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ABSTRACT 

Effects of Red Imported Fire Ants on Songbird Nest Survival.  (May 2008) 

Andrew J. Campomizzi, B.S., University of Dayton 

Chair of Advisory Committee: Dr. Michael L. Morrison 

 

 Invasive species are often implicated in population declines of native species 

through competition and predation.  Red imported fire ant (Solenopsis invicta) predation 

of songbird nestlings and eggs has been documented.  I conducted a replicated 

manipulative experiment to determine the magnitude of the decrease in nest survival 

caused by S. invicta in addition to other predators.  I conducted mensurative experiments 

to quantify the frequency of S. invicta foraging near active songbird nests and factors 

that influence the susceptibility of songbird nests to S. invicta predation.  I hypothesized 

that predation by S. invicta reduced nest survival by 10%, potentially biologically 

significant, and that songbird nests would be more susceptible to S. invicta predation that 

were located: (1) closer to the ground, (2) closer to an edge, (3) closer to disturbed soils, 

and (4) initiated later in the breeding season.  I monitored 235 songbird nests including 

45 black-capped vireo (Vireo atricapilla), 67 white-eyed vireo (V. griseus), and 123 

northern cardinal (Cardinalis cardinalis) nests on 9 patches of 36–103 ha each on 

private land in east-central Texas, USA in 2006–2007.  I found preventing S. invicta 

from preying upon songbird nests increased nest survival 20% for white eyed vireos and 

1% for black-capped vireos.  I detected S. invicta near songbird nest on 60% of food 

lures on the ground and 7% of food lures 1 m high in vegetation (n = 122).  Vireo nests 
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<2 m high and <4 m from an edge were more susceptible to S. invicta predation 

indicating potential threshold conditions, below which songbird nests may be more 

susceptible.  If my results are applicable to other areas then songbird populations of 

some species nesting below 2 m may have substantially lower nest survival in areas 

occupied by S. invicta.  I suggest the negative impacts of S. invicta on songbird nest 

survival may be reduced by applying integrated pest management methods and 

increasing woody vegetation cover in breeding areas of songbird species susceptible to 

S. invicta nest predation. 
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INTRODUCTION 

Invasive species are often implicated in population declines of native species 

through competition and predation (summarized by Caughley and Gunn 1996:71–147).  

Invasive ant species can negatively impact various native species because of their 

relatively high abundance and intense foraging ability compared with native ants 

(Holway et al. 2002).  The red imported fire ant (Solenopsis invicta) is an invasive ant 

considered a threat to native species in the USA (Taber 2000, Allen et al. 2004), the 

Caribbean (Davis et al. 2001), Australia (Moloney and Vanderwoude 2002;2003), New 

Zealand (Pascoe 2001), and China (Zhang et al. 2005).  Successful land management for 

susceptible, native prey and competitor species requires focused conservation efforts 

where S. invicta has already been introduced and anticipation of conservation needs 

where S. invicta are expected to colonize (Morrison et al. 2004, Sutherst and Maywald 

2005). 

S. invicta were accidentally introduced to North America in the 1930s from 

South America (Wilson 1951, Lofgren et al. 1975).  Subsequently, researchers have 

documented the detrimental effects of S. invicta in the USA on native arthropods (Porter 

and Savignano 1990, Gotelli and Arnett 2000), birds, mammals, and herpetofauna 

(reviewed by Allen et al. 2004).  S. invicta have also been implicated in the extinction of 

the tree snail (Orthalicus reses reses) in the USA (Forys et al. 2001).  S. invicta are 

known nest predators of several songbird species in the Mississippi alluvial valley 

____________ 
This thesis follows the style of The Journal of Wildlife Management. 
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(Twedt et al. 2001), and barn swallows (Hirundo rustica) and black-capped vireos 

(Vireo attricapilla; Stake and Cimprich 2003) in Texas.  Removal of S. invicta from 

breeding areas of ground nesting birds increased nest or fledgling survival for colonial 

nesting water birds (Drees 1994), least tern (Sterna antillarum; Lockley 1995), and 

northern bobwhites (Colinus virginianus; Allen et al. 1995, Mueller et al. 1999).  These 

studies suggest that S. invicta likely reduce nest survival of songbirds in addition to 

losses from native nest predators.   

Nest predation is the primary cause of nest failure for many songbird species 

(Nice 1957, Ricklefs 1969, Martin 1993).  Management action to improve the nest 

survival of threatened or endangered songbird species is often suggested or undertaken 

to aid in recovering a species with small populations (e.g., Fish and Wildlife Service 

1991, Cain et al. 2003).  Predator-prey interactions involving songbird nests are complex 

systems, some predator removal experiments have resulted in nest survival increases 

(Jackson 2001, Schmidt et al. 2001) whereas others resulted in little change in nest 

survival (Beauchamp et al. 1996, Schmidt et al. 2001).   

It is likely that active songbird nests, especially a nest with young, are identified 

as a food source by foraging S. invicta in the same manner as other food sources.  S. 

invicta forage alone, walking in exploratory loops in search of food (Wilson 1962).  

When a forager finds food it consumes the food, carries the food back to the colony, or 

recruits other members of the colony to aid in recovering larger food items (Taber 

2000:32–45).  S. invicta recruit to food sources in large numbers (hundreds, Porter and 
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Tschinkel 1987) up to 40 m from their colony (Martin et al. 1998), subduing prey and 

out competing other species with their abundance and venomous sting. 

