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ABSTRACT 

 

Minimum Patch Size Thresholds of Reproductive Success of Songbirds.  

(May 2008) 

Jerrod Anthony Butcher, B.S., Texas A&M University; M.S. University of Texas at 

Arlington 

Co-Chairs of Advisory Committee: Dr. R. Dean Ransom 

            Dr. Michael L. Morrison 

 

 Preservation of large tracts of habitat is often recommended for long-term 

population viability of area-sensitive species.  Large tracts may not always be available.  

Smaller patches, though not able to contain a viable population individually, may 

contribute to overall regional population viability if within the small patches pairs could 

successfully reproduce.  By definition, area-sensitive species should have a minimum 

patch size threshold of habitat below which they will not likely reproduce.  Two 

potential causes for positive relationships between patch size and production are inverse 

relationships between patch size and brood parasitism and patch size and food 

availability.  My objectives were (1) to determine the minimum patch size thresholds of 

reproductive success for golden-cheeked warblers (Dendroica chrysoparia), black-and-

white warblers (Mniotilta varia), and white-eyed vireos (Vireo griseus); (2) to determine 

whether thresholds for occupancy, territory establishment by males, or pairing success 

were indicative of thresholds of reproduction; (3) to determine whether the proportion of 

pairs fledging brown-headed cowbird (Molothrus ater) young was related to patch size, 
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and (4) to determine the affects of patch size on food availability (i.e., arthropod 

abundance).  The Vickery index of reproductive activity was used to determine 

reproductive activity of each male or pair and to quantify parasitism occurrences.  I 

collected arthropods using branch clipping to assess the relationship between patch size 

and arthropod abundance.  I found minimum patch size thresholds of reproductive 

success for golden-cheeked and black-and-white warblers, but not for white-eyed vireos.  

Minimum patch size of reproductive success was between 15 and 20.1 ha.  Minimum 

patch size thresholds for occupancy, territory establishment by males, and pair formation 

were not consistent with thresholds for reproductive success.  I found no relationships 

between patch size and cowbird parasitism or patch size and arthropod biomass.  

Conservation practices for target species based on thresholds of occupancy, territory 

establishment, or pair formation may not address issues of reproduction.  The ability to 

identify thresholds of reproductive success for target species could be useful in 

conservation and management in multiple ways including setting goals for retention and 

restoration of a target species’ habitat patch size. 
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INTRODUCTION 

 

 It is often recommended that large tracts of habitat be preserved for long-term 

population viability of area-sensitive species (e.g., Wahl et al. 1990, Donovan et al. 

1995, Beardmore et al. 1996).  Large tracts may not always be available for preservation 

particularly in regions where most of the area is privately owned (e.g., Texas, where 

94% of land is privately owned [Texas Parks and Wildlife Department 2007]).  Smaller 

patches, though not able to maintain a viable population without emigration from outside 

sources, may contribute to overall regional population viability if within the small 

patches pairs could successfully reproduce.  The question then is how large of a patch is 

required for successful breeding by an area-sensitive species.  That is, what is the 

minimum patch size threshold above which reproduction will likely occur? 

 The concept of thresholds has pervaded ecology in various forms (e.g., Liebig’s 

law of the minimum, Shelford’s law of tolerance, carrying capacity, Hutchinsonian 

niche).  Huggett (2005) defined ecological thresholds as points or zones at which 

relatively rapid change occurs from one condition to another.  Due to the prevalence of 

habitat loss and habitat fragmentation throughout the world, researchers have been 

studying thresholds in landscape structure (e.g., With and Crist 1995, Jansson and 

Angelstam 1999, Huggett 2005, Denoël and Ficetola 2007).   
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Although the usefulness of identifying thresholds within landscapes for 

biodiversity and species assemblages is debatable (Lindenmayer and Luck 2005, Denoël 

and Ficetola 2007), identifying thresholds for target species appears to be practical and 

useful in conservation and management (Jansson and Angelstam 1999, van der Ree et al. 

2003, Radford and Bennett 2004, Denoël and Ficetola 2004, Denoël and Ficetola 2007).  

The ability to identify thresholds for target species could be useful in conservation and 

management in multiple ways including setting goals for retention and restoration of the 

target species’ habitat patch size (Huggett 2005). 

 Most studies searching for ecological thresholds within landscapes have focused 

on occupancy, which, like density, may not be indicative of productivity (Van Horne 

1983).  Arnold et al. (1996) reported that golden-cheeked warblers (Dendroica 

chrysoparia) did not occupy patches <10 ha and speculated that 23 ha represented a 

threshold for consistent production of young.  The difference in threshold for occupancy 

and consistent production of young reveals a potential bias in looking only at occupancy.  

The danger of this bias could be expressed in conservation and management.  For 

example, in the case of the golden-cheeked warblers, managers may allow a 30-ha patch 

to be divided into 2 14-ha patches.  The remaining patches may allow for occupancy, but 

may be too small for reproduction.  Although there would only be a loss of 2 ha of 

habitat, there would be a complete loss of production. 

