
Declaración

Me permito afirmar que he realizado la presente tesis doctoral de manera autónoma y con la

única ayuda de los medios permitidos y no diferentes a los mencionados en la propia tesis.

Todos los pasajes que se han tomado de manera textual o figurativa de textos publicados y

no publicados, los he reconocido en el presente trabajo. Ninguna parte del presente trabajo

se ha empleado en ningún otro tipo de tesis.

Medelĺın, 22 de Enero de 2018

Sergio Armando Gutiérrez Betancur

An adaptable workload-agnostic flow
scheduling mechanism for Data

Center Networks

Sergio Armando Gutiérrez Betancur

Universidad Nacional de Colombia

Facultad de Minas

Medelĺın, Colombia

2018

Un mecanismo adaptable y agnóstico
en cuanto a cargas de trabajo para la

programación de flujos en redes de
centros de datos

Sergio Armando Gutiérrez Betancur

Universidad Nacional de Colombia

Facultad de Minas

Medelĺın, Colombia

2018

An adaptable workload-agnostic flow
scheduling mechanism for Data

Center Networks

Sergio Armando Gutiérrez Betancur

Thesis submitted as partial requirement to obtain the degree of:

Doctor en Ingenieŕıa - Sistemas e Informática

Advisor:

John Willian Branch Bedoya, PhD (Universidad Nacional de Colombia, Medelĺın)

Co-advisor:

Marinho Barcellos, PhD (Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil)

Doctoral Commitee:

Prof. Luciano Paschoal Gaspary, PhD

Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

Prof. Neil Guerrero Gonzalez, PhD

Universidad Nacional de Colombia - Sede Manizales, Manizales, Colombia

Prof. Sandra Julieta Rueda Rodŕıguez, PhD

Universidad de los Andes, Bogotá, Colombia

Research Line:

Computer Networks

Research Group:

GIDIA

Universidad Nacional de Colombia

Facultad de Minas

Medelĺın, Colombia

2018

Un mecanismo adaptable y agnóstico
en cuanto a cargas de trabajo para la

programación de flujos en redes de
centros de datos

Sergio Armando Gutiérrez Betancur

Tesis sometida como requisito parcial para obtener el grado de:

Doctor en Ingenieŕıa - Sistemas e Informática

Director:

John Willian Branch Bedoya, PhD (Universidad Nacional de Colombia, Medelĺın)

Codirector:

Marinho Barcellos, PhD (Universidad Federal de Rio Grande del Sur, Porto Alegre, Brasil)

Comité Doctora:

Prof. Luciano Paschoal Gaspary, PhD

Universidad Federal de Rio Grande del Sur, Porto Alegre, Brasil

Prof. Neil Guerrero Gonzalez, PhD

Universidad Nacional de Colombia - Sede Manizales, Manizales, Colombia

Prof. Sandra Julieta Rueda Rodŕıguez, PhD

Universidad de los Andes, Bogotá, Colombia

Ĺınea de Investigación:

Redes de Computadores

Grupo de Investigación:

GIDIA

Universidad Nacional de Colombia

Facultad de Minas

Medelĺın, Colombia

2018

v

Abstract

Cloud applications are an important phenomenon on the modern use of Internet. Search

engines, social networks, content delivery and retail and e-commerce sites belong to this

group of applications. These applications run on specialized facilities called data centers. An

important element in the architecture of data centers is the communication infrastructure,

commonly known as data center network (DCN). One of the challenges that DCN have to

address is the satisfaction of service requirements of the applications expressed in terms of

high responsiveness and high performance. In order to address this challenge, the traffic as-

sociated to these applications needs an special handling due to its properties which makes it

essentially different to the traffic of other Internet applications such as mail or multimedia

services. In order to contribute to the achievement of the previously mentioned performance

goals, DCN should be able to prioritize the short flows (a few KB) over the long flows (several

MB). However, given the time and space variations that the traffic presents, the information

about flow sizes is not available in advance in order to plan the flow scheduling. In this thesis

we present an adaptable workload-agnostic flow scheduling mechanism called AWAFS. It is

an adaptable approach capable to agnostically adjust the scheduling configuration within

DCN switches. This agnostic adjustment contributes to reduce the Flow Completion Time

(FCT) of those short flows representing around 85 % of the traffic handled by cloud applica-

tions. Our results show that AWAFS can reduce the average FCT of short flows up to 24 %

when compared to an agnostic non-adaptable state-of-the-art solution. Indeed, it can provide

improvements of up to 60 % for medium flows and 39 % for long flows. Also, AWAFS can

improve the FCT for short flows in scenarios with high heterogeneity in the traffic present

in the network with a reduction of up to 35 %.

Keywords: Data Center Networks, Flow Scheduling, Programmable Switches, MLFQ.

vi

Resumen

Las denominadas aplicaciones en nube son un fenómeno importante en el uso moderno de

internet. Los motores de búsqueda, las redes sociales, los sistemas de distribución de conte-

nido y los sitios de comercio electrónico, entre otros, pertenecen a este tipo de aplicaciones.

Éstas corren en instalaciones especializadas denominadas centros de datos. Un elemento im-

portante en la arquitectura de los centros de datos es la infraestructura de comunicaciones,

conocida como la red del centro de datos. Un desafio cŕıtico que la red de centro de datos

tiene que abordar es el procesamiento del tráfico de las aplicaciones, el cual debido a sus pro-

piedades es esencialmente diferente de el de otras aplicaciones de Internet. Para poder lograr

las metas de desempeño de alta capacidad de respuesta y alto desempeño, la red del cen-

tro de datos debeŕıa ser capaz de diferenciar y priorizar adecuadamente los flujos pequeños

(Unos cuantos Kilobytes) con respecto a los flujos grandes (Varios Megabytes). Sin embargo,

dadas las variaciones espacio temporales que presenta el tráfico de las aplicaciones, la infor-

mación de los tamaños de los flujos no está disponible de antemano para poder programar la

tranmisión de los flujos. En esta tesis presentamos un mecanismo de conmutación de flujos

adaptable y agnóstico con respecto a las cargas de trabajo presentes en la red denominado

AWAFS por su sigla en inglés. AWAFS plantea un enfoque adaptable, capaz de ajustar de

manera agnóstica la configuración de conmutación al interior de los suiches de la red del

centro de datos. Este ajuste agnóstico contribuye a reducir el tiempo de completación de los

flujos pequeños, los cuales representan entre un 85 % y un 95 % del tráfico manejado por las

aplicaciones. Nuestros resultados muestran que AWAFS puede reducir hasta en un 24 % el

tiempo promedio de completación de los flujos cuando se compara con una técnica agnóstica

no adaptable presentada en el estado del arte, sin inducir inanicción en los flujos grandes. En

efecto, AWAFS puede proporcionar mejoras de hasta un 60 % para los flujos medios y 39 %

para los flujos grandes. Por su adaptabilidad, AWAFS también logra obtener esta mejora en

escenarios con alta heterogeneidad en el tráfico presente en la red, ofreciendo una reducción

de hasta 35 % en el tiempo promedio de completación para los flujos pequeños.

Palabras clave: Redes de Data center, conmutación de flujos, suiches programables,

MLFQ)

Index

Abstract V

List of figures IX

1 INTRODUCTION 2

1.1 Context . 2

1.2 Motivation . 2

1.3 Hypothesis and Research Questions . 3

1.4 Objectives . 4

1.4.1 General . 4

1.4.2 Specific . 4

1.5 Contribution . 4

1.6 Organization . 5

2 DATA CENTER NETWORKS 6

2.1 Basic Concepts . 6

2.2 Architectures . 9

2.2.1 Three-tier . 9

2.2.2 Fat-Tree . 9

2.2.3 VL2 . 10

2.3 Transport Protocols . 11

2.3.1 DCTCP . 11

2.3.2 D2TCP . 12

2.3.3 L2DCT . 12

2.4 Traffic in DCN . 14

2.5 Summary . 16

3 STATE-OF-THE-ART ON FLOW SCHEDULING ON DATA CENTER NET-

WORKS 18

3.1 Information-aware . 18

3.1.1 PDQ . 19

3.1.2 pFabric . 20

3.1.3 PASE . 21

viii Index

3.2 Information-agnostic . 21

3.2.1 HULL . 22

3.2.2 QJUMP . 23

3.2.3 PIAS . 23

3.2.4 KARUNA . 24

3.3 Summary and Critical Analysis . 25

4 AWAFS: ADAPTABLE WORKLOAD-AGNOSTIC FLOW SCHEDULING 28

4.1 Context . 28

4.2 General Design of AWAFS . 30

4.2.1 System Overview . 30

4.2.2 Main Algorithm of AWAFS . 31

4.2.2.1 Parameters . 31

4.2.2.2 Pseudocode . 32

4.3 Architecture of AWAFS . 34

4.3.1 Switch Design . 35

4.3.2 Implementation Outline . 36

4.4 Summary . 37

5 EXPERIMENTS AND RESULTS 39

5.1 Simulation Model . 39

5.1.1 Assumptions and Input Factors . 40

5.1.2 Metrics . 40

5.2 Overhead of Data Structures . 41

5.3 Micro Benchmark Experiments . 42

5.3.1 Convergence of the Demotion Thresholds 43

5.3.2 Minimization of the FCT . 45

5.4 Large Scale Experiments . 49

5.4.1 Convergence of the Demotion Thresholds 51

5.4.2 Minimization of the FCT . 55

5.4.3 Operation of AWAFS with Different Traffic Loads 60

5.5 AWAFS vs PIAS with Different Workloads 62

5.5.1 Web Search Workload . 64

5.5.2 Data Mining Workload . 68

5.5.3 Hadoop Workload . 69

5.5.4 Cache Workload . 73

5.6 AWAFS vs PIAS with Heterogeneous Traffic 77

5.7 Discussion . 79

6 FINAL REMARKS 81

6.1 Conclusions . 81

Index ix

6.2 Future Work . 82

References 83

List of figures

2-1. A process scheduling system based on MLFQ [31] 7

2-2. Three-tier DCN architecture [44] . 9

2-3. A Fat-Tree DCN [44] . 10

2-4. A VL2 DCN [44] . 11

2-5. Components of DCTCP [44, 6] . 12

2-6. Components of D2TCP [44, 53] . 13

2-7. Components of L2DCT [44, 38] . 13

2-8. Distribution of the flow sizes for different applications in a Facebook data center 15

2-9. Distribution of the flow duration for different applications in a Facebook data

center . 15

3-1. Example of the operation of PDQ [44] . 19

3-2. Architecture of HULL [44] . 22

3-3. PIAS Overview [12] . 24

3-4. KARUNA Overview [19] . 24

4-1. The threshold mismatch problem . 29

4-2. Architecture of AWAFS with a configuration of 4 priority queues 34

5-1. Size of the completed flow sizes list . 42

5-2. Simple and basic topology used in Micro Benchmark experiments 43

5-3. Convergence of the demotion threshold in AWAFS with explicit threshold

mismatch . 44

5-4. Average and Tail FCT of the short flows with threshold set to 1KB 46

5-5. Average and Tail FCT of the short flows with threshold set to 1000KB . . . 47

5-6. Average and Tail FCT of long flows with threshold set to 1000KB 48

5-7. Leaf-spine topology used in simulation of the Large Scale scenario 50

5-8. Workloads used in the Large Scale experiments 50

5-9. Comparison of different sizes for the updating window 52

5-10.Threshold adjustment for 2 priority queues 53

5-11.Threshold adjustment for 3 priority queues 54

5-12.Threshold adjustment for 4 priority queues 55

5-13.FCT of short flows in the Large Scale experiment 56

5-14.Average FCT of the short flows discriminated by workload 58

List of figures 1

5-15.Tail FCT of the short flows discriminated by workload 59

5-16.Behavior of the FCT for the short flows with different traffic loads 61

5-17.Workloads used for comparison . 63

5-18.Average and tail FCT of the short flows in the experiment with the Web

Search workload . 64

5-19.Average and tail FCT of the medium flows in the experiment with the Web

Search workload . 65

5-20.Average and tail FCT for the long flows in the experiment with the Web

Search workload . 66

5-21.Average FCT and TCP timeouts in the experiment with the Web Search

workload . 67

5-22.Overall average FCT in the experiment with the Data Mining workload . . . 68

5-23.Average and tail FCT for the short flows in the experiment with the Hadoop

workload . 69

5-24.Average FCT for the medium flows in the experiment with the Hadoop workload 70

5-25.Average and tail FCT for the long flows in the experiment with the Hadoop

workload . 71

5-26.Overall average FCT and TCP timeouts in the experiment with the Hadoop

workload . 72

5-27.Average and tail FCT for short flows in the experiment with the Cache workload 73

5-28.Average and tail FCT for the medium flows in the experiment with the Cache

workload . 74

5-29.Average and tail FCT for the long flows in the experiment with the Cache

workload . 75

5-30.Comparison of overall average FCT and TCP timeouts in the experiment with

the Cache workload . 76

5-31.Comparison between AWAFS and PIAS [12] with heterogeneous traffic . . . 78

1 INTRODUCTION

1.1. Context

Many cloud applications running on Data Center Networks (DCN) have very stringent la-

tency requirements. The satisfaction of these requirements impacts the user perception and

therefore the revenue obtained by the owners of such applications [56, 44, 38, 6, 18]. From

a traffic engineering perspective, the traffic associated with these applications consists of a

mix of short flows (those transporting a few Kilobytes) and long flows (those transporting

several Megabytes or Gigabytes). In the literature of DCN, short flows are usually known as

mice flows and long flows are usually known as elephant flows [30, 52, 1, 54]. Responsiveness,

as perceived by users, is associated to mice flows (e.g. web interfaces) whereas quality and

completeness of the output provided by applications is associated to elephant flows (e.g.

operations such as database synchronization and virtual machines migration) [35]. There are

three important performance goals related to cloud applications, aiming at achieving the

required levels of responsiveness and output quality. These are: deadline meeting for time-

constrained flows, minimization of Flow Completion Time (FCT) for mice flows, and high

throughput without starvation for elephant flows [19].

1.2. Motivation

There are two main approaches to address the above goals: Queue management and flow

scheduling. Queue management tries to reduce the delays due to occupation in switch buffers

(queuing delays) that affect specially mice flows. Different approaches propose ideas such as

reservation of buffer space to face traffic bursts [8], control rate transmission at end hosts

[38, 6] or even bypassing the switch queues under specific circumstances [29]. On the other

hand, flow scheduling approaches aim at controlling how the switches should perform the

packet scheduling in order to achieve the mentioned performance goals. From the scheduling

perspective, the simultaneous achievement of those goals introduces three main challenges.

First, for many data center applications, it is difficult (or even impossible) to pass informa-

tion to the network to enable close-to-optimal flow scheduling. This limitation arises due to

the non-trivial modifications required in the data center infrastructure and the applications

themselves [9]. Second, in many cases, it is not possible to have a-priori information needed

to plan the flow scheduling for an application [12, 11]. Third, given the dynamic nature of

1.3 Hypothesis and Research Questions 3

the data center traffic, the scheduling approaches should be able to adapt themselves to time

and space variations that the traffic might exhibit [19].

Although related work presents different proposals that try to approximate optimal schedu-

ling algorithms minimizing the average FCT for the applications and/or maximizing deadline

meeting [11, 19, 12, 39, 9, 32], these proposals fail in addressing the previously mentioned

challenges.

1.3. Hypothesis and Research Questions

Considering the new landscape in Software Defined Networks provided by programmable

switches [50, 17], and taking as basis state-of-the-art solutions for flow scheduling [11, 19, 12],

this thesis presents the following hypothesis:

Hypothesis: It is possible, by combining local information collected at switch level and

remote information provided by end hosts, detect traffic properties that enable the adjust-

ment of scheduling parameters in a system based on multiple queues, in order to achieve the

minimization of the Flow Completion Time for mice flows, without inducing starvation or

excessive degradation in the performance of elephant flows.

In order to guide the investigations conducted in this thesis, the following research ques-

tions (RQ) associated with the hypothesis are defined and presented:

RQ1: How can a flow scheduling system be workload-agnostic in the sense of requiring

minimal a-priori information about the workload present in the network to minimize the tail

and average FCT of mice flows?

RQ2: What information would be necessary to be collected at switch level in order to adjust

the flow scheduling configuration to achieve the performance goals for cloud applications?

RQ3: While providing minimization of average and tail FCT for mice flows, how to avoid

the inherent starvation that might affect elephant flows?

The proposed research questions are intentionally broad. Thus, they could lead to diffe-

rent outcomes. This thesis will aim at providing at least one answer to each question. Note

that the answers in this thesis are supported by a substantial amount of results and analysis.

However, this does not mean that different approaches could not accomplish similar results.

4 1 INTRODUCTION

1.4. Objectives

1.4.1. General

Design a mechanism to dynamically adapt the configuration of a Multi-Level Feedback Queue

scheduling system in a DCN without requiring a-priori information about the workloads in

order to minimize the average and tail flow completion time of data flows transporting a few

Kilobytes.

1.4.2. Specific

Define a monitoring mechanism to be implemented within programmable switches

with the capacity to autonomously detect traffic properties useful to perform the flow

scheduling.

Design and adapt a Multi Level Feedback Queue (MLFQ) scheduling system in order

to provide adaptable operation according to the current conditions of the traffic present

in the network.

Provide the agnostic adaptation of the MLFQ scheduling system so that it minimizes

the average and tail (99th percentile) flow completion times of the majority (short,

a few kilobytes) flows which are typical in data center applications, which is closely

related to the performance (responsiveness) of these applications.

