
A hybrid evolutionary algorithm for
vehicle routing problem with

stochastic demands

Robinson Andrés Jaque Pirabán

Universidad Nacional de Colombia

Facultad de Ingenieŕıa, Departamento de Ingenieŕıa de sistemas e industrial

Bogotá, Colombia

2015

A hybrid evolutionary algorithm for
vehicle routing problem with

stochastic demands

Robinson Andrés Jaque Pirabán

Thesis presented as a partial requirement for the degree of:

Master of System Engineer and Computer Science

Advisor:

(Ph.D.) Germán Jairo Hernández P.

Research Topic:

Stochastic optimization

Research Group:

ALGOS

Universidad Nacional de Colombia

Facultad de Ingenieŕıa, Departamento de Ingenieŕıa de sistemas e industrial

Bogotá, Colombia

2015

(Dedication)

To Hari.

Acknowledgements

I am very grateful with everyone who contributed to accomplish this work. I really appreci-

ate your friendship, patience and support. I am especially thankful to my girlfriend, family,

friends, my advisor and my professors.

ix

Abstract

In this work we propose a hybrid dynamic programming-evolutionary algorithm to solve

the vehicle routing problem with stochastic demands, it is a well known NP-hard prob-

lem where uncertainty enhances the computational efforts required to obtain a feasible and

near-optimal solution. We develop an evolutionary technique where a rollout dynamic pro-

gramming algorithm is applied as local search method to improve the quality of solutions.

Motivated by computational considerations, the rollout algorithm can be applied partially,

so, this finds competitive solutions in large instances for which the global rollout dynamic

programming strategy is time unfeasible.

Keywords: Stochastic programming, vehicle routing problem with stochastic demands,

dynamic programming, logistics

Resumen
En este trabajo se propone un algoritmo evolutivo hibrido que combina un método de progra-

mación dinámica estocástica para resolver el problema de enrutamiento de veh́ıculos con de-

mandas estocásticas, este es un problema demostrado como NP-dif́ıcil donde la presencia de

incertidumbre incrementa los requerimientos computacionales necesarios para obtener solu-

ciones factibles y cercanas a la óptima. Aśı, para el algoritmo evolutivo desarrollado se aplico

un algoritmo rollout de programación dinámica estocástica como operador de búsqueda local

para mejorar la calidad de las soluciones. Motivado por requerimientos computacionales, el

algoritmo de rollout puede ser aplicado parcialmente, con el objetivo de encontrar soluciones

competitivas en instancias lo suficientemente grande para las cuales la estrateǵıa global no

es aplicable por consumir una cantidad de tiempo no tolerable.

Palabras clave: Optimización estocástica, problema de enrutamiento de veh́ıculos con

demandas estocásticas, algoritmos, programación dinámica, loǵıstica .

Contents

1. Introduction 2

1.1. Introduction . 2

1.2. Proposal . 4

1.3. Objective . 4

1.3.1. Specifics objectives . 4

1.4. Contributions . 4

1.4.1. Divulgation . 4

1.5. Outline . 5

2. Background 6

2.1. A review of Vehicle Routing Problem with Stochastic Demands 6

2.1.1. Application cases . 6

2.1.2. Solution methods . 8

2.2. Formulation of VRPSD . 10

2.2.1. Stochastic programming . 10

2.2.2. Stochastic Dynamic Programming . 13

2.2.3. Stochastic Dynamic Programming approach for VRPSD 15

2.3. Summary . 18

3. Stochastic Dynamic programming solution 19

3.1. Dynamic approach for VRPSD . 19

3.1.1. Expected distance . 20

3.2. Policy iteration . 21

3.2.1. Rollout algorithm . 21

3.3. Summary . 23

4. Hybrid evolutionary approach 24

4.1. Hybrid evolutionary algorithm . 24

4.1.1. A basic genetic algorithm for vehicle routing problem with stochastic

demands . 25

4.2. Summary . 29

Contents xi

5. Experimental setting and numerical results 30

5.1. VRPSD instances . 30

5.1.1. Instance generation . 30

5.2. Expected distance algorithm . 33

5.3. Rollout algorithm . 34

5.4. Evoulutionary approach . 34

5.4.1. Evolutionary algorithms performance 35

5.5. Comparative results . 37

6. Conclusions 40

A. Algorithms 42

A.1. Genetic algorithm parameters . 42

B. Results 44

List of Figures

1-1. Basic variants of the Vehicle Routing Problem 2

2-1. static and mixed routing policies . 16

2-2. Stochastic Dynamic System for VRPSD . 17

4-1. Basic genetic algorithm . 25

4-2. Basic genetic algorithm applied to an instance of 20 customers. The second

image in the first row ilustrate the last population and the next image shows

the best solution found. 27

4-3. Memetic algorithm applied to an instance of 20 customers. The second image

in the first row ilustrate the last population and the next image shows the

best solution found. 28

5-1. Instance demands. 32

5-2. Instance demands. Circles area represents the demand variance 32

5-3. Color shows expected distance to an arbitrary policy. 33

5-4. Performance rollout algorithm vs. Γ algorithm 34

5-5. Policies improvement by rollout algorithm 35

5-6. Performance basic genetic algorithm . 36

5-7. Performance memetic algorithm . 36

5-8. Expected distance computed by rollout algorithm (ra) , basic genetic algo-

rithm (ga) and hybrid evolutionary algorithm (memetic) 37

5-9. Boxplot for expected distance computed by rollout algorithm (ra) , basic

genetic algorithm (ga) and hybrid evolutionary algorithm (memetic) 38

5-10.Time performance evolutionary algorithms 39

B-1. Scatter matrix comparing results and times 45

List of Tables

5-1. Vehicle capacity for each factor . 31

5-2. Instances characterization . 31

5-3. Differences between expected distances computed by the rollout algorithm,

the basic genetic algorithm and the memetic algorithm. 38

A-1. Genetic algorithm parameters . 43

1. Introduction

1.1. Introduction

The classic issue about Vehicle Routing Problem (VRP) is a well known NP-hard [29]

optimization problem of high importance in different logistics; it consists in delivery goods

to a set of customers geographically dispersed, using a fleet of vehicles that begin its route

in the central depot. The problem consists in assigning to each vehicle a route with the

objective of minimizing the transportation cost.

The cost generated in the transport of goods, such as the size of the fleet of vehicles mainte-

nance, combustible, and so on, are significant due to the fact that to the transport processes

are involved at all stages of production processes, accounting for 10% to 20% of the final

product cost [39].

One of the first investigation that studied the vehicle routing problem took place in the

year 1959. In that work, Dantzing and Ramser [13] analyzed an oil dispatching problem

with trucks; that problem arise as a generalization of the classic traveling salesman problem

(TSP), where the salesman has to visit a set of customers for only one time and then come

back to the origin point, building a Hamiltonian road on the graph consisting of customers

(vertices) and the possible paths between clients (edges).

Different variations of the VRP have been proposed with the aim of approaching the problem

real contexts; these problems include the addition of variables and constraints. The figure

below shows a diagram with the most popular variants of VRP.

Figure 1-1.: Basic variants of the Vehicle Routing Problem

When vehicle capacity is fixed, the Capacited Vehicle Routing Problem (CVRP) originates; if

there are many depots, then we have Multiple Deposit Vehicle Routing Problem (MDVRP).

The Split Delivery Vehicle Routing Problem (SDVRP) is a relaxation of the problem that

1.1 Introduction 3

allows a custumer to be served by several vehicles, being important in cases where the

customer demand exceeds the vehicle capacity. Generally the VRP provide a planning for a

fixed period and the Periodic Vehicle Routing Problem (PVRP) provides that planning for

m periods.

One of the most studied variants of the problem is caused by including time windows for

deliveries, Vehicle Routing Problem with Time Windows (VRPTW), for this problem can be

considered hard time windows (VRTHTW) were deliveries outside the established periods

can not be done, and soft time windows (VRPSTW) in which deliveries can be made outside

these periods, but with a penalty.

The problems that include pick-up and delivery can be divided in Vehicle Routing Problem

with Backhauls (VRPB) and Vehicle Routing Problem with Pick-Up and Delivery (VRPPD)

in the VRPB the group of custumers is divided in two subgroups, for the first group, all

pick-up’s are made of some product, then the vehicle returns to the depot and the deliveries

are realized to the second group of custumers. In the VRPPD, the pick-up’s and deliveries

to customers are made simultaneously.

The Stochastic Vehicle Routing Problem (SVRP) arise when there is uncertainty about some

of the components of the VRP, i.e., one or more variables are random. Usually these problems

include Vehicle Routing Problem with Stochastic Customers (VRPSC) where customers

appears randomly, the Vehicle Routing Problem with Stochastic Times (VRPST) where

travel times are random and Vehicle Routing Problem with Stochastic Demands (VRPSD),

where the customers demands are known only with a probability distribution.

The SVRP’s differ from the deterministic VRP in many important aspects. The solution

concept is different, since many properties of the deterministic problem are not manageable

in the stochastic case and solution methodologies are considerably more complex; hence,

SVRP is often considered a computationally intractable problem and only small instances

can be solved optimally and algorithms are difficult to design and evaluate [21].

The SVRP is either often modeled in the framework of stochastic programming (optimiza-

tion) integer or mixed or as a Markov decision process. In stochastic programming, problems

are usually modeled as two-stage, as chance constrained program (CCP) or as a stochastic

program with recourse (SPR).

The VRPSD is an open problem of great importance in logistics owing to the diversity of real

situations it represents. This problem occurs in the delivery of home heating oil [15] in which

each customer maintains a local inventory of the product and consumes an amount of oil

each day; therefore, each day a fleet of trucks is dispatched to resupply a subset of customers.