 Many authors have reported positive correlations between patch size and nest 

success (Paton 1994, Burke and Nol 2000, Stephens et al. 2003, Rodewald and Vitz 

2005).  Hypotheses proposed for the positive relationship between patch size and 
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reproductive success includes reduced brood parasitism and predation (Andrén and 

Angelstam 1988, Wilcove 1985, Robinson et al. 1995) and increased food availability 

(Burke and Nol 1998, Zanette et al. 2000).  Brood parasitism and nest predation are 2 of 

the leading causes of reproductive failure (Martin 1995).  The associations between 

patch size and brood parasitism and between patch size and predation are uncertain and 

vary with species and location (Tewksberry et al. 1998).  Scientists often attribute such 

relations to edge effects and the fact that smaller patches of similar shape have higher 

edge-to-area ratios than larger patches (Andrén and Angelstam 1988, Wilcove 1985).  

Some researchers found that brood parasitism and nest predation were higher at edges 

than in interiors of patches (Andrén and Angelstam 1988, Wilcove 1985, Robinson et al. 

1995) although others did not (Tewksberry et al. 1998).   

 Burke and Nol (1998) found correlations between patch size, arthropod densities, 

and pairing success in ovenbirds (Seiurus aurocapillus).  Burke and Nol (2000) later 

concluded that food availability affected reproductive success of ovenbirds.  Zanette et 

al. (2000) observed similar patterns of patch effects on arthropod abundance and 

reproductive success.  They found that arthropod biomass in small patches was about 

half that of larger patches, females in small patches received 40% less food from mates 

while on the nests, and females left their nests more often to forage on their own.  They 

also found a shorter breeding season, lower egg weights, and smaller chicks in smaller 

patches.  
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The positive relationship between arthropod biomass and patch size may be 

attributed to edge effects.  Microclimate variables influence arthropod abundance (Helle 

and Muona 1985, Didham et al. 1996).  Van Wilgenburg et al. (2001) found that edge-

induced changes in microclimate caused a negative response in soil arthropods, but did 

not affect foliage arthropods.   

My objectives were (1) to determine the minimum patch size thresholds of 

reproductive success for three Neotropical migratory songbirds; (2) to determine 

whether thresholds for occupancy, territory establishment by males, or pairing success 

were indicative of thresholds of reproduction; (3) to determine whether the proportion of 

pairs fledging brown-headed cowbird (Molothrus ater) young was related to patch size, 

and (4) to determine the affects of patch size on food availability (i.e., arthropod 

abundance).  Meeting these objectives could enable natural resource managers to make 

judicious decisions about where vegetation clearing should be conducted and where to 

focus future research and conservation efforts.  
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STUDY SPECIES  

 

 I studied the golden-cheeked warbler, black-and-white warbler (Mniotilta varia), 

and white-eyed vireo (Vireo griseus).  I chose to study these 3 migratory songbirds 

because they represent varying degrees of sensitivity to forest patch area.  Coldren 

(1998) concluded that golden-cheeked warblers were an area-sensitive species based on 

observations of positive relationships between reproductive success and patch size and 

pairing success and patch size.  Black-and-white warblers are sensitive to forest area 

(Hannon 1993, Kricher 1995).  Hannon (1993) reported that black-and-white warblers 

only occupied forest patches >10 ha.  White-eyed vireos are not area-sensitive, are 

habitat generalist, and are known to breed in the interior, exterior, and at the edges of 

forest stands (Hopp et al. 1995).  I included white-eyed vireos, because they are not area-

sensitive, which allowed me to observe reproductive activity of an insectivorous 

migratory species in the full range of patches sizes studied. 

All three songbirds are susceptible to cowbird parasitism (Pulich 1976, Hopp et 

al. 1995, Kricher 1995), are insectivorous (Pulich 1976, Hopp et al. 1995, Kricher 1995), 

and breed in juniper-oak (Juniperus-Quercus) forests (Pulich 1976, personal 

observation).  Golden-cheeked warblers and black-and-white warblers usually rear only 

a single brood per season, though circumstantial evidence suggests that golden-cheeked 

warblers occasionally double brood (Ladd and Gass 1999) and black-and-white warblers 

are suspected of occasionally double brooding (Kricher 1995).  Golden-cheeked 

warblers and black-and-white warblers will attempt to re-nest if their nest is destroyed 
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(Kircher 1995, Ladd and Gass 1999).  Number of broods reared per season by white-

eyed vireos is uncertain.  White-eyed vireos will also re-nest if nest is destroyed or 

depredated (person observation).  Golden-cheeked warblers require mature stands of 

juniper-oak (Juniperus ashei) forests for breeding, and were listed as endangered in 1990 

due to loss of habitat (U.S. Fish and Wildlife Service 1990).   