1.5. Contribution

The major contribution of this thesis is a mechanism that satisfies the three specific goals

stated above. The mechanism is called Adaptable Workload-Agnostic Flow Scheduling, or

AWAFS, for short. AWAFS consists of three main components: The Sensor, the Actuator

and the Scheduler. AWAFS adapts agnostically the flow scheduling parameters within the

switches in order to minimize the FCT of mice flows while avoiding starvation on elephant

flows. This adaption does not require a-priori information about traffic properties of the

workloads present on the network. This agnosticism contributes to adequately handle the

spatial and time variations that the traffic associated to cloud applications usually exhibits

[45, 14, 6].

1.6 Organization 5

1.6. Organization

This thesis is outlined as follows: Chapter 2 defines basic concepts and background in the

areas of data center networking. Chapter 3 addresses specific aspects of the problem of flow

scheduling in the context of DCN. Chapter 4 presents the overview of the flow scheduling

mechanism proposed in this thesis. Chapter 5 contains the description of the experiments

performed and the results obtained from the evaluation of the proposed solution. Finally,

Chapter 6 presents the final remarks of our work, including the conclusions and perspectives

of future work.

2 DATA CENTER NETWORKS

In this chapter, we present the context and background of the main research area, Data

Center Networks. This chapter is organized in four main sections. In Section 2.1 we introduce

some basic terminology which has a specific meaning within the text. Section 2.2 contains a

survey of the main architectures used on Data Center Networks. In Section 2.3 we present

the main transport protocols reported in the literature as adequate protocols for Data Center

Networks. Finally, Section 2.4 presents an overview of the main properties and challenges

that traffic present on Data Center Networks exhibits.

2.1. Basic Concepts

In this section, we present the definition of basic terms that will be used throughout the

thesis.

Application: In the context of this thesis, the term application refers to the soft real-time

workloads typically present in services such as social networks, search engines and retail

websites [9]. These workloads are characterized by a request-response loop involving large

clusters of servers [8], and typically they are designed following the Partition/Aggregate

workflow pattern [2, 55].

Flow: This term refers to a sequence of packets (typically IP datagrams) exchanged between

a software component residing on a source and another software component on a destina-

tion host. These components can be different applications or different modules of the same

application. It is uniquely identified by the canonical fivetuple (source IP, destination IP,

source port, destination port and protocol) [35]. Regarding the size of these flows, in most

related papers [11, 19, 12, 32], mice flows are flows with sizes around 100 KB and smaller,

and elephant flows are flows with sizes larger than 10MB. It is important to remark that

applications might have flows not belonging to any of these classes (sizes between 101 KB

and 9.9 MB). However, these flows with “intermediate”sizes do not represent a high percent

of the DCN traffic (See Section 2.4).

FCT: Flow completion time. It is the metric that is usually assessed to determine the

performance of an application in the context of Data Center Networks. FCT corresponds to

the time period between the sending of the first packet of a flow and the receiving of the

last packet [20, 23]. FCT is typically assessed as overall average FCT and tail FCT, for high

2.1 Basic Concepts 7

percentiles of the measurements (95th or 99th percentiles) [19, 12, 9].

MLFQ: Multi Level Feedback Queue is a scheduling mechanism used in the context of

operating systems. It was initially introduced in 1962 [21]. MLFQ was conceived to be used

in multiuser timeshare systems and it is based on employing a multilevel queue to mana-

ge processes. The goal of MLFQ is approximating the Shortest Job First (SJF) scheduling

heuristic which theoretically minimizes both the average and tail process completion time.

MLFQ aims at prioritizing short processes (mainly associated to interactive operations) over

long processes (usually associated to batch operations) without actually knowing the exact

duration of them.

Figure 2-1 presents the scheme of a MLFQ scheduling system for processes in an opera-

ting system. A scheduling system based on MLFQ consists of a set of FIFO queues and a

scheduling policy. The number of queues goes from 2 up to a given number according to

the particular implementation (e.g. the Solaris Operating System uses 60 queues for process

scheduling). Each queue has associated a value indicating the maximum quantum for a pro-

cess to be enqueued at that given queue (i.e. a given priority level). Higher priority queues

have smaller quantum values associated and these values increase between successive queues.

Initially, all the processes enter into the highest priority queue. Whenever a process exceeds

Figure 2-1: A process scheduling system based on MLFQ [31]

the specified quantum to stay at that queue, it is demoted and enqueued into the next lower

priority queue. This approach causes that short-running processes (e.g. interactive processes)

tend to be prioritized over long-running processes (e.g. CPU intensive processes). Those long

8 2 DATA CENTER NETWORKS

processes tend to sink towards the lowest priority queue.

The scheduling policy in MLFQ is very simple. In order to determine the next process

to dequeue, the set of queues is checked following a top-down strategy. Initially, the highest

priority queue is checked. If this queue is non-empty, then the first process in the queue is

scheduled and runs until blocking. Then this process is moved to the end of the same queue

(implementing FIFO) or to the end of next queue (demoted to the next lower priority). Ho-

wever, if the highest queue is empty, then the next queue (lower priority) is checked just like

it happened with the highest one. The scheduling is repeated for the next process, always

starting with the highest priority queue.

MLFQ does not consider the type of each process. Processes are assigned to priority queues

according to their behavior. That is why MLFQ is considered as a non clairvoyant scheduler

in the sense that rather than predicting the process behavior, it observes it and performs

the scheduling according to this observation [31].

Notice that this strategy might potentially induce starvation in long processes. As long

as highest and intermediary queues contain processes, the lowest priority queue will not be

processed. A mechanism proposed to address this situation is priority boost. In this mecha-

nism, priority of long processes is reset at a given interval of time. Thus the process enters

again into the highest priority queue and thus it can have some progress in its execution [10].

As previously mentioned, process scheduling based on MLFQ aims at achieving the Shortest

Job First heuristic, which theoretically minimizes the completion time of short processes. In

systems dominated by short interactive processes, it leads to the minimization of the overall

average completion time of the system.

Recently, literature on flow scheduling proposed to adapt the notion of MLFQ for the sche-

duling of data flows. Flow scheduling approaches based on MLFQ aim at approximating

scheduling heuristics such as Least Attained Service (LAS) or Shortest Job First (SJF) in

order to prioritize short flows [40]. This approximation is performed by dynamically assigning

priorities to flows without actually knowing in advance their size. Flows are initially proces-

sed at the top priority queue of a MLFQ, and they are progressively demoted according to

a given criteria such as deadline meeting, byte count or associated congestion notifications

[11, 19, 12, 8].

2.2 Architectures 9

2.2. Architectures

Depending on how they are structured, DCN architectures can be classified in switch-centric,

server-centric or hybrid [44]. Switch-centric architectures, as their name implies, use swit-

ches as the key element for packet forwarding. Server-centric architectures use servers with

multiple Network Interface Cards (NICs), behaving themselves as switches. Hybrid architec-

tures are a combination of the switch-centric and server-centric [57]. Since the main focus

of this thesis is proposing a flow scheduling mechanism to be deployed within the switch

infrastructure, in this review we focus on Switch-centric architectures. Further details on the

other classes of DCN architectures can be found in [44].

2.2.1. Three-tier

Three-tier is considered a simple approach to build and design a DCN. For example, it

has been adopted by vendors as Cisco as the main framework for network design. This

architecture consists of three main layers: access, aggregation and core as shown in Figure 2-

2. Servers are connected through switches known as access switches, and they are organized

in racks grouping several servers. Access switches are connected to at least two aggregation

switches in order to provide redundancy. Aggregation switches are connected to core level

switches, which usually implement services additional to switching such as firewall and load

balancing.

Figure 2-2: Three-tier DCN architecture [44]

2.2.2. Fat-Tree

Fat-tree is a highly scalable DCN architecture that tries to maximize end-to-end bisection

bandwidth [3]. In this context, the term bisection refers to the conceptual procedure of

dividing the network in two equally sized segments. Specifically, bandwidth of a bisection is

10 2 DATA CENTER NETWORKS

found by summing all of the link capacities between two partitions. The smallest bandwidth

of all those partitions is the bisection bandwidth [25]. In order to reduce costs, a fat-tree

network can use commodity switches with equal number of ports. In its design, the size of

the network is determined by the number of switch ports, usually indicated as k. A fat-tree

network is formed by three layers: edge, aggregation and core. Servers in the edge layer

are grouped in an entity called pod, with each pod containing k2/4. Figure 2-3 presents

an example of a fat-tree network with 4 pods. In a fat-tree network with k pods, each

edge switch is connected to k/2 servers in its pod. Remaining k/2 ports are connected to

k/2 aggregation switches. Thus, the number of core switches is (k/2)2, and each port of

core switches is connected to each of the k pods in the network. A network with commodity

switches with k ports can accommodate k3/4 servers in total. Fat-tree DCNs might introduce

economic savings due to the use of commodity homogeneous hardware. It also provides high

resilience by the use of multiple paths between servers.

Figure 2-3: A Fat-Tree DCN [44]

2.2.3. VL2

VL2 is a hierarchical DCN based on Fat-tree architecture [15, 27]. Figure 2-4 shows a simple

VL2 network. This DCN defines three types of switches: Intermediate, Aggregation and Top

of Rack (ToR). An important idea behind VL2 DCN is the use of commodity switches. A

VL2 DCN is designed to use (DA)/2 intermediate switches, DI aggregation switches and

(DA)(DI)/4 ToR switches. (DI) and (DA) are the number of ports of intermediate and

aggregation switches respectively and in general they are different. The number of servers

in a VL2 DCN is defined by 20(DA)(DI)/4. In order to take advantage of multiple paths,

2.3 Transport Protocols 11

VL2 uses a technique called Valiant Load Balancing (VLB) which uniformly distributes the

traffic among the paths. VL2 is cost-effective due to the use of commodity switches and can

exploit the high bisection bandwidth because of VLB.

Figure 2-4: A VL2 DCN [44]

2.3. Transport Protocols

2.3.1. DCTCP

Data Center TCP (DCTCP) [6, 7] is a scheme based on a reinterpretation of the Explicit

Congestion Notification [26] to control the congestion window in TCP. DCTCP shares the

same principles of operation of TCP with exception of the congestion control. DCTCP reacts

to the degree of the congestion instead of simply reacting to its presence. When TCP detects

congestion, it reacts by reducing the congestion window to the half of its value, and also re-

duces the slow-start threshold [26]. In DCTCP the congestion window is adjusted according

to the extent of the congestion which is estimated through the amount of ECN messages

received. The goal of DCTCP is keeping small the occupation of buffers in the switches along

the path between sender and receiver.

12 2 DATA CENTER NETWORKS

Figure 2-5: Components of DCTCP [44, 6]

Figure 2-5 illustrates the operation of DCTCP. The protocol defines a threshold which

specifies the maximum number of packets in a queue before starting to mark with ECN bits.

When congestion is notified via ECN, DCTCP estimates the congestion extent and controls

accordingly the adjustment of the congestion window. For high degrees of congestion (i.e.

large number of packets marked), the reduction of the congestion window is larger. On the

other hand, for low degrees of congestion (i.e a few packets buffered), the reduction of the

congestion window is smaller.

By controlling the congestion window this way, DCTCP can provide low-latency, high th-

roughput and high burst tolerance. Further details on the internals of DCTCP can be found

at [6, 7].

2.3.2. D2TCP

Deadline-Aware Datacenter TCP (D2TCP) [53] can be considered as an extension of DCTP

to deal with deadline-oriented applications. The main goal of the protocol is the meeting of

deadlines for these applications while providing high throughput for non deadline-oriented

flows. D2TCP inherits the congestion control of DCTCP (reacts to the degree of congestion

rather than simply to its presence) but includes the deadline awareness. This deadline awa-

reness consists in assigning the priority of the packets in a flow according to its deadline.

Flows closer to their deadline are assigned higher priority. Further details on the congestion

avoidance algorithm of DCTCP can be found in [53].

2.3.3. L2DCT

Low Latency Data Center Transport (L2DCT) [38] schedules short flows without requiring

prior information about their sizes. L2DCT implements the Least Attained Service (LAS)

scheduling policy [43] to approximate the Shortest Remaining Process Time (SRPT) heu-

ristic. This heuristic, taken from the Operating Systems context aims at prioritizing those

jobs with less time to complete. Although a key difference is that LAS does not use a-priori

knowledge of the job size, both techniques pursue the goal of serving first smaller flows.

When considered in the context of flow scheduling, LAS assigns a higher priority to the

2.3 Transport Protocols 13

Figure 2-6: Components of D2TCP [44, 53]

flow that has sent the least data thus far. Then, flows are scheduled in descending order of

priority. In this way, short flows tend to be prioritized over long flows.

L2DCT has three main components: i) a control mechanism located at the sender, which is

on charge of managing the congestion window, ii) an ECN echo mechanism located at the

receiver, iii) switches with ECN capabilities enabled. Figure 2-7 illustrates these components.

Senders in L2DCT have two functions. They assign a weight to the packets of each flow

according to the amount of bytes transmitted thus far (higher weight to the flows that have

sent the least data) and adjust the congestion window according to the information received

via ECN. This adjustment is similar to the one used by DCTCP [6]. Further details on the

operation of L2DCT can be found in [38].

Figure 2-7: Components of L2DCT [44, 38]

14 2 DATA CENTER NETWORKS

2.4. Traffic in DCN

There are two primary prevalent groups of applications in the context of DCN. The first

group is mainly composed by applications such as bulk-data transfers and storage synchro-

nization which generate long flows [55]. The second group is composed by applications such

as web search or web content composition, mainly based on short-lived communications

(short flows) [6, 45].

Several studies have shown that the traffic associated to these applications presents noti-

ceable differences compared to other Internet applications [45, 35, 13, 6]. These differences

introduce specific challenges both in protocols and network infrastructure in order to achieve

the performance goals of high responsiveness and completeness that are expected from cloud

applications [19].

Initial efforts in understanding the behavior of data center traffic were based on simula-

tion or restricted testbeds [4, 24]. These initial studies considered the application workloads

typical at the time when they were conducted, mainly Java Enterprise and Web applica-

tions. Later, other studies were published, based mainly on analysis of Microsoft production

datacenters [36, 34, 6]. An important limitation of these studies is the lack of information

about the different types of data centers assessed and how representative they are.

For example, authors state that their results could be extended to data centers using diffe-

rent flavors of the map-reduce computing model. However, other scenarios involving other

protocols such as databases, web services or caches might exhibit different behaviors than

those observed according the literature.

Recently, Roy et al. [45] performed an extensive study based on samples of traffic in da-

tacenters running services for Facebook. This study complements and confirms some of the

properties discussed in previous works [14, 36]. Also, it extends and redefines some widely

accepted notions by considering other workloads and traffic patterns different than those

based on map-reduce model.

Following [45], we introduce the following summary of properties associated to Data center

traffic:

Most of the flows are short. In this context, short means that they transport a few

Kilobytes. Typically, these short flows have sizes of less than 100KB and they might

represent from 70 %, 75 % [45] up to 90 % [35, 34, 14] of the traffic. Figure 2-8, based

on data from [45], illustrates this phenomenon.

Duration of flows depends on the type of application. For applications such as web

2.4 Traffic in DCN 15

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-1

10
0

10
1

10
2

10
3

10
4

C
D

F

Flow size (Kilobytes)

(a) Web

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-1

10
0

10
1

10
2

10
3

10
4

C
D

F

Flow size (Kilobytes)

(b) Cache

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

C
D

F

Flow size (Kilobytes)

(c) Hadoop

Figure 2-8: Distribution of the flow sizes for different applications in a Facebook data center

services and hadoop services, approximately half of the flows last less than 10 seconds.

For cache applications, in contrast, approximately half of the flows last less than 300

seconds. Figure 2-9 based on data from [45] presents a comparison of the flow duration

for three applications in a Facebook data center.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

C
D

F

Flow duration (Miliseconds)

(a) Web

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

C
D

F

Flow duration (Miliseconds)

(b) Cache

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

C
D

F

Flow duration (Miliseconds)

(c) Hadoop

Figure 2-9: Distribution of the flow duration for different applications in a Facebook data

center

Link utilization is low in general. Even for an application such as cache which has

longer flows when compared to web services or hadoop, link utilization (overall link

capacity occupied) is lower than 70 % most of the time, and very rarely is close to

100 %. For web services, link occupation is lower than 30 %. (See figure 15b of [45])

In general, DCN traffic follows a pattern of continuous arrivals with a high number

of concurrent flows (see Figures 13 and 14 of [45]). For web and cache applications,

this concurrency is in the order of hundred to thousand flows whereas for hadoop

is close to 25 flows. This point specially contrasts with previous findings reported in

the literature which claimed traffic patterns with low level of flow concurrency. This

pattern is typically attributed to long flows [14, 6].

16 2 DATA CENTER NETWORKS

Since traffic tends to be bursty with high flow concurrency, buffer utilization and packet

drops tend to increase. Even with low levels of link occupation, this bursty nature of the

traffic might cause unacceptable levels of drops. Also, in general terms, link utilization

is not a good predictor for buffer sizes. For web services, both of the magnitudes can

be related whereas for cache and hadoop they can not (See figure 15 of [45]).

Summarizing the findings about traffic properties presented in the literature, and despite the

differences among different reports, there are some elements that can be concluded in general.

First, short flows (a few Kilobytes) are predominant in data center traffic representing large

percents. Second, flow duration tends to be short, specially for applications mostly based

on short flows. Third, link occupations tend to be low, with high burstiness leading to high

buffer utilization.

2.5. Summary

In this chapter, we have presented some background in the area of Data Center Networks.

Initially we described some of the main architectures that have been proposed to structure

DCN. We also described some of the transport protocols that have been proposed for DCN

and finally we discussed some of the key properties that lead to the main challenges associa-

ted to the DCN traffic.

Regarding DCN architectures, they share a main property: Servers, grouped in clusters,

are connected through an aggregation switch. Thus, aggregation switches are the most ex-

posed to the many-to-one traffic and specially the performance impairments such as incast

[6, 14]. Thus, it is important to remark that transport protocols challenges and performance

goals of applications are similar regardless the DCN adopted in a particular deployment.

