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UNIVERSIDAD NACIONAL DE COLOMBIA

Abstract

Faculty of Engineering and Architecture

Department of Electronic, Electric Engineering and Computation

Master’s on Engineering - Industrial Automation

Methodology for predicting semantic annotations of protein sequences by

feature extraction derived of statistical contact potentials and continuous

wavelet transform

by Gustavo Alonso Arango Argoty

In this thesis, a method to predict semantic annotations of the proteins from its primary

structure is proposed. The main contribution of this thesis lies in the implementation of

a novel protein feature representation, which makes use of the pairwise statistical contact

potentials describing the protein interactions and geometry at the atomic level. Initially,

a protein sequence is decomposed into a numerical series by a contact potential. From

the interactions between adjacent amino acids, the wavelet transform can easily detect

and characterize subsequences at specific position along the protein sequence. Then, all

subsequences are grouped into clusters and a Hidden Markov Model (HMM) profile is

built for each one of the groups. Finally, the modeled profiles HMM are used as features

in order to build a feature space with the aim to train and evaluate a support vector

machine classifier. Evaluations of the proposed methodology are driven against three

different views 1) known protein features 2) motif-domain based features (PFam terms)

and 3) performance evaluation over several methods for protein annotation prediction.

As result, The method have acquired the highest performance prediction in most of

the study cases. Thus, this efficiency suggest our approach as an alternative method

for the characterization of protein sequences. Although, the research in this thesis

focuses on the classification problem, the scientific community can make use of the

methodology in two different ways: 1) as a protein predictor and 2) as a motif finding

tool. Finally, the source code of the method is free available for download at SourceForge

http://sourceforge.net/projects/wamofi/?source=navbar.
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Resumen

Facultad de Ingenieŕıa y Arquitectura

Departamento de Ingenieŕıa Eléctrica, Electrónica y Computación

Maestŕıa en Ingenieria Automatización Industrial

Metodoloǵıa para predecir la anotación semántica de protéınas por medio

de extracción de caracteŕısticas derivadas de potenciales de contacto y

transformada wavelet continua

by Gustavo Alonso Arango Argoty

En esta tesis se propone un método para la predicción de anotaciones de protéınas a par-

tir de la estimación de caracteŕısticas en secuencias biológicas. Dicha estimación emplea

información sobre la estructura de las protéınas a partir de las estadisticas de contactos

potenciales entre pares de amino ácidos. Inicialmente, una protéına es transformada

a una serie numerica por medio de estos contactos potenciales. Debido a las interac-

ciones entre amino ácidos cercanos, la transformada wavelet puede fácilmente detectar

las subsecuencias pertenecientes a posiciones espećıficas a lo largo de la protéına. Aśı,

todas las subsecuencias son agrupadas de acuerdo a su distribución y éstos grupos son

modelados empleando perfiles de Modelos Ocultos de Markov. Finalmente, los perfiles

son usados como caracteŕısticas donde protéınas de análsis son mapeadas generando

aśı un espacio de representación que es usado para entrenar un clasificador basado en

vectores de soporte. La metodolǵıa ha sido rigurosamente evaluada y comparada con

tres diferentes criterios de caracterización: 1) caracteŕısticas globales comunmente us-

adas para representar protéınas, 2) caracteŕısticas espećıficas como motivos y domin-

ios, y por último 3) evaluación de el renimiento de varios programas construidos para

la predicción de anotación de protéınas. Como resultado el método propuesto ha lo-

grado los mas altos puntajes de predicción en la mayoŕıa de los casos de estudio. De

manera que éstas predicciones sugieren a nuestro método como una alternativa a los

comunmente usados algoritmos de caracterización. Por otra parte, a pesar de que el

enfoque de la metodoloǵıa esta diseñada para resolver problemas de clasificación, la

comunidad cient́ıfica puede hacer uso de ella en dos diferentes enfoques: 1) como un

predictor de anotaciones en protéınas y 2) como una herramienta para encontrar mo-

tivos. Por último, el código fuente del método se encuentra para libre descarga en:

http://sourceforge.net/projects/wamofi/?source=navbar.

University Web Site URL Here (include http://)
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Chapter 1

Introduction

The framework of this thesis is located in the field of bioinformatics. Particularly in the

area associated to machine learning and pattern recognition, where a methodology for

predict semantic annotations of proteins based on a robust feature extraction is proposed.

The first part of this thesis covers a review of important concepts on molecular biology

and machine learning algorithms applied to protein sequence data sets. The second

part comprises all the methods used in the proposed methodology for extracting and

modeling of features derived of the protein sequences and the classification of proteins

using those features. The third part of the thesis lies on the evaluation of the method

using a reported data set on Gram negative bacterial proteins. Finally, we perform

a robust testing over several methods employed to characterize and annotate protein

sequences on Gram negative bacterial organisms.

Most of the popular methods used to characterize protein sequences reduce the sequence

to a feature vector which lose the spatial information of the amino acid arrangement, for

instance a simple count of the total number amino acids on the protein sequence. These

type of protein representations are commonly known as global features and have been

widely used for predict semantic annotations of the proteins [1, 2, 3, 4, 5, 6, 7, 8]. On the

other hand, several methods use information of the specific arrangement of the nucleic

acids along the protein. These attributes are known as protein motifs or local features

which depicts specific portions of the proteins that generally play an important roll

[6, 9, 10, 11, 12]. For instance, PsortB ([6]) a method developed to predict subcellular

localizations on Gram negative bacterial proteins uses a set of distinctive motifs as

features on each cellular compartment [6]. PFam [11] and PROSITE [10] are data bases

of protein domains, motifs and sites. Interestingly, those models have been used in

machine learning application as features in for protein semantic annotation [6, 13, 14].

The principal limitations of the global features and the motif-based descriptors lies in

1



Chapter 1. Introduction 2

A) the high number of features. For instance, the number of terms for the amino acid

composition descriptor growth exponentially depending on the length of the term by

20n. B) the low sensitivity of the motif profiles as features. This fact is proved in this

thesis when the Pfam terms are used as features. Finally, C) those features (local and

global) are based on the primary sequence information and in some predictors secondary

structure information, however, they don’t take into account hints given by structural

information. In this research we have proposed the inclusion of structural information

of the proteins driven by the statistical contact potentials [15, 16].



Chapter 2

Objectives

2.1 Main objective

Develop a methodology oriented to predict protein sequence annotations based on the

extraction of relevant features captured from the primary structure of the proteins.

2.2 Specific objectives

• Characterize and localize relevant features or motifs distributed along the protein

sequences by using pairwise statistical contact potentials and continuous wavelet

transform.

• Collect and model protein motifs by sequence clustering and profile Hidden Markov

Models.

• Predict protein sequence annotations on Gram Negative bacterial proteins employ-

ing profiles HMMs as features.

3



Chapter 3

Background

In this background chapter we provide a general overview about molecular biology and

machine learning algorithms which have been applied to characterize and predict protein

annotations.

3.1 Proteins

Proteins perform most of the work of living cells and they are enrolled in virtually

every cellular process as: DNA replication and transcription, production, processing

and secretion of other proteins, controlling cell division, metabolism, flow of materials

and information into and out of the cell [17].

3.1.1 Protein synthesis

Proteins are synthesized through the information stored in genes by three processes 1)

Replication: One double stranded deoxyribonucleic acid (DNA) molecule produces

identical copies of itself. 2) Transcription: Part of the DNA is copied and encoded

into a molecule called messenger ribonucleic acid (mRNA) and 3) translation in which

the mRNA is transported out of the nuclear membrane acting as template and converted

into a chain of amino acids by the ribosomes in the cytoplasm (Figure 3.1).

During the translation process, mRNA is decoded into a specific amino acid chain in

which a three-RNA codon specifies a single amino acid. There are 20 different amino

acids that make up essentially all proteins of the living organisms. Each amino acid has

a fundamental design composed of a central carbon (α-carbon) bonded to a) a hydrogen,

b) A carboxyl group, c) An amino group or d) A unique side chain or R-group (Figure

4
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(a) Replication
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A
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a 

2

(b) Transcription
mRNA

(c) Translation

mRNA RNA binding

Active protein

Figure 3.1: The basis of cell and molecular biology: a) DNA replication one
double-stranded DNA molecule produces two identical copies of the DNA, b) RNA
transcription a segment of DNA is copied into RNA by the enzyme RNA polymerase,
if the gene transcribed encodes a protein, the result of transcription is the messenger
RNA (mRNA). c) Protein translation mRNA is decoded by the ribosome to produce

a specific amino acid chain, which, later will fold into an active protein.

3.2). Then, the only characteristic that distinguishes the amino acids is its unique

side chain which at the same time dictates the chemical properties of the amino acids

[17, 18, 19].

C

H

COOHH2N

R

amino
group

a-carbon atom

carboxyl group

side chain group

Figure 3.2: General formula of the amino acid showing the positions of amino (−NH2)
group, carboxyl group (−COOH), α-carbon atom and the side chain R that can be

any of the 20 different chains

3.1.2 Protein structure

The properties of a protein are defined by its atomic configuration. Thus, the structure

of proteins can be discussed at four levels of organizations:
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• Primary structure. Describes the arrangement of the polypeptide chain that

is made from amino acids in the ribosomes. The chain starts with an amino acid

with a free amino group (the N terminus) and ends with one with a free carboxyl

group (the C terminus) Figure 3.3-A.

• Secondary structure. A polypeptide chain always has a spatial organization.

The distribution in the chain of amino acids with charged side-groups causes it

to be folded into areas of helices (alpha helix) which can be left handed or right

handed, beta strands or beta sheets (two or more beta strands are arranged in

rows) and turns connecting the helices and strands. Such helices and sheets form

the secondary structure which can also combine with one another to form motifs

or super-secondary structures Figure 3.3-B.

• Tertiary structure. This is the full description of a folded polypeptide chain.

The tertiary structure is referred to three dimensional structure of the proteins

and it is stabilized by side chains of amino acids. However, proteins are often

not completely stable, so this three dimensional structure often corresponds to the

most observed state or the crystallized state of the protein Figure 3.3-C.

• Quaternary structure. The final functional protein consists of more than one

polypeptide chain, in which, all chains have their own primary, secondary and ter-

tiary structures. This association of polypeptides is called the quaternary structure

Figure 3.3-D. In the example the NIMA-family protein kinases a complex of 4

chains: Nek9/Nercc1, Nek6 and Nek7 that constitute a signaling module activated

in early mitosis involved in the control of spindle organization [20].

C-Terminus
N-Terminus

alpha helix

beta sheet

Turns

(A)

(B)

(C)
(D)

linear folding

3D folding

Protein-Protein
Interactions

Figure 3.3: Levels of protein structure: A) Primary structure is an arrangement of
amino acids. B) Secondary structure is a linear folding of the polypeptides into alpha
helices, beta sheets, turns and combinations of those. C) Tertiary structure is the full
description of the folding of amino acid chain in a 3D-space. D) Quaternary structure

is a complex of different polypeptide chains to accomplish a specific function.
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3.1.3 Protein folding

Anfinsen and co-workers studied the effect of the unfolding (denature) and folding (rena-

ture) procedures in the ribonuclease protein. They observed that different conformations

of the unfolded polypeptide chain always fold into the same native state, thus, they pos-

tulated the thermodynamical hypothesis. The hypothesis establishes that the native state

of a protein in its normal environment is the structure with lowest Gibbs free energy.