The susceptibility of songbird nests to S. invicta predation is likely to vary 

spatially and temporally according to patterns of S. invicta distribution, abundance, and 

foraging.  The higher a nest is located from the ground, the more likely that a forager 

would have located a food item closer to the ground before finding the nest.  S. invicta 

foragers were more commonly detected in areas with less canopy cover and more direct 

sunlight (Porter et al. 1988, Porter and Savignano 1990, Stein et al. 1990, Stiles and 

Jones 1998).  Summerlin et al. (1976) found S. invicta were more common in areas with 

more disturbed soils from grazing and Tshinkel (1987) found S. invicta were more 

common near paved roads, unpaved roads, and agriculture.  S. invicta have been found 

to be more active (Porter and Tschinkel 1987, Porter and Savignano 1990) and prefer 

protein food sources during warmer months (Stein et al. 1990).  It is important to note 

that the studies mentioned above found that S. invicta were more common or more active 

under certain conditions, but were also present and less active in other areas.  Thus, any 

songbird nest may potentially be at risk of predation by S. invicta, but susceptibility of 

nests may follow certain patterns. 

I investigated the effect of S. invicta on nest survival of the federally endangered 

black-capped vireo and 2 more common songbird species, white-eyed vireos (V. griseus) 

and northern cardinals (Cardinalis cardinalis).  I selected these species because S. 

invicta have been identified as a primary predator of black-capped vireo nests in east-

central Texas (Stake and Cimprich 2003).  Also, both white-eyed vireos and northern 
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cardinals co-occur with black-capped vireos, nesting in the same vegetation.  Major 

factors contributing to population declines of black-capped vireos were habitat loss and 

nest parasitism by brown-headed cowbirds (Molothrus ater; U.S. Fish and Wildlife 

Service 1991).  Native predators of black-capped vireo nests include species of reptiles, 

mammals, and birds (Graber 1961, Stake and Cimprich 2003).  S. invicta was an 

additional nest predator in this ecological system and was currently found throughout 

much of the southern USA including most of black-capped vireo breeding range (Figure 

1).  I conducted a replicated manipulative experiment to determine if S. invicta caused a 

�10% decrease in nest survival in addition to native predators, and mensurative 

experiments to quantify the frequency of S. invicta foraging near active songbird nests 

and factors that influence the susceptibility of nests to S. invicta predation.  I tested a 

reduction in nest survival of �10% because sensitivity analyses for other songbird 

species (Porneluzi and Faaborg 1999, Powell et al. 1999) have suggested it may be 

biologically significant for population dynamics.  Also, I hypothesized that songbird 

nests would be more susceptible to S. invicta predation for nests: (1) closer to the 

ground, (2) closer to an edge, (3) closer to disturbed soils, and (4) initiated later in the 

breeding season.   
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Figure 1.  Overlap of black-capped vireo (BCVI) breeding range and Solenipsis invicta 

range in the southern USA and north-eastern Mexico.  Black-capped vireo range 

estimate from Wilkins et al. (2006) and S. invicta range estimate from USDA 

(http://www.aphis.usda.gov/).  
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STUDY AREA 

I used 9 sampling units located on 11 private land parcels in the Leon river 

watershed in Coryell County in east-central Texas, USA.  Permission to access private 

land limited sampling unit selection because most land in this region was privately 

owned.  I used the results of previous presence-absence surveys for all avian species in 

2006 on 21 private properties and 1 state park and in 2007 on 32 properties and 1 state 

park within a 140,000 ha area to select our 9 sampling units of 36–103 ha.  These 9 

sampling units were the only patches of vegetation where black-capped vireos were 

detected.  Vegetation on sampling units consisted of mid-successional stage woody 

vegetation similar to areas occupied by black-capped vireos in the nearby Lampasas Cut 

Plains (see Grzybowski et al. 1994, Bailey and Thompson 2007) and ecotones between 

mature oak-juniper (Quercus-Juniperus) woodland and grassland.  Landscape 

topography in the study area includes hills and mesas with elevation range 200–500 m.  

Primary land uses on private lands in the study area were ranching, farming, and 

hunting. 
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METHODS 

My target population was nesting black-capped vireos in the study area.  I 

included white-eyed vireos and northern cardinals that co-occurred with black-capped 

vireos to broaden the information collected on effects of S. invicta on nesting songbirds 

in general and to increase sample size.  I assumed S. invicta would potentially prey upon 

any bird nest found while foraging (i.e., not selecting one species’ nest over another) 

because songbird nests would provide a similar source of protein (Stein et al. 1990).  I 

included black-capped vireo, white-eyed vireo, and northern cardinal nests found 0.4 to 

4.2 m high in woody vegetation in our sample.   I used nests of these heights because it 

was within the height range of black-capped vireo nest placement in our study area and 

mostly typical of black-capped vireo nest placement in general (Graber 1961, 

Grzybowski 1995). 

Nest Survival 

I used behavioral cues and systematic searching (Martin and Geupel 1993) to 

locate active songbird nests from 15 March to 31 July during 2006 and 2007.  I visited 

active nests every 3–4 days to determine outcome (i.e., nest fledged �1 young, or failed) 

and presence or absence of S. invicta.  I considered a nest successful if we saw adults 

carrying food to fledglings or we detected fledglings by sight or sound while visiting 

nests after a penultimate visit with large nestlings near fledging age.  I considered nests 

failed if we did not observe fledglings or adults carrying food when visiting nests that 

previously had nestlings. 
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I assigned each nest to either the treatment or control group using a probabilistic 

starting point followed by systematic assignment.  Assignment of treatment or control 

for the first nest found for each species was decided by a coin toss.  Assignment to 

treatment or control group alternated for each additional nest found.  I used this method 

to assign treatments and controls to intersperse treatment nests and control nests in space 

and time within each sampling unit (sensu Hurlbert 1984).  I treated individual nests 

rather than reducing S. invicta abundance in areas with ant-specific broadcast poison 

baits, as is typically done in S. invicta research (e.g., Martin et al. 1998, Calixto et al. 

2007).  This method allowed me to intersperse treatments thus reducing spatial effects, 

increasing sample size, and avoiding the unknown affects of removing S. invicta from 

the nest predator assemblage (e.g., cause a population response of other nest predators). 