The actual DCN architecture influences aspects such as the failure tolerance, management

of the oversubscription and physical conditions of the servers connection, but it does not

influence the flow switching [44].

Regarding transport protocols, most of the transport protocols defined to be used on DCN

focus mainly on minimizing the effects of congestion. They mostly leverage on ECN in order

to avoid that the queues in switches become very occupied. Avoiding high levels of occupa-

tion, both queuing delays and packet drops tend to be avoided.

Finally, regarding the properties of DCN traffic, it is clear that most of the traffic in ge-

neral is formed by short flows. Therefore, the main goal to achieve is prioritizing those short

flows in order to minimize their completion time. However, there are two main challenges

associated to identifying whether a flow is short. First, the size information, in general, is not

available in advance. Second, even if the size information would be available, the modifica-

2.5 Summary 17

tions required in the infrastructure to take advantage of this information would be unfeasible

because it would imply modifying operating system code in order to pass information from

transport layer onto network devices. Therefore, a better strategy to achieve the goal of FCT

minimization of short flows would be to perform the scheduling in an agnostic way.

3 STATE-OF-THE-ART ON FLOW

SCHEDULING ON DATA CENTER

NETWORKS

In this chapter, we present a survey of the literature addressing the problem of Flow Sche-

duling in the context of Data Center Networks. The literature on DCN defines different

classifications for the transport schemes aiming at the satisfaction of the performance goals

for cloud applications (See Section 1.1). We present below some of these classifications.

According to the consideration of deadline satisfaction, transport schemes can be clas-

sified in i) deadline-aware or ii) deadline-agnostic [44].

According to the requirement of a-priori information about the workloads, transport

schemes can be classified in i) information-aware and ii) information-agnostic [11].

According to the implementation of traffic control, transport schemes can be classified

in i) based on self-adjusting endpoints; ii) based on centralized arbitration or iii) based

on in-network prioritization [39].

According to the strategy used to reduce latency in the DCN, transport schemes can

be classified in i) those focused on reducing queue lengths; ii) those based on making

transport protocols aware of flow deadlines and iii) those taking advantage of multipath

[35].

Since the focus of this thesis is on agnostic flow scheduling, we follow the line proposed by

Bai et al [11] to classify related work. Next we present the state-of-the-art on flow scheduling

in DCN divided in information-aware and information-agnostic approaches.

3.1. Information-aware

Information-aware approaches are those that require a-priori information in order to perform

the flow scheduling. This a-priori information is typically associated to performance goals

such as deadline satisfaction or minimization of the flow completion times. In the next

sections we present the most relevant state-of-the-art information-aware transport schemes

3.1 Information-aware 19

in DCN. We present the Preemptive Distributed Quick (PDQ) flow scheduling, pFabric

(which is considered by most of the works as the reference approach) and PASE, which is a

proposal to combine different transport strategies by leveraging their respective advantages

in order to obtain a unified solution for flow scheduling.

3.1.1. PDQ

Preemptive Distributed Quick (PDQ) flow scheduling [32] is a protocol that addresses both

quick completion of flows and deadline satisfaction. In order to achieve these two goals, it

leverages Earliest Deadline First (EDF) and Shortest Job First (SJF) heuristics. The idea

behind PDQ is scheduling first the most critical flows. In case of having two flows equally

critical, then the flow with the shortest expected transmission time is scheduled first. PDQ

uses a protocol to implement the scheduling policies in a distributed way. Network switches

preemptively allocate resources by pausing low priority (non urgent) flows.

Figure 3-1: Example of the operation of PDQ [44]

Figure 3-1 illustrates the operation of PDQ. Packets contain a header that indicates the flow

203 STATE-OF-THE-ART ON FLOW SCHEDULING ON DATA CENTER NETWORKS

rate request. Initially, this value is set to the maximum sending rate that can be achieved,

which is actually the NIC line rate of the sender. Then, when the switch receives this request,

it might decide whether accepting or rejecting the requesting flow. This decision is made

considering the criticality of the flows contained in the flow table of the switch, and the

available bandwidth. In the depicted example, there are two switches that receive the SYN

packet. They check the deadline D in order to determine its priority. If the priority indicated

in the packet is the highest, the minimum between the available bandwidth and the current

flow sending Rate R is assigned to the flow. R is updated at every switch along the path.

(i.e. R1, R2, and R3 represent the updated sending rates. R1 is the first accepted rate and

R3 is the last accepted rate). In case that the flow becomes paused at a switch (e.g. P = 2

in the figure means that flow was paused at Switch 2), it is held by the sender until a rate

larger than zero is granted. Probe packets are sent while a flow is paused.

3.1.2. pFabric

pFabric [9] is a datacenter transport mechanism that minimizes the average FCT of both

short and long flows and achieves also a close to theoretically optimal FCT even at the 99th

percentile for short flows. An important concept behind pFabric is the separation between

actual flow scheduling and rate control. The idea of this separation is having a transport

mechanism as simple as possible, aiming at obtaining the highest possible performance.

In order to achieve the theoretically optimal FCT, pFabric approximates the Shortest Re-

maining Processing Time (SRPT) Policy. The three principles of operation of pFabric can

be summarized as follows:

End hosts mark packets with the corresponding priority associated to the flow. This

priority might represent the deadline of the flows (expressed in time units) or the

remaining size of the flow (expressed in bytes).

Switches in pFabric are simple. They typically have small buffers (up to a few hundred

KB) and they decide whether accepting or dropping the packets according to their

priority values. If a packet arrives when the switch buffer is full, it is dropped if its

priority is lower than the priority of all the packets already in the buffer. Otherwise,

the packet already present in the buffer with the lowest priority is dropped. Then the

switch transmits the packet marked with the highest priority.

Rate control is very simple. Flows start at line-rate and this rate is reduced only when

severe packet loss is detected.

These operation principles lead to very simple switches, which do not require to keep com-

plex state nor providing explicit feedback mechanisms. Also, due to the simplifications in

the transport protocol, end hosts do not require to implement complex congestion control

3.2 Information-agnostic 21

mechanisms. However, pFabric is a clean-slate approach. The mechanisms of priority sche-

duling and priority dropping are not available in current data center infrastructure and the

rate control mechanism of pFabric differs of those available in current transport protocols

(e.g. TCP and DCTCP).

3.1.3. PASE

PASE [39] is a proposal to synthesize elements of different state-of-the-art transport proto-

cols in DCN. The idea behind PASE is combining the elements of self-adjusting endpoints

(concept used in protocols such as TCP or DCTCP [6]), in-network prioritization (like in

pFabric [9]) and arbitration (like in PDQ [32]). Self-adjusting endpoints consists in the opera-

tion mode where senders control their transmission rate according to the network conditions

that they can observe. In-network prioritization consists in the scheduling and dropping of

packets at switches according to the priorities that they have indicated. Arbitration consists

in having a common entity in charge of allocating the transmission rate of each flow. The

principles of combination that PASE suggests are complementing arbitration with in-network

prioritization and arbitration complementing self-adjusting points. These principles can be

summarized as follows:

Arbitration elements perform flow prioritization without calculating precise rates. That

is, arbitrators just assign relative priorities without actually enforcing the priority.

Endpoints should detect and take advantage of spare capacity in network links and

they should not perform inter-flow prioritization.

In-network prioritization should be used for per-packet prioritization obeying the higher-

level decisions made by arbitration and self-adjusting endpoints.

3.2. Information-agnostic

Information-agnostic is the set of transport mechanisms that try to achieve the performance

goals for cloud applications without detailed information for the flow scheduling. We divide

this category in two groups:

Approaches based on management of switch queues and control of the transmission

rate in order to reduce queuing delay.

Approaches based on implementation of techniques and adjustment to packet schedu-

ling.

223 STATE-OF-THE-ART ON FLOW SCHEDULING ON DATA CENTER NETWORKS

3.2.1. HULL

High-bandwidth Ultra-Low Latency (HULL) [8] is an architecture focused on providing very

low latency. HULL leverages the concept of Phantom Queues (PQ). PQ simulate the queuing

for a virtual link of configurable speed, slower than the actual physical link (e.g. 95 % of the

line rate). This simulation is provided through a counter which is updated whenever a packet

exits a link at line rate (See Figure 3-2). Congestion signalization is associated to the PQ

instead of the real queues. HULL uses DCTCP for congestion control. By simulating a slower

link, PQ reserve some “bandwidth headroom” that will be available to process high priority

traffic, avoiding to penalize it with queuing delay. PQ approach differs from other approaches

given that it is associated to the egress port of switches rather than the real queues. Thus,

PQ are independent of the switch architecture.

HULL also leverages packet pacing. With packet pacing, packets are enqueued at end hosts

to avoid queuing in the network due to bursts. However, this pacing is applied only to large

flows, which are not sensitive to individual packet delivery times. On the other hand, small

flows, which are in general more sensitive to latency, should not be paced. HULL uses a

MLFQ mechanism to determine whether a flow should be paced or not.

Figure 3-2: Architecture of HULL [44]

3.2 Information-agnostic 23

3.2.2. QJUMP

QJUMP [29] is a system aiming at overcoming the effect of network interference. QJUMP

claims that the main source of this network interference is queuing. Thus, it aims at addres-

sing switch queuing by imposing a finite bound on it.

Network interference is generated when applications with long flows generate congestion that

causes excessive queuing delay, which hurts latency-sensitive applications. QJUMP associa-

tes priorities and rate limitation. In its operation, low latency variance with low throughput

represents higher priorities and high latency variance with high throughput represents low

priorities. The rate limitation is applied at end hosts in a non intrusive way through an

application that enables the applications to specify their required priority.

3.2.3. PIAS

The Practical Information-Agnostic flow Scheduling (PIAS) [11, 12] is an approach for flow

scheduling which leverages the concept of Multi Level Feedback Queue (MLFQ). Figure 3-3

presents an overview of PIAS operation.

PIAS leverages priority queues available in existing switches to implement a MLFQ schedu-

ler. For this implementation, there are k priority levels Pi; 1 ≤ i ≤ k and (k − 1) demotion

thresholds Thrj; 1 ≤ j ≤ (k − 1). Each priority queue Qk represents a priority level in such

a way that packets tagged with priority Pi will be enqueued into Qi. It is assumed that

P1 > P2... > Pk and Thr1 < Thr2... < Thrk−1.

Each end host tracks the amount of bytes sent by a flow. Whenever a flow is created, its

packets are marked with the highest priority value (i.e. P1). Thus, packets will be initially

treated at switches with the highest priority by enqueuing them into the highest priority

queue. Each hosts keeps a set of demotion thresholds Thrj; 1 ≤ j ≤ (k− 1). These demotion

thresholds represent byte counts. Thus, the packets of a flow are tagged with decreasing

priorities as more bytes the flow sends (Pj, 2 ≤ j ≤ k). Notice that the threshold to de-

mote from priority Pj−1 to priority Pj is Thrj−1. That is, when a flow has sent more than

Thrj−1 bytes, its packets are marked with priority Pj and therefore they are enqueued at Qj.

Given this scheduling approach, short flows tend to complete at the top priority queues.

On the other hand, long flows tend to sink towards the lower priority queues. In order to

overcome the inherent starvation that MLFQ might present, the byte count associated to

long flows could be periodically reset. Thus, the long flows will have some progress without

excessive starvation [11]. This is analogous to the priority boost mechanism in operating

systems [10, 21].

243 STATE-OF-THE-ART ON FLOW SCHEDULING ON DATA CENTER NETWORKS

Figure 3-3: PIAS Overview [12]

3.2.4. KARUNA

KARUNA can be considered an extension of PIAS. KARUNA divides the data center traffic

in three main classes of flows: Flows with associated deadlines, flows without associated dead-

lines but with known sizes, and flows without associated deadlines and unknown sizes. An

important insight considered in KARUNA is the fact that deadline-constrained flows do not

need to complete as soon as possible but they should be completed just meeting their dead-

lines. Prioritizing indiscriminately deadline-oriented short flows over non deadline-oriented

flows hurts the performance of the latter and does not introduce important reductions in the

deadline miss rate [19]. Figure 3-4 presents an overview of the KARUNA architecture.

Figure 3-4: KARUNA Overview [19]

In order to achieve the deadline satisfaction for deadline-oriented flows while minimizing

the FCT of short flows, queues in KARUNA switches are used for different purposes. The

3.3 Summary and Critical Analysis 25

deadline-oriented flows are placed at the highest priority queue. The transmission rates of

these flows are controlled with a protocol capable to react to network congestion. Since the

performance goal of deadline-oriented flows is the deadline meeting, they can be throttled

and transmitted in such a way that they just meet their deadlines.

On the other hand, non deadline-oriented flows are further divided and they are proces-

sed in a PIAS-like MLFQ scheduling system [11]. If the size of a flow can be known in

advance, then its packets are marked to be directly enqueued into the corresponding queue.

If the size of the flow is unknown, then it is sieved through the high priority queues and pro-

gressively demoted as long as the amount of bytes transmitted by the flow increases. Similar

to PIAS, packet tagging and threshold management is performed at end hosts. Switches just

schedule according to the priority levels indicated in the packet tags.

3.3. Summary and Critical Analysis

In this chapter, we have presented the state-of-the-art on Flow Scheduling in the context of

Data Center Networks. We have seen how the literature classifies the approaches for flow

scheduling in those that use a-priori information about the flow sizes and those that either do

not use it, or consider partial information about flow sizes. In general terms, we can identify

the following issues in the reviewed literature:

Requirement of modifications in the application code and network stack of operating

system at servers.

Introduction of disruptive design at switches or network protocols.

Need of explicit information about flows to plan the scheduling.

Incorporation of additional elements in control plane.

Either specific or static configuration parameters bound to workloads.

Information-aware approaches rely on having explicit information about flow sizes in order to

plan the flow scheduling. Although some cloud applications might provide this information

in advance [41], modifications at end hosts to involve flow size information in the scheduling

are prohibitive. These modifications include either patching application code or altering ker-

nel code to pass flow sizes to transport layer protocols [11]. Thus approaches such as PDQ

[32] and pFabric [9] present practical limitations for their implementation.

Other approaches rely on disruptive modifications of the network infrastructure and proto-

cols. For instance, pFabric [9] leverages priority scheduling and proposes a simplified trans-

port protocol which consists in removing flow control features from standard protocols such

263 STATE-OF-THE-ART ON FLOW SCHEDULING ON DATA CENTER NETWORKS

as TCP or DCTCP. Although novel proposals on programmable network hardware enable

the implementation of approaches such as priority scheduling [48, 50], these proposals are not

yet widely available in hardware implementations. Also, modifications on standard transport

protocols implying changes to operating system kernels in general are not feasible. Therefore,

the implementation and adoption of schemes relying on these kind of modifications is very

hard.

PASE [39] introduces the idea of combining different approaches, by dedicating each ap-

proach to the functionality that it performs the best. However, PASE introduces the notion

of arbitration components, which control resource assignment. These components introduce

additional points of failure and make the network control plane more complicated.

In summary, although information-aware mechanisms would provide better performance for

applications, provided that the information about flow sizes would be available, the mo-

difications on applications and data center infrastructure (switches and servers) would be

prohibitive. Also, some of these approaches would introduce additional complexity in the net-

work control plane. Therefore, we rely on the same claim stated in related work [11, 12, 19],

that a more feasible approach to satisfy the performance requirements of data center appli-

cations would be the agnostic approach, without using a-priori information about flow sizes.

Approaches such as PIAS [11] and Karuna [19] are closer to the notion of information-

agnostic flow scheduling. They do not use a-priori information about the size of a flow in

order to schedule it. However, they do need information about the distribution of the flow

sizes of a given workload in order to define the parameters for their MLFQ-based scheduling

component.

A challenging task associated to MLFQ-based scheduling is the derivation of a set of demo-

tion thresholds that minimizes the average and tail FCT. PIAS calculates these thresholds

based on traffic information consisting in the CDF of the flow sizes of the workload that will

be present in the network. When the thresholds are derived, they are distributed and deplo-

yed at end hosts. Then, they use these thresholds to perform the packet tagging procedure

[11].

We claim that there are three main limitations on this approach:

Traffic in DCN presents time and space variations [45]. Therefore a set of thresholds

that might minimize the average FCT in a segment of the network might not be

adequate at other segments and/or at other times.

Despite packet marking at end hosts is convenient to avoid switches having to keep flow

state, a malicious end host might tamper with the mechanism. By marking packets

3.3 Summary and Critical Analysis 27

of a flow with highest priority regardless the amount of bytes sent, the completion of

other flows might be hurt.

The update of the threshold configuration at end hosts is not dynamic. The set of

demotion thresholds needs to be recalculated when traffic conditions change, and later

it needs to be redeployed at every end host.

Our contribution to the state-of-the-art in the area is providing a MLFQ scheduling system

similar to the one defined in PIAS [12] with self-adaptability capabilities. This self-adaptive

dynamic flow scheduling system, that we have called AWAFS, will be able to adapt its confi-

guration in order to react to time and space variations in the traffic, without requiring a-priori

information about the traffic properties. At this point, it is important to remark that in our

comparison with related work, we compare AWAFS against PIAS and not against KARUNA

because we are not addressing the problem of deadline satisfaction.

In the next chapter, we describe our approach to agnostic flow scheduling. This approach

corresponds to the general objective of this thesis and it leverages the achievement of the

specific objectives described on Section 1.4.

4 AWAFS: ADAPTABLE

WORKLOAD-AGNOSTIC FLOW

SCHEDULING

This chapter presents the description of AWAFS. It is organized in four sections. Section

4.1 presents a general overview of AWAFS and, specially, states how it differs from related

work. Section 4.2 describes the general design of AWAFS. Initially, we introduce a general

overview of the design of our proposal. Later, we discuss the algorithm of AWAFS. Section

4.3 describes the architecture of AWAFS,the design of a switch and the outline of feasible

alternatives to implement it. Finally in Section 4.4 we conclude with a summary of the

elements considered in the chapter.

