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Resumen

El objetivo de este trabajo es generalizar ideas básicas del álgebra lineal y la topología,
tales como trazas y puntos fijos, en un contexto categórico. Cada una de esas gener-
alizaciones tiene detrás objetos e ideas importantes, como el espectro de Thom y ho-
motropía estable. A lo largo de esta tesis, pretendemos conectar esas generalizaciones
por medio de la dualidad, para contar una historia desde enfoques tanto categóricos
como topológicos. Luego tratamos de ir más allá de esos temas y estudiamos temas dis-
tantes pero relacionados que nacieron como ejemplos particulares de la teoría abstracta,
por ejemplo, la categoría de homotropía estable (ejemplo de categoría monoidal), la du-
alidad de Atiyah (ejemplo de dualizabilidad) y el espectro de Thom (ejemplo de objeto
dualizable).

Palabras clave: Trazas, puntos fijos, Categorías monoidales, Homotopía estable, Spec-
tro de Thom, Teorema de punto fijo de Lefschetz, Dualidad de Atiyah, Topología de
cuerdas.
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Abstract

The objective of this work is to generalize basic ideas from linear algebra and topology,
such as traces and fixed points, into a categorical context. Each of those generalizations
has important objects and ideas behind, such as the Thom spectrum and stable homo-
topy phenomena. Throughout this thesis, we intend to connect those generalizations
by means of dualizability, in order to tell a story from both categorical and topological
approaches. We then try to go beyond those topics and we study distant but related
topics that were born as particular examples of the abstract theory, for instance, the
stable homotopy category (example of monoidal category), Atiyah duality (example of
dualizability), and the Thom spectrum (example of a dualizable object).

Keywords: Traces, Fixed points, Monoidal categories, Stable homotopy, Thom Spec-
tra, Lefschetz fixed-point theorem, Atiyah duality, String topology.
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What is this thesis about?

There are two basic ideas involved in this thesis: traces and fixed points. In this work,
the author intends to study the connection between them in various topological and
categorical aspects. Following that path, interesting things emerge such as categorical
dualizability, which aims to extend notions from linear algebra.

Fixed points are solutions of the equation f(x) = x for a map f : M → M . This can
be studied from an algebraic, analytical, or topological point of view. In this work, we
have decided to take a topological approach. Thus, in Chapter 1 we study intersection
theory and how it fits in the study of fixed points. From that perspective, the Lefschetz
number of a smooth map f : M → M emerges, denoted by L(f), which in some way
"counts" the number of fixed points. Throughout Chapter 1 we will develop some
refinements of the Lefschetz number that allow us to work with that invariant in a
suitable way. In addition, Lefschetz number formulas suggest a relation between fixed
points and traces.

In linear algebra one defines the trace of a square matrix as the sum of the diagonal ele-
ments. One can "describe" the trace in a more abstract way in terms of the categorical
structure of the category of vector spaces, namely the tensor product. This will help us,
in Chapter 2, to extend the notion of trace to any symmetric monoidal category which,
in turn, gives us the notion of dualizable objects in monoidal categories. This notion
of general trace in symmetric monoidal categories satisfies many properties, some of
which come from linear algebra and others are technical properties. Those properties
allow us to characterize and extend the notion of traces as a certain family of maps
which satisfies special properties, even, that abstraction does not require a category
with dualizable objects. We culminate Chapter 2. by showing how general traces are
related to categorical fixed points. That part of the thesis is full of technical concerns
which arise from theoretical computer science, to be precise recursion theory.

The first step in this generalization is to extend the context where we will work, that
is, symmetric monoidal categories. They can be thought of as a natural generalization
of the category of finite-dimensional vector spaces, that is, categories with a product

xiii
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that mimics the features of the tensor product in linear algebra. It is then natural to
ask what structures from linear algebra can be extended to symmetric monoidal cate-
gories. Dualizability is one of those ideas, this can be described in terms of evaluation
and coevaluation maps. The idea of this thesis is to study other examples and their
relationship with fixed points. The goal of Chapter 3 is to study Atiyah duality. It is
an example of dualizability in the stable homotopy category. Thus, we need to stop for
a while to motivate and construct the category of spectra which is a predecessor of the
stable homotopy category or HoSpect.

In Chapter 3, we also present an alternative proof of the Lefschetz-Hopf theorem. We
will show that in the stable homotopy category the trace of a smooth map f : M →M
withM a compact and closed manifold is the fixed point index of f . It requires to extend
dualizability in simpler categories such as Alexander duality and Spannier-Whitehead
duality in the category of smooth manifolds and spectra, respectively. As a result, we
get the Thom spectrum, denoted by M−TM , which is Atiyah-dual of the suspension
spectrum Σ∞M+. Thom spectrum is an important example of spectra and has many
connections with other topics like cobordism theory.

Another interesting subject related to Thom spectrum is the string topology, that
is, the study of the algebraic structure on the homology of the free loop space of a
smooth manifold. In Chapter 4, we start by studying the original ideas of the Chas
and Sullivan product. Then, we move to a more general context by using the tools
developed in Chapter 3. We will show how we can give to the Thom spectrum the
structure of symmetric ring spectrum. That structure is "pulled-back" to the evaluation
map ev : LM → M and it gives to the Thom spectrum LM−TM the structure of ring
symmetric spectrum. We can induce a product into H∗(LM), thanks to the product
structure in LM−TM , which coincides with the original ideas of Chas and Sullivan.

In the appendix of this work, we have decided to give a brief introduction to string dia-
grams. It is motivated, in Chapter 2, by studying freely generated monoidal categories,
because intuitively one-dimensional bordisms are just strings with certain relations.
Following this idea, we can use those diagrams to describe equations in any symmet-
ric monoidal category, that makes this theory more accessible and avoids complicated
proofs. Indeed, many of the proofs in Chapter 2 are made by deforming strings.

In conclusion, this thesis has the goal to generalize basic ideas from linear algebra and
topology, such as traces and fixed points, into a categorical context. Each of those
generalizations has important objects and ideas behind, such as the Thom spectrum
and stable homotopy phenomena. Throughout this thesis, we intend to connect those
generalizations by means of dualizability, in order to tell a story from both categorical
and topological approaches. Then, we try to go beyond those topics and we study
distant but related topics which were born as particular examples of the abstract theory,
for instance, the stable homotopy category (example of monoidal category), Atiyah
duality (example of dualizability), and the Thom spectrum (example of a dualizable
object).



Chapter 1
Lefschetz fixed point theorem

In this chapter we will give a brief introduction to fixed point theory for manifolds.
We will introduce the necessary tools in order to understand this theory, always with
a topological point of view. As a second step we will provide a short introduction to
intersection theory, the perspective used to study fixed points. Finally, we will present
the main theorem of this chapter, Lefschetz fixed point theorem, which will be proved
in Chapter 3 using the tools developed in a more abstract language in Chapter 2.

Let f : M → M be a smooth map on a compact and oriented manifold M . We want
to study the solutions to the equation f(x) = x. From a geometric point of view, we
can think of the set of fixed points as the pairs (x, y) ∈ M ×M that belong to the
intersection of the graph of f , denoted by Gf , and the diagonal submanifold denoted
by ∆. We may use intersection theory to count fixed points. We will do this with an
invariant called the Lefschetz number.

We will assume that the reader is familiar with basic concepts in differential topol-
ogy such as homology and cohomology, Poincaré duality, and tools of integration over
manifolds. Good and classical references include [31], [10], [30].

All the manifolds that we will consider in this chapter are smooth and oriented mani-
folds, unless otherwise stated.

1.1 Preliminaries

Let us start with a review of orientation and transversality. These definitions will be
fundamental in our study of intersection theory.

Let V be a vector space of dimension n, {v1, · · · , vn} and {w1, · · · , wn} be two ordered
basis for V . Let A : V → V be the linear map defined by A(wi) = vi for i = 1, · · · , n.

1



2 Chapter 1. Lefschetz fixed point theorem

We say that these bases are equivalently oriented if det(A) > 0, otherwise they have
opposite orientations. This determines an equivalence relation in the set of ordered
basis of V . An orientation of V is a choice of one oriented class positive or negative.

Definition 1. Let M be a manifold, we say M is orientable if there is a smooth choice
of orientations for all tangent spaces TxM for x ∈M .

Let V1 and V2 be two oriented vector spaces, the direct sum V1 ⊕ V2 is also an ori-
ented vector space with an orientation defined as follows. If {v1, · · · , vn} is a posi-
tively oriented basis for V1 and {w1, · · · , wm} is a positively oriented basis for V2 then
{v1, · · · , vn, w1, · · · , wm} is a positive oriented basis for V1 ⊕ V2.

This allows us to induce an orientation inM×N , the product of two oriented manifolds
M and N . For (x, y) ∈ M × N , we have a linear isomorphism T(x,y)(M × N) =
TxM × TyN ∼= TxM ⊕ TyN , thus an orientation on M × N is obtained from the
orientation of M and N by taking the direct sum orientation of the oriented tangent
spaces TxM and TyN .

Example. Some examples of oriented manifolds include:
• The circle is an oriented manifold of dimension 1.
• n-dimensional spheres Sn are n-dimensional orientable manifolds.
• Surfaces with holes are examples of oriented manifolds.

Non-oriented manifolds also are interesting in the theory of differentiable manifolds,
but in this work non-orientable manifolds will not be considered. A great introduction
to non-orientable manifolds is [10].

Definition 2. Let N be a submanifold of M . We say that the map f : X → M is
transversal to N , denoted by f t N , if for each x ∈ f−1(N) such that y = f(x),

im(dxf) + TyN = TyM. (1.1)

This means that at each point in im(f) ∩ N , the vectors tangent to im(f) and the
vectors tangent to N together span the ambient tangent space.

Let S be a closed submanifold of dimension k of a compact manifold M of dimension
n, we can define a functional from the k-cohomology of M to the real line.

Š :Hk(M)→ R

[α] 7→
∫
S

α,

and by Poincaré’s duality we get an isomorphism between (Hk(M))∨ and Hn−k(M), the
dual of the k-cohomology of M and the complementary homology of M , respectively.
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The Poincaré dual of S in M is the cohomology class ηS ∈ Hn−k(M) uniquely
determined by the equality ∫

S

α =

∫
M

α ∧ ηS, (1.2)

where α is any closed form overM and ηS correspond to Š under the Poincaré’s duality
isomorphism.

A good reference is the famous book of V. Guillemin and A. Pollack, see [18].

Definition 3. Let S ⊂M be a submanifold of M . The normal bundle of S in M is
the vector bundle over S defined by

N(S) :=
(TM)|S
TS

.

Now let S ⊂M be a submanifold of M . Then a natural question emerges: What does
M look like “near” S? The famous tubular neighborhood theorem claims that S always
admits a “tubular” neighborhood inside M . Moreover, the tubular neighborhood looks
like a neighborhood of S inside its “normal bundle”.

Theorem 1.1. Let S ⊂ M be a smooth submanifold. Then there exists a diffeomor-
phism from an open neighborhood of S in N(S) onto an open neighborhood of S in
M .

An example of a tubular neighborhood is described in the next figure.

Figure 1.1: Tubular neighborhood

As a special case we will consider a manifold embedded in an euclidean space, that
is possible thanks to Whitney’s embedding theorems. In this case we can describe in
detail tubular neighborhoods which we will call ε-neigborhoods.

Theorem 1.2. Let ι : M → RK be a smooth compact submanifold. Then there exists a
positive number ε such that, if we let Mε be the ε-neighborhood of X,

Mε := {y ∈ Rn : |y − x| ≤ ε for some x ∈M}, (1.3)

then
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1. For each y ∈Mε possesses a unique closest point πε(y) ∈M .

2. The map πε : Mε →M is a submersion.

πε is defined by πε(y) = π◦ϕ−1(y) where π : N(M)→M is the vector bundle projection
and ϕ : N(M)→ Rn is given by ϕ(x, v) = x+ v.

The following figure helps us visualize ε-neighborhoods.

Figure 1.2: ε-Tubular neighborhood.

The following definition is of extremely importance in Chapter 3,
Definition 4. The Thom space Th(V ) of a real vector bundle π : V → X over a
topological space X is the topological space obtained by first forming the disk bundle
D(V ) of (unit) disks in the fibers of V (with respect to a metric given by any choice of
orthogonal structure) and then identifying the boundaries of all the disks to a point, i.e.
forming the quotient topological space by the unit sphere bundle S(V )

Th(V) := D(V )/S(V ). (1.4)

Intuitively, the Thom space are those collection of vectors in V with norm less than 1
and we collapse to a point those vectors with norm equals to 1.

We will also denote the Thom space of a bundle V →M as MV .

1.2 Intersection theory

As we mentioned in the previous section, intersection theory will help us to study fixed
points. The results presented here are a brief summary of a long theory.
Definition 5. Let S, L be submanifolds of M such that S, L,M are oriented and com-
pact. If S intersects L transversally, we denote it by S t L. Moreover, if dim(S) +
dim(L) = dim(M) then the intersection number is

Int(S, L) =

∫
M

ηS ∧ ηL,

where ηS and ηL are the Poincaré’s duals of S and L, respectively.
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When S t L then the Poincaré’s duals ηS and ηL obey the following relation

ηS∩L = ηS ∧ ηL. (1.5)

The above relation does not require a lot of computation, only requires writing the
Poincaré’s dual in term of the Thom class and its relation with the Whitney sum of
vector bundles. For more details, you can check Guillemin’s book [18].

InsideM×M we have two submanifolds: the diagonal ∆ and the graph Gf , which have
complementary dimension. We can then try to take the intersection number between
Gf and ∆. But we warn that Int(∆, Gf ) has to be interpreted carefully: it really
denotes a fixed point counted with multiplicities.

M

M

∆(M)

Gf

Figure 1.3: Intersection of Gf and ∆.

Definition 6. Let M be a compact and oriented manifold and f : M → M a smooth
map. Then the Lefschetz number of f is

L(f) =

∫
M×M

η∆ ∧ ηGf ∈ R. (1.6)

The transversality condition is important in the above definition, because the right-
hand side of Equation 1.6 is, in fact, an intersection number. Note that, we can deform
the map f in such a way that Gf is always transverse to ∆(M).

Let us see a particular description of η∆ the Poincaré’s dual of ∆. That will help us to
have more control over the formulas that will appear related to intersection theory.

Lemma 1.3. Let {α1, · · · , αn} a graded basis for H∗(M) and {β1, · · · , βn} the respec-

tive Poincaré dual basis, i.e. the bases must satisfy the equality
∫
M

βi ∧ αj = δij. Then

η∆ =
n∑
i=1

(−1)|αi|π∗1(αi) ∧ π∗2(βi), (1.7)

where πi : M ×M →M for i = 1, 2 are the natural projections.
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Proof. For any closed n-form ω we want to prove the following formula∫
∆

ω =

∫
M×M

ω ∧ η∆. (1.8)

We can write any closed n-form ω ∈ Ω(M ×M) in terms of the basis as follows

ω =
n∑

k,j=1

π∗1(βk) ∧ π∗2(αj), (1.9)

For fixed k, j = 1, · · · , n we can consider the form

ωk,j = π∗1(βk) ∧ π∗2(αj), (1.10)

Let us calculate the left hand side of Equation 1.8∫
∆

ωk,j =

∫
M

ϕ∗(ωk,j) =

∫
M

ϕ∗(π∗1(βk) ∧ π∗2(αj))

=

∫
M

(π1 ◦ ϕ)∗(βk) ∧ (π2 ◦ ϕ)∗(αj)

=

∫
M

βk ∧ αj = (−1)|αj ||βk|δkj,

and the right hand side∫
M×M

ωk,j ∧ η∆ =
∑
i

(−1)|αi|
∫
M×M

π∗1(βk) ∧ π∗2(αj) ∧ π∗1(αi) ∧ π∗2(βi)

=
∑
i

(−1)|αi|+|αi||αj |
∫
M×M

π∗1(βk ∧ αi) ∧ π∗2(αj ∧ βi)

=
∑
i

(−1)|αi|+|αi||αj |
(∫

M

βk ∧ αi
)(∫

M

αj ∧ βi
)

=
∑
i

(−1)|αi|+|αi||αj |+|αi||βk|δkiδji

= (−1)|αj |+|αj ||αj |+|αj ||βk|δkj

= (−1)|αj ||βk|δkj.