This property is fundamental for the understanding of protein folding and is why it is

believed that the native state of a protein can be predicted just from the knowledge of

its amino acid sequence. However it is observed that some proteins receive help to fold

from specialized proteins called chaperones [17, 21]

3.1.4 Protein domains and motifs

A domain is a compact region of protein structure that is often made up for a continuous

segment of the amino-acid sequence, which, in most of the cases retains part of the

biochemical function of the larger protein from which they are derived. However, Not

all domains consist of continuous stretches of polypeptide. In some proteins, a domain

is interrupted by a block of sequence that folds into a separate domain, after which the

original domain continues [22]. Domains vary in size but are usually no larger than the

largest single-domain protein, about 250 amino acids, and most are around 200 amino

acids or less. Forty-nine per cent of all domains are in the range 51 to 150 residues. The

largest single-chain domain so far has 907 residues, and the largest number of domains

found in a protein to date is 13 [17, 23].

The term motifs is referred in two different ways in biology: A) a particular amino

acid sequence that is characteristic of a specific biochemical function. For instance, the

zinc finger motif, which is found in a widely varying family of DNA-binding proteins

[24]. These sequence motifs can often be recognized by inspection of the amino acid

arrangement of a protein providing strong evidence of the protein biochemical function

[25]. B) A functional motif that refers to a set of contiguous secondary structure

elements that either have a particular functional significance or define a portion of an

independently folded domain [26]. An example is the helix-turn-helix motif found in

many DNA-binding proteins. For instance, In Figure 3.4 an example is shown: A)

Functional domain: Lac repressor tetramer binding to each DNA monomer of the

Lac repressor is made up of a tetramerization domain and a DNA binding domain. B)

Schematic diagram of the domain arrangement of a number of signal transduction

proteins. The different modules have different functions; Pro = proline-rich regions that

bind SH3 domains; P = phosphotyrosine-containing regions that bind SH2 domains;
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PH = pleckstrin homology domains that bind to membranes; PTPase = phosphatase

domain; kinase = protein kinase domain; G-kinase = guanylate kinase domain; GAP =

G-protein activation domain; PLC = phospholipase C catalytic domain. The function of

the individual modules is sometimes, but not always, independent of the order in which

they appear in the protein. Different proteins can contain the same domains/motifs.

C) Motif: A zinc finger is a small protein structural motif that is characterized by

the coordination of one or more zinc ions in order to stabilize the fold. D) Structural

domain: Helix-turn-helix The DNA-binding domain of the bacterial gene regulatory

protein lambda repressor, with the two helix-turn-helix motifs. The two helices closest

to the DNA are the reading or recognition helices, which bind in the major groove and

recognize specific gene regulatory sequences in the DNA.

(B)
(C) (D)(A)

DNA

DNA
Binding
Domain

Regulatory
Domain H

el
ix

-t
ur

n-
he

lix
M

ot
if

Figure 3.4: Domains and motifs.

3.2 Protein annotation prediction

Molecular biology approaches often result in the accumulation of abundant biological

sequence data. Ideally, the function of individual proteins predicted using such data

would be determined experimentally. However, if a gene of interest has no predictable

function or if the amount of data is too large to experimentally assess individual genes,

bioinformatics techniques may provide additional information to allow the inference of

function [27, 28].

3.2.1 Protein Similarity

Similarity is a concept commonly used for inferring the relationship between diverse

things. For example, classification of living organisms can be depicted in terms of hier-

archy: Kingdom, Phylum, Class, Order, Family, Genus, Species. This classification is

based on the observed similarity which widely reflects a biological ancestry [28]. The

characteristics derived from a common ancestor are called homologous. For example a

bat’s wing, a seal’s flipper, a cat’s limb and a human arm have a common basic anatomy
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which was present in their last common ancestor and so therefore are homologous. Pro-

teins that are derived from a common ancestor are called homologous [29].

Sequence similarity analysis is the measurement procedure used to infer homology. Es-

sentially, if a new protein sequence is found, it’s function and structure can be deduced

indirectly by finding similar sequences whose features are known [28]. Methods used

to infer homology commonly employ a scoring scale in which higher values depict sim-

ilarity, and a lower values represent divergence. Usually sequence similarity is carried

out by sequence alignment, which group the amino acid sequences in order to identify

regions of similarity that may be a consequence of functional, structural, or evolutionary

relationships [30, 31, 32].

The methods employed to estimate sequence similarity can be grouped in two major

types. Global sequence alignment consisting of compare two sequences along their

entire length and try to find the the best alignment of the two sequences across their

whole length. In general, global sequence alignment methods are most applicable to

highly similar sequences of approximately the same size. However, if the degree of

the sequence similarity decrease, they tend to miss important biological relationships

between sequences [30, 33].

A global alignment may be viewed as a path through a directed path graph where each

alignment corresponds to a unique path [34]. The similarity between the positions Xi

and Yi of the sequences X and Y is depicted by:

SIM(i, j) = max


SIM(i− 1, j − 1) + s(xi, yj) xi and yj aligned

SIM(i− i, j) + g xi aligned with a null

SIM(i, j − 1) + g yj aligned with a null

(3.1)

where: g the gap score for aligning any letter to a null.

Xi is the partial sequence consisting of the first i letters of X.

Yi is the partial sequence consisting of the first i letters of Y .

s(a, b) is the substitution score for aligning letters a and b, which is usually given by

a matrix of size 20X20. In bioinformatics the most popular substitution matrices are

BLOSUM and PAM [35].

Finally, the score of an alignment is the sum of the scores of the edges it traverses

(path), but which is the better alignment?. The answer depends on how the matches,

substitutions and indels (insertion or deletion mutations) are measured. The cost of an

alignment can be calculated by the following general formula:
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score(path) =
∑

∀i,j∈path
SIM(i, j) (3.2)

If two sequences in an alignment are derived from a common ancestor, mismatches can

be interpreted as point mutations and gaps as indels. The degree of similarity between

amino acids occupying a certain position in the sequences can be interpreted as a rough

measure of how conserved a particular region or sequence motif is among lineages. The

absence of substitutions, or the presence of only very conservative substitutions in a

particular region of the sequence, suggest that this region has structural or functional

importance [28, 36].

The second type of sequence similarity scoring is the Local sequence alignment in

which the sequence comparison is intended to find the most similar regions in the two

sequences being aligned rather than finding the best way to align the entire length of

the two sequences [37]. The local sequence alignment is capable of finding subsequences

within the compared sequences that may have a biological relationship. This type of

alignment is the best for sequences of different lengths [30, 33, 37].

The local alignment between two sequences X and Y of length m and n respectively

can be computed using dynamic programing as the Smith-Waterman algorithm [30, 38].

Thus, given an alignment matrix SIM the score for each position is computed as:

SIM(i, j) = max


max1≤k≤i(SIM(i− k, j)− g(k))

max1≤k≤i(SIM(i, j − k)− g(k))

SIM(i− 1, j − 1) + s(xi, yi)

(3.3)

Here g stands for the gap penalty function and s represents the cost function. The score

for the best alignment is the maximum value in the matrix SIM and the corresponding

alignments are paths to this maximal value in SIM from a cell with zero value.

3.2.2 Machine learning and feature-based classification

The major focus of machine learning research is to extract information from data au-

tomatically employing computational and statistical methods [39, 40, 41]. Machine

learning covers many applications including natural language processing, syntactic pat-

tern recognition, search engines, medical diagnosis, speech and handwriting recognition,

object recognition in computer vision among others [42, 43]. Depending of the type of
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algorithms, the machine learning techniques can be divided into two major classes: a)

the supervised learning, which attempts to make a generalization of the input data by

the training a function using a set of features [42, 44]. Thus, the output of the function

can be a continuous value (regression) or can predict a class label of the input object

(classification). And b) the unsupervised learning in which the labels of the inputs

are not used (clustering) [44, 45]. For instance in Figure 3.5 there is a description of the

two types of learning. A) Supervised learning with the goal to construct a function

(or model) to accurately predict the target output. In B) Unsupervised learning or

clustering, the goal is to partition the training samples into subsets (clusters) so the

data in each cluster has a high level of proximity. Opposed to supervised learning, the

labels of the data are not used or are not available in clustering.

Cl
as

s 
1

Cl
as

s 
2

Training Samples

Feature 
extraction

Model

Testing samples

Classi�er
Training

Feature 
extraction

(A)
Samples
(B)

New sample
Feature

extraction
distance to

clusters

Feature 
extraction Clustering

The new sample is
assigned to the
nearest cluster

Figure 3.5: Supervised and unsupervised learning.

Pattern recognition is a sub-topic of machine learning and aims to classify data (pat-

terns) based on the statistical information extracted from the patterns, which are usually

groups of measurements or observations (feature extraction) defining points in a multi-

dimensional space [46]. The performance of machine learning algorithms comprises two

stages, training and testing. Usually, the labeled samples are split into two parts: one is

used to adjust the parameters of the learner algorithm, and the other is used to estimate

the generalization error (evaluation).

3.2.2.1 Protein classification

In general, the classification of a new protein is performed finding similar sequences

whose cellular functions are experimentally determined. Local alignments methods such

as BLAST and PSI-BLAST are commonly used to find homologous to the unknown

protein from public databases [47]. In many cases these methods perform accurate in-

ferences. However, is well known that a high similarity not necessarily imply the same
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function [48]. Also, proteins that lack of sequence similarity can achieve the same role.

Thus, homology based annotations has important drawbacks such as propagation of

errors, threshold relativity, and low sensitivity/specificity. On the other hand, feature-

based approaches model the differences between positive and negative samples by the

extraction of protein properties arranged into a feature space (see section:3.2.2.2) which

is used as input to a classifier. Finally, there are hybrid approaches, which consist on

the use of homology methods collectively with feature and local-feature based charac-

terizations [49, 50, 51].

The prediction of protein annotations is usually considered as a classification problem,

where a set of features are collected for each protein, and the learning algorithm is used

to infer the association rule between the features and the annotations. Among the super-

vised learning algorithms, support vector machines have been particularly popular due

to their good performance and strong statistical background [52]. For instance, signal

peptide prediction represents one of the big successes in the protein classification field.

Algorithms are approaching a performance level comparable to the quality of the under-

lying experimental data, even in some cases better [53]. Several applications of machine

learning applied to protein annotation prediction have been developed. Among the most

popular methods for protein prediction we have: SignalP [54], LOCTree[55], CellPLoc

[13] among others. Details about protein annotation prediction can be consulted in the

follow reviews: [49, 52, 53, 56].

3.2.2.2 Feature extraction

Feature extraction is the process used for capturing information from the protein se-

quences. Depending of the type of characterization, the features can be categorized

as global feature extraction and local feature extraction. Global feature extraction

extract information from the protein sequences regardless the order in which the amino

acids occur along the protein. Some of the most popular global features are:

• The k-peptide composition (KCC)[57] computes the frequency of the k-peptide

along the protein sequence and it is expressed as:

f(r1, .., rk) =
Nr1,...,rk

N − 1
, (3.4)

where, r1, .., rk = 1, 2, ..., 20, Nr1,...,rk is the number of the k−peptide composed of

the amino acids r1, ..., rk.
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• The global descriptor (GD)method was proposed to predict protein folding

classes and human Pol II promoter sequences, also this has been used to distin-

guish coding from non-coding sequences in a prokaryote complete genome [1]. The

global descriptor contains three parts: composition (Comp), transition (Tran) and

distribution (Dist). Comp describes the overall composition of a given symbol

in the new symbol sequence. Tran characterizes the percentage frequency that

amino acids of a particular symbol are followed by a different one. Dist measures

the chain length within which the first, 25, 50, 75 and 100% of the amino acids of

a particular symbol are located.