Based on research showing that golden-cheeked warblers and black-and-white 

warblers are sensitive to patch area and white-eyed vireos are habitat-generalists, I 

predicted that I would find thresholds of reproductive success for both warblers, but not 

for white-eyed vireos.   
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STUDY AREA 

 

  I conducted my study on private lands in the Cross Timbers and Prairies and 

Lampasas Cut Plains plant life areas in east-central Texas (Hatch 2008: 106).  The study 

area consisted of canyons, mesas, and bottomlands composed of alkaline soils and 

limestone bedrock.  The major ecological sites were steep adobe, low stony hill, loamy 

bottomland, and clay loam (National Cartography and Geospatial Center 2002).  Total 

precipitation between February and May was 43 cm and 61 cm in 2006 and 2007, 

respectively (National Oceanic and Atmospheric Administration 2006, 2007).  Prevalent 

tree species included Ashe juniper, Texas oak (Quercus buckleyi), live oak (Q. 

virginiana), shin oak (Q. sinuata), post oak (Q. stellata), blackjack oak (Q. marilandica), 

Texas ash (Fraxinus texensis), cedar elm (Ulmus crassifolia), American elm (U. 

americana), redbud (Cercis canadensis), hackberry (Celtis laevigata), and pecan (Carya 

illinoensis).  About 13% of the study area is composed of patches of mixed juniper-oak 

forests.  The remainder of the area is composed of a mosaic of cropland, rangeland, and 

developed land.  Twenty-five percent of the patches of juniper-oak forest are <3.3 ha, 

50% are <6.2, and 75% are <17.7 ha.  Patches >17.7 ha make up 81% of the total area of 

mixed juniper-oak forest.  Patches of various sizes are mostly interspersed (Figure 1).  

Canyons and steep slopes supported most of the mature juniper-oak forests; though, 

mesa tops and bottomlands contained some forest patches, as well.   
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  In much of east-central Texas, land managers view Ashe juniper (Juniperus 

ashei) as an invasive species (Owens 1996).  The removal of juniper surrounding 

juniper-oak (Juniperus-Quercus) forests invariably leaves smaller patches.   
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Figure 1.  Map showing the interspersion of patch sizes of mature juniper-oak forests.  

Patches <20 ha are grey and patches >20 are black. 
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METHODS 

 

Patch size thresholds and reproductive activity 

 I used a method developed by Vickery et al. (1992), referred to here as the 

Vickery method, to estimate reproductive activity of birds within patches.  The Vickery 

method allows researchers to predict the reproductive stage of a male or pair based on 

behavioral observations, observations of host-species fledglings, and observations of 

cowbird fledglings without the time constraints of locating and monitoring nests 

(Vickery et al. 1992, Christoferson and Morrison 2001).  Using the method proposed by 

Vickery et al. (1992), Christoferson and Morrison (2001) correctly predicted the 

outcome of 80 to 92% of nests for 3 songbirds.  

 The Vickery method includes assigning ranks to males or pairs that represent the 

most advanced stage of reproductive activity reached during the season.  I used a 

modified version of Vickery et al’s (1992) ranking system to meet my objectives.  Ranks 

included occupancy (rank 1; Table 1), territory formation (rank 2; Table 1), pair 

formation and fledging cowbird young (rank 3; Table 1), and fledgling host-species 

young (rank 4; Table 1).  I identified territorial males and pairs within the patches using 

a 3-step process.  First, to cover all patches quickly and thoroughly, I systematically 

placed transects throughout patches and walked each transect twice, recording locations 

of each individual of the target species.  I placed transects ~100 m apart in the patches so 

that no area in the patch was >100 m from a transect.  Second, beginning on 1 April, I 

used spot-mapping to delineate territories.  Based on preliminary data collection in the  
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Table 1.  Description of ranks of reproductive activity assigned to each golden-cheeked 

warbler, black-and-white warbler, and white-eyed vireo. Ranks were based on 

individuals’ behaviors and other evidence of breeding activity and modified from 

Vickery et al. (1992). 

Rank Description 

1 Present 

2 Male present >4 weeks (considered territorial) 

3 Male and female present >4 weeks (considered paired) 

 Evidence of nest building, male carrying food to presumed female on nest, 

or the female laying or incubating eggs 

 Female carrying food to presumed nestlings 

Cowbird parasitized nest 

4 Host-species fledgling with pair (considered successful) 

 

 

study region (J. A. Butcher, Texas A&M University, unpublished data) most males 

establish territories and formed pairs by 1 April.  I recorded an average of 41 points per 

territory over an average of 12 visits per territory (i.e., ~3 registration points per territory 

per visit), which exceeded recommendations by International Bird Census Committee 

(1970).  I recorded the distance and direction to other individuals and locations where 

intraspecific interactions occurred.  I entered all locations and interactions into a 

geographical information system (GIS) to delineate territory boundaries for males and 

pairs.  Because I attributed reproductive success to the entire patch, exact delineation of 

breeding territories was not imperative to the study.  That is, if, within a patch, ≥1 pair 

successfully fledged ≥1 host-species young I considered the patch to be above the 

threshold of patch size in which reproduction would likely occur.  Third, during the third 

week in April, around the approximate date chicks begin to fledge in the region (J. A. 