Thus, adding over k, j = 1, · · · , n we get the equality 1.8.

With the above description of the Poincaré dual of the diagonal, we can calculate the
Lefschetz number only from the information provided by its cohomology (homology)
regardless of the choice of the coefficients. We get the following theorem.



1.2. Intersection theory 7

Theorem 1.4. Let M be a compact and oriented manifold and f : M → M a smooth
map. Then

L(f) =
∑
i≥0

(−1)itr(f ∗ : H i(M)→ H i(M)). (1.11)

Proof. Write the linear map f ∗ : H i(M)→ H i(M) in the form

f ∗(βj) =
n∑
i=1

λijβi, (1.12)

where {β1, · · · , βn} is a basis defined as in the Lemma 1.3. By replacing Formula 1.7
in 1.6 we get

L(f) =

∫
M×M

η∆ ∧ ηG(f) =

∫
G(f)

η∆ =

∫
M

F ∗(η∆)

=
∑
i,j

(−1)|αi|
∫
M

F ∗(π∗1(αi) ∧ π∗2(βj))

=
∑
i,j

(−1)|αi|
∫
M

((π1 ◦ F )∗(αi) ∧ (π2 ◦ F )∗(βj)

=
∑
i,j

(−1)|αi|
∫
M

(αi ∧ f ∗(βj))

=
∑
i,j

(−1)|αi|
∫
M

λijαi ∧ βj

=
∑
i,j

(−1)|αi|λijβi(αi)

=
∑
i

(−1)|αi|λii,

where F : M → G(f) is a diffeomorphism defined by F (x) = (x, f(x)).

Lemma 1.5. Let M be a compact and oriented manifold and η∆ the Poincaré dual of
the diagonal. Then

χ(M) =

∫
M

η∆ ∧ η∆. (1.13)



8 Chapter 1. Lefschetz fixed point theorem

Proof. Let us calculate the right hand side. By the Formula 1.7 we get∫
M×M

η∆ ∧ η∆ =

∫
∆

η∆ =

∫
M

ϕ∗(η∆)

=
∑
i

(−1)|αi|
∫
M

ϕ∗(π∗1(αi) ∧ π∗2(βi)

=
∑
i

(−1)|αi|
∫
M

((π1 ◦ ϕ)∗(αi) ∧ (π2 ◦ ϕ)∗(βi)

=
∑
i

(−1)|αi|
∫
M

(αi ∧ βi)

=
∑
i

(−1)|αi|
∫
M

αi ∧ βi

=
∑
l

(−1)ldim(H l(M)) = χ(M),

where ϕ : M → ∆ is the diffeomorphism defined by ϕ(x) = (x, x).

A priori from Formulas 1.6 and 1.11 it is not clear why the Lefschetz number is an integer
number. The previous lemma tells us that when the self-map is just the identity then
we get an important invariant, the Euler’s characteristic χ(M), which is a very famous
integer number. A natural question emerges: is the Lefschetz number always an integer
number? The answer to that question is affirmative. We will see why this is the case
using the following identification.

Definition 7. Let M be an oriented and compact manifold of dimension 0 i.e. M =
{p1, · · · , pn} is a finite set of points. An orientation in each point pi is a choice of +1
or −1 and will be denoted by sgn(pi). The cardinality of M denoted by #(M) is the
number of points counted with sign, that is

#(M) =
n∑
i=1

sgn(pi). (1.14)

Lemma 1.6. Let S and L be compact and oriented submanifolds of M such that their
intersection is transversal. If dim(S) + dim(L) = dim(M), then

Int(S, L) = #(S ∩ L). (1.15)

Proof. Because S and L are transverses we get that S ∩ L is a compact and oriented
submanifolds of zero dimension. Then it is a finite set of points with orientation and
must hold ∫

M

ηS∩L = #(S ∩ L). (1.16)
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By the identification 1.5 and Definition 7 we get

Int(S, L) =

∫
M

ηS ∧ ηL =

∫
M

ηS∩L = #(S ∩ L).

The last equality is given by the following lemma.

Lemma 1.7. Let S be a submanifold of dimension zero of M . Suppose that S and M
are compact and oriented. Then

#(S) =

∫
M

ηS. (1.17)

Proof. Let S = {p1, · · · pm} be a finite set of points with orientation where the orienta-
tion of each point pi assigns a sign sign(pi) ∈ {+1,−1}.
There are open sets {Ui}mi=1 of M pairwise disjoint such that pi ∈ Ui ∼= Rn. And Let ηi
be differential forms in Ωn

c (Ui) for i = 1, · · · ,m such that∫
Ui

ηi = sign(pi). (1.18)

Then η =
∑
i

ηi is a n-form over M . Thus, we get

∫
M

η =
∑
i

∫
Ui

ηi =
∑
i

sign(pi) = #(S). (1.19)

We affirm that the Poincaré’s dual of S is η, indeed we need to prove the following
equality ∫

S

α =

∫
M

α ∧ η, (1.20)

for α any closed form of degree zero. The closed forms of degree zero are the locally
constant functions, then α = f such that f |Ui is constant for all i = 1, · · · ,m. We
calculate,∫

M

f ∧ η =
∑
i

∫
M

f ∧ ηi =
∑
i

∫
Ui

f ∧ ηi =
∑
i

f(pi)sign(pi) =

∫
S

f =

∫
S

α.

By the previous identification we get that the Lefschetz number is an integer number,
because it is the intersection number between ∆ and Gf submanifolds of M ×M .

The next theorem is very relevant in this theory because it uses the Lefschetz number
to say when a self-map has fixed points. It is known as Lefschetz fixed point theorem.
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Theorem 1.8. Let M be a compact and oriented manifold and f : M → M a contin-
uous map. If L(f) 6= 0 then f has at least a fixed point.

There is a classical proof of this result using simplicial approximation together with For-
mula 1.11 the result follows. It is also a consequence from the Lefschetz-Hopf theorem,
in Chapter 3 we are going to prove that theorem by applying abstracts results.

Example 1. Let X = {p1, ..., pn} be a finite set of points and f : X → X a function.
This function induces a R-linear transformation

f ∗ : Maps(X,R)→ Maps(X,R)

g 7→ f ∗(g) = g ◦ f,

where Maps(X,R) is the vector space of functions from X to R, it coincides with the
0th cohomology of X, H0(X,R) = Maps(X,R).
The set β = {δ1, ..., δn} forms a basis for Maps(X,R), where δi : X → R is defined by
δi(pj) = δij, for all i = 1, ..., n. Let us consider A = [f ∗]β = [aij], the associated matrix
to f ∗, where aij = δi(f(pj)). Henceforth,

tr(f ∗) =
n∑
i=1

aii.

Since aii = δi(f(pi)), if pi is a fixed point of f we have aii = 1, and aii = 0 otherwise.
Thus, tr(f ∗) counts the number of fixed points of f .

The following examples show how to calculate the Lefschetz number from Formula 1.11.

Example 2. Let X be the figure eight (see Figure 1.4). Let f : X → X be a map which
is defined by the loops: f#(α) = α2 and f#(β) = β−1. The function f has two fixed
points x0 and y0.

In zero degree we get tr(f∗0) = 1 because the induced linear map f∗0 : H0(X)→ H0(X)
is the identity. In dimension one, the integral homology of X is

H1(X) = Z⊕ Z ∼= 〈α, β〉.

Therefore,

f∗1 =

(
2 0
0 −1

)
,

L(f) = 1− (2− 1) = 0.

In the last example the Lefschetz number is zero but it has two fixed points. It is an
example where the reciprocal of the Lefschetz fixed point theorem is not true.
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x0

y0

α

β

Figure 1.4: Eight figure.

Example 3. Consider the surface of genus three Σ3 given by Figure 1.5. Let f : Σ3 →
Σ3 be the map defined to be the 180 degree rotation about a vertical axis passing through
the central hole. Since f has no fixed points, we should have

L(f) =
2∑
i=0

(−1)itr (f∗i : Hi (Σ3)→ Hi (Σ3)) = 0.

At degree 0 the induced map f∗0 is the identity, as always for a path-connected space, so
this contributes 1 to L(f). At degree 1, it induces a map f∗1 : Z⊕ Z⊕ Z→ Z⊕ Z⊕ Z
defined by the matrix

f∗1 =


0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

 ,

Thus, it contributes −2 in L(f). That is because there is only one way to send vertical
loops α1 7→ α3, α2 7→ α2 and α3 7→ α1, in a similar way are sent the horizontal loops.

Figure 1.5: Genus 3 surface.
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In degree 2, f∗2 : Z → Z contributes 1 in L(f) because the map f preserve the orien-
tation, it thanks to the right-hand rule, see figure below. Then, the Lefschetz number
is:

L(f) = 1− 2 + 1 = 0.

The next lemma is a local characterization of transversal intersection.

Lemma 1.9. Let f : M →M be a smooth map and p ∈M a fixed point. Then Gf t ∆
at p ∈M if and only if dpf − I : TpM → TpM is a linear isomorphism.

Proof. If Gf t ∆ at q = (p, p), then

im
(
d(p,p)(idM × f)

)
+ T(p,p)∆ = T(p,p)(M ×M), (1.21)

that can be written as

im(I × dxf) + T(p,p)∆ = TpM × TpM. (1.22)

Note that the subspaces im(I×dxf) and T(p,p)∆ have the same dimension inside TpM×
TpM . Therefore, we get the next quality

im(I × dxf)⊕ T(p,p)∆ = TpM × TpM, (1.23)

That is equivalent to im(I × dxf) ∩ T(p,p)∆ = 0. Then, there are not non-zero vectors
such that dpf has no fixed points. Thus, we get

ker(dpf − I) = 0.

It is dpf−I is an injective map between vector spaces of the same dimension, and hence
it is an isomorphism.

Proposition 1.10. With the conditions presented in the previous lemma, the orien-
tation number of q ∈ G(f) t ∆ is in fact the sign of the determinant of the linear
transformation dpf − I.

Proof. Let {v1, · · · , vk} be a linear basis for TpM . Then {v1 × v1, · · · , vk × vk} and
{v1×dpf(v1), · · · , vk×dpf(vk)} are bases for T(p,p)∆ and im(I×dpf) respectively. The
set

C = {v1 × v1, · · · , vk × vk, v1 × dpf(v1), · · · , vk × dpf(vk)}

forms a basis for TpM × TpM ∼= T(p,p)(M ×M). We can represent the transformation
dpf − I using this basis as the following matrix

v1 · · · 0 v1 · · · 0
... . . . ...

... . . . ...
0 · · · vk 0 · · · vk
v1 · · · 0 dpf(v1) · · · 0
... . . . ...

... . . . ...
0 · · · vk 0 · · · dpf(vk)


,
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applying elementary matrix operations to the previous matrix we get

v1 · · · 0 v1 · · · 0
... . . . ...

... . . . ...
0 · · · vk 0 · · · vk

dpf(v1)− v1 · · · 0

0
... . . . ...
0 · · · dpf(vk)− vk


.

Hence, the above basis is positively oriented in the product M ×M if and only if the
isomorphism dpf − I preserves the orientation.

The following is a local characterization of Lefschetz number in term of the fixed points.

Definition 8. Let x ∈M be a fixed point of the map f : M →M . The local Lefschetz
number of f at x, denoted by Lx(f), is defined to be the sign of det(dxf − I).

Proposition 1.11. Let M be a compact and oriented manifold, and f : M →M such
that Gf t ∆. Then

L(f) =
∑
f(x)=x

Lx(f). (1.24)

Proof. From definition we know the Lefschetz number is the intersection number be-
tween ∆ and Gf . Hence, we get

L(f) =
∑
f(p)=p

sgn(p),

where sgn(p) is the orientation number as in Lemma 1.7. The result follows from
Proposition 1.10.

We can consider another approach to compute the Lefschetz number. This point of
view is studying zeros of vector fields. Recall that a vector field is a smooth asignment
that correspond to each point p a tangent vector in TpM .

Definition 9. Let V be a vector field over M . The image of V is

I(V ) = {v ∈ TpM : v = V (p) for some p ∈M}, (1.25)

which is a submanifold of TM . In fact I(V ) ∼= M .

Lemma 1.12. Let N(∆) be the normal bundle of the diagonal in M ×M . Then there
is a diffeomorphism of vector bundles N(∆) ∼= TM .
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Proof. Take (p, p) ∈ ∆ and consider the following commutative diagram

0 T(p,p)∆ TpM × TpM N(p,p)(∆) 0

0 TpM T(p,p)(M ×M) TpM 0

ι

ϕ−1 id

δp

where ι : T(p,p)∆→ TpM × TpM is defined as ι(v, v) = (v, v), the map
δ : TpM → T(p,p)(M ×M) is defined by δ(v) = (v, v), and ϕ is the canonical linear
isomorphism between M and its diagonal induced at the tangent space level defined for
any vector v ∈ TpM as ϕ(v) = (v, v).
Those horizontal exact sequences have the same cokernel. Thus, we can conclude
N(p,p)(∆) ∼= TpM for all p ∈ M . This previous fact, together with the homomorphism
of vector bundles

τ : TM → N(∆)

defined by τ(x, v) = ((x, x), (−v, v)) for (x, v) ∈ TM and v ∈ TxM , allow us to conclude
that the vector bundles TM and N(∆) are isomorphic.

Let U be an open subset of M ×M such that U ∼= N(∆), i.e. U is a tubular neighbor-
hood. Let φ : U → TM be the isomorphism between the tubular neighborhood and the
tangent bundle given by the composition between the isomorphism ψ : U ∼= N(∆) and
the isomorphism ϕ : N(∆)→ TM in the above lemma. Figure 1.6 helps us understand
this situation.

−→
ϕ

M

M

0M

TM

U

Figure 1.6: Tubular neighborhood of ∆.

Intuitively, we can transfer information of fixed points inside the tubular neighborhood
to vector fields over M . Fixed points are in fact intersection points, and zeros of vector
fields are also intersection points between sections in the tangent bundle and the zero
section. The bridge between them is the tubular neighborhood ϕ : U → TM .
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Theorem 1.13. (Poincaré-Hopf index theorem) LetM be an oriented and compact
manifold, and V a vector field overM such that I(V ) t I(0), i.e, the image of the vector
field intersects transversally the zero section, then

χ(M) =
∑

V (p)=0

indp(V ). (1.26)

Proof. See [18].

The following figure shows an idea of the isomorphism ϕ.