4.1. Context

In this section, we discuss the context in which AWAFS is proposed, and we state how it

addresses some limitations identified in the closest related work reported in the literature.

This closest related work is PIAS [11, 12], which we previously presented in Section 3.2.3.

From the study of PIAS we identify two main issues in its original conception, which limit

the scope of its notion of agnosticism:

Requirement of prior information: Although PIAS does not use the specific size of

a flow in order to schedule it, it still requires a-priori information about the CDF of the

flow sizes of the workloads and its estimated traffic load. This information is required be-

cause the configuration of the demotion thresholds for the MLFQ scheduler is derived from it.

Misuse vulnerability: Since in PIAS the demotion thresholds are kept at end hosts, there

exists the possibility that a malicious host marks the packets of its flows with the highest

priority regardless of the actual amount of bytes that the flow has transmitted. Thus, the

performance of real short flows in terms of their FCT might result hurt.

Lack of adaptation to workload changes: PIAS does not autonomously adjust the

demotion thresholds when the behavior of the workload changes. In this case, the demotion

4.1 Context 29

thresholds need to be derived again considering the flow size distribution of the new wor-

kload. When the thresholds are derived, they need to be manually deployed and installed

in the data center servers. Therefore, there exists the risk that the packet marking configu-

ration in the servers becomes inconsistent. That is, it might be the case that the demotion

thresholds do not match the properties of the workload currently present in the network.

These issues ultimately lead to the threshold mismatch problem which might hamper the

goal of minimizing the FCT, and it might hurt specially short flows. This problem can be

explained with the example illustrated on Figure 4-1. Assume a simplified MLFQ with 2

priority queues and, therefore, a single demotion threshold. Suppose that, for the sake of

simplicity, there are only two flow sizes: 10KB and 10MB. Assume that for a given workload,

90 % of its flows are 10KB and the remaining 10 % are 10MB. In this situation, setting the

demotion threshold to 10KB will be optimal since it will keep the short flows in the high

priority queue until their completion. Thus, short flows result prioritized over the long flows,

which will be ultimately enqueued into the low priority queue. Assume that later, there is a

shift in the workload. In the new workload, the size of small flows is 20KB instead of 10KB.

With the demotion threshold set to 10KB, some of the packets of the short flows will be

demoted to the low priority queue. Hence, the latency for these short flows will be larger

than it should.

high

low

high

low

10KB

10KB

10KB flow

10KB flow

20KB flow

20KB flow

10MB flow

10MB flow

10MB flow

10MB flow

short flow packets demoted to low priority queue

all short flow packets in high priority queue

Figure 4-1: The threshold mismatch problem

30 4 AWAFS: ADAPTABLE WORKLOAD-AGNOSTIC FLOW SCHEDULING

4.2. General Design of AWAFS

In the next section, we describe the general operation of AWAFS. This design corresponds

to the general contribution of this thesis. This section is divided in two parts. In the first

part, we present a general overview of AWAFS. In the second part, we present in detail the

operation algorithm of AWAFS.

4.2.1. System Overview

AWAFS is an agnostic flow scheduling approach in which switches can adapt their scheduling

configuration according to observations of the traffic. Specifically, it is conceived to operate

at ingress of each switch port (That is, either within the switch or at the end hosts). Its

design is inspired by PIAS [11, 12]. Hence, it uses a MLFQ-based scheduler formed by k

priority queues, and k − 1 demotion thresholds. AWAFS observes the traffic entering into

the switch in order to acquire information to infer the traffic behavior associated to the

workloads present in the network. This observation is performed during a given time slot

that we call monitoring window. Periodically (say, every 100ms), AWAFS running in each

switch updates its demotion thresholds according to information acquired during the current

monitoring window (say 500ms). The rationale behind this approach can be stated as use

the past to try predicting the future.

The following description applies to every switch. For the realization of our approach, we

assume that end hosts can inform the amount of bytes that a flow has currently sent. Since

IP packets do not contain such information, a field would have to be added to the header,

or if that is not possible, each switch would have to employ a timer for each flow in order

to estimate completed flows. We also assume that end hosts can mark the end of a flow. A

switch maintains a list with the size of each flow it sees completed during the last monito-

ring window. Periodically, the switch prunes that list, to make the window slide forward and

eliminate flow sizes off the scope, and then calculates a set of k− 1 percentiles based on the

list. These percentiles are used to update the k− 1 demotion thresholds. Our observation is

that low percentiles can define upper bounds for short flows, which should be associated to

higher priority levels, and higher percentiles can define upper bounds for long flows, which

should be associated to lower priority levels. For example, consider the workload Web which

is described in Figure 2-8(a). Assume an MLFQ system with two queues (therefore, one

demotion threshold). For that workload, the plotted CDF indicates that 80 % of the flows

are shorter than 10KB. Our intuition is that by calculating low percentiles (say 10th or 20th)

in the list of completed flow sizes, we might have a good hint to set a demotion threshold

that approximates the upper bound for the short flows in the workload and prioritizes them

by separating from the long flows.

4.2 General Design of AWAFS 31

Formally, AWAFS is based on an MLFQ scheduler consisting of k priority queues Qk, k > 1

with an associated set of demotion thresholds Thri, 0 ≤ i ≤ k − 1. Let be Q0 the highest

priority queue, and Qk−1 the lowest priority queue. Let Thri, 0 ≤ i ≤ k− 1 be the demotion

threshold between Qi and Qi+1. The set {Thri} represents byte counts. Hence, packets of

a given flow are enqueued at Qi if they indicate that the flow they belong to has sent less

than Thri bytes. Otherwise, packets are enqueued into Qi+1. If a flow informs that it has

sent more than Thrk−1 bytes, then its packets are enqueued into the Qk−1 queue (i.e. the

lowest priority queue).

End hosts mark the final packet(s) of flows so that switches can learn about the final flow

size. These notifications are stored within the switch, for each active port. Switches perio-

dically calculate a set k − 1 percentiles (i.e. Pcti with Pct0 < Pct1 < ... < Pctk−1) from

the list of completed flow sizes. Finally, these percentiles are used to update the demotion

thresholds. That is, Pcti is used to update the demotion threshold Thri.

4.2.2. Main Algorithm of AWAFS

In this section we present the main algorithm followed by AWAFS. This section is divided in

two parts. In the first part we describe the parameters used in the algorithm. In the second

part, we present the pseudocode of the algorithm and we describe the operations that it

performs.

4.2.2.1. Parameters

The algorithm of AWAFS has five parameters:

T schedule: The monitoring period. This corresponds to the time between executions of

the threshold adjustment process.

W update: The updating window. It is the time slot for which the sizes of completed flows

are going to be considered when the adjustment is run. The value of Wupdate should be

equal or larger than Tschedule, so that the adjustment considers all data since, at least,

the last adjustment (but typically more, providing some smoothing).

n: The number of queues that will be used within the switches. This parameter is im-

portant because some of the queues in the switch can be reserved for different purposes

such as QoS implementation.

RefPct[n]: The set of reference percentiles. Each RefPct[i] defines the percentile to be

calculated for the adjustment of a particular threshold. For example, RefPct[0] = 0.1

indicates that the 10-th percentile is going to be calculated.

32 4 AWAFS: ADAPTABLE WORKLOAD-AGNOSTIC FLOW SCHEDULING

InitThr[i]: The initial values for the demotion thresholds (i.e. Thr[i]) if they are avai-

lable. Otherwise, all the values are set to 0.

4.2.2.2. Pseudocode

Algorithm 1 presents the pseudocode of the main algorithm of the proposed approach.

Lines 1 to 7 correspond to the declaration of operating variables and assignment of para-

meters. The list defined at line 1 is an ordered list that stores 2-tuples containing a time

stamp and the size of a completed flow. The time stamp is introduced at the switch when

the notification of flow completion is received.

Data structures declared in lines 3 to 5 are defined according to the number of priority

queues used to build the MLFQ scheduler. As we described in Section 4.2.1, for k queues,

there will be (k−1) demotion thresholds. Therefore, for the adjustment, there will be (k−1)

reference percentiles and (k − 1) calculated percentiles.

The procedure Init, defined between lines 9 and 14, corresponds to the initialization of

the mechanism. Basically it assigns values to the list of reference percentiles and the initial

demotion thresholds.

The procedure main defined between lines 24 and 35 is the main loop of AWAFS. This

loop is based on the parallel execution of two tasks. One of these tasks is represented by the

procedure receiveNotification (Lines 16 to 22), which is executed upon the reception

of packets at the switch. It simply evaluates whether the received packet is a notification of

flow completion. If the packet contains such information, the switch stores the size of the

completed flow within the list of completed flow sizes. The second task is represented by

the infinite loop defined between lines 24 and 35. First, the list of completed flow sizes is

pruned by discarding those entries out of scope (out of the updating window) using the time

information presented in entries. After the pruning, the set of percentiles is calculated and

the obtained values are used to update each demotion threshold. Since these tasks share

the data structure where the list of completed flows is stored, some synchronization is requi-

red, especially while the list is being pruned. Finally, the loop is paused during Tschedule time.

It is important to remark that the final packet of flows might be lost. In this case, the

size of this flow will not be included in the stats used for the adjustment, which might in-

troduce a noise in the adjustment. This situation might degrade the performance, specially

if the particular flow size has not been included in the list. However, it actually does not

break the scheme, provided the packet losses are low.

4.2 General Design of AWAFS 33

Algorithm 1 General algorithm of AWAFS

1: lstCompleted = new orderedList(< ts, size >);

2: k = n

3: Thr[] = new Set(k-1)

4: setPct[] = new Set(k-1);

5: refPct[] = new Set(k-1);

6: tsch = Tschedule

7: wupd = Wupdate

8:

9: procedure Init

10: for i = 0 to i < k do

11: refPct[i] = RefPct[i]

12: Thr[i] = InitThr[i]

13: end for

14: end procedure

15:

16: procedure ReceiveNotification(pkt)

17: if pkt.getType == NOTIFICATIONCOMPLETION then

18: lstCompleted.insert(time(), pkt.getInfo.getCompletedFlowSize())

19: else

20: ...

21: end if

22: end procedure

23:

24: procedure main

Upon pkt reception, call ReceiveNotification(pkt)

25:

26: while true do

27: while Iterator it = lstCompleted.next() do

28: if it.getField(1) < now() - wupd then

29: lstCompleted.clear(it);

30: end if

31: end while

32: for i = 0 to i < k do

33: Thr[i] = calculatePercentile(refPct[i], lstCompleted);

34: end for

sleep(tsch);

35: end while

36: end procedure

34 4 AWAFS: ADAPTABLE WORKLOAD-AGNOSTIC FLOW SCHEDULING

4.3. Architecture of AWAFS

AWAFS is functionally integrated by three main components: Sensor, Actuator and Schedu-

ler. The Sensor component monitors the traffic to obtain the information provided by end

hosts. The Actuator component leverages the information collected by the Sensor component,

and uses it to adjust the demotion thresholds of the Scheduler. The Scheduler component is

on charge of performing the flow scheduling.

All these components are conceived to run within the switches provided that the switch

allows their implementation. However, as we will discuss in the next section, AWAFS can be

also implemented leveraging end hosts. Figure 4-2 depicts the high level architecture of a

switch implementing AWAFS with an example configuration of 4 priority queues. Next, we

present an overview of the switch design and we introduce some considerations about the

feasibility of implementing this switch design.

Thr0

Thr1

Thr2

End Host End Host

Switch Port

In

Switch Port

Out

Sensor Actuator

Monitoring Adjustment

Figure 4-2: Architecture of AWAFS with a configuration of 4 priority queues

4.3 Architecture of AWAFS 35

4.3.1. Switch Design

AWAFS requires the implementation of four mechanisms within the switches:

Processing of custom packet headers.

Temporal storing of the sizes of completed flows.

Periodic execution of the adjustment process.

Strict priority queues.

Custom headers: AWAFS leverages information provided by end hosts to perform the

adjustment of its scheduling configuration. In order to perform the calculations required to

adjust the demotion thresholds, end hosts should notify to switches the size of every flow

when it gets completed. This notification can be performed defining a custom header like in

similar work [11, 9, 32, 55]. This latter option could be implemented also leveraging features

of programmable data planes [17, 49].

Data structures: In the operation of AWAFS, switches keep a data structure in memory

associated to each port. This data structure is the list of completed flow sizes that we men-

tioned in Algorithm 1, line 1. This data structure is a sorted singly-linked list containing

2-tuples < ts, size >. The ts field is the time stamp when the notification of flow completion

is received at switch and the size field contains the size of a completed flow. This list is

ordered by the second field, and will be pruned by clearing the tuples containing entries

out of scope (out of the updating window). In the next chapter, we present some results

analyzing the possible overhead that this data structure might introduce.

Periodic execution: As we explained in Algorithm 1, the threshold adjustment is executed

periodically. Therefore, the switch needs to support the capability of executing a given task

at regular time intervals. This execution should not generate any blocking on the packet

processing so that the switch can continue operating while it is adapting its demotion th-

resholds. This could be achieved, for example, through multithreading execution. Also, the

switch needs to support the parametrization of the execution of this task.

Priority queues: AWAFS leverages priority queues to implement an MLFQ scheduler.

As we previously described, flows initially enter into the higher priority queues, and they are

progressively demoted according to the amount of sent bytes. Leveraging priority queues to

implement an MLFQ scheduler is the same approach used on other state-of-the-art solutions

[11, 19, 8]. However, the key difference of our proposal is the dynamic adjustment of the

demotion thresholds.

36 4 AWAFS: ADAPTABLE WORKLOAD-AGNOSTIC FLOW SCHEDULING

4.3.2. Implementation Outline

Considering the functions required in switches, we consider that AWAFS could be imple-

mented through three approaches:

Programmable switches: Recent proposals in the literature present the concept of pro-

grammable switches [49, 17, 51] and programmable packet schedulers [48, 50]. These

two concepts introduce the possibility of customizing the function of packet queuing

and scheduling within the switches. The programmability offered by devices based on

these proposals could be leveraged to implement the features that AWAFS requires.

Software switches: With the advent of virtualization platforms, software switches are

becoming a pervasive strategy in data center networking [16, 46, 42]. These software

switches run on hardware with considerably large amounts of memory and CPU power.

Hence, software switches provide a flexible environment for the implementation of

the features required by AWAFS, introducing minimal overhead that might affect the

performance of the network operation.

End hosts: AWAFS could be implemented following a design similar to the one descri-

bed for PIAS [11] and KARUNA [19]. The threshold adjustment of AWAFS could be

implemented at end hosts, and hosts would still perform packet tagging corresponding

to priorities in switches. However, in this approach, there exists the risk that an abusive

host adjusts its thresholds in such a way that long flows become prioritized over short

flows.

Considering the three main approaches that we identified in the literature, they would pro-

vide different strategies for the implementation of the architectural components of AWAFS.

We identify two main strategies: leveraging commodity switches and incorporation of novel

switching techniques.

In the first strategy, AWAFS leverages priority queues commonly available in commodity

switches to implement an MLFQ. In order to prevent the switches to have state information

for each flow, packet marking is delegated to end hosts which perform multilevel tagging.

That is, end hosts maintain a set of priority levels with demotion thresholds between each

pair of priority levels. Packets are initially marked with priority level P0 so that switch en-

queues them into queue Q0 (i.e. the highest priority queue). When the flow has transmitted

more bytes than the value indicated in Thr[0] (the demotion threshold associated to Q0),

then packets are marked with priority level P1. Hence, the switch will enqueue these packets

into queue Q1. Thus, in general, flows will be demoted from Qi down to Qi+1 when they

have transmitted more bytes than the demotion threshold of queue Q[i]. AWAFS will track

the final size of a flow upon its completion and will store this size in the list of completed

flow sizes. Then, it will adjust the demotion thresholds with the set of percentiles calculated

4.4 Summary 37

on the completed flow sizes. In summary, this strategy of implementation performs dynamic

adjustment of the demotion thresholds kept at the end hosts and switch performs strict

priority scheduling. This is similar to the approach used in PIAS [11] and KARUNA [19],

but demotion thresholds are dynamically adjusted rather than defined according to priori

information about the workloads.

On the other hand, the second strategy leverages software switches [42] or programma-

ble packet schedulers [48, 47]. The MLFQ scheduler can be implemented either using the

queuing features available in the host operating system (e.g. Traffic Control module of the

Linux Kernel) or the PIFO queues and packet transaction artifacts of programmable packet

schedulers. In this case, the demotion thresholds will be kept at the switches. The list of

completed flow sizes will be also implemented within the switch. Then, the Sensor compo-

nent will detect the notifications of flow completion to store them into the list. The Actuator

component will be run as a separate task that will calculate the percentiles based on the list

in order to update the demotion thresholds.

Regardless the approach used to implement AWAFS, an important aspect to consider is

that it must not affect the performance of switches or any infrastructure element involved in

the traffic processing. For example, the Sensor and Actuator components must not create any

blocking that might disrupt packet processing. Also, the data structure involved in the th-

reshold adjustment must not exhaust the memory in the switch. The high level requirements

that we have introduced above are aligned with the goal of preserving the performance of

switches. Also, due to the simple implementation proposed for the architectural components,

specially the Sensor and Actuator, we can say that AWAFS is feasible to be implemented with

either of the proposed strategies. Specific details related to the implementation of AWAFS

on actual switches are out of the scope of this thesis and they are left as future work.