Butcher, unpublished data, Kricher 1995, Ladd and Gass 1999) I conducted searches for 

fledglings within each territory.  I searched each territory for fledglings an average of 12 
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times.  I spent an average of 32 (SE = 0.5) min within each territory each time I searched 

for fledglings.  During all 3 steps I recorded GPS points on males, females, and 

fledglings and recorded observations for the Vickery method.  

 I defined a patch as a stand of juniper-oak forest that was at least 8 m from other 

such stands (Rich et al. 1994, Horne 2000).  Rich et al. (1994) found that corridors as 

narrow as 8 m contributed to negative edge effects on local breeding songbirds by 

attracting avian nest predators and cowbirds.  Horne (2000) found that openings as 

narrow as 10 to 20 m might result in the loss of breeding habitat for golden-cheeked 

warblers.  Patches met criteria for vegetation characteristics set forth by the Texas Parks 

and Wildlife (2005) for suitable habitat for golden-cheeked warblers.  I included the 

criteria that Texas oak must be present in every patch, because of its importance as 

foraging substrate for golden-cheeked warbler (Kroll 1980), black-and-white warbler, 

and white-eyed vireo in my study area (personal observation).  I chose to base the 

definition of a patch on habitat of golden-cheeked warblers because of their endangered 

status.  Black-and-white warblers and white-eyed vireos, however, are known to breed 

within patches of habitat suitable for golden-cheeked warblers (personal observation).  

The definition of a patch for white-eyed vireos would likely encompass a greater area 

because of their ability to breed outside of the area included in the definition of a patch 

for golden-cheeked warblers.  The reason for including them in the study is because they 

are not sensitive to patch area as defined for golden-cheeked warblers and black-and-

white warblers. 

  



 

 

13 

1
3
 

 I searched for thresholds in patches that ranged from 2.9 to 27.7 ha.  The 

minimum size selected represented the approximate mean territory size of golden-

cheeked warblers (Pulich 1976, Weinberg et al. 1996).  I based the maximum size on 

knowledge that golden-cheeked warblers are successful in patches of >23 ha (Arnold et 

al. 1996).  I exceeded the 23 ha patch size reported by Arnold et al. to ensure that the 

range contained the threshold of reproductive success.  All available patches of mature 

juniper-oak forests that existed entirely on accessible private property in Bosque, 

Coryell, and Hamilton counties made up the sampling frame.  I used 2004 digital 

orthoquads (DOQQ) and a geographical information system (GIS) to delineated and 

calculated area of potential patches.  I drew polygons around forest patches that were 

visible on the DOQQs and then visited the patches to ensure that they met the above 

criteria.   

 I recorded locations, sex, age (adult or fledgling), and Vickery rank values of all 

individuals of the target species in 12 patches over 2 seasons.  I observed 5 patches from 

15 March to 6 July 2006 and 7 patches from 16 March to 22 June 2007.  I visited each 

patch an average of 24 (SE = 2.6) days during each season.  I attempted to visit each 

breeding territory every 3 days.  The 12 patches represent a census of accessible patches 

in the 4-county study area. 
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Arthropod biomass 

I collected branch clippings from 22 April to 10 May 2006 and from 24 April to 

7 May 2007 to assess the relationship between patch size and arthropod abundance 

(Cooper and Whitmore 1990, Keane and Morrison 1999).  Johnson (2000) found that 

branch clipping is an effective way of sampling food availability for foliage-gleaning 

species.  Branch clipping included quickly placing a plastic bag over a branch, clipping 

the branch from the tree, freezing the sample to kill the arthropods, drying the samples at 

60 ºC for ~6 days, separating the arthropods from the leaves, and weighing both the 

leaves and the arthropods (Johnson 2000, Rodewald and Vitz 2005).  I randomly placed 

sampling stations by overlaying each patch with a 100 × 100 m-cell grid that had a 

random origin, assigning each intersection a number, and using a random number table 

to select stations.  The number of sampling stations was proportional to patch size, 

although I took more samples per patch during 2007 than in 2006.   

I used 3 techniques to minimize variability in arthropod samples.  First, I 

collected branch samples during the period of the breeding season when most golden-

cheeked warblers, black-and-white warblers, and white-eyed vireos have nestlings and 

fledglings in the study region (personal observation).  Limited food availability during 

the nestling and fledgling stages can negatively affect survival of young (Simons and 

Martin 1990).  Wharton et al. (1996) found that arthropods in juniper-oak forests 

increased in abundance from March through the end of April, followed by a small 

decrease in May, and then remained stable through June.  Second, I set the height above 

ground where I took samples to 2 m.  Collecting samples at 2 m allowed for consistency 
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in placing the bag over the branch so that few arthropods would escape.  Sampling at 2 

m was also justifiable based on arthropod distribution and feeding behavior of the birds.  