I prevented S. invicta from preying upon treatment nests by applying a chemical 

barrier (Spiral Wrap Arinix™, Nix of America, San Jose, CA) and a physical barrier 

(Tree Tanglefoot® Pest Barrier, The Tanglefoot Company, Grand Rapids, MI) to 

branches supporting nests.  The Spiral Wrap is a 5 cm long flexible plastic which 

contains 8.6% permethrin and was originally designed to prevent small insects from 

entering automobile vents.  Permethrin is a low toxicity pesticide used in outdoor 

clothing to repel small insects (e.g., ticks, mosquitoes).  The Spiral Wrap slowly releases 

permethrin from the plastic and stops ants from crossing the chemical barrier (B. M. 

Drees, Texas A&M University, unpublished data).  Tanglefoot is a natural gum resin 

that passively catches crawling insects, stopping them from climbing trees and damaging 

agricultural products (e.g., fruits, nuts).  I applied the Tanglefoot Pest Barrier to the 
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branch supporting a treatment nest �0.25 m from each nest.  I wrapped a Spiral Wrap 

around the branch on top of the Tanglefoot Pest Barrier allowing the Tanglefoot to fill 

gaps between the branch and Spiral Wrap.  I assumed the barrier did not deter other 

predators (e.g., snakes, birds, mammals) from preying upon nests because these 

predators could easily maneuver past the insect-specific, 5 cm barrier.  If the barrier 

deterred other nest predators then observed treatment effects would be due to treatment 

nests being protected from ants plus other nest predators.  To control for any potential 

effects of applying the spiral wrap or its presence at nests, we attached an inert spiral 

wrap to branches supporting control nests. 

Vireo nests were built on a single isolated branch, enabling the use of the ant 

barrier to block the only access point to the nest available to ants.  I was not able to 

successfully deploy ant barriers at northern cardinal nests because nests were supported 

by many branches allowing ants to access the nest from multiple locations.  Thus, I did 

not include northern cardinal nests in the manipulative experiment because the ant 

barrier was ineffective.  I did, however, include northern cardinal nests in mensurative 

experiments below. 

I determined the magnitude of effect of S. invicta nest depredation on black-

capped and white-eyed vireo nest survival both separately and combined.  I analyzed 

nest survival separately for each vireo species to examine potential differences in the 

treatment effect between species.  I analyzed nest survival for both vireo species 

combined to enable analysis of nest stage survival and between-year differences in nest 

survival.  I defined nest survival (�t) as the probability that a nest successfully fledged at 
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least 1 young bird, daily survival rate as the probability that a nest survived one day, and 

nest stage survival as the probability that a nest would remain active during the 

incubation or nestling stage.  I used a modified Mayfield (1961;1975) method to 

calculated estimates of daily survival rate and nest survival corrected for exposure days.  

I modified Mayfield’s method by using the number of days nests were active under 

treatment rather than the total number of exposure days nests were observed active.  I 

made this modification to ensure that the affect of the treatment on nest survival was 

being measured.  I calculated 2 SE for nest survival estimates using Johnson’s (1979) 

method.  I used the estimates of nest survival and associated error to compare nest 

survival between treatments, species, and nest stages. 

S. invicta Activity Near Nests 

I measured S. invicta foraging activity relative to active songbird nests using food 

lures to determine if S. invicta were actively foraging near nests.  I measured foraging 

activity at as many nests as possible, however, many nests failed before I was able to 

sample for ants.  Food lures have been used to detect ant species and monitor 

fluctuations in the number of foragers over time (see Drees 1994, Barr and Best 2002).  I 

placed 1 food lure (i.e., 4 cm2 peanut oil soaked index card) on the ground and 1 placed 

1.0 m high in woody vegetation.  I placed food lures about 10 m from each active 

songbird nest assuming that both the active songbird nest and food lure to be within the 

estimated 40 m range that S. invicta forage from each colony (Martin et al. 1998).  I 

collected food lures after 40–60 min and recorded if the lure was discovered by foraging 

S. invicta and estimated the number of S. invicta on discovered lures.  When S. invicta 
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were not detected on food lures during initial sampling at a nest, I resampled for S. 

invicta 3 to 4 days later if the nest was still active.  I did not resample at a nest once S. 

invicta were detected on food lures.  I collected samples of ants found on food lures and 

in songbird nests and had them identified by a technician at the Center for Urban and 

Structural Entomology, Department of Entomology, Texas A&M University.  I 

summarized S. invicta activity by calculating the proportion and 2 SE of food lures with 

S. invicta detections on the ground and 1 m high.  I compared S. invicta activity between 

the ground and 1 m high, and between years using the mean and 2 SE. 

Nest Susceptibility to S. invicta 

 I recorded if S. invicta were detected in nests during nest monitoring visits.  I 

measured nest height (i.e., distance from the ground to the top of the nest) and distance 

to edge (i.e., horizontal distance from the nest to the nearest location where branches and 

leaves of woody vegetation did not overlap) once nests became inactive.  I recorded the 

location of each nest using a hand held GPS (Global Positioning System) accurate to 6 

m.  I used our GIS (Geographic Information System, ESRI® ArcMapTM 9.1, Redlands, 

CA) to measure the distance from each nest to the nearest soil disturbance (i.e., trail, 

road, or agriculture) visible on a 2006 National Agricultural Imagery Program aerial 

photograph downloaded from <http://datagateway.nrcs.usda.gov/>.  I classified songbird 

nests as initiating during a particular week of the 15 week nesting season based on the 

date the first host egg was laid in each nest. 