• The Lempel-Ziv (LZ) complexity is one of the conditional complexity measures

of symbol sequences. The LZ complexity has been successfully employed to con-

struct phylogenetic tree and predict protein structural classes [58].

• Autocorrelation descriptors (AD) are all defined based on the value distri-

butions of 30 physicochemical properties of amino acids along a protein sequence

[59]. The three widely-used autocorrelation descriptors are: normalized Moreau-

Broto autocorrelation descriptors, Moran autocorrelation descriptors and Geary

autocorrelation descriptors [59].

• Features based on amino acid composition such as: Amino acid composition,

pseudo amino acid composition and quasi-sequence order descriptors [1, 2, 3].

• Physiochemical properties of the amino acids have been used as features

in basically two different approaches: 1) Global features proteins are represented

as numerical series using the physiochemical properties of the amino acids. Then,

some statistics as the mean are extracted from this numerical arrangement [4]. 2)

Localized features proteins that accomplish the same function can have difference

in length given by some specific deletions at genomic level [60], or by the structure

of the proteins, in which one protein is multi-domain whereas a related protein is

composed by one domain [61]. In [5] a method to avoid this problem is proposed, in

which, the protein is compressed into a fixed length using a slide window taking the

average of the amino acids value among this interval. The amino acid index aaindex

is a comprehensive data base of 544 amino acid properties clustered into different

areas: alpha and turn propensities, beta propensity, composition, hydrophobicity,

physiochemical properties, and others [62].

• Proteins can be represented in terms of families, domains, motifs and functional

sites ([9], [10], [11]). Some methods use annotated protein domains from different

databases to build feature vectors [6, 9, 12].
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An example of protein characterization and feature extraction is given in Figure 3.6:

A) From the amino acid sequence a set of features are extracted by the amino acid

composition, in the example, the Isoleucine composition I = 0.375. B) Numerical

representation of the amino acids, from the series a set of features can be extracted, for

example if the index is the hydrophobicity, the mean of the series represents the average

hydrophobicity of the protein. Other features can be extracted from this representation

as is shown in [5]. C) Domain arrangement of the proteins, some related proteins may

have the same domain in different positions along its sequence. Methods based on this

approach use the domains as features, setting a score if the domain is or not present

along the protein.

Protein sequence
I      I     G    P     Q   Q     R     I

A

I      I     G    P     Q   Q     R     I

numerical
representation

C

Protein1

Protein2

Protein 1 has one blue domain whereas the protein 2
has three blue domains. Note, the domains are not in 
the same position

Figure 3.6: Protein feature representation
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Methodology

In this thesis, a method to predict semantic annotations of protein sequences making use

of the features distributed along the protein sequence represented by motifs is proposed.

These features are detected by a continuous wavelet transform that has been reported as

a powerful tool for the characterization of protein motifs [63, 64, 65, 66, 67, 68]. However,

the most important aspect in the wavelet analysis is the protein’s numerical representa-

tion; here, the use the pairwise protein contact potentials from the aaindex database is

proposed [62] with the aim of extracting protein structural information for representing

protein primary structures. In the proposed method, sequences are described as nu-

merical representations from residue-residue interactions by the contact potentials, then

the wavelet transform decodes these interactions allowing the identification of groups of

amino acids with similar contact (free energy) distribution, thus, the protein is splitted

into those groups and so it can be represented as a set of subsequences. If a group of

proteins has related distributions, they will produce similar subsequences, so, by using a

clustering procedure those subsequences can be grouped into a set of homology/related

ones, which in turn can be modeled by a Hidden Markov Model (HMM). Biologically, if

a set of proteins has a motif/domain in common and it is well characterized by a con-

tact potential, a continuous wavelet transform can easily identify and localize this motif

regardless of whether it is distributed in different positions among the set of proteins or

even if the motif has mutations [63, 68]. Thus, this outcome to identify conserved motifs

in a specific protein categorization is used in this thesis. Two datasets are defined in

order to avoid bias and overtraining on the classification: A protein modeling dataset,

used to detect the expressed motifs (profiles HMMs) and a control data set used to

evaluate the performance of the method. Then, a set of single-class-SVM classifiers is

used as predictor. The method is divided into two main stages as follows:

15
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4.1 Profile descriptor

The profile descriptor models a set of proteins from a modeling dataset C = {C1, .., Cm},
where, m is the number of classes) as a group of profiles based on the usage of HMMs.

The name modeling dataset is given because these sequences are only and exclusively

used to build the profile HMMs. The profile descriptor assumes that recognizable

amino-acid sub-sequences are found in different proteins that usually indicate biochem-

ical function, for instance, the so-called zinc finger motif which is determined by this

three-dimensional structure, however, it can also be recognized based on the primary

structure of the protein [69]. These sub-sequences are known as motifs. Furthermore,

motifs are assumed to be frequently located among proteins with the same function (see

section 3.1.4). The scheme of the profile descriptor is shown in Figure 4.1. Let’s set

Cc = {S1, ..., Sr} as the protein dataset defined for the class c. Then, the numerical rep-

resentation of a protein Si is obtained by the decomposition of the protein sequences by

the statistical contact potentials (see 4.1.1) as is explained in section 4.1.3.1. Next, sub-

sequences Xk
s are extracted from the protein sequences by using the continuous wavelet

transform (see 4.1.2) where k is the total number of sections where the protein S is bro-

ken. Sections motif detection (4.1.3.2) and projection (4.1.3.3) describe the methods to

split the protein into several variable-length sequences. Note, the subsequence detection

is conducted for each one of the proteins in the class Cc. Thus, all the sequences for

this class are splitted and represented by Xc = {Xk1
s1 , .., X

ki
si
}, where si is the ith pro-

tein on the class c and ki is the number of subsequences for this protein. Then, all the

subsequences in Xc are grouped using the progressive alignment software CLUSTALΩ

[70] into a set of clusters ζc = {ζ1, ..., ζp}, where p is the total number of clusters on

the class c (see section 4.1.4 for details on progressive alignment). Clusters are defined

by cutting branches, where higher cutoff levels relate groups with a large number of

elements being mostly non-correlated, whereas lower levels reveal correlated groups. In

order to identify the optimal branch break, the DynamicCutTree, a fast and accurate

method for cutting dendrograms, is used [71]. Finally, each one of the clusters in ζ

are modeled by a profile HMM (see section 4.1.5 for details on Hidden Markov Models)

using the software package HMMER3.0 [72], thus, the full sequences on the class Cc are

reduced as a set of profile HMMs Hc = {h1, .., hp}.

Finally, if the profile descriptor process is carried out over the whole set of classes, a set of

profile HMMs Θ = {H1, ..Hm} depicts the entire database where m is the total number

of classes. Thus, the transformation from the whole set sequences C is represented as a

set of profiles HMMs Θ.
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Modeling dataset 

Numerical 
representation 

The processes of numerical 
representation and motif detection is 
done for each protein sequence on the 
modeling data set and by each class. This 
means that only sequences that share 
some common information (class) are 
used in order to generate the motifs. For 
instance sequences annotated as 
cytoplasmic proteins.  

Motif 
detection 

Clustering 

Profile HMMs 

The motif modeling procedure (involving 
clustering and profile HMMs) is made 
over the whole set of sub-sequences 
that belongs to the specific class c.  Thus,  
the profiles HMMs are strict for the 
analysis class.  

,i cs

When all the sequences in 
the class c are decomposed 
into subsequences, continue 
to the next stage. 

Finally, after the process is repeated on each 
class, there are a big set of profile HMMs.  
Where, each class in the modeling dataset is 
depicted by a set of HMMs.  

Repeat the process for the 
next class  

Repeat for the next sequence 

Sequences 

Classes 

,i cs Sequence i  
on the class c 

Figure 4.1: Decomposition of a set of sequences into a ensemble of clusters depicted
as profile HMMs. Subsequences are extracted by the use of the continuous wavelet

transform and the decomposition from the pairwise statistical contact potentials.

4.1.1 Statistical contact potentials

Statistical contact potentials are energy functions derived from analysis of proteins over

their tertiary structures [15]. These energies are widely used in computer applications

such as: folding, docking, or protein identification. They are derived from: (a) observed

pairing frequencies of the 20 amino acids in databases of known protein structures, and

(b) approximations and assumptions about the physical process that these quantities

measure [15, 16].

Possible features to which an energy can be assigned including: torsion angles (such as

the φ, ψ angles of the Ramachandran plot), solvent exposure or hydrogen bond geometry

and pairwise amino acid contacts or distances [16]. For pairwise amino acid contacts,

a statistical potential Y is formulated as an interaction matrix that assigns a weight or

energy value Y [i, j] to each possible pair of standard amino acids i, j. In Figure 4.2

a typical interaction between two amino acids is shown. Commonly, the energy of a

particular structural model is then the combined energy of all pairwise contacts (defined

as two amino acids within a certain distance of each other) in the structure. The energies

are determined using statistics on amino acid contacts in a database of known protein

structures.
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The AAindex is a database of numerical indices representing various physicochemical

and biochemical properties of amino acids and pairs of amino acids [62]. AAindex

consists of three sections: AAindex1 for the amino acid index of 20 numerical values,

AAindex2 for the amino acid mutation matrix and AAindex3 for the statistical pro-

tein contact potentials ( see Chapter 9 table 9). Those statistical contact potentials

comprise: Energy of interactions on buried environment, energy transfered of amino

acids from water to the protein, statistical contact potentials and contacts derived from

x-ray crystal structures, interactions energies derived from side chain contacts, distant

dependent potentials, potentials derived from perceptron criterion, energy derived from

protein-protein complexes, optimization-derived potential obtained from a set of decoys,

quasichemical potential derived from parallel, antiparallel and intermediate orientations

and environment-dependent residue contact energies [15, 16, 48].

Lysine

Glutamic acid

Figure 4.2: Interaction between Lysine and Glutamic acid in a protein complex.
Contact potentials are derived from the interactions between a couple of amino acids

4.1.2 Continuous wavelet transform

The wavelet transform is a mathematical function that converts a one dimensional signal

into a two dimensional representation. This conversion reveals hidden features within

the original signal and represent the original signal more succinctly [63, 73]. A mother

wavelet is needed in order to realize the wavelet transform which is a small oscillating

wave with its energy concentrated in time [64, 74].

The difference between a wave and a wavelet is that a wave is usually smooth and

regular in shape, whereas, a wavelet may be irregular in shape, and normally lasts only

for a limited period of time [64]. A wave (e.g., sine and cosine) is typically used as a

deterministic template in the Fourier transform for representing a signal that is time-

invariant or stationary [75]. In comparison, a wavelet can serve as both a deterministic

and nondeterministic template for analyzing time-varying or nonstationary signals by

decomposing the signal into a 2D, time-frequency domain [64, 65].
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Mathematically, a wavelet is a square integrable function ψ that satisfies the admissibility

condition [65].

