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Title in English

PGAGrid: A Parallel Genetic Algorithm of Fine-Grained implemented on GPU
to find solutions near the optimum to the Quadratic Assignment Problem (QAP).

T́ıtulo en español

PGAGrid: Un algoritmo Genético Paralelo de grano Fino implementado sobre
GPU para encontrar soluciones cercanas al óptimo al Problema de Asignación
Cuadrática.

Abstract: This work consists in implementing a fine-grained parallel genetic
algorithm improved with a greedy 2-opt heuristic to find near-optimal solutions
to the Quadratic Assignment Problem (QAP). The proposed algorithm was
fully implemented on Graphics Processing Units (GPUs). A two-dimensional
GPU grid of size 8×8 defines the population of the genetic algorithm (set of
permutations of the QAP), and each GPU block consists of n GPU threads,
where n is the size of the QAP. Each GPU block was used to represent the
chromosome of a single individual, and each GPU thread represents a gene of
such chromosome. The proposed algorithm was tested on a subset of the standard
QAPLIB data set. Results show that this implementation is able to find good so-
lutions for large QAP instances in few parallel iterations of the evolutionary process.

Resumen: Este trabajo consiste en implementar un algoritmo genético paralelo
de grano fino mejorado con una heuŕıstica 2-opt voraz para encontrar soluciones
cercanas al óptimo al problema de Asignación Cuadrática (QAP). El algoritmo
propuesto fue completamente implementado sobre Unidades de Procesamiento
Gráfico (GPUs). Una ret́ıcula GPU bidimensional de tamaño 8×8 define la
población del algoritmo genético (conjunto de permutaciones del QAP) y cada
bloque GPU consiste de n hilos GPU donde n es el tamaño del QAP. Cada bloque
GPU fue utilizado para representar el cromosoma de un solo individuo y cada hilo
GPU representa un gen de tal cromosoma. El algoritmo propuesto fue comprobado
sobre un subconjunto de problemas de la libreŕıa estándar QAPLIB. Los resultados
muestran que esta implementación es capaz de encontrar buenas soluciones para
grandes instancias del QAP en pocas iteraciones del proceso evolutivo.

Keywords: Quadratic Assignment Problem (QAP), Genetic Algorithm (GA),
Parallel Genetic Algorithm (PGA), Graphics Processing Unit (GPU), Compute
Unified Device Architecture (CUDA).
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CHAPTER 1

Introduction

The Quadratic Assignment Problem consists in assigning a set of n facilities in a
set of n locations, knowing the flow between facilities and the distances between
locations. The goal is to assign each facility to each location in such a way that
flows and distances are minimized.

The QAP was introduced by Koopmans & Beckmann in 1957 [33] and was mathe-
matically proven to belong to the NP-Complete Problems category proposed by
Sahni & Gonzalez in 1976 [59].

The QAP is considered one of the most complex combinatorial optimization pro-
blems and is the model for many real life problems such as facility layout, campus
planning, backboard wiring, scheduling, computer manufacturing, turbine balan-
cing, and process communications, among other applications [49].

Some exact methods, like Branch and Bound, Cutting Plane and Bender’s de-
composition [27, 36, 8, 4, 46], have been applied to solve instances of this pro-
blem. However, the number of resources required by these methods makes them
non-applicable to instances of size n > 30 [13, 11]. In order to tackle this issue,
some approximation methods, like Greedy Randomized Adaptive Search, Tabu
Search, Simulated Annealing, ACO (Ant Colony Optimization), PSO (Particle
Swarm Optimization), and Evolutionary Algorithms (specially Genetic Algorithms)
[47, 50, 6, 14, 10, 66, 70, 16], have been applied to find near-optimal solutions to
instances of the QAP.

Genetic Algorithms is one of the most important approaches in the field of Evo-
lutionary Algorithms and are defined as iterative procedures of general purpose
adaptive search with the virtue of abstractly and rigorously describing the collec-
tive adaptation of a population of individuals to a particular environment, based on
behavior similar to a natural system. Genetic algorithms were invented by John Ho-
lland and a group of students at the University of Michigan inspired by the processes
that occur in biological evolution. Holland and his students also demonstrated the
easy implementation of these adaptive processes in a computer system [28].

1



CHAPTER 1. INTRODUCTION 2

Some authors state that parallelizing a genetic algorithm is an efficient way to pro-
ceed, first by “saving” time by distributing workloads, and second by the natural
behavior of parallelism on spatially distributed populations. The advantages of Pa-
rallel Genetic Algorithms are referenced in [68] and [51].

Modern parallel multiprocessing architectures like Graphics Processing Units
(GPUs) [30] have significantly evolved in the last ten years, with the aim of increasing
the graphic processing capabilities in the video-game industry to make them faster
and more realistic. Such multiprocessing has been used in the scientific field for the
solution of real world problems (computational biology, computational finances, and
cryptography, among others) through Application Programming Interfaces (APIs)
like CUDA (Compute Unified Device Architecture), OPEN CL, or Direct Compute,
that exploit those GPU advantages. Therefore, GPUs make it possible to execute
those parallel algorithms and significantly diminish execution time.

It is usual to combine a GA with a local search technique to solve combinato-
rial problems of high complexity. The 2-opt local search heuristic or greedy 2-opt
are some of the most representative to address the QAP. The advantages of these
techniques in the QAP solution are explained in [65] and [5].

In order to determine the performance of any method, the QAPLIB (Quadratic
Assignment Problem Library) [55] include a large number of benchmark QAP-
instances of different sizes, and provides the best known solution for them up to
date.

1.1 Objective

The objective of this research study is to design and implement a new, efficient,
and robust algorithm on GPUs which finds optimal solutions (or near-optimal) to
large instances of the QAP through a Fine-Grained Parallel Genetic Algorithm and
a heuristic optimization technique. The (specific) objectives of this work are:

1. To solve the QAP by developing a Fine-Grained Parallel Genetic Algo-
rithm and a local search optimization technique (2-opt heuristic or greedy
2-opt)—called PGAGrid:

Deterministic mathematical methods, heuristic procedures, and more recently
evolutionary computation methods have been used to solve the QAP; the
model presented in this work combines precisely an evolutionary strategy (a
Fine-Grained Parallel Genetic Algorithm) and a heuristic (2-opt or greedy
2-opt) to solve the QAP.

The Fine-Grained model (Grid model or Cellular model) is based on indivi-
duals distributed in a two-dimensional grid, one individual per cell [68]. The
genetic interaction is restricted to nearby neighbors of each individual. The
2-opt (or greedy 2-opt) heuristic consists in performing all pairwise exchanges
of all possible facilities on each location in a particular “assignment” of the
QAP [65].
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By combining the Fine-Grain parallel model with the local search heuristic,
greater efficiency is expected in the QAP solution, given that the Fine-Grain
model provides a slow diffusion of information among individuals in the popu-
lation, while the heuristic methods improve the search for the solutions found
with the previous parallel model.

2. To implement the PGAGrid model on a graphics processing unit (GPU):

The GPUs are designed for highly data-parallel computations with high arith-
metic intensity. In contrast with a CPU, a GPU dedicates more transistors to
data processing, so the GPU performs more float-point operations per second.
The Evolutionary Algorithms are inherently parallel; their implementation in
GPUs is therefore favorable, and they make it possible not only to signifi-
cantly increase the computation speed but also offer a greater possibility of to
convergence in the global optimum (or near-optimal), as explained in [38].

The main advantage of a GPU is its structure, each one containing up to
hundreds of cores grouped in multiprocessors of architecture SIMD (Single
Instruction, Multiple Data). The number of threads that can be executed in
parallel on those devices is currently in the order of thousands. Processing is
based on many threads that are grouped into blocks, organized into a grid at
the same time. Memory hierarchy is an important attribute of modern GPUs.
Nowadays, GPUs have four levels of memory: registers, shared block memory,
local memory, and global memory; each level provides some programming
features.

3. To contrast results obtained by the PGAGrid model on GPU of a series of
benchmark problems in the QAPLIB standard library with the same results
referred to in similar studies.

4. To develop statistical tests of the performance of the PGAGrid model on
GPU to validate the results obtained.

5. To find appropriate values for the genetic operators in the PGAGrid model
on GPU that improve the results for the instances to be solved.

1.2 Main contributions

Solving the QAP is not an easy task. It is considered one of the most difficult
problems in combinatorial optimization as well as one of the most important NP-
complete problems. This problem has great application in diverse fields, especially
those in facility layout and campus planning. The contributions of each objective
are the following:

From, first objective: when the Fine-Grained parallel genetic model and the 2-
opt (or greedy 2-opt) technique are combined, greater efficiency is obtained in the
QAP solution. The Fine-Grained model provides evolution as a consequence of a
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slow diffusion of genetic information among individuals in the population. The 2-
opt heuristic (or greedy 2-opt heuristic) accelerates the search for the good solutions
found with the previous genetic model. This heuristic is applied in order to deeply
exploit promising regions already explored by the genetic algorithm.

From, second objective: the model was fully implemented on a parallel mul-
tiprocessing architecture such as Graphical Processing Units (GPUs). The imple-
mentation of a two-dimensional GPU grid of size 8×8 defines the population of the
genetic algorithm (set of permutations of the QAP), and each GPU block consists of
n GPU threads where n is the size of QAP. Each GPU block was used to represent
the chromosome of a single individual and each GPU thread represents a gene of
such chromosome. This way, the intrinsically parallel architecture of the GPU was
fully exploited and the results are obtained more quickly.

As the problem was completely implemented on the GPU, the data transfer
bottlenecks between the main memory of the PC and the main memory of the GPU
were eliminated. In addition, a convenient handling of memory spaces of the GPU
was performed. Each individual in the genetic algorithm was defined on the shared
memory of each GPU block and the distance and flow matrices were defined on the
constant memory space.

The configuration of the GPU grids was also important to calculate the fitness
function and to implement the local optimization heuristics. Both procedures use
a matrix formulation appropriate to be implemented in GPU as a vector multipro-
cessing device.

From, third objective: ten different instances of the QAPLIB reference source
were examined; each of them belongs to a different kind of problem of QAPLIB.
The best results found by the PGAGrid of each instance were compared with the
results reported by QAPLIB and the literature.

The best results obtained by PGAGrid on GPU of each of the problems were
compared with a similar sequential implementation in CPU, together with the co-
rresponding times obtained.

Using these comparisons, it is expected to revalidate the efficiency of the PGA-
Grid model and to emphasize it as an interesting procedure in the QAP solution
as well as other problems that derive from it.

From, fourth objective: emphasis was placed on the average results obtained
and on the standard deviation, as well as, on the median and on the median abso-
lute deviation in relation to the multiple tests performed. Different neighborhood
topologies were implemented in the PGAGrid model. A non-parametric Wilcoxon
signed rank test was performed to determine which of them is the most appropriate
in the QAP solution.

From, fifth objective: in order for the PGAGrid to reach greater efficiency,
different values of genetic operators were tested until obtaining the appropriate
ones that optimize the results.
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1.3 Dissertation

This work is divided as follows:

• Chapter 2 describes some preliminary concepts like the Quadratic Assign-
ment Problem (QAP), the most usual techniques to solve the QAP (par-
ticularly, genetic algorithms, parallel genetic algorithms, 2-opt heuristic and
greedy 2-opt heuristic), and graphical processing units (GPUs).

• Chapter 3 develops the PGAGrid model implemented on GPU that com-
bines the Fine-Grained parallel genetic model and the local optimization tech-
niques discussed in the previous chapter.

• Chapter 4 present the experimentation part. The PGAGrid model was
tested using the QAPLIB library benchmark problems. The results obtained
by the PGAGrid model were compared with the results presented in other
bibliographical references, in addition to the results hitherto reported in the
same library.

• Chapter 5 present conclusions and outlines future works.



CHAPTER 2

Preliminaries

This chapter describes the preliminaries necessary to find an optimal (or near opti-
mal) solution for the QAP.

Section 2.1 presents the definition of QAP, introducing it as a problem of location
theory. Subsequently, some equivalent formulations of the QAP are presented. One
of these formulations is more convenient for the solution of the problem by means
of parallel multiprocessing. Finally, the complexity of the QAP is highlighted, ca-
tegorized as a strongly NP-Complete problem, and as a generality of many other
combinatorial problems that are also NP-Complete.

Section 2.2 highlights the most common techniques to reach the QAP solu-
tion. First, the exact methods are presented (deterministic methods), and then
the approach methods (metaheuristics), based on trajectories and on population,
are shown. Finally, the corresponding parallel models of some approach techniques
are described.

Section 2.3 gives a brief description of Graphical Processing Units (GPUs) as
parallel processing architectures and the CUDA language as a GPU programming
interface.

2.1 Quadratic Assignment Problem (QAP)

The QAP consists in finding the optimal assignment in n facilities to n locations,
where the cost is a function of the distance between locations and the flow between
facilities. The goal is to assign each facility one by one to each location, so that the
cost is minimized.

The mathematical model (corresponding to the original formulation proposed by
Koopmans & Beckmann) is:

6
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min
σ∈Sn

n−1∑
i=0

n−1∑
j=0

fijdσ(i)σ(j) (2.1)

where F = (fij) is a flow matrix, D = (dkl) is a distance matrix (both F and D have
a of size n×n), and Sn = {σ | σ : N → N, σ bijective}, where N = {0, 1, · · · , n−1}
(it is often said that n is the QAP size). Each individual product fijdσ(i)σ(j) of the
previous formula is the cost of assigning facility σ(i) to location i, and facility σ(j)
to location j. Figure 2.1 shows an example of a QAP-instance of size n = 5.
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Figure 2.1. Example of a QAP-instance of size n = 5.

In the example of the previous figure

F =


0 2 5 3 1
2 0 1 0 3
5 1 0 4 1
3 0 4 0 2
1 3 1 2 0

 , D =


0 5 7 2 11
5 0 4 6 7
7 4 0 5 1
2 6 5 0 2
11 7 1 2 0

 and σ = (1, 2, 4, 3, 0)

cost(σ) = cost(1, 2, 4, 3, 0) =
4∑
i=0

4∑
j=0

fijdσ(i)σ(j) = 222

The total number of permutations for a QAP of size n is n!