I analyzed nest susceptibility data by examining box plots, scatter plots, 

histograms, and calculating mean and 2 SE of nest susceptibility variables.  I tested for 



 12

statistical significance of nest susceptibility variables between nests with and without S. 

invicta detections using Mann-Whitney U tests (� = 0.05).  I did not use logistic 

regression because while I had data for 122 songbird nests, I detected ants in only 8 of 

these nest making it difficult for this type of analysis to detect relatively small 

differences between nests with and without S. invicta detections.  I used SPSS 14.0.2 

(SPSS Inc., Chicago, Illinois, USA) for statistical analyses. 
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RESULTS 

 I found nests for black-capped vireos, white-eyed vireos, and northern cardinals 

on all 9 sampling units.  I monitored 235 songbird nests including 45 black-capped 

vireo, 67 white-eyed vireo, and 123 northern cardinal nests. 

Nest Survival 

I monitored 71 nests for our manipulative experiment comprised of 27 black-

capped vireo and 44 white-eyed vireo nests.  I found nest survival for black-capped and 

white-eyed vireos was 10% lower for control nests (�t = 0.0 38, n = 40) than for 

treatment nests (�t = 0.138, n = 31; Table 1).  I found nest survival varied between years.  

Nest survival was 7% lower for control nests in 2006 (�t = 0.018, n = 19) than 2007 (�t = 

0.081, n = 21; Table 1).  Nest survival was 0.3% lower for treatment nests in 2006 (�t = 

0.120, n = 15) than 2007 (�t = 0.154, n = 16; Table 1).  I found that the magnitude of the 

effect of the treatment varied between when the nest was in the incubation stage and the 

nestling stage.  I found nest stage survival was 7% lower during incubation for control 

nests (�t = 0.23, +2SE = 0.224–0.238) than for treatment nests (�t = 0.30, +2SE = 0.284–

0.312; Table 2).  Nest stage survival during nestling stage was 37% lower for control 

nests (�t = 0.19, +2SE = 0.184–0.206) than for treatment nests (�t = 0.56, +2SE = 0.524–

0.594; Table 2).  I found that the magnitude of the effect of the treatment on nest 

survival was different for black-capped vireos than for white-eyed vireos.  I found nest 

survival was 1% lower for black-capped vireo control nests (�t = 0.027, n = 14) than for 

treatment nests (�t = 0.040, n = 13; Table 3).  Nest survival was 20% lower for white-
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eyed vireo control nests (�t = 0.044, n = 26) than for treatment nests (�t = 0.246, n = 18; 

Table 3). 

 

Table 1.  Modified Mayfield estimates of daily survival rate (DSR) and nest survival 

(probability of a nest successfully fledging �1 bird) combined for black-capped and 

white-eyed vireo nests on private land in 2006 and 2007 in east-central Texas, USA.  

Treatment nests were protected from ant predation. 

 DSR Nest survival +2 SE n 

2006     

  Control 0.8623 0.012 0.011–0.013 19 

  Treatment 0.9317 0.120 0.105–0.137 15 

2007     

  Control 0.9194 0.081 0.075–0.087 21 

  Treatment 0.9396 0.154 0.139–0.170 16 

Total     

  Control 0.8968 0.038 0.037–0.039 40 

  Treatment 0.9361 0.138 0.132–0.144 31 
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Table 2.  Modified Mayfield estimates of daily survival rate (DSR) and stage survival 

(probability that a nest survived the stage with �1 young) during incubation and nestling 

stages combined for black-capped and white-eyed vireo nests monitored 2006–2007 in 

east-central Texas, USA. 

 DSR Stage survival +2 SE 

Incubation    

  Control 0.9125 0.23 0.224–0.238 

  Treatment 0.9271 0.30 0.284–0.312 

Nestling    

  Control 0.8618 0.19 0.184–0.206 

  Treatment 0.9483 0.56 0.524–0.594 
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Table 3.  Modified Mayfield estimates of daily nest survival (DSR) and nest survival 

(probability of a nest successfully fledging �1 bird) for black-capped (BCVI) and white-

eyed vireo (WEVI) nests during 2006–2007 in east-central Texas, USA.  Treatment 

nests were protected from ant predation. 

 DSR Nest survival +2 SE n 

BCVI     

  Control 0.887446 0.027 0.024–0.032 14 

  Treatment 0.898618 0.040 0.034–0.048 13 

WEVI     

  Control 0.901288 0.044 0.042–0.047 26 

  Treatment 0.954338 0.246 0.225–0.269 18 

 

S. invicta Activity Near Nests 

I sampled for ant activity using food lures near 122 active black-capped vireo, 

white-eyed vireo, and northern cardinal nests.  I detected S. invicta near songbird nest on 

60% of food lures on the ground and 7% of food lures 1 m high in vegetation during 

both years of research (n = 122).  Detections of S. invicta on food lures varied between 

2006 (71% of food lures on the ground and 5% of food lures 1 m high in vegetation [n = 

56]) and 2007 (50% of food lures on the ground and 8% of food lures 1 m high [n = 66]).  

I detected S. invicta on 21% more food lures in 2006 than 2007 (Figure 2).  I identified 5 

genera of ants foraging on food lures near active songbird nests: S. invicta, red harvester 
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ant (Pogonomyrmex barbatus), pharaoh and little black ants (Monomorium spp.), cheese 

ants (Forelius spp.), and big-headed ants (Pheidole spp.). 