∫ ∞

−∞

|Ψ(f)|2

(f)
df <∞ (4.1)

Where, Ψ(f) is the Fourier transform (i.e. frequency domain expression) of the wavelet

function ψ (in time domain). The admissibility condition implies that the Fourier trans-

form of the function ψ wear off at zero frequency; in other words,

|Ψ(f)|2 |f=0 = 0 (4.2)

This means that the wavelet transform must have a band-pass like spectrum. Also the

average value of the wavelet ψ in the time domain is zero:

∫ ∞

−∞
ψ(t)dt = 0 (4.3)

This means that the wavelet transform must be of oscillatory nature [65].

Using a dilation (s) and translation (τ) parameters. A family of translated and scaled

wavelets can be defined as follows:

ψs,τ (t) =
1√
s
ψ

(t− τ)
s

, s > 0, t ∈ R (4.4)

The purpose of the 1√
s

factor implies that the energy of the wavelet family will remain

constant under different scales [65]. If the energy of the wavelet function ψ(t) is assumed

as:

ε =
∫ ∞

−∞
|ψ(t)|2dt (4.5)

The energy of the scaled and translated wavelets can be calculated dividing by s as

follows:
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ε =
1
s

∫ ∞

−∞
|ψ(

t− τ

s
)|2dt (4.6)

A

Translation

1

Dilation

Translation and dilation

Figure 4.3: Illustration of the translation and dilation of the wavelet

As a result, the energy of the original base wavelet ε and the scaled and translated

wavelets remains the same. This relationship is illustrated in Figure 4.3. The process

through which a signal is decomposed by analyzing it with a family of scaled and trans-

lated wavelets is called the wavelet transform [63, 64, 65, 66, 67, 68]. The continuous

wavelet transform (CWT) of a signal x(t) is defined as:

wt(s, t) =
1√
s

∫ ∞

−∞
x(t)ψ∗(

t− τ

s
)dt (4.7)

where ψ∗(.) is the complex conjugate of the scaled and shifted wavelet function ψ(.).

Thus, the CWT is an integral transformation as the Fourier transform, due to the
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integration operation will be performed in both transforms [64, 65]. Also, as the wavelet

contains two parameters (scale parameter s and translation parameter t), transforming

a signal with the wavelet basis means that such a signal will be projected into a 2D,

time-scale plane, instead of the 1D frequency domain in the Fourier transform [75].

Furthermore, because of the localization nature of the wavelet, the transformation will

extract features from the signal in the time-scale plane that are not revealed in its original

form, for example, what specific bearing defect-related spectral components existed at

what time [64, 65].

4.1.2.1 Resolution of the continuous wavelet transform

The continuous wavelet transform enables variable window sizes in analyzing different

frequency components within a signal [66]. This is carried out by comparing the signal

with a set of template functions obtained from the scaling (dilation and contraction)

and shift (translation along the time axis) of a base wavelet ψ(t) and looking for their

similarities, as shown in Figure 4.4. The resolution on the CWT is good at high

frequencies, however, the bandwidth of mother wavelet is wide for these frequencies and

as consequence the scale resolution is not good. On the other hand, for low frequencies,

the mother wavelet is wide on time and has a concentration on high frequency allowing

characterize low frequency components but with a low resolution in time [64, 65, 66].

The time-frequency space division is not uniform. Moreover, the wavelet components

represented by the rectangles in the Figure 4.4 keep a constant area. The uncertainty

principle is applied to the wavelet transform [67].

Figure 4.4: Illustration of the translation and dilation of the wavelet
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4.1.3 Feature detection by wavelet transform

The continuous wavelet transform have been used to characterize protein sequences

specially for detecting conserved regions inside the protein [63, 68, 73]. In [63] the con-

tinuous wavelet transform have been used to identify and characterize repeating motifs.

They have proved the ability of the wavelet transform to detect concrete motifs on a set

of specific proteins. For their numerical representation they have used relative accessible

surface area (rASA) [76] and Kyte-Doolittle hydrophaty scale [62]. Both, indicators of

the protein’s overall geometry. In this thesis we have extended the work developed by

[63] in several aspects: 1) we have used pairwise statistical contact potentials instead of

rASA or Hydrophaty, the reason is because the potentials reveals preferences of contacts

between pairwise amino acids in a set of related proteins at atomic level. Then, those

potentials increase the specificity of the protein’s geometry. 2) Based on the claim that

protein domains/motifs can be placed in a diverse set of sequences at different locations

(see Section 3.1.4). We have included a cluster and HMM steps with the purpose to

merge domains/motifs which are not highly conserved. 3) we have employed those do-

mains/motifs in order to predict annotations of the proteins. Thus, our method can be

applied to any set of proteins. The mathematical formulation of the motif detection is

described as follows:

4.1.3.1 Numerical representation

Let’s the protein sequence S(t) = {s1, ...si, ...st} of length t, si express the ith residue of

the protein S belonging to one of the 20 native amino acids, represented by the numerical

signal F (t) = {f1, ..., fi, ..., ft−1, ..., ft}, where, F (t) is defined as the distribution of the

amino acids along the protein given the pairwise score from the contact potential matrix

Y .

Each element fi in the series F (t) is defined as follows:

• fi = Y [si, si+1]. The energy/score between the i and i + 1 amino acids, where

i < t.

In the special case of t (last amino acid in the sequence) ft is defined as ft = Y [st, st−1].

In the Figure 4.5 the conversion from the sequence to numerical series is shown. The

sequence S is decomposed into the distribution series F , where each couple of adjacent

amino acids S[i, j] is decomposed by the contact potential Y [i, j] (blue arrow) and the

score is represented as F [i].
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Protein Sequence

Numerical series

i j

Y[i,j]

f[i]

S[i,j]

Figure 4.5: Numerical representation of a protein sequence

4.1.3.2 Motif detection

Given the numerical sequence F (t) the CWT WTF (s, τ) (Equation:4.7) provides a rep-

resentation of the interactions between adjacent amino acids. These patterns or sub-

sequences are distributed along the protein sequence at different scales in the CWT

domain as shown in Figure 4.6.

Amino acids

Sc
al

e

similar contact scores from contact potentials

Figure 4.6: Numerical representation of the protein is decomposed into the sequence-
scale domain by the CWT, then adjacent amino acids with similar level of energy from

the contact potentials are grouped

Patterns localized along the protein sequence are computed separating the wavelet space

matrixWTF (s, τ) into two binary matrices WT+
F andWT−F which are determined by the

score given by the contact potentials as shown in Figure 4.7. For instance, if the score

from the potential is an energy approximation, the negative regions indicate that the

amino acid contacts have high scores/energy (e.g., binding affinities) and thus they could

represent binding sites or common contacts on the structures of the proteins. Positive

scores are associated to non specific contacts on the statistical contact potential.
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WT-
F WT+

F

Nucleotides with low score/energy Nucleotides with high score/energy

Figure 4.7: Identification of conserved regions in the wavelet space

WT+
F and WT−F matrices are expressed as follows:

WT+
F =

{
1 Wf ≥ thr

0 other
(4.8)

WT−F =

{
1 Wf ≤ thr

0 other
(4.9)

Where thr is the threshold for which the wavelet space WTF is splitted. This threshold

is defined as the mean value of the all amino acid pairwise interactions over the sequence

S, expressed as:

thr =
1
Nat

t∑
j=1

Na∑
i=1

WTF (i, j) (4.10)

Na is the total number of scales and t is the length of the protein.

4.1.3.3 Projection

This step consists on the extraction of the amino acid sequence that corresponds to each

regions. Thus, in order to model the possible motifs in the sequences it is necessary

to recover the sequence of the subsequences. Then, each region r[k] on either WT+
F
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and WT−F is projected into the sequence S. Where, the position of each region r[k]

corresponds to the sequence position as shown in the Figure 4.8. Then, each region is

expressed as the subsequence Xk
s shown in Figure 4.8.

r[k]

S[start->end]

start end start end

S[start->end]

Projection Projection

Subsequence set X

All regions r are projected

Sequence S is 
projected into a 
set of subsequences

XS
k

Figure 4.8: Protein feature detection by the wavelet transform

4.1.4 Multiple sequence alignment

In bioinformatics analysis, the multiple sequence alignments have been widely used spe-

cially to compare homologous sequences. The exact way to compute an optimal align-

ment among N sequences has a computational complexity of O(LN ) for sequences of

length L making it improper even for a small set of sequences. However, Hogeweg P and

coworkers [77] proposed the progressive alignment, which aligns sequences in larger and

larger sub-alignments, following the branching order in a guided tree. This method usu-

ally involves two sets of parameters: a gap penalty and a substitution matrix assigning

scores to the alignment of each possible pair of amino acids. This scores are based on the

similarity of the chemical properties of the amino acids and the evolutionary probability

of the mutation [30, 31, 32]. First the most closely related sequences are aligned, then,

the more distant sequences are added gradually. This approach has a computational

complexity of O(N2) and works well when the protein set consists of sequences of differ-

ent degrees of divergence. Pairwise alignment of very closely related sequences can be

carried out very accurately. However, if the identity among the sequences is less than

2̃5 - 30% this progressive approach becomes much less reliable [30].

The two major problems of the progressive alignment are:
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1. The local minimum problem: following the guided tree the algorithm adds se-

quences together. However, there is no guarantee that the global optimal solution

(multiple alignment quality) will be found. In other words, any misaligned regions

made early in the alignments process cannot be corrected later as new information

or sequences are added.

2. Alignment parameters: Commonly two parameters are chosen, a weight matrix and

two gap penalties (one for opening a new gap and one for extending an existing

gap). When the sequences are all closely related, this works well over all parts of all

the sequences in the data set. The first reason is because all residue weight matrices

give most weight to identities. Then, if identities dominate an alignment, almost

any weight matrix will find approximately the correct solution. In the case of

divergent sequences the scores given to non-identical residues will become critically

important. Because, there will be more mismatches than identities. Different

weight matrices will be optimal at different evolutionary distances or for different

classes of proteins. The second reason lies in the range of the gap penalty values

that will find the best possible solution. This value can be very broad for highly

similar sequences [30].

The multiple alignment algorithm proposed on the CLUSTAL family [30, 31, 32] con-

sists of three main stages: (1) all pairs of sequences are aligned separately in order to

calculate a distance matrix based on the divergence of each pair of sequences; (2) a guide

tree is calculated from the distance matrix; (3) the sequences are progressively aligned

according to the branching order in the guide tree as illustrated in Figure 4.9.

4.1.4.1 The distance matrix

In the CLUSTAL programs, the pairwise distances were computed using a fast ap-

proximate method [78] allowing alignments for a large number of sequences. However,

CLUSTAL offers the option to use another method calculating scores from full dynamic

programming alignments using two gap penalties (for opening or extending gaps) and a

full amino acid weight matrix. These scores are calculated as the number of identities

in the best alignment divided by the number of residues compared (gap positions are

excluded). Both of these scores are initially calculated as per cent identity scores and

are converted to distances by dividing by 100 and subtracting from 1.0 to give number

of differences per site [30].
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4.1.4.2 The guide tree

The trees used to guide the final multiple alignment process are calculated from the

distance matrix (previous subsection) using the Neighbor Joining method [79]. This

produces unrooted trees with branch lengths proportional to estimated divergence along

each branch. The root is placed by a mid-point at a position where the means of the

branch lengths on either side of the root are equal [30]. These trees are also used to derive

a weight for each sequence [79]. The weights are dependent upon the distance from the

root of the tree but sequences which have a common branch with other sequences share

the weight derived from the shared branch.