2.1.1 Alternative formulations of the QAP

The original formulation proposed by Koopmans & Beckmann (formulation 2.1)
expresses the combinatorial structure of the QAP. However, other equivalent formu-
lations can provide useful approaches for their solution. Some of these alternative
formulations are:

1. Quadratic Integer Program formulation

This formulation corresponds to an integer programming problem with an
objective quadratic function (hence the name Quadratic Assignment Problem).
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The Quadratic Integer Program formulation uses permutation matrices instead
of the simple permutations of the original formulation. Each permutation σ
of the set {0, 1, · · · , n − 1} can be represented by an n × n matrix X = (xij)
such that

xij =

{
1 if σ(i) = j,

0 otherwise

(i.e. xij = 1 if facility i is placed in location j, and xij = 0 otherwise).

X is called a permutation matrix. The Quadratic Integer Program formulation
is then:

Min
n−1∑
i=0

n−1∑
j=0

n−1∑
k=0

n−1∑
l=0

aijbklxikxjl

subject to
n−1∑
i=0

xij = 1, 0 ≤ j ≤ n− 1

n−1∑
j=0

xij = 1, 0 ≤ i ≤ n− 1

xij ∈ {0, 1} = 1, 0 ≤ i, j ≤ n− 1

The restrictions in this formulation imply that each “facility” must be assigned
to a single “location,” and that each “location” is assigned a single “facility.”

2. Inner Product formulation

The inner product of two matrices A and B of sizes n× n is defined as:

< A,B >=
n−1∑
i=0

n−1∑
j=0

aijbij

If X is a permutation matrix, AX t
σ permute the columns of A, and XσA

permute the rows of A, therefore XσAX
t
σ = (aσ(i)σ(j)).

A more compact alternative formulation for the QAP is:

Min < F,XDX t >

subject to
n−1∑
i=0

xij = 1, 0 ≤ j ≤ n− 1

n−1∑
j=0

xij = 1, 0 ≤ i ≤ n− 1

xij ∈ {0, 1} = 1, 0 ≤ i, j ≤ n− 1
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3. Trace formulation

It is known that the trace of a matrix A of size n× n is defined as:

trace(A) =
n−1∑
i=0

aii,

As trace(AB)=tr(BA) and trace(A) =trace(At),

< A,B >= trace(ABt)

and
< F,XDX t >= trace(FXDtX t)

Therefore, the QAP can be formulated as:

Min trace(FXDtX t)

subject to
n−1∑
i=0

xij = 1, 0 ≤ j ≤ n− 1

n−1∑
j=0

xij = 1, 0 ≤ i ≤ n− 1

xij ∈ {0, 1} = 1, 0 ≤ i, j ≤ n− 1

(2.2)

The trace formulation, is the formulation used in this work.

2.1.2 Computational complexity

The QAP is considered one of the most complex combinatorial optimization pro-
blems and is the model for many real life problems, such as facility layouts, campus
planning, backboard wiring, scheduling, computer manufacturing, turbine balancing
and communication processes, among other applications [49].

Sahi & Gonzalez show in [59] that the QAP is not only a NP-Complete problem,
but also that it is impossible to find an approximate solution (or ε-approximate
solution) in polynomial time within some constant factor of the optimal solution,
unless P = NP. The foregoing can be formalized in the following definition and in
the following theorem:

Definition 2.1. Given a real number ε > 0, an algorithm γ for the QAP is said to
be an ε-approximation algorithm if∣∣∣Z(F,D, σγ)− Z(F,D, σopt)

Z(F,D, σopt)

∣∣∣ ≤ ε,
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holds for every instance QAP, where Z(F,D, σ) is the objetive function value of a
solution σ for a QAP with flow matrix F and distance matrix D; σγ is the solution
of QAP computed by algorithm γ and σopt is an optimal solution of QAP.

Theorem 2.1. The quadratic assignment problem is strongly NP-Complete.

For an arbitrary ε > 0, the existence of a polynomial time ε-approximation algorithm
for the QAP implies P = NP.

Since it is assumed that P 6= NP, it seems very unlikely to find an ε-approximation
algorithm in polynomial time for the QAP, for some ε > 0. Therefore, solving the
QAP to optimality, or even finding an ε-approximate solution to it are considered
to be hard problems.

Queyranne confirms in [56] the difficulty of solving the QAP in comparison with
other difficult combinatorial problems. He shows (unless P = NP) that the QAP is
not approximable in polynomial time within some finite ratio, even if D is a distance
matrix of a set of points on the Euclidean line, and F is a block-diagonal symmetric
matrix. For example, Christofides [18] demonstrates that the Traveling Salesman
Problem (TSP) is approximable in polynomial time (with ε = 3/2) if the distance
matrix is symmetric and satisfies the triangular inequality.

2.1.3 Other NP-Complete problems formulated as QAPs

Another reason that highlights the structure and complexity of QAP is that many
others significant NP-Complete combinatorial optimization problems result in par-
ticular cases of QAP. Some of them are:

1. The Traveling Salesman Problem (TSP) [37]

This problem can be stated as follows: How should an agent visit a set of n
cities returning to the origin city in such a way that each city is just visited
once and the cost of the tour is the minimized?

If, in the QAP formulation, D = (dij) is defined as the matrix of distances
between cities of the TSP, and F = (fij) is defined as a hamiltonian cycle
adjacency matrix with a number n of vertices, for example:

F =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
1 0 0 . . . 0
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TSP : min
σ∈Sn

n−2∑
i=0

dσ(i)σ(i+1) + dσ(n−1)σ(0)

≡ min
σ∈Sn

n−2∑
i=0

fi(i+1)dσ(i)σ(i+1) + f(n−1)0dσ(n−1)σ(0)

≡ min
σ∈Sn

n−1∑
i=0

n−1∑
j=0

fijdσ(i)σ(j) : QAP

2. The Linear Arrangement Problem (LAP) [26]

This problem consists in finding an arrangement of the nodes of a weighted
graph on n nodes, so as to minimized the sum of the weighted edge lengths.

If, in QAP formulation, D = (dij) given by dij = |i − j|, for all i, j and
flow matrix F = (fij) is the (weighted) adjacency matrix of a given graph
G = (V,E).

LAP : min
σ∈Sn

∑
(i,j)∈E

wij|σ(i)− σ(j)|

≡ min
σ∈Sn

n−2∑
i=0

fi(i+1)dσ(i)σ(i+1) + f(n−1)0dσ(n−1)σ(0)

≡ min
σ∈Sn

n−1∑
i=0

n−1∑
j=0

fijdσ(i)σ(j) : QAP

3. Maximum Clique Problem (MCP) [48]

Given a graph G = (V,E) with |V | = n, this problem consists in finding the
maximum number k ≤ n such that there is a subset V1 ⊆ V with k vertices
that induces a clique in G.

If, in the QAP formulation, D = (dij) equal to the adjacency matrix of the
given graph G, and the flow matrix F = (fij) given as the adjacency matrix of
a graph consisting of a clique of size k and n− k isolated vertices, multiplied
by -1.

G has a clique of size k if and only if the optimal value of the QAP problem
is −k2 + k. In fact:
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QAP : min
σ∈Sn

n−1∑
i=0

n−1∑
j=0

fijdσ(i)σ(j)

= 2
(
f01dσ(0)σ(1) + f02dσ(0)σ(2) + . . . f0(k−1)dσ(0)σ(k−1)

+ f12dσ(1)σ(2) + . . .+ f1(k−1)dσ(1)σ(k−1)

+ f(k−2)(k−1)dσ(k−2)σ(k−1)

)
= −2

(
(k − 1) + (k − 2) + · · ·+ 1

)
= −2

((k − 1)k

2

)
= −k2 + k

4. Graph Partitioning Problem (GPP) [35]

Given a graph G = (V,E) with |V | = n and a number k which divides n,
the problem consists in partitioning the set V into k subsets V1, V2, . . . , Vk of
equal cardinality such that the set Ecut = {(u, v)|(u ∈ Vi) ∧ (v ∈ Vj), i 6= j} is
minimized. This problem is a special case of QAP if, in QAP formulation, D =
(dij) equal to the adjacency matrix of the given graph G, and the flow matrix
F = (fij) given as a block diagonal matrix with k blocks, where each block is
the negative adjacency matrix of a complete subgraph with n/k vertices, thus:

F =


B1 0 . . . 0
0 B2 . . . 0
...

...
. . .

...
0 0 . . . Bk


n×n

with Bj =


0 −1 . . . −1
−1 0 . . . −1
...

...
. . .

...
−1 −1 . . . 0


n
k
×n

k

∀j, 1 ≤ j ≤ k. and 0 is a matrix of zeros.

5. Packing Problem in Graphs [9]

Given two graphs G1 = (V1, E1) and G2 = (V2, E2) with |V1| = |V2| = n, a
permutation σ of {0, 1, . . . , n− 1} is called a packing of G2 into G1, if eij ∈ E1

implies eσ(i)σ(j) /∈ E2 ∀i, j, 0 ≤ i, j ≤ n− 1 (or vice versa). The graph packing
problem consist in finding or not a packing of G2 into G1.

If, in the QAP formulation, D = (dij) equal to the adjacency matrix of the
given graph G2, and F = (fij) equal to the adjacency matrix of given graph
G1, a packing of G2 into G1 exists if only if the optimal value of this QAP is
equal to 0.
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2.2 Techniques to solve the QAP

The most usual techniques applied to solve the QAP are exact methods and approach
methods.

2.2.1 Exact methods

These methods correspond to mathematical programming techniques. Some of them
are based on the divide and conquer strategy, i.e. they work by partitioning the
search space of the problem into sub-problems and by optimizing each one of them
separately. The most common are:

Branch and bound (B&B). It is based on an implicit enumeration of all of the
solutions to the problem. The search is carried out on the whole problem domain;
the set of solutions is thought of as forming a rooted tree, where the root represents
the problem itself, and the leaves represent additional restrictions that bound the
solution to the problem. This solution improves as the iterations advance. The
method uses the branching operator that determines the order in which the branches
are explored (for example, a deep search or a wide search), the pruning operator that
eliminates these solutions that do not lead to the best, considering lower bounds for
every partial solution. The method ends when there are no more branches or nodes
to explore, or when all the nodes have been eliminated. The quality of the bounds
and the branching strategy determine the quality of the method. Generally, the
QAP is solved by B&B from its representation as a linear assignment problem [7]
and using bounding techniques, such as the Gilmore-Lawler lower bounds method
[27].

Dynamic programming. It is based on Richard Bellman’s optimality principle
that “All sub-policies of an optimal policy must be optimal as well.” It solves a
general problem in a recursive manner, positing less complex problems that have
the same structure of the original problems. This process is applied until problems
with an immediate solution are found, and the process starts again until a solution
to the general problem is obtained.

Relaxations. A problem is solved with less requirements than the original pro-
blem. The most common relaxations are the linear programming relaxations and
Lagrangian relaxations. The former solve a problem with real variables when the
original requires only integer solutions; with this, lower bounds are found, and they
can be used with the B&B method for the branching part. In the Lagrangian
relaxation, some restrictions of the problem (usually the most difficult ones) are
removed and incorporated to the objective function through a penalizing function
[67]. Some relaxations for QAP appear in [36, 25, 3]
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Benders decomposition. When the QAP formulated as a linear programming
(mixed integer) problem, it can be solved by fixing the integer variables and by
solving the corresponding dual problem. The time for this convergence to happen
is long, and it is usually applied only to small instances, but when applying cutting
plans, good sub-optimal solutions are produced [8].

Cutting planes. Cutting planes were proposed by Gomory [29]. They are based on
adding specific restrictions to relaxed Linear Programming problems. The method
approximates the polyhedron represented by the convex shell of all feasible solutions
of the original problem by the polytope of the relaxed problem.

2.2.2 Approach methods

They are divided into metaheuristics based on trajectory, and metaheuristics based
on population.

2.2.2.1 Metaheuristics based on trajectories

These methods consist in making determined searches within a space of solutions.
They start with only one initial solution, and the solution in each iteration is then
replaced by another (frequently a better one). The spirit of the methods is aimed
at exploting promising regions of the search space (in order to intensify the search).
The most common in the solution of the QAP are:

Construction methods. They are considered the most simple heuristics for the
QAP. The quality of the solutions is not the best, but, they are very simple to im-
plement computationally and, given their properties, they can be used as part of
more intelligent methods for the QAP. Basically, they start with an empty permu-
tation, and recursively assign places to facilities according to a certain criteria until
all facilities have been assigned. These methods were formulated for the first time
by Gilmore [27] around 1960. Another method of construction with better results
is the one proposed by Muller in [42].

Local Search methods (LS). They are algorithms that produce optimal local
solutions in the following way: a neighborhood N(σ0) of a permutation σ0 of the
QAP consists of all permutations that in some sense are close to σ0. Therefore, a
local optimal QAP solution is a permutation σ such that:

n−1∑
i=0

n−1∑
j=0

fijdσ(i)σ(j) = min
σ∈N(σ0)

n−1∑
i=0

n−1∑
j=0

fijdσ(i)σ(j)

The procedure starts with an initial solution, and is improved through a movement
to a solution within its neighborhood; this procedure is repeated until no solution
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gets better. In order to obtain better results, the local search algorithms are carried
out many times starting at different initial solutions (it is therefore recommended
that a parallel implementation be used). A more complete study appears in [1].

2-opt heuristic. The 2-opt local optimization heuristic is applied in order to im-
prove candidate QAP solutions [65]. This method consists in performing all pairwise
exchanges of all possible facilities on each of the locations in a particular permu-
tation. The current permutation is updated with the permutation with the lowest
negative value ∆ij (difference between the cost of the permutation found and the
cost of the current permutation) in the following formula:

∆ij = (fji − fij)(dσ(i)σ(j) − dσ(j)σ(i)

+
n−1∑
k=0
k 6=i,j

((fjk − fik)((dσ(i)σ(k) − dσ(j)σ(k)))

+ (fkj − fki)(dσ(k)σ(i) − dσ(k)σ(j))

with asymmetric distance and flow matrices [14], (i, j are facilities that are ex-
changed).