Stochastic demands are also evident in the collection of money by the vehicles of values, e.g.

when collect money by a central bank [18] from several but not all of its branches every

day; here the capacity of the vehicle used may be constrained for an upper bound on the

amount of money that a vehicle might carry for safety reasons. The distribution of demand

at each certain branch may be different, associated with the amount of money it handles.

Other VRPSDs arise in delivering the post to large customers [26], vending machines [40]

4 1 Introduction

or delivering medical supplies in response to large-scale emergency [14], or in recycling and

waste management, among others.

1.2. Proposal

To design a hybrid evolutionary algorithm which combine stochastic dynamic optimization

operators to find solutions for the vehicle routing problem with stochastic demands. More-

over, to evaluate the algorithm performance.

1.3. Objective

To design and test a hybrid evolutionary algorithm - Stochastic Dynamic Optimization

(SDO) operator for the vehicle routing problem with stochastic demands.

1.3.1. Specifics objectives

1. To analyze the alternatives for modeling and representing the problem, and select the

most computationally convenient one.

2. To design evolutionary and stochastic dynamic optimization operator algorithm to

solve VRPSD.

3. To implement the designed algorithm.

4. To select benchmarking problems instances and alternative algorithms for testing.

5. To develop experimental analyses and comparisons.

1.4. Contributions

The evolutionary algorithms have not been broadly used to solve the vehicle routing problem

with stochastic demands; thus, a hybrid evolutionary algorithm which combine stochastic

dynamic optimization operators is proposed. This contribute with a new methodology to

deal with the problem.

1.4.1. Divulgation

We presented this work at the Euro Conference in Stochastic Programming - ECSP 2014

which took place in Paris on Octuber, 2014. The paper titled “A hybrid local rollout dynamic

programming global evolutionary algorithm for the vehicle routing problem with stochastic

1.5 Outline 5

demands” will be published in an special issue of the journal INFORMATICA with the

contributions given at this conference.

1.5. Outline

In this first chapter a summary of the issues to be addressed was carried out, in chapter

2 presents the background and the state of the art of the VRPSD; chapter 3 presents the

methodology used and the proposed algorithm. Chapter 4 presents the experiments and

the numerical results and compares and discuss the results. Finally, chapter 5 presents the

conclusions of the study.

2. Background

In this chapter, we carry out a specialized literature review of VRPSD, and point out applica-

tions and methodologies used to deal with it. Moreover, we examine modeling approaches to

this problem in order to exploit the structure and solution properties following the method-

ology proposed, focusing on the stochastic dynamic programming (SDP) approach, where

we first show a dynamic programming background before presenting the SDP formulation

for VRPSD.

2.1. A review of Vehicle Routing Problem with Stochastic

Demands

In recent years the literature related to the stochastic vehicle routing problem has grown du

to its application to real life problems, as well as to the academic interest in studying the

problem theoretically. Consequently, a number of solutions have been proposed to deal with

these problems.

2.1.1. Application cases

There are many applications of the VRPSD. In a huge number of real situations, the customer

demand is unknown and its probability distribution can only be estimated. Eventhough, in

spite of the fact that the demand can be known in many cases, when the vehicle arrives to the

customer, the demand value changes, e.g., delivering petroleum products or industrial gases

(Chepuri and Homem-De-Mello [9]). To ilustrate these cases, we focus on the problem where

gas stations are placed geographically dispersed and a fuel transport vehicle is entrusted to

deliver a fuel quantity determined when the vehicle arrives at the customer location; the

demand is unknown since despite the remaining fuel was known at the time to make the

order, when the vehicle arrives after this time, the fuel stock has decreased.

In the case of Automatic Teller Machines (ATM), not only the daily demand for cash is

uncertain, but the maximal amount of cash that may be picked up by trucks for money

transportation is also limited for security and insurance reasons.

2.1 A review of Vehicle Routing Problem with Stochastic Demands 7

The Traveling Repairman Problem (TRP)

This problem was introduced by Bertsimas and Van Ryzin [7] in 1991; they analyzed the

mathematical model for dynamic and stochastic VRP with the dynamic TRP. In that model,

the objective is to minimize the average time demands in the system.

That problem is presented when a machine breaks down and must be repaired, in order

to achieve such objective, it is important to know the distance between the starting point

and the arrival point, the urgency of the situation (hight or low), the availability of the

repairman, etc. A real example of that problem is on electric power company, which has

to travel point by point to fix the problems that can suddenly arise; the problem has the

characteristics of increased costumer, and the time spent in fixing the problems variates

according to the particular environment.

Many authors have studied the problem; Jothi and Raghavachari [27] analyze two algorithms

to solve the problem; in 1993 Das and Wortman [37] studied the TRP with a single repairman,

and they proposed a probability model that is useful for evaluating the system performance

measures, such as the inactivity time, the availability of a machine and of the repairman.

Currier mail services

Nowadays, there are many companies that offer the service of pick-up packages or mail and

delivery of goods to the point where the costumer indicates; this problem, becomes dynamic

because the driver unknow where will the next pick-up or quantity or volume of goods take

place.

In 2004 Timon et.al. [38], investigated the DVRP (Dynamic VRP) applied to electronic

commerce (e-commerce), they say that the environment of the e-commerce has voluminous,

unpredictable, and dynamically changing customer orders. They studied the problem Busi-

ness to Costumer (B2C) in an e-commerce environment, and the purpose was a solution in

three phases: initial-routes formation, inter-routes improvement, and intra-routes improve-

ment.

Alan Slater [36] proposes a routing and scheduling method for the e-commerce environment,

which allows the costumers to select their own delivery time windows. The methodology

that he used is based in parallel tour-building and parallel insertion algorithms, and the

confirmation to the costumers is realized using GPS tracking and tracing.

Emergency services

Some services that arise into our society are “emergency services”. These occur when, for

instance, a person is sick and needs and ambulance, a person is robed and needs the police,

in the case when there is a fire and a person has to call the firefighters. These are examples of

services that can arise suddenly in any moment; in such case it is important to minimize the

distance between the origin and arrival point, the availability of the resources (cars, tracks

8 2 Background

etc.), and the level of the urgency.

Taxi cab services

The taxi service is another application of the DVRP. It is difficult to plan the taxi route

before the taxi leave the central, since the costumers can suddenly need the service; such

problem of assigning a taxi route is more complex depending on the number of costumers,

the positions of the taxi, the time and the arrival point.

Other VRPSD arise in delivering the post to large customers [26], vending machines [40]

or delivering medical supplies in response to a large-scale emergency [14]. It is also possible

to view the features of the problem in recycling and waste management, among others.

2.1.2. Solution methods

There are two different ways for dealing with VRPSD, either with fixed routes or a dynamic

approach often called reoptimization. The methodology used to solve it depends on the type

of model used to represent the problem; in section 2.2 we point out some main formulations

used to address the problem.

Some solution methods find the optimal solution, but however, the use of these techniques is

limited to small size problems. Therefore, other methods have been proposed to aproximate

optimal solutions.

Exact methods

The relevant exact methods are branch-and-bound algorithms where the problem can be

formulated as a lineal model. Laporte et.al. [28] proposed an L-shape method for solve

VRPSD, a branch-and-cut algorithm.

Bernard et.al. [10], present a Dantzing and Wolf decomposition to resolve a dynamic model

analyzing multi-periodic vehicles fleet size and modeling the fleet size of each one. At the

end, the authors obtained optimal solutions for different demand distribution.

In 2007 Christian H et.al. [11], presented a Branch and price algorithm for the capacitated

vehicle routing problem with stochastic demands; they used dynamic programming to solve

a subproblem.

Aproximate methods

The cyclic heuristic was proposed by Bertsimas [6], it is a simple and inexpensive algorithm

that guarantee to reach the final state. We explain it in the section 3.2.1 where in our

methodology is used. Gans and Ryzin [19] have studied the dynamic vehicle dispatching

systems where the congestion is the main measure of performance. They used a lower and

upper bound; based in a simple batching heuristic, they found stability conditions for the

optimal work in heavy traffic.

2.1 A review of Vehicle Routing Problem with Stochastic Demands 9

Yang et.al. [40] tested two heuristic algorithms which solve the problem in two stages: the

route-first-cluster-next and cluster-first-route-next ; they cluster the customers first and find

the best route for each cluster after that. Furthermore, the cross-entropy heuristic method is

proposed by Chepuri and Homem-de-Mello [9], to estimate the expected distance they used

monte carlo sampling.

Local search heuristics commonly used for TSP have been used to solve VRPSD as OrOpt

([40], [8]). Yang et. al. used the 3-opt local search algorithm as well.

Moretti et.al. [31] implemented an algorithm to solve the DVRP. They consider the demand

and the location as stochastic variables, and the time windows as soft. Their objective is to

define a set of routes that are dynamically updated, taking into account the new costumers.

To solve they used a constructive algorithm with an adaptive tabu search framework.

A genetic algorithm is another option used to solve this kind of problems, Haghani and

Jung [24] presented a formulation for the DVRP with pick up and delivery and soft time

windows, multiple vehicles with different capacities, variant real time service and and travel

times. They proposed a genetic algorithm and their results were compared with exact

methods.

Dynamic programming

The dynamic programming is one of the techniques most used to solve this kind of prob-

lems. Bertsekas [2] proposed efficient methods such as Markov decision analysis, linear

control model with quadratic cost, policies in the stochastic inventory problem, and so on.

Furthermore, Secomandi [35] compared neuro-dynamic programming algorithms for VRPSD.