 

 

Figure 2.  The proportion of food lures with S. invicta detections and 2 SE for food lures 

placed 10 m from active songbird nests (black-capped vireo, white-eyed vireo, and 

northern cardinal) monitored 2006–2007 in east-central Texas, USA. 
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Nest Susceptibility to S. invicta 

 I detected S. invicta in 8 of the 122 black-capped vireo, white-eyed vireo, and 

northern cardinal nests monitored for nest susceptibility.  I found that nests with S. 

invicta detections were 14% lower (x̄  = 1.2 m, n = 8) than nests without S. invicta 

detections (x̄  = 1.4 m, n = 114), but the difference was not statistically significant (U = 

385.5, P = 0.46; Table 4).  I did not detect S. invicta in nests above 2 m high despite 

monitoring 19 nests above 2 m.  I found that distance to edge was not different between 

nests with (x̄  = 7.4 m, n = 8) and without S. invicta detections (x̄  = 3.2 m, n = 114; U = 

405.5, P = 0.60; Table 4).  I noted, however, that 6 of the 8 nests with S. invicta detected 

in the nest were <4 m from the edge.  I found that distance to soil disturbance (U = 

391.0, P = 0.50, n = 114) and first egg week (U = 403.5, P = 0.59, n = 114) were not 

different between nests with and without S. invicta detections (Table 4). 
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DISCUSSION 

Nest Survival 

 I hypothesized that S. invicta would cause a �10% reduction in nest survival and 

thus, potentially negatively impact songbird populations.  I found that preventing ants 

from preying upon vireo nests increased estimates of nest survival by 10%, suggesting S. 

invicta nest depredation has a biologically significantly impact on black-capped and 

white-eyed vireo populations on our study sites in central Texas (Porneluzi and Faaborg 

1999, Powell et al. 1999).  The 10% increase in nest survival I found through preventing 

S. invicta from preying upon songbird nests corresponds to the frequency of 10–11% 

that researchers have observed S. invicta in nests.  For example, Stake and Cimprich 

(2003) found that Solenopsis spp. accounted for 11% of nest failures in black-capped 

vireos using video cameras on Fort Hood, Texas.  Similarly, Twedt et al. (2001) 

observed that S. invicta caused nest failure at 10% of songbird nests where predators 

could be identified on cottonwood plantations in Louisiana and Mississippi.  Although 

our treatment method acted as a barrier to all ant species, S. invicta were the most 

common and abundant ant in the study area, detected at 83% of food lures where ants 

were detected, suggesting they pose the greatest threat to songbird nests.   

I found S. invicta had the largest impact on nest survival during the nestling 

stage, reducing survival of this stage by 37% in control nests not protected from S. 

invicta (Table 2).  These results suggest that vireo nests with nestlings may be more 

easily located by and recruited to by S. invicta foragers.  Video monitoring of nests have 

shown that fire ant ants swarmed black-capped vireo nests with nestlings more often 
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than nests with eggs (Stake and Cimprich 2003).  Researchers have observed S. invicta 

preying upon nestlings of several birds species including: least tern, black rail 

(Laterallus jamaicensis), barn swallow, cliff swallow (Hirundo pyrrhonota), crested 

caracara (Caracara plancus), northern bobwhite, and wood duck (Aix sponsa; 

summarized by Suarez et al. 2005).  Our data suggest that S. invicta were important nest 

predators in this ecological system, however, most nests I monitored did not fail because 

of S. invicta.  There were many possible reasons for nest failure in our system including 

other nest predators, brood parasitism, inclement weather, abandonment, infertile eggs, 

and nestling starvation. 

I found that preventing S. invicta from preying upon songbird nests showed an 

increase in nest survival for both black-capped and white eyed vireos, however, the 

increase was 20% for white-eyed vireos and 1% for black-capped vireos (Table 3).  I 

were unsure why the response in nest survival was different for these species considering 

they share many similar life history characteristics including overlap in spatial and 

temporal nesting characteristics (Grzybowski 1995, Hopp et al. 1995).  Nests included in 

our experiment were interspersed both spatially and temporally on each sampling unit 

and nest heights averaged 1.2 m (+2SE = 1.0–1.4; n = 27) for black-capped vireos and 

1.5 m (+2SE = 1.3–1.7; n = 44) for white-eyed vireos.  These similarities between black-

capped and white-eyed vireo nesting ecology suggest that they were subjected to similar 

causes of nest failure.  Nest survival was lower for black-capped vireos than for white-

eyed vireos possibly due to higher frequency of nest parasitism by brown-headed 

cowbirds on black-capped vireos in our study area (Farrell 2007).  I suggest that subtle 
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differences in breeding behavior or nest placement may lead to lower nest survival in 

black-capped vireos than white-eyed vireos. 

I found that nest predation by S. invicta reduced nest survival for endangered 

black-capped vireos and more common white-eyed vireos in addition to native predators 

of songbird nests in our study area in central Texas.  If our results are applicable to other 

areas then populations of some songbird species nesting within 2 m of the ground may 

be negatively impacted within the 320,000,000 ha currently occupied by S. invicta in the 

USA (USDA 2007).  I suspect the effects of S. invicta on nest survival of songbirds to 

vary spatially and temporally considering the complex interactions of nest predator 

assemblages (Beauchamp et al. 1996, Jackson 2001, Schmidt et al. 2001) and other 

reasons for nest failure.   

S. invicta Activity Near Nests 

I did not know how common S. invicta would be in our study area.  I found that 

S. invicta were present in all sampling units and were nearly ubiquitous.  Our finding of 

higher nest survival of control nests in 2007 than 2006 was correlated with lower S. 

invicta activity in 2007 than 2006 (Table 1, Figure 2).  Decreased S. invicta activity is 

likely due to different weather conditions between years.  Weather in 2006 was hot (20.8 

°C) and dry (37.2 cm) compared with cooler (18.3 °C) rainy (102.7 cm) weather in 2007 

(30 yr normals were 19.1 °C for January – July and 50.8 cm precipitation; NOAA 2007).  

I observed S. invicta tending to larvae and rebuilding mounds between frequent the rain 

events of 2007, presumably reducing foraging effort and subsequent predation on 

songbird nests.  S. invicta activity is dependent on temperature and rainfall (Porter and 
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Tschinkel 1987, Porter and Savignano 1990) suggesting that S. invicta impact on 

songbird nests during cool rainy years may be less than during hot dry years. 