This formula is evaluated in linear time for all possible n(n − 1)/2 swaps. The
Koopmans-Beckmann’s original formulation (formula 2.1) is evaluated in quadratic
time.

A matrix formulation for ∆ij is:

∆ij = (fij − fji)(dσ(j)σ(i) − dσ(i)σ(j))

+ (Fi· − Fj·)·((DX t)σ(j)· − (DX t)σ(i)·)

+ (F·i − F·j)·((XD)·σ(j) − (XD)·σ(i))

(2.3)

where · interprets an internal product, fij = fji = 0 in addends 2 and 3. Fk· is the
row k of the matrix F and F·k is the column k of the matrix F .

Greedy Randomized Adaptive Search Procedure (GRASP). It is a very
usual heuristics for combinatorial optimization problems. GRASP is a combination
of greedy elements and randomized search elements, and it is composed of a cons-
truction phase, where two facilities are assigned to two locations among all those
with minimal costs, and a improvement phase that includes randomized elements
to avoid falling into local optima. A detail implementation for QAP is described in
[50].
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Greedy 2-opt heuristic. This method is a variant of the 2-opt heuristic. The
Greedy 2-opt heuristic performs one by one all pairwise exchanges of all possible
facilities on each of the locations in a particular permutation, but, immediately find
an permutation with better cost, this updates the previous permutation (the cost is
also updated), i.e. the current permutation is updated with the first permutation
found such that ∆ij < 0 (formula 2.3). The greedy 2-opt heuristic continues on the
permutation updated in the next swap. This heuristic and other greedy heuristics
for the QAP are explained in [5].

Tabu Search (TS). This technique is used to “remember” which solutions have
already been visited, and to abandon neighborhoods that have local optimal loca-
tions. In QAP, the movements used are usually swaps, but are controlled by a tabu
list, which does not allow certain movements on the current solution; as movements
change, the list is updated during the search. The solution starts with an initial fea-
sible solution; only if the selected solution is not in the tabu list, the initial solution
is updated by the selected solution (this new solution is not necessarily better than
the initial), and then the search in the neighborhood is repeated. Different studies
refer to the convenient size of the tabu list, with respect to the QAP—in [6] there
is a deep study on the subject. The tabu search algorithm has a parallel nature
in its implementation dividing its search load between various processors. Parallel
implementations are proposed in [64, 58].

Simulated Annealing (SA). It is an approach that exploits the analogy between
combinatorial optimization problems and mechanical statistics problems (a physical
system composed of many particles). The feasible solutions to a combinatorial
optimization problem correspond to the states of the physical system, and the values
of the objective function correspond to the energy of the physical system state. A
material is heated and then slowly cooled to change its physical properties. The
heat causes the atoms to augment their energy and move from the initial positions
that would correspond to local minimums in an optimization problem. The slow
cooling produces low energy states (thermic balance) that would correspond to global
minimums in an optimization problem. Wilhelm et al. [75] obtained good results
for QAP with a sophisticated simulated annealing approach.

2.2.2.2 Metaheuristics based on populations

They are iterative techniques that apply stochastic operators on a set of individuals
(population), where each individual one corresponds to a coded version of a po-
ssible problem solution. The performance (quality) of each individual is evaluated
through an aptitude function; variation operators on some of the individuals guide
the whole population to high quality solutions, which confer these metaheuristics a
good exploration power. The most common metaheuristics applied to the QAP are
the following:
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Genetic Algorithms (GAs). Genetic algorithms (GAs) are some one of the most
outstanding approaches in the field of evolutionary algorithms, and are defined as
general-purpose iterative adaptive search procedures. This is the metaheuristic con-
sidered in this work. GAs have the advantage of describing in an abstract and
rigorous way the collective adaptation of a population of individuals to a given
environment, based on a behavior similar to that of a natural system.

A simple Genetic Algorithm usually begins with a population of individuals
randomly generated, or sometimes pre-established by previous experiences, or gene-
rated by any heuristic procedure. The simple GA keeps population size constant,
and works iteratively as follows:

During each step in the iteration (called generation), individuals are evaluated
and assigned a fitness value. To form a new population (from the previous one), the
selection operator is applied, which consists in choosing individuals with a proba-
bility proportional to their relative aptitude; this ensures that the expected number
of times an individual is chosen is proportional to their relative performance in the
population. It is expected that individuals above the average have a higher copies
in the new population (higher probability of reproduction), while individuals below
the average have more risk of disappearing. This operator acts as a generator of
“intermediate parents,” who will be responsible for giving birth to a new population,
better than the previous one. To incorporate new individuals into the population,
some genetic operators are required, such as the crossover operator (which simulates
sexual reproduction), and/or the mutation operator (which simulates asexual repro-
duction). The crossover, which is the most important operator of recombination,
consists in taking two individuals called parents (chosen by the selection operator)
and generating two new individuals called offsprings, thus exchanging parts of the
parents; sub-strings of parent chains are exchanged from a certain crossing point
chosen randomly. With the crossover, the search is guided towards good regions in
the problem domain. The mutation operator essentially makes it possible to avoid a
premature convergence to a local optimum, changing each component in some chains
with a reduced probability. In more sophisticated genetic algorithms, crossover and
especially mutation do not necessarily have to remain constant throughout the sim-
ple AG process. In general, the crossover aims to combine the most characteristic
features of parent chains, and therefore to increase the fitness of new individuals.
The mutation only affects one individual at a time, and its intention is to avoid a
premature convergence to a local optimum. Without the mutation operator, po-
tentially useful genetic material could be lost. Since these algorithms are stochastic
procedures, their performance varies from one execution to another (unless the same
random number generator is used). Because of this, the average performance of seve-
ral executions is more reliable—and therefore more used—than the results generated
by a single execution of the algorithm.

Genetic algorithms, like most stochastic iterative algorithms, do not guarantee
convergence. They end after a maximum number of iterations, or when a satisfactory
solution is reached. It may also happen that the quality of the results is not improved
in the iterative process. Therefore, the algorithm must be stopped before reaching
the maximum number of iterations. Algorithm 1 shows a simple genetic algorithm.
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Algorithm 1 Simple Genetic Algorithm.
Produce an initial population of individuals
while termination condition not met do

Evaluate the fitness of all individuals
Select individuals suitable for reproduction
Produce new individuals
Generate a new population by inserting some good new individuals and

discarding some bad old individuals
Mutate some individuals

end while

A great number of research projects have been proposed for the QAP, but gene-
rally this method works better considering a hybrid approach with a Local Search
algorithm or a Tabu Search [76, 72].

Ant Colony Optimization (ACO). This heuristic method imitates the behavior
of ants when searching for food. The analogy between the performance of ants
and the solution of a combinatorial optimization problem resides in the following
factors: the search space of ants corresponds to the set of feasible solutions to
the optimization problem, and each source of food corresponds to the value of the
objective function. The adaptive memory component of each ant is the track of
pheromones that accumulate in the less traveled roads. With respect to the QAP,
the pheromone track of ACO is the measure of attraction to locate a facility i in
a location j. This procedure is described in detail in [66], and other studies are
gathered in [19]. Tseng and Liang, in [70], apply first a GA to find an initial
population. A parallel ACO procedure for the QAP appears in [71].

Particle Swarm Optimization (PSO). In this method, a number of particles
move through the search space with the objective of finding an optimal position (a
good solution). The particles communicate with each other, and the one with the
best position (measured according to an aptitude function) exerts an influence on
the rest. The particles adjust their movements systematically (position and speed)
according to their own experience, and according to the experience of the rest of the
swarm. This method is inspired in the social behavior of organisms, such as flocks
of birds or schools of fish. Although in principle it is a method for continuous search
spaces, it has also been applied to discrete optimization problems like the QAP (see
[2, 45]) and to the TSP.

2.2.2.3 Parallel metaheuristic methods based on trajectories

Parallel movement model (or Iteration level model). The evaluation of
neighborhoods is made in parallel. At the beginning of each iteration, a master
process distributes the current solution on slave processes, and each one, separately,
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handles a particular neighborhood and obtains a new solution. These solutions then
return to the master process (see figure 2.2).
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Figure 2.2. Parallel movement model, parallel exploration of the neighborhood, taken
from [38].

Parallel multi-start model (or Algorithm level model). Several metaheuristic
methods based on trajectories are executed simultaneously, from the same or from
a different solution (see figure 2.3).
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Figure 2.3. Parallel multi-start model, taken from [38].

Acceleration movement model (Solution level model). A unique solution is
evaluated in parallel. In this case, the aptitude function is a succession of sub-
functions that can be executed in parallel (see figure 2.4).
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Figure 2.4. Acceleration movement model, taken from [38].

2.2.2.4 Parallel models for metaheuristic methods based on population

Sharing workload in terms of computing resources (memory, processors, interco-
nnected equipment) can consider the possibility of trying to solve increasingly com-
plex and interesting problems. The parallelism is inherent in this type of meta-
heuristics, since each individual in the population is practically an independent unit
[62]. There are different types of parallel models for evolutionary algorithms classi-
fied according to the way the population individuals interact and to how its size is
defined. The most important are:

Embarrassingly parallel algorithm. The same evolutionary algorithm is run
under different initial conditions in a parallel way. When all the different configu-
rations have been executed, the configuration showing the best behavior is chosen.
The embarrassingly parallel genetic algorithm does not have a behavior similar to
that of a natural environment, but the time savings in obtaining final results is
important.

The following models correspond to genuine parallel evolutionary algorithms.

Master-Slave model (Global parallelization model). This model parallelizes
an evolutionary algorithm in the level of its fitness function. A master process
distributes multiple individuals to various slave processes, which then return right
away the fitness of those individuals. This procedure turns out to be efficient,
given that the evaluation of the fitness function is the task within an evolutionary
algorithm that consumes a greater processing time (see figure 2.5).

Coarse-grain model (Island model or distributed model). A master process
is in charge of the distribution of N tasks to slave processes, that is, the total
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Figure 2.5. Master-Slave model. Ii: i-th individual, Fiti: i-th individual’s fitness.

population is distributed in N sub-populations (islands) and on each one of them
a population-based model is executed [51]. This model is inspired by the spatially
distributed structure of natural populations. After working each slave (processor)
simultaneously and independently, an information interchange is executed among
them in certain stages of the execution of the algorithm, replacing the k individuals
with lower aptitude of each “island” by the k individuals with greater aptitude of
the previous “island” (see figure 2.6).
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Figure 2.6. Coarse-grain model. EA.Proc.i: Simple evolutionary algorithm executed
on the i-th processor.

The intention of this approach is to periodically re-inject diversity to sub-populations
that, in principle, made an exploration in particular search space and that, therefore,
tend to converge to a local or premature optimality.

Fine-grain model (Cellular model or Grid model). This model is so called,
because it has a strong resemblance to cellular automata, but with stochastic transi-
tion rules [51]. In this model, individuals are placed in a two-dimensional mesh, one
individual per cell. Figure 2.7 shows a neighborhood (in black) for a particular in-
dividual (in gray), this particular neighborhood is known as Moore’s neighborhood.

The fitness evaluation for each individual is done simultaneously, and the
crossover operator takes place locally within each neighborhood. The way an indivi-
dual is selected in the neighborhood to mate with the “central” individual (previous
figure) is to select some individuals from the neighborhood with a uniform proba-
bility and to make a selection per tournament between them. The selection per
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Figure 2.7. Neighborhood in the Fine-grain model.

tournament is done deterministically or probabilistically: if it is done in a determi-
nistic way, the most suitable individual is simply selected among the participants,
while if it is done in a probabilistic way, the most apt individual will be more likely
to be chosen. Subsequently, the crossover between the selected individual and the
central individual is made. The central individual will be replaced by the generated
offspring if and only if their fitness is less or equal than the generated offspring (ma-
ximization problem). More sophisticated algorithms do not restrict the selection of
the central individual’s mate only to the neighbors, but rather carry it out through
more distant random paths, which makes the algorithm much more dynamic. Algo-
rithm 2 shows a Fine-grain model.

Algorithm 2 Fine-grained Model.
for each cell i in the mesh, in parallel do

Assign a random individual
end for
while termination condition not met do

for each individual i, in parallel do
Evaluate
Select an individual k in the neighboring of i
Produce offspring from i and k
if the offspring is better or equal than i then

Assign the offspring to i
end if

end for

end while

2.3 Graphics Processing Unit (GPUs)

A graphic processing unit (GPU) is a coprocessor whose purpose is graphics proce-
ssing. However, GPUs have been used recently to accelerate general computations,



CHAPTER 2. PRELIMINARIES 23

now, they are also known as General-Purpose Graphics Processing Unit (GPGPU).
The multiprocessing architecture in parallel of a GPU is ideal for developing alge-
braic operations of vectors and matrices.

A GPU consists of a set of Streaming Multiprocessor (SMXs), each one equipped
with enough cores (Streaming Processors (SPs)) designed for parallel performance.
Each multiprocessors shares the same control unit, i.e. SIMD (Single instruction,
multiple data) execution (see figure 2.8).

Figure 2.8. Hardware model of a GPU.

The GPU has its own off-chip DRAM memory (GDDR5), called device memory
(global memory or VRAM ), which is approximately three times faster than the
main memory (DDR3) of the CPU. Each multiprocessor has a bank of memory
registers, a shared memory, and a space of constants and textures—the last two are
read-only (see figure 2.9). The lifetime of the shared memory is the same as the
lifetime of a kernel (a procedure that runs on a GPU), while the global, constant
and texture memory spaces remain throughout the application. Shared memory
(on-chip memory) is approximately five hundred times faster than VRAM and cons-
tant memory is approximately one hundred times faster than VRAM, [73]. Shared
memory is actually a SRAM (Static Random Access Memory) memory.

CUDA (Compute Unified Device Architecture) is a computer language designed
to take advantage of the multiprocessing power of a GPU in general-purpose com-
puting. CUDA is basically C programming language with SIMD extensions. With
CUDA, programmers do not require any knowledge about vertices, pixels, or textures
(as was the case with graphical programming interfaces like OpenGL or DirectX),
nor do they require any knowledge of graphic programming [60].