4.4. Summary

In this chapter, we have described in detail our proposal. Initially we identify some limi-

tations present on state-of-the-art related solutions. Then we discuss the design of AWAFS

and its main algorithm, and we indicate how it addresses those identified limitations. Finally,

we outline some approaches for an implementation on actual scenarios. Probably, the most

complex approach from the three that we previously discussed (see Section 4.3.1) would be

the use of programmable hardware. Although proposals in this line [49, 17, 51, 48, 50] con-

ceptually enable the implementation of the features required by AWAFS, nowadays it is not

clear which kind of interfaces are available to develop particular implementations. On the

other hand, the implementation based on providing dynamic adjustment of the demotion

thresholds kept at end hosts (i.e. the same approach of PIAS [11]) can be considered sim-

pler. In this case, the logic of AWAFS is implemented at end hosts whereas switches simply

38 4 AWAFS: ADAPTABLE WORKLOAD-AGNOSTIC FLOW SCHEDULING

perform strict priority scheduling without maintaining state information about the flows.

As we will describe next, the results of the evaluation of AWAFS are obtained through

simulation. However, in the simulation we have expressed the high level requirements for the

design of AWAFS. That is, we have included the elements of the architecture described in

this chapter. Our evaluation covers Micro Benchmark, Large Scale and Comparative experi-

ments. The Micro Benchmark experiments are proof-of-concept which allowed to verify the

operation of the basic elements of AWAFS. The Large Scale experiments assess AWAFS in

a simulated production scenario. The Comparative experiments contrasted AWAFS with its

closest related work, PIAS [11].

5 EXPERIMENTS AND RESULTS

In this chapter, we present the results of assessing AWAFS. We performed extensive experi-

ments based on simulation to evaluate the operation of the mechanism that we are proposing.

This chapter is organized in seven sections. Section 5.1 describes the simulation model used

for the experiments. We define the input factors and metrics considered in the evaluation.

Section 5.2 discusses the evaluation of the overhead introduced by the data structures re-

quired by AWAFS. Section 5.3 shows the results of the Micro Benchmark scenario, where

we evaluate the basic concepts of the operation of AWAFS. Section 5.4 presents the results

of evaluating AWAFS in a large scale data center topology. We assessed the convergence

of the adjustment mechanism, the minimization of the FCT and the operation of AWAFS

with different traffic loads. Section 5.5 compares AWAFS against its closest related work,

PIAS, considering four different typical workloads in data center applications. Section 5.6

introduces the comparison of AWAFS against PIAS in an environment with heterogeneous

traffic. Finally, in Section 5.7 we discuss the achieved results.

5.1. Simulation Model

We evaluated AWAFS via NS-2. NS-2 is a discrete time, packet-based network simulator, wi-

dely used in the literature to perform large scale evaluation of different solutions in the field

of computer networks. Our simulations were executed on a server with an Intel(R) Core(TM)

i7-4790S CPU with 8 cores @ 3.20Ghz and 8GB of RAM. We divided our evaluation into

three scenarios with different sets of experiments in each scenario. The first scenario, that

we called Micro Benchmark, is based on a small topology, with specially crafted workloads.

The idea of this scenario is verifying the basic operation of AWAFS. The second scenario,

that we called Large Scale, simulates a typical data center topology with several switches

and multiple priority queues per switch port. Finally, in the last scenario, we present a com-

parison between AWAFS and our closest related work PIAS [11], in a large scale topology

with challenging traffic patterns.

40 5 EXPERIMENTS AND RESULTS

5.1.1. Assumptions and Input Factors

Within each experiment scenario, we considered the following assumptions and input factors.

They were applied and adapted according to each particular experiment:

Assumptions

Transport Protocol: Consistent with the methodology presented in most of the papers

in the area of flow scheduling, we used DCTCP [6].

Marking approach: It is the approach used to perform the Explicit Congestion Notifi-

cation (ECN) in DCTCP to react to traffic congestion. See [6] for a detailed discussion

about this concept. Following [11], marking approach can be implemented per-port or

per-queue. That is, the DCTCP threshold marking can be accounted for each queue or

for all the queues in a switch port. In all the experiments we used per-port marking.

See Section IV-A, number 2 of [11] for an analysis of this choice.

Input Parameters

Link Occupation: Ranging from 50 % to 90 %. The link occupation defines the rate of

flow generation.

Number of queues: In some scenarios of our experiments we vary the number of queues

used at each switch port. This value ranged from 2 queues to 8 queues.

5.1.2. Metrics

Following the methodology of related work [9, 11, 19], we assessed 4 metrics in our experi-

ments: The average Flow Completion Time (FCT) of the short and long flows, and the Tail

(99th Percentile) of short and long flows.

These metrics are defined as follows:

Average FCT for short flows: It corresponds to the sum of the individual Flow Com-

pletion Times for all the short flows generated during each experiment, divided by the

number of flows.

Tail FCT for short flows: It corresponds to the 99th percentile of the FCT for short

flows.

Average FCT for long flows: It corresponds to the sum of the individual Flow Com-

pletion Times for all the long flows generated during each experiment divided by the

number of flows.

Tail FCT for long flows: It corresponds to the 99th percentile of the FCT for long flows.

5.2 Overhead of Data Structures 41

Overall average FCT: It corresponds to the sum of all the FCT divided by the total

number of flows generated during the experiment. It is useful to assess the overall

performance of the workload.

TCP timeouts: It corresponds to the number of flows that presented timeouts leading

to retransmissions.

Note: In the remaining of our experiments, we followed the same line of most related papers

[11, 19, 32] for the classification of flow sizes. We define short flows as those flows with sizes

around 100 KB and smaller. Long flows are flows with sizes larger than 10MB. Flows with

sizes between 100KB and 10MB are neither short not large, and will be termed medium

flows.

5.2. Overhead of Data Structures

In Section 4.3 we presented the architecture of AWAFS. Particularly, we described the data

structures required for its operation. The main data structure used is the list for storing the

sizes of completed flows. This information is utilized for the calculation of the percentiles

that are used to update the demotion thresholds.

The involvement of this data structure leads to consider its associated overhead. A first

question to pose is how much memory overhead would this list introduce in a switch. In

order to answer this question, we conducted preliminary simulations with typical data cen-

ter workloads [28], considering different levels of traffic load. Figure 5-1 presents the size of

the list observed during an experiment with traffic generated at 90 % of load, with different

sizes of the updating window (Wupdating). With the largest considered window (1 second),

the size of the list is between 150 and 250 entries. Considering the sizes for the data types

required for this list (typically, a 4-byte integer for the size field and an 8-byte double for the

time stamp field), and assuming as maximum size the one observed during the experiments,

the list will occupy 2.4KB. Then, we can set an upper bound of, for instance, 4KB for the

memory used by the list in the worst case, with link occupation of 100 %. Hence, AWAFS

requires approximately 4K of memory per switch port.

42 5 EXPERIMENTS AND RESULTS

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60

Q
u
e
u
e
 S

iz
e
 (

E
n
tr

ie
s
)

Time (seconds)

0.25s

0.5s

0.75s

1s

Figure 5-1: Size of the completed flow sizes list

With respect to the computational complexity of the operations performed on the list, this is

an aspect that depends on the particular implementation of the associated data structure. In

AWAFS, we implement this list as a singly-linked list. It is important to remark that the list

is implicitly sorted, as the entries are inserted in time order, whenever a flow is completed

(i.e. it is sorted by time stamp). Also, the list is defined as singly-linked as it only needs to

be traversed in a single direction for the pruning operation. That is, insertions are always

performed at the tail of the list and deletions for pruning are performed from the head of

the list. Therefore, the list does not need to be traversed in order to locate where the new

entry has to be inserted (it is inserted at the tail) and for the deletion, it is required just to

know where the list begins since entries are deleted sequentially until finding the first entry

within scope. Considering these two facts, the computational complexity for the insertion

and deletion operations in the list is estimated to be O(1) [37, 33].

5.3. Micro Benchmark Experiments

The Micro Benchmark topology is formed by a switch S0 with four hosts connected named

as N0 to N3. Links connecting hosts and switch are all full duplex with a bandwidth of

10Gbps and propagation delay of 20.2us. These values correspond to typical values present

on infrastructure of production data centers [11]. The DCTCP parameters K (marking

threshold) and g (gain) are set to 65 and 1/16 respectively [6]. The MLFQ system for this

configuration is formed by 2 queues and a single demotion threshold. Figure 5-2 shows the

schematic diagram of the simulated topology for the Micro Benchmark experiments.

For these experiments, the workload consists of 10000 flows, with 80 % being short (10 KB)

and 20 % being long flows (1000 KB). Nodes N1 and N3 send long flows towards N0 whereas

N2 sends short flows towards N0. For these experiments, the parameters (See Section 4.2.2.1)

of AWAFS are configured as follows:

5.3 Micro Benchmark Experiments 43

Figure 5-2: Simple and basic topology used in Micro Benchmark experiments

W update: 250ms.

T schedule: 200ms.

RefPct[0]: 0.1 (i.e. 10th percentile of the completed flow sizes list).

5.3.1. Convergence of the Demotion Thresholds

In this section, we analyze the convergence of the demotion threshold. To obtain these re-

sults, we instrumented one of the simulated switch ports in order to track the operation of

the AWAFS components (Sensor and Actuator). For the sake of comparison, we assess three

different values of demotion threshold: 1KB, 10KB and 1000KB which are used for static

configuration and for initial value of the demotion threshold. These particular values induce

the following situations: in the first configuration (1KB), short flows are early demoted; the

second configuration (10KB) is optimal as it keeps short flows in the high priority queue and

demotes the long flows towards the low priority queue; the third configuration (1000KB)

causes that long flows stay longer at the high priority queue, which hurts the FCT of short

flows. The first and third configurations clearly induce the threshold mismatch problem dis-

cussed on the previous chapter (Figure 4-1).

Figure 5-3 shows the convergence of the demotion threshold in the situations of explicit

threshold mismatch. The threshold converges to the value of 10KB, regardless of the initial

value. When the threshold is configured to the optimal value for this workload, we do not

observe changes since AWAFS detects that the threshold is already set to an adequate value.

These initial experiments show that the adjustment approach that AWAFS uses operates

adequately in terms of convergence of the demotion threshold. In the next section, we assess

the effectiveness of AWAFS in terms of minimization of the average and tail FCT when

compared to the static setting of the demotion threshold.

44 5 EXPERIMENTS AND RESULTS

 2

 4

 6

 8

 10

 12

 0 0.2 0.4 0.6 0.8 1

Threshold is adjusted

T
h
re

s
h
o
ld

 (
K

B
)

Time (Seconds)

Thr1

(a) Thr=1KB

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

Threshold is adjusted

T
h
re

s
h
o
ld

 (
K

B
)

Time (Seconds)

Thr1

(b) Thr=1000KB

Figure 5-3: Convergence of the demotion threshold in AWAFS with explicit threshold mis-

match

5.3 Micro Benchmark Experiments 45

5.3.2. Minimization of the FCT

In this section, we present the results of assessing the minimization of the FCT when using

AWAFS in the Micro Benchmark topology. In this set of experiments, we compare the ave-

rage and tail FCT for short and long flows, both in a static threshold configuration and in

AWAFS. These experiments consider different levels of link occupation ranging from 50 % to

90 %. For the comparison, we used the static threshold setting as the initial threshold value

in AWAFS.

The parameters of AWAFS were configured as follows:

W update: 250ms.

T schedule: 200ms.

RefPct[0]: 0.1.

Short Flows

Figures 5-4 and 5-5 present the average and tail FCT for the configurations inducing thres-

hold mismatch. It can be observed that AWAFS improves the metrics in these cases, specially

at high traffic loads (higher than 70 %). When the demotion threshold is set to 1KB, the

average FCT reduction achieved is between 4.9 % and 33.5 %. When the threshold is set to

1000KB, the reduction is between 3.7 % and 86 %.

With respect to the tail FCT, AWAFS also improves the performance in the cases of thres-

hold mismatch, specially at high traffic loads. This improvement goes from 33.9 % to 59.5 %

when the threshold is set to 1KB whereas it is between 51.3 % and 93.9 % when the threshold

is set to 1000KB.

When the threshold is set to the optimal value for this workload, AWAFS achieves results

close to the obtained with PIAS. That is, AWAFS does not perform further adjustment as

it detects that the threshold is already set to an appropriate value for the workload.

46 5 EXPERIMENTS AND RESULTS

 0

 100

 200

 300

 400

 500

 600

 700

 50 60 70 80 90

F
C

T
 (

M
ic

ro
s
e
c
o
n
d
s
)

Load (%)

Static AWAFS

(a) Average FCT

 0

 2

 4

 6

 8

 10

 12

 14

 50 60 70 80 90

F
C

T
 (

M
ili

s
e
c
o
n
d
s
)

Load (%)

Static AWAFS

(b) Tail FCT

Figure 5-4: Average and Tail FCT of the short flows with threshold set to 1KB

5.3 Micro Benchmark Experiments 47

 0

 500

 1000

 1500

 2000

 2500

 50 60 70 80 90

F
C

T
 (

M
ic

ro
s
e
c
o
n
d
s
)

Load (%)

Static AWAFS

(a) Average FCT

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 50 60 70 80 90

F
C

T
 (

M
ili

s
e
c
o
n
d
s
)

Load (%)

Static AWAFS

(b) Tail FCT

Figure 5-5: Average and Tail FCT of the short flows with threshold set to 1000KB

48 5 EXPERIMENTS AND RESULTS

Long Flows

Figure 5-6 presents the average and tail FCT for the long flows when the demotion threshold

is set to 1000KB. The improvement in the metrics is more notorious at high loads. For

the average FCT, the improvement is between 27.1 % and 46.7 %. For the tail FCT, the

improvement goes between 24 % and 45.8 %.

 0

 100

 200

 300

 400

 500

 600

 700

 50 60 70 80 90

F
C

T
 (

M
ili

s
e
c
o
n
d
s
)

Load (%)

Static AWAFS

(a) Average FCT

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 50 60 70 80 90

F
C

T
 (

M
ili

s
e
c
o
n
d
s
)

Load (%)

Static AWAFS

(b) Tail FCT

Figure 5-6: Average and Tail FCT of long flows with threshold set to 1000KB

With respect to the other cases, AWAFS does not induce increments neither in average

nor tail FCT. As observed in the previous result, the demotion thresholds converges to the

size of the short flows. Therefore, it separates the short and the long flows avoiding that

they become mixed. Due to this separation, the long flows do not result affected by the

prioritization of the short flows.

5.4 Large Scale Experiments 49

5.4. Large Scale Experiments

In this section we present the results obtained in the Large Scale scenario. In this scenario, we

simulate a typical data center topology with traffic generated following real world workloads

that have been used on previous related work for evaluation [12, 19] and patterns identified

on recent studies on data center applications [45].

Topology

We use a leaf-spine topology with 9 leaf (ToR) switches connected to 4 spine (Core) switches.

Each leaf switch has 16 10Gbps downlinks (144 hosts) and 4 40Gbps uplinks to the spine,

forming a non-oversubscribed network. In our simulation, each switch port has 8 queues.

Hence, the MLFQ system is based on 8 priority queues and 7 demotion thresholds. The base

end-to-end round-trip time across the spine (4 hops) is 85.2 microseconds. We use packet

spraying [22] for load balancing and disable dupACKs to avoid packet reordering. Figure 5-7

presents a schematic diagram of the simulated topology.

The leaf-spine topology provides high scalability in predictable manner. Its capacity might

reach hundred of thousand switch ports and approximates to the ideal network design, based

on the notion of a big non-blocking fabric where all the hosts are connected. Studies on this

topology have shown that it offers good performance when managing multipath, responds

well to oversubscription and can solve performance impairments such as incast, with buffers

consistently configured [5]. We choose this topology for the sake of simplicity, and aligned

with related work [11, 19, 9]. However, since AWAFS is conceived to operate within the swit-

ches (or at the end hosts like in PIAS), it could be incorporated within other topologies such

as VL2 or Fat-tree. The main difference with those topologies is the additional architectural

layer that they define.

For this first set of experiments, we consider the workloads described in Figure 5-8. The

traffic is generated as follows:

From T=0 to T=5s, workload Data Mining is executed. This corresponds to the warm-

up period.

From T=5s to T=35s, workload Data Mining is executed.

From T=35s to T=65s, workload Web Search is executed.

The parameters for AWAFS are configured as follows:

W update: Different values ranging from 250ms to 1s.

T schedule: 200ms.

50 5 EXPERIMENTS AND RESULTS

Figure 5-7: Leaf-spine topology used in simulation of the Large Scale scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

C
D

F

Flow size (Kilobytes)

(a) Data Mining [28]

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

C
D

F

Flow size (Kilobytes)

(b) Web Search [6]

Figure 5-8: Workloads used in the Large Scale experiments

5.4 Large Scale Experiments 51

{RefPct0} : 0.1;RefPcti = RefPcti−1 + 0.1, 1 ≤ i ≤ 7

Inital demotion thresholds: Thr0 = 7KB;Thri = 7 + Thri−1, 1 ≤ i ≤ 7

Link Occupation: 90 %

For the static configuration and initial values of the demotion thresholds of AWAFS, demo-

tion thresholds are set in such a way that they are optimal for the workload Data Mining,

whereas they are suboptimal for the workload Web Search. That is, Thr0 = 7K causes that

approximately 80 % of the flows of the Data Mining workload get completed at the highest

priority queue. On the other hand, that threshold causes that only around 20 % of the flows of

the Web Search workload stay at the highest priority queue. That implies an early demotion

of the short flows of this workload.

5.4.1. Convergence of the Demotion Thresholds

In this section, we analyze the convergence of the demotion thresholds adjusted by AWAFS.

With these experiments, we aimed at observing three aspects. The first one is the effect of

the width of the updating window in the threshold adjustment. The second is how AWAFS

adjusts the thresholds to an adequate value according to the workload, in order to prioritize

the corresponding short flows. The third one is how AWAFS reacts to shifts in the workload

by adapting accordingly the demotion thresholds.