Wharton et al. (1996) found that the arthropod species that they collected in large 

numbers in juniper-oak forests tended to show no preference for any particular height on 

the tree.  Beardmore (1994) reported male golden-cheeked warblers spent more time 

foraging below 3 m while female golden-cheeked warblers spent more time foraging 

above 5 m.  I combined Beardmore’s (1994) categories of male and female foraging 

times and found that male and female golden-cheeked warblers spend 27% of the time 

foraging below 3 m, 28% foraging between 3 and 5 m, and 45% foraging above 5 m.   

Third, I collected samples from 2 tree species.  I chose to collect from Ashe 

juniper and Texas oak trees, because Wharton et al. (1996) found that most species of 

arthropods showed preferences for particular tree species.  Ashe juniper and Texas oak 

comprise 2 of the 4 species that Beardmore (1994) reported that golden-cheeked 

warblers foraged in the most, the other 2 tree species were live oak and cedar elm, 

neither of which are as abundant as Ashe juniper and Texas oak in my study area (Juarez 

Berrios 2005).  Wharton et al. (1996) stated that several insect species in all of the major 

orders of arthropods preferred oak, specifically Texas oak.  Based on preliminary work 

in the study region, black-and-white warblers and white-eyed vireos forage at 2 m and in 

both Ashe juniper and Texas oak (personal observation).  All 3 songbird species feed on 

a large array of arthropod species and forage to some extent on leaves and branches 

(Morse 1970, Pulich 1976, Hopp et al. 1995).   
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Data analysis 

The criteria described above and the fact that my work was on private land 

limited my sample size.  I had too few samples (patches) to analyze the reproductive 

activity with multinomial logistic regression; therefore, I used descriptive statistics and 

presented data in tables and figures.   

I tabulated the relationship between patch size and the 4 ranks of reproductive 

activity for each target species.  The 4 ranks of reproductive activity included (1) 

occupancy, (2) territory establishment, (3) pairing success, and (4) reproductive success.  

To determine whether occupancy, territory establishment, or pairing success could be 

used as an indicator of reproductive success I compared the thresholds of each rank to 

the threshold of reproductive success.  I determined that the threshold of a given rank of 

reproductive activity (e.g., occupancy) was a good indicator of the threshold of 

reproductive success if the minimum patch size threshold of a given activity (e.g., 

occupancy) was equal to the minimum patch size threshold for reproductive success.   

I calculated the mean and corresponding 95% confidence intervals for biomass of 

arthropods >1 mm in length for each tree species in each patch.  To determine whether 

there was evidence of an edge effect I analyzed the relationship between arthropod 

biomass and distance from edge by presenting a scatterplot and calculating Pearson’s 

correlation coefficients.  To determine whether patch size influenced arthropod biomass 

I analyzed the relationship between patch size and arthropod biomass by calculating 

Pearson’s correlation coefficients.  To compare food availability in patches where 

success occurred to food availability in patches where success did not occur, I calculated 



 

 

17 

1
7
 

mean and standard error of arthropod biomass in patches above and below the thresholds 

of reproductive success for each species.  I was unable to run further statistics because 

the number of patches where success occurred was too small for the songbirds exhibiting 

thresholds of reproductive success. 
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RESULTS 

 

Thresholds of reproductive success 

During the 2 seasons I delineated 24 golden-cheeked warbler territories, 9 black-

and-white warbler territories, and 47 white-eyed vireo territories.  I observed golden-

cheeked warblers in 11 of 12 (92%) patches including the smallest patch studied (Table 

2).  Male golden-cheeked warblers established territories in all 11 patches in which they 

occupied and established pairs in 7 (64%) of the patches where they established 

territories.  Pairs fledged ≥1 young only in patches >15 ha, and no more than 1 pair 

formed in any patch ≤15 ha.  In patches >15 ha 15 of 17 (88%) males were paired and 13 

of 15 pairs (86%) fledged ≥1 young.  In patches ≤15 ha 3 of 7 (42%) males were paired.  

Despite the presence of brown-headed cowbirds in the patches, I observed no evidence 

of cowbird parasitism on golden-cheeked warblers.   

I observed black-and-white warblers in 7 of 12 (58%) patches including the 

smallest patch studied (Table 2).  Males established territories in 2 patches; both patches 

were >15 ha.  Seven of 9 (78%) territorial males paired and all pairs fledged ≥1 young.  

A cowbird parasitized one pair; however, the pair fledged their own young as well.  The 

incident of cowbird parasitism occurred in the largest patch studied.  

I observed white-eyed vireos in 11 of 12 (91%) patches including the smallest 

patch studied (Table 2).  Males established territories in all patches in which I observed 

them.  Ten of 12 (83%) patches contained pairs.  Pairs fledged ≥1 young in patches >4.1 

ha.  In patches >4.1 ha 
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Table 2.  Occupancy (Y = yes) and number of golden-cheeked warblers, black-and-white warblers and white-eyed vireos 

males that reached each level of reproductive activity based on measurements using the Vickery method (Vickery et al. 1992).  