Neuro Dynamic programming has been designed to deal with dynamic programming prob-

lems where the number of states is too large or is completely unknowed [5], Many authors

have followed this approach applying approximate policy iteration methods to deal with

VRPSD. Bertsekas [4] presents the rollout algorithm (RA) applied to combinatorial opti-

mization problems; later, Secomandi ([34], [33]) showed how to apply it to VRPSD. Novoa

and Storer [32] proposed a solution for the VRPSD using dynamic programing algorithms;

they also considered the cost-of-go with the help of Monte Carlo simulation, which showed

that in that kind of problems the best method found is the one-step roll-out that started with

a stochastic base sequence. In addition, [23] proposed rollout policies for dynamic solutions

to the multivehicle routing problem with stochastic demands and constrained times.

Hybrid methods

Bianchi et.al. [8] implemented a simulated annealing, tabu search, iterated local search, ant

colony optimization and evolutionary algorithms, and combined these with 2 local search

tecniques: OrOpt and 3-opt. The second local search has been used with good results in

TSP.

10 2 Background

Mendoza et.al. [30] proposed a memetic algorithm for the multi-comparment vehicle routing

problem with stochastic demands (MC-VRPSD). It is modeled as stochastic programming

with resource and under each iteration of the genetic algorithm, a 2-opt local search is

performed. The results are compared with the deterministic version of the problem.

2.2. Formulation of VRPSD

Given a graph G(V,E), where V = {0, 1, 2, . . . , n} and the node 0 denotes the starting point

for vehicles (depot), and the remaining nodes represent individual customers. The set E of

edges in the graph represents the roads or paths between a pair of customers (i, j) and dij
is the distance between them, which is assumed to be known, symmetric and satisfies the

triangle inequality.

A vehicle (only one) with fixed capacity Q <∞ starts from the depot and executes deliveries

(or pickups only) of a product to different customers, Di denotes the random variable repre-

senting the demand of customer i, and the probability distribution Di is discrete and known

and is denoted by pi(k) = Pr{Di = k}, k = 0, 1, . . . , K ≤ R. The customer demands are

assumed to be independent and their exact value is known only when the vehicle arrives to

the customer location. If a customer demand exceeds the available capacity of the vehicle,

i.e. a route failure, the vehicle must return to the depot to restore its original capacity.

Hence, the depot must have a capacity at least equal to nR.

Yang, et.al. [40] propose a simple resource action for early replenishment, where the vehicle

come back to the depot even when it has not depleted its stock, in order to restore the

capacity to Q, allowing proactive depot trips to avoid route failures. Hence, considering

proactive restocking of the vehicle is not necesary to consider multiple routes, in fact, Yang,

et.al. [40] point out that a single route is more efficient than multiple vehicle route system,

assuming that only distance constrain the route, ommitting for example time duration.

The objective is to minimize the expected distance by finding out a routing solution, probably

in the form of routing rules, so that demand of each customer is satisfied. Thus, VRPSDs

are usually modeled as mixed or pure integer stochastic programs, or as Markov decision

processes.

2.2.1. Stochastic programming

The stochastic programming goal is to find an optimal decision in problems that involve

uncertainty in the data. Stochastic VRPs can be cast within the frame-work of stochastic

programming [21]. Stochastic programs are modeled in two stages. In a first stage, an a

priori solution is determined and the realizations of the random variables are then disclosed;

in a second stage, a recourse or corrective action is then applied to the first stage solution.

The recourse usually generates a cost or a saving that may have to be considered when

2.2 Formulation of VRPSD 11

designing the first stage solution. A stochastic program is usually modeled either as a

Chance Constrained Program (CCP) or as a stochastic program with recourse (SPR).

Chance-constrained programming

In CCPs, one seeks a first stage solution for which the probability of failure is constrained

to be below a certain threshold. A CCP solution does not take into account the cost of

corrective actions in case of failure. Mainly, for a given customer demands parameters, e.g.,

means, variances. One subjectively especifies a control probability looking for avoid that a

route fail. Following to Dror [17], a VRPSD is formulated as:

minimize
∑
v

∑
i,j

dijx
v
ij (2-1)

subject to Pr{
∑
i,j

Dix
v
ij ≤ Q} ≥ 1− α, ∀v = 1, . . . , NV, (2-2)

x = [xvij] ∈ SNV (2-3)

where xij
v is a binary decision variable that takes the value 1 if vehicle v travels directly

from customer i to j and 0 otherwise, and SNV is the set of feasible routes for the traveling

salesman problem (TSP) with NV salesmen.

These models are based on the premise that stochastic optimization problems are trans-

formable to deterministic problems controlling the probability of route failure events occur-

ring. Nevertheless, this artificial control might result in bad routing decisions.

Stochastic programming with resources

The aim in SPRs is to determine a first stage solution that minimizes the second stage

solution expected cost. This is made up with the first stage solution cost plus the next

expected recourse cost. SPRs are typically more difficult to solve than CCPs but their

objective function is more meaningful [21].

Yang [40] propose two heuristic methods to solve the problem and Laporte et.al. [28] and

Gendrau et.al. [20] propose an L-shape method to find optimal solutions, i.e. a branch-and-

cut algorithm adjusted for the stochastic approach. Below, we present the model formulated

by [17] based on the Laporte model ,although allowing proactive replenishments of the

vehicle in a single route, supported on Yang’s affirmation, this is more efficient than multiple

routes.

Let T (x̂, D) =
∑n

i

∑n
j dijxij be the cost of the routing solution where x̂ = {xij}, i ∈ V, j ∈ V

is the vector of routing decisions, x̂ij = 1 if the vehicle directly visits the node i from j node

and 0 otherwise; D is a vector of the customer demands disclosed one a time when the vehicle

arrive at customer location. Both x̂ and D are random variables.

12 2 Background

min
x̂
ED[T (x̂, D)] (2-4)

subject to
n∑
i=0

x̂ij ≥ 1,∀i ∈ V (2-5)

n∑
j=0

x̂ij ≥ 1,∀j ∈ V (2-6)∑
i∈S

∑
j /∈S

x̂ij ≥ 1, S ⊆ 1, . . . , n; |S| ≥ 2 (2-7)

x̂ij ∈ 0, 1, i, j∀i, j ∈ V (2-8)

T (x̂, D) can be divided in two parts; in the first part we have the term cx denoting the cost

(distance) of the a priori sequence represented by x, and in the second part Q(x,D), would

be the recourse cost given x and a realization of D. Q(x,D) represents the cost of return

trips incurred by route failures, minus some resulting savings. T (x̂, D) = cx+Q(x,D) where

x represents a TSP route and x̂ is the binary routing vector which includes all the resource

decisions. In order to keep x̂ as binary, it is assumed that the probability of a node demand

greater than capacity of an vehicle, is zero, as well as the probability that a vehicle, upon

failure, returning to a node to complete its delivery after visiting the depot, is also zero.

Setting the expectation Q(x) = ED[Q(x,D)] the objective function becomes:

min
x
cx+Q(x) min

x
cx+ ED[Q(x,D)] (2-9)

In the standard modeling of the Two-Stage Stochastic Linear Programs, customers deliveries

in the secon stage are represented as follows:

Q(x,D) = min
y
{cy|Wy = h(D)− T (D)x, y ∈ Y } (2-10)

Where y is the binary vector representing the recourse initiated trips to the depot, T (D)

represents the deliveries made by the x vector given that D and h(D) is the demand real-

ization for D which has to be met (delivered) either by x or the resource y. Below, we show

the model used by [28] for the L-shape method:

2.2 Formulation of VRPSD 13

min
x
{cx+Q(x)} (2-11)

subject to
n∑
i=0

xij = 1,∀i ∈ V (2-12)

n∑
j=0

xij = 1,∀j ∈ V (2-13)∑
i∈S

∑
j /∈S

xij ≥ 1, S ⊆ 1, . . . , n; |S| ≥ 2 (2-14)

x̂ij ∈ 0, 1, i, j∀i, j ∈ V (2-15)

An extended review of the models presented above, and others for VRPSD is presented by

[17] and [16]

2.2.2. Stochastic Dynamic Programming

Stochastic Dynamic Programming (SDP) provides a frame-work where decisions are made

in an finite number of stages under uncertainty. In these problems there is a set of states

S, decisions variables U and the uncertainty is represented by a set of random variables W ;

the dynamic system is of the form:

f : U ×W × S → S

or

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1 (2-16)

where xk ∈ Sk is the state of system at k − th time and summarizes past information, uk
is the control or decision variable to be selected in a given nonempty subset U(xk) ⊂ U

which depends on the current state xk, i.e. uk ∈ Uk(xk)∀xk ∈ Sk, wk ∈ W is a random

parameter whose value is disclosed at time k and is characterized by a probability distribution

Pk(·|xk, uk) that may depend on xk and uk but not on prior values of the random variable

wk−1, . . . , w0. N is the horizon or number of times that control is applied

The objective is to minimize a cost function gk(xk, uk, wk) of the form

gk : S × U ×W → R

14 2 Background

The cost function is assumed additive, i.e. the cost incurred accumulates over time.

gN(xN) +
N−1∑
k=0

gk(xk, uk, wk)

Nevertheless, given the cost as a random variable, we formulate the problem as an optimiza-

tion of the expected cost:

E

{
gN(xN) +

N−1∑
k=0

gk(xk, uk, wk)

}
(2-17)

We define admissible policies π ∈ Π, where Π is the set of all admissible policies, as a

sequence of functions µk : xk → uk, in which µk maps state xk to controls uk = µk(xk) such

that µk(xk) ∈ Uk(xk)∀xk ∈ Sk.