We present the results of observing AWAFS with 2, 3 and 4 queues (i.e. 1, 2 and 3 de-

motion thresholds).

Impact of the Size of the Observation Window in the Thershold

Convergence

In this section, we present an assessment of the effect generated by the width of the upda-

ting window on the threshold adjustment. As presented in the description of AWAFS (See

Section 4.2.2.1), the updating window (Wupdate) determines how long in the past the Sensor

components observe. That is, what is the size of the previous time slot that includes the sizes

of completed flows to be considered for the calculation of the percentiles for the threshold

adjustment. Figure 5-9 shows the results obtained with 4 different sizes of the updating

window, in the configuration of 2 queues (1 demotion threshold). We can observe that for

a larger updating window, the convergence of the demotion threshold presents a smoother

behavior when compared to a smaller window. However, there is a tradeoff in the selection of

this size. A larger updating window implies higher memory consumption within the switch

and higher CPU overhead in the pruning operation (See Figure 5-1). However, it introduces

smoother changes in the demotion thresholds. A shorter window implies less memory con-

sumption but some degree of variability in the adjusted demotion thresholds. Despite this

52 5 EXPERIMENTS AND RESULTS

variability, it can be observed that the demotion threshold yet presents adequate convergence.

For the remaining of our experiments, we opted by using an updating window of 250ms.

As we observed, it presents adequate convergence with low overhead associated to memory

consumption.

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

VL2 Workload Starts

DCTCP Workload Starts

T
h
re

s
h
o
ld

 (
K

b
y
te

s
)

Time (seconds)

Thr0

(a) 250 ms

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60

VL2 Workload Starts

DCTCP Workload Starts

T
h
re

s
h
o
ld

 (
K

b
y
te

s
)

Time (seconds)

Thr0

(b) 500 ms

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60

VL2 Workload Starts

DCTCP Workload Starts

T
h
re

s
h
o
ld

 (
K

b
y
te

s
)

Time (seconds)

Thr0

(c) 750 ms

 0

 10

 20

 30

 40

 50

 0 10 20 30 40 50 60

VL2 Workload Starts

DCTCP Workload Starts

T
h
re

s
h
o
ld

 (
K

b
y
te

s
)

Time (seconds)

Thr0

(d) 1 S

Figure 5-9: Comparison of different sizes for the updating window

5.4 Large Scale Experiments 53

2 Priority Queues - 1 Demotion Threshold

Figure 5-10 presents the threshold adjustment for a configuration with 2 priority queues

per switch port. It can be observed how the demotion threshold quickly converges from the

initial value to a value around 3KB. This value is kept while the Data Mining is present in

the network, from T=5s to T=35s. At T=35s, there is a shift in the workload, when the

Web Search workload is introduced. Since this time, AWAFS adjusts the threshold to a value

between 23 KB and 28KB.

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60

VL2 Workload Starts

DCTCP Workload Starts

T
h
re

s
h
o
ld

 (
K

b
y
te

s
)

Time (seconds)

Thr0

Figure 5-10: Threshold adjustment for 2 priority queues

54 5 EXPERIMENTS AND RESULTS

3 Priority Queues - 2 Demotion Thresholds

Figure 5-11 presents the threshold adjustment for the configuration of 3 priority queues (2

demotion thresholds). It can be observed how the additional demotion threshold also conver-

ges to a value around 7KB for the first workload. When workload shifts, the second demotion

threshold is also adjusted accordingly by increasing it to a value between 40KB and 50KB.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60

VL2 Workload Starts

DCTCP Workload Starts

T
h
re

s
h
o
ld

 (
K

b
y
te

s
)

Time (seconds)

Thr0 Thr1

Figure 5-11: Threshold adjustment for 3 priority queues

5.4 Large Scale Experiments 55

4 Priority queues - 3 Demotion thresholds

Finally, Figure 5-12 presents the adjustment process of the demotion thresholds in the

configuration of 4 priority queues, 3 demotion thresholds. Despite the noisy behavior that

Thr2 presents during the presence of the Data Mining workload, it converges to a value

closer to 100KB with the Web Search workload. This noisy behavior can be explained due

to the fact that for the Data Mining workload, around 80 % of the flows are shorter than

7KB but the remaining percent of the flows have sizes between 7KB and 600MB. Therefore,

the additional priority levels present higher variation of the corresponding percentiles . On

the other hand, for the Web search workload, the range of variations for the corresponding

percentile is narrower. Hence, the corresponding thresholds have less noisy behaviors.

 1

 10

 100

 1000

 0 10 20 30 40 50 60

VL2 Workload Starts DCTCP Workload Starts

T
h
re

s
h
o
ld

 (
K

b
y
te

s
)

Time (seconds)

Thr0 Thr1 Thr2

(a) 3 Threshold (logscale)

Figure 5-12: Threshold adjustment for 4 priority queues

5.4.2. Minimization of the FCT

In this set of experiments, we assess the effectiveness of AWAFS in the minimization of

the FCT of short flows. The experiments are performed with the parameters previously

indicated, varying the number of priority queues used for the MLFQ scheduler. We measure

the average and tail FCT for the short flows when AWAFS is deployed, and we compare

with the case of MLFQ with statically configured demotion thresholds.

Short Flows

Figure 5-13 presents the average and tail FCT for short flows, considering different number

of queues. It can be observed that AWAFS outperforms the static configuration. The reduc-

tion of the average and tail FCT is 36 % and 64 % respectively. This improvement is more

56 5 EXPERIMENTS AND RESULTS

evident when less than 6 queues are used for flow scheduling.

Considering that switches usually have 8 queues per port, administrators can decide to

use less than 8 queues for flow scheduling in order to reserve queues for other uses (e.g.

QoS implementation) in production deployments. Even with a few queues, AWAFS provides

a noticeable improvement for short flows when compared to the configuration with static

thresholds.

 0

 50

 100

 150

 200

 250

 2 3 4 5 6 7 8

F
C

T
 (

M
ic

ro
s
e
c
o
n
d
s
)

Number of Queues

Static AWAFS

(a) Average FCT

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2 3 4 5 6 7 8

F
C

T
 (

M
ic

ro
s
e
c
o
n
d
s
)

Number of Queues

Static AWAFS

(b) Tail FCT

Figure 5-13: FCT of short flows in the Large Scale experiment

5.4 Large Scale Experiments 57

Figures 5-14 and 5-15 present the results of the average and tail FCT considering separately

each workload. As expected, due to the properties of the workloads present on the network,

most of the improvement is observed for the Web Search workload. This fact is due to the

configuration of the demotion thresholds, which results to be suboptimal for this workload.

With respect to the Data Mining workload, we can observe that with the minimal confi-

guration of 2 queues (1 threshold), AWAFS reduces the performance of the workload due to

an increment of almost 14 % for the average FCT (Figure 5-14 a) and 4 % for the tail FCT

(Figure 5-15 b). However, with more queues, AWAFS introduces a small improvement in

the tail FCT which is close to 6.7 % with 4 queues. The configurations with more queues do

not introduce additional improvement but also they do not introduce noticeable increments

in the values of the metrics.

For the Web Search workload, AWAFS provides an evident improvement in the tail and

average FCT for short flows, specially with configurations of 3 and 4 queues (i.e. 2 and 3

demotion thresholds) respectively. As previously mentioned, this workload presents a large

mismatch of the demotion thresholds when they are statically configured (See the description

of parameters in the previous section). In these cases, AWAFS improves the performance by

reducing the average FCT in 42 % (2 queues) and 37 % (3 queues) (See Figure 5-14 b) and

the tail FCT in 68 % (2 queues) and 53 % (3 queues) (See Figure 5-15 b). For configurations

with more queues, AWAFS still provides a small reduction of the FCT.

58 5 EXPERIMENTS AND RESULTS

 0

 20

 40

 60

 80

 100

 120

 2 3 4 5 6 7 8

F
C

T
 (

M
ic

ro
s
e
c
o
n
d
s
)

Number of Queues

Static AWAFS

(a) Data Mining workload

 0

 50

 100

 150

 200

 250

 300

 2 3 4 5 6 7 8

F
C

T
 (

M
ic

ro
s
e
c
o
n
d
s
)

Number of Queues

Static AWAFS

(b) Web Search workload

Figure 5-14: Average FCT of the short flows discriminated by workload

5.4 Large Scale Experiments 59

 0

 50

 100

 150

 200

 250

 300

 350

 2 3 4 5 6 7 8

F
C

T
 (

M
ic

ro
s
e
c
o
n
d
s
)

Number of Queues

Static AWAFS

(a) Data Mining workload

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 2 3 4 5 6 7 8

F
C

T
 (

M
ili

s
e
c
o
n
d
s
)

Number of Queues

Static AWAFS

(b) Web Search workload

Figure 5-15: Tail FCT of the short flows discriminated by workload

60 5 EXPERIMENTS AND RESULTS

Long Flows

In this section, we discuss the results obtained for the long flows. In general, AWAFS does

not introduce noticeable impact on the FCT of these flows. This fact indicates that the prio-

ritization of short flows is not causing starvation since there are not high increments neither

in the average nor the tail FCT. Average FCT increases in 2 % and tail FCT increases in

1.5 % in the configuration of 8 queues. This can be explained considering that when having

more queues, the long flows need to be demoted through more lower priority levels, which

increases their FCT.

When analyzing both of the workloads separately, the increment in the average and tail

FCT for the long flows is more notorious in the Web Search workload. With the configura-

tion of 8 queues, the average FCT in AWAFS increments in 2.87 % and the tail FCT increases

in 4.2 %. However, considering the size that long flows might have for this workload, which

can be up to 20MB, this increment can be considered as not representative, and therefore it

does not generate a big issue in the overall performance of the workload.

With respect to the Data Mining workload, AWAFS does not introduce noticeable incre-

ment or reduction in the metrics. Regardless the number of queues, both of the metrics

present variations which are lower than 0.5 %. As previously mentioned and considering the

sizes of the long flows in this workload (they are up to 600MB), the increment that AWAFS

introduces in these long flows can be considered negligible.

5.4.3. Operation of AWAFS with Different Traffic Loads

In this section, we evaluate the operation of AWAFS with different levels of traffic load. In

this experiment, we used the scenario described in the previous section, and we varied the

traffic load. We compared AWAFS against the configuration with static threshold setting as

previously described.

5.4 Large Scale Experiments 61

Figure 5-16 presents the results. It can be seen that AWAFS clearly outperforms the static

configuration in both the average and the tail FCT for short flows. The improvement in the

average FCT is between 8 % (at 50 % load) and 31 % (at 90 % load) for the average FCT. For

the tail FCT, the improvement is between 19 % (at 50 % load) and 65 % (at 90 % load). It

can be observed also that the adaptability of AWAFS does not depend on the current traffic

load. That is, AWAFS can adapt the demotion threshold regardless the traffic load present

on the network.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 50 60 70 80 90

F
C

T
 (

M
ic

ro
s
e
c
o
n
d
s
)

Load (%)

Static AWAFS

(a) Average FCT

 0

 100

 200

 300

 400

 500

 600

 700

 50 60 70 80 90

F
C

T
 (

M
ic

ro
s
e
c
o
n
d
s
)

Load (%)

Static AWAFS

(b) Tail FCT

Figure 5-16: Behavior of the FCT for the short flows with different traffic loads

62 5 EXPERIMENTS AND RESULTS

5.5. AWAFS vs PIAS with Different Workloads

In this section, we compare AWAFS with its closest related work, PIAS [11]. In this scenario

we deliberately induce the condition of threshold mismatch. Then, we compare the perfor-

mance of PIAS with the performance of AWAFS in that situation. In order to induce the

threshold mismatch, we proceed as follows:

In the first experiment, traffic is generated using the Web Search workload, and the

thresholds generated for the Data Mining workload.

In the second experiment, traffic was generated using the Data mining workload, and

the thresholds for Web Search workload.

In the third and fourth experiments, traffic was generated using the Cache and Hadoop

workloads respectively, and the thresholds generated for the Data Mining workload.

The demotion thresholds used in the first and second experiments correspond to those ob-

tained following to the procedure described in Section III-C of [11] but used to induce the

threshold mismatch. For the third and fourth experiments, we follow the same approach

indicated in section V-B of [11].

Figure 5-17 presents the CDF for the workloads used for comparison. Workload Web Search

is defined in [6], workload Data Mining is defined in [28] and workloads Cache and Hadoop

are defined in [45].

In addition to the previously mentioned metrics of average and tail FCT of short and long

flows, in these experiments we also consider for comparison the overall average FCT and the

TCP timeouts.

Our experiments are conducted using the topology described in Section 5.4 and depicted

in Figure 5-7. For each execution of the experiment, 100K flows are generated from each

workload.

5.5 AWAFS vs PIAS with Different Workloads 63

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

C
D

F

Flow size (Kilobytes)

(a) Web Search [6]

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

C
D

F

Flow size (Kilobytes)

(b) Data Mining [28]

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

C
D

F

Flow size (Kilobytes)

(c) Hadoop [45]

 0

 0.2

 0.4

 0.6

 0.8

 1

10
0

10
1

10
2

10
3

10
4

10
5

C
D

F

Flow size (Kilobytes)

(d) Cache [45]

Figure 5-17: Workloads used for comparison

64 5 EXPERIMENTS AND RESULTS

5.5.1. Web Search Workload

In this section, we present the results achieved by AWAFS compared with PIAS using the

demotion thresholds derived for the Data Mining workload.

Figure 5-18 shows the average and tail FCT of short flows. In this experiment, it can be

observed that AWAFS outperforms PIAS, with a reduction of around 7.4 % of the average

FCT and 16.1 % of the tail FCT. At high traffic loads, the improvement introduced by

AWAFS is even higher, achieving a reduction of 8.4 % for the average FCT and 16.5 % for

the tail FCT when traffic load is 90 %.

 0

 20

 40

 60

 80

 100

 120

 140

 50 60 70 80 90

F
C

T
 (

M
ic

ro
s
e
c
o
n
d
s
)

Load (%)

PIAS Mismatch AWAFS

(a) Average FCT

 0

 50

 100

 150

 200

 250

 300

 50 60 70 80 90

F
C

T
 (

M
ic

ro
s
e
c
o
n
d
s
)

Load (%)

PIAS Mismatch AWAFS

(b) Tail FCT

Figure 5-18: Average and tail FCT of the short flows in the experiment with the Web

Search workload

5.5 AWAFS vs PIAS with Different Workloads 65

Figure 5-19 shows the results obtained for the medium flows. These are flows with sizes

between 10KB and 10MB. Similar to the previous results, AWAFS outperforms PIAS. For

these flows, the reduction introduced by AWAFS is close to 40 % for the average FCT and

60 % for the tail FCT.

 0

 5

 10

 15

 20

 25

 30

 50 60 70 80 90

F
C

T
 (

M
ili

s
e
c
o
n
d
s
)

Load (%)

PIAS Mismatch AWAFS

(a) Average FCT

 0

 50

 100

 150

 200

 250

 50 60 70 80 90

F
C

T
 (

M
ili

s
e
c
o
n
d
s
)

Load (%)

PIAS Mismatch AWAFS

(b) Tail FCT

Figure 5-19: Average and tail FCT of the medium flows in the experiment with the Web

Search workload

66 5 EXPERIMENTS AND RESULTS

Figure 5-20 presents the FCT for long flows. Consistent with the behavior observed for short

and medium flows, AWAFS outperforms PIAS and introduces a reduction of 39 % and 70 %

for the average and tail FCT of these flows, respectively.

 0

 50

 100

 150

 200

 250

 300

 350

 50 60 70 80 90

F
C

T
 (

M
iil

is
e
c
o
n
d
s
)

Load (%)

PIAS Mismatch AWAFS

(a) Average FCT

 0

 200

 400

 600

 800

 1000

 1200

 50 60 70 80 90

F
C

T
 (

M
iil

is
e
c
o
n
d
s
)

Load (%)

PIAS Mismatch AWAFS

(b) Tail FCT

Figure 5-20: Average and tail FCT for the long flows in the experiment with the Web

Search workload

5.5 AWAFS vs PIAS with Different Workloads 67

Finally, figure 5-21 presents the comparison of the overall average FCT and the count of

TCP timeouts. These results confirm how AWAFS outperforms PIAS by reducing the overall

FCT in 36 % without additional increment of the TCP timeouts. On the contrary, it reduces

these events in almost 78 % when compared with the threshold mismatch configuration. This

last fact is indication that AWAFS is not creating starvation, which would specially affect

long flows.

 0

 5

 10

 15

 20

 25

 50 60 70 80 90

F
C

T
 (

M
iil

is
e
c
o
n
d
s
)

Load (%)

PIAS Mismatch AWAFS

(a) Overall Average FCT

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 50 60 70 80 90

T
C

P
 T

im
e
o
u
ts

Load (%)

PIAS Mismatch AWAFS

(b) TCP Timeouts

Figure 5-21: Average FCT and TCP timeouts in the experiment with the Web Search

workload

68 5 EXPERIMENTS AND RESULTS

5.5.2. Data Mining Workload

In this section we discuss the results obtained in the experiment with traffic generated with

the Data Mining workload with the thresholds generated for the Web Search workload.

Considering the properties of this workload, the threshold mismatch does not penalize the

short flows. It results that the average and tail FCT achieved in the threshold mismatch

situation is very close to that obtained with the thresholds generated for the workload, with

almost negligible differences. Hence, we observed that the average and tail FCT obtained

with AWAFS for the different classes of flows also approximate to the values obtained with

the thresholds generated specifically for the workload.