I made observations in 12 patches ranging from 2.9 to 27.7 ha.  Threshold of reproductive success observed for golden-

cheeked warbler (dashed line) and black-and-white warbler (dot-dashed line).   
 Golden-cheeked warbler  Black-and-white warbler  White-eyed vireo 

Patch size (ha) Occupancy1 Territorial2 Paired3 Successful4  Occupancy 1 Territorial2 Paired3 Successful4  Occupancy 1 Territorial2 Paired3 Successful4 

27.7 Y 6 5 5  Y 5 5 5  Y 9 9 6 

22.2 Y 3 3 3  Y     Y 6 6 4 

21.1 Y 4 3 2  Y     Y 10 9 6 

20.1 Y 4 4 3  Y 4 2 2  Y 7 5 3 

15.0           Y 2 1  

11.9 Y 1         Y 4 4 4 

10.8 Y 1 1   Y     Y 2 1  

8.9 Y 1         Y 3 3 2 

4.4 Y 1 1        Y 2 2 2 

4.1 Y 1 1   Y         

3.2 Y 1         Y 1 1  

2.9 Y 1    Y     Y 1   
1
Observed individual in the patch during the breeding season 

2
Number of males that established and defended a territory for >4 weeks 

3
Number of males observed with a female for >4 weeks 

4
Number of pairs that successfully fledged ≥1 offspring
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40 of 45 (88%) males were paired and 27 of 40 (68%) pairs fledged ≥1 young.  In 

patches ≤4.1ha only 1 of 2 territorial males paired.  Two white-eyed vireo pairs fledged 

cowbird young.  One pair was in the 2.9-ha patch and the other was in the 15-ha patch.  

The number of pairs that fledged young was linearly related to patch size (Figure 2). 

Golden-cheeked warblers and black-and-white warblers were not detected in the 

15.0 ha patch (Table 2).  The reason is uncertain, but was not likely caused by a 

landscape configuration.  The 15.0 ha patch was within 10 m of 2 neighboring patches, 

and mixed juniper-oak forest made up 13% of the area that fell within a 400 m buffer  
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Figure 2.  The number of white-eyed vireo pairs that fledged young was linearly related 

to patch size (r
2
 = 0.63).  Lines show mean and 95% prediction interval.  
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around the patch.  The average area of juniper-oak forest surrounding patches was 24.3 

ha (n = 12, SE = 3.4).  Two patches with less juniper-oak forest surrounding the patch 

were occupied by golden-cheeked warblers (4.4 and 21.1 ha patches) and 1 patch was 

occupied by the black-and-white warbler (21.1 ha patch). 

Arthropod biomass  

I collected 209 branch clippings each from juniper and oak trees (Table 3).  

Arthropod biomass in Ashe juniper and Texas oak did not correlate with patch size (r = 

0.13, r = 0.12, respectively; Fig. 3 a, b) or distance from edge (r = 0.03, r = 0.11, 

respectively; Fig. 4 a, b).  The mean arthropod biomass above the observed minimum 

patch size threshold of reproductive success for golden-cheeked warblers and black-and-

white warblers was 0.16 mg/g (n = 4, SE = 0.04) and 0.50 mg/g (n = 4, SE = 0.26) in 

juniper and oak trees, respectively.  Below the observed minimum patch size threshold 

of reproductive success the mean arthropod biomass was 0.14 mg/g of leaves (n = 8, SE 

= 0.03) and 0.45 mg/g of leaves (n = 8, SE = 0.15) in juniper and oak trees, respectively.   
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Table 3.  Arthropod biomass (mg/g of leaves) collected from branch clippings taken in 

12 patches of juniper-oak (Juniperus-Quercus) forest in east-central Texas.  I collected 

branch clippings 2 m above ground from Ashe juniper (Juniperus ashei) and Texas oak 

(Quercus buckleyi) from 22 April 2006 to 10 May 2006 and from 24 April 2007 to 7 

May 2007 to assess the relationship between patch size and arthropod biomass. 