π = µ0, . . . , µN−1

Given a policy π and a initial state x0, the equation 2-16 is rearranged as:

xk+1 = fk(xk, µk(xk), wk), k = 0, 1, . . . , N − 1 (2-18)

making xk and wk random variables with probability distributions defined. Hence, the

expected cost function gk 2-17, with k = 0, 1, . . . , N is well defined:

Jπ(x0) = Ewk

{
gN(xN) +

N−1∑
k=0

gk(xk, µk(xk), wk)

}
(2-19)

An optima policy π∗ for a given initial state x0 is one that minimizes the cost J(x0), i.e

Jπ∗(x0) = J∗(x0) = min
π∈Π

Jπ(xo)

The SDP model applied to VRPSD is formulated below in the section 2.2.3

2.2 Formulation of VRPSD 15

Finite-Stage Models

Suppose that the states are the integers, and let A, a finite set, be the set of all possible

actions. R(i, a) is the reward in ith-state given that a ∈ A action was chosen, and the next

state is j with probability Pij(a). Let VN(i) denote the maximum expected return for an

N -stage problem that starts in state i.

When N = 1 we have:

V1(i) = max
a∈A

R(i, a) (2-20)

Considering a N -stage problem that starts in i and has N − 1 time periods to go. We can

assess the expected return given initially we choose action a:

R(i, a) +
∑
j

Pij(a)VN−1(j)

then,

VN(i) = max
a

[R(i, a)
∑
j

Pij(a)VN−1(j)] (2-21)

2.2.3. Stochastic Dynamic Programming approach for VRPSD

VRPSD is modeled in the framework of SDP as a stochastic shortest path problem; it is a

Markov Decision Process (MDP) where is necesary to make decisions under situations where

outcomes are partly random reaching an absorbing cost-free termination state in a random

number of stages.

The problem formulation is presented below, based in the Novoa [32] and Secomandi [33]

notation as a Markov decision model.

The objective of the problem is to find a routing policy so customer’s demand is satisfied

and the expected transportation costs (distance) minimized, this policy may order returns

to the depot before the vehicle capacity runs out.

Types of policies

Secomandi [35] classifies the routing policies in three groups, static, dynamics and mixed

Static Static policies describe a sequence τ of customers to be visited in that order for the

vehicle.

Dynamic Dynamic policies provide a policy π that given the current state of the system,

prescribe which location should be visited next.

16 2 Background

Mixed Mixed policies combine elements of both static and dynamics policies.

Mixed policies not only follow a sequence τ of customers but also prescribe decisions that

dependend on the state that allows proactive replenishments. In the figure 2-1, we ilustrate

static policy (left) where reactive replenishment or resource action are carried out when the

customer demand is greater than the vehicle capacity, and is therefore forced to return to

the depot for restocking, while on the right image, we have a dynamic policy in which the

vehicle can do proactive replenishments, going to the station even when the vehicle capacity

is not empty.

Figure 2-1.: static and mixed routing policies

In order to represent the system state at stage k, the vector xk is defined as xk = (l, ql, r1, . . . , rn)

of size n + 2, where l ∈ {0, 1, . . . , n}, is the current location of the vehicle and ql ≤ Q is

its available capacity after delivery to customer l; the elements ri represents the remaining

demand to satisfy to the costumer i. An unknown demand is denoted as -, if customer i is

visited and its demand has been completely satisfied, ri will take the value 0; otherwise, it

will take any value between 1 and R. The initial state of the system x0 is (0, Q,−,−, . . . ,−)

and the final state xN occurs when the vehicle returns to the depot after serving the demands

of customers, represented as (0, Q, 0, 0, . . . , 0). Thus, the number of states in the system is

O(nQRn)

Let N be a random variable representing the number of stages or transitions from initial

state to the end, the vector π = µ0, µ1, . . . , µN−1 is the policy or sequence of functions to

optimize, where µk is a function that associates a decision or control uk = µk(xk) for each

state, uk ∈ Uk(xk) and Uk(xk) = {{m ∈ {1, . . . , n}}|rm 6= 0}∪ 0}× {a : a ∈ {0, 1}}. Control

uk is represented as ordered pairs (m, a), m is any costumer not yet served, m is 0 when all

demands have been satisfied and the system enters its completion stage, a is 0 if the vehicle

directly visits customers and 1 if the vehicle first stops at the depot to resupply.

Given a state xk = (l, ql, r1, . . . , rm, . . . , rn) and a control uk in which it is decided to visit the

node m at the next stage, the random variable Dm is realized (rm = Dm if rm is unknown;

2.2 Formulation of VRPSD 17

otherwise rm 6= −) and the remaining demand of the customer m changes to r′m as soon as

the capacity of vehicle becomes qm, where

qm =

{
max(0, ql − rm), whether uk(m, 0) = µk(xk)

ql +Q− rm, whether uk(m, 1) = µk(xk)
(2-22)

and

r′m =

{
min(0, rm − ql), whether uk(m, 0) = µk(xk)

0, whether uk(m, 1) = µk(xk)
(2-23)

so the system goes to state xk+1 = (m, qm, r1, . . . , r
′
m, . . . , rn). The transition between states

is graphically represented as:

Figure 2-2.: Stochastic Dynamic System for VRPSD

Incurring in a transition cost g(xk, uk, xk+1)

g(xk, µk(xk), xk+1) =

{
d(l,m), whether uk(m, 0) = µk(xk)

d(l, 0) + d(0,m), whether uk(m, 1) = µk(xk)
(2-24)

The objective of the problem is to find a policy π that minimizes the cost of transport JπN
(2-25) in the N -stages or the expected cost to complete given an initial state. The optimal

cost of transport in the N -stage x is J∗N(x) = minπ∈ΠJ
π
N(x), where Π is the set of admissible

policies.

JπN(x0) = E

{N−1∑
k=0

g(xk, µk(xk), xk+1)

}
(2-25)

18 2 Background

If J∗N(x) is known for all stages, the optimal control u∗k at each stage is to find the minimum

of the following equation (2-26):

u∗k = µ∗k(x) = arg min
uk∈Uk(xk)

g(xk, uk, xk+1)+ ∑
xk+1∈S

pxkxk+1
(uk)J

∗
N(xk+1)|xk = x,∀x ∈ S (2-26)

The problem is that J∗N(x) is unknown and its calculation is a computationally intractable

problem given the size of state space. Secomandi [33] points out that computing an optimal

policy becomes quickly intractable when n grows beyond 10. Chapter 3 deals with issue of

approximating this function through a dynamic-programming method efficiently computable.

2.3. Summary

The VRPSD has been studied for more than 20 years, with important progress in 90’s

and 00’s and wide areas of application in logistics, following the conclusions of [17] the

most promising approach is modeling the problem as a Markov decision process. Hence,

a stochastic programming model is selected: a methodology for sequential decisions made

under uncertainty, based on dynamic system, where the main idea is to use an approximate

a function J in order to make decisions in complex dynamic systems, allowing to deal with

instances considered intractable for their size. In the next section, the dynamic programming

solution is addressed.

3. Stochastic Dynamic programming

solution

3.1. Dynamic approach for VRPSD

Dynamic programming is based on the principle of optimality formuled by Bellman [1]

An optimal policy has the property that whatever the initial state and initial de-

cision are, the remaining decisions must constitute an optimal policy with regard

to the state resulting from the first decision.

Following Bertsekas [3], the principle of optimality points out that an optimal policy can be

constructed backwards, first finding an optimal policy for the tail subproblem involving the

last stage, then extending the optimal policy to the problem regarding the last two stages,

and continuing until cover the whole problem in the first stage; hence, an optimal policy is

constructed for the entire problem.

J∗(x0) = min
u∗k∈Uk(xk)

Ewk

{
gk(xk, u

∗
k, wk) + J∗k+1(f(xk, u

∗
k, wk))

}
,

∀k = 0, 1, . . . , N − 1 (3-1)

However, the exact assesing of J∗ is computationally infeasible given the size of the state

space. Therefore, it is necessary to approximate this function to generate good, but not

necessarily optimal policies.

Let J̃k be an approximation of J∗k , then a control ũk can be assesed as:

ũk = µ̃k(xk) = arg min
u∈Uk(xk)

{
g(xk, uk, xk+1) +

∑
xk+1∈S

pxkxk+1
J̃k

}
(3-2)

The following section 3.1.1 discusses the computation of J̃k.

20 3 Stochastic Dynamic programming solution

3.1.1. Expected distance

The expected distance J̃ or cost-to-go is computed based on the algorithm propossed by

Secomandi [33]. We implemented the algorithm Γ represented below (algorithm 1) to

compute expected distance in O(nRQ) time and O(nQ) space.

input : tour τ1×n+2, dn+1×n+1 distance, x state
output: E expected distance of an a priori solution τ (base sequence)
l = x1;
ql = x2;
if l = n then it is the last customer on τ

E = d(τ(l + 1) + 1, 1);
end
else

if l=0 then it is the first node depot in the tour τ
E = Γ(τ, l + 1, ql);

end
else

E0 = d(τ(l+ 1), τ(l))+
∑min{ql,D̄τ(l+1)}

j=0 Γ(τ, l+ 1, ql − j) ∗ pτ(l+1)(j)+
∑D̄τ(l+1)

j=ql+1 2 ∗
d(0, τ(l + 1)) + Γ(τ, l + 1, Q+ ql − j)) ∗ pτ(l+1)(j);

E1 = d(0, τ(l)) + d(0, τ(l + 1))+
∑D̄(τ(l+1))

j=0 Γ(τ, l + 1, Q− j) ∗ pτ(l+1)(j);

E = min{E0, E1};
end

end
Algorithm 1: Expected distance algorithm E = Γ(τ, l, qi)

This algorithm was validated comparing the outcomes with the expected distance computed

by an exhaustive algorithm applied to small instances. In addition, larger instances were

benchmarked using the monte carlo simulation to asses the expected distance.

