆2

2 + 3
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for ∆ ∈ [−1,1]. The weighting function corresponds to a uniform distribution for the

interval [−1,1]. The Legendre polynomials can be expressed using Rodriguez formula

Pn(∆) = 1

2nn!

dn

d∆n
[(∆2

− 1)n] (A.5)

The polynomials up to 8th order are given in table 6. To extend the one-dimensional

Table 6. One-dimensional Legendre polynomials up to 8th order

n Pn

0 1

1 ∆

2 1
2(3∆2

− 1)
3 1

2(5∆3
− 3∆)

4 1
8(35∆4

− 30∆2
+ 3)

5 1
8(63∆5

− 70∆3
+ 15∆)

6 1
16(231∆6

− 315∆4
+ 105∆2

− 5)
7 1

16(429∆7
− 693∆5

+ 315∆3
− 35∆)

8 1
128(6435∆8

− 12012∆6
+ 6930∆4

− 1260∆2
+ 35)

Legendre Polynomials to multi-variate polynomials, a procedure similar to that em-

ployed for Hermite polynomials can be used. When this is the case the multivariate

weighting function becomes.

f(∆) = 1

2m
(A.6)

where m is the number of independent random variables. Table 7 shows the polyno-

mials in the set for m = 2 and polynomials up to 3rd-order. As with the Hermite case,

these polynomials are obtained when each random variable is independent.
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Table 7. Two-dimensional Legendre polynomials up to 3rd order

n p P̂n

0 0 1

1 1 ∆1

2 ∆2

3 2 1
2(3∆2

1 − 1)
4 ∆1∆2

5 1
2(3∆2

2 − 1)
6 3 1

2(5∆3
1 − 3∆1)

7 1
2(3∆2

1∆2 −∆2)
8 1

2(3∆2
2∆1 −∆1)

9 1
2(5∆3

2 − 3∆2)



172

Jacobi Polynomials (Beta Distribution)

The set of Jacobi Polynomials are orthogonal with respect to the weighting function

f(∆) = (∆ − a)β(b −∆)α
(b − a)α+β+1B(α + 1, β + 1) (A.7)

for ∆ ∈ [a, b] where α,β ∈ R are parameters that determine the shape of the distribu-

tion. The Beta function, B(⋅, ⋅) is defined as

B(j, k) = Γ(p)Γ(q)
Γ(p + q) (A.8)

The distribution function f(∆) corresponds to a Beta distribution. To generate the

polynomials for ∆ ∈ [−1,1], the Rodriguez formula can be used. This is given by

P
(α,β)
n =

(−1)n
2nn!(1 −∆)α(1 +∆)β

dn

d∆n
[(1 −∆)n+α(1 +∆)n+β] (A.9)

Here we have used a = −1 and b = 1. When α = β = 0 the Jacobi Polynomials are the

Legendre Polynomials and the weighting function becomes constant. This is to be

expected as the Beta distribution for α = β = 0 is the uniform distribution. Table 8

Table 8. One-dimensional Jacobi polynomials up to 4th order

n P
(2,2)
n

0 1

1 3∆

2 7∆2
− 1

3 15∆3
− 5∆

4 1
16(495∆4

− 270∆2
+ 15)

shows the polynomials up to 4th order for α = β = 2. The products of polynomials

and their weights can be used to compute a multivariate in the same manner as for
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the previous sets of orthogonal polynomials.
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APPENDIX B

MISCELLANEOUS APPLICATIONS

In this appendix, we will examine the solution to a few problems that can be solved

using the PC approach.

Confidence Intervals

The first problem considered is that of ensuring stability or performance in terms of

a certain confidence interval. In general throughout this dissertation, we have solved

problems in terms of the entire set of ∆. As mentioned previously, for distributions

with infinite support this can be an unrealistic problem. In such cases it is better

to discuss system properties with respect to a confidence interval. As an example,

consider the linear system

ẋ = Ax + (B∆)x

where ∆ is governed by a Gaussian distribution. Because the system uncertainty is

linear in ∆, it is clear that ensuring stability with probability one is not possible.

This would be equivalent to ensuring that the eigenvalues of

Â = A +B∆

were stable for ∆ ∈ (−∞,∞). It is therefore more reasonable to consider stability of

the system with respect to some finite probability. Clearly,

P (λ(Â) < 0) = P ({∆ ∶ λ(Â) < 0}) = ∫
∆

1λ(Â(∆))<0(∆)f(∆)d∆ (B.1)

where 1λ(Â(∆))<0(∆) is the indicator function that is 1 when the system is stable and

zero otherwise. This statement is valid for any form of Â, not just the linear form
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given above. To actually compute this interval, we would be required to numerically

compute the values of ∆ where this is the case. This is the Monte-Carlo approach.