−→
ϕ

M

M

0M

TM

Figure 1.7: Poincaré-Hopf

However, There is a classical version of Formula 1.26. For f : M →M a self map with
M an oriented and compact n-manifold with discrete set of fixed points.

Definition 10. Let M , N be compact manifolds with the same dimension and f : M →
N a smooth map. If y ∈ Y is a regular value of f , the degree of f at y is given by

degy(f) =
∑

x∈f−1(Y )

sgn(det(dxf)).

It is not hard to see that the degree of a map does not depend on the choice of regular
value, thus we can define a global degree denoted by deg(f). Moreover, this degree is
a homotopy invariant; that is, if f is homotopic to g then deg(f) = deg(g).

If we consider any self map f : Sn → Sn of spheres, we can define an equivalent notion
of degree as follows: first we can induce an homology homomorphism f∗ : H̃n(Sn) →
H̃n(Sn), which is a map f∗ : Z→ Z. The degree is given by f∗(αn) = deg(f)αn, where
αn is the fundamental class of H̃n(Sn).

Using this formulation of degree we can give an equivalent notion of index. We will
refer to both as index, the context will help us to differentiate each one.
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Let x ∈M be a fixed point of f , then there exists a (n−1)-sphere Sx around x which is
approximately mapped to itself by f . Thus, the restriction of f to Sx is f |Sx : Sx → Sx,
a self map of spheres. Hence, we get the following definition.

Definition 11. Let M be a closed smooth n-manifold and f : M → M a map with a
discrete (hence finite) set of fixed points. The fixed-point index is the sum∑

f(x)=x

deg(f |Sx),

over all fixed points of f .

1.3 Lefzschet number and trace

In the previous section, we defined an invariant purely in a topological way. That admits
many descriptions, but one, Formula 1.11 in Theorem 1.4 tells us that the Lefschetz
number of any map f : M →M is the alternating sum of the trace of the map induced
at the cohomology level.

In Example 1, we found that for a map f : X → X with X a finite set, we can
find the Lefschetz number just applying a functor which sends f to the linear map
f ∗ : Maps(X,R)→ Maps(X,R). Now, in the world of linear maps we can calculate the
trace of f ∗ and we get

tr(f ∗) = Number of fixed points of f. (1.27)

Following this idea, taking cohomology generalizes the idea of the functor Maps(−,R).
In fact, it is the result of cohomology at the zero dimensional level. Now, If we consider a
smooth map f : M →M , withM be a compact and oriented manifold, we can apply the
cohomology functor denoted by H(−). Thus, we get a linear map f ∗ : H(M)→ H(M)
and we can calculate its trace. H(M) is a graded vector space, commonly written as⊕
i≥0

H i(M), and its trace is the sum of the alternating trace in each degree. The sign

of each degree is not a convention. The sign comes from the sign in the symmetric
condition V ⊗W → W ⊗ V in the vector space level is defined by the formula:

γV,W : v ⊗ w 7→ (−1)|v||w|w ⊗ v. (1.28)

We can conclude that Formula 1.11 relates the trace of f ∗ : H(X) → H(X) and the
number of fixed points of f counted with multiplicity, in other words trace and number
of fixed points (with multiplicity) are the same thing. That is

tr(f ∗) =
∑
i≥0

(−1)itr(f ∗i ), (1.29)
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In summary, we have the following:

L(f) = tr(H(f)), (1.30)

where we just replaced f ∗ = H(f), that represents the induced linear map at cohomol-
ogy.

In the next chapter we will give an introduction to this categorical language. Let us
stop for a second and consider the situation in which for a smooth map f : M → M
we may find the trace, denoted by tr(f). This trace has the interesting property of
commutativity with the homology functor H. In that situation, the Lefschetz number
is

L(f) = H(tr(f)). (1.31)

That is the starting point of this work, we will see in the following chapter that the trace
can be defined in a more general context. That connection is beyond topological spaces
or even from a set-theoretic environment. We are interested in developing a categorical
framework where we can conclude some of the results presented in this chapter but
from a more abstract point of view.



Chapter 2
General trace and fixed point operator

In this chapter we will introduce some motivations towards the concept of general traces
in any symmetric monoidal categories and its relation with fixed points. Thanks to the
work of Dold and Puppe, (see [2]), about the theory of dualizable objects in monoidal
categories, we can extend the notion of trace to monoidal categories. As an important
pedagogical ingredient, we will discuss some examples where traces give us information
about fixed points, in special, the stable homotopy category. Historically, it was the
category in which Dold and Puppe worked motivating the study of general trace, and
it will serve as the starting point of Chapter 3. Finally, we will see a relation between
general trace and fixed point operator, independently found by Hyland and Hasegawa,
see [20] and [?], respectively.

Let us begin by recalling some facts of linear algebra. Let V be a finite dimensional
vector space over a characteristic zero field k. We can define the trace of a linear map
f : V → V as the following composition

k V ⊗ V ∗ V ⊗ V ∗ V ∗ ⊗ V k,
η

tr(f)

f⊗idV ∗ γ ε

where V ∗ is the dual vector space of V , η is the co-evaluation map, ε is the evaluation
map and γ is the canonical isomorphism between V ⊗ V ∗ and V ∗ ⊗ V . Let {v1, ..., vn}
be a basis for V and {v∗1, · · · , v∗n} its dual basis defined by v∗j (vi) = δij, with δi,j being
the Kronecker delta. We can write the evaluation and co-evaluation maps in terms of
the bases as follows

η(1) =
n∑
i=1

vi ⊗ v∗i , ε (vj ⊗ v∗i ) = v∗i (vj). (2.1)

18
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η extends by linearlity to any r ∈ k, so it is only necessary to define what happens to
1. The trace in terms of these bases is the following composition

1
∑
i

vi ⊗ v∗i
∑
i

aijvj ⊗ v∗i
∑
i

aijv
∗
i ⊗ vj

∑
i

aii,

tr(f)

η f⊗idV ∗ γ ε

where aij ∈ k are the coefficients of the matrix representing f , i.e., f(vi) =
∑n

j=1 aijvj
for all i = 1, · · · , n. This notion of trace allows us to recover the classical notion of
trace as the sum of the diagonal elements of a square matrix. Therefore, the previous
composition is extremely important because with it in mind we can extend the notion
of trace to a more general context, where the classical notion of trace as a sum makes
no sense.

An objective of this chapter is to develop the abstract theory behind the general trace
and show, with illustrative examples, its relation with fixed points. That was an idea
from Hasegawa in [19] and Hyland in [?] who independently discovered the abstract
relation between traces and fixed points. In particular, they discovered Theorem 2.23
which we will prove at the end of this chapter.

The idea of Hasegawa was to imitate the notion of feedback, such as in the analysis
with the use of contractive maps where we can reproduce fixed points with iterative
composition. Let us consider f : A ×X → X, the string diagram that represents the
map f is given by

A X

X.

f
�� ��

��

This map must satisfies the property that the X input and output have been “fed back
into each other” somehow.

A

Xf
�� ��

OO
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We can decompose the above string diagram in short pieces which together bring us
the feedback diagram:

A

����

f

����
OOOO

OOOO

idA ⊗ η

f ⊗ idX∗

ε

Note that the levels of each diagram correspond to the individual functions that we are
composing. Using the description presented in the Appendix A, we can write the feed
back with a composition of morphism:

ε ◦ (f ⊗ idX∗) ◦ (idA ⊗ η) : A→ 1. (2.2)

We must pay attention to this composite. We will come back to this later in this
chapter when the notion of trace is defined. That is because with suitable topological
modifications of the above diagram we can recover the notion of trace. Sometimes we
will write identity maps as objects, for example Equation (2.2) may be written as

ε ◦ (f ⊗X∗) ◦ (A⊗ η).

In summary, the notions of trace and fixed point meet thanks to "feedback". Theorem
2.23 describes this relationship and it will be the main objective in this chapter.

2.1 Symmetric monoidal categories and dualizable ob-
jects

The first type of categories that we will introduce are monoidal categories. Intuitively,
we say that a category C ismonoidal if there exists some notion of product, denoted by
⊗, and a unit object with respect to the product, denoted by 1. This definition extends
in a natural way the notion of monoid in a categorical sense. That, is a well defined
binary operation, with an identity element which is associative. In addition, we say C is
symmetric if the product is as commutative as possible, i.e., there exists a map γ such
that for each pair of objects X, Y in C we get an isomorphism γX,Y : X ⊗ Y ∼= Y ⊗X.

The next definition might seem bulky, but one only has to keep in mind that it is
defined in way such that the tensor product of morphisms is also associative.

Definition 12. A symmetric monoidal category C is a category equipped with:

1. A functor ⊗ : C × C → C called the tensor product.
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2. An object 1 ∈ Ob(C) called the unit object.

3. A natural isomorphism αX,Y,Z : X ⊗ (Y ⊗ Z) ∼= (X ⊗ Y )⊗ Z for X, Y, Z objects
in C, called the associator.

4. Natural isomorphisms lX : 1⊗X → X and rX : X⊗1→ X called the left unitor
and right unitor, respectively.

We demand the commutativity of the following diagrams:

Pentagon identity:

(W ⊗X)⊗ (Y ⊗ Z)

((W ⊗X)⊗ Y )⊗ Z

(W ⊗ (X ⊗ Y ))⊗ Z W ⊗ ((X ⊗ Y )⊗ Z)

W ⊗ (X ⊗ (Y ⊗ Z))

αW⊗X,Y,Z

αW,X,Y ⊗ idZ

αW,X⊗Y,Z

idW ⊗ αX,Y,Z

αW,X,Y⊗Z

Hexagon identity:

(X ⊗ Y )⊗ Z (Y ⊗X)⊗ Z

X ⊗ (Y ⊗ Z) Y ⊗ (X ⊗ Z)

(Y ⊗ Z)⊗X Y ⊗ (Z ⊗X)

γXY ⊗idZ

αX,Y,Z αY,X,Z

γY⊗Z,X γY,X⊗Z

αY,Z,X

Triangle identity:

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y )

X ⊗ Y
rX⊗idY

αX,1,Y

idX⊗lY

These are called coherence diagrams or MacLane axioms.
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Dualizability of objects in a monoidal category defined by Dold and Puppe, see [2],
is a way of saying that an object is “small”. For example, in Vectk the category of
vector spaces, dualizable objects are the finite dimensional vector spaces and their dual
is given by V ∗ = Homk(V, k). The definition presented here of dualizable objects in any
monoidal category does not follow immediately from the notion of dual vector space as
the set of homomorphisms from the vector spaces to the field k. Therefore, considering
the dual of any object M as Hom(M, 1) does not make sense, at least in categories
which do not have internal homomorphisms.

Definition 13. An object M ∈ ob(C) is called dualizable if there exists an object
M∗ ∈ ob(C) called its dual, and maps

η : 1→M ⊗M∗, ε : M∗ ⊗M → 1, (2.3)

satisfying the triangle identities

(idM ⊗ ε) ◦ (η ⊗ idM) = idM and (ε⊗ idM∗) ◦ (idM∗ ⊗ η) = idM∗ .

We call ε the evaluation and η the coevaluation map.

Most of the proofs for some of the results are inefficient and complicated. The approach
that we will use corresponds to drawing morphisms in C as boxes, and objects in C as
arrows. The images bellow describe the snakes identities in terms of these diagrams.
These diagrams will be described in depth in Appendix A.

M M∗ PP�� ��M = �� M ��OO NNM∗ M M∗ = OO M
∗

Example 4. Examples of symmetric monoidal categories and its dualizable objects
are:

(a) Vector spaces. Let Vectk the category of finite dimensional vector spaces over a
field k. The usual tensor product and the field k as the unit object give us the struc-
ture of a monoidal category. Its symmetric structure is given by the isomorphism
of vector spaces γV,W : V ⊗W → W ⊗ V defined by γ(v ⊗ w) = w ⊗ v. All finite
dimensional vector spaces are dualizables with a canonical dual V ∗ = Hom(V, k).

(b) R-Modules. Let R be a commutative ring and ModR be the category of R-modules.
Then ModR is a symmetric monoidal category with the usual tensor product over
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R. The ring R thought of as a module over itself is the unit. The dual of a finitely
generated free R-module M is HomR(M,R). This is also a finitely generated free
R-module. If M has basis {m1,m2, · · · ,mn} and dual basis {m′1,m′2, · · · ,m′n} the
coevaluation and evaluation

η : R→M ⊗R HomR(M,R) and ε : HomR(M,R)⊗RM → R

are R-module homomorphisms defined by ε(φ,m) = φ(m) and η(1) =
∑

imi⊗Rm′i.

(c) Chain complexes. Let R be a commutative ring and consider the category ChR
of chain complexes of R-modules equipped with the structure of monoidal category
by taking the monoidal product to be the graded tensor product ⊗ and the monoidal
unit to be the module R, viewed as a chain complex with non-trivial degree only in
degree 0. Its symmetric structure is given by a⊗b ∼= (−1)|b||a|b⊗a. A chain complex
over a ring R is dualizable if and only if it is bounded and is a finitely generated
projective module in the finitely many degrees where it is non-zero.

(d) The categories Set and Top of sets and topological spaces, respectively. Both are
symmetric monoidal categories. The tensor product is the set theoretic cartesian
product, and any singleton can be fixed as the unit object, uniqueness is given by
the fact that they are all canonically isomorphic to one another, and we denote the
one point set by *. The only dualizable object is *, and its dual is itself.

(e) Let G be a group, the category Repk(G) of all representations of G over k is a
monoidal category, with ⊗ being the tensor product of representations: if for a
representation V one denotes by ρ(V ) the corresponding map G→ GL(V ), then

ρ(V ⊗W )(g) := ρ(V )(g)⊗ ρ(W )(g).

The unit object in this category is the trivial representation 1 = k. A similar
statement holds for the category Repk(G) of finite dimensional representations of
G.

(f) Cobordism. Let Bordn be the category whose objects are closed (n− 1)-manifolds
and the morphisms are n-manifolds. Composition of morphisms is given by gluing
(see figure below). For each Y the bordism cylinder [0, 1]× Y is idY : Y → Y . The
disjoint union and the empty manifold ∅n−1 defines a symmetric monoidal category.

(g) The stable homotopy category HoSpect is an example of symmetric monoidal cat-
egory. In the Chapter 3, we are going to describe this category, Dold and Puppe
used tools developed in this chapter and the category HoSpect to prove the Lefschetz
fixed point theorem.

It is easy to see that in a symmetric monoidal category the dual of the unit object is
itself, i.e. 1∗ ∼= 1. It is also obvious from the definition that if M∗ is the dual of M ,
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◦ =

Figure 2.1: Gluing of manifolds

then M is the dual of M∗. Let us see that any two duals of an object M must be
isomorphic.

Proposition 2.1. Let C be a symmetric monoidal category and M ∈ Ob(C). Every
pair (M∗

1 , ε1, η1) and (M∗
2 , ε2, η2) of duals of M are isomorphic.

Proof. Let (M∗
1 , ε1, η1) and (M∗

2 , ε2, η2) be duals of M . We can define a morphism
ϕ1 : M∗

1 →M∗
2 given by the composite

M∗
1 M∗

1 ⊗ (M ⊗M∗
2 ) (M∗

1 ⊗M)⊗M∗
2 M∗

2 ,
idM∗1

⊗η2 αM∗1 ,M,M
∗
2 ε1

and ϕ2 : M∗
2 →M∗

1 given by

M∗
2 M∗

2 ⊗ (M ⊗M∗
1 ) (M∗

2 ⊗M)⊗M∗
1 M∗

1 .
idM∗2

⊗η1 αM∗2 ,M,M
∗
1 ε2

We claim that these morphisms are inverse to each other. In fact, we are going to use
string diagrams, as follows. The red string represents the object M1 and the blue one
represents the object M2. For a detailed description, you can see the Appendix A of
this work.