If the vehicle capacity is depleted, the methods used to compute the expected distance take

into account that the vehicle can go to the depot for proactive restocking with less cost than

to visit the customer first, which makes the route fail, as shown in 3.1.1.

Theorem 3.1.1. if ql = 0 then the vehicle must go first to the depot for replenishment and

later visit the next customer on the route; this is better than visiting the next customer to

know its demand and then going to the depot for replanishment.

Proof. Given the current state xk = (l, 0, r1, . . . , rn) where the vehicle capacity is depleted,

i.e. ql = 0, assume that the next customer to be visited on the route is l′. If the customer is

visited first, then the vehicle must go to depot for replenishment and go back to l′ to satisfy

its demand, so the distance is δ(l, l′) + 2δ(l′, 0). Otherwise, if a proactive restocking of the

vehicle is performed then the total distance is δ(l, 0) + δ(0, l′). Assume δ(l, 0) + δ(0, l′) ≤

3.2 Policy iteration 21

δ(l, l′) + 2δ(l′, 0), then by triangular inequality: δ(l, 0) ≤ δ(l, l′) + δ(l′, 0), hence, proving

3.1.1

Lemma 3.1.2. The theorem 3.1.1 can be generalized for all ql ≥ D′i where D′i is the demand

of the customer i who is the next on the tour.

3.2. Policy iteration

The policy iteration algorithm is a dynamic programming technnique, it generates a sequence

of stationary policies, each with improved cost over the preceding one. The algorithm de-

scribe the following sequence of algorithm 2:

1. Initialization: Guess an initial stationary policy π0

2. Policy evaluation: Given the stationary policy πk compute the corresponding
cost function Jπk
3. Policy improvement: Obtain a new stationary policy πk+1

4. Repeat steps 2 to 3
Algorithm 2: Policy iteration algorithm

If the policy evaluation step computes Jπk(x) for all states x ∈ S, and the algorithm runs

until Jπm = Jπm+1 , ∀x ∈ S, then the algorithm finds the optimal policy π∗. In contrast,

when |S| is too large this algorithm is inpractical, although these steps can be approximated

to deal with large-scale systems; this despite that convergence to optimal solution is not

guaranteed.

3.2.1. Rollout algorithm

The rollout algorithm is an approximate policy iteration technnique, used to increase the

effectiveness of a heuristic by iteratively applying it, or rolling it out, at each decision stage

[22]. The algorithm requires to know a base policy π for the problem. It may also be assumed

that the cost-to-go of this base policy from any given state x can be easily computed [35].

Thus, a policy π is build starting from any given state and following an a priori solution to

VRPSD.

Defining initial policy

Cyclic heuristic C shifts τ to obtain an permutation keeping an cyclic order. It builds the

cyclic tour that starts at l and follows τ cyclically; hence, τCl = (l, l + 1, . . . , n, 1, . . . , l −
1, 0) represents an a priori policy πC. Cyclic heuristic was propossed by Bertsimas 92 and

improved by himself 95; it was later used by many authors because it is simple, inexpensive

and sequentially consistent [34]

22 3 Stochastic Dynamic programming solution

Following cyclic heuristic, the rollout algorithm 3 describes a fixed number of iterations given

an instance of the problem changing τ after the first state. Since there is a transition of xl
state to xl+1, only the segment of τ that follows to l is shifted, maintaining in this section the

customers still not visited or with demand different to 0. Once this is fully served, customers

are assumed to be skipped in τCl .

In order to compute rollout policy controls, the control which defines the first customer l1
to be visited by π̃C is found by:

µ0(x0) = u0 = (l1, 0) = arg min
l∈V−{0}

{J̃π0(x0)}

where the expected length J̃π0(x0) of π0 that follows the cylcic tour τCl = (0, l, l+1, . . . , 1, n, . . . , l−
1, 0), in the initial state x0, is computed using the algorithm Γ 1. Hence, the system moves

to the next state visiting the customer l1 directrly, which is fully served since q0 = Q and

rl ≤ Q.

input : π0, state x0

output: π̃C policy
Given a initial policy π0 = u1, u2, . . . uN−1 and initial state x0

π̃C = ∅
repeat

µ̃k = arg min
uk∈Uk(xk)

{min{J̃0
πk

(xk), J̃
1
πk

(xk)}}

Add µ̃k to π̃C

Apply the control µ̃k to the state xk.i.e. xk+1 = fk(xk, µ̃k(xk), D)
Roll out πk since µ̃k to µN−1 following cyclic heuristic

until the final state xN is reached ;
Algorithm 3: Rollout algorithm

For some state xk = (k, qk, r1, . . . , rn), J̃0
πk

(xk), compute the expected distance in order to

move the vehicle directly to the next customer following the policy πk thereafter:

J̃0
πk

(xk) = d(τl,m)+

ql∑
k=0

pm(k)Γ(τ, l+1, ql−k)+
Km∑

k=ql+1

2d(0,m)pm(k)Γ(τ, l+1, ql+Q−k) (3-3)

On the other hand, J̃1
πk

(xk) assesses the expected distance performing an proactive replan-

ishment before moving the vehicle to the next customer following the policy πk thereafter:

J̃1
πk

(xk) = d(0, τl) + d(0,m) +
Km∑
k=0

pm(k)Γ(τ, l + 1, Q− k) (3-4)

3.3 Summary 23

Thus, the control µ̃k which decides to visit the customer l is computed as follows depending

on the smallest cost:

µ̃k =

{
(l, 0), if J̃0

πk
(xk) ≤ J̃1

πk
(xk)

(l, 1), in other case
(3-5)

The rollout algorithm explores 1
2
n(n + 1) different policies with a computational cost of

O(nRQ) in order to evaluate the expected distance for each one; hence, the rollout algorithm

runs in O(n3RQ) time.

3.3. Summary

The rollout algorithm is an approximate atochastic dynamic programming technnique im-

plemented to improve a a priori policy. We use cyclic heuristic as base policy since it is

simple, inexpensive and sequentially consistent. Finally. we describe the rollout algorithm

and point out the computational complexity to perform it.

4. Hybrid evolutionary approach

An evolutionary algorithm (GA) is a technique bio-inspired in the evolution of the spicies.

It was proposed by John Holland, early in the 70’s [25]. This algorithm seeks to evolve a

population of individuals that represent solutions to the problem through genetic operators

such as crossover, mutations and selection. The population generated in each iteration is

evaluated and then the individuals with a better fitness are chosen for the next generation

with more chance.

4.1. Hybrid evolutionary algorithm

Hybrid evolutionary algorithms or hybrid genetic algorithms are very popular techniques

that offer practical advantages to deal with complex and hardly optimization problems.

Grosan [12] presents a review of hybrid genetic architectures frecuently used.

Hybridization can be performed using prior knowledge, heuristics, local search, and other

techniques. We use it to carry out local search through rollout algorithm. Sometimes, a

hybrid genetic algorithm which combine other technique to local search is known as memetic

algorithm.

Generally, the purpose of hibridization is:

• To improve the performance of the evolutionary algorithms.

• To improve quality of solutions obtained by evolutionary algorithm

• To incorporate evolutionary algorithm as part of a large system

Evolutionary algorithm behaviour is determined by the exploitation and exploration. In

exploitation, local search is performed to improve solutions; in exploration, to avoid local

optimum extending the search space, our implementation of memetic algorithm works to keep

these relation throughout the run. Hence, in this application, the hybridazation not only

improves the quality of the solutions obtained by evolutionary algorithm, but also assembles

as a framework for rollout algorithm in order to avoid local optimum.

4.1 Hybrid evolutionary algorithm 25

4.1.1. A basic genetic algorithm for vehicle routing problem with

stochastic demands

In figure 4-1 we show an example of a basic GA in general form. First, an initial population

is selected and a fitness function is assessed for each individual in the population. In order

to produce a new population for the next generation, crossover and mutation operators are

applied to individuals, allowing those who have better fitness function to have more chances

to reproduce themselves. In the selection stage, offspring’s fitness is evaluated to choose

the individuals which will integrate the new population; individuals with competitive fitness

regarding population, have a higher probability to be selected. These steps are repeated

until stopping criteriums are resolved.

Figure 4-1.: Basic genetic algorithm

Initialization

We represent an individual in the population as a policy tour πC, whose fitness is the expected

distance J̃πC , computed using the algorithm Γ 1.

26 4 Hybrid evolutionary approach

The initial population P0 with a fixed size |P0| = n, is obtained using the cyclic heuristic

in O(n) time. It performs in this way to reduce the computational cost, since we can

evaluate fitness to P0 in O(n) time when rollout is accomplished under some individual in

the population.

Crossover

The crossover operator ~ consists in the selection of two different individuals IPki and IPkj
with probability dependent on their fitness value, respectively; meanwhile, a random cut

point ρ ∈ [1, n] is uniformly selected in order to combine the parents’ sequences to obtain a

new sequence. Hence, a new individual raise to concatenate the subsequence IPki [1..ρ] with

the subsequence IPkj [ρ+ 1, .., n].

A crossover operation can yield a new individual that represents an unfeasible policy. How-

ever, we implement this operator to run in time O(n2) and guarantee only feasible solutions

as a result.