Since the results for this experiment do not present noticeable difference, we only present

in Figure 5-22, for the sake of comparison, the overall average FCT achieved by AWAFS

compared with the achieved by PIAS. It can be observed that PIAS with threshold mismatch

is very close to PIAS with the thresholds generated for the workload. AWAFS approximates

the average FCT to these values.

 0

 5

 10

 15

 20

 25

 30

 50 60 70 80 90

F
C

T
 (

M
iil

is
e
c
o
n
d
s
)

Load (%)

PIAS

PIAS Mismatch

AWAFS

(a) Overall Average FCT

Figure 5-22: Overall average FCT in the experiment with the Data Mining workload

5.5 AWAFS vs PIAS with Different Workloads 69

5.5.3. Hadoop Workload

In this section, we present the results of the comparison between AWAFS and PIAS when

executing the Hadoop workload. In this experiment, we used in PIAS the demotion thresholds

derived for the Data Mining workload.

Figure 5-23 presents the results of assessing the FCT for the short flows. It can be obser-

ved that AWAFS outperforms PIAS and minimizes both the average and tail FCT. This

improvement is between 15 % and 24 % for the average FCT and is around 7 % for the tail

FCT.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 50 60 70 80 90

F
C

T
 (

M
ic

ro
s
e
c
o
n
d
s
)

Load (%)

PIAS Mismatch AWAFS

(a) Average FCT

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 50 60 70 80 90

F
C

T
 (

M
ic

ro
s
e
c
o
n
d
s
)

Load (%)

PIAS Mismatch AWAFS

(b) Tail FCT

Figure 5-23: Average and tail FCT for the short flows in the experiment with the Hadoop

workload

70 5 EXPERIMENTS AND RESULTS

Figure 5-24 presents the results for the medium flows. In this case the improvement that

AWAFS introduces is less notorious, achieving an improvement close to 3.6 % for the average

FCT. For the tail FCT, the difference between PIAS and AWAFS is negligible.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 50 60 70 80 90

F
C

T
 (

M
ili

s
e
c
o
n
d
s
)

Load (%)

PIAS Mismatch AWAFS

(a) Average FCT

Figure 5-24: Average FCT for the medium flows in the experiment with the Hadoop wor-

kload

5.5 AWAFS vs PIAS with Different Workloads 71

Figure 5-25 presents the results of evaluating the FCT for the long flows. AWAFS has a

behavior similar to PIAS for these flows, but introduces an improvement close to 10 % at

high traffic loads (90 %).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 50 60 70 80 90

F
C

T
 (

S
e
c
o
n
d
s
)

Load (%)

PIAS Mismatch AWAFS

(a) Average FCT

 0

 0.5

 1

 1.5

 2

 2.5

 50 60 70 80 90

F
C

T
 (

S
e
c
o
n
d
s
)

Load (%)

PIAS Mismatch AWAFS

(b) Tail FCT

Figure 5-25: Average and tail FCT for the long flows in the experiment with the Hadoop

workload

72 5 EXPERIMENTS AND RESULTS

Finally, Figure 5-26 presents the results for the overall average FCT and the TCP Timeouts.

With respect to the overall average FCT, AWAFS performs similar to PIAS with an impro-

vement close to 13 % at high traffic load. Regarding TCP timeouts, AWAFS outperforms

PIAS by reducing these events in up to 65 % with a slight increment at 90 % of traffic load.

 0

 2

 4

 6

 8

 10

 12

 14

 50 60 70 80 90

F
C

T
 (

M
iil

is
e
c
o
n
d
s
)

Load (%)

PIAS AWAFS

(a) Overall Average FCT

 0

 20

 40

 60

 80

 100

 120

 140

 50 60 70 80 90

T
C

P
 T

im
e
o
u
ts

Load (%)

PIAS AWAFS

(b) TCP Timeouts

Figure 5-26: Overall average FCT and TCP timeouts in the experiment with the Hadoop

workload

5.5 AWAFS vs PIAS with Different Workloads 73

5.5.4. Cache Workload

In this section, we present the results of the experiments considering the Cache workload.

For these experiments, PIAS was configured with the thresholds derived for the Data Mining

workload.

Figure 5-27 presents the results of evaluating the FCT for the short flows. AWAFS outper-

forms PIAS and reduces the average FCT in almost 9.8 % and the tail FCT in almost 16 %.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 50 60 70 80 90

F
C

T
 (

M
ic

ro
s
e
c
o
n
d
s
)

Load (%)

PIAS AWAFS

(a) Average FCT

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 50 60 70 80 90

F
C

T
 (

M
ic

ro
s
e
c
o
n
d
s
)

Load (%)

PIAS AWAFS

(b) Tail FCT

Figure 5-27: Average and tail FCT for short flows in the experiment with the Cache wor-

kload

74 5 EXPERIMENTS AND RESULTS

Figure 5-28 presents the results for the medium flows. AWAFS approximates to the perfor-

mance of PIAS for the average FCT but it introduces a small improvement for the tail FCT.

This improvement is close to 6 %.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 50 60 70 80 90

F
C

T
 (

M
ili

s
e
c
o
n
d
s
)

Load (%)

PIAS AWAFS

(a) Average FCT

 0

 20

 40

 60

 80

 100

 120

 50 60 70 80 90

F
C

T
 (

M
ili

s
e
c
o
n
d
s
)

Load (%)

PIAS AWAFS

(b) Tail FCT

Figure 5-28: Average and tail FCT for the medium flows in the experiment with the Cache

workload

5.5 AWAFS vs PIAS with Different Workloads 75

Figure 5-29 presents the results of assessing long flows. AWAFS improves both of the me-

trics, reducing the average FCT in 17 % and the tail FCT in 40 %.

 0

 50

 100

 150

 200

 250

 300

 50 60 70 80 90

F
C

T
 (

M
ili

s
e
c
o
n
d
s
)

Load (%)

PIAS AWAFS

(a) Average FCT

 0

 100

 200

 300

 400

 500

 600

 700

 50 60 70 80 90

F
C

T
 (

M
ili

s
e
c
o
n
d
s
)

Load (%)

PIAS AWAFS

(b) Tail FCT

Figure 5-29: Average and tail FCT for the long flows in the experiment with the Cache

workload

76 5 EXPERIMENTS AND RESULTS

Finally, Figure 5-30 presents the results for the overall average FCT and TCP timeout

events. AWAFS outperforms PIAS by reducing the overall average FCT around 4.6 % at

high traffic load and the TCP timeouts, which are actually reduced in almost 85 %.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 50 60 70 80 90

F
C

T
 (

M
iil

is
e
c
o
n
d
s
)

Load (%)

PIAS AWAFS

(a) Overall Average FCT

 0

 5000

 10000

 15000

 20000

 25000

 30000

 50 60 70 80 90

T
C

P
 T

im
e
o
u
ts

Load (%)

PIAS AWAFS

(b) TCP Timeouts

Figure 5-30: Comparison of overall average FCT and TCP timeouts in the experiment with

the Cache workload

5.6 AWAFS vs PIAS with Heterogeneous Traffic 77

Summary

In this section, we have presented a comparison of AWAFS and its closest related work,

PIAS. We have observed that in general, AWAFS introduces benefits for a variety of wor-

kloads by reducing both the average and tail FCT. This reduction is specially notorious for

short flows, although it can also benefit medium and long flows. In those cases where these

medium and long flows are not improved, the performance penalty is not significant for the

overall performance since these flows are not a representative amount within the respective

workloads. Also, in the case of long flows, the increment of the FCT is irrelevant considering

the average FCT and the size of these flows in comparison with short flows (For example,

long flows for the Data Mining workload might have sizes of up to 600MB).

It is important to remark that AWAFS achieves these results leveraging its adaptability,

based on traffic observation and its complete agnosticism since it does not require any a-

priori information about the workloads.

5.6. AWAFS vs PIAS with Heterogeneous Traffic

In our previous simulations, the traffic patterns are homogeneous, given that all the nodes

generate traffic following the same flow size distributions during the experiments. In this

section, we present the results of comparing AWAFS against PIAS [11] in a scenario with

traffic heterogeneity.

In the original topology of 144 hosts, we have 144 x 143 communication pairs in total.

In order to create the heterogeneous traffic pattern, in each link (i, j), we generate traffic

according to the Web Search [6] workload if i < j. Otherwise, traffic is generated according

to the Data Mining workload [28]. In this way, different links will have different patterns of

traffic. This situation clearly generates the scenario of threshold mismatch. In our experiment

we compare PIAS with the thresholds derived for the Web Search workload (configured in

all the links) and AWAFS with the parameters used in the previous experiments. Demotion

thresholds for PIAS are generated following the same approach used in Section V-C number

4 of [11].

Figure 5-31 presents the average and tail FCT for short flows for different link occupa-

tion levels. It can be seen that AWAFS outperforms PIAS regardless of the traffic load. It is

important to remark the situation of threshold mismatch inevitably introduced by the traffic

heterogeneity. In this case, the average FCT for short flows presents improvements between

20 % and 35 % whereas for the tail FCT the improvements are between 11 % and 19 %.

78 5 EXPERIMENTS AND RESULTS

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 50 60 70 80 90

F
C

T
 (

M
ic

ro
s
e
c
o
n
d
s
)

Load (%)

PIAS AWAFS

(a) FCT Short flows

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 50 60 70 80 90

F
C

T
 (

M
ic

ro
s
e
c
o
n
d
s
)

Load (%)

PIAS AWAFS

(b) Tail Short flows

Figure 5-31: Comparison between AWAFS and PIAS [12] with heterogeneous traffic

5.7 Discussion 79

These results show the robustness of AWAFS, specially regarding its capacity to adapt to

variations on the traffic behavior. Results presented in the previous sections showed how

AWAFS can react to time variations in the traffic, caused by the presence of different wor-

kloads in different times. Results presented on this section showed that AWAFS can also

react and adapt itself to space variations in the traffic patterns, which are originated by the

presence of different traffic patterns in different zones of a network. Thus, our results are

promising in the sense of introducing AWAFS as a mechanism to improve the performance

of cloud applications in large scale data center networks.

5.7. Discussion

In the previous sections, we have assessed different aspects of the operation of AWAFS. We

divided the evaluation in two main simulation scenarios consisting in a proof-of-concept and

the operation in a Large Scale topology. In the first scenario, we observed how AWAFS

effectively adjusts the demotion threshold converging towards the size of the short flows

present in the workload. In this case, the convergence was exact due to the fact that the

size of the short flows was fixed. This scenario allowed us to verify that the mechanism of

monitoring based on calculating a set of percentiles on the list of completed flow sizes in a

given time window provides an adequate hint to adapt the demotion thresholds. Through

this calculation, we can adapt the demotion thresholds in an MLFQ scheduler. This adjust-

ment provides the minimization of the FCT, specially when compared with the cases where

there exists mismatch between the configured threshold and the current workload present in

the network. We also could verify that the prioritization of the short flows does not cause

starvation on the long flows as we did not observe increments on the metrics assessed for

these flows. With these verifications we can claim that the objectives proposed for this thesis

have been achieved.

The Large Scale scenario allowed us to assess AWAFS in more realistic conditions. In this

scenario, we considered the simulation of a larger topology with traffic based on workloads

observed in production data center network environments. When the demotion thresholds

can be somehow configured with optimal values, AWAFS does not introduce relevant over-

head in the operation since it does not increment considerably the FCT of the short flows.

On the other hand, when there is mismatch on the demotion thresholds, AWAFS improves

the performance of the workload by minimizing the FCT. As we observed, AWAFS offers

better results with an intermediate number of queues. With 4 queues, our approach intro-

duces an important improvement in the FCT when compared to the static configuration.

Larger number of queues still introduce improvement but this is less notorious.

By using percentiles as hint to adapt the demotion thresholds, AWAFS is one step clo-

ser to be a truly agnostic flow scheduler. Indeed, since it does not require specific a-priori

80 5 EXPERIMENTS AND RESULTS

information about the properties of the workloads in order to plan the scheduling, AWAFS

is truly workload-agnostic. The rationale used to conceive the mechanism of threshold ad-

justment is consistent with the properties that have been identified and reported in the

literature for the traffic of typical data center applications. Our experiments have shown

that this approach to adjust the demotion thresholds is effective in terms of improving the

FCT of short flows, and adapting autonomously to shifts in the workload. These two aspects

constitute a contribution to the state-of-the-art considering that we address two limitations

of the closest related work. As we have previously described, AWAFS does not require any

a-priori information about the workloads and it can react and adapt autonomously to chan-

ges in the traffic present in the network.

Finally, the comparison between AWAFS and PIAS allowed us to confirm the effective-

ness of the adaptability proposed in our approach. We could observe that even in a scenario

where different traffic patterns coexisted in different zones of the network, AWAFS could

adapt itself accordingly. With this adaptability, it was possible to outperform PIAS, since

its static configuration was optimal for some switches but it was suboptimal for others.

Based on these results, we can claim that AWAFS validates the proposed hypothesis. We

observed that, with the combination of information provided by end hosts and information

obtained by observation at switches, it was possible minimize the FCT of short flows without

inducing starvation on long flows. Also, with AWAFS we confirmed the achievement of the

proposed objectives. Our experiments showed the effectiveness of the monitoring mechanism

based on the calculation of percentiles. AWAFS proved that can adapt an MLFQ scheduling

system via dynamic adjustment of its demotion thresholds and minimize the FCT of short

flows for different data center workloads.

6 FINAL REMARKS

6.1. Conclusions

In this thesis, we have proposed an approach to the agnostic flow scheduling. Inspired by

a state-of-the-art solution based on this approach, we developed AWAFS, an Adaptable

Workload-Agnostic Flow Scheduling mechanism. Our solution is adaptable in the sense that

its operation is based on observation of the traffic present in the network in order to autono-

mously adjust the configuration of the flow scheduling. Also, it is workload-agnostic in the

sense that it does not require a-priori information about the workloads. Thus, AWAFS over-

comes a limitation present on the state-of-the-art which is the requirement of information

about the CDF of the workload that will be present in the network.

We evaluated AWAFS via simulation, both in a proof-of-concept in order to verify its opera-

tion, and in a large scale data center topology. In our experiments, we observed that AWAFS

does minimize the FCT of short flows without inducing starvation on long flows. We also

verified the adaption capability of AWAFS by observing how it adjusts its scheduling con-

figuration when the workload in the network changes. Finally, we confirmed that AWAFS

still provides minimization of the short flows at high traffic loads. Although this is not a

common situation in data center networks [45], we observed that AWAFS improves the FCT

in a wide range of traffic loads. The efficacy observed in the threshold adjustment confirms

the achievement of the objectives proposed for this work.

With the design of AWAFS, we validated our hypothesis. We made evident that the com-

bination of local (acquired at switches or packet transmission component at end hosts) and

remote (at switches) information enables the adjustment of the flow scheduling component

without requiring prior information about the workload properties. Hence, we made a step

in the field of agnostic flow scheduling. Due to its adaptability, this scheme is promising to

be used on general purpose datacenters where multiple different workloads can be present.

Also with the advent of hardware such as programmable switches [17, 50] there is a wider

landscape to evolve and improve this solution.

82 6 FINAL REMARKS

6.2. Future Work

Despite the positive results obtained, AWAFS still can not be considered as a complete or

perfect solution. Hence, many aspects of the design of AWAFS are left as work to be develo-

ped in the future, in order to further improve its operation and adapt it to the new scenarios

introduced in the state-of-the-art in data center networking.

One aspect to be considered for future work is to provide a smarter mechanism for the

definition of the reference percentiles. In the current design of AWAFS, these percentiles are

provided as parameters based on the understanding of the data center traffic properties. An

important improvement that could be applied to our proposal is the capacity to determine

from the observation of the traffic which would be adequate values to define the percentiles,

in order to increase the accuracy of the scheduler.

Another aspect to consider is the optimization of the data structure used within the switches

to store the sizes of the completed flows. In our design, we had the assumption that such

list can be available in the switch. Recent proposals in the literature introduce the notion

of programmable hardware which could be leveraged for complex operations such as the

implementation of this list [48, 50]. However in scenarios such as software switches running

on general purpose hardware, the efficient implementation of this list might be challenging.

Finally, an important task to consider as future work would be the implementation of AWAFS

in a real software switch. Although recent literature presents the concept of programmable

switches [17, 49], these devices still have open questions regarding elements such as the struc-

ture of their queuing systems. Thus, we consider that well known software switches [42] with

a more robust design of its internal architecture, can provide a more mature starting point

in order to implement AWAFS.

References

[1] Abdelmoniem, A. M. ; Bensaou, B.: Reconciling mice and elephants in data center

networks. In: 2015 IEEE 4th International Conference on Cloud Networking (CloudNet),

2015, S. 119–124

[2] Abts, Dennis ; Felderman, Bob: A Guided Tour of Data-center Networking. In:

Commun. ACM 55 (2012), Juni, Nr. 6, S. 44–51. – ISSN 0001–0782

[3] Al-Fares, Mohammad ; Loukissas, Alexander ; Vahdat, Amin: A Scalable, Commo-

dity Data Center Network Architecture. In: Proceedings of the ACM SIGCOMM 2008

Conference on Data Communication. New York, NY, USA : ACM, 2008 (SIGCOMM

’08). – ISBN 978–1–60558–175–0, S. 63–74

[4] Alameldeen, A. R. ; Martin, M. M. K. ; Mauer, C. J. ; Moore, K. E. ; Xu, Min

; Hill, M. D. ; Wood, D. A. ; Sorin, D. J.: Simulating a $2M commercial server on

a $2K PC. In: Computer 36 (2003), Februar, Nr. 2, S. 50–57. – ISSN 0018–9162

[5] Alizadeh, Mohammad ; Edsall, Tom: On the Data Path Performance of Leaf-Spine

Datacenter Fabrics, IEEE, August 2013. – ISBN 978–0–7695–5103–6, S. 71–74

[6] Alizadeh, Mohammad ; Greenberg, Albert ; Maltz, David A. ; Padhye, Jitendra

; Patel, Parveen ; Prabhakar, Balaji ; Sengupta, Sudipta ; Sridharan, Murari:

Data Center TCP (DCTCP). In: Proceedings of the ACM SIGCOMM 2010 Conference.