ϕ1 =

M∗
1

OO

��
M

η2

M∗
2

��
PP

OOε1

and ϕ2 =

M∗
2

OO

��
M

η1

M∗
1

��

OOε2
ϕ2

The composition ϕ1◦ϕ2 and ϕ2◦ϕ1 can be represented by the following string diagrams
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ϕ1 ◦ ϕ2 =

OO

OO ��

OO ��

OO

ϕ2 ◦ ϕ1 =

OO

OO �� OO

OO ��

OO

Let us prove that the above string diagrams are the identity maps, that is, they satisfy
ϕ1 ◦ϕ2 = idM∗2 and ϕ2 ◦ϕ1 = idM∗1 . We only prove one case, the other one being similar.
Let us divide the string diagram in sections, as in the following diagram

OO

OO �� OO

OO �� OO

The string in the middle is just the identity ofM thanks to the snake identities presented
in Definition 13. Thus, we get the following diagram

OO

OO
M ��

��

OOM∗
2M∗

2
=

OO

M∗
2

Applying again the snake identities the above equality holds and then we can conclude
that ϕ2 ◦ ϕ1 = idM∗2 .

In other words, the above proposition tells us that dualizability is a well defined prop-
erty. The following lemma plays an important role in what follows.

Lemma 2.2. Let C be a symmetric monoidal category, and A a dualizable object with
dual A∗. Then there is an adjunction between − ⊗ A and − ⊗ A∗, that is, there are
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canonical isomorphisms

Hom(X ⊗ A, Y ) ∼= Hom(X, Y ⊗ A∗),
Hom(A∗ ⊗X, Y ) ∼= Hom(X,A⊗ Y ).

Proof. Let us consider the morphism ϕ : Hom(X ⊗ A, Y ) → Hom(X, Y ⊗ A∗) which
is defined by assigning a morphism f : X ⊗ A→ Y to the composite

X X ⊗ A⊗ A∗ Y ⊗ A∗.idX⊗η f⊗idA∗

We will show that its inverse is the function ψ : Hom(X, Y ⊗ A∗) → Hom(X ⊗ A, Y )
which sends each g : X → Y ⊗ A∗ is sent to the composite

X ⊗ A Y ⊗ A∗ ⊗ A Y.
g⊗idA idY ⊗ε

To prove it, we are going to use string diagrams. First note that

ϕ(f)= f

Y ��

X

�� ��

A∗
OO�� OO

OO

A

, ψ(g) = g

X

��

Y
��
OO ��

��

A

A∗

Their composition yields

ψ ◦ ϕ(f) = f

��X

Y
��

A��
OO

OOA∗

��

��
A ϕ ◦ ψ(g) = g

X
��

Y

��

A∗
OO

��

A

��

OO

OO
A∗.

From the snakes identities the result follows.

Definition 14. Let C be a symmetric monoidal category. We say C is compact closed
if every object is dualizable.
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The example that we must bear in mind is the category of finite dimensional vector
spaces denoted by Vectk, where every object is a finite dimensional vector space V is
dualizable and has a dual given by V ∗ := Homk(V, k).

Definition 15. Let C be a symmetric monoidal category. We say that C is closed if
it has an internal hom functor. That is, for each object A in C, there is an internal
hom functor Hom(A,−) : C → C that is right adjoint to A ⊗ −. That is, there is an
isomorphism

Hom(A⊗B,C) ∼= Hom(A,Hom(B,C)), (2.4)

where A,B and C are objects in C. In particular when A = 1 we get

Hom(B,C) ∼= Hom(1,Hom(B,C)). (2.5)

The above bijection is a relation between sets, and we will call it the universal property
of internal Hom functor.

Lemma 2.3. Let C be a symmetric monoidal category. If C is compact closed then is
closed.

Proof. Let A be a dualizable object, with dual A∗. We define an internal hom functor
by the formula Hom(A,B) ∼= A∗ ⊗ B. Then, we just need to verify that − ⊗ A∗ is a
right adjoint to −⊗ A. By Lemma 2.2 the conclusion is obtained.

The previous lemma tells us that dualizable objects in compact closed categories have
the form as dualizable objects in Vectk. Thus if you take in Definition 15 B = 1 we
get

Hom(A, 1) ∼= A∗ ⊗ 1 ∼= A∗. (2.6)

We will call Hom(A, 1) the canonical dual of A. When we use the dual basis theorem
to describe the duals in ModR and ChR we use canonical duals, see Example 4.

Corollary 2.4. Let C be a compact closed category. M ∈ Ob(C) is dualizable if and
only if the canonical map

M ⊗ Hom(M, 1)→ Hom(M,M), (2.7)

is an isomorphism.

Proof. (⇒) Consider a dualizable object M , then by the internal Hom Formula 2.6 we
get

Hom(M,M) ∼= M∗ ⊗M ∼= Hom(M, 1)⊗M.



28 Chapter 2. General trace and fixed point operator

(⇐) Suppose that the isomorphism 2.7 holds, the object Hom(M, 1) will be denoted
by M∗. We claim that M∗ is the dual of M , so the conclusion holds if we find the
evaluation and coevaluation maps. For the coevaluation map consider

Hom(M,M) ∼= Hom(1,Hom(M,M)) ∼= Hom(1,M ⊗ Hom(M, 1)) ∼= Hom(1,M ⊗M∗).

From the above isomorphism, there exists a distinguished map in Hom(M,M), the
identity, whose image under the isomorphism is the coevaluation map. A similar idea
allows us to find the evaluation map. It is no hard to see that these maps satisfy the
triangle identities.

The next lemma provides us with a nontrivial example of compact closed category.

Lemma 2.5. Bordn is a compact closed category.

Proof. Let M be an object in Bordn, that is, an oriented (n− 1)-manifold. We denote
by M the same manifold with reverse orientation. Let the evaluation and coevaluation
maps be defined as follows:

• εM : M
⊔
M → ∅ is given by the bordism M × [0, 1] interpreted as cobordism from

M
⊔
M to ∅, see figure below

M

M

• ηM : ∅ → M
⊔
M is given by the bordism M × [0, 1] interpreted as cobordism from

∅ to M
⊔
M , see figure below

M

M

By diffeomorphism invariance these two maps are related to the identity idM as follows

M

M

= M M

If we interpret the above bordism representation in terms of εM and ηM we get the same
formulas presented in Definition 13. As a result, every objectM in Bordn is dualizable
with dual the same manifold with opposite orientation.
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Definition 16. If M and N are dualizable objects in a symmetric monoidal category
C, the map f : M → N has a dual map f ∗ : N∗ →M∗ defined by the composite:

N∗ N ∗ ⊗M ⊗M∗ N∗ ⊗N ⊗M∗ M∗.
N∗⊗η N∗⊗f⊗M∗ ε⊗M∗

In particular, for any dualizable object M , the endomorphism f : M → M has a dual
map f ∗ : M∗ →M∗.

The following diagram represents f ∗ in string diagram notation.

f

N∗ OO

OO
N

M

M∗

��

OO = f ∗

N∗

M∗

OO

OO

The above definition represents, in a categorical sense, the notion of taking a transpose
of a matrix. If we consider g : V → W a linear transformation, it is not hard to see
that the above composition g∗ is the transpose of the matrix that represents g.

Proposition 2.6. Let M,N and W be dualizable objects in a symmetric monoidal cat-
egory C, and f : M → N and g : N → W two maps in C. Then (g ◦ f)∗ = f ∗ ◦ g∗.

Proof. Consider the continuous sequence of deformations of string diagrams:

(g ◦ f)∗ = (g ◦ f)∗

W ∗

M∗

OO

OO
= g ◦ f

W ∗

OO

OO





W

M

OO

M∗ =

OO

gOO

f

��

��

OO

W ∗

M∗

W

N

M

=

OO

g
W ∗

OO

��N

W

OO f
M

N

��

OOM∗

We can stretch the last diagram and get
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g
W ∗
OO

		

VVN

OO

N∗

f
�� N

M

OOM∗

=

g∗

f ∗

OO

OO

OO

M∗

N∗

W ∗

= f ∗ ◦ g∗.

If we compare the diagram inside the blue box regarding the above definition we get g∗
and the same for the red box we get f ∗. Thus, gluing these diagrams we get the last
equality and the conclusion holds.

In the context of linear algebra, the above proposition tells us that the transpose of a
product of matrix is the product of the transposes with reverse order.

2.2 Monoidal functors

In category theory, it is important to compare things such as objects, morphisms, and
even categories. We compare categories by means of functors. In the categories that
interest us, we need to demand functors with more structure that respect the monoidal
structure. More specifically, we have the following definition. Again, this definition
seems to be bulky but we need to have in mind that this functor must send the unit to
the unit and respect the tensor product.

Definition 17. Let C and D be two monoidal categories with unit objects 1C and
1D respectively, and tensor product denoted by ⊗ in both categories. In addition,
let αC and αD be the associator maps of the categories C and D, respectively. A lax
monoidal functor between C and D is a functor F : C → D together with an isomor-
phism

ι : 1D → F (1C), (2.8)

and a natural isomorphism

ψA,B : F (A)⊗ F (B)→ F (A⊗B), (2.9)

for each pair of objects A,B in C, which satisfies the following conditions:

1. Associativity, for all objects X, Y, Z ∈ C the following diagram commutes
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.

(F (X)⊗ F (Y ))⊗ F (Z) F (X ⊗ Y )⊗ F (Z)

F (X)⊗ (F (Y )⊗ F (Z)) F ((X ⊗ Y )⊗ Z)

F (X)⊗ F (Y ⊗ Z) F (X ⊗ (Y ⊗ Z))

ψX,Y ⊗idF (Z)

αD ψX⊗Y,Z

idF (X)⊗ψY,Z F (αC)

ψX,Y⊗Z

2. Unitality, for all objects X ∈ C the following diagrams commutes

.
1D ⊗ F (X) F (1C)⊗ F (X)

F (X) F (1C ⊗X)

ι⊗idF (X)

lD ψ

F (lC)

where lC and lD are the left unitors in C and D, respectively.

In addition, a monoidal functor is symmetric if the following diagram commutes. That
is, for all objects X, Y in C

.
F (X)⊗ F (Y ) F (X ⊗ Y )

F (Y )⊗ F (X) F (Y ⊗X)

ψX,Y

γD F (γC)

ψY,X

where γC and γD are the symmetric isomorphisms in C and D, respectively.

One of the useful properties of dualizability is its nice behaviour under symmetric
monoidal functors:

Proposition 2.7. Let C and D be two symmetric monoidal categories and F : C → D
a lax monoidal functor. Let X be a dualizable object of C with dual object X∗. Then
F (X) is dualizable with dual F (X∗). Moreover, the evaluation and coevaluation map
in D satisfy:

εF (X) = F (εX), ηF (X) = F (ηX).

Proof. Let X be an object in C and X∗ its dual. By definition, we know that F (idX) =
idF (X) and F (f ⊗ g) = F (f) ⊗ F (g) for any f, g morphisms on C. Then, the triangle
identity
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X X

X ⊗X∗ ⊗X
idX⊗ηX

idX

εX⊗idX

is sent by F to the diagram

F (X) F (X)

F (X)⊗ F (X∗)⊗ F (X)

idF (X)⊗ηF (X)

idF (X)

F (εX)⊗idF (X)

The other axiom is similar. So we can conclude that F (X∗) is dual to F (X) i.e.
F (X∗) ∼= F (X)∗.

Example 5. Examples of monoidal functors are:

(a) The forgetful functor U : Ab → Set from the category of Abelian groups to the
category of sets.

(b) If R is a (commutative) ring, then the free functor F : Set →ModR extends to a
monoidal functor F : (Set,t, ∅)→ (ModR,⊕, 0) in a natural way.

(c) Let C be a compact closed category, and D : C → C a functor such that for any
object A in C, D(A) is the dual of A. D is a monoidal functor. This is because for
any A,B ∈ Ob(C), we have the isomorphism D(A⊗B) ∼= D(A)⊗D(B).

(d) The homology functor H : ChR → GrR, i.e. the functor from the chain complex
over a commutative ring R to the graded R-modules. The Kunneth theorem implies
that the natural transformation

τ : H(C•)⊗H(D•)→ H(C• ⊗D•), (2.10)

is an isomorphism if Ci, Di are projective for every i ∈ Z.

(e) An n-TQFT is a symmetric monoidal functor Z : Bordn → Vectk where each
(n − 1)-manifold is sent to a finite dimensional vector space and each n-manifold
is sent to a linear map. The (n − 1)-manifold M1 tM2 is sent by means of Z to
the vector space Z(M1)⊗ Z(M2).

(f) The free abelian group functor Z : (Set,×, ∅) → (Ab,⊗Z,Z) which assigns Z[X]
the free abelian group generated by X to each set X. It is Z(X) = Z[X], and for
each pair of sets X, Y we have Z(X × Y ) = Z[X]⊗Z Z[Y ].
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(g) Consider Σ∞ : Top∗ → HoSpect the spectrum functor such that each topological
based space X is sent to {ΣnX}n≥0. In Chapter 3, we are going to describe that
functor and the HoSpect category with all the detail. But a difference of a topo-
logical suspension (see Chapter 3), the spectrum functor satisfies that for X and Y
based spaces there exist an isomorphism at the homotopic stable level

Σ∞(X ∧ Y ) ∼= Σ∞X ∧ Σ∞Y.

Thanks to the notion of monoidal functor we can move to other categories and extend
our framework, such as dualizability. There are many important and intuitive examples,
the free abelian functor defined in the above example is a motivation of that; we know
the free abelian group Z[X] is dualizable if and only if X is a finite set of points. This
extends dualizability in sets which only one element sets can be dualizables. Lemma
3.8, in Chapter 3, has the same philosophy because Σ∞ helps us to extend S-duality in
spaces to the stable homotopy category.

2.2.1 Freely generated category

String diagrams was an idea introduced first by Turaev with the goal of translating
equations into diagrams that we may manipulate in a topological sense. We can think
of strings as morphisms inBord1, the category of 1-dimensional bordisms. In this thesis
we are interested in the relationship between bordism theory and traces. Therefore, it
is convenient to stop for a while, and discuss Bord1 as a freely generated category.

Recall that the notion of topological quantum field theories was borned from the work
of Witten in [41]. The motivation comes from physics studying a quantum field theory
that does not depend on the Riemannian metric of the underlying space-time manifold.
Shortly after, Atiyah in [6] proposed a set of axioms which were supposed to lay a
rigorous foundation for a mathematical treatment of TQFTs. The Atiyah’s idea was
to consider an n-dimensional TQFT as a rule which assigns finite-dimensional vector
spaces to closed oriented (n− 1)-manifolds and linear maps to n-dimensional oriented
cobordisms (up to diffeomorphism preserving the boundary) between two such (n− 1)-
manifolds. Using the modern language of category theory we say that an n-dimensional
TQFT is a functor from the cobordism category nCob to the category Vectk of finite
dimensional vector spaces which obeys certain additional properties.