The CUDA programming model is based on massive data parallelism and fine
grain parallelism. In addition, the model is scalable, that is, the code is executed on
any number of cores without the need to recompile [73]. The hierarchical structure
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Figure 2.9. Memory hierarchy on a GPU.

in a GPU device with CUDA is composed of execution threads, thread blocks, and
block grids. The threads are organized in a one-dimensional, two-dimensional or
three-dimensional way within a block, just like the blocks inside a grid (see figure
2.10).

The GPU is a coprocessor that is highly branched in threads. The threads run
in parallel on the cores of a multiprocessor. Each multiprocessor processes batches
of blocks, one after the other. A correspondence between the hierarchical structure
in a GPU device with CUDA and the memory hierarchy appears in figure 2.11.

The hardware is free to plan the execution of a block in any multiprocessor. The
blocks can be executed sequentially or concurrently according to the availability of
resources [73] (see figure 2.12).

The skilled programmer takes advantage of plasticity of the CUDA development,
and adapts it to the technology of the logical structure of the grid in the GPU using
the data structure implied by the problem to be solved.
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Figure 2.10. Logical organization of GPU with CUDA.
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Figure 2.11. Correspondence between the hierarchical structure in a GPU device with
CUDA and the memory hierarchy.
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Figure 2.12. Execution of a CUDA program.



CHAPTER 3

Proposed Approach

As seen in the previous chapters, it is not an easy task to find an optimal solution
(not even near the optimum) to the QAP by exact methods. This chapter shows
the implementation of a Fine-Grained Parallel Genetic Algorithm improved with a
2-opt (greedy 2-opt) local search heuristic, called PGAGrid. PGAGrid is fully
implemented on graphics processing unit (GPUs), and aims to find near-optimal
solutions to significant instances of the QAP.

Section 3.1 explains the coding used to represent a chromosome (permutation
of the QAP) and how to define the initial population on a GPU. This section also
shows the correspondence between the logical components of a GPU and the data
structures of a Genetic Algorithm in the PGAGrid model.

Section 3.2 explains how the fitness of each of the individuals in the population
is calculated, and how their matrix representation is favorable to be implemented
in a GPU. It also explains how different memory spaces of the GPU are used to
speed up calculations. Finally, this section highlights the computational complexity
of each of the procedures involved in the calculation of the fitness function in the
PGAGrid model.

Section 3.3 presents the implementation of the selection operator in the PGA-
Grid model. The technique used is an elitist binary tournament. The tournament
takes place simultaneously between each individual residing in each of the GPU
blocks of the GPU grid defined in section 3.1 and another individual from a ran-
domly assigned population. Each random individual is uniquely assigned to the
corresponding GPU block.

The crossover operator for PGAGrid is implemented in section 3.4. The
crossover used was a modified order crossover. This crossover is performed simul-
taneously between each of the individuals of the population that reside within each
GPU block of the GPU grid and another individual assigned to the same GPU block,
using a neighborhood topology according to the fine-grained parallel genetic model
described in paragraph of the subsection 2.2.2.4. The modified order crossover is

27
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implemented completely in parallel. Each procedure in the section describes the
corresponding computational complexities.

The mutation and transposition operators used in the PGAGrid model are
described in sections 3.5 and 3.6, respectively. Both operators are implemented at
block level within the GPU. Exchange mutation was used as the mutation operator,
where two genes (GPU threads) of each individual (GPU block) are exchanged. The
transposition operator simply inverts the genes (GPU threads) of a substring of the
chromosome that represents each individual (GPU block).

Section 3.7 explains two heuristics of local optimization (2-opt and greedy 2-opt),
as well as the way they were implemented in the GPU. Each of these heuristics was
applied simultaneously to each of the individuals (GPU blocks) of the population
(GPU grid). These techniques were fully implemented in the GPU according to
the matrix formulation 2.3. Of course, this formulation takes advantage of the
architecture of the GPU as a vector device.

A summary of the PGAGrid model is described in section 3.8.

Finally, section 3.9 lists two links to articles published on the solution of some
combinatorial problems from a QAP by the PGAGrid model. The first article deals
with the solution of some NP-Complete combinatorial problems as particular cases
of QAP (see subsection 2.1.3). The second article focuses on the solution of classical
chess problems posed as a QAP. The NP-Complete problems require only properly
defining the flow and distance matrices in the PGAGrid model. Chess problems
also require defining those matrices, as well as redefining the coding of the individual
in the PGAGrid model.

3.1 Coding and initial population

An integer coding was used to represent the chromosome of an individual in the
GA. This chromosome is a permutation σ = (σ(0), σ(1), . . . , σ(n− 1)) of the QAP.
The position i, 0 ≤ i < n in vector σ corresponds to a location of the QAP and the
value σ(i) in σ corresponds to a facility of the QAP associated with location i, (see
an example in figure 3.1).

σ = 6 5 3 1 0 7 2 4

0 1 2 3 4 5 6 7

Figure 3.1. Representation scheme of the GA. The shaded gene means that facility 7 is
placed at location 5 in a QAP of size n = 8.
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The initial population was defined in a two-dimensional GPU grid of size 8×8 (set
of permutations of the QAP). Each GPU block consists of 128 GPU threads, but
only n are active1 (n is the size of the QAP).

Each GPU block and each GPU thread are completely referenced by the variables
blockIdx.x, blockIdx.y and threadIdx.x:

• blockIdx.x and blockIdx.y are the indices that correspond to each GPU block
in dimension x and dimension y, respectively.

0 ≤ blockIdx.x, blockIdx.y < 8.

• threadIdx.x is the index thet correspond to each GPU thread inside each GPU
block.

0 ≤ threadIdx.x < 128, but only the first n are active threads.

Each GPU block represents the chromosome of a particular individual, and each
GPU thread represents a gene on that chromosome (see Figure 3.2). Ujaldón states
in [73] that the best fine-grain parallelism is achieved when a single value is assig-
ned to each thread. The GPU used in this work was a GPU Nvidia GeForce GTX
760M with 4 SMX and CUDA Compute Capability (CCC) 3.0. For this CCC, each
SMX processes 16 blocks concurrently, and all the individuals of the population were
therefore generated simultaneously.

Each individual was randomly generated simultaneously in the corresponding
shared memory space of each GPU block (see Figure 3.3).

Algorithm 3 specifies how each individual was generated in each GPU block and
copied to the population in the global memory.

3.2 Fitness

The fitness of each individual of the population was evaluated according to the trace
formulation (Formulation 2.2). This formula takes advantage of the GPU, since its
multiprocessing architecture in parallel is ideal for developing algebraic operations
of vectors and matrices [73]. The distance and flow matrices of the QAP reside
in the constant memory space of the GPU in order to speed up the calculations;
constant memory is approximately 100 times faster than global memory.

To deal with large instances of the QAP, a configuration of a two-dimensional
GPU grid of size n × 82 was used2, where each GPU block consists of n one-
dimensional active GPU threads3; in this GPU grid:

1Each GPU block consists of 128 GPU threads for efficiency in processing. It is recommended
that the number of GPU threads in a GPU block be a multiple of 32, which is the size of a warp, i.e.
the set of GPU threads processed simultaneously by a streaming processors [73]. The statement
threadIdx.x < n in a IF statement in a CUDA code specifies that only the first n threads are
active.

2n columns and 64 rows, contrary to the orders of matrices of linear algebra.
3Again, 128 GPU threads were defined in each GPU block, but only the first n are active.



CHAPTER 3. PROPOSED APPROACH 30

GPU Grid

Block(0,0) Block(1,0) Block(7,0)

�� ��
. . .

�� �� ��
. . .

�� . . . �� ��
. . .

��

...
...

. . .
...

Block(0,7) Block(1,7) Block(7,7)

�� ��
. . .

�� �� ��
. . .

�� . . . �� ��
. . .

��

GPU Thread

�� 7−→
Gene

σ(i)

GPU Block

�� �� . . . �� 7−→
Individual (Chromosome)

σ = (σ(0), . . . , σ(n− 1))

GPU Grid

�� �� . . . �� . . . �� �� . . . ��

...
. . .

...

�� �� . . . �� . . . �� �� . . . ��

7−→ Population

Figure 3.2. Population in GPU.
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Figure 3.3. The ith individual of the population resides in the shared memory space of
the ith GPU block.
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Algorithm 3 Procedure to generate to generate the initial population in PGAGrid
IndexBlock ← blockIdx.x+ blockIdx.y ∗n // is the global index (linearized) of each GPU block in

the GPU grid

IndexThread← threadIdx.x+ IndexBlock ∗ n // is the global index (linearized) of each GPU

thread in the GPU grid

σ[threadIdx.x]← threadIdx.x // σ is in shared memory

for k from 0 to (n− 1) do
generate random i, 0 ≤ i < n
generate random j, 0 ≤ j < n
if threadIdx.x = 0 then

exchange σ(i) and σ(j)
end if

end for
Synchronize threads // This order ensures a synchronization in the writing

if threadIdx.x < n then
Population[IndexThread]← σ[threadIdx.x] // Population in global memory

end if

// The statement threadIdx.x < n in sentence IF specifies that only the first n threads are active

0 ≤ blockIdx.x < n, 0 ≤ blockIdx.y < 64 and 0 ≤ threadIdx.x < 128, but only
the first n are active GPU threads.

Each row of the GPU grid represents the linearized X permutation matrix
associated with each individual of the population, so that the GPU block(i,j),
0 ≤ i < n, 0 ≤ j < 64 represents the ith row of the permutation matrix of the
jth individual, denoted xji· = xji0, x

j
i1, . . . , x

j
i(n−1) (see Figure 3.4).

GPU Grid

...

Block (i, j)

. . . �� �� · · · ��

xji0 xji1 xji(n−1)

. . .

...

Figure 3.4. GPU block(i,j), 0 ≤ i < n, 0 ≤ j < 64 represents the ith row of the

permutation matrix of the jth individual, denoted xji· = xji0, x
j
i1, . . . , x

j
i(n−1)

To speed up the calculations, each of these rows was processed simultaneously in
the corresponding shared memory space of each block. Algorithm 4 shows how the
permutation matrices of each of the individuals in the population were obtained.

The same two-dimensional GPU grid of size n × 82 was configured to calculate
the transposed matrix of each previous permutation matrix, as well as the products
involved in the trace formulation. The transposed matrix is calculated from the
global memory of the GPU (Algorithm 5).
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Algorithm 4 Procedure to generate the permutation matrices of each of the indi-
viduals of the population in PGAGrid
IndexBlock ← blockIdx.x+ blockIdx.y ∗n // is the global index (linearized) of each GPU block in

the GPU grid

IndexThread← threadIdx.x+ IndexBlock ∗ n // is the global index (linearized) of each GPU

thread in the GPU grid

Xrow[threadIdx.x]← 0 // Xrow is a row of the X permutation matrix, Xrow is in shared memory

Xrow[Population[IndexBlock]]← 1 // Population is housed in global memory

if threadIdx.x < n then
X[IndexThread]← Xrow[threadIdx.x] // X permutation matrix in global memory

end if

Algorithm 5 Procedure to generate the transposed matrix
IndexBlock ← blockIdx.x+ blockIdx.y ∗n // is the global index (linearized) of each GPU block in

the GPU grid

IndexThread← threadIdx.x+ IndexBlock ∗ n // is the global index (linearized) of each GPU

thread in the GPU grid

if threadIdx.x < n then
Xt[IndexThread]← X[threadIdx.x ∗ n+ blockIdx.y ∗ n2] // X and Xt matrices in global

memory

Synchronize threads // This order ensures a synchronization in the writing

end if

For the FX product, each column xj·i = xj0i, x
j
1i, . . . , x

j
(n−1)i of the permutation

matrix of the individual j was loaded into the corresponding shared memory space
of the GPU block(i,j), 0 ≤ i < n, 0 ≤ j < 64. The τ -th GPU thread runs the
internal product

Fτ ··xj·i ∀i, j
for each of the individuals, simultaneously. (Fk· indicates the row k of the matrix F ).
The result was stored in the element rjτi, in a vector rj·i that was also defined in the
corresponding shared memory space. Therefore, the FX product has complexity
O(n). Algorithm 6 is a pseudo-code of this procedure.

Algorithm 6 Procedure to calculate the FX product matrix in PGAGrid
if threadIdx.x < n then
sum← 0
for i from 0 to (n− 1) do
sum← F [threadIdx.x ∗n+ i] ∗Xcol[i] // Xcol is each column of each X permutation matrix,

Xcol is in shared memory

Synchronize threads // This order ensures a synchronization in the writing

end for
r[threadIdx.x]← sum // r is each column of each FX matrix in shared memory

end if

For the DtX t product, each row xji· was loaded into the corresponding shared me-
mory space of the GPU block(i,j), 0 ≤ i < n, 0 ≤ j < 64. The τ -th GPU thread
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runs the internal product
Dt
τ ··xji· ∀i, j

for each of the individuals, simultaneously. The result was stored as in the previous
product. The complexity of DtX t is also O(n).

Finally, for the FXDtX t product, the i-th column of the matrix H = DtX t

corresponding to the j-th individual, denoted hj·i, was loaded into the corresponding
shared memory space of the GPU block(i,j), 0 ≤ i < n, 0 ≤ j < 64. The FX
linearized matrix of size n2×64 resides in the global memory. The τ -th GPU thread
runs the internal product

(FX)τ ··hj·i ∀i, j
for each of the 64 individuals. The complexity of FXDtX t is also O(n).

The i-th row of the previous matrix, corresponding to the j-th individual, resides
in the corresponding shared memory space of the GPU block(i,j), 0 ≤ i < n, 0 ≤
j < 64. Therefore, for the j-th individual, a j-th vector (tj0, t

j
1, . . . , t

j
n−1) was formed

with the i-th GPU thread of each GPU block(i,j), 0 ≤ i < n, 0 ≤ j < 64, whose
sum is precisely its corresponding fitness (trace of the matrix FXDtX t of the j-
th individual). This sum was calculated simultaneously for each individual in the
corresponding shared memory space of each GPU block of a one-dimensional GPU
grid size 64. Each GPU block has 128 threads (n of which are active) (see Figure
3.5).

GPU Grid

Block 0 Block j Block 63

�� �� · · · ��
t00 t01 t0(n−1)

. . . �� �� · · · ��

tj0 tj1 tj(n−1)

. . . �� �� · · · ��
t63
0 t63

1 t63
(n−1)︸ ︷︷ ︸

trace(FX(DtXt))
of the j-th individual

Figure 3.5. Configuration of a grid for the calculation of the trace.