Mutation

This operator performs three types of mutation with the same probability to produce and

individual in the offspring: swap two elements of policy randomly selected, flip a random

subsequence of policy or shift the policy a random number of times.

The mutation of an individual can happen with probability Probm = 0.04 in the experiments

presented in this document, and compute in O(1) time.

Selection of the new population

New population originates as a result of crossover and mutation operators. Furthermore, the

evolutionary algorithm also obtain individuals to the offspring performing the cyclic heuristic.

Hence, those who have a better fitness can be chosen with more chance to integrate the new

population.

In order to punish generation with fitness decrease and reward those who increase this value

with respect to the previous generations, the size or number of individuals available to the

next generation changes.

Let ∆Pk
E′ be the rate of fitness change in the generation Pk, i.e.

∆Pk
E′ =

Γ̄Pk−1
− Γ̄Pk

Γ̄Pk−1

(4-1)

where Γ̄Pk is the best expected distance obtained by an individual in the generation k.

4.1 Hybrid evolutionary algorithm 27

Then, the size of the next population Pk+1 is computed so that:

||Pk+1|| =
{
bmin{n(1 + α), ||Pk||(1 + α)}c, if ∆Pk

E′ > 0

dmax{nα, ||Pk||α}e, if ∆Pk
E′ < 0||Pk||, in other case.

(4-2)

where α is a tunable parameter which should be fixed in the range (0, 1] depending on

computational resources. Consequently, this parameter reward a offspring that improve the

quality of the solutions in comparison to their parents, increasing the population size at most

an α times the size. Otherwise, when the quality of the solutions decreases with respect to

the previous generation, the size of population is punished decreasing it at least a α factor

of the population size. The figure 4-2 shows the results of basic genetic algorithm applied

to one instance with α = 0.5; below, the last chart on the right side of figure exhibits the

size of population for each generation.

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Customer Locations Population

10 20

5

10

15

5

10

15

20

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Expected Distance = 11.1352

0 20 40
11

11.5

12

12.5

13
Best Solution History

0 20 40
12

13

14

15
Mean Solution History

0 20 40
10

15

20

25

30
Size Population History

Figure 4-2.: Basic genetic algorithm applied to an instance of 20 customers. The second
image in the first row ilustrate the last population and the next image shows
the best solution found.

28 4 Hybrid evolutionary approach

Stopping criterion

Finally, the evolutionary algorithm runs until a fixed number or iterations κ is reached.

Nevertheless, it may stop once an m number of consecutive iterations without a significant

change, i.e., |∆Pk
E′ | ≤ ε is accomplished. Both m and ε are tunable parameters.

Local search

A classic genetic algorithm does not yield competitive results itself; due to basic GA, it does

not exploit problem knowing to produce high quality solutions. In order to be effective, we

combined local search methods. Local search can be incorporated in the initial population

or among the offspring.

We applied the rollout algorithm as a local search method. The GA incorporates it in the

initialization stage as in each iteration under the best policy obtained. Figure 4-3 shows

the evolutionary algorithm with local search applied to the same instance used by the basic

genetic algorithm above and showed in Figure 4-2

0 0.5 1
0

0.5

1
Customer Locations Population

10 20

5

10

15

5

10

15

20

0 0.5 1
0

0.5

1
Expected Distance = 7.5291

0 10 20 30
6

8

10

12

14
Best Solution History

0 10 20 30
10

12

14

16
Mean Solution History

0 10 20 30
15

20

25

30
Size Population History

Figure 4-3.: Memetic algorithm applied to an instance of 20 customers. The second image
in the first row ilustrate the last population and the next image shows the best
solution found.

4.2 Summary 29

4.2. Summary

In this chapter we presented a basic genetic algorithm for the vehicle routing problem with

stochastic demands. In addition, we showed an hybrid approach, integrating the rollout

algorithm as a local search method in the evolutionary algorithm.

5. Experimental setting and numerical

results

In this chapter we present the computational results obtained when solving the instances

selected.

5.1. VRPSD instances

In order to evaluate the algorithms proposed, we selected instances of two sources generated

following a procedure similar to the one used in Secomandi [35]. The first set of instances is

the one used by Novoa [32], while the second one was created by us, randomly.

5.1.1. Instance generation

The set of instances contains 45 different instances resulting from the combination of three

number of customers n ∈ {5, 10, 20}, three vehicle capacities given for f ′ factor and five

different assignments for customer locations and demand distribution for each one, the as-

signments result from changing the random seeds.

The customers’ demands are both discrete and uniformly distributed in this possible sets

U [1, 5], U [3, 9], U [6, 12]; in each instance, each customer is assigned to any of the three

groups with equal probability. Customers’ locations are random points in [0, 1]2, with the

depot fixed at (0, 0).

The filling rate f is an index of the total expected demand relative to vehicle capacity.

f =
n∑
i=1

E[Di]

mQ
(5-1)

where E[Di] is the expected demand of customer i and m is the number of available vehicles,

when m = 1; f can represent approximately the expected number of replenishment needed to

serve all customer demands. It follows that, a priori, in all instances E[Di] = (3+6+9)/3 = 6,

for any customer i, and Q = 6n/f . f ′ = f − 1 is the expected number of route failure in

a given instance. Therefore, our instances are defined for this factor f ′ ∈ {1.0, 1.5, 2.0},
following the same factors used by Secomandi [35].

5.1 VRPSD instances 31

Table 5-1.: Vehicle capacity for each factor

f ′ n
5 10 20

1.0 15 30 45
1.5 12 24 36
2.0 10 20 30

The 160 instances used by Novoa [32] were generated following the same method described

above. This set is composed by 70 small size instances (5 to 20 vertex), 60 medium size

(30 to 60 vertex) and 30 instances of large size with a number of vertices greater than 100.

Table 5-2 shows the range of demands for each size instance, where the demand value is

the difference between the maximun and minimun demand that some customers can take.

In addition, Figure 5-2 exhibits the demands mean and variance for each instance, and in

Figure 5-1 we classify each instance according to number of vertices n and demand range,

which is computed as demand values in Table 5-2.

demand values
n 4 5 7 8 9 15 17 29 33 Total
5 2 4 1 1 8 2 3 21
8 4 2 8 5 19
20 5 5 10 5 5 30
30 5 5 5 5 20
40 5 5 5 5 20
60 5 5 5 5 20
100 5 5 5 5 20
150 5 5 10

Table 5-2.: Instances characterization

The most difficult instances to solve have 100 and 150 vertices. However some instances

with 60 vertices are also difficult to solve since these have large demand ranges largest which

increcrease complexity.

On the other hand, figure 5-2 not only shows difficult instances of large size, it also shows

medium size instances since these exhibit large variance.

32 5 Experimental setting and numerical results

0 50 100 150
0

5

10

15

20

25

30

35

n

D
e

m
a

n
d

 r
a

n
g

e

1

1.5

2

2.5

3

3.5

4

4.5

5

small medium large

Figure 5-1.: Instance demands.

0 50 100 150
2

4

6

8

10

12

14

16

18

20

Instance demands

n

m
e
a
n
 d

e
m

a
n
d

Figure 5-2.: Instance demands. Circles area represents the demand variance

5.2 Expected distance algorithm 33

5.2. Expected distance algorithm

In Figure 5-3, we show the time taken by algorithm Γ 1 to compute the expected distance

for each instance. As expected, a higher value of n and Q increases the computational cost

to compute expected distance.

0
20

40
60

80
100

120

0

50

100

150
0

200

400

600

800

1000

time(s)n

Q

10

20

30

40

50

60

70

80

Figure 5-3.: Color shows expected distance to an arbitrary policy.

This algorithm that runs in O(nRQ) time, is very important for the global solution success

and performance, since this computes both the objective function by rollout algorithm and

fitness function on the evolutionary algorithm.

34 5 Experimental setting and numerical results

5.3. Rollout algorithm

In figure 5-4, we put together the running time obtained by the rollout algorithm and Γ

algorithm. Thus, we experimentally show the computational cost of the rollout algorithm

since this apply O(n2) times the Γ algorithm.

0 50 100 150
0

100

200

ti
m

e
(s

)

n

Time consumption: rollout vs. gamma

0 50 100 150
0

1

2
x 10

5

ti
m

e
(s

)

rollout

Gamma

0 20 40 60 80 100 120 140 160
0

50

100

150

ti
m

e
(s

)

n

rollout algorithm time

Figure 5-4.: Performance rollout algorithm vs. Γ algorithm

In figure 5-5, we show how an arbitrary policy is improved by rollout algorithm for each

instance. The rollout algorithm yields a policy that is better than the a priori solution.

5.4. Evoulutionary approach

We established the values for the tunable parameters of the genetic algorithm as a result

of experimental observations. We selected a stratified sample of 10 instances and ran the

basic genetic algorithm between 100 and 10 times for each instance in the sample in order

to compute a policy solution. Finally, we selected the values for the parameters where the

genetic algorithm obtained the best average outcome.

5.4 Evoulutionary approach 35

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

80

90

instance

E
x
p

e
c
te

d
 d

is
ta

n
c
e

a priori tour

rollout

Figure 5-5.: Policies improvement by rollout algorithm

Hence, we defined the probability of mutation as Probm = 0.04 and the maximun counting

of consecutive iterations without significant changing m as 10% of the number of iterations

and, the stoping criterion to determine a significance as ε = 1x10−3.

Other parameters were fixed to agree with computational capability, such as the number

of iterations κ and size of population α, since we recognized that a greater value for these

increases the solutions explored. In concordance with the computational resoure available,

we took κ = 60 and α = 0.5

5.4.1. Evolutionary algorithms performance

In Figure 5-6, we show the basic genetic algorithm outcomes for each problem instance.