 

 Ashe juniper Texas oak 

Patch size (ha) N Mean (SE) N Mean (SE) 

27.7 31 0.21 (0.05) 30 0.41 (0.12) 

22.2 21 0.18 (0.04) 21 2.39 (0.43) 

21.1 29 0.05 (0.01) 27 0.41 (0.11) 

20.1 25 0.19 (0.06) 25 0.21 (0.08) 

15.0 21 0.09 (0.03) 21 0.36 (0.13) 

11.9 18 0.31 (0.12) 17 2.42 (0.43) 

10.8 15 0.09 (0.02) 16 0.42 (0.30) 

8.9 14 0.11 (0.05) 14 0.55 (0.33) 

4.4 9 0.05 (0.01) 9 0.57 (0.37) 

4.1 10 0.18 (0.09) 10 1.42 (0.48) 

3.2 10 0.15 (0.07) 10 0.33 (0.19) 

2.9 9 0.17 (0.09) 9 0.06 (0.05) 
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Figure 3.  Arthropod biomass in each patch obtained from branch clippings of Ashe 

juniper (a) and Texas oak (b) during the average nestling and fledgling stages of golden-

cheeked warblers, black-and-white warblers, and white-eyed vireos in east-central 

Texas.  Squares represent mean arthropod biomass and lines represent 95% confidence 

intervals.  Notice that the ordinates are of different scales due to the greater arthropod 

biomass on Texas oak than on Ashe juniper.  
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Figure 4.  Arthropod biomass relative to distance from edge obtained from branch 

clippings of Ashe juniper (a) and Texas oak (b) during the average nestling and fledgling 

stages of golden-cheeked warblers, black-and-white warblers, and white-eyed vireos in 

east-central Texas. 
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DISCUSSION AND CONCLUSIONS 

 

I found minimum patch size thresholds of reproductive success for golden-

cheeked warblers and black-and-white warblers.  Minimum patch size thresholds of 

occupancy, territory establishment, and pairing were not indicative of minimum patch 

size thresholds of reproduction.  The observed minimum patch size threshold of 

reproductive success for golden-cheeked warblers and black-and-white warblers was 

between 15 and 20.1 ha.  In a study conducted south of my study area, Arnold et al. 

(1996) observed a similar trend for golden-cheeked warblers.  They reported that golden-

cheeked warblers reliably produced young in patches >23 ha in size.  To my knowledge 

no study has been published relating productivity of black-and-white warblers to patch 

size.  Hannon (1993), however, found that black-and-white warblers were sensitive to 

patch size; she detected black-and-white warblers only in patches >10 ha.   

As expected, I did not find a minimum patch size threshold of reproductive 

success for white-eyed vireos.  The fact that there was no success in the 3 smallest 

patches can be explained by natural variation regardless of patch size.  Territory 

establishment and pairing success increased linearly with patch size.  Bender et al. 

(1998) predicted that population changes in generalist species that use both edges and 

interiors of forest patches would be accounted for by habitat loss alone, regardless of 

fragmentation.   

Although research shows that birds nesting in smaller patches experience higher 

predation and parasitism (Hoover et al. 1995), neither appeared to be a proximate cause 

for the thresholds I observed.  Parasitism within the patches was low and was not related 
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to patch size in the range of patches that I studied.  Low parasitism frequency was 

surprising because of the ubiquity of brown-headed cowbirds in the study area.  

Cowbirds were observed at 88% of survey stations within the study area (Juarez Berrios 

2005), and >80% of black-capped vireo and white-eyed vireo nests in shrubs and trees 

surrounding my study patches were parasitized by brown-headed cowbirds (S. L. Farrell, 

Texas A&M University, unpublished data).  Although the relationship between forest 

cover and parasitism is highly variable (see Tewksberry et al. 2006), the high magnitude 

of difference between parasitism inside and outside of the juniper-oak forest patches in 

my study area suggest a relationship that should be studied. 

Although I did not study predation, I would expect that more white-eyed vireos 

would have failed in the patches below the thresholds of the warblers if predator activity 

caused the observed thresholds.  Ultimately, adaptations by the warblers could have 

caused them to select larger patches because of the influence of predation in small 

patches in the historic past.  Fontaine and Martin (2006) found that some migratory 

songbirds have the ability to assess predator activity and adjust breeding location 

accordingly.   

High success above the threshold suggests that predation and parasitism were not 

limiting factors within larger patches.  Success of golden-cheeked warbler pairs above 

the threshold (86% of pairs fledged young) was similar to populations at Fort Hood, 

Texas, (87.8% of pairs fledged young; Anders and Marshall 2005) where intensive 

cowbird control has been in effect since 1991 (Eckrich et al. 1999).  I observed 100% of 

black-and-white warbler pairs fledged young. 



 

 

27 

2
7
 

I found no relationship between patch size and arthropod biomass.  Nour et al. 

(1998) found that neither evidence of caterpillars (frass fall) nor provisioning rates for 

young great tits (Parus major) and blue tits (P. caeruleus) were correlated with patch 

size.  Similarly, Buehler et al. (2002) found that food availability and provisioning rates 

of hooded warblers (Wilsonia citrina) did not relate to patch size.  My findings, along 

with Nour et al. (1998) and Buehler et al. (2002), are contradictory to Burke and Nol 

(1998, 2000) and Zanette et al. (2000) who found that food availability was correlated 

with  patch size and ultimately reproductive success.  The differences can be explained 

by sampling objectives and thus sampling protocols.  The 3 focal species of my study 

along with hooded warblers studied by Buehler et al. and the 2 species of tits studied by 

Nour et al. all feed above ground, therefore arthropod sampling was conducted above 

ground.  Burke and Nol (1998) studied ovenbirds (Seiurus aurocapillus) and Zanette et 

al. (2000) studied eastern yellow robins (Eopsaltria australis) both of which are ground-

foragers and, thus, sampling occurred at the ground level.  Van Wilgenburg et al. (2001) 

reported that soil-dwelling arthropods responded negatively to edge effects whereas 

canopy-dwelling arthropods in the same forests showed no response to edge. 