First let us make precise what a freely generated category means. Intuitively it is a
decomposition in objects morphisms and relations that morphisms must satisfy. For-
mally, we require a set of objects G0, morphisms G1 in which there exist source and
target maps denoted by s, t which are defined by follows: For f : x → y a morphism
in G1 and x, y ∈ G0 such that s(f) = x and t(f) = y. In addition, we require a set of
relations G2 which are tuple of morphisms in G1 that can be identified.
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To make the above more formal in a categorical sense a freely generated category
by sets G0, G1 and G2 is a symmetric monoidal category with the following universal
property:

Definition 18. Let C be a symmetric monoidal category. A symmetric monoidal func-
tor F(G0, G1, G2) → C is characterized uniquely (up to monoidal isomorphism) by
choosing an object in C for each element in G0 and a morphism in C for each element
in G1 (with correct source and target) such that the relations in G2 are satisfied. We
will say that F(G0, G1, G2) is the symmetric monoidal category freely generated by
G0, G1 and G2.

We will construct this freely generated category in the following sequence of steps below
until we get a category that satisfies the above universal property. It is important to
point out that it is unique up to natural monoidal isomorphism.

Objects: We start with the free symmetric monoidal category F(G0) whose objects are
freely generated by G0. First, let us consider G0 as a category with objects the elements
of G0 and morphism the identity map for any object. We can induce a monoidal
structure in F(G0) by a map I : G0 → F(G0) which sends each x ∈ G0 to the one-
element list denoted by (x). The tensor product is given on objects by concatenation
of lists, and the tensor unit is the empty list. Morphisms between lists are defined only
in lists of equal length and are all the permutations of the length of the lists. Such pair
(F(G0), I) must obey the following universal property: For all symmetric monoidal
category C,

Fun(F(G0), C)→ FG0(C) (2.11)

induces an equivalence of categories, where FG0(C) is the category of functors from G0

to C. In our particular situation, with G0 the set of objects represented in Figure 2.2

Figure 2.2: Set of objects.

We get that F(G0) is a monoidal category whose objects are disjoint union of points
with orientation and morphisms, as we said before, are defined between sets of points
of the same length connected by oriented strings, Figure 2.3 gives us an intuitive idea.

In our particular case, giving a symmetric monoidal functor F(G0) → Vectk, by the
universal property 2.11, is equivalent to a choice of a vector space V for •+ and U for
•−.

Objects and morphisms: We can try to add a set G1 of extra morphisms to F(G0).
First, given a symmetric monoidal category C, let us consider FG0.G1(C) the category
with:
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− − − −

− −+ + +

+ +

+
Figure 2.3: Morphism in F(G0)

• Objects are pairs (Φ, H), where Φ is an object in Fun(F(G0), C) and H : G1 →
Mor(C) is a map such that for all f ∈ G1, H(f) has source Φ(s(f)) and target Φ(t(f)),
where s, t : G1 → Ob(F(G0)) are the source and target maps, respectively.

• Morphisms are transformations ϕ : (Φ, H) → (Φ′, H ′) which make the following
diagram commute

Φ(s(f)) Φ(t(f))

Φ′(s(f)) Φ′(t(f))

H(f)

ϕs(f) ϕt(f)

H′(f)

for each f ∈ G1.

Then, the free symmetric category generated by G0 and G1 is the category F(G0, G1)
and a pair of symmetric monoical functors (J, j) where j : G1 → Mor(F(G0, G1)) and
J : F(G0)→ F(G0, G1), which makes

Fun(F(G0, G1), C)→ FG0.G1(C) (2.12)
Φ 7→ (Φ ◦ J,Φ ◦ j) (2.13)

an equivalence of categories.

In our example G1 is the set of morphisms represented by Figure 2.4

−+

− +

{ },G1 =

Figure 2.4: Morphisms.

The above set of morphisms G1 are what we called the evaluation and coevaluation
map, respectively.
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By the above universal property, giving a monoidal functor F(G0, G1)→ Vectk amounts
to picking V and U for the objects in G1 and linear maps d : V ⊗ U → k and
b : k → V ⊗ U , given by Figure 2.4. Note that the vector spaces U and V do not
necessarily have to be finite dimensional.

Objects, morphisms and relations: We already have F(G0, G1) at our disposal.
Then, the relations G2 are a set of diagrams in F(G0, G1) which we would like to
commute. An element in G2 is a pair (f1, f2) where f1, f2 are morphisms in F(G0, G1)
with the same source and target.

Let us define FG0,G1,G2(C) to be the subcategory of Fun(F(G0, G1), C) with C be an
arbitrary monoidal category, and whose objects are symmetric monoidal functors F ∈
Fun(F(G0, G1), C) which satisfy F (f1) = F (f2) for (f1, f2) ∈ G2.

The free category generated by G0, G1 and G2 is a symmetric monoidal category
F(G0, G1, G2) together with with a symmetric functor S : F(G0, G1)→ F(G0, G1, G2)
such that S(f1) = S(f2) for each pair (f1, f2) ∈ G2, that satisfy the following universal
property: The functor

Fun(F(G0, G1, G2), C)→ FG0,G1,G2(C) (2.14)

is an equivalence of categories.

In our particular example, G2 is the set of two elements represented by the following
figure.

= ={ , }G2 =

Figure 2.5: Relations.

To give a symmetric monoidal functor F(G0, G1, G2) → Vectk, we need to know how
to assign objects and morphisms (U, V, b, d) as we did above, but now subject to the
relations.

(d⊗ idU) ◦ (idU ⊗ b) = idU , (idV ⊗ d) ◦ (b⊗ idV ) = idV . (2.15)

From all this detailed description, we can conclude that Bord1
∼= F(G0, G1, G2). That

is because Bord1 satisfies the universal property 2.14 in a natural way defined by the
descomposition in the objects and morphisms presented in G0, G1 and G2.

More concretely, we can define a monoidal functor Z : Bord1 → Vectk which satisfies
the universal property 2.14, that functor is a 1-TQFT. From the Equation 2.15, we can
conclude that U and V are finite dimensional vector spaces and U ∼= V ∗, equivalently
U∗ ∼= V .
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We can move towards 2-dimensional bordisms. As in the 1-dimensional case, we start
with the generators of the bordism category. There is only one compact connected
oriented 1-manifold up to diffeomorphism, a circle, that has orientation-reversing dif-
feomorphisms. Then an object in Bord2 is orientation-preserving diffeomorphic to a
finite disjoint union of (oriented) S1’s. Thus, we have G0 = {S1}.

Morphisms in Bord2 are oriented surfaces. It is a classical result, which may be proven
using Morse theory, that surfaces can be classified by their genuses, that is the number
of holes.

Another classical result, also from Morse theory, is that the surfaces can be decomposed
by elementary surfaces:

, , , , ,

Figure 2.6: elementary bordisms.

However, we can reduce the above list and dispense of the cylinder and the braiding
morphism from the set of morphism generators. Hence, we set:

G1 = { , , , }

Figure 2.7: Set G1 of generators.

The set of relations that the set of morphisms G1 must obey is:

= ==

= =

Figure 2.8: Set G2 of relations.

There are many other relations that we did not draw in this work. In [24] the author
presents a good description of the above relations. Thus, we get the following theorem.
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Theorem 2.8. Let G0 = {S1}, G1 and G2 given by the sets in Figures 2.7 and 2.8,
respectively. Then, Bord2 is freely generated as a symmetric monoidal category by
G0, G1, G2, that is, Bord2

∼= F(G0, G1, G2).

In the same way we can define, by abuse of notation, a monoidal functor Z : Bord2 →
Vectk that satisfies the Property 2.14. Under the functor Z the image of S1 is a vector
space Z(S1) = A, and together the relations in the Figure 2.6 we can conclude that
there is an equivalence of categories 2 − TQFT ∼ coFrobk, where coFrobk is the
category of commutative frobenious algebras. In [24] the author presents a detailed
description of this equivalence.

In dimension more than 3, we do not have a generalization of the previous theorem.
That is, we can not reduce the category Bordn as a gluing of finite bordisms. J. Baez
and J. Doland in [7] conjectured the following:

Theorem 2.9. Cobordism hypothesis
The Bordn category is the free symmetric monoidal n-category with duality on one
object.

Recently there has been substantial progress towards these results due to the work of
Hopkins and Lurie. In [26], Lurie outlines a sophisticated program which reformulates
and proves the Baez-Dolan Cobordism Hypothesis. Both the proof sketch and the
reformulation of the Cobordism Hypothesis use the language of (∞, n)-categories in an
essential way. In particular they exploit the relationship between (∞, n)-categories and
homotopy theory to a great extend. Their solution is consequently cast in the same
language. All these developments are beyond the scope of this thesis

2.3 Cartesian categories

In computer science, there are processes of duplication and deletion of data. We can
try to mimic this idea and, for example, in set theory we can define a map in which any
a ∈ A is sent to the pair (a, a) in the Cartesian product A × A. This map is denoted
by ∆A and called the A-diagonal map, and also we can define a map eA : A → ∗ in
which all a ∈ A in sent to the one-point set. Such maps do not necessarily exist for any
object in any arbitrary category. We want to restrict our attention to those categories
in which there is a diagonal map with certain properties.

Diagonal maps are the most interesting because, as we saw in chapter one, this allows
us to study fixed points from a geometric point of view. In this section we want to
establish that condition in a more abstract sense. This type of categories with diagonal
and deleting maps motivate the following definition.
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Definition 19. A cartesian monodial category is a symmetric monoidal category
(C,⊗, 1, γ) equipped with monoidal natural transformations

∆X : X → X ⊗X and eX : X → 1, (2.16)

such that the following composites are the identity morphisms

X X ⊗X 1⊗X X,

X X ⊗X X ⊗ 1 X,

∆X eX⊗1 lX

∆X 1⊗eX rX

where l and r and the right and left unitors.

Example 6. Important examples of cartesian monoidal categories include:

1. Sets, together the empty set and the cartesian product is a cartesian monoidal
category.

2. Top, the category of topological spaces together with the cartesian product of topo-
logical spaces and the discrete topological space of one element define a cartesian
monoidal category.

3. Cat, the bicategory of small categories with the product category, where the cate-
gory with one object and only its identity map is the unit.

4. The category of finite dimensional k-vector spaces Vectk is a cartesian monoidal
category with the cartesian product of vector spaces.

Remark 1. We will denote the cartesian product as × with the aim to recall that we
are in a cartesian category.

We can think of the above conditions as: Duplicating a piece of data and then deleting
one copy is the same as not doing anything. Note that any object of the form X × Y
in a cartesian category comes equipped with morphisms πX,Y : X × Y → X and
π′X,Y : X × Y → Y the projections to the first and second component, respectively.
These maps are given by the following composites

X × Y X × 1 X,

X × Y 1× Y Y.

idX×eY rX

eX×idY lY

In Appendix A, we will represent these new maps in terms of string diagrams, they will
be useful in the proof of the relation between traces and fixed point operators.

The next proposition describes the dualizable objects in monoidal cartesian categories.
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Proposition 2.10. The dualizable objects in any cartesian monoidal category are the
final objects.

Proof. Let C be a cartesian monoidal category, A a dualizable object and A∗ its dual.
By Lemma 2.2 the functor −⊗A∗ is right adjoint to −⊗A. Then for X, Y objects in
C, we have:

Hom(X ⊗ A, Y ) ∼= Hom(X, Y ⊗ A∗). (2.17)

In particular for X = Y = 1, we have:

Hom(A, 1) ∼= Hom(1, A∗). (2.18)

We know 1 is a final object. Thus, we can conclude that 1 ∼= Hom(A, 1). Therefore,
Hom(1, A∗) ∼= 1. Thus, for any object W in C there is a unique map from W to 1,
and there exist a unique map from 1 to A∗, the composite gives us a unique map from
W to A∗. In conclusion A∗ is a final object, and since final objects are unique up to
isomorphism, it must satisfy A∗ ∼= 1.

The above theorem tells us that there is not an interesting notion of dualizability in
cartesian categories. Sets is an example of cartesian monoidal category, its dualizable
objects are one-element sets or singletons, denoted by {∗}. In addition, the category of
topological spaces (Top) is a cartesian monoidal category as well. Also, their dualizable
objects are discrete topological spaces of one elemenent.

Monoidal functors allow us to define diagonal maps in monoidal categories that are
not necessarily cartesian. That is important because diagonal maps will allow us to
get more information about fixed points. The following example shows how we can
construct diagonal maps in the image of a cartesian category under a monoidal functor.

Example 7. Consider Z : Sets→ Ab the monoidal functor defined in the Example 5.
For each set X, we have a diagonal map ∆X : X → X×X defined by ∆X(x) = (x, x) for
each x ∈ X. The image of this map under this functor is: Z(∆X) : Z[X]→ Z[X×X] a
map in Ab. The monoidal structure gives us an isomorphism Z[X×X] ∼= Z[X]⊗Z[X].
Thus, under the previous isomorphism we can define a diagonal map for Z[X] as the
following composite:

Z[X] Z[X ⊗X] Z[X]⊗ Z[X]
Z(∆X)

∆Z[X]

ψ

where ψ is the natural isomorphism as in 2.9.
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The previous example allow us to consider Ab as a cartesian category, at least in the
image of the functor Z(−). A similar construction you get if you replace the functor
Z(−) by other monoidal functor.

Example 8. Consider the suspension functor Σ∞, defined also in Example 5, as we did
in the previous example we can transfer diagonal maps ∆X in Top to diagonal maps
in HoSpect. Thus, for X a based topological space (also based CW complex) we can
define a map, as in the previous example, given by the image under the functor Σ∞

∆Σ∞(X) : Σ∞(X)→ Σ∞(X) ∧ Σ∞(X). (2.19)

In Chapter 3, we will describe the constructions presented in the above example.
Another important characteristic of the connection between cartesian categories and
monoidal functors, with codomain a noncatesian category, is that it helps us to extend
dualizability. The baby example that we can have in mind is the functor Z[−], which
sends a finite set X which is not dualizable in Sets to the freely generated group Z[X]
which is dualizable in Ab with itself as a dual. We can define the dual maps by mean
of the formulas

η :Z→ Z[X]⊗ Z[X] ε : Z[X]⊗ Z[X]→ Z, (2.20)

1 7→
∑
x∈X

x⊗ x
∑

x⊗ x′ 7→
∑
x=x′

1. (2.21)

In a more abstract setting, we will show that for X a based topological space, with
good topological conditions, then the object Σ∞(X) is dualizable in HoSpect.

2.4 General trace

In this section we are going to define the abstract notion of trace. This was historically
defined by Dold and Puppe in their famous work [2] and also defined by Ponto and
Schulman in [34]. As we mentioned at the beginning of this chapter, the trace in sym-
metric monoidal categories is nothing more than the reinterpretation of the definitions
linear algebra framework at a categorical level. In recent years, many authors have
found applications of categorical traces in other branches of science such as algebraic
topology, knot theory, computer science and quantum mechanics. In this part of this
work we are interested in studying the relation between traces and fixed points.

Definition 20. Let C be a symmetric monoidal category, M a dualizable object in C
with dual M∗ and f : M → M an endomorphism of M . The canonical trace of f ,
denoted by tr(f), is the following composite map

1 M ⊗M∗ M ⊗M∗ M∗ ⊗M 1,
η f⊗M∗ ∼= ε
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In particular, the Euler characteristic is the trace of the identity map.