For small instances the average expected value is 7.44 computed in an average time of 1979

seconds (s), while in medium and large size instances the average expected distance is 16.74

and 36.03 computed in an average time of 13033 s and 96357 s, respectively.

The memetic algorithm finds better average results than the basic genetic algorithm. Due

to this, the hybrid genetic algorithm with rollout local search obtained an expected distance

of 6.15, 10.99 and 16.67, for small, medium and large size instances, respectively. However,

these were computed longer: 11441, 70460 and 123663 average seconds. Figure 5-7 shows the

expected distance computed for each instance in contrast with the running time expended.

In the behaviour of the genetic algorithms, we observe that if local search is applied, the

evolutionary algorithm stops when the number of iterations is achieved, while the basic

36 5 Experimental setting and numerical results

0 0.5 1 1.5 2

x 10
5

0

100

200

0

200

400

600

800

1000

n

time(s)

Q

5

10

15

20

25

30

35

40

Figure 5-6.: Performance basic genetic algorithm

0
0.5

1
1.5

2

x 10
5

0

50

100

150

0

200

400

600

800

1000

n

time(s)

Q

4

6

8

10

12

14

16

Figure 5-7.: Performance memetic algorithm

5.5 Comparative results 37

genetic algorithm often completes the maximum counting of iterations without significant

change. This can be observed in Figure 4-2 in comparison to Figure 4-3.

5.5. Comparative results

In the Figure 5-8, we observe that the hybrid evolutionary algorithm beats both basic genetic

algorithm as the rollout algorithm. In fact, when instance size increases, the distance between

the quality of solutions found by the memetic algorithm and the solutions computed by others

also grows.

0 50 100 150
0

10

20

30

40

50

60

n

E
x
p

e
c
te

d
 d

is
ta

n
c
e

rollout

ga

hybrid

Figure 5-8.: Expected distance computed by rollout algorithm (ra) , basic genetic algorithm
(ga) and hybrid evolutionary algorithm (memetic)

Indeed, not only memetic algorithm obtained better results than other algorithms imple-

mented, also its outcomes had have less variability. We can observe this fact in Figure 5-9,

where the hybrid evolutionary exhibits less variance in contrast with other techniques.

We ratify these results in Table 5-3, which tabulates descriptive statistics in order to explain

the difference between the expected distance computed by each algorithm. In general, the

basic genetic algorithm beats the rollout algorithm except, for instances of 5 and 8 customers

(small), as well as for 150 customers (large).

In the figure 5-10, we compare the execution time consumed by the evolutionary algorithms.

38 5 Experimental setting and numerical results

5

10

15

20

25

30

35

40

45

50

rollout ga memetic

E
x
p

e
c
te

d
 d

is
ta

n
c
e

Figure 5-9.: Boxplot for expected distance computed by rollout algorithm (ra) , basic genetic
algorithm (ga) and hybrid evolutionary algorithm (memetic)

ga-ra ra-memetic ga-memetic
n mean desvest mean desvest mean desvest
5 -0.126 0.217 0.164 0.203 0.038 0.118
8 -0.024 0.6 0.522 0.538 0.499 0.446
20 0.201 1.266 2.425 1.236 2.626 1.023

small 0.046 0.904 1.251 1.356 1.297 1.38
30 1.486 1.682 3.894 1.404 5.38 1.032
40 1.964 2.011 4.151 2.251 6.114 1.218

medium 1.725 1.846 4.022 1.856 5.747 1.187
60 5.198 2.306 7.081 2.232 12.279 2.41
100 5.372 2.563 17.977 2.804 23.348 0.383
150 -3.746 2.03 29.287 2.049 25.541 0.131

large 3.479 4.323 15.88 8.708 19.359 6.037
All 1.548 3.027 6.549 8.16 8.096 8.601

Table 5-3.: Differences between expected distances computed by the rollout algorithm, the
basic genetic algorithm and the memetic algorithm.

5.5 Comparative results 39

In spite of that basic genetic algorithm often expend less time, the hybrid approach finds a

solution employing less time for many large instances.

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

16

18
x 10

4

instance

R
u
n
n
in

g
 t
im

e
 (

s
)

ga

hybrid

small medium large

Figure 5-10.: Time performance evolutionary algorithms

6. Conclusions

• Although the genetic operators attempt to explore by extending the search space to

avoid local optimum, these operators by themselves do not improve the solutions.

Hence, it is necessary to focus on local search in order to improve the quality solutions

and the convergence.

• When the instances size increase, the distance between the quality of solutions found

by the memetic algorithm and the solutions computed by others algorithms increase

as well.

• Not only the memetic algorithm results are better than other algorithms’ results, but

also its outcomes have also less variability.

• The memetic algorithm consumes similar running time in large instances than the basic

genetic algorithm, but its results are better.

• Although the hybridization approach increases the computational time cost, this effort

is rewarded in many cases given that the quality of the solutions is better than the one

obtained when applying the rollout algorithm alone.

• The rollout algorithm is inexpensive in comparison with other techniques.

• The genetic algorithm is more inexpensive than the memetic one in small and medium

instances.

• The rollout is better than the basic genetic algorithm since it produces better results

by employing less computational resources.

• Local search is the most time-consuming component.

• The expected distance evaluation consumes a lot of execution time. An efficient ap-

proximation improves the algorithm performance.

• In the behaviour of the genetic algorithms with small and medium instances, we ob-

serve that if local search is applied, the evolutionary algorithm stops when the number

of iterations is achieved, rather than with the basic genetic algorithm which often

completes the maximum counting of iterations without a significant change. This con-

trasts with the behaviour that we expected, since local search accelerates the solution

41

convergence in the memetic algorithm. However, we do observe this behavior in large

instances.

• Despite that the basic genetic algorithm often expends less time, the hybrid approach

finds a solution employing less time for many large instances. The memetic algorithm

can perform less iterations since it obtains an unbeatable solution earlier. This in-

duces the algorithm to stop, since it accomplishes the number of iterations whithout

a significant change.

A. Algorithms

A.1. Genetic algorithm parameters

In table A-1, we show the parameters used to run the genetic algorithm, also the time

consumed by each operator is summarized.

A.1 Genetic algorithm parameters 43

Stage Parameters Time Observations
Initialization |P0| = n O(n) Use cyclic heuristic to reduce time.
Crossover O(n2) Applied until new population is accom-

plished.
Mutation Probm = 0.04 O(1) Swap two elements of policy randomly

selected, flip a random subsequence of
policy or shift the policy a random
number of times.

Selection O(n) Individuals which have a better fitness
can be chosen with more chance to in-
tegrate the new population.

Size of
population

|Pk+1| = f(∆Pk
E′ , α) O(1) Where ∆Pk

E′ is the rate of fitness change
in the generation Pk and α = 0.5

Halting κ ∈ {60, n}, ε = 0.001
and m = 0.1n

O(1) Stop when a number of iterations κ is
reached or once an m number of con-
secutive iterations without a significant
change i.e., |∆Pk

E′ | ≤ ε is accomplished.

Table A-1.: Genetic algorithm parameters

B. Results

The matrix in figure B-1 presents a compilation of interest variables, where each pair of

variables is compared with themselves. On the matrix diagonal, a histogram shows the

distrubution for each variable.

The variables included in the matrix are:

n Customers number.

Q Vehicle capacity.

range Difference between min and max customer demands.

time ra Time consumption by the rollout algorithm.

ed ra Expected distance obtained by the rollout algorithm.

time ga Time consumption by the evolutionary algorithm.

ed ga Expected distance mean obtained by the evolutionary algorithm.

time mem Time consumption by the memetic algorithm.

ed mem Expected distance mean obtained by the memetic algorithm.

45

0
1

0
2

0
0

1
2

x
 1

0
5

ti
m

e
 m

e
m

0
2

0
4

0

e
d

 g
a

0
1

2

x
 1

0
5

ti
m

e
 g

a

0
5

0
1

0
0

e
d

 r
a

0
1

0
0

2
0

0

ti
m

e
 r

a

0
2

0
4

0

ra
n

g
e

0
5

0
0

1
0

0
0

Q

0
1

0
0

2
0

0

0

1
0

2
0

n

012

x
 1

0
5

0
2

0
4

0012

x
 1

0
5

0

5
0

1
0

00

1
0

0

2
0

00

2
0

4
00

5
0

0

1
0

0
00

1
0

0

2
0

0

e
d

 m
e

m

F
ig

u
re

B
-1

.:
S
ca

tt
er

m
at

ri
x

co
m

p
ar

in
g

re
su

lt
s

an
d

ti
m

es

Bibliography

[1] Bellman, R.: The theory of dynamic programming. En: Bull. Amer. Math. Soc 60

(1954), Nr. 6, p. 503–515

[2] Bertsekas, Dimitri: Dynamic programming and Stochastic Control. En: Journal of

the American Statical association 74 (1979), p. 510–511

[3] Bertsekas, Dimitri P.: Dynamic Programming and Optimal Control. Athena Scien-

tific, 1995. – ISBN 9781886529113

[4] Bertsekas, Dimitri P.: Differential Training Of Rollout Policies. 1997

[5] Bertsekas, D.P. ; Tsitsiklis, J.N.: Neuro-dynamic programming. En: Proceedings

of 1995 34th IEEE Conference on Decision and Control Vol. 1, IEEE. – ISBN 0–7803–

2685–7, p. 560–564

[6] Bertsimas, Dimitris J.: A Vehicle Routing Problem with Stochastic Demand. En:

Operations Research 40 (1992), Mai, Nr. 3, p. 574–585. – ISSN 0030–364X, 1526–5463

[7] Bertsimas, Dimitris J. ; van Ryzin, Garrett: A Stochastic and Dynamic Vehicle

Routing Problem in the Euclidean Plane. En: Operations Research 39 (1991), August,

Nr. 4, p. 601–615. – ArticleType: primary article / Full publication date: Jul. - Aug.,

1991 / Copyright Â c© 1991 INFORMS. – ISSN 0030364X

[8] Bianchi, Leonora ; Birattari, Mauro ; Chiarandini, Marco ; Manfrin, Max ;

Mastrolilli, Monaldo ; Paquete, Luis ; Rossi-Doria, Olivia ; Schiavinotto,

Tommaso: Hybrid Metaheuristics for the Vehicle Routing Problem with Stochastic

Demands. En: Journal of Mathematical Modelling and Algorithms 5 (2006), April, Nr.