A reduction algorithm was used to obtain the previous sum. The general idea is that
the original vector is reduced by half, by adding pairs of components and by storing
the result again in the vector the process continues until the final result is stored in
the first position of the vector. This algorithm requires the size of the original vector
to be a power of 2, something that can always be achieved by completing it with
zeros. This procedure has logarithmic complexity. A pseudo-code and an iteration
of the reduction algorithm are shown in Algorithm 7 and Figure 3.6, respectively.

After evaluating the fitness of each one of the individuals in parallel, the algo-
rithm continues to select the fittest individuals.
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Algorithm 7 Reduction method to add the components of a vector of size m, m
power of 2
i← m/2
while i 6= 0 do

if threadIdx.x < i then
vector[threadIdx.x]← vector[threadIdx.x] + vector[threadIdx.x+ i]
Synchronize threads // This order ensures a synchronization in the writing

i← i/2
end if

end while

�� �� �� ��

ss ss ss ss
+

��

+

��

+

��

+

��

Figure 3.6. One step of a summation reduction.

3.3 Selection

The implemented selection consists in an elitist binary tournament. For this, a GPU
grid similar to the GPU grid of Figure 3.2 was considered. The corresponding indi-
vidual of the current population and another individual of the population assigned
randomly reside in each GPU block. To ensure that all individuals in the population
were randomly assigned in a unique way, the current population was multiplied to
the left with a permutation matrix X associated with a φ permutation of the set
{0, 1, . . . , 63}, thus:

Populationpermuted = X · Populationcurrent (3.1)

Each individual of the permuted population inherits his corresponding fitness, doing:

Fitnesspermuted = X · Fitnesscurrent (3.2)

The φ permutation was generated in the CPU and copied to the global memory of
the GPU.

Each row of the permutation matrix X was generated orderly, in each shared
memory space of each GPU block of a one-dimensional GPU grid of size 64, (see
Figure 3.7); in this GPU grid: 0 ≤ blockIdx.x < 64 and 0 ≤ threadIdx.x < 128,
but only the first 64 are active threads.

An pseudo-code to calculate these rows is shown in Algorithm 8.
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GPU Grid
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Figure 3.7. Permutation matrix generated in GPU. (xi,0, xi,1, . . . , xi,63) is the i-th row
of the X permutation matrix.

Algorithm 8 Procedure to generate a permutation matrix for the selection operator
in PGAGrid
IndexBlock ← blockIdx.x // is the global index (linearized) of each GPU block in

the GPU grid

Xrow[threadIdx.x]← 0 // Xrow is a row of the X permutation matrix, Xrow is in shared memory

Xrow[φ[IndexBlock]]← 1 // Population is housed in global memory

Products 3.1 and 3.2 were implemented in parallel in GPU, in the following way:
the τ -th GPU thread simultaneously runs the internal product:

Xi··(Population)·τ ∀i, 0 ≤ i < 64 (3.3)

and the product:
xτ · (Fitness)τ (3.4)

xj is the j-th element of a row of X (it does not matter which one, since all rows
were executed simultaneously), and (Fitness)j is the fitness of the j-th individual,
0 ≤ j < 64.

A pseudo-code for the previous products appears in Algorithms 9 and 10, respec-
tively. Product 3.3 has complexity O(n), while product 3.4 has constant complexity.

Algorithm 9 Procedure to calculate Populationpermuted in PGAGrid

if threadIdx.x < n then
sum← 0
for i from 0 to (n− 1) do
sum← X[i] ∗ Population[i ∗ n+ threadIdx.x]
Synchronize threads // This order ensures a synchronization in the writing

end for
S[threadIdx.x]← sum // S is each row of Populationpermuted matrix in shared memory

end if

Finally, a binary tournament was made between the corresponding individuals of
each GPU block (GPU grid of Figure 3.8) to build an intermediate population. The
current individual is selected if its fitness is better or equal to the fitness of the
permuted individual.
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Algorithm 10 Procedure to calculate Fitnesspermuted in PGAGrid.

if threadIdx.x < 64 then

S[threadIdx.x]← X[threadIdx.x] ∗ Fitness[threadIdx.x] // S is a vector in shared

memory

end if

Apply reduction algorithm to vector S (add its components) // S[0] is the corresponding

fitness of each permuted

individual

GPU Grid
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· · ·
�� �� · · · ��

σ = (σ(0) . . . σ(n− 1)) : Current individual

σ = (σ(0) . . . σ(n− 1)) : Permuted individual
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If (Fitness(σ)≤Fitness(σ))

��
If (Fitness(σ)>Fitness(σ))

��
Block (i, j) Block (i, j)
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σ = (σ(0) . . . σ(n− 1))
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σ = (σ(0) . . . σ(n− 1))

Figure 3.8. Selection by binary tournament on GPU.

3.4 Crossover

The crossover operator implemented was a Modified Order Crossover (MOX). This
operator acts as follows: a crossover point that is common to the two parents is
randomly selected; the genes to the left of the crossover point of parent 1 are copied
to the offspring, and then the remaining genes of the other parent are copied in the
order in which they are placed (this avoids repeated genes) (see Figure 3.9).

↓
Parent 1 8 4 3 7 5 1 2 0 6

↓
Parent 2 3 6 5 2 4 7 0 1 8

Offspring 8 4 3 7 5 1 6 2 0

Figure 3.9. Example of MOX.

MOX was also implemented at the GPU block level as the selection operator (see
Figure 3.2). The current population was permuted as in the selection operator
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(see Formula 3.1) in order to assign a “couple” to each individual of the current
population. This permuted population was generated according to a neighborhood
topology.

Four neighborhood topologies were considered in this work, each one represented
by a toroidal reticule. These were:

1. Topology 4n or Von Neumann´s topology: horizontal and vertical neighbors
(see Figure 3.10 (a)).

2. Topology 8n or Moore´s topology: all neighbors at a distance of one (see
Figure 3.10 (b)).

3. Topology 16n: all neighbors at a distance of two (see Figure 3.11 (a)).

4. Topology 20n: equal to topology 4n is joined to topology 16n (see Figure 3.11
(b)).
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Figure 3.10. (a) Topology 4n, (b) Topology 8n.
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Figure 3.11. (a) Topology 16n, (b) Topology 20n.
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For vector φ generated in CPU, the position i is the reference of the “central in-
dividual” (Parent 1) and the content φ(i) is the reference of the “assigned couple”
(Parent 2). More precisely, φ(i) is the is the reference of the individual with the
best fitness in the neighborhood topology (see Figure 3.12).

φ = 6 4 0 6 3 3 3 6 6

0 1 2 3 4 5 6 7 8

Figure 3.12. Couples assigned to the crossover operator. The shaded values mean that
the couple of the individual 5 is the individual 3. This individual has the
best fitness of some neighborhood topology around individual 5.

Assigning a couple to a central individual according to some topology, with
the effect of genetic interaction between individuals from nearby neighborhoods,
corresponds to a Fine-Grained Parallel Genetic Algorithm model (Cellular Parallel
Genetic Algorithm).

MOX is fully implemented in GPU, as follows:

Each pair of individuals (parent 1 and parent 2) resides in the corresponding
shared memory spaces of each GPU block, and they have a probability of crossover
pc = 0.6. The crossover point for each pair of individuals is a random value between
0 and n− 1.

Initially, the genes (GPU threads) to the left of the crossover point of the first
parent are copied simultaneously to the offspring. Then, all the genes (GPU threads)
of parent 2 that match the genes of parent 1 before the crossing point are identified
and changed to a particular value different from 0 to n− 1 (for example -1). Figure
3.13 shows an example.

↓
Parent 1 8 4 3 7 5 1 2 0 6

↓
Parent 2 3 6 5 2 4 7 0 1 8

“Partially modified parent 2” -1 6 -1 2 -1 -1 0 -1 -1

Figure 3.13. Construction of the offspring with respect to the genes of the parent 2.

This procedure has a complexity of O(n) at most, since all the threads of parent
2 are simultaneously compared with each of the genes of parent 1 up to the point
of crossover, which in the worst case is equal to n − 1. Algorithm 11 shows a
pseudo-code of this procedure.

Now, all -1 values of the “partially modified parent 2” were moved to the left
of the string. This was done by exchanging consecutive contents two to two, one
with a value -1 and the other with a value different from -1. Each GPU thread
examines them, and if it is the case, it changes such values. Obtaining all values of
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Algorithm 11 Procedure to get the “partially modified parent 2” of Figure 3.13.
// a different crossing point (pointc) for each pair of parents
for i from 0 to (pointc − 1) do

if Parent2[threadIdx.x] = Parent1[threadIdx.x] then
Parent2[threadIdx.x]← −1 // Parent1 and Parent 2 in shared memory

end if
end for

Synchronize threads // This order ensures a synchronization in the writing

-1 to the left of the string takes at most an number n of iterations, and therefore this
procedure has linear complexity. Finally, the genes (GPU threads) to the right of the
crossover point of the “Partially modified parent 2” were copied simultaneously to
the right of the crossover point of the offspring. A pseudo-code of this last procedure
is described in Algorithm 12.

Algorithm 12 Procedure to build offspring from “partially modified parent 2”.
// a different crossing point (pointc) for each pair of parents
temp[threadIdx.x]← 0 // temp in shared memory

for i from 0 to n− 1 do
if threadIdx.x < n− 1 then

if (Parent2[threadIdx.x] 6= −1) && (Parent2[threadIdx.x+ 1] = −1) then
temp[threadIdx.x]← Parent2[threadIdx.x] // Parent1 and Parent2 are in shared

memory

Parent2[threadIdx.x]← Parent2[threadIdx.x+ 1]
Parent2[threadIdx.x+ 1]← temp[threadIdx.x]

end if
end if

end for
if threadIdx.x ≥ pointc then
Offspring[threadIdx.x]← Parent2[threadIdx.x] // Offspring in shared memory

end if

Synchronize threads // This order ensures a synchronization in the writing

The offspring replaces parent 1 (“central individual” in the topology of neighbor-
hoods) if and only if the fitness of the offspring is less or equal than the fitness
of parent 1 (QAP is a minimization problem). This obeys to a procedure called
replacement of neutral mutants. Figure 3.14 shows a sequence of the previous pro-
cedures.

It should be emphasized that what was done with a couple of parents occurs
simultaneously with all other couples, but under parameters that are not necessarily
the same (the croosver may or may not happen in some couples and/or not all couples
may have the same crossover point). This happens because each couple of parents
resides in a different shared memory space of each GPU block, and a GPU is a SIMD
architecture device.
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GPU Grid

Block (i, j)

· · ·
�� �� · · · ��

σ = (σ(0) . . . σ(n− 1)) : Parent 1

σ = (σ(0) . . . σ(n− 1)) : Parent 2

· · ·

µ is obtained from σ and σ through MOX, µ replaces σ

��
Block (i, j)

· · ·
�� �� · · · ��

σ = (σ(0) . . . σ(n− 1)) : Parent 1

µ = (µ(0) . . . µ(n− 1)) : Offspring

· · ·

If (Fitness(σ)<Fitness(µ))

��
If (Fitness(σ)≥Fitness(µ))

��
Block (i, j) Block (i, j)

�� �� · · · ��

σ = (σ(0) . . . σ(n− 1))

or �� �� · · · ��

µ = (µ(0) . . . µ(n− 1))

Figure 3.14. Crossover on GPU.

3.5 Mutation

Before applying the genetic mutation operator, the best individual of the population
so far was identified, to be reincorporated later.

To get this best individual, a reduction algorithm was applied for this purpose on
a GPU grid of a single GPU block; such a GPU block consists of 128 GPU threads
(64 are active threads): blockIdx.x=0 and 0≤ threadIdx.x < 128, but only 64 are
active threads (see Figure 3.15).

GPU Grid

Block 0

�� �� · · · ��
Fitness(Indiv0) Fitness(Indiv1) Fitness(Indiv63)

Figure 3.15. GPU grid to get the best individual from the population. The i-th thread
represents the fitness of the i-th individual of the population.
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Like the reduction algorithm used to add the components of a vector, the fitness
vector was reduced by half, pairs of components were compared and the best fitness
was stored back in the vector. The process continues until the best fitness is stored
in the first component of the vector. This reduction algorithm has logarithmic
complexity. A pseudo-code of a reduction algorithm to find the minimum value of
a vector is shown in Algorithm 13.

Algorithm 13 Reduction method to find the minimum value of Fitness vector size
N = 64.
i← N/2
while i 6= 0 do

if threadIdx.x < i then
if Fitness[threadIdx.x] > Fitness[threadIdx.x+ i] then
Fitness[threadIdx.x]← Fitness[threadIdx.x+ i]

end if
Synchronize threads // This order ensures a synchronization in the writing

i← i/2
end if

end while

After identifying the best individual (and its corresponding fitness), the mutation
operator was implemented. The implemented mutation was an Exchange Mutation
(EM). For each individual, two genes were selected randomly and exchanged (see
Figure 3.16).

Original Individual 9 5 4 8 6 2 7 3 1

Mutated Individual 9 5 4 7 6 2 8 3 1

Figure 3.16. Example of EM.

The mutation operator was used to generate diversity in the population, with the
aim of avoiding premature convergences and stagnation in the local optimum.

The probability of mutation used for each of the individuals was the usual pro-
bability in a Genetic Algorithm (pm = 0.01).

EM was implemented in the GPU at the block level, as the previous operators
(see Figure 3.2), that is, simultaneously each individual (GPU block) undergoes
mutation with the previously described probability, exchanging genes (GPU threads)
chosen randomly. Of course, these random genes are not necessarily the same for
all individuals. Algorithm 14 presents a pseudo-code of EM.