4.1.4.3 Progressive alignment

The basic idea of this stage is to align larger and larger groups of sequences by a series

of pairwise alignments, following the branching order in the guide tree. The alignment

proceeds from the root of the rooted tree. At each stage a full dynamic programming [38]

algorithm is used with a residue weight matrix and penalties for opening and extending

gaps. Each step consists of aligning two existing alignments or sequences. In the basic

algorithm, new gaps that are introduced at each stage. In order to calculate the score

between a position from one sequence or alignment from another, the average of all

the pairwise weight matrix scores from the amino acids in the two sets of sequences

is used. Sequence weights are calculated directly from the guide tree. The weights

are normalized such that the biggest one is set to 1.0 and the rest are all less than

1.0. Groups of closely related sequences receive lowered weights because they contain

much duplicated information. Highly divergent sequences without any close relatives

receive high weights. These weights are used as simple multiplication factors for scoring

positions from different sequences or prealigned groups of sequences [30].

4.1.5 Hidden Markov Models

Hidden Markov Models (HMMs) are statistical models which are generally applicable to

time series or linear sequences. They have been used in speech recognition applications

[80]. HMMs have been introduced to computational biology analysis in the late 80’s [81].

A HMM can be viewed as a finite state machine. Where a finite state machine can move

through a series of states and produce an output, either when the machine has reached

a particular state or when it is moving from state to state [82, 83]. The HMM generates

a protein sequence by emitting amino acids as it progresses through a series of states.

Each state has a table of amino acid emission probabilities, and transition probabilities
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Figure 4.9: Progressive alignment algorithm implemented in the CLUSTAL programs

for moving from state to state. Transition probabilities define a distribution over the

possible next states [82, 83, 84].

An example of a simple HMM that models sequences composed of two letters (a, b) is

shown in Figure 4.10. This model is appropriate for a problem in which the sequences

started with one residue composition a then switched once to a different residue com-

position b. The HMM consists of two states connected by state transitions. Each state

has a symbol emission probability distribution for generating (matching) a symbol in

the alphabet. An HMM can be viewed as a generator of sequences. Starting in an

initial state, a new state with some transition probability is chosen by staying in state

1 with transition probability t1,1, or moving to state 2 with a transition probability

t1,2. Then, a residue with an emission probability specific to that state is generated.

The transition/emission process is repeated until an state is reached. Finally, there is
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a hidden state sequence that is not observed and a symbol sequence which is observed

[72, 82, 83, 84, 85]. The states of the HMM are often associated with a meaningful

biological labels [82]. Any sequence can be represented by a path through the model.

This path follows the Markov assumption, that is, the choice of the next state is only

dependent on the choice of the current state. Inferring the alignment of the observed

sequence to the hidden sequence is like labeling the sequence with relevant biological

information.

1 2 End

t(1,1) t(2,2)

t(1,2) t(2,end)
P1(a)
P1(b)

P2(a)
P2(b)

1 1 2 end

a b a

HMM

Hidden state sequence

observed symbol sequence, x

t(1,1) t(1,2) t(2,end)     P1(a) P1(b) P2(a) 

Figure 4.10: A HMM modeling sequences of a and b as two regions of potentially
different residue composition. The model, blue circles as states and narrows as tran-
sition states. A state sequence is generated from the model and a possible symbol
sequence. The joint probability P (x, π|HMM) of the sequence and the state sequence

is a product of all the transition and emission probabilities.

Parameters on the HMM can be set by (i) training of the HMM from an initially un-

aligned set of sequences or (ii) from a set of pre-aligned sequences. In the latter case,

the parameter estimation consists of converting observed counts of symbol emissions and

state transitions into probabilities. Thus, for the building of a profile HMM an exist-

ing multiple alignment is given. Training a profile HMM is similar to make a multiple

sequence alignment [82].

The commonly used HMM training algorithms are: Baum-Welch expectation maxi-

mization, gradient descent algorithms, Gibbs sampling, simulated annealing, genetic

algorithm [82, 86, 87, 88, 89]. These training algorithms are local optimizers, thus, it

is recommended to use a set of pre-aligned sequences [82]. Specially for complicated

HMMs, the parameter space may be complex, with many local optima that trap a

training algorithm.

Another important aspect of the HMMs is its architecture depicted by the number of

states and how they are connected by state transitions. Profile HMMs and HMM-based
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gene finders have been the most successful applications of HMM’s in computational

biology [82, 87, 90, 91, 92, 93, 94]

4.1.5.1 Profile HMMs

Krogh and collaborators [95] proposed a HMM architecture to represent profiles of multi-

ple sequence alignments. For each consensus column of the multiple alignment, a match

state models the distribution of residues allowed in the column. An insert state and

delete state at each column allow for insertion of one of more residues between that

column and the next, of for deleting the consensus residue. Profile HMMs are strongly

linear, left right models, unlike the general HMM case. Figure 4.11 shows a profile

HMM corresponding to a short multiple sequence alignment.

C X FY

1 2 3
C A F
C D W
C G Y
C V F
C K Y

Figure 4.11: A small profile HMM (right) representing a short multiple alignment
of five sequences (left) with three consensus columns. The three columns are modeled
by three match states (squares labeled m1, m2 and m3), each of which has 20 residue
emission probabilities, shown with black bars. Insert states (diamonds) also have 20
emission probabilities each. Delete states (circles) are null states that have no emission
probabilities. A begin and end state are included (b,e). State transitions are shown as

arrows.

The probability parameters in a profile HMM are usually converted to additive log-

odds scores before the alignment and the score of a query sequence [96]. The scores for

aligning a residue to a profile match state are comparable to the derivation of BLAST

score. Suppose px as the probability of the match state emitting the residue x and the

expected background frequency of residue x in the sequence data base is fx, the score

for the residue x at this match state is log(px

fx
)

For other scores, profile HMM treatment diverges from the standard sequence alignment

scoring. In the common gapped alignment, an insert of x residues is typically scored

with a affine gap penalty, a+ b(x− 1), where, a is the score of the first residue and b is
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the score of each subsequent residue in the insertion. In a profile HMM, for an insertion

of length x there is a state transition into an insert state which costs log(tMI), where

MI is the transition probability for moving from the match state to the insert state,

(x − 1) state transitions for each subsequent insert state that costs log(TIM ). This is

close to the traditional affine gap penalty, with the gap open cost a = log(tMI+ log(tIM )

and the gap extend cost as b = log(tII).

Several HMM software packages have been implemented. The main difference between

these packages is the model architecture that they adopt (Figure 4.12). There is a

difference between a profile and motif models. The first class is related to insert and

delete states associated to each match state, allowing insertion and deletion anywhere

in a target sequence. By motif models are denominated by strings of match states

(modeling ungapped blocks of sequence consensus) separated by a small number of

insert states modeling the spaces between ungaped blocks. In the Figure 4.12 several

architectures are shown, state transitions are shown as arrows and emission distributions

are not represented.

SAM [97], HMMER [72], PFTOOLS [98] and HMMPro [99] implement models based on

the original profile HMMs of Krogh [95]. These packages have augmented that simple

model to deal with multiple domains, sequence fragments and local alignments (Figure

4.12). As an example the model architecture adopted by HMMER containing local

versus global alignment which is not intrinsic on the algorithm. But, can be found as

part of the model architecture [82]. Local alignments with respect to the model are

allowed by non-zero state transition probabilities from a being state or internal match

states, and from internal match states to an end state (dotted lines Figure 4.12). Local

alignments with respect to the sequence are allowed by non-zero state transitions on the

flanking insert states (shaded in the HMMER architecture in Figure 4.12).

These profile HMMs allow insertions and deletions anywhere in a sequence relative to

the consensus model. They should be more sensitive than ungapped models. How-

ever, in practice the complexity of a model can overfit the training data and falling

to generalize to other sequences. SAM and HMMER use mixture Dirichlet priors on

most distributions to help to avoid overfitting and to limit the effective number of free

parameters [100]. HMMER and PFTOOLS are used to build database search mod-

els from pre-existing alignments, such as in the Pfam and PROSITE profiles database.

PROBE, META-MEME and BLOCKS assume motif models in which alignments consist

of one or more ungapped blocks, separated by intervening sequences that are assumed

to be random (Figure 4.12). The motif models can be viewed as special cases of pro-

file HMMs; indeed, HMMER, SAM and PFTOOLS have various options for creating

motif-like models [82].
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Figure 4.12: Different model architectures used in current methods.

4.2 Classification framework

This framework makes use of the profile HMMs Θ (described in Section 4.1) as features

in order to train a classifier. Then, if there are similarities between profiles and query

sequences, they should produce similar distributions. Thus, classification algorithms

such as SVMs may discriminate those distributions and hence make an appropriate

prediction.

A feature space can be viewed as the distribution of the set of profiles Θ along the query

sequence Sp, in which, the profile-sequence relationship P (Sp|hcj) is the probability that

the profile j from the class c is part of the protein at a level of identity. Some proteins may

enclose repeating motifs [63]. For instance, the ANK1 (Ankyrin 1, erythrocitic) protein

involved in binding, consists of two alpha helices, repeated frequently from four to six

times [101]. Then, if the protein Sp has a repeating motif, the score of its repeated profile

hcj is set to the maximum likelihood among all repeats ℵ(i, j, c) = max1..n{P (Sp|hcj}.
In other words, when a profile is matched several times along the sequence, the most

probable match is selected (see Figure 4.13). The matching profile is carried out by the

software HMMER using the tool hmmscan/hmmsearch. Thus, the probability P (Si|hcj)
is the mean posterior probability of aligned residues in the maximum expected accuracy
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alignment; a measure of how reliable the overall alignment is (from 0 to 1, with 1.00

indicating a completely reliable alignment according to the model) [72].

Figure 4.13: Representation space used to train and test the SVM. A query protein is
depicted by a set of features (motifs). If the protein belongs to a specific compartment
is expected that the associated profiles to the compartment will show a higher value

than the other profiles

Profile HMMs 

Query dataset 

Mapping 

Feature space 

Feature selection 
(correlation 
filter-PCA) 

SVM based 
classification 

All the profiles HMM obtained 
from the modeling data set are 
used to map the query dataset.  
Thus, each protein in the query 
dataset is represented by the 
probabilities of membership of the 
profiles to the sequence.  Then, a 
feature vector is built.  
  

In order to avoid redundancy on 
the HMM profiles a two step 
feature selection is used. 
Redundant information occurs 
when, for instance, two profiles 
show the same information across 
the query sequences. The 
correlation based filter removes 
this kind of features. Then, a 
transformation into a small set of 
features is carried out by PCA  
  

Parameters on the SVM are tuned 
using  the PSO search algorithm. 
Finally, a 10 cross validation is used 
for testing. Also, SMOTE an 
algorithm to deal with class-
imbalance sets is used. 

Figure 4.14: Classification schema. A control dataset (query sequences) is used to
test the method. Profile HMM are used as features for the SVMs.

Once the protein sequences from a control/validation data set are mapped into the

profiles HMMs, a SVM is further used as a predictor with a 10 fold cross validation.