1, p. 91–110

[9] Chepuri K., Homem-De-Mello T.: Solving the vehicle routing problem with stochastic

demands using the cross entropy method. En: Annals of Operations Research 55 (2005),

p. 153–181

[10] Cheung, Bernard K.-S. ; Choy, K.L. ; Li, Chung-Lun ; Shi, Wenzhong ; Tang,

Jian: Dynamic routing model and solution methods for fleet management with mobile

technologies. En: International Journal of Production Economics 113 (2008), Juni, Nr.

2, p. 694–705. – ISSN 0925–5273

Bibliography 47

[11] Christiansen, Christian H. ; Lysgaard, Jens: A branch-and-price algorithm for the

capacitated vehicle routing problem with stochastic demands. En: Operations Research

Letters 35 (2007), November, Nr. 6, p. 773–781. – ISSN 0167–6377

[12] Crina Grosan, Ajith A.: Hybrid Evolutionary Algorithms: Methodologies, Architec-

tures, and Reviews. En: Abraham, Ajith (Ed.) ; Grosan, Crina (Ed.) ; Ishibuchi,

Hisao (Ed.): Hybrid Evolutionary Algorithms Vol. 75. Berlin, Heidelberg : Springer

Berlin Heidelberg, 2007. – ISBN 978–3–540–73296–9, Kapitel 1, p. pp 1–17

[13] Dantzing, G. B. ; Ramser, J. H. The Truck Dispatching Problem. Oct 1959

[14] Dessouky, Maged ; Ordonez, Fernando ; Jia, Hongzhong ; Shen, Zhihong: Rapid

Distribution of Medical Supplies. En: Patient Flow: Reducing Delay in Healthcare

Delivery. 2006, p. 309–338

[15] Dror, M. ; Ball, M. ; Golden, B.: A computational comparison of algorithms for

the inventory routing problem. En: Annals of Operations Research 4 (1985), Dezember,

Nr. 1, p. 1–23

[16] Dror, Moshe: Modeling vehicle routing with uncertain demands as a stochastic pro-

gram: Properties of the corresponding solution. En: European Journal of Operational

Research 64 (1993), Nr. 3, p. 432–441. – ISSN 0377–2217

[17] Dror, Moshe: Vehicle Routing with Stochastic Demands: Models & Computational

Methods. En: Modeling Uncertainty, International Series in Operations Research &

Management Science. Springer New York, 2005

[18] Fan, Jianhua ; Wang, Xiufeng ; Ning, Hongyun: A Multiple Vehicles Routing Problem

Algorithm with Stochastic Demand. En: Intelligent Control and Automation, 2006.

WCICA 2006. The Sixth World Congress on Vol. 1, 2006, p. 1688–1692

[19] Gans, Noah ; van Ryzin, Garrett: Dynamic Vehicle Dispatching: Optimal Heavy

Traffic Performance and Practical Insights. En: Operations Research 47 (1999), Nr. 5,

p. pp. 675–692. – ISSN 0030364X

[20] Gendreau, Michel ; Laporte, Gilbert ; Seguin, Rene: An Exact Algorithm for

the Vehicle Routing Problem with Stochastic Demands and Customers. En: TRANS-

PORTATION SCIENCE 29 (1995), Mai, Nr. 2, p. 143–155

[21] Gendreau, Michel ; Laporte, Gilbert ; Sguin, Ren: Stochastic vehicle routing. En:

European Journal of Operational Research 88 (1996), Nr. 1, p. 3–12

[22] Goodson, JC: Solution methodologies for vehicle routing problems with stochastic

demand, Tesis de Grado, 2010

48 Bibliography

[23] Goodson, JC: Rollout policies for dynamic solutions to the multivehicle routing prob-

lem with stochastic demand and duration limits. En: Operations Research 61 (2013),

Nr. 1, p. pp. 138–154

[24] Haghani, Ali ; Jung, Soojung: A dynamic vehicle routing problem with time-

dependent travel times. En: Computers & Operations Research 32 (2005), November,

Nr. 11, p. 2959–2986. – ISSN 0305–0548

[25] Holland, John H.: Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence. University of

Michigan Press, 1975. – 183 p.. – ISBN 0472084607

[26] Hrvoje Markovic, Ivana Cavar Ton?i C.: Using data mining to forecast uncertain

demands in stochastic vehicle routing problem. En: 13th International Symposium on

Elecronics in Transport (ISEP), Slovenia, 2005

[27] Jothi, Raja ; Raghavachari, Balaji: Approximating the k-traveling repairman prob-

lem with repairtimes. En: Journal of Discrete Algorithms 5 (2007), Juni, Nr. 2, p.

293–303. – ISSN 1570–8667

[28] Laporte, Gilbert ; Louveaux, FranÇois V. ; Van Hamme, Luc: An Integer L-Shaped

Algorithm for the Capacitated Vehicle Routing Problem with Stochastic Demands. En:

Operations Research 50 (2002), Mai, Nr. 3, p. 415–423. – ISSN 0030–364X, 1526–5463

[29] Lenstra, J. K. ; Kan, A. H. G. R.: Complexity of vehicle routing and scheduling

problems. En: Networks 11 (1981), Januar, Nr. 2, p. 221–227. – ISSN 00283045

[30] Mendoza, Jorge E. ; Castanier, Bruno ; Guéret, Christelle ; Medaglia, Andrés L.

; Velasco, Nubia: A memetic algorithm for the multi-compartment vehicle routing

problem with stochastic demands. En: Computers & Operations Research 37 (2010),

November, Nr. 11, p. 1886–1898. – ISSN 0305–0548

[31] Moretti, Rodrigo: Adaptive granular local search heuristic for a dynamic vehicle

routing problem. En: Computers & Operations Research 36 (2009), p. 2955–2968

[32] Novoa, Clara ; Storer, Robert: An approximate dynamic programming approach

for the vehicle routing problem with stochastic demands. En: European Journal of

Operational Research 196 (2009), Juli, Nr. 2, p. 509–515. – ISSN 0377–2217

[33] Secomandi, N.: A rollout policy for the vehicle routing problem with stochastic

demands. En: Operations Research (2001), p. 796–802

[34] Secomandi, Nicola: Exact and Heuristic Dynamic Programming Algorithms for the

Vehicle Routing Problem with Stochastic Demands. Houston, TX, Deparment of Deci-

sion and Information Sciences, University of Houston, Tesis de Grado, 1998

Bibliography 49

[35] Secomandi, Nicola: Comparing neuro-dynamic programming algorithms for the vehi-

cle routing problem with stochastic demands. En: Computers & Operations Research

27 (2000), September, Nr. 11-12, p. 1201–1225. – ISSN 0305–0548

[36] Slater, Alan: Specification for a dynamic vehicle routing and scheduling system. En:

International Journal of Transport Management 1 (2002), Februar, Nr. 1, p. 29–40. –

ISSN 1471–4051

[37] Tapas K. Das, Martin A. W.: Analysis of asymmetric patrolling repairman systems.

En: European Journal of Operational Research 64 (1993), p. 45–60

[38] Timon C. Du, Eldon Y. L. ; Chouc, Defrose: Dynamic vehicle routing for online B2C

delivery. En: The international journal of management science 33 (2004), p. 33–45

[39] Toth, Paolo ; Vigo, Daniele: The vehicle routing problem. SIAM, 2001. – 385 p.. –

ISBN 0898715792, 9780898715798

[40] Yang, Wen-Huei ; Mathur, Kamlesh ; Ballou, Ronald H.: Stochastic Vehicle

Routing Problem with Restocking. En: TRANSPORTATION SCIENCE 34 (2000),

Februar, Nr. 1, p. 99–112

	Introduction
	Introduction
	Proposal
	Objective
	Specifics objectives

	Contributions
	Divulgation

	Outline

	Background
	A review of Vehicle Routing Problem with Stochastic Demands
	Application cases
	Solution methods

	Formulation of VRPSD
	Stochastic programming
	Stochastic Dynamic Programming
	Stochastic Dynamic Programming approach for VRPSD

	Summary

	Stochastic Dynamic programming solution
	Dynamic approach for VRPSD
	Expected distance

	Policy iteration
	Rollout algorithm

	Summary

	Hybrid evolutionary approach
	Hybrid evolutionary algorithm
	A basic genetic algorithm for vehicle routing problem with stochastic demands

	Summary

	Experimental setting and numerical results
	VRPSD instances
	Instance generation

	Expected distance algorithm
	Rollout algorithm
	Evoulutionary approach
	Evolutionary algorithms performance

	Comparative results

	Conclusions
	Algorithms
	Genetic algorithm parameters

	Results