New York, NY, USA : ACM, 2010 (SIGCOMM ’10). – ISBN 978–1–4503–0201–2, S.

63–74

[7] Alizadeh, Mohammad ; Javanmard, Adel ; Prabhakar, Balaji: Analysis of

DCTCP: Stability, Convergence, and Fairness. In: Proceedings of the ACM SIGME-

TRICS Joint International Conference on Measurement and Modeling of Computer

Systems. New York, NY, USA : ACM, 2011 (SIGMETRICS ’11). – ISBN 978–1–

4503–0814–4, S. 73–84

[8] Alizadeh, Mohammad ; Kabbani, Abdul ; Edsall, Tom ; Prabhakar, Balaji ;

Vahdat, Amin ; Yasuda, Masato: Less is More: Trading a Little Bandwidth for

Ultra-low Latency in the Data Center. In: Proceedings of the 9th USENIX Conference

on Networked Systems Design and Implementation. Berkeley, CA, USA : USENIX

Association, 2012 (NSDI’12), S. 19–19

84 References

[9] Alizadeh, Mohammad ; Yang, Shuang ; Sharif, Milad ; Katti, Sachin ; McKeown,

Nick ; Prabhakar, Balaji ; Shenker, Scott: pFabric: Minimal Near-optimal Datacen-

ter Transport. In: Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM.

New York, NY, USA : ACM, 2013 (SIGCOMM ’13). – ISBN 978–1–4503–2056–6, S.

435–446

[10] Arpaci-Dusseau, Remzi H. ; Arpaci-Dusseau, Andrea C.: Operating systems: Three

easy pieces. Bd. 151. Arpaci-Dusseau Books Wisconsin, 2014

[11] Bai, W. ; Chen, L. ; Chen, K. ; Han, D. ; Tian, C. ; Wang, H.: PIAS: Practical

Information-Agnostic Flow Scheduling for Commodity Data Centers. In: IEEE/ACM

Transactions on Networking 25 (2017), August, Nr. 4, S. 1954–1967. – ISSN 1063–6692

[12] Bai, Wei ; Chen, Li ; Chen, Kai ; Han, Dongsu ; Tian, Chen ; Wang, Hao:

Information-agnostic Flow Scheduling for Commodity Data Centers. In: Proceedings

of the 12th USENIX Conference on Networked Systems Design and Implementation.

Berkeley, CA, USA : USENIX Association, 2015 (NSDI’15). – ISBN 978–1–931971–21–

8, S. 455–468

[13] Benson, Theophilus ; Akella, Aditya ; Maltz, David A.: Unraveling the Complexity

of Network Management. In: NSDI, 2009, S. 335–348

[14] Benson, Theophilus ; Akella, Aditya ; Maltz, David A.: Network Traffic Charac-

teristics of Data Centers in the Wild. In: Proceedings of the 10th ACM SIGCOMM

Conference on Internet Measurement. New York, NY, USA : ACM, 2010 (IMC ’10). –

ISBN 978–1–4503–0483–2, S. 267–280

[15] Bilal, Kashif ; Malik, Saif Ur R. ; Khalid, Osman ; Hameed, Abdul ; Alvarez,

Enrique ; Wijaysekara, Vidura ; Irfan, Rizwana ; Shrestha, Sarjan ; Dwivedy,

Debjyoti ; Ali, Mazhar ; Shahid Khan, Usman ; Abbas, Assad ; Jalil, Nauman ;

Khan, Samee U.: A taxonomy and survey on Green Data Center Networks. In: Future

Generation Computer Systems 36 (2014), Juli, S. 189–208. – ISSN 0167–739X

[16] Blenk, A. ; Basta, A. ; Reisslein, M. ; Kellerer, W.: Survey on Network Vir-

tualization Hypervisors for Software Defined Networking. In: IEEE Communications

Surveys Tutorials 18 (2016), Nr. 1, S. 655–685. – ISSN 1553–877X

[17] Bosshart, Pat ; Daly, Dan ; Gibb, Glen ; Izzard, Martin ; McKeown, Nick ; Rex-

ford, Jennifer ; Schlesinger, Cole ; Talayco, Dan ; Vahdat, Amin ; Varghese,

George ; Walker, David: P4: Programming Protocol-independent Packet Processors.

In: SIGCOMM Comput. Commun. Rev. 44 (2014), Juli, Nr. 3, S. 87–95. – ISSN 0146–

4833

[18] Brutlag, Jake: Speed matters for Google web search. 2009

References 85

[19] Chen, Li ; Chen, Kai ; Bai, Wei ; Alizadeh, Mohammad: Scheduling Mix-flows in

Commodity Datacenters with Karuna. In: Proceedings of the 2016 ACM SIGCOMM

Conference. New York, NY, USA : ACM, 2016 (SIGCOMM ’16). – ISBN 978–1–4503–

4193–6, S. 174–187

[20] Chowdhury, Mosharaf ; Zaharia, Matei ; Ma, Justin ; Jordan, Michael I. ; Stoica,

Ion: Managing data transfers in computer clusters with orchestra. In: ACM SIGCOMM

Computer Communication Review Bd. 41, ACM, 2011, S. 98–109

[21] Corbato, Fernando J. ; Marjorie Merwin-Daggett ; Daley, Robert C.: An

Experimental Time-Sharing System. In: Hansen, Per B. (Hrsg.): Classic Operating

Systems. Springer New York, 2001. – ISBN 978–1–4419–2881–8 978–1–4757–3510–9, S.

117–137

[22] Dixit, A. ; Prakash, P. ; Hu, Y. C. ; Kompella, R. R.: On the impact of packet

spraying in data center networks. In: 2013 Proceedings IEEE INFOCOM, 2013, S.

2130–2138

[23] Dukkipati, Nandita ; McKeown, Nick: Why Flow-completion Time is the Right

Metric for Congestion Control. In: SIGCOMM Comput. Commun. Rev. 36 (2006),

Januar, Nr. 1, S. 59–62. – ISSN 0146–4833

[24] Ersoz, D. ; Yousif, M. S. ; Das, C. R.: Characterizing Network Traffic in a Cluster-

based, Multi-tier Data Center. In: 27th International Conference on Distributed Com-

puting Systems (ICDCS ’07), 2007, S. 59–59

[25] Farrington, N. ; Rubow, E. ; Vahdat, A.: Data Center Switch Architecture in

the Age of Merchant Silicon. In: 2009 17th IEEE Symposium on High Performance

Interconnects, 2009, S. 93–102

[26] Floyd, Sally ; Ramakrishnan, K. K. ; Black, David L.: The addition of explicit

congestion notification (ECN) to IP. (2001)

[27] Greenberg, Albert ; Hamilton, James ; Maltz, David A. ; Patel, Parveen: The

Cost of a Cloud: Research Problems in Data Center Networks. In: SIGCOMM Comput.

Commun. Rev. 39 (2008), Dezember, Nr. 1, S. 68–73. – ISSN 0146–4833

[28] Greenberg, Albert ; Hamilton, James R. ; Jain, Navendu ; Kandula, Srikanth ;

Kim, Changhoon ; Lahiri, Parantap ; Maltz, David A. ; Patel, Parveen ; Sengupta,

Sudipta: VL2: A Scalable and Flexible Data Center Network. In: Proceedings of the

ACM SIGCOMM 2009 Conference on Data Communication. New York, NY, USA :

ACM, 2009 (SIGCOMM ’09). – ISBN 978–1–60558–594–9, S. 51–62

86 References

[29] Grosvenor, Matthew P. ; Schwarzkopf, Malte ; Gog, Ionel ; Watson, Robert N. ;

Moore, Andrew W. ; Hand, Steven ; Crowcroft, Jon: Queues Don’t Matter When

You Can JUMP Them! In: Proc. NSDI, 2015

[30] Guo, Liang ; Matta, I.: The war between mice and elephants. In: Proceedings Ninth

International Conference on Network Protocols. ICNP 2001, 2001, S. 180–188

[31] Hoganson, K. ; Brown, J.: Intelligent Mitigation in Multilevel Feedback Queues. In:

Proceedings of the SouthEast Conference. New York, NY, USA : ACM, 2017 (ACM SE

’17). – ISBN 978–1–4503–5024–2, S. 158–163

[32] Hong, Chi-Yao ; Caesar, Matthew ; Godfrey, P. B.: Finishing Flows Quickly with

Preemptive Scheduling. In: Proceedings of the ACM SIGCOMM 2012 Conference on

Applications, Technologies, Architectures, and Protocols for Computer Communication.

New York, NY, USA : ACM, 2012 (SIGCOMM ’12). – ISBN 978–1–4503–1419–0, S.

127–138

[33] Hopcroft, John E. ; Ullman, Jeffrey D. ; Aho, Alfred: Data structures and algo-

rithms. 1983

[34] Jalaparti, Virajith ; Bodik, Peter ; Kandula, Srikanth ; Menache, Ishai ; Rybal-

kin, Mikhail ; Yan, Chenyu: Speeding Up Distributed Request-response Workflows.

In: Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM. New York,

NY, USA : ACM, 2013 (SIGCOMM ’13). – ISBN 978–1–4503–2056–6, S. 219–230

[35] Joy, S. ; Nayak, A.: Improving flow completion time for short flows in datacenter

networks. In: 2015 IFIP/IEEE International Symposium on Integrated Network Mana-

gement (IM), 2015, S. 700–705

[36] Kandula, Srikanth ; Sengupta, Sudipta ; Greenberg, Albert ; Patel, Parveen ;

Chaiken, Ronnie: The Nature of Data Center Traffic: Measurements & Analysis. In:

Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement Confe-

rence. New York, NY, USA : ACM, 2009 (IMC ’09). – ISBN 978–1–60558–771–4, S.

202–208

[37] Mehlhorn, Kurt: Data structures and algorithms. Bd. 1. Springer Science & Business

Media, 2013

[38] Munir, A. ; Qazi, I.A. ; Uzmi, Z.A. ; Mushtaq, A. ; Ismail, S.N. ; Iqbal, M.S.

; Khan, B.: Minimizing flow completion times in data centers. In: 2013 Proceedings

IEEE INFOCOM, 2013, S. 2157–2165

[39] Munir, Ali ; Baig, Ghufran ; Irteza, Syed M. ; Qazi, Ihsan A. ; Liu, Alex X. ;

Dogar, Fahad R.: Friends, Not Foes: Synthesizing Existing Transport Strategies for

References 87

Data Center Networks. In: Proceedings of the 2014 ACM Conference on SIGCOMM.

New York, NY, USA : ACM, 2014 (SIGCOMM ’14). – ISBN 978–1–4503–2836–4, S.

491–502

[40] Noormohammadpour, M. ; Raghavendra, C. S.: Datacenter Traffic Control: Un-

derstanding Techniques and Trade-offs. In: IEEE Communications Surveys Tutorials

PP (2017), Nr. 99, S. 1–1

[41] Peng, Y. ; Chen, K. ; Wang, G. ; Bai, W. ; Ma, Z. ; Gu, L.: HadoopWatch: A first

step towards comprehensive traffic forecasting in cloud computing. In: IEEE INFOCOM

2014 - IEEE Conference on Computer Communications, 2014, S. 19–27

[42] Pfaff, Ben ; Pettit, Justin ; Koponen, Teemu ; Jackson, Ethan J. ; Zhou, Andy ;

Rajahalme, Jarno ; Gross, Jesse ; Wang, Alex ; Stringer, Joe ; Shelar, Pravin ;

others: The Design and Implementation of Open vSwitch. In: NSDI, 2015, S. 117–130

[43] Rai, Idris A. ; Urvoy-Keller, Guillaume ; Biersack, Ernst W.: Analysis of LAS

Scheduling for Job Size Distributions with High Variance. In: Proceedings of the 2003

ACM SIGMETRICS International Conference on Measurement and Modeling of Com-

puter Systems. New York, NY, USA : ACM, 2003 (SIGMETRICS ’03). – ISBN

978–1–58113–664–7, S. 218–228

[44] Rojas-Cessa, R. ; Kaymak, Y. ; Dong, Z.: Schemes for Fast Transmission of Flows

in Data Center Networks. In: IEEE Communications Surveys Tutorials 17 (2015), Nr.

3, S. 1391–1422. – ISSN 1553–877X

[45] Roy, Arjun ; Zeng, Hongyi ; Bagga, Jasmeet ; Porter, George ; Snoeren, Alex C.:

Inside the Social Network’s (Datacenter) Network. In: Proceedings of the 2015 ACM

Conference on Special Interest Group on Data Communication. New York, NY, USA :

ACM, 2015 (SIGCOMM ’15). – ISBN 978–1–4503–3542–3, S. 123–137

[46] Shahbaz, Muhammad ; Choi, Sean ; Pfaff, Ben ; Kim, Changhoon ; Feamster,

Nick ; McKeown, Nick ; Rexford, Jennifer: PISCES: A Programmable, Protocol-

Independent Software Switch. In: Proceedings of the 2016 ACM SIGCOMM Conference.

New York, NY, USA : ACM, 2016 (SIGCOMM ’16). – ISBN 978–1–4503–4193–6, S.

525–538

[47] Sivaraman, A ; Subramanian, S ; Agrawaly, A ; Cholez, S ; Chuangz, S ;

Edsallz, T ; Alizadeh, M ; Katti, S ; McKewon, N ; Balakrishnan, H: Towards

Programmable Packet Scheduling. In: Proceedings of the 14th ACM Workshop on Hot

Topics in Networks, ACM, 2015 (HotNets-XVI)

[48] Sivaraman, Anirudh ; Cheung, Alvin ; Budiu, Mihai ; Kim, Changhoon ; Aliza-

deh, Mohammad ; Balakrishnan, Hari ; Varghese, George ; McKeown, Nick ;

88 References

Licking, Steve: Packet Transactions: High-Level Programming for Line-Rate Swit-

ches. In: Proceedings of the 2016 ACM SIGCOMM Conference. New York, NY, USA :

ACM, 2016 (SIGCOMM ’16). – ISBN 978–1–4503–4193–6, S. 15–28

[49] Sivaraman, Anirudh ; Kim, Changhoon ; Krishnamoorthy, Ramkumar ; Dixit,

Advait ; Budiu, Mihai: DC.P4: Programming the Forwarding Plane of a Data-center

Switch. In: Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined

Networking Research. New York, NY, USA : ACM, 2015 (SOSR ’15). – ISBN 978–1–

4503–3451–8, S. 2:1–2:8

[50] Sivaraman, Anirudh ; Subramanian, Suvinay ; Alizadeh, Mohammad ; Chole,

Sharad ; Chuang, Shang-Tse ; Agrawal, Anurag ; Balakrishnan, Hari ; Edsall,

Tom ; Katti, Sachin ; McKeown, Nick: Programmable Packet Scheduling at Line

Rate. In: Proceedings of the 2016 ACM SIGCOMM Conference. New York, NY, USA

: ACM, 2016 (SIGCOMM ’16). – ISBN 978–1–4503–4193–6, S. 44–57

[51] Song, Haoyu: Protocol-oblivious Forwarding: Unleash the Power of SDN Through a

Future-proof Forwarding Plane. In: Proceedings of the Second ACM SIGCOMM Works-

hop on Hot Topics in Software Defined Networking. New York, NY, USA : ACM, 2013

(HotSDN ’13). – ISBN 978–1–4503–2178–5, S. 127–132

[52] Soule, Augustin ; Salamatia, KavÃ c© ; Taft, Nina ; Emilion, Richard ; Papa-

giannaki, Konstantina: Flow Classification by Histograms: Or How to Go on Safari

in the Internet. In: Proceedings of the Joint International Conference on Measurement

and Modeling of Computer Systems. New York, NY, USA : ACM, 2004 (SIGMETRICS

’04/Performance ’04). – ISBN 978–1–58113–873–3, S. 49–60

[53] Vamanan, Balajee ; Hasan, Jahangir ; Vijaykumar, T.N.: Deadline-aware Data-

center TCP (D2TCP). In: Proceedings of the ACM SIGCOMM 2012 Conference on

Applications, Technologies, Architectures, and Protocols for Computer Communication.

New York, NY, USA : ACM, 2012 (SIGCOMM ’12). – ISBN 978–1–4503–1419–0, S.

115–126

[54] Wang, W. ; Sun, Y. ; Salamatian, K. ; Li, Z.: Adaptive Path Isolation for Elephant

and Mice Flows by Exploiting Path Diversity in Datacenters. In: IEEE Transactions on

Network and Service Management 13 (2016), März, Nr. 1, S. 5–18. – ISSN 1932–4537

[55] Wilson, Christo ; Ballani, Hitesh ; Karagiannis, Thomas ; Rowtron, Ant: Better

Never Than Late: Meeting Deadlines in Datacenter Networks. In: Proceedings of the

ACM SIGCOMM 2011 Conference. New York, NY, USA : ACM, 2011 (SIGCOMM

’11). – ISBN 978–1–4503–0797–0, S. 50–61

References 89

[56] Xia, W. ; Zhao, P. ; Wen, Y. ; Xie, H.: A Survey on Data Center Networking (DCN):

Infrastructure and Operations. In: IEEE Communications Surveys Tutorials 19 (2017),

Nr. 1, S. 640–656. – ISSN 1553–877X

[57] Zhang, Y. ; Ansari, N.: On Architecture Design, Congestion Notification, TCP Incast

and Power Consumption in Data Centers. In: IEEE Communications Surveys Tutorials

15 (2013), Nr. 1, S. 39–64. – ISSN 1553–877X