Redundant information on the profile space is removed using a fast correlation-based

filter algorithm [102]. In addition, Principal Component Analysis (PCA) is applied to

this reduced space and the first 5 principal components are selected as meaningful (hold-

ing 80% of the explained variance). SVMs are designed following the one-against-all
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strategy which produces a strong class imbalance. Therefore, to avoid this class imbal-

ance issue, the Synthetic Minority Over-sampling Technique SMOTE is employed [103].

Parameters of the SVM are tuned using the Particle Swarm Optimization algorithm

[104, 105].

4.2.1 Support Vector Machines (SVMs)

Support vector machines are supervised learning models, introduced by Vapnik and co-

workers in 1992 [106]. The basic idea of a SVM lies in the classification problem, a

given input is predicted into several classes depending on the training of the SVMs. The

learning problem setting for SVMs consists of an unknown and nonlinear dependency

(mapping, function) y = f(x) between some high-dimensional input vector x and the

scalar output y. Where, there is not information about the underlying joint probability

functions. The only information available is the training data set D = {(xi, yi) ∈
X ∗ Y }, i = 1, l, where l is the number of the training data pairs and is equal to the size

of the training data setD. Parameters for learning of the SVMs (selection, identification,

estimation, training or tuning) are not predefined and their value depends on the training

data used [107]. This is a basic paradigm of the structural risk minimization introduced

by Vapnik and Chervonenkis and their coworkers leading to a new learning algorithm

[107, 108, 109].

In the design of the SVM model is common to keep the value of training error fixed

(approximation error, empirical error) and minimize the confidence interval. The result-

ing model should resolve the trade-off between under-fitting and over-fitting the training

data. The final structure should ideally match the learning machines capacity with train-

ing data complexity. The risk functional R applied in the developing of support vector

machines is described as:

R =
i=1∑
l

Lε + Ω(l, h) (4.11)

Where, For classification problems Lε is a 0-1 loss function, Ω is a function bounding the

capacity of the learning machine and h is the VapnikChervonenkis (VC) dimmension. In

the simplest pattern recognition tasks, support vector machines use a linear separating

hyperplane to create a classifier with a maximal margin. Then, the learning problem for

the support vector machine will be cast as a constrained nonlinear optimization prob-

lem [107]. Thus, the cost function will be quadratic and the constraints linear. In cases

when the classes cannot be linearly separated in the original input space, the SVM first
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transforms the original input space into a higher dimensional feature space. This trans-

formation can be acquired by several nonlinear mappings as: polynomial, sigmoidal

(multilayer perceptrons), radial basis functions (Gaussians, multiquadrics or different

spline functions). After this nonlinear transformation step, the task of a support vec-

tor machine in finding the linear optimal separating hyperplane in this feature space is

relatively trivial. In other words, the optimization problem to solve in a feature space

will be of the same kind as the calculation of a maximal margin separating hyperplane

in the original input space for linearly separable classes. Thus, after the specific nonlin-

ear transformation, nonlinearly separable problems in input space can become linearly

separable problems in a feature space [107].

margin

w

Figure 4.15: A simple linear support vector machine (Left). Overfitting in the case
of linearly separable classification problem (empty circles and squares) (Right).

From the training dataset D, the input vector x = {x1, ..., xl} in the space X ⊆ <d

and their labels y = {y1, ..., yl} are defined. Where, yi ∈ {−1, 1}. In the simplest form

SVMs where hyperplanes try to separate the training data by a maximal margin 4.15,

all vectors lying on one side of the hyperplane are labeled as -1, and all vectors lying

on the other side are labeled as 1 [110]. The training instances that lie closest to the

hyperplane are called support vectors. In a more general definition, SVMs project the

original training space X to a higher dimensional feature space Γ via the kernel operator

K. Thus, the set of classifiers are depicted by:

f(x) =
n∑
i=1

αK(xi, x) (4.12)

WhenK satisfies the Mercer’s condition [111], it can be written as: K(u,v) = φ(u).φ(v),

where, φ : X −→ Γ and ”.” denotes the inner product. Thus, f (4.12) can be expressed

as:
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f(x) = w.φ(x) (4.13)

w =
n∑
i=1

αiφ(xi) (4.14)

Thus, by K the training dataset is projected into a different (often higher dimension)

feature space Γ. The SVM then computes the αis that correspond to the maximal

margin hyperplane in γ. By choosing different kernel functions the training data can be

projected into different spaces, for which their hyperplanes correspond to more complex

boundaries in the original space X [107, 110, 112].

4.2.2 Selecting the best contact potential

Proteins from different classes have different properties as result of the environment in

which they interact, making it difficult to characterize and discriminate. Therefore, with

the aim to achieve the best representation per class, all 47 statistical contact potentials

from AAindex are used independently. This means, each class is described by 47 rep-

resentation/classifiers with their respective performances. Then, the ”best” predictor

given by the highest performance is selected. This process does not make any infer-

ence about the training-testing or parameters on the SVM. It is just designed with the

purpose of finding the best representation (statistical contact potential) for each class.
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Experimental framework

In this chapter the methodology described in the Chapter 4 have been evaluated for the

prediction of subcellular localizations on Gram-Negative Bacterial proteins. Organisms

such as Proteobacteria, Escherichia coli (E. coli), Salmonella, Shigella, Pseudomonas,

Moraxella, Stenotrophomonas and numerous others have been widely studied given their

central role in several infections including pneumonia, bloodstream infections, wound or

surgical site infections, and meningitis [113]. Gram-negative bacteria are resistant to

multiple drugs and are increasingly resistant to most available antibiotics [114]. Thus,

these bacteria have built-in abilities to find new ways to be resistant. Therefore, com-

putational prediction of the subcellular localization of proteins is a valuable tool for

genome analysis and annotation [6].

5.1 Protein subcellular localization on Gram-Negative bac-

terial proteins

Protein subcellular localizations can indicate how and what kind of cellular environ-

ments the proteins interact, helping to elucidate their function and role in biological

processes [13]. Knowledge of the cellular compartment, where a protein probably re-

sides, can help in the design of protein isolation experiments. For example, the identi-

fication of cell-surface-exposed proteins in a bacterial genome can help the discovery of

therapeutic intervention points [56]. Experimental techniques such as immunolocaliza-

tion, fluorescent and tagged isotopes are accurate, but they are slow and labor-intensive

[115]. Besides, the high number of protein sequences with missing annotations makes

it impossible to carry out experimental validations over all of them. To cope with this

drawback, several computational approaches have been developed as an alternative to

predict subcellular localizations on Gram negative bacterial proteins. In general, the

37
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classification of a new bacterial protein is performed by finding similar sequences, whose

cellular compartments are experimentally determined. Usually, local alignments, such

as BLAST or PSI-BLAST, are used to find a protein homologous to the unknown pro-

tein from public databases. In many cases, these methods perform accurate inferences

[50, 116, 117, 118, 119]. However, it is well known that some proteins with a high se-

quence similarity do not achieve the same molecular function. As a result, homology

based annotations have significant drawbacks, namely, propagation of errors, threshold

relativity, and low sensitivity/specificity [120].

On the other hand, feature-based approaches model the differences between positive and

negative samples by the extraction of protein properties arranged in a feature space,

which is used as input to a classifier [1, 4, 6, 9, 12, 59]. In this regard, the feature

extraction can be based on local information on the proteins. The purpose of the local

featuring is the extraction of conserved protein subsequences known as motifs. However,

this characterization has the following implications: not all proteins are related by the

same motif, not all motifs are highly conserved, finding motifs is a very difficult task, and

the presence of insignificant motifs may reduce the classifier performance [120]. Lastly,

there are hybrid approaches consisting of the use of homology, theatre and local-feature

based characterizations. Among these approaches to classify bacterial proteins, the

following are widely used: PSORTb v.3 [6], CELLO [121], PSLpred [116], LOCtree [55],

P-CLASSIFIER [122], and GNeg-mPLoc [3], which cover different types of algorithms

such as support vector machines (SVM), amino-acid composition, Bayesian networks,

signal peptides, motif matching, homology based prediction, hidden Markov models

(HMM), and text labeling. In general terms, they all report adequate performance,

but, in spite of the low false positive rate in most of them, a high false negative rate

remains. The main limitation of the listed methods is the protein representations that

they adopt, for instance: Psortb, CELLO, LOCtree, P-classifier and GNEg-mPloc use

feature vectors based on different classes of amino acid compositions such as n-grams,

physio-chemical properties of the amino acids and Gene Ontology annotation. This kind

of characterization misplaces the distribution of the polypeptide chain, and therefore

loses the information contained by the continuous segments of the amino acid sequence

known as protein domains.

5.2 Protein control-evaluation data sets for Gram negative

bacteria

Five subcellular localizations have been selected from Gram negative bacterial proteins.

The modeling data set comprises 500 cytoplasmic proteins (C), 500 inner membrane
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proteins (CM), 359 periplasmic proteins (P), 349 outer membrane proteins (OM),

and 288 extracellular proteins (E) selected from ePSORTdb [6], omitting sequences

with an identity superior to 60%. As a control dataset, the reported in [56] is used

for testing purposes. This dataset holds 299 protein sequences distributed as follows:

145 cytoplasmic proteins, 69 cytoplasmic membrane proteins, 29 periplasmic proteins,

38 outer membrane proteins, and 18 extracellular proteins. In addition, any proteins

sharing <60% identity of modeling data set with respect to the control dataset were

removed. All identity filters were carried out using the cdHit software [123].
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Results and discussion

In order to test the performance of the wavelet approach, three different views have been

analyzed: 1) Performance evaluation of three currently active services for subcellular lo-

calization prediction in Gram-negative bacteria: Psortb, CELLO, and SOSUIGramN;

2) Assessment of classical protein representations; 3) A subsequence/profile based ap-

proach that is the closest approach to the one proposed here (the difference lies on

how the motifs-features are obtained). In the 2-3) views, all evaluations are carried out

following the same classification strategy proposed in this paper.

• The methods CELLO version 2.5 and SOSUIGramN (web versions) are used to

predict the subcellular localizations in addition to the standalone version of Psortb

V3.0.2 (stand alone version). In order to ensure that the PsortB performance is not

biased, the modeling data set is used in the blast module and the predictions are

accomplished with the control data set. The presence of a sequence in the training

data set of any of the listed servers would cause biasing on their classifications, so,

it is necessary to clarify that it is not possible to verify whether test sequences are

in the training set of CELLO as well as in SOSUIGramN servers.

• Many protein feature descriptors have been developed for protein prediction, such

as amino acid composition, pseudo-amino acid composition, amphiphilic pseudo

amino acid composition, autocorrelation, Composition/Transition/Distribution (CTD)

descriptors, quasi-sequence order descriptor, among others (see Table 6). As a

result, three tests based on global feature descriptors have been formulated for

evaluating the hypothesis whether proteins can be depicted more accurately using

local features (motifs, domains or sites) than by the use of global features (molec-

ular weight, amino acid composition). This formulation proves the statement that

global descriptors such as amino acid composition dispel the protein structure. In

40
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order to evaluate the quality of the characterization and make an accurate compar-

ison, the same classification strategy is adopted for wavelet and global featuring

approaches

• The Pfam profile test is constructed with the purpose of demonstrating the dis-

criminant ability of the wavelet HMM profiles over a set of annotated HMM terms.