Nest Susceptibility to S. invicta 

 I hypothesized that songbird nests located closer to the ground, nearer to an edge, 

nearer to soil disturbance, and initiated later in the breeding season would be more 

susceptible to predation by S. invicta.  My small sample size of songbird nests with S. 

invicta detected in the nest made data analysis for biological meaningful effects difficult, 

but I found several interesting trends in the data.  My data suggested that nests <2 m 

high and <4 m from an edge were more susceptible to S. invicta predation indicating 

potential threshold conditions, below which songbird nests may be more susceptible 

(sensu Lindenmayer and Luck 2005, Luck 2005).  My ability to detect S. invicta in nests 

may have been limited because I checked higher nests with hand-held mirrors and I 

visited nests once every 3 to 4 days.  It may be beneficial in similar, future studies to 

reduce these potential detection problems either by visiting nests more often, monitoring 

nests with cameras, or using sticky traps to capture foraging ants. 

 My findings of a potential threshold of nest height, below which songbird nests 

are vulnerable to predation by S. invicta, is supported by several video camera studies of 

nest predators.  Stake and Cimprich (2003) found that 11% (n = 142) of black-capped 

vireo nests were lost to Solenopsis spp. compared to Stake et al. (2004) and Reidy (2007) 

who found that 0% (n = 61) and 2% (n = 67), respectively, of golden-cheeked warbler 

(Dendroica chrysoparia) nests were lost to Solenopsis spp.  Median height for black-

capped vireos has been reported as 1.0 m (range 0.2, 3.0) compared to 5 to 7 m for 
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golden-cheeked warblers (Grzybowski 1995, Ladd and Gass 1999).  These studies 

support a threshold of nest height susceptibility, but there are other potential 

explanations including different habitat requirements for the 2 species and associate land 

uses that could affect S. invicta distribution, abundance, and foraging. 

Nest predation is often found to be higher near edges although not in all 

landscapes (Tewksburry et al. 1998).  It is likely that landscape structure and natural 

history characteristics of nest predators determine if songbird nests near edges are more 

susceptible to predation.  My results suggest that nests near edges of woody vegetation 

(<4 m) are more likely to be preyed upon by S. invicta which is supported by studies of 

S. invicta distribution and abundance (Porter et al. 1988, Porter and Savignano 1990, 

Stiles and Jones 1998). 

The potential effects of S. invicta on songbird nest survival is substantial because 

of the extensive and expanding range of S. invicta in the USA and worldwide (Morrison 

et al. 2004, Sutherst and Maywald 2005).  More studies to quantify the affects of S. 

invicta and other invasive species on songbird nest survival are needed.  For example, I 

found that nest survival for 2 co-occurring congeners responded differently to our 

treatment for excluding ants as nest predators.  Further investigation to determine why 

similar songbird species may respond differently to invasive nest predators would be 

helpful.  Building this body of knowledge will enable biologists to understand which 

avian species are susceptible to invasive predators and aid in directing conservation 

efforts to those species that are susceptible to nest losses by invasive species (sensu: 

Parker et al. 1999). 
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SUMMARY OF MANAGEMENT IMPLICATIONS 

My findings suggest S. invicta predation can reduce nest survival up to 20% for 

some songbird species.  Thus, suppression of S. invicta populations in songbird breeding 

areas with susceptible nests and populations of concern (i.e., threatened, endangered, 

locally rare) may be a management action to consider to increase songbird productivity.  

Suppression of S. invicta populations in songbird breeding areas may be accomplished 

through integrated pest management (Drees and Gold 2003, Pereira 2003) and increasing 

woody vegetation cover to provide nesting areas for songbirds distant from edges and 

less fragmented.  It may be useful and more feasible to focus suppression of S. invicta 

specifically around the edges of woodland and shrubland breeding patches of susceptible 

songbirds because I found nests near edges were more susceptible to predation.  I 

emphasize that my methods excluded S. invicta from nests altering the functional, but 

not numerical response of S. invicta.  Suppression of S. invicta populations in songbird 

breeding areas may have ecological consequences on the nest predator assemblage that 

are not yet realized (e.g., resulting in an increase in rodent or snake populations). 

 

 

 

 

 

 

 



 26

LITERATURE CITED 

Allen, C. R., D. M. Epperson, and A. S. Garmestani. 2004. Red imported fire ant 

impacts on wildlife: a decade of research. American Midland Naturalist 152:88–

103. 

Allen, C. R., R. S. Lutz, and S. Demarais. 1995. Red imported fire ant impacts on 

northern bobwhite populations. Ecological Applications 5:632–638. 

Bailey, J. W., and F. R. Thompson III. 2007. Multiscale nest-site selection by black-

capped vireos. Journal of Wildlife Management 71:828–836. 

Barr, C. L., and R. L. Best. 2002. Product evaluations, field research and new products 

resulting from applied research. Southwestern Entomologist Supplement 25:47–

52. 

Beauchamp, W. D., T. D. Nudds, and R. G. Clark. 1996. Duck nest success declines 

with and without predator management. Journal of Wildlife Management 

60:258–264. 

Cain, J. W., III, M. L. Morrison, and H. L. Bombay. 2003. Predator activity and nest 

success of willow flycatchers and yellow warblers. Journal of Wildlife 

Management 67:600–610. 

Calixto, A. A., M. K. Harris, A. Knutson, and C. L. Barr. 2007. Native ant responses to 

Solenopsis invicta Buren reduction using broadcast baits. Environmental 

Entomology 36:1112–1123. 

Caughley, G., and A. Gunn. 1996. Conservation biology in theory and practice. 

Blackwell Science, Cambridge, Massachusetts, USA. 



 27

Davis, L. R., R. K. Vander Meer, and S. D. Porter. 2001. Red imported fire ants expand 

their range across the West Indies. Florida Entomologist 84:735–736. 

Drees, B. M. 1994. Red imported fire ant predation on nestlings of colonial waterbirds. 

Southwestern Entomologist 19:355–359. 

Drees, B. M., and R. E. Gold. 2003. Development of integrated pest management 

programs for the red imported fire ant (Hymenoptera: Formicidae). Journal of 

Entomological Society 38:170–180. 