3.6 Transposition

The last genetic operator implemented in PGAGrid was the transposition opera-
tor. The transposition operator simply reversed the genes (GPU threads) between
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Algorithm 14 EM in PGAGrid.
generate random r, r ∈ (0, 1) // r is different in each block

if (threadIdx.x < n) &&(r < pm) then
generate random gene1m, 0 ≤ gene1m < n
generate random gene2m, 0 ≤ gene2m < n
if threadIdx.x = 0 then
σ(gene1m)←→ σ(gene2m)

end if

end if

Synchronize threads // This order ensures a synchronization in the writing

two points randomly generated on the chromosome (see Figure 3.17). The proba-
bility of transposition used for all individuals in the population was pt = 0.4. This
operator was also implemented at the block level (see Figure 3.2), and therefore
the transposition was done simultaneously in each individual (GPU block) of the
population.

↓ ↓
Original Individual 9 5 4 7 6 2 8 3 1

↓ ↓
Transposed individual 9 8 2 6 7 4 5 3 1

Figure 3.17. Example of Transposition.

Algorithm 15 presents a pseudo-code of transposition.

Algorithm 15 Transposition in PGAGrid.
generate random r, r ∈ (0, 1) // r is not necessarily the same in each GPU block

µ[threadIdx.x]← σ[threadIdx.x] // a copy is made to avoid unsynchronization

if (threadIdx.x < n) &&(r < pt) then
generate random point1t, 0 ≤ point1t < n
generate random point2t, 0 ≤ point2t < n
if point1t > point2t then

point1t ←→ point2t
end if
if threadIdx.x ≤ (point2t − point1t) then
σ[threadIdx.x+ point1t]← µ[point2t − threadIdx.x]

end if
end if

Synchronize threads // This order ensures a synchronization in the writing

Finally, a strategy based on elitism was applied, that is, the best individual identified
before applying the mutation and transposition operators, was reincorporated back
into the population. Using this strategy, the performance of the Genetic Algorithm
was increased, by preventing it from losing the best chromosome found.
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3.7 2-opt and greedy 2-opt local optimization

heuristics

At this stage, a 2-opt (or greedy 2-opt) local optimization heuristic was applied.
This local search heuristic exploits the promising regions already explored by the
Genetic Algorithm.

• For the 2-opt local search heuristics, the current individual evaluates the n(n−
1)/2 swaps (all pairwise exchanges of all possible facilities on each of the
locations). Figure 3.18 shows the case for a QAP-instance of size n = 5.

After evaluating all the swaps (which correspond to one iteration within the
PGAGrid model), the best individual found updates the current individual.
Similarly the fitness of the best individual found, updated the fitness of the
current individual, Figure 3.19 shows an example for QAP of the Figure 2.1.

f0
ss ,,ss ++tt ++tt **

f1 f2 f3 f4

f0 f1
ss ,,ss ++tt ++

f2 f3 f4

f0 f1 f2
ss ,,ss ++

f3 f4

f0 f1 f2 f3
ss ,,

f4

Figure 3.18. 10 possible 2-opt swaps for a QAP of size n = 5. fi is the i-th facility.

• For the greedy 2-opt heuristic, the current individual evaluates the n(n −
1)/2 swaps, but immediately a better individual is found, this replaces the
current individual (of course, fitness is also updated); the greedy 2-opt heuristic
continues to be applied on the individual updated in the next swap. An
example of this heuristic for QAP of the Figure 2.1 is presented in Figure
3.20.

These heuristics were implemented in a one-dimensional GPU grid of size 64, where
each GPU block consists of 128 GPU threads (n are active):

0 ≤ blockIdx.x < 64, 0 ≤ threadIdx.x < 128 (n are active) (see Figure 3.21). Each
GPU block corresponds to an individual of the current population and on each one
of them the local search heuristic is carried out simultaneously.
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Initial Permutation: σ0 = (3 2 1 4 0), Fitness(σ0) = 256

Possible swaps (total n(n− 1)/2) :



σ0
0 = (2 3 1 4 0), Fitness(σ0

0) = 214

σ1
0 = (1 2 3 4 0), Fitness(σ1

0) = 244

σ2
0 = (4 2 1 3 0), Fitness(σ2

0) = 224

σ3
0 = (0 2 1 4 3), Fitness(σ3

0) = 262

σ4
0 = (3 1 2 4 0), Fitness(σ4

0) = 194⇐

σ5
0 = (3 4 1 2 0), Fitness(σ5

0) = 252

σ6
0 = (3 0 1 4 2), Fitness(σ6

0) = 210

σ7
0 = (3 2 4 1 0), Fitness(σ7

0) = 222

σ8
0 = (3 2 0 4 1), Fitness(σ8

0) = 228

σ9
0 = (3 2 1 0 4), Fitness(σ9

0) = 208

Best solution and best fitness updated: σ0 = σ4
0 = (3 1 2 4 0), Fitness(σ4

0) = 194

Figure 3.19. Example of a 2-opt implementation for QAP of the Figure 2.1.

The matrix formula used in both heuristics was Formula 2.3, which takes advan-
tage of the features of the GPU, as a multiprocessing vector device. The products
of matrices of this formula were calculated as in Algorithm 6.

Algorithms 16 and 17 show the pseudo-codes respectively of these implementa-
tions in GPU.

3.8 Summary of the PGAGrid algorithm

PGAGrid is a Fine-Grained Parallel Genetic Algorithm improved with a 2-opt
(or greedy 2-opt) local optimization heuristic, fully implemented on GPU, whose
purpose is finding optimal (or near-optimal) solutions to large instances of the QAP.

PGAGrid performs an iteration with each of the concepts covered so far in this
chapter. The number of iterations was established according to the complexity of
each problem analyzed (problems of the standard QAPLIB library, or other problems
raised as particular cases of the QAP).
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Initial Permutation: σ0 = (3 2 1 4 0), Fitness(σ0) = 256

Possible swaps (total n(n− 1)/2) :



σ0
0 = (2 3 1 4 0), Fitness(σ0

0) = 214

σ0 = σ0
0 = (2 3 1 4 0), Fitness(σ0

0) = 214

σ1
0 = (1 3 2 4 0), Fitness(σ1

0) = 204

σ0 = σ1
0 = (1 3 2 4 0), Fitness(σ1

0) = 204

σ2
0 = (4 3 2 1 0), Fitness(σ2

0) = 170

σ0 = σ2
0 = (4 3 2 1 0), Fitness(σ2

0) = 170

σ3
0 = (0 3 2 1 4), Fitness(σ3

0) = 214

σ4
0 = (4 2 3 1 0), Fitness(σ4

0) = 212

σ5
0 = (4 1 2 3 0), Fitness(σ5

0) = 172

σ6
0 = (4 0 2 1 3), Fitness(σ6

0) = 192

σ7
0 = (4 3 1 2 0), Fitness(σ7

0) = 200

σ8
0 = (4 3 0 1 2), Fitness(σ8

0) = 266

σ9
0 = (4 3 2 0 1), Fitness(σ9

0) = 228

Best solution and best fitness updated: σ0 = σ2
0 = (4 3 2 1 0), Fitness(σ2

0) = 170

Figure 3.20. Example of a greedy 2-opt implementation for QAP of the Figure 2.1.

GPU Grid

Block 0 Block i Block 63

�� ��
. . .

�� . . . �� ��
. . .

�� . . . �� ��
. . .

��

Figure 3.21. Configuration of a GPU Grid to implement the 2-opt heuristic. Block i
corresponds to the i-th individual of the population, 0 ≤ i ≤ 63.

PGAGrid was presented at the 10th International Conference, Computational
Collective Intelligence ICCCI 2018, held in the city of Bristol UK, from September
5 to 7, 2018. The article was published by Springer in the series LNCS / LNAI, [54].

The author of this work et. al. published other two papers on the solution of QAP
in journals [15] and [20] respectively. Both papers show a particular implementation
of the data structure of the Genetic Algorithm with respect to the logical structure
of the GPU. Paper [20] presents a more refined parallel implementation than paper
[15]. These documents were a basis for finally designing a more robust parallel
genetic model, such as PGAGrid, with the capacity to solve larger QAP instances.
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Algorithm 16 2-opt heuristics in PGAGrid.
Index← threadIdx.x+ n ∗ blockIdx.x // is the global index (linearized) of each GPU thread in

the GPU grid

Populationaux ← Population // generates a copy of the population in global memory

Fitnessaux ← 0 // initializes an auxiliary fitness vector to zeros in global memory

for i from 0 to n− 2 do
for j from i+ 1 to n− 1 do
Delta[threadIdx.x]← 0 // Delta is in shared memory

flag ← Fitnessaux[blockIdx.x] // flag in shared memory

if threadIdx.x < n then
σ[threadIdx.x]← Populationaux[Index] // σ is an individual in shared memory

// The following vectors: DeltaF , DeltaF t , DeltaDXt , and DeltaXD are in shared memory

DeltaF [threadIdx.x]← F [threadIdx.x+ i ∗ n]− F [threadIdx.x+ j ∗ n]
if (threadIdx.x = i) || (threadIdx.x = j) then
DeltaF [threadIdx.x]← 0

end if
DeltaF t [threadIdx.x]← F [i+ threadIdx.x ∗ n]− F [j + threadIdx.x ∗ n]
if (threadIdx.x = i) || (threadIdx.x = j) then
DeltaF t [threadIdx.x]← 0

end if
DeltaDXt [threadIdx.x]← DXt[threadIdx.x+ σ(j) ∗ n+ blockIdx.x ∗ n2] -

DXt[threadIdx.x+ σ(i) ∗ n+ blockIdx.x ∗ n2]
DeltaXD[threadIdx.x]← XD[σ(j) + threadIdx.x ∗ n+ blockIdx.x ∗ n2] -

XD[σ(i) + threadIdx.x ∗ n+ blockIdx.x ∗ n2]
Delta[threadIdx.x]← (F [j + i ∗ n]− F [i+ j ∗ n])∗

(D[σ(i) + σ(j) ∗ n]−D[σ(j) + σ(i) ∗ n])+
DeltaF [threadIdx.x] ∗DeltaDXt [threadIdx.x]+
DeltaF t [threadIdx.x] ∗DeltaXD[threadIdx.x]

Apply reduction algorithm to vector Delta (add its components)
if (Delta(0) < flag) && (threadIdx.x = 0) then
σ(i)←→ σ(j)
Synchronize threads // This order ensures a synchronization in the writing

Fitnessaux[blockIdx.x]← Delta(0) // updates auxiliary fitness in global memory

Populationaux[Index]← σ[threadIdx.x] // updates the auxiliary population

in global memory

end if
Synchronize threads // This order ensures a synchronization in the writing

if (i = (n− 2)) && (j = (n− 1)) then
Fitness[blockIdx.x]← Fitness[blockIdx.x] + Fitnessaux[blockIdx.x]

// updates fitness in global memory

end if
end if

end for
end for

Population← Populationaux // copy in global memory

The improved PGAGrid model with the 2-opt (greedy 2-opt) local optimization
heuristic is summarized in Algorithm 18.
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Algorithm 17 Greedy 2-opt heuristics in PGAGrid.
Index← threadIdx.x+ n ∗ blockIdx.x // is the global index (linearized) of each GPU thread in

the GPU grid

for i from 0 to n− 2 do
for j from i+ 1 to n− 1 do
Delta[threadIdx.x]← 0 // Delta is in shared memory

if threadIdx.x < n then
σ[threadIdx.x]← Populationaux[Index] // σ is an individual in shared memory

// The following vectors: DeltaF , DeltaF t , DeltaDXt , and DeltaXD are in shared memory

DeltaF [threadIdx.x]← F [threadIdx.x+ i ∗ n]− F [threadIdx.x+ j ∗ n]
if (threadIdx.x = i) || (threadIdx.x = j) then
DeltaF [threadIdx.x]← 0

end if
DeltaF t [threadIdx.x]← F [i+ threadIdx.x ∗ n]− F [j + threadIdx.x ∗ n]
if (threadIdx.x = i) || (threadIdx.x = j) then
DeltaF t [threadIdx.x]← 0

end if
DeltaDXt [threadIdx.x]← DXt[threadIdx.x+ σ(j) ∗ n+ blockIdx.x ∗ n2]−

DXt[threadIdx.x+ σ(i) ∗ n+ blockIdx.x ∗ n2]
DeltaXD[threadIdx.x]← XD[σ(j) + threadIdx.x ∗ n+ blockIdx.x ∗ n2]−

XD[σ(i) + threadIdx.x ∗ n+ blockIdx.x ∗ n2]
Delta[threadIdx.x]← (F [j + i ∗ n]− F [i+ j ∗ n])∗

(D[σ(i) + σ(j) ∗ n]−D[σ(j) + σ(i) ∗ n])+
DeltaF [threadIdx.x] ∗DeltaDXt [threadIdx.x]+
DeltaF t [threadIdx.x] ∗DeltaXD[threadIdx.x]

Apply reduction algorithm to vector Delta (add its components)
if (Delta(0) < 0) && (threadIdx.x = 0) then
σ(i)←→ σ(j)
Synchronize threads // This order ensures a synchronization in the writing

Fitness[blockIdx.x]← Fitness[blockIdx.x] +Delta(0) // updates fitness

in global memory

end if
Population[Index] = σ[threadIdx.x] // updates the population in global memory

Synchronize threads // This order ensures a synchronization in the writing

end if
end for

end for

3.9 Combinatorial problems solved from a QAP

by PGAGrid

3.9.1 Solution of some NP-Complete problems formulated
as QAPs

As discussed in subsection 2.1.3, many NP-complete combinatorial problems result
in particular cases of QAP, defining the flow and distance matrices properly. The
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Algorithm 18 The Model PGAGrid implemented on GPU.
for each GPU block i in the GPU grid, in parallel do

Assign a random individual
end for
generation number ←− 1
while termination condition not met do

for each individual i, in parallel do
Fitness
Select a different individual k
if k is better than i then

Assign k to i
end if
Select a individual k in the neighboring of i
Produce an offspring from i and k
if the offspring is better than i then

Assign the offspring to i
end if

end for
To identify the best individual so far
for each individual i, in parallel do

Mutate
Transpose

end for
To reincorporate the best individual
for each individual i, in parallel do

Apply 2-opt (or greedy 2-opt) local optimization heuristic
end for
generation number ←− generation number+1

end while

PGAGrid model was used to solve different instances of each of the three NP-
complete problems (TSP, LAP and MCP). The chosen instances correspond to
benchmark problems found in the literature.

The solution of these problems by PGAGrid can be consulted in [52].