Thus, the testing data set is submitted to Pfam sequence batch search (Parame-

ters: E-value=20, PfamA, PfamB) allowing a wide range of matches. A total of

646 Pfam profiles (domains, motifs and families) were found. All profiles are used

as features to evaluate the pfam-profile discriminance. Performance predictions

are carried out in the same way as in the wavelet method. Pfam HMMs were

treated by the same process as it is described in section:4.2.

Featuring type Shortcut No Features Description
Amino acid composition ACC,DC,TC 8420 frequency of the 1,2 and 3 n-grams
Correlation descriptor Geary, Moran, Moreau 720 Autocorrelation
Pseudo amino acid composition PAAC,APAAC 80 Pseudo Amino Acid Composition
Sequence-Order descriptor QSO,SOCN 160 Quasi-Sequence-Order descriptors
Triad descriptor Triad 343 Triad method abstracts

Table 6.1: Different sets of global features extracted to the proteins

In order to estimate the performance prediction of the different methods, three classi-

fier performance parameters are used, sensitivity (Sn), specificity (Sp), and Matthews

Correlation Coefficient (MCC), respectively, given as follows:

Sn =
TP

TP + FN
(6.1)

Sp =
TN

TN + FP
(6.2)

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FN )(TP + FP )(TN + FP )(TN + FN )
(6.3)

where notations TP , FP , TN and FN stand for the true positive, false positive, true

negative, and false negative values, respectively. Performance prediction of the wavelet-

based method across all contact potentials is shown in Figure:6. As seen from the

obtained results, the best contact potentials per class are shown in Table 6.1 and the

corresponding comparisons are presented in Table 6.3
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Figure 6.1: Performance predictions over all subcellular localizations using all 47 con-
tact potentials. Each box depicts the MCC for the specific SCL and contact potential.
Accurate predictions are highlighted in dark red scales whereas wrong predictions are
marked with blue scales. For each SCL the best descriptor (statistical contact potential)

is selected.

6.1 Comparison with cutting edge predictors

Performance of the individual methods reveals that the wavelet approach achieves the

highest overall sensitivity. This fact is highlighted in cytoplasmic, periplasmic and ex-

tracellular localizations, in which our method significantly outperforms, by more than

10% the psort, SOSUIGramN, and CELLO methods. Also, the specificities for these

classes are basically the same in all methods showing that the wavelet approach can

improve the true positive rate while holding a low false positive rate (see Table 6.3).

For cytoplasmic proteins, our approach shows the highest sensitivity (0.94) followed by

CELLO (0.93), SOSUIGramN (0.9) and psort (0.82). However, both CELLO and SO-

SUIGramN have a low specificity (0.83 and 0.88, respectively), that is, this performed

value can be interpreted as a high false positive rate. For this reason, we infer that the

proposed method achieves the best MCC performance of 0.85 in cytoplasmic proteins

followed by psort 0.79, SOSUIGramN 0.78 and CELLO 0.76. A protein can remain in

the cytoplasm or be targeted into different sites by a transport system, thus, proteins

associated to the cytoplasm localization are highly diverse and comprise a big variety of

domains. This diversity is also the case of transmembrane proteins, which are simulta-

neously located on both sides of the membrane and transport molecules from one side

to the other, making it difficult to characterize these kinds of proteins through local

features or motifs. Accordingly, both cytoplasmic membrane and outer membrane are

the classes with the lowest performances of sensitivity in comparison to psortb and SO-

SUIGramN, respectively. For cytoplasmic membrane PsortB shows an upper sensitivity

of 5% better compared to the wavelet-based method while the specificity remains nearly

the same and the MCC is close to ours (2%) making the prediction comparable. For

outer membrane proteins, SOSUIGramN achieves the best sensitivity of 92% followed by

our method and psortb with a sensitivity of 0.81 and 0.87, respectively. SOSUIGramN

achieves a MCC of 0.92, a 5% upper than wavelet method with a 0.87.
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SCL Location aaindex ID Description

C Cytoplasm TANS760102 Medium- and long-range interaction
parameters between amino acids for
predicting three-dimensional structures of proteins

CM Cytoplasmic Membrane THOP960101 Mixed quasichemical and
optimization-based protein
contact potential

P Periplasm MIYS960101 Quasichemical energy of transfer
of amino acids from water
to the protein environment

OM Outer Membrane SKOJ970101 Statistical potential derived
by the quasichemical approximation. Derivation
and testing of pair potentials for protein folding

E Extracell MIYS850102 Estimation of Effective Interresidue
Contact Energies from Protein Crystal-Structures
Quasi-Chemical Approximation

Table 6.2: Best statistical contact potential per subcellular localization

Statistical contact potentials turn to be out a useful representation of the proteins and

are used to subtract local features by the continuous wavelet transform. Thus, if a protein

set has similar interactions among adjacent amino acids at any position in the proteins,

the wavelet transform can efficiently detect those interactions. Unlike SOSUIGramN,

CELLO, and Psortb in which several types of protein representations had been pro-

posed (amino acid composition, partitioned amino acid composition, local amino acid

composition, SCL-blast, signal peptides, N and C-terminal composition, profile motifs

among others), the wavelet-based method involves just the local feature representation.

Psortb uses a set of known profile motifs per subcellular localization in contrast to the

proposed method which generates its own set of profiles. SOSUIGramN consists of a

set of filters, in which proteins are divided into ten segments, and the average values

of physiochemical properties over those segments are computed. CELLO divides the

sequence into subsequences of equal length and each partition is encoded by a particular

amino acid composition. On the other hand, the proposed method uses the protein

contact potential plus the wavelet transform to detect core local features encoded by

the amino acid sequence, thus making use of the main protein information contained

in the amino acid distribution. The results obtained are in accordance with previous

works suggesting that the wavelet transform is a powerful tool for motif detection and

characterization [63, 68].

6.2 Comparison with global featuring methods

Global featuring has been widely used to describe proteins from their primary arrange-

ment. For example, amino acid composition has shown to characterize well intra and

extra cellular proteins, where aliphatic and charged residues occur more frequently in
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intracellular proteins than extracellular proteins [124]. In our study as table 3 shows,

amino acid composition and pseudo amino acid composition have shown good perfor-

mance (MCC) compared to correlation, sequence order and triad descriptors for cy-

toplasmic, cytoplasmic membrane, and outer membrane compartments. Cytoplasmic

was the cellular compartment with the highest MCC score (0.69) compared against all

the global featuring methods. However, the wavelet method has shown a performance

(MCC) of 0.85. In general, none of the global featuring results are comparable with our

proposed method and nor with the cutting edge predictors.

6.3 Comparison with a profile based method

Pfam is a large collection of protein families represented by multiple sequence alignments

and Hidden Markov Models. From these families 14831 have been manually curated

(Pfam A) and 80% of all proteins in Uniprot contain a match , at least, to the Pfam

domain [11]. Based on the prediction performance, the wavelet method achieves the

highest performance over all subcellular compartments compared to the profile method

(Table 6.3), suggesting the wavelet-profiles as potential features to describe Gram neg-

ative proteins better than the annotated pfam terms.

Wavelet PsortB CELLO SOSUIGRAMN
SCL Sens Spec MCC Sens Spec MCC Sens Spec MCC Sens Spec MCC
C 0.94 0.91 0.85 0.82 0.97 0.79 0.93 0.83 0.76 0.9 0.88 0.78
CM 0.77 0.99 0.83 0.82 0.98 0.85 0.62 0.99 0.72 0.72 0.99 0.8
P 0.93 0.99 0.89 0.79 0.99 0.84 0.5 0.97 0.57 0.59 0.98 0.64
OM 0.87 0.98 0.85 0.81 1 0.89 0.55 0.96 0.56 0.92 0.99 0.91
E 0.83 0.99 0.88 0.77 0.99 0.81 0.44 0.96 0.38 0.5 0.99 0.66

AAC,DC,TC Triad Geary,Moran,Moreau PAAC,APAAC
SCL Sens Spec MCC Sens Spec MCC Sens Spec MCC Sens Spec MCC
C 0.83 0.7 0.53 0.76 0.73 0.49 0.83 0.73 0.56 0.86 0.82 0.69
CM 0.58 0.95 0.59 0.59 0.87 0.46 0.68 0.82 0.46 0.57 0.83 0.38
P 0.68 0.7 0.25 0.72 0.67 0.24 0.34 0.79 0.09 0.72 0.64 0.22
OM 0.74 0.92 0.58 0.74 0.8 0.41 0.84 0.85 0.55 0.79 0.87 0.54
E 0.89 0.81 0.39 0.72 0.8 0.29 0.83 0.83 0.4 0.72 0.81 0.29

QSO,SOCN Pfam
SCL Sens Spec MCC Sens Spec MCC
C 0.73 0.58 0.31 0.8 0.76 0.56
CM 0.52 0.77 0.27 0.92 0.62 0.46
P 0.68 0.58 0.16 0.55 0.74 0.19
OM 0.58 0.79 0.28 0.68 0.8 0.37
E 0.27 0.61 0.05 0.5 0.71 0.1

Table 6.3: Performance prediction of the wavelet method and the different tests.

Our results suggest this novel characterization as a powerful tool for representing protein

sequences from their primary structures (Table 6.3). The contact potential MIYS850102

has shown a good efficiency over all subcellular compartments (Figure:6). This poten-

tial depicts the contact energies between residues in globular proteins estimated from
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the amount of residue-residue contacts observed in protein crystal structures by re-

garding them as statistical averages in the quasi-chemical approximation [62]. The

contact potential ZHAC000106 has shown a regular performance prediction in all sub-

cellular localizations as shown in Figure:6 except for extracellular medium in which

the performance (MCC) rounds the 0.2. This potential characterizes the pairwise

amino acid interactions limited to the context of secondary structural environments

(helix, strand and coil) making this potentially less sensitive to the pairwise amino

acid interactions than the previous one. Our results based on contact potentials from

sequence-dependent, sequence-independent features and structural classes show average

performances (BONM,ZHAC,SIMK,MICC) [62] for all classes, except for extracellular

medium. On the other hand, contact potentials based on quasi-chemical energy approx-

imations (MIYS,BASU,THOP,TANS,LIWA, MOOG, SKOJ, KOLA) have shown good

performance (MCC ¿ 0.7). In this analysis, a set of contact potentials that described

each subcellular localization with high levels of accuracy are found (Figure:6) of those,

only the best contact potential per class is selected (Table:6.1). Yet, it is worth noting

that this selection process is out of the SVM classification strategy and does not interfere

in the tuning and evaluation process.
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Conclusions

In this thesis a methodology for protein annotation prediction have been implemented

employing diverse tools such as statistical contact potentials, continuous wavelet trans-

form, hidden Markov models, dynamic clustering and support vector machine classifiers.

The pairwise statistical contact potentials are representations of the interactions of the

amino acids in a set of related proteins by its structural configurations. This information

is useful for inferring the function of a protein from its tertiary structure because they

model the geometry of the proteins. On the other hand, there are a lot of proteins that

contain only the primary structure information. In this context, the proposed method

uses the structural information comprised on the contact potentials and then describe

the interactions of the arrangement of amino acid sequences. With the aim to decode the

data given by this representation, the wavelet transform allows the identification of pat-

terns localized at specific positions. Thus, motifs that are relevant in the conformation

of the protein structures can be easily identified. The wavelet method leads a powerful

tool for protein motif identification. In this thesis the focus of the problem is the char-

acterization of proteins and the prediction of them in different terms using the motifs

(profiles) as features. However, this is an starting point, applications of this method can

be extended to many problems including: motif-domain detection, structural prediction,

even hints of folding. All of them are a conception of future work.