Some authors refer to the trace of the identity as the dimension of the object. We can
represent the trace in string diagram notation as

f

M

M∗

��

PP

For a trace, we are going to consider a topological switch that allows us to simplify the
above diagram (see figure below). A fun fact: It shows a relationship between trace
and feedback. We will come back to that in the future.

M
f
��

NN

First, let us prove that the trace is well defined.

Lemma 2.11. The trace of a morphism is well-defined.

Proof. We must show that the same value is obtained whichever choice we make of dual,
evaluation and co-evaluation maps. Suppose then that we have dualities (M,X, η, ε)
and (M,Y, η′, ε′), where we draw the first duality using the conventions of Definition 13.
We draw η′ and ε′ as η and ε but the difference is that the prime maps will be colored
red:

ε′ =

M Y

����
η′ =

Y MOO

We then make the following argument:
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f
M

X

��

PP

= f
��M

Y

M

�� OO

��

OO

MMX

=

M Y

X

f
��

�� OO ��

LL

MM

=

M Y

X

f
��

��

OOY OO
��
M

=

f

M
��

��

GG

OOY M �� PP

=

M

M

f

��

��

= f
M

Y

��

��

PP

Therefore, the trace does not depend on the choice of the "color" and then we can
conclude that the trace does not depend on the evaluation and coevaluation maps.

There are some familiar properties of traces coming from linear algebra that we can
generalize to a categorical level. For example, the trace of the product of two matrices
does not depend on the order of the product. Thus, in a general context there is a
symmetry condition with respect to the composition of morphisms.

Lemma 2.12. (Cyclicity) For any maps f : M → N and g : N →M in a symmetric
monoidal category C, with M,N both dualizable objects, we have

tr(f ◦ g) = tr(g ◦ f).

Proof. Applying the snake identities from Definition 13, and the dual mate of f defined
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by the composite in Definition 16, we get the following formulas

tr(f ◦ g) = εγ(f ◦ g ⊗ idN∗)η

= εγ(f ⊗ idN∗)(g ⊗ idN∗)η

= εγ(f ⊗ idN∗)(idM ⊗ ε⊗ idN∗)(η ⊗ idM ⊗ idN∗)(g ⊗ idN∗)η

= εγ(idN ⊗ ε⊗ idN∗)(f ⊗ idM∗ ⊗ idM ⊗ idN∗)(idM ⊗ idM∗ ⊗ g ⊗ idN∗)(η ⊗ η)

= (ε⊗ ε)γ(idN ⊗ idM∗ ⊗ g ⊗ idN∗)(f ⊗ idM∗ ⊗ idN ⊗ idN∗)(η ⊗ η)

= (ε⊗ ε)γ(idN ⊗ idM∗ ⊗ g ⊗ idN∗)(idN ⊗ idM∗ ⊗ η)(f ⊗ idM∗)η

= εγ(idM ⊗ ε⊗ idM∗)(g ⊗ idN∗ ⊗ idN ⊗ idM∗)(η ⊗ idN ⊗ idM∗)(f ⊗ idM∗)η

= εγ(g ⊗ idM∗)(idN ⊗ ε⊗ idM∗)(η ⊗ idN ⊗ idM∗)(f ⊗ idM∗)η

= εγ(g ⊗ idM∗)(f ⊗ idM∗)η

= εγ(g ◦ f ⊗ idM∗)η

= tr(g ◦ f).

In the above lemma, it is important to note that the trace of f ◦ g depends on N while
the trace of g ◦ f depends on M . Some authors may denote this as trN(f ◦ g) and
trM(g ◦ f) respectively. Even though it has a great advantage when we are working
with many dualizable objects in the same equation, we have decided in this work to
save this notation for a special type of trace gotten from a fixed point operator.

The above notion of trace can be extended to maps with more general sources and
targets. For simplicity, we will describe properties for morphisms of the form
f : P ⊗M → M ⊗ Q. We only require the same duailazable object M in the source
and target. In that case tr(f) ∈ End(Q,P )

Proposition 2.13. Let M be a dualizable object and f : Q⊗M → P ⊗M a morphism
in C. Then

tr(f) = tr(γf ∗γ), (2.22)

if P = Q = 1 the formula is tr(f) = tr(f ∗).

Proof. We can give a similar proof using similar formulas than the previous lemma.
However, we have decided to leave this proof until the Appendix A where we use string
diagram deformations.

The above property, in the linear algebra world, tells us that the trace of any matrix is
equal to the trace of its transpose. The complicated process to follow these equations
and the simplicity of the string diagrams is why the author of this work prefers to work
and develop the proofs using string diagrams in most of the cases.
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Example 9. Some important examples of traces in monoidal categories include:

(a) In Vectk the trace of an endomorphism is an element of End(k) ∼= k, it is an
element of the field k. Fixing a basis we recover the sum of the diagonal elements
of the matrix that represents the endomorphism. The Euler characteristic is the
dimension of the vector space.

(b) In ModR the trace of any endomorphism of a projective and finitely generated
module is an element of End(R) ∼= R. The Euler characteristic is the rank of the
module.

(c) In ChR the trace of any endomorphism is an element of End(R) ∼= R, and it is the
alternating sum of its degreewise traces. The Euler characteristic is the alternating
sum of its degreewise dimensions. Some authors call the trace of a map in this
category as the Lefschetz number.

(d) In Set and Top the dualizable objects are sets with only one element and one-point
spaces, respectively. In this particular case there is not an interesting notion of
trace for a self map f : X → X with X a set or topological space with more than
one element.

(e) In Bordn for a morphism Σ : M ⇒M given the by the figure 2.9.

M M

Σ
Figure 2.9: Bordism Σ

The trace of Σ is the composite of the following piece of manifolds given by Defini-
tion 20

→ → →

η Σ⊗ idM γM,M ε

Figure 2.10: tr(Σ)

If we glue all these pieces, and if we omit the twisted diagram we get that the trace
is the following manifold:
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Figure 2.11: tr(Σ)

The Euler characteristic is diffeomorphic to M × S1.

We know Set and Top are cartesian categories, so there is not an interesting notion
of dualizable objects, see Example 4-d. Hence, the notion of trace is not interesting at
this level. However, we saw that we can extend the dualizability in Set by means of
the free Abelian functor Z. Thus, the following example helps us extend the trace to
any finite set X.

Example 10. Let X = {p1, · · · , pm} be a finite set and f : X → X a map. If we
apply the free abelian functor Z : Set → Ab which sends each X to the free generated
Abelian group. The trace of Z(f) computed by the formula given in the Definition 20
is the following composite

Z Z[X]⊗ Z[X]∗ Z[X]⊗ Z[X]∗ Z[X]∗ ⊗ Z[X] Z

1
∑
x∈X

x⊗ x
∑
x∈X

f(x)⊗ x
∑
x∈X

x⊗ f(x)
∑
f(x)=x

1.

η Z(f)⊗id γ ε

Observation. Note that the trace calculated in the previous example is the same as the
Lefschetz number calculated in the Example 1 in Chapter 1. It is a natural extension
to a categorical framework.

The key example for us is the category of topological spaces, which is once again a
cartesian category and there is not an interesting notion of dualizability or trace. Then,
we apply the suspension functor Σ∞+ : Top → HoSpect and reproduce the same idea
as in the previous example. In Chapter 3 we will discuss this particular construction
and its relation with Lefschetz fixed point theorem.

We can extend the original definition of trace, presented in Definition 20 to any map
f : Q⊗M → M ⊗ P in C, we only require the dualizable object to appear as a factor
of the source and target. Thus, for a dualizable object M and any pair of objects P,Q
in C we can define the twisted trace for f as the following composite

Q Q⊗M ⊗M∗ M ⊗ P ⊗M∗ M∗ ⊗M ⊗ P P,
η f⊗M∗ ∼= ε
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This notion of trace may seem more complicated since more objects are included in the
input and output data; actually, its string diagram gets more complicated, see figure
below. However, it also has its advantages as we will see in the following example.

f

Q

��

��

P

��
M

M∗

))

CC

OO

Twisted trace

Example 11. Let f : Q×X → X be a map in Set. Applying the free abelian functor
Z : Set → Ab, we get the map Z(f) : Z[Q] ⊗ Z[X] → Z[X]. Its twisted trace is given
by the following composite

Z[Q] Z[Q]⊗ Z[X]⊗ Z[X]∗ Z[X]⊗ Z[X]∗ Z[X]∗ ⊗ Z[X] Z

q
∑
x∈X

q ⊗ x⊗ x
∑
x∈X

f(q, x)⊗ x
∑
x∈X

x⊗ f(q, x)
∑

f(q,x)=x

1.

η Z(f)⊗id ∼= ε

The previous example shows us that the trace for this particular map recollects the
number of fixed points of f(q,−) for all q ∈ Q. In general, these suitable modifications
allow us to get more information about fixed points.
Observation. If we consider P = Q = 1, we recover the trace in Definition 20, and we
call it the canonical trace. In the future we will consider the twisted trace of any
map f : Q⊗M → P ⊗M , with M dualizable, only as the trace of f .
Observation. This light change in the definition of traces for more general morphisms
where its input and output are tensor products of arbitrary and different objects pre-
serves Lemma 2.12 and Proposition 2.13 with suitable changes.

Thanks to this general notion of trace, we can consider a special case where diagonal
maps are involved.

Definition 21. Let M ∈ Ob(C) be a dualizable object joint with a diagonal morphism
∆ : M → M ⊗M , and f : M → M an endomorphism in C. The trace of f respect
to ∆ is the trace of ∆ ◦ f . Additionally, the trace of the identity map idM respect to
the diagonal is called the transfer.
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Remark 2. Let us consider M and f : M →M as in the above definition. The trace of
∆ ◦ f is the following composite

1 M ⊗M∗ M ⊗M ⊗M∗ M ⊗M∗ ⊗M M .
η ∆◦f⊗M∗ M⊗γ ε⊗M

Thus, the trace of f with respect to the diagonal is a map taking values in M .

In general, the following corollary tells us that the trace of f respect to the diagonal
recollects fixed points. It is a direct consequence of the properties of traces presented
in the following section, we leave its proof to the reader.

Corollary 2.14. If M is dualizable, ∆M : M → M ⊗ M is a diagonal map and
f : M →M is an endomorphism, then

f ◦ (tr(∆M ◦ f)) = tr(∆M ◦ f).

Example 12. Consider the functor Z : Set→ Ab. In Example 7 we saw that for any
set X there exists an induced diagonal map ∆Z[X] : Z[X] → Z[X] ⊗ Z[X] which sends
each generator x to x⊗x. Z[X] is dualizable for a finite set X. Then, the trace of Z(f)
with respect to the diagonal ∆Z[X] is given by the following composite

Z Z[X]⊗ Z[X]∗ Z[X]⊗ Z[X]⊗ Z[X]∗ Z[X]⊗ Z[X]∗ ⊗ Z[X] Z[X]

1
∑
x∈X

x⊗ x
∑
x∈X

f(x)⊗ f(x)⊗ x
∑
x∈X

f(x)⊗ x⊗ f(x)
∑
x=f(x)

x.

η Z(f)⊗id γ ε

Example 13. In the same way, forM a compact ENR, its suspension spectrum Σ∞+ (M)
is dualizable in the homotopy stable category, see Chapter 3. Here we also have a
diagonal morphism Σ∞+ (M) → Σ∞+ (M) ∧ Σ∞+ (M) induced by the diagonal map ∆ :
M → M ×M in Example 8, and hence the trace tr(Σ∞+ (∆ ◦ f)) : S → Σ∞+ (M). This
can again be regarded as the “formal sum” of all the fixed points of f , as in the previous
example.

In general, if we consider a monoidal functor F : C → D with being C a cartesian
category, then for each object A in C we have a diagonal morphism ∆A : A → A × A.
And its image under F is the morphism F (∆A) : F (A)→ F (A×A), by the compatibility
of F with the monoidal structure. Thus we can define the following diagonal map:

∆F (A) : F (A)→ F (A)⊗ F (A) (2.23)

If we consider the image of C under F then each object in (Fhrm) has a diagonal map
and thus we can find the trace of any morphism with respect to the diagonal as in
Definition 21.
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2.5 Properties of traces

Let us see some properties of traces. The idea is to give an axiomatic description of what
a trace must satisfy. In other words, we would like to describe traces as a functional
which satisfies some properties. In this section we will consider C as a symmetric
monoidal category.

Proposition 2.15. (Binaturality)
Let M be a dualizable object, f : Q⊗M → P ⊗M a map, g : Q′ → Q and h : P → P ′

maps in C. Then

h ◦ tr(f) = tr((h⊗ idM) ◦ f), (2.24)
tr(f) ◦ g = tr(f ◦ (g ⊗ idM)). (2.25)

Proof. Let us prove only one of the conclusions, the other ones being similar.

h ◦ tr(f) =

f

Q

�� ��

PP

h
��

P

��
P ′

=

f

Q

�� ��

OO

PP

h
��

P

��
P ′

= (h⊗ idM) ◦ f

Q

��

��

P ′

��

M

M∗
OO

= tr((h⊗ idM) ◦ f).

The first equality holds by stretching the cross and the second equality is gotten from
simplifying the diagram.

The previous proposition tells us that the trace is natural with respect to the objects P
and Q. Regarding the string diagram notation we can think of the above equations as
stretching the maps g and h. Some literature call these properties as right tightening
and left tightening respectively, for example Hasegawa’s thesis [19]. In this work we
are reading the diagrams vertically so we will know them as top and bottom tightening,
respectivelly. There is also a condition about the naturality of the trace with respect
to the dualizable object. Thus, we have the following proposition.

Remark 3. Note that with a suitable modification of the bottom tightening formula,
we can prove the fixed point property, Corollary 2.14.

Proposition 2.16. (Naturality with respect to M)
Let M and N be dualizable objects in C and f : Q⊗M → P ⊗N and h : N →M two
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maps. Then,

tr((idP ⊗ h) ◦ f) = tr(f ◦ (idQ ⊗ h)). (2.26)

Proof. Let us consider the following sequence of strings diagrams,

tr((idP ⊗ h) ◦ f) = (idP ⊗ h) ◦ f

Q

��

��

P

��
M

M∗
$$

PP

=

M

M∗

f

Q

P

��

		

��

N
h

��

PP

Now we can apply the cyclicity property, Lemma 2.12. Then, we get that the above
string diagram can be deformed into:

f

Q

P

��

		

h

��

N

M

N∗

��

!!

HH

OO

= f ◦ (idQ ⊗ h)

Q

��

��

P

��
N

N∗

EE

PP

= tr(f ◦ (idQ ⊗ h)).

The following list of properties of the trace are more technical and we will use them for
the axiomatic characterization of abstract trace.

Proposition 2.17. (Nullarity) If f : Q ⊗ 1 → P ⊗ 1 is a morphism in C. Then,
f = tr(f).

Proof. Note that 1 is a dualizable object with 1∗ ∼= 1. In that case we consider the
following sequence of string diagrams.
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f= f

Q

��

��P

= f

Q

��

��P

...

....
.....
.............

....................
.....
.....
.....
....

...............
....

= tr(f).