3.9.2 Classic k×k chessboard problems solved as a QAP by
PGAGrid

Some significant classic problems of the k × k chessboard, can be treated as QAPs
and therefore the PGAGrid model becomes an option for your solution. The four
problems posed as a QAP and solved by PGAGrid are: the Knight’s Tour Problem,
the Bishop Problem, the k Rooks Problem, and the k Queens Problem.

The solution of these problems by PGAGrid can be consulted in [53].
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Experimentation and Result Obtained

For testing PGAGrid a GPU Nvidia GeForce GTX 760M with 768 CUDA cores
was used on an IntelCoreTM i7 - 4700HQ CPU @ 2.40GHz, RAM 8GB. PGAGrid
was written and compiled using CUDA toolkit (v8.0) for C and executed under
Windows 10.

Section 4.1 lists and explains each of the ten instances taken from the QAPLIB
library that were considered in the PGAGrid model.

Section 4.2 describes the parameters used in the PGAGrid model to solve each
of the instances listed in the previous section. The parameters were: population
size, crossover rates, mutation rates and transposition rates, number of tests for
each instance, and maximum number of iterations in each of the tests for each
instance.

Section 4.3 shows the results obtained by the PGAGrid by combining the two
different local search heuristics implemented (2-opt and greedy 2-opt) on the four
different neighborhood topologies described in section 3.4. This section also shows
the results obtained by a similar implementation in CPU. These results were com-
pared with those obtained by the PGAGrid model. Finally, some results reported
in the literature are shown.

Section 4.4 performs a Wilcoxon signed-rank test to establish the topology, and
the local search heuristic with which the best results were obtained.

4.1 Test sets

Ten widely used instances from the standard QAPLIB library [55] were examined,
these are:

49
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• Els19: [21]. “The data describe the distances of nineteen different facilities
of a hospital and the flow of patients between those locations. The optimal
solution was first found by [39]”. It is the only instance of this type of problems

• Esc64: [22]. “This example stem from an application in computer science,
from the testing of self-testable sequential circuits. The amount of additional
hardware for the testing should be minimized”. It is the second largest instance
of this type of problems.

• Had20: [32]. “The distance matrix represents Manhattan distances of a co-
nnected cellular complex in the plane while the entries in the flow matrix
are drawn uniformly from the interval [1, n]. The proof of optimality of the
solution is due to [12]”. It is the largest instance of this type of problems.

• Kra32: [34]. “The instances contain real world data and were used to plan the
Klinikum Regensburg in Germany”. It is the largest instance of this type of
problems.

• Nug30: [44]. “The distance matrix contains Manhattan distances of rectangu-
lar grids. The solution was found by applying a branch and bound algorithm
[11]”. It is the largest instance of this type of problems.

• Scr20: [61]. “The distances of these problems are rectangular. The optimal
solution was found by [39]”. It is the largest instance of this type.

• Tai35b: [65]. “The problem were introduced in [65]. This problem is asymme-
tric and randomly generated”. It is the sixth largest instance of this type of
problems.

• Tai40b: [65]. “The problem were introduced in [65]. This problem is asymme-
tric and randomly generated”. It is the fifth largest instance of this type of
problem.

• Tai60b: [65]. “The problem were introduced in [65]. This problem is asymme-
tric and randomly generated”. It is the third largest instance of this type of
problem.

• Tho40: [74]. “The distances of this instance are rectangular”. It is the second
largest instance of this type of problems.

The number in the name of each instance indicates the size of the problem.

4.2 Parameters used by PGAGrid

The population consists of 64 individuals (see figure 3.2). The genetic operators
were tuned. For each couple of individuals (in the same GPU block), the same
crossover rate was fixed: pc = 0.6. Each individual has the same mutation rate
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(pm = 0.01) and the same transposition rate (pt = 0.4). Each rate for each genetic
operator remains constant throughout the execution of the PGAGrid.

2-opt and greedy 2-opt local search techniques always make the n(n−1)/2 swaps
in each iteration of PGAGrid.

PGAGrid conducted ten tests for each instance in relation to each of the four
topologies listed in the previous chapter. The maximum number of iterations for
each instance was one hundred.

4.3 Results

Tables 4.1 and 4.2 show the performance of PGAGrid for problems Els19, Esc64a,
and Had20, in relation to the number of iterations in which the optimal solution
was found in the executions for each topology. PGAGrid always found the optimal
solution for these three problems independent of these configurations.

Table 4.1. Performance of PGAGrid to find a optimal solution, using a 2-opt
heuristic.

QAP Topology 4n Topology 8n Topology 16n Topology 20n

Els19 12.0±2.0 12.5±1.5 11.5±1.5 23.0±11.0
Esc64a 9.0±1.0 9.5±0.5 9.0±0.5 10.0±0.0
Had20 22.0±6.5 17.5±3.5 31.0±16.5 15.0±4.5

Value x± y indicates a median of x (iterations) with a median absolute deviation of y.

Table 4.2. Performance of PGAGrid to find a optimal solution, using a greedy
2-opt heuristic.

QAP Topology 4n Topology 8n Topology 16n Topology 20n

Els19 5.5±1.5 6.0±2.0 4.5±1.5 5.5±1.5
Esc64a 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0
Had20 4.0±1.0 3.0±1.0 4.0±1.0 3.5±0.5

Value x± y indicates a median of x (iterations) with a median absolute deviation of y.

Tables 4.3 and 4.4 show the performance of PGAGrid (arithmetic average and
standard deviation) for the remaining seven instances (Kra32, Nug30, Scr20, Tai35b,
Tai40b, Tai60b, and Tho40) in relation to the solutions found in the executions for
each topology, combining heuristic implementations (2-opt and greedy 2-opt).

Tables 4.5 and 4.6 show the performance of PGAGrid (median and median
absolute deviation) for these same seven instances (Kra32, Nug30, Scr20, Tai35b,
Tai40b, Tai60b, and Tho40) in relation to the solutions found in the executions for
each topology, combining heuristic implementations (2-opt and greedy 2-opt).
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Table 4.3. Performance of PGAGrid, using a 2-opt heuristic.

QAP QAPLIB Topology 4n Topology 8n

Kra32 88700 91246±538 91013±527
Nug30 6124 6236±37 6203±30
Scr20 110030 111241±890 111158±1000
Tai35b 283315445 286109725±1473358 285418088±1405123
Tai40b 637250948 654130538±12522178 655960058±10171089
Tai60b 608215054 627301589±8096733 629065013±7732720
Tho40 240516 247264±1613 246402±1380

QAP Topology 16n Topology 20n

Kra32 91350±973 91454±674
Nug30 6217±27 6253±25
Scr20 111742±1421 111478±917
Tai35b 286117941±1851034 285214600±1558527
Tai40b 663307321±16281696 661450966±12210870
Tai60b 622263727±8885398 625016351±5935946
Tho40 246003±2705 246070±1774

Value x± y indicates an arithmetic average of x (solution found) with a standard deviation of y.

Table 4.4. Performance of PGAGrid, using a greedy 2-opt heuristic.

QAP QAPLIB Topology 4n Topology 8n

Kra32 88700 88922±470 89006±493
Nug30 6124 6136±10 6130±6
Scr20 110030 110065±101 110030±0
Tai35b 283315445 283455144±230811 283455144±230811
Tai40b 637250948 637250948±0 637262177±23672
Tai60b 608215054 608562201±702305 608254081±87568
Tho40 240516 241504±512 241212±537

QAP Topology 16n Topology 20n

Kra32 89227±566 89220±557
Nug30 6132±12 6134±12
Scr20 110245±347 110097±203
Tai35b 283527059±273193 283508047±254633
Tai40b 637273405±28992 638543295±4047374
Tai60b 608301697±89972 608313952±136515
Tho40 241522±914 241034±294

Value x± y indicates an arithmetic average of x (solution found) with a standard deviation of y.

The corresponding experiments on a CPU implementation were also carried out.
This sequential implementation has the same characteristics as the parallel imple-
mentation of PGAGrid, but it does not consider any of the previous topologies,
only, couples generated with a random order. Ten tests were also conducted for each
QAP-instance with a maximum of one hundred iterations.
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Table 4.5. Performance of PGAGrid, using a 2-opt heuristic.

QAP QAPLIB Topology 4n Topology 8n

Kra32 88700 91155±455 91105±350
Nug30 6124 6245±24 6195±22
Scr20 110030 111174±923 110878±848
Tai35b 283315445 285624601±981047 285165264±620114
Tai40b 637250948 658136188±9267476 659679797±6701287
Tai60b 608215054 627874603±5834722 629065013±7732720
Tho40 240516 247299±879 246359±938

QAP Topology 16n Topology 20n

Kra32 91430±600 91730±410
Nug30 6214±17 6260±10
Scr20 112163±1310 111298±681
Tai35b 285446919±1246283 285117037±351396
Tai40b 661970688±13176897 666262567±7899045
Tai60b 621929415±8167650 622898346±3299634
Tho40 246116±2515 245540±632

Value x± y indicates a median of x (solution found) with a median absolute deviation of y.

Table 4.6. Performance of PGAGrid, using a greedy 2-opt heuristic.

QAP QAPLIB Topology 4n Topology 8n

Kra32 88700 88700±0 88700±0
Nug30 6124 6132±6 6128±0
Scr20 110030 110030±0 110030±0
Tai35b 283315445 283315445±0 283315445±0
Tai40b 637250948 637250948±0 637250948±0
Tai60b 608215054 608228619±13565 608228578±9633
Tho40 240516 241524±370 241130±381

QAP Topology 16n Topology 20n

Kra32 89100±400 89100±400
Nug30 6128±0 6128±4
Scr20 110030±0 110030±0
Tai35b 283315445±0 283315445±0
Tai40b 637250948±0 637250948±0
Tai60b 608290526±74005 608231469±16415
Tho40 241144±439 241019±201

Value x± y indicates a median of x (solution found) with a median absolute deviation of y.

Table 4.7 presents the performance of the CPU implementation for problems Els19,
Esc64a, and Had20, in relation to the number of iterations where the optimal solu-
tion was found in the executions, combining heuristic implementations (2-opt and
greedy 2-opt). In addition, this CPU implementation always found the optimal
solution for these three problems independently of the configurations.
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Table 4.7. Performance of a CPU implementation to find the optimal solution,
combining heuristic.

QAP 2-opt greedy 2-opt

Els19 19.5± 6.5 7.0± 3.0
Esc64a 10.5± 0.5 1.0± 0.0
Had20 58.0± 29.0 6.5± 2.5

Value x± y indicates a median of x (iterations) with a median absolute deviation of y.

Table 4.8 presents the performance of the CPU implementation (arithmetic average
and standard deviation) for the remaining seven problems (Kra32, Nug30, Scr20,
Tai35b, Tai40b, Tai60b, and Tho40) in relation to the solutions found in the execu-
tions, combining heuristic implementations (2-opt and greedy 2-opt).

Table 4.8. Performance of a CPU implementation to find the optimal solution,
combining heuristic.

QAP QAPLIB 2-opt greedy 2-opt

Kra32 88700 94385±1847 88780±253
Nug30 6124 6260±56 6128±4
Scr20 110030 112106±1312 110033±9
Tai35b 283315445 287208985±2458063 283748455±260064
Tai40b 637250948 659513550±15585339 637329374±58739
Tai60b 608215054 646733519±14432654 608826757±338208
Tho40 240516 249761±2199 241871±670

Value x± y indicates an arithmetic average of x (solution found) with a standard deviation of y.

Table 4.9 presents the performance of the CPU implementation (median and median
absolute deviation) for these same seven instances (Kra32, Nug30, Scr20, Tai35b,
Tai40b, Tai60b, and Tho40) in relation to the solutions found in the executions,
combining heuristic implementations (2-opt and greedy 2-opt).

Table 4.9. Performance of a CPU implementation to find the optimal solution,
combining heuristic.

QAP QAPLIB 2-opt greedy 2-opt

Kra32 88700 95025±1030 88700±0
Nug30 6124 6250±39 6128±2
Scr20 110030 112113±1029 110030±0
Tai35b 283315445 286884376±2049354 283725417±167022
Tai40b 637250948 660191766±113462272 637307091±11767
Tai60b 608215054 640337053±4217663 608823261±124250
Tho40 240516 249642±1318 242038±103

Value x± y indicates a median of x (iterations) with a median absolute deviation of y.
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Table 4.10 presents the best known solution for each instance reported by QAPLIB,
the best solution obtained by PGAGrid in all the tests carried out (eighty in total
for each instance), and the best solution obtained by a CPU implementation in all
the tests carried out (twenty in total for each instance).

Table 4.10. The best solutions found by PGAGrid against the best solutions
found by sequential implementation

QAP QAPLIB PGAGrid CPU

Els19 17212548 17212548 (2) 17212548 (2)
Esc64a 116 116 (1) 116 (1)
Had20 6922 6922 (2) 6922 (2)
Kra32 88700 88700 (5) 88700 (13)
Nug30 6124 6124 (14) 6124 (27)
Scr20 110030 110030 (2) 110030 (4)
Tai35b 283315445 283315445 (12) 283315445 (42)
Tai40b 637250948 637250948 (6) 637250948 (15)
Tai60b 608215054 608215054 (42) 608352432 (81)
Tho40 240516 240542 (76) 240632 (85)

The value in parentheses correspond to the minimum number of iterations in which these
solutions were reached.

The best results obtained by PGAGrid coincide with the results referenced in
QAPLIB, except in problem Tho40. The number of iterations in which PGAGrid
reached these results is relatively small compared to the sequential implementation.

Tables 4.11, 4.12, and 4.13 show some results referenced by other researchers on
the QAP-instances considered. They use either exact methods or approach tech-
niques, or a hybrid between them: in some cases, they also perform an implemen-
tation on GPU.

Table 4.11. Results reported in the literature.

QAP Ramkumar [57] Mohassesian [41] Chaparala [43] Chmiel [17]

Els19 17212548 17212548 - 17212548
Esc64a - - 132
Had20 6922 6922 - 6922
Kra32 88760 88700 - 88700
Nug30 6146 6130 - 6124
Scr20 110030 110030 - 110030
Tai35b 297719554 286605043 283349722 -
Tai40b 716675355 637250948 637349459 -
Tai60b 631700959 608215054 609612341 -
Tho40 242888 241912 - 240516

Ramkumar et. al. [57] propose a modified iterated fast local search algorithm with
a crossover recombination as a perturbation strategy and a self-improvement in the
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Table 4.12. Results reported in the literature.