I did not differentiate patch size affects on specific groups of arthropods.  It is 

possible that particular arthropod families, orders, or species are important to each bird 

species, and that patch size affected those arthropod groups.  Although Lepidoptera  
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larvae comprised the greatest percentage of any one order of arthropods in stomach 

contents for all 3 songbird species, the contents, along with observational studies, 

revealed that all 3 species feed on a large variety of arthropods (Nolan and Wooldridge 

1962, Pulich 1976, Kricher 1995).   

Because there was no relationship between patch size and arthropod biomass, 

there was little reason to believe that food availability was the cause of the observed 

thresholds.  The patterns related to the thresholds may offer some insight to possible 

causes for the thresholds of reproductive success.  Besides fledging young, an obvious 

difference between reproductive activity above and below the threshold of reproductive 

success was number of territories established and number of pairs formed; for all 3 

species success occurred only in patches where >1 pair was formed.  Researchers have 

noticed that some territorial species aggregate their territories even when surrounding 

unoccupied habitat exists (Svärdson 1949, Hildén 1965, Stamps 1988).  Two theoretical 

reasons for aggregation of territories are (1) conspecifics may act as cues for settling 

individuals and (2) there might be some type of benefit in living within an aggregation 

(e.g., predator protection, access to mates; Muller et al. 1997).  My results showed what 

appeared to be clumping for golden-cheeked warblers and black-and-white warblers.  

The aggregation of black-and-white warblers into 2 patches despite occupying multiple 

patches suggests conspecific attraction, defined as aggregation of territories caused by 

apparent attraction to neighbors (Stamps 1988, Ahlering and Faaborg 2006, Campomizzi 

et al. 2008).  Campomizzi et al. (2008) reported evidence of conspecific attraction in 

golden-cheeked warblers in the same study area.  Without experiments controlling for 
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habitat quality, predator activity, and other variables that influence habitat selection, 

conspecific attraction as a means of habitat selection is difficult to discern from other 

habitat cues (e.g., predator activity, food availability; Stamps 1988).   

Although determining success by searching territories may express season-long 

productivity more accurately than nest monitoring (Anders and Marshall 2005), fledging 

young does not necessarily culminate in higher fitness (number of offspring that 

successfully reproduce).  I relocated fledglings throughout the season, but at the end of 

the season I was unable to determine whether juveniles that fledged in the patches were 

depredated, starved, or survived to migrate south.  Further research on survival of 

juveniles, recruitment, and offspring breeding success could help address relationships 

between patch size and fitness. 

To date, most researchers used occupancy of the target species as the response 

variable for thresholds.  My research showed that minimum patch size thresholds for 

occupancy were not indicative of the thresholds of reproductive success, and minimum 

patch size thresholds for territory establishment and pair formation were not indicative 

of patch size thresholds for reproductive success.  Management and conservation 

practices for target species based on thresholds of occupancy, territory establishment, or 

pair formation could be dangerous.  Some may argue, and rightly so, that preserving 

patches based on occupancy, territory establishment, or pair formation will include 

patches where reproduction could occur.  However, the danger comes not when 

managers attempt to conserve all patches above the threshold of occupancy or pair  
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formation (that would be ideal), but when managers use the minimum patch size 

threshold of occupancy as a basis for allowing larger patches to be fragmented into 

patches that may fall below the patch size threshold of reproductive success. 

Thresholds are an integral part of ecological theory (e.g., Shelford’s law of 

tolerance, Hutchinsonian niche).  Studies show that thresholds of habitat distribution, 

amount, and configuration of a species’ habitat in a landscape influence population 

dynamics (Fahrig and Merriam 1994, Morrison et al. 1998: 48–49, Hokit and Branch 

2003, Denoël and Ficetola 2007).  The ability to identify thresholds of reproductive 

success for target species could be useful in conservation and management in multiple 

ways including setting goals for retention and restoration of target species’ habitat patch 

size (Huggett 2005).   

Management implications 

 Because both warblers have relatively uniform habitat requirements across their 

distribution ranges (Kricher 1995, Ladd and Gass 1999), patch size relationships 

observed in this study should hold across much of their ranges.  Managers involved in 

juniper clearing in east-central Texas particularly, and in forest removal in general, 

should be cautious not to decrease patches below 20 ha.  Because patches below the 

threshold of reproductive success were occupied by golden-cheeked warblers, research is 

needed to determine the role that such patches play in population dynamics of golden-

cheeked warblers.  
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