Proposition 2.18. (Binary) Let f : Q⊗N ⊗M →M ⊗N ⊗ P be a morphism in C
with M and N dualizable objects, then we have

tr(fγM,N) = tr(tr(f)). (2.27)

Proof. Note that M ⊗N is a dualizable object with dual M∗⊗N∗ and we consider the
following deformation sequence of string diagrams:

tr(fγ) = fγ

Q

P

��

��

��

@@
""

PP
N ⊗M

= f

Q

P

��

��

�� ��

N M
����

OOOO

OO OO

''))

= f

Q

P

��

��

��

OO ��OO

��

��

��

DD

PP N

M

=

tr(f)

Q

P

��

��

��

BB

��

OO

N

N∗

= tr(tr(f)).

Note that, for f : Q⊗M ⊗N → P ⊗M ⊗N , the previous proposition can be simplified
as tr(f) = tr(tr(f)) where the left hand side is the trace of f respect the dualizable
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object M ⊗ N and the right hand side is the trace calculated twice first of f respect
the dualizable object N and then respect M . In the linear algebra world the above
property is just the trace of the Kronecker product of matrices which for A an m × n
matrix and B a p× q matrix, then A⊗B is the mp× nq block matrix:

A⊗B =

a11B · · · a1nB
... . . . ...

am1B · · · amnB

.
Thanks to that, we can generalize the above property and get the following proposition,
in which for A and B square matrices, in the linear algebra world, the trace of A⊗ B
becomes the product of the traces of A and B.

Proposition 2.19. Let f : Q⊗M →M ⊗P and g : K ⊗N → N ⊗L, with M and N
dualizable objects. Then, we have

tr((γP,M ⊗ γN,L) ◦ (f ⊗ g) ◦ (γK,M)) = tr(f)⊗ tr(g). (2.28)

If we consider Q = P = K = L = 1, the above formula becomes

tr(f ⊗ g) = tr(f)⊗ tr(g).

Proof. Consider the following deformation sequence of string diagrams

tr(f ⊗ g) = f ⊗ g

##

Q

��

K

�� ��
M N

||

P

��

L

OOOO �� ��

= f ⊗ g

%%

Q

��

K

ww

P

��

L

�� ��

M N

##

AA

PP

OO

66''

PP

=
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f g

%%

Q

��

K

zz

P

��

L

�� ��
M N

CC

&&
PP

::&&

PP

= f g

%%

Q

��

K

zz

P

��

L

��

  

AA

OO

M

M∗

��

GG

OO

��

N

N∗

= tr(f)⊗ tr(g)

The second and third equality hold by the description presented in the Appendix A of
maps that come from tensor products of simpler maps. The last diagram consists of
two disconnected traces of f and g, respectively. Thus, the proposition holds.

If we take N = 1 in the above proposition, we get the superposing condition.

Corollary 2.20. (Superposing) If M is dualizable, f : Q⊗M →M⊗P and g : K →
L are maps, then

tr(γ(f ⊗ g)) = tr(f)⊗ g.

Proof. Consider the following deformation of string diagrams

tr(f ⊗ g) = f ⊗ g

##

Q

~~

K

P

yy

��
M

M∗

&&

L

��

GG

OO

= f g
��

NN

ee

ww

##

Q

P

yy %%

L

��

K
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= f g

##

Q

{{

K

P

xx

��
M

M∗
((

L

  

DD

PP

= tr(f)⊗ g.

The last diagram is a juxtaposition of two string diagrams: tr(f) and g. Hence the
result follows.

Proposition 2.21. (Yanking) Let M be a dualizable object in C, then

tr(γM⊗M) = idM . (2.29)

Proof. Consider the following deformation of string diagrams,

tr(γM,M) =

��
M

��M

����

=

M

M

��

��

= M��

The last step was yanking the loop.

We have learned so far that traces requires a dualizable object and it is characterized
by the canonical trace given by the composite in Definition 22. However, traces can be
extended without dualizability. Joyal, Ross and Verity conceived a category with an
additional structure that give us a notion of feedback.

Definition 22. A categorical trace in a symmetric monoidal category C is a family
of functions

tr : HomC(Q⊗M,M ⊗ P )→ HomC(Q,P ) (2.30)

satisfying the properties of top and bottom tightening (Prop. 2.15), naturality (Prop.
2.16), nullarity (Prop. 2.17), binary (Prop. 2.18), superposing (Prop. 2.20) and yank-
ing (Prop. 2.21).
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We will use this abstract notion of trace to study the relation with categorical fixed
points in Section 2.7.

Definition 23. A symmetric monoidal category C is traced if it is equipped with a
trace given by Definition 22.

Example 14. A trivial example is a compact closed category, we know every object
is duailazable by the composition given in Definition 20 we can define a trace which
satisfies the mentioned properties.

The next step is to study how traces behave with monoidal functors and a natural
question emerges: What are the conditions such that a lax monoidal functor H : C →
D between symmetric monoidal categories commutes with the trace? The following
proposition answers that question.

Proposition 2.22. (Preservation of the trace)
Let C , D be symmetric monoidal categories and M dualizable in C. If H : C → D
is a monoidal functor, i.e. it preserves ⊗ and 1 up to isomorphism, then H(M) is
dualizable in D, and for any map f : M →M we have tr(H(f)) = H(tr(f)).

Proof. First, let us denote 1C and 1D as the identity objects in C and D, respectively.
We know the trace of f is the following composite morphism

1C M ⊗M∗ M ⊗M∗ M∗ ⊗M 1C.
η f⊗idM∗ γ ε

Then, we apply the monoidal functor and we get a composite morphism in D

H(1C) H(M ⊗M∗) H(M ⊗M∗) H(M∗ ⊗M) H(1C).
H(η) H(f⊗idM∗ ) γ ε

On the other hand, the trace of H(f) : H(M)→ H(M) is the following composition

1D H(M)⊗H(M∗) H(M)⊗H(M∗) H(M∗)⊗H(M) 1D.
η H(f)⊗idH(M∗) γ ε

Since H preserves the unit and product, we have the commutativity of each block in
the following diagram

H(1C) H(M ⊗M∗) H(M ⊗M∗) H(M∗ ⊗M) H(1C)

1D H(M)⊗H(M∗) H(M)⊗H(M∗) H(M∗)⊗H(M) 1D.

η

∼=

H(f⊗id)

∼=

γ

∼=

ε

∼= ∼=

η H(f)⊗id γ ε

Then, the conclusion holds.
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The key example and motivation of this thesis is the functor H : Mfd → GrVectk
from the category of smooth manifolds to the category of graded vector spaces, which
is defined as H(M) = H∗(M,Q), the rational homology. By the Kunneth theorem, the
homology satisfies the above proposition. Then, the Lefschetz number can be calculated
using the following formula

L(f) = tr(H(f) = H(tr(f)).

2.6 Fixed point operator

As we mentioned in the introduction of this chapter and our examples suggest, there
is a strong relation between traces and fixed points. In this section we are going to
describe the notion of fixed point in an abstract sense.

The bigest issue that we have in the abstract context, is that we do not have elements
to describe the functions, so the equation f(x) = x in an arbitrary category does not
make much sense. Fixed points can be written abstractly as follows: For a set X, we
say that x ∈ X is a fixed point of f if there exist a map i : ∗ → X (with source an
indistinguished point) defined by i(∗) = x. Then the maps must satisfy the following
commutative diagram:

X X

∗

f

i
i

With this idea we get the next definition.

Definition 24. Let f : A×X → X be a map in a cartesian category C. We say that a
parametrized fixed point of f , and call it A-fixed point, is a morphism f † : A→ X
that obeys the relation

A A× A A×X X

f†

∆A idA×f† f

i.e. f ◦ (idA × f †) ◦∆A = f †.

Remark 4. Let C be a category, and X ∈ Ob(C), we say that a fixed point of f : X → X
is a map f † : 1→ X which satisfies f ◦ f † = f †.

In string diagrams parametrized fixed points can be represented as:
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��
A

f †

��

f

{{

��

X
��

A

A

X

=
f †

A��

��

X

From Definition 24 we can try to produce fixed points in a coherent way. For each
automorphism f : X → X we get a map f † : 1 → X. It will be called the fixed point
operator. In general, for parametrized maps, we get the following definition.

Definition 25. Let us fix a Cartesian category C. A parametrized fixed point
operator is a family of maps

(.)† : HomC(A×X,X)→ HomC(A,X)

f 7→ f †,

satisfying:

1. Fixed point property: For any map f : A×X → X, we have

f ◦ (idA × f †) ◦∆A = f †. (2.31)

2. Natural in A: For any g : A→ B and f : B ×X → X, we have

f † ◦ g = f ◦ (g × idX)†. (2.32)

3. Natural in X: For f : A×X → Y and g : Y → X, then

(g ◦ f)† = g ◦ (f ◦ (idA × g))†. (2.33)

4. Diagonal property: For any f : A×X ×X → X, then

(f ◦ (idA ×∆X))† = (f †)†. (2.34)

There are several equivalent formulations of the fixed point operator. The formulation
presented here was introduced by Hyland in [?]. This axiomatization is the same as that
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of "Conway cartesian categories" in [9]. On the other hand, Hasegawa also introduced
fixed point operator in [19], where he considers the same axioms, but instead of the
diagonal property he takes the Bekic’s property, Lemma A.4, which allows simultaneous
fixed points to be reduced to sequential ones.

Those operators appear first in the study of iteration theory in computer science. The
axiomatization was used by Hyland and Haswegawa in certain categories where the
tensor product is also cartesian in order to stablish a relation with the notion of trace
due to Joyal, street and Verity in [1]. A good reference of fixed point operator in the
context of computer science is [37]. However, that topic is out of scope of this work.

2.7 Fixed point operator and general trace

We finish this chapter showing the relation between traces and fixed point operator in
cartesian monoidal categories.

At the introduction of this chapter we showed that the idea behind fixed points is to
mimic the feedback that is represented in string diagram notation as a loop. However,
traces can be represented as a loop with a cross, thanks to the symmetry condition.
We can deform the trace diagram as a loop, so the notion of feedback is similar to the
trace in some way.

Hyland and Hasegawa have independently observed the following.

Theorem 2.23. A cartesian monoidal category C is traced if and only if it has a fixed
point operator.

Proof. First, let us consider a traced cartesian category C, that is, a cartesian category
with a trace operator which satisfies the conclusions of Definition 22. Let us denote
the trace of C as tr, and we consider the operator F : HomC(A×X,X)→ HomC(A,X)
defined by

F (f) = tr(∆X ◦ f) : A→ X, (2.35)

where f : A × X → X is a map in C. We need to check that the above operator is a
fixed point operator, that is, F must satisfy all the conditions of Definition 25.

Note that through this proof we will require identities or lemmas which make our
life easier. Those helpful lemmas will be written at the end of Appendix A with its
respective proof. However, the simplicity of string diagrams to represent equations into
manipulable topological strings is not very convenient in some parts of the proof, so we
have decided to use them only when the profit is clear, otherwise we will use equations.

• Condition 1: Let f : A×X → X be any map in C
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F (f) =

F (f)

��

��X

A

��

��

FF

��

PPX

X

=

��A

X

f

f f

""

��

��   

��
�� ��
�� ��
��

vv

�� �� ��

��

MM

OO

��

�� ��

X

The diagram inside the red rectangle can be transformed into a line; thus, the above
diagram can be deformed into

��
A

f

X

f f

$$

A

��

�� ��

��

zz

��
�� ��

��

LL

OO

��

�� ��

X

=

��A

F (f)

##A




f f

A X

�� ��

��



 ��

||

�� ��

X

=

��A

F (f)

��A

f

��
X

��

��

A X = f ◦ (idA × F (f)) ◦∆A.

Inside the red rectangle above we have F (f). The third equality holds by Lemma A.2.

• Condition 2: Let f : B ×X → X and g : A→ B be maps in C, then
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F (f ◦ (g × idX)) = f

��X

g

��

B ��

A

��

��X

HH

��
OO

= f

g

��

��

A

��

��
HH

��
PP

B

��

X

X

=

F (f)

g

B
��

��

��

A

X

= F (f) ◦ g.

The second equality holds by stretching the diagram, and the third equality holds
because the diagram inside the red rectangle is F (f).

• Condition 3: Let f : A×X → Y and g : Y → X be maps in C, then

F (g ◦ f) = F (g ◦ f)
��

��

A

X

= g ◦ f
��

�� ��

��
OO

GG

��

XA

X

=
f
��A

g

��

��

��

Y

��

KK

OO��
X

=

f

��
A

��
}} !!

g g
�� ��

��X

Y

��

KK

��
PP

We can stretch the map g inside the blue rectangle and get

f
��

A

��
}} !!

g

g

��

��

��
X

Y

Y

��

KK

��
OO

,
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Next, we can simplify the diagram inside the blue rectangle as F (f ◦ (idA × g)). Thus,
we get

F (f ◦ (idA × g))
��

��

A

Y
g

��
X

= g ◦ F (f ◦ (idA × g))).

• Condition 4: Let f : A×X ×X → X be a map in C, then

(f †)† = (f †)

��
��

��

��
��PP

GG

A X

X

= f

��A
����

��

EE

!!
OO

X

��

EE

��

PP

= (∆X × idX) ◦∆X ◦ f

''

A

����

��

AA

PP

��
X

??

OO

##

PP

We can apply the vanishing axiom which states that these two traces over X can be
joined as a trace over X ×X and then we get

(∆X × idX) ◦∆X ◦ f

%%

A

��
X ×X

  

BB

PP

��

X

Applying the ciclicity axiom yields
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∆X ◦ f ◦ (idA ×∆X)

%%

A

��

  

BB

PP


X

= f ◦ (idA ×∆X)

&&A

��

%%}}
X

��

HH

PP

= (f ◦ (idA ×∆X))†

Conversely, suppose (−)† : HomC(A × X,B × X) → HomC(A,B) is any fixed point
operator on C which satisfies conditions 1 − 4 of Definition 25. We can define a trace
operator in the following way: Let g : A×X → B ×X be a morphism in C, then

trX(g) = πB,X ◦ (g ◦ (idA × π′B,X))†, (2.36)

where πB,X and π′B,X are the projections on the first and second components, respec-
tively. We need to verify that Formula 2.36 defines a trace operator, that is, it satisfies
the conclusions of Definition 22.

• Binaturality: We need to prove that the trace given by Formula 2.36 satisfies both
conditions in Lemma 2.15.

1. Top tightening: Let us consider f : A×X → B ×X and g : A′ → A, then

trX(f ◦ (g × idX)) = πB,X ◦ (f ◦ (g × idX) ◦ (idA′ × π′B,X))†.

Note that we can deform the map inside the operator (−)†

f

g

��A

��A′
�� 



B X

�� X

�� ��B X

= f

g

��

A

��
A′

�� ��

B X

��
X

�� ��B X

Thus, we get

trX(f ◦ (g × idX)) = πB,X ◦ (f ◦ (idA × π′B,X) ◦ (g × idB×X))†

= πB,X ◦ (f ◦ (idA × π′B,X)))† ◦ g, by property 2

= trX(f) ◦ g.
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2. Bottom tightening: Let us consider f : A×X → B×X and h : B → B′, then

trX((h× idX) ◦ f) = πB′,X ◦ ((h× idX) ◦ f ◦ (idA × π′B′,X))†

= πB′,X ◦ (h× idX) ◦ (f ◦ (idA × π′B′,X) ◦ (idA × (h× idX))†

where the second equality holds by Property 3. Note that the map πB′,X◦(h×idX)
can be transformed into:

h
��

�� ��

��

�� XB

B′

B′

=

�� ��

h
��

��

B X

B

B′

With this in mind, plus the Property (3), the above formula equals

h ◦ πB,X ◦ f ◦ ((idA × π′B′,X) ◦ (idA × h× idX) ◦ (idA × f))†.