QAP Ziqiang [78] Bashiri [5] Semlali [23] Gunawan [31]

Els19 - - - -
Esc64a - -
Had20 - - - 2927.2
Kra32 - - - 88700
Nug30 - 6180 - 2124.4
Scr20 - - - 110030
Tai35b - - 286661392 -
Tai40b 637428558.1 - 649512197 -
Tai60b - - - -
Tho40 - - - -

Table 4.13. Results reported in the literature.

QAP Mohammadi [40] Szwed [63] Fomeni [24] Zhang [77]

Els19 - - - -
Esc64a - 116 116 -
Had20 - - 6922 -
Kra32 - - 91760 - 93000
Nug30 - - 6180 6264
Scr20 - - 110676 - 110030
Tai35b 284703248 - - -
Tai40b 647201580 - - -
Tai60b 624137807 612078720 - -
Tho40 - - - -

mutation operator followed by a local search. They perform 10 executions on each
problem, each with 220 iterations. The algorithm was executed in CPU.

Mohassesian et al. [41] improve the algorithm proposed by Ramkumar et. al.
with a balanced dispersion of the solutions in the search space of the problem. They
also perform 10 executions on each problem, each with two 220 iterations. The
algorithm is executed on CPU.

Chaparala et. al. [43] implemented a 2-opt local search heuristic over the GPU,
configuring different thread numbers per block.

Chmiel et. al. [17] execute an improved ant algorithm with a 2-opt neighborhood
technique. Ten executions were made for each instance, oscillating between 100 and
1000 iterations. The algorithm was executed in CPU.

Ziqiang et. al. [78] design a hybrid algorithm between schools of fish and dif-
ferential evolution called HAFSOA. The algorithm is sequential, and 20 executions
were performed for the instances considered, each with 500 iterations.

Bashiri et. al. [5] implement some metaheuristics and heuristics (TS, SA, PSO, 2-
opt, greedy 2-opt, 3-opt and greedy 3-opt) and compare their solutions. Each of these
techniques was implemented in CPU. The heuristic that provided the best solution



CHAPTER 4. EXPERIMENTATION AND RESULT OBTAINED 57

was 2-opt. The only problem that matches the one implemented in the PGAGrid
model, required 1000 iterations to obtain the reported solution. The worst solution
found by the authors for most of the problems, in contrast to PGAGrid, was
provided by the greedy 2-opt heuristic; therefore, it can be argued that the greedy
2-opt technique works well if a metaheuristic (such as a Genetic Algorithm) is used
as a perturbation strategy on local solutions.

Semlali et al. [23] present a hybrid algorithm that combines chicken swarm
optimization and Greedy randomized adaptive search procedures, in order to find a
better initial population. The implementation was in GPU, and each instance was
tested 20 times, each with 100 iterations.

Gunawan et. al. [31] apply a hybrid metaheuristic, using GRASP to build an
initial population, and SA and TS to improve the solution. Each problem was
executed 20 times, and the number of iterations was 300n, where n was the size of
the problem. The implementation is executed in CPU, and the authors state that
they do not report computational time due to space limitations.

Mohammadi et. al. [40] propose a parallel genetic algorithm on GPU. The au-
thors combine the previous and current populations (the latter obtained by crossover
and mutation) and obtain a new one, half of it through a deterministic fitness and
the other half randomly. Each problem was executed 20 times. The authors do not
report the number of iterations used in each execution.

Szwed et. al. [63] implement on OpenCL a massively parallel multi-swarm
algorithm, which can be executed in independent swarms or with migrations. The
authors highlight the fact that they can process large populations thanks to para-
llelism. They do not show algorithm execution times for all problems. Instances
sc64a and tai60b (which match PGAGrid instances) were solved in 71 and 2220
iterations respectively—too many compared to PGAGrid solutions.

Fomeni [24] puts forward a thesis with a new proposal for the QAP solution. The
author implements in CPU a deterministic method based on a standard quadratic
integer programming formulation called “auxiliary function-based dynamic convex-
ized method”.

Zhang et. al. [77] resort to a general purpose mixed integer linear programming
solver to find a deterministic solution to QAP instances of size between twelve
and thirty-two. They considered three linearizations:—Gilmore-Lawler Bound,
Kaufman-Broeckx, and Xia-Yuan—. The latter had the best results, although with
a longer processing time. The results presented in table 4.10 refer to the Xia-Yuan
linearization. These implementations were executed in CPU.

4.4 Analysis of results

The results obtained were analyzed with a non-parametric Wilcoxon signed rank
test. This test compares the median of two related samples and determines if there
is a difference between them [69].
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The null hypothesis is H0 : µ̃1 = µ̃2, that is, the median of the differences
of the samples of the paired data is equal to zero. The alternative hypothesis is
H1 : µ̃1 6= µ̃2, that is, the median of the population of differences is not equal to
zero.

The median of two samples was compared to determine the best neighborhood
topology and the best local search heuristic for each of the 10 instances examined.
The significance level used was 0.05.

Table 4.14 specifies the topologies that predominated over the others, first in
relation to the 2-opt heuristic and then to the greedy 2-opt heuristic.

Table 4.14. Comparison of neighborhood topologies according to local search
heuristics.

QAP 2-opt Greedy 2-opt

Els19 Topology 4n � Topology 20n -
Topology 8n � Topology 20n -
Topology 16n � Topology 20n -

Esc64a - -
Had20 - -
Kra32 - -
Nug30 Topology 8n >> Topology 4n -

Topology 8n � Topology 20n -
Topology 16n � Topology 20n -

Scr20 - -
Tai35b - -
Tai40b - -
Tai60b - Topology 8n � Topology 4n
Tho40 - -

A� B means that the results that come from sample A are better than the results that come
from sample B.

It can be seen, that in the problems where one topology predominated over the other,
the most outstanding was the topology 8n and the less outstanding the topology
20n.

Table 4.15 shows the comparison between the 2-opt and greedy 2-opt heuristics.

The results obtained by PGAGrid using the greedy 2-opt heuristic were always
better than the results obtained by PGAGrid using the 2-opt heuristic for each of
the 10 instances considered.

Finally, the median of the results obtained in each of the neighborhood topologies
was compared with the median of the results obtained in the sequential implemen-
tation, also, with a level of significance of 0.05. Table 4.16 shows this comparison
in relation to the 2-opt and greedy 2-opt heuristics respectively.

Neighborhood topologies implemented in GPUs yielded superior results compared
to CPU implementation in almost all test instances. Again, the 8n topology was the
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Table 4.15. Comparison between local search heuristics.

QAP Heuristics

Els19 Greedy 2-opt � 2-opt
Esc64a Greedy 2-opt � 2-opt
Had20 Greedy 2-opt � 2-opt
Kra32 Greedy 2-opt � 2-opt
Nug30 Greedy 2-opt � 2-opt
Scr20 Greedy 2-opt � 2-opt
Tai35b Greedy 2-opt � 2-opt
Tai40b Greedy 2-opt � 2-opt
Tai60b Greedy 2-opt � 2-opt
Tho40 Greedy 2-opt � 2-opt

A� B means that the results that come from sample A are better than the results that come
from sample B.

Table 4.16. Comparison between neighborhood topologies and CPU imple-
mentation.

QAP 2-opt greedy 2-opt

Els19 Top. i � CPU, i = 4n,8n, 16n -
Esc64a Top. i � CPU, i = 4n,8n, 16n, 20n Top. i � CPU, i = 4n,8n, 16n, 20n
Had20 Top. i � CPU, i = 8n, 20n Top. i � CPU, i = 4n,8n, 16n, 20n
Kra32 Top. i � CPU, i = 4n,8n, 16n, 20n Top. i � CPU, i = 16n
Nug30 Top. i � CPU, i = 8n, 16n, 20n Top. i � CPU, i = 4n,8n
Scr20 Top. i � CPU, i = 8n Top. i � CPU, i = 4n,8n, 16n, 20n
Tai35b Top. i � CPU, i = 8n, 20n Top. i � CPU, i = 4n,8n
Tai40b - Top. i � CPU, i = 4n,8n, 16n
Tai60b Top. i � CPU, i = 4n,8n, 16n, 20n Top. i � CPU, i = 8n, 16n, 20n
Tho40 Top. i � CPU, i = 4n,8n, 16n, 20n Top. i � CPU, i = 8n, 20n

A� B means that the results that come from sample A are better than the results that come
from sample B.

most prominent neighborhood topology. This happened in nine of ten test instances,
both in the 2-opt heuristic and in the greedy 2-opt heuristics.



Conclusions and Future Works

Solving the QAP is not an easy task. The PGAGrid model designed and im-
plemented in this work is an important technique to find optimal or near optimal
solutions for significant instances of the QAP.

The PGAGrid model is based on an appropriate configuration of a Graphi-
cal Processing Unit (GPU). The GPU was configured in such a way, that a two-
dimensional GPU grid corresponds to the population of the genetic algorithm, a
GPU block corresponds to an individual (chromosome) of the population and a
GPU thread to a gene of such a chromosome. Configuring the GPU in this form
allowed to manipulate in a simpler way the data structure of the fine-grained parallel
genetic algorithm. This configuration allowed, in the same way, to take advantage
of the different memory spaces of the GPU to accommodate the structures of the
genetic algorithm and speed up the processing calculations.

An alternative formulation of the QAP, as a matrix function (trace formulation)
in relation to its original formulation was important in the implementation of the
PGAGrid model. This formulation exploited the characteristics of the GPU as a
parallel multiprocessing vector device.

The type of selection used (selection by binary tournament), was appropriate
to be implemented in parallel and therefore, in a GPU. The selection was made
simultaneously in the corresponding shared memory spaces of each of the GPU
blocks where the individuals that are contrasted reside.

The configuration of the GPU was important at the time of applying the ge-
netic crossing, mutation and transposition operators. These genetic operators were
implemented at the block level in the GPU, that is, each operator was applied
simultaneously to each of the individuals in the population.

The crossover operator was completely implemented in parallel, unlike all imple-
mentations of similar jobs reported in the literature. The crossover operator resorted
to one of four neighborhoods topologies, in order to effect a diffusion of highlight-
ing genetic material among individuals of the population. The use of neighborhood
topologies was significant, highlighting Moore’s topology over the others.

A strategy based on elitism was applied in each iteration of the PGAGrid
model. This strategy was important, since it prevented the genetic model from
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losing the best chromosome found before applying the mutation and transposition
genetic operators.

Finally, two local search heuristics were implemented with the purpose of carry-
ing out a meticulous genetic exploitation of the spaces previously explored by the
fine-grained parallel genetic algorithm. The matrix formulation of the incremen-
tal function of the 2-opt (greedy 2-opt) heuristic was important because it took
advantage of the characteristics of the GPU as a vector device.

The greedy 2-opt heuristic was the most outstanding to improve the solutions
found by the genetic algorithm. PGAGrid was completely implemented with
CUDA on a Graphical Processing Unit (GPU), eliminating data transfer bottle-
necks between the main memory of the PC and the main memory of the GPU.

PGAGrid was examined on ten different benchmark problems of the literature
(instances of the QAPLIB reference source) but it could well have been verified its
efficiency with any other problem even of bigger size.

The PGAGrid model was faster than the sequential algorithm in CPU. In
addition the results obtained were also much better. Also, the results obtained by
the PGAGrid model were in most cases better than the results referenced in other
investigations.

The greedy 2-opt local search heuristic was important to improve solutions pre-
viously found by the genetic algorithm. However, an optimization heuristic with a
more rigorous mathematical character and less burden in an exhaustive search is
proposed for future research, as was the case of this heuristic implemented.

Resorting to another parallel genetic model such as the distributed model (is-
lands model) and combining it with what has already been implemented will surely
improve the results obtained, and perhaps for this it is convenient to configure a
cluster of GPUs or combine procedures in multicore architectures.
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[10] J. Rodŕıguez F. MacPhee D. Bonham and V. Bhavsar, Solving the quadratic as-
signment and dynamic plant layout problems using a new hybrid meta-heuristic
approach, Int. J. High Perform. Comput. Netw 4 (2006), 286–294.

[11] N. Brixius and K. Anstreicher, Solving quadratic assignment problem using
convex quadratic programming relaxations, Optimization Methods and Software
16 (2001), 49–68.

62



BIBLIOGRAPHY 63

[12] A. Bruengger, J. Clausen, A. Marzetta, and M. Perregaard, Joining forces
in solving large-scale quadratic assignment problems in parallel, Tech. report,
University of Copenhagen, 1996.

[13] R. Burkard, The quadratic assignment problem., Pardalos P.M. Handbook of
Combinatorial Optimization. (2013).

[14] R. Burkard and F. Rendl, A thermodynamically motivated simulation procedure
for combinatorial optimization problems, European Journal of Operational Re-
search 17 (1984), no. 2, 169–174.

[15] J. Castellanos, V. Amarillo, and R. Poveda, Quadratic assignment problem
(qap) on gpu through a master-slave pga, Visión Electrónica. más que un estado
sólido 10 (2016), no. 2, 179–183.

[16] P. Szwed W. Chmiel and P. Kad luczka, Opencl implementation of pso algorithm
for the quadratic assignment problem, Artifcial Intelligence and Soft Computing
- 14th International Conference, ICAISC (2015).

[17] W. Chmiel, P. Kadluczka, J. Kwiecien, and B. Filipowicz, A comparison of
nature inspired algorithms for the quadratic assignment proble, BULLETIN
OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES 65
(2017), no. 4, 513–522.

[18] N. Christofides, Worst case analysis of a new heuristic for the traveling sales-
man problem, Tech. Report 338, Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, PA, 1976.

[19] A. Colorni and M. Maniezzo, The ant system applied to the quadratic assign-
ment problem, IEEE T. Knowl. Dta En 11 (1999), 769–778.

[20] E. Cárdenas, R. Poveda, and O. Garćıa, A solution for the quadratic assign-
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