Farrell, S. L. 2007. Brown-headed cowbird parasitism on endangered species: 

relationships with neighboring avian species. Thesis, Texas A&M University, 

College Station, Texas, USA. 

Forys, E. A., C. R. Allen, and D. P. Wojcik. 2001. The likely cause of extinction of the 

tree snail Orthalicus reses reses (Say). Journal of Molluscan Studies 67:369–376. 

Gotelli, N. J., and A. E. Arnett. 2000. Biogeographic effects of red fire ant invasion. 

Ecology Letters 3:257–261. 

Graber, J. W. 1961. Distribution, habitat requirements, and life history of the black-

capped vireo (Vireo atricapilla). Ecological Monographs 31:313–336. 

Grzybowski, J. A. 1995. Black-capped Vireo (Vireo atricapillus). In The birds of North 

America, number 181. The American Ornithologists' Union, Washington, D. C., 

and Academy of Natural Sciences, Philadelphia, Pennsylvania, USA. 

Grzybowski, J. A., J. D. Tazik, and G. D. Schnell. 1994. Regional analysis of black-

capped vireo breeding habitats. Condor 96:512–544. 



 28

Holway, D. A., L. Lach, A. V. Suarez, N. D. Tsutsui, and T. J. Case. 2002. The causes 

and consequences of ant invasions. Annual Review of Ecology & Systematics 

33:181-233. 

Hopp, S. L., A. Kirby, and C. A. Boone. 1995. White-eyed vireo (Vireo griseus). Birds 

of North America, number 168.  The American Ornithologists' Union, 

Washington, D. C., and Academy of Natural Sciences, Philadelphia, 

Pennsylvania, USA. 

Hurlbert, S. H. 1984. Pseudoreplication and the design of ecological field experiments. 

Ecological Monographs 54:187–211. 

Jackson, D. B. 2001. Experimental removal of introduced hedgehogs improves wader 

nest success in the Western Isles, Scotland. Journal of Applied Ecology 38:802–

812. 

Johnson, D. H. 1979. Estimating nesting success: the Mayfield method and an 

alternative. Auk 96:651–661. 

Ladd, C., and L. Gass. 1999. Golden-cheeked warbler (Dendroica chrysoparia). In The 

Birds of North America, number 420.  The American Ornithologists' Union, 

Washington, D. C., and Academy of Natural Sciences, Philadelphia, 

Pennsylvania, USA. 

Lindenmayer, D. B., and G. W. Luck. 2005. Synthesis: thresholds in conservation and 

management. Biological Conservation 124:351–354. 

Lockley, T. C. 1995. Effect of imported fire ant predation on a population of the least 

tern – an endangered species. Southwestern Entomologist 20:517–519. 



 29

Lofgren, C. S., W. A. Banks, and B. M. Glancey. 1975. Biology and control of imported 

fire ants. Annual Review of Entomology 20:1–30. 

Luck, G. W. 2005. An introduction to ecological thresholds. Biological Conservation 

124:299–300. 

Martin, J. B., B. M. Drees, W. E. Grant, E. K. Pedersen, C. L. Barr, and S. B. Vinson. 

1998. Foraging range of the polygynous form of the red imported fire ant, 

Solenopsis invicta Buren. Southwestern Entomologist 23:221–228. 

Martin, T. E. 1993. Nest predation among vegetation layers and habitats: revising the 

dogmas. American Naturalist 141:897–913. 

Martin, T. E., and G. R. Geupel. 1993. Nest-monitoring plots: methods for locating nests 

and monitoring success. Journal of Field Ornithology 64:507–519. 

Mayfield, H. 1961. Nesting success calculated from exposure. Wilson Bulletin 73:255–

261. 

Mayfield, H. 1975. Suggestions for calculating nest success. Wilson Bulletin 87:456–

466. 

Moloney, S. D., and C. Vanderwoude. 2002. Red imported fire ants: a threat to eastern 

Australia's wildlife? Ecological Management & Restoration 3:167–175. 

Moloney, S. D., and C. Vanderwoude. 2003. Potential ecological impacts of red 

imported fire ants in eastern Australia. Journal of Agricultural and Urban 

Entomology 20:131–142. 



 30

Morrison, L. W., S. D. Porter, E. Daniels, and M. D. Korzukhin. 2004. Potential global 

range expansion of the invasive fire ant, Solenopsis invicta. Biological Invasions 

6:183–191. 

Mueller, J. M., C. B. Dabbert, S. Demarais, and A. R. Forbes. 1999. Northern bobwhite 

chick mortality caused by red imported fire ants. Journal of Wildlife 

Management 63:1291–1298. 

National Oceanic and Atmospheric Administration's National Weather Service (NOAA).  

2007.  Waco climatology home page.  

<http://www.srh.noaa.gov/fwd/CLIMO/act/actclimo.html>.  Accessed 21 

November 2007. 

Nice, M. M. 1957. Nesting success in altricial birds. Auk 74:305–321. 

Parker, I. M., D. Simberloff, W. M. Lonsdale, K. Goodell, M. Wonham, P. M. Kareiva, 

M. H. Williamson, B. Von Holle, P. B. Moyle, J. E. Byers, and L. Goldwasser. 

1999. Impact: toward a framework for understanding the ecological effects of 

invaders. Biological Invasions 1:3–19. 

Pascoe, A. 2001. Turning up the heat on fire ants. Biosecurity: a publication of MAF 

Biosecurity Authority 32:36. 

Pereira, R. M. 2003. Areawide suppression of fire ant populations in pastures: project 

update. Journal of Agricultural and Urban Entomology 20:123–130. 

Porneluzi, P. A., and J. Faaborg. 1999. Season-long fecundity, survival, and viability of 

ovenbirds in fragmented and unfragmented landscapes. Conservation Biology 

13:1151–1161. 