The evaluation of the method is carried out on a set of subcellular localizations on

Gram-Negative bacterial proteins. Results suggest the method as a powerful tool for the

characterization of proteins. Also, each subcellular localization has an specific contact

potential which can be inferred as a correlation between the structural information

and the localization by the motifs on the sequences. Specifically, for the five major

subcellular localizations in Gram-negative bacterial proteins, the wavelet method shows
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the best performance prediction by decreasing the false negative rate whereas the false

positive rate is maintained.

One of the main advantages of the method is its capability to find correlated and vari-

able length motifs which usually give clues about the protein function. The variability

on length of the subsequences and the posterior alignment by CLUSTAL allows the

possibility to merge similar motifs even if the motif-sequences have gaps or mutations.

For instance, a sequence of length 20 is found in some protein and a couple of motifs of

length 5 are found in another protein, if the small sequences have a correspondence on

the big sequence, they are merged, then the profile HMM model the motif as a big motif

with an enrichment in the positions in which the small sequences match with the big

one. Also, profiles HMM are a powerful tool to represent motifs in divergent sequences.

In conclusion, The proposed contact-potential characterization is an alternative to the

classic models based on the amino acid composition and physiochemical properties due

to the use of structural information from the potentials over primary protein structures.

The wavelet method, unlike Psortb, CELLO and SOSUIGramN, uses only one protein

characterization. Thus, in terms of prediction, an implementation of other representa-

tions such as physiochemical properties, amino acid composition, or homology modules

as blast can be used in order to improve the performance of the predictions.
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Appendix A: Wavelet Transform

8.1 Properties of the Continuous Wavelet Transform

From the chapter 4 equation 4.7 can be inferred that the CWT is a linear transformation,

characterized by the next properties.

Superposition Property Suppose x(t), y(t) in the euclidean space of L2(R) and k1

and k2 are constants. If the CWT of x(t) is wtx(s, τ) and the CWT of y(t) is wty(s, τ),

then the CWT of z(t) = k1x(t) + k2y(t) can be defined by:

First wtx(s, τ), wty(s, τ) and wtz(s, τ) are defined as:

wtx(s, τ) =
1√
s

∫ ∞

−∞
x(t)ψ∗(

t− τ

s
)dt (8.1)

wty(s, τ) =
1√
s

∫ ∞

−∞
y(t)ψ∗(

t− τ

s
)dt (8.2)

wtz(s, τ) =
1√
s

∫ ∞

−∞
z(t)ψ∗(

t− τ

s
)dt (8.3)

(8.4)

Then, replacing z(t) in wtz, we have:

wtz(s, τ) = 1√
s

∫∞
−∞[k1x(t) + k2y(t)]ψ∗( t−τs )dt

wtz(s, τ) = 1√
s

∫∞
−∞ k1x(t)ψ∗( t−τs )dt+ 1√

s

∫∞
−∞ k2y(t)ψ∗( t−τs )dt

Thus the expression is reduced to:

wtz(t) = k1wtx(t) + k2wty(t) (8.5)
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Which corresponds to the superposition property of the CWT.

Covariant under translation Suppose the CWT of x(t) is wtx(s, τ); then the CWT

of x(t− t0) is wtx(s, τ − t0) In order to demonstrate this property let’s:

x′(t) = x(t− t0), then: wtx′(s, τ) = 1√
s

∫∞
−∞ x(t− t0)ψ∗( t−τs )dt

and t′ = t− t0

wtx′(s, τ) = 1√
s

∫∞
−∞ x(t′)ψ∗( t

′+t0−τ
s )dt

Thus, the CWT of x(t− t0) is wtx(s, τ − t0). This means that the wavelet coefficients of

x(t − t0) can be obtained by translating the wavelet coefficients of x(t) along the time

axis with t0

Covariant under dilation Suppose the CWT of x(t) is wtx(s, τ), let x′(t) = x( ta),

then:

wtx′(s, τ) =
1√
s

∫ ∞

−∞
x(
t

a
)ψ∗(

t− τ

s
)dt (8.6)

let t′ = t
a ; then (8.6) can be expressed as:

wtx′(s, τ) =
1√
s

∫ ∞

−∞
x(t′)ψ∗(

at′ − τ

s
)d(at′) (8.7)

wtx′(s, τ) =
√
a√
s

∫ ∞

−∞
x(t′)ψ∗(

at′ − τ
a

s
a

)d(at′) =
√
awtx(

s

a
,
τ

a
) (8.8)

Equation 8.8 indicates that, when a signal is dilated by a, its corresponding wavelet

coefficients are also dilated by a along both the scale and time axes.

Moyal Principle Suppose x(t), y(t). If the CWT of x(t) is wtx(s, τ) and the CWT of

y(t) is wty(s, τ); that is,

wtx(s, τ) = 〈x(t), ψs,τ (t)〉 (8.9)

wty(s, τ) = 〈y(t), ψs,τ (t)〉 (8.10)

Then,
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〈wtx(s, τ), wty(s, τ)〉 = Cψ 〈x(t), y(t)〉 (8.11)

where Cψ =
∫∞
0

|Ψ(f)|2
f df is the admissibility condition of the wavelet.

8.2 Mother Wavelets Commonly Used

This section introduces several commonly used mother wavelets for performing the con-

tinuous wavelet transform analysis. Mexican Hat Wavelets The mexican hat wavelet

is a normalized, second derivative of a Gaussian function, defined as [63, 66, 68]:

ψ(t) =
1√

2πσ3

(
1− σ2

t2

)
e
−t2

2σ2 (8.12)

σ is a width constant.

The Mexican hat wavelet is frequently called the Ricker wavelet in geophysics, where

frequently is used to model seismic data [65, 67].

Morlet Wavelet The Morlet wavelet is defined as [65, 67]

ψM (t) =
1√
πfb

ej2πfcte
− t2

fb (8.13)

where fb is the bandwidth parameter and fc denotes the wavelet center frequency.

Morlet wavelet Mexican Hat wavelet Gaussian 8 wavelet

Figure 8.1: Different wavelets used on the continuous wavelet decomposition, Morlet,
Mexican Hat and Gaussian wavelets

The Morlet wavelet has been widely used for identifying transient components embedded

in a signal, for example, bearing defect-induced vibration [65, 67].
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Gaussian wavelet

The Gaussian function is expressed by (Teolis 1998):

f(t) = e−jte−t
2

(8.14)

If the Nth derivative of this function is taken the wavelet can be expressed as:

ψG = CN
d(N)f(t)
dtN

(8.15)

Where N is an integer parameter (≥ 1) and denotes the order of the wavelet, and CN

is a constant introduced to ensure that ||f (N)(t)||2 = 1. The Gaussian wavelet is often

used for characterizing singularity that exists in a signal [63, 65, 67]). In the Figure 8.1

are illustrated the wavelet forms of some of the common used mother wavelets.
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Appendix B: List of Pairwise

Contact Potentials

Potential Description

TANS760101 Statistical contact potential derived from 25 x-ray protein structures
TANS760102 Number of contacts between side chains derived from 25 x-ray protein structures
ROBB790102 Interaction energies derived from side chain contacts in the interiors of known protein
BRYS930101 Distance-dependent statistical potential (only energies of contacts within 0-5 Angstro
THOP960101 Mixed quasichemical and optimization-based protein contact potential
MIRL960101 Statistical potential derived by the maximization of the harmonic mean of Z scores
VENM980101 Statistical potential derived by the maximization of the perceptron criterion
BASU010101 Optimization-based potential derived by the modified perceptron criterion
MIYS850102 Quasichemical energy of transfer of amino acids from water to the protein environment
MIYS850103 Quasichemical energy of interactions in an average buried environment
MIYS960101 Quasichemical energy of transfer of amino acids from water to the protein environment
MIYS960102 Quasichemical energy of interactions in an average buried environment
MIYS960103 Number of contacts between side chains derived from 1168 x-ray protein structures
MIYS990106 Quasichemical energy of transfer of amino acids from water to the protein environment
MIYS990107 Quasichemical energy of interactions in an average buried environment
LIWA970101 Modified version of the Miyazawa-Jernigan transfer energy
KESO980101 Quasichemical transfer energy derived from interfacial regions of protein-protein compl
KESO980102 Quasichemical energy in an average protein environment derived from interfacial regions
MOOG990101 Quasichemical potential derived from interfacial regions of protein-protein complexes
BETM990101 Modified version of the Miyazawa-Jernigan transfer energy
TOBD000101 Optimization-derived potential obtained for small set of decoys
TOBD000102 Optimization-derived potential obtained for large set of decoys
PARB960101 Statistical contact potential derived by the quasichemical approximation
PARB960102 Modified version of the Miyazawa-Jernigan transfer energy
KOLA930101 Statistical potential derived by the quasichemical approximation
GODA950101 Quasichemical statistical potential derived from buried contacts
SKOJ970101 Statistical potential derived by the quasichemical approximation
SKOJ000101 Statistical quasichemical potential with the partially composition-corrected pair scale
SKOJ000102 Statistical quasichemical potential with the composition-corrected pair scale
BONM030101 Quasichemical statistical potential for the antiparallel orientation of interacting sid
BONM030102 Quasichemical statistical potential for the intermediate orientation of interacting sid
BONM030103 Quasichemical statistical potential for the parallel orientation of interacting side gr
BONM030104 Distances between centers of interacting side chains in the antiparallel orientation
BONM030105 Distances between centers of interacting side chains in the intermediate orientation
BONM030106 Distances between centers of interacting side chains in the parallel orientation
MICC010101 Optimization-derived potential
SIMK990101 Distance-dependent statistical potential (contacts within 0-5 Angstrooms)
SIMK990102 Distance-dependent statistical potential (contacts within 5-7.5 Angstrooms)
SIMK990103 Distance-dependent statistical potential (contacts within 7.5-10 Angstrooms)
SIMK990104 Distance-dependent statistical potential (contacts within 10-12 Angstrooms)
SIMK990105 Distance-dependent statistical potential (contacts longer than 12 Angstrooms)
ZHAC000101 Environment-dependent residue contact energies (rows = helix, cols = helix)
ZHAC000102 Environment-dependent residue contact energies (rows = helix, cols = strand)
ZHAC000103 Environment-dependent residue contact energies (rows = helix, cols = coil)
ZHAC000104 Environment-dependent residue contact energies (rows = strand, cols = strand)
ZHAC000105 Environment-dependent residue contact energies (rows = strand, cols = coil)
ZHAC000106 Environment-dependent residue contact energies (rows = coil, cols = coil)

Table 9.1: List of the 47 pairwise contact potentials from AAindex database
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[118] Alejandro A Schäffer, L Aravind, Thomas L Madden, Sergei Shavirin, John L

Spouge, Yuri I Wolf, Eugene V Koonin, and Stephen F Altschul. Improving the

accuracy of psi-blast protein database searches with composition-based statistics

and other refinements. Nucleic acids research, 29(14):2994–3005, 2001.

[119] Dan Xie, Ao Li, Minghui Wang, Zhewen Fan, and Huanqing Feng. Locsvmpsi: a

web server for subcellular localization of eukaryotic proteins using svm and profile

of psi-blast. Nucleic Acids Research, 33(suppl 2):W105–W110, 2005.
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