Similarly, the map (idA × π′B′,X) ◦ (idA × h× idX) can be transformed into:

��A

h

��

��

�� 		

��B

B′

X

X

= ��A

�� ��

B X

��
X

Therefore, we get

h ◦ πB,X ◦ f ◦ ((idA × π′B,X) ◦ (idA × f))† = h ◦ πB,X ◦ (f ◦ (idA × π′B,X))†,

where the last equality is given by applying Property (3). Definition 2.36 tells us
that the right hand side is just h ◦ trX(f), and then the result follows.

• Nullarity: Let f : A× 1→ B × 1, then

tr1(f) =

��A

(π′B,1 ◦ f)†

$$

f
....
....
....
....

��A

��

....

...

...
....
...

��

B

=

��A

(π′B,1 ◦ f)†

$$

f

��A

��
B

= f
��

��

A

B

= f
��

��

A

B

= f .
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• Binary: Consider f : A×X × Y → B ×X × Y , then

trX×Y (f) = πB,X×Y ◦ f ◦ (idA × (π′B,X×Y ◦ f)†) ◦∆A

= πB,X×Y ◦ f ◦ (idA × (((π′B,X ◦ πB×X,Y ◦ f)× (π′B×X,Y ◦ f)) ◦∆A×X×Y )†) ◦∆A.

In the last equality we apply Lemma A.5 which allows us to discompose π′B,X×Y ◦ f in
a particular way. Now, we apply Bekic’s lemma (Lemma A.4) and the above equality
becomes

= πB,X×Y ◦ f ◦
(
idA ×

[
(π′A×X × (π′B×X,Y ◦ f)†) ◦∆A×X ◦ (idA × (h)†) ◦∆A

])
◦∆A

= πB,X×Y ◦ f ◦ (idA×X × (π′B×X,Y ◦ f)†) ◦∆A×X ◦ (idA × (h)†) ◦∆A.

where h = π′B,X ◦ πB×X,Y ◦ f ◦ (idA×X × (π′B×X,Y ◦ f)†) ◦∆A×X , which by Formula 2.36,
is the same as h = π′B,X ◦ trY (f). Thus, we get so far:

trX×Y (f) = πB,X×Y ◦ f ◦ (idA×X × (π′B×X,Y ◦ f)†) ◦∆A×X

◦ (idA × (π′B,X ◦ trY (f))†) ◦∆A

= πB,X ◦ πB×X,Y ◦ f ◦ (idA×X × (π′B×X,Y ◦ f)†) ◦∆A×X

◦ (idA × (π′B,X ◦ trY (f))†) ◦∆A

where the last equality holds by the following identity

πB,X×Y = πB,X ◦ πB×X,Y .

Again, applying Formula 2.36 twice, we get

trX×Y (f) = πB,X ◦ trY (f) ◦ (idA × (π′B,X ◦ trY (f))†) ◦∆A

= trX(trY (f)).

• Superposing: Consider f : A ×X → B ×X and g : C → D morphisms in C. Let
us call h = (idB × γX,D) ◦ (f × g) ◦ (idA× γX,C) : A×C ×X → B×D×X to make the
diagrams easy to understand. By Lemma A.3 in the appendix, we can write the trace
as the following composite

trX(h) = πB×D,X ◦ h ◦ (idA×C × (π′B×D,X ◦ h)†) ◦∆A×C .

It can be represented as the following string diagrams
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A× C

��

(π′B×D,X ◦ h)†

$$
A× C

A× C

h

{{ X

��

�� 		

B ×D

��

B ×D X

=

X

(π′B×D,X ◦ h)†

f × g

�� ��A C

��





"" %%

xx

�� �� ��

��B ×D ��X

��
B ×D

=

�� ��
A C

(π′B×D,X ◦ h)†

f
�� ��

yy

��
B ×D

g

��
D

��

��

"" ##

Note that π′B×D,X ◦ h = π′B,X ◦ f ◦ (πA,C × idX), this is clear by the following diagram:

f × g
��

A
��		

C X

���� ��

��
��

��

B ×D X

X

= f



��

��
X

��

X

��

�� ��

A C

Continuing with the trace, we can apply Property (2) and together with the above
identity we get:

trX(h) = ((πB,X ◦ f)× g) ◦ (idA × γX,C) ◦ (idA×C × ((π′B,X ◦ f)† ◦ πA,C)) ◦∆A×C .

Again, we can represent it into string diagrams
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f

(π′B,X ◦ f)†
��

%%

��A





zz
X

g

�� C

��

��

�� ��

�� B
D��

=

f

(π′B,X ◦ f)†
��

%%

��A





zz
X

g

�� C

��

�� ��

�� B
D��

=

A

f

(π′B,X ◦ f)†

~~
X





��

��

�� ��

�� B

g
��

��

C

D

which is trX(f)× g, then the result holds.

•Naturality respect X: Let f : A×X → B × Y and g : Y → X be morphisms in C.
Then,

trX((idB × g) ◦ f) = πB,X ◦ ((idB × g) ◦ f ◦ (idA × π′B,X))†

= πB,X ◦ (idB × g) ◦ (f ◦ (idA × π′B,X) ◦ (idA × idB × g))†

= πB,Y ◦ (f ◦ (idA × π′B,X) ◦ (idA × idB × g))†.

The last equality is given by Lemma A.6 in the appendix. In addition, Lemma A.7
allows us to replace the equation inside (−)† as follows

f ◦ (idA × π′B,X) ◦ (idA × idB × g) = f ◦ (idA × g)× (idA × π′B,Y ). (2.37)

Thus, we get

trX((idB × g) ◦ f) = πB,Y ◦ (f ◦ (idA × g)× (idA × π′B,Y ))† = trY (f ◦ (idA × g)).

Then, the result holds.

• Yanking: Let X be an object of C and γX,X the symmetry isomorphism, then

tr(γX,X) =

����

�� ��

X
��

X X

X X

(π′X,X ◦ γX,X)†

��   

��
X

=

����

�� ��

X

��

X X

X X

(πX,X)†

��
##

��
X
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Note that π′X,X ◦ γX,X is just πX,X and πX,X ◦ γX,X = π′X,X , see Appendix A, then the
second equality holds. The diagram inside the blue box is πX,X ◦ γX,X . Hence, the last
diagram can be transformed into

(πX,X)†

X
��

##

π′X,X

��
X

��

 =
(πX,X)†
��

��

X

X

Now, we can apply the fixed point property and then we get

(πX,X)†

X
��

##

πX,X

��
X

��
��

= �� X = idX ,

which is projected to the first component, so we get the identity map.



Chapter 3
Atiyah duality and Spectra

In this chapter we are going to study the theory necessary to understand tr(f) for a
smooth map f : M → M . The first step is to study dualizability for manifolds. We
will assume the manifold M has an Euclidean neighborhood retract (or a ENR space),
that is, there is an open set V in Rn such that M is a retract of B. In the same way,
we will assume M is a compact manifold in order to avoid technical problems.

In 1915, Alexander conceived a relation between the homology of a manifold and the
cohomology of its complement. It is what is now called Alexander duality. More
formally, we get the following definition.

Definition 26. Let X be a compact subspace of the sphere Sn of dimension n. Let
Y ∼= Sn − X be an equivalence of the complement of X in Sn. Then if H̃ stands for
reduced homology or reduced cohomology, there is an isomorphism

H̃q(Y ) ∼= H̃q(S
n −X) ∼= H̃n−q−1(X) (3.1)

for all q ≥ 0. We say that X and Y are Alexander duals of each other.

Let K be a knot in S3, i.e. the image of an embedding of S1 ↪→ S3. If, K and S3 −K
are Alexander duals then there is an isomorphism

H̃n−i(K,Z) ∼= H̃i(S
n+1 −K,Z).

It satisfies H1(S3 − K) ∼= H1(S1) ∼= Z, and it does not depend on the choice of the
knot. On the other hand, for different knots K and K ′ the homotopy type of S3 −K
and S3 −K ′ are not necessarily the same; they depend on the embedding.

However, Spainner and Whitehead proved that after suspending many times they be-
come homotopically equivalent. Thus, in general we get the following theorem.

68
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Theorem 3.1. Let X be a compact simplicial complex. Let f, g : X → Sn be two
simplicial embeddings. For some N >> 0 the N-fold suspensions ΣN(Sn − f(X)) and
ΣN(Sn − g(X)) are homotopy equivalent.

Proof. The proof follows directly from two facts:

1. For k big enough, any two embeddings of X into Sn+k are isotopic.

2. Giving an embedding X ↪→ Sn for n >> 0 that Σ(Sn−X) is homotopy equivalent
to Sn+1 −X, where X is embedded into Sn+1 via the equatorial inclusion Sn ↪→
Sn+1.

Motivated by this issue, Spanier defined the S-category in the 50’s as a natural frame
work to the Alexander duality.

Definition 27. The S-category is the category whose objects are the objects in Top∗
and its morphisms are colimits over homotopy classes of continuous functions between
their arbitrary high suspensions.

[X, Y ]S := colimN→∞[ΣNX,ΣNY ].

Remark 5. The S-category has some issues: it is neither complete nor co-complete.
We like gluing stuff together, so this is unfortunate. As a consequence, Brown repre-
sentability theorem does not hold in the S-category.

At this level, we can start to talk about desuspension. For each finite CW-complex X
and each n ≥ 1, we define the n-th formal desuspension of X, denoted by Σ−nX, by

HomS[Σ−nX,Σ−nY ] = [ΣN−nX,ΣN−nY ] (3.2)

for large enough N ∈ N. Shortly after introducing the S-category, Spanier and White-
head (1955) developed their duality theory.

Definition 28. Let A,B two based spaces (or based CW-complex). We say A,B are
n-dual if there is an embedding ΣkA ↪→ Sk+n+1 and homotopy equivalence ΣlB '
Σl(Sk+n+1 − ΣkA).

In other words, we say A and B are n-dual, if A ∼= Sn −B in the S-category.

Milnor and Spanier (1960) clarified the relation between Spanier–Whitehead duality
and Poincaré duality on a closed differentiable manifold. Thom (1952) had introduced
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what is now called the Thom space Mα of a vector bundle α over M . The Spainer-
Milnor theorem asserts that for a closed manifold M embedded in a euclidean space Rk

with normal bundle η over M then

Mη is k-dual to M+,

where M+ is the disjoint union of M with a point. Later in 1961 Atiyah extended the
Spanier-Milnor theorem to manifolds with boundary.

So, the problem is to find a category with good properties for stable phenomena. Highly
motivated by the work of Atiyah, this attempt was made by Lima in his Ph.D. thesis
and it is called spectra. Nevertheless, this category does not have good properties;
for example there are models of spectra that represents the same reduced cohomology
theory but are not homotopy equivalent. This issue was solved by Boardman in his
Ph.D. thesis by considering the category that we know as stable homotopy category.

We will finish this chapter by studying how Atiyah’s duality formulas are used to
prove the Lefschetz fixed point theorem following the ideas and results presented in the
previous Chapter.

3.1 Preliminaries

Let us start this section with some concepts and theorems necessary to understand the
stable homotopy category denoted by HoSpect. Good references include [21].

Let us start this section with an important definition in topology that we presented
in the above section. There is a process that to each based-topological space X you
can construct a space of one higher dimension, it is called the suspension of X and
denoted by ΣX, it is defined by the quotient space

ΣX =
X × I
X ∨ I

(3.3)

where X ∨ I is the subespace (X × ∗) ∪ (x0 × I) ⊂ X × I with base points x0 × ∗.
It can be proved that the suspension of X is homeomorphic to X ∧ S1, that is again
a based topological space. In a categorical language we say that there is a functor
Σ : Top∗ → Top∗.

There is a right adjoint functor to Σ called the loop space functor Ω : Top∗ → Top∗,
which is defined by the topological base space ΩX = Maps(S1, X). For a map f :
ΣX → Y , we can get a map g : X → Map(S1, Y ) = ΩY in the following way:

X × I

ΣX Y

p F

f
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There is a function F : X × I → Y that factors through ΣX and satisfies F (x0, 0) =
F (x0, 1). Then, we define g : X → Map(I, Y ) by g(x) = F (x,−) : I → Y , for t = 0, 1
we get the same value for g. So, g(x) is a map which takes values in S1.

Definition 29. A continuous function f : A → B is called a cofibration if given a
continuous function g : B → C and a homotopy Ht : A→ C such that H0 = g ◦ f , then
there is a homotopy H̃t : B → C such that H̃t ◦ f = Ht.

Definition 30. Let f : A→ B be a function, we define the mapping cone of f denoted
as Cone(f) as the topological space

Cone(f) := A× I ∪B/ ∼, (3.4)

where ∼ is the equivalence relation defined by (a, 1) ∼ f(a) and (a, 0) ∼ (a′, 0), for
a, a′ ∈ A.

The following theorem helps us study homotopy groups. We know that finding the
homotopy groups of the sphere is a hard problem. However, the groups seems to
(eventually) stabilize.

Theorem 3.2. (Freudenthal suspension theorem) Let X be an (n − 1)-connected
based space. Then the map j : πi(X, x0) → πi+1(ΣX, x0) is an isomorphism when
i < 2n− 1 and is a surjection when i = 2n− 1.

Proof. The result follows from the homotopy excision theorem. For a detailed descrip-
tion see [?].

In the previous theorem, if we replace X by a sphere, we get the stable homotopy
groups of spheres. The groups πn+k(S

n) with n > k+ 1 are called the stable homotopy
groups of spheres, and are denoted by πsk: They are finite abelian groups for k 6= 0, and
have been computed in numerous cases, although the general pattern is still elusive.

If X is n-connected, then ΣX is (n + 1)-connected and so the Freudenthal theorem
implies that, if X is a CW-complex of any connection and i ∈ N, the morphisms in the
sequence

πi(X)→ πi+1(ΣX)→ · · · → πi+k(Σ
kX)→ · · ·

will become isomorphisms from a certain point. The i-th stable homotopy group πsi (X)
of X is

πsi (X) = colimkπi+k(Σ
kX). (3.5)

Here is where the word stable appears, in other words, we say that a phenomenom is
stable if it occurs independent of the dimension or can occur in any dimension. That
is the starting point of this theory: to study a context that generalizes the spaces and
where stable phenomena would be easier.
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3.2 Spectra

There are many approaches to spectra. In this work we have decided to start with the
discussion of generalized homology and cohomology theories. There are many other
interesting approaches to define spectra. For example, the desuspension, that is, in-
verting in some way the suspension functor Σ, thanks to the suspension condition in
cohomology theories. That has as a result the notion of "negative" spheres. A good
introduction is the famous book by Adams [4].

Definition 31. (Eilenberg-MacLane Spaces)
Let G be any Abelian group, and n ∈ N. An Eilenberg-MacLane space of type (G, n)
is a space X of the homotopy type of a based CW-complex such that:

πk(X) =

{
G if k = n,

0 otherwise.

We denote such a space by K(G, n).

Proposition 3.3. For any abelian group G and n ≥ 1, we have the homotopy equiva-
lence Ω(K(G, n)) ∼= K(G, n− 1).

Proof. The result follows directly from the isomorphism πm(X) ∼= πm−1(ΩX), which is