 31

Porter, S. D., and D. A. Savignano. 1990. Invasion of polygyne fire ants decimates 

native ants and disrupts arthropod community. Ecology 71:2095–2106. 

Porter, S. D., and W. R. Tschinkel. 1987. Foraging in Solenopsis invicta 

(Hymenoptera:Formicidae): effects of weather and season. Environmental 

Entomology 16:802–808. 

Porter, S. D., B. Van Eimeren, and L. E. Gilbert. 1988. Invasion of red imported fire ants 

(Hymenoptera: Formicidae): microgeography of competitive replacement. 

Annals of the Entomological Society of America 81:913–918. 

Powell, L. A., M. J. Conroy, D. G. Krementz, and J. D. Lang. 1999. A model to predict 

breeding-season productivity for multibrooded songbirds. Auk 116:1001–1008. 

Reidy, J. L. 2007. Golden-cheeked warbler nest success in urban and rural landscapes 

and urban predators. Thesis, University of Missouri, Columbia, USA. 

Ricklefs, R. E. 1969. An analysis of nesting mortality in birds. Smithsonian 

Contributions to Zoology 9:1–48. 

Schmidt, K. A., J. R. Goheen, R. Naumann, R. S. Ostfeld, E. M. Schauber, and A. 

Berkowitz. 2001. Experimental removal of strong and weak predators: mice and 

chipmunks preying on songbird nests. Ecology 82:2927–2936. 

Stake, M. M., and D. A. Cimprich. 2003. Using video to monitor predation at black-

capped vireo nests. Condor 105:348–357. 

Stake, M. M., J. Faaborg, and F. R. Thompson III. 2004. Video identification of 

predators at golden-cheeked warbler nests. Journal of Field Ornithology 75:337–

344. 



 32

Stein, M. B., H. G. Thorvilson, and J. W. Johnson. 1990. Seasonal changes in bait 

preference by red imported fire ant, Solenopsis invicta (Hymenoptera: 

Formicidae). Florida Entomologist 73:117–122. 

Stiles, J. H., and R. H. Jones. 1998. Distribution of the red imported fire ant, Solenopsis 

invicta, in road and powerline habitats. Landscape Ecology 13:335–346 

Suarez, A. V., P. Yeh, and T. J. Case. 2005. Impacts of Argentine ants on avian nesting 

success. Insectes Sociaux 52:378–382. 

Summerlin, J. W., J. K. Olson, and J. O. Fick. 1976. Red imported fire ant: levels of 

infestation in different land management areas of the Texas coastal prairies and 

an appraisal of the control program in Fort Bend County, Texas. Economic 

Entomology 69:73–78. 

Sutherst, R. W., and G. Maywald. 2005. A climate model of the red imported fire ant, 

Solenopsis invicta Buren (Hymenoptera: Formicidae): implications for invasion 

of new regions, particularly Oceania. Environmental Entomology 34:317–335. 

Taber, S. W. 2000. Fire ants. Texas A&M University Press, College Station, Texas. 

Tewksburry, J. J., S. J. Hejl, and T. E. Martin. 1998. Breeding productivity does not 

decline with increasing fragmentation in a western landscape. Ecology 79:2890–

2903. 

Tschinkel, W. R. 1987. Distribution of the fire ants Solenopsis invicta and S. geminata 

(Hymenoptera: Formicidae) in Northern Florida in relation to habitat disturbance. 

Annals of the Entomological Society of America 81:76–81. 



 33

Twedt, J. T., R. R. Wilson, J. L. Henne-Kerr, and R. B. Hamilton. 2001. Nest survival of 

forest birds in the Mississippi alluvial valley. Journal of Wildlife Management 

65:450–460. 

United States Department of Agriculture (USDA).  2007.  Imported fire ants home page.  

<http://www.aphis.usda.gov/plant_health/plant_pest_info/fireants/index.shtml>.  

Accessed 21 November 2007. 

United States Fish and Wildlife Service (USFWS). 1991. Black-capped vireo (Vireo 

atricapillus) recovery plan. USFWS, Ecological Services, Austin, Texas, USA. 

Wilkins, R. N., R. A. Powell, A. A. T. Conkey, and A. G. Snelgrove. 2006. Population 

status and threat analysis for the black-capped vireo. U. S. Fish and Wildlife 

Service, Region 2, Austin, Texas, USA. 

Wilson, E. O. 1951. Variation and adaptation of the imported fire ant. Evolution 5:68–

79. 

Wilson, E. O. 1962. Chemical communication among workers of the fire ant Solenopsis 

saevissima (Fr. Smith). Animal Behaviour 10:134–164. 

Zhang, R. Z., L. Ren, and N. Liu. 2005. An introduction and strict precautions against 

red imported fire ant, Solenopsis invicta, for its potential invasion to the 

mainland of China. Chinese Bulletin of Entomology 42:6–10. [In Chinese] 

 
 
 
 
 
 
 
 



 34

VITA 

Name:   Andrew J. Campomizzi 

Address:   215 Old Heep Building 
   2258 TAMU 
   College Station, TX 77843-2258 
 
Email Address:   acampomizzi@tamu.edu 
 
Education:   B.S., Biology, University of Dayton, 1999 
 
Professional Experience: Research assistant 
   Texas A&M University 
   College Station, TX 
   2005 
 
   Seasonal Field Biologist 
   The Nature Conservancy 
   Fort Hood, TX 
   2005 
 
   Seasonal Field Biologist 
   University of California, San Diego 
   Sagehen Creek Field Station, CA 
   2004 
 
   Seasonal Field Biologist 
   PRBO Conservation Science 
   Stinson Beach, CA 
   2001, 2002 
 
   Intern 
   U.S. Fish and Wildlife Service 
   Chincoteague National Wildlife Refuge 
   Chincoteague, VA 
   2000 
    
   Intern 
   U.S. Fish and Wildlife Service 
   Back Bay National Wildlife Refuge 
   Virginia Beach, VA 
   2000 