Besides being a computationally difficult problem (especially when the support of ∆

is infinite), solution of this problem may not give the results one would expect. For

example let the dependence of Â on ∆ be such that

{∆ ∶ λ(Â(∆)) < 0} = (−∞,−ε]⋃ [ε,∞)

where ε > 0. In many cases, we might want to ensure that the system is stable

with some finite probability P̄ . If P ({(−∞,−ε]⋃ [ε,∞)}) ≥ P̄ , we would say the

condition was satisfied. However, from this condition, we can see that at the center

of the distribution (our expected value), the condition is not verified. Therefore,

simply examining the “Probability of Stability” in this sense is not necessarily the

best method for solving the problem we wish to solve. Indeed, in general we wish

to ensure that the system is stable with some probability and that the values of ∆

for which the condition is not satisfied correspond to the tails of the distribution (or

those with the least probability).

Define the set

A = [−ε, ε]

where ε is some positive constant. In general, the condition we truly wish to satisfy

is

P ({∆ ∈ A ∶ λ(Â(∆)) < 0)}) ≥ P̄

If P ({∆ ∈ A}) = P̄ , then we only need to ensure that λ(Â(∆)) < 0 ∀∆ ∈ A. This is a

much easier problem to solve. In general, this can be solved with a sampling based

method by taking values of ∆ ∈ A and testing these values. However, a non-sampling

approach to solving this problem can be accomplished by using the gPC projection.
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Instead of using polynomials which are orthogonal over the entire domain of ∆, we

create a new set of polynomials that are orthogonal over A. This can be accomplished

by using the Gram-Schmidt procedure defined in Chapter II.

To demonstrate this a simple example will be presented. Consider the system

ẋ = A(∆)x

where

A =

⎡⎢⎢⎢⎢⎢⎢⎣

−4 +∆ −1.5

1 0

⎤⎥⎥⎥⎥⎥⎥⎦
Now, we can see that this system will be stable when ∆ ≤ 4. Assume that ∆ is a

Gaussian random variable with unit variance. Now, it is not possible for the system

to be stable for all values of ∆. However, let us say that we wish to satisfy stability

with 95% probability. In such a case we might choose to make sure that the system

is stable to within 2σ. To use the gPC approach, we then build a set of polynomials

that are orthogonal with respect to the weighting function

f(∆) = 1√
2π

e−
∆2

2

for ∆ ∈ [−2,2]. Using the Gram-Schmidt procedure we can arrive at the set of

orthogonal polynomials (up to 4th order) shown in table 9.

These polynomials form an orthonormal basis on the domain of ∆. If we use

these polynomials to formulate the corresponding A matrix, we find that the eigen-

values of the matrix correspond well to the actual eigenvalues. Figure 35 displays the

eigenvalues of the system for the PC expansion as well as the actual eigenvalues of

the system. The eigenvalues match very well. As the number of terms is increased,

the eigenvalues of the gPC system matrix, A, will begin to cover the entire range

of the eigenvalues observed by Monte-Carlo. As the figure demonstrates the sys-
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Table 9. Polynomials up to 4th order for Gaussian distribution with domain 2σ

n Pn

0 1

1 ∆

2 ∆2
− 0.7737

3 ∆3
− 1.8303∆

4 ∆4
− 2.8930∆2

+ 0.8222

Fig. 35. Eigenvalues of system over 2-σ variation in ∆ for gPC approximation and

Monte-Carlo prediction

tem is clearly stable with probability greater than or equal to 95%. Beyond simply

testing for stability, we can use this framework to design controllers that guarantee

performance with a given probability and also to create more risk-sensitive controls.
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Multivariate Distributions with Different PDF’s

Thus far, the examples presented in this work has assumed that all uncertainty ap-

pearing in the equations of motion have the same probability distributions. While

on face it seems that this is a necessary assumption, we will show that it is simple

to incorporate independent random variables governed by different probability distri-

butions. The difficulty that must be overcome is building a polynomial basis that is

orthogonal with respect to the joint probability distribution. As an example consider

two independent random variables governed by the distributions f1(∆1) and f2(∆2).
Because the random variables are independent, the joint probability distribution is

simply the product of the these distributions, or f = f1(∆1)f2(∆2). To test that this

distribution is still in fact a probability distribution, we integrate over the domain of

∆ = (∆1,∆2).

P (1) = ∫
∆

f d∆ = ∫
∆1
∫

∆2

f1(∆1)f2(∆2)d∆2 d∆1

= ∫
∆1

f1(∆1)d∆1∫
∆2

f2(∆2)d∆2 = 1

So this joint distribution is in fact a probability distribution. A more theoretically

sound way of seeing this is to use the definition of independent random variables. If

∆1, . . . ,∆n are independent, then

P (∆1, . . . ,∆n) =
n

∏
i=1

Pi(∆i)

This justifies our choice of joint distribution. The benefit of this joint distribution is

that it allows us to define multivariate polynomials orthogonal to the joint distribu-

tion as products of the univariate polynomials associated with each single distribution.

The joint distribution is given by f(∆1, . . . ,∆n) = ∏n
i=1 fi(∆i). To define the associ-

ated gPC expansion, we again return to the two-dimensional case. Let φj
i correspond
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to the ith order polynomial associated with ∆j and its corresponding probability

distribution (weight function). The set of polynomials of order 0 are given by

O(0) = {φ1
0, φ

2
0, φ

1
0φ

2
0, . . .}

For sets of orthogonal polynomials, these are always 1 and thus φ0 = 1. For the set of

first, second, and third order polynomials, the sets of polynomials are given by

O(1) = {φ1
1, φ

2
1}

O(2) = {φ1
2, φ

1
1φ

2
1, φ

2
2}

O(3) = {φ1
3, φ

1
2φ

2
1, φ

1
1φ

2
2, φ

2
3}

The factorial relationship for the number of polynomials presented throughout the

work holds even with multiple distributions. Because φ1
i and φ2

j are functions of

different variables, it is easy to see that the orthogonality properties of the single

dimensional polynomials carry over to the multidimensional case as well. This can be

generalized for the n-dimensional case to obtain orthogonal polynomials with respect

to n variables all governed by possibly different distributions. It is also not important

for the domain of each variable to be the same as the projections onto each space

correspond to multiple integrals over the domain of each random variable. As an

example consider a simple linear system ẋ = Ax with

A =

⎡⎢⎢⎢⎢⎢⎢⎣

−1.5 +∆1 −1.5 +∆2

1 0

⎤⎥⎥⎥⎥⎥⎥⎦
where ∆1 ∈ [−1,1] is governed by a uniform distribution and ∆2 ∈ [−1,1] is governed

by a Beta distribution with α = β = 2. The polynomials up to third order are given

in table 10. With this set of orthogonal polynomials, we are able to predict the

system mean and variance of the system response very accurately. Here we use a 4th
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Table 10. Two-dimensional polynomials up to 3rd order where ∆1 is governed by a

uniform distribution and ∆2 is governed by a beta distribution

n p φn

0 0 1

1 1 ∆1

2 3∆2

3 2 1
2(3∆2

1 − 1)
4 3∆1∆2

5 7∆2
2 − 1

6 3 1
2(5∆3

1 − 3∆1)
7 3

2(3∆2
1∆2 −∆2)

8 7∆1∆2
2 −∆1

9 15∆3
2 − 5∆2

order expansion (meaning the number of polynomials is 15) to capture the stochastic

dynamics.

Figures 36 and 37 display the mean and variances for each state as predicted by

the gPC expansion. These lie directly on top of those observed by Monte Carlo sim-

ulations. We can see that toward the end of the simulations, there is a small amount

of error build up in the variance, but this is many orders of magnitude lower than

the variance of the response. For this system, even with fourth order polynomials we

are able to predict the interaction between two independent random variables gov-

erned by different distributions. Because there are more random variables, accurately

predicting the variance requires many more polynomials than for the case when the

uncertainty is governed by a single random variable. For linear systems, this increase

in dimensionality is not a significant problem (for systems of fairly low order). For
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Fig. 36. Expected value of both states of the stochastic system from gPC prediction

and Monte-Carlo observation

nonlinear systems, this higher dimensionality can create some difficulty. This example

serves to demonstrate the ability of the gPC expansion to handle types of problems

that are extremely difficult to handle in a traditional sampling-based framework.
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Fig. 37. Variance response of each state of the stochastic system from gPC prediction

and Monte-Carlo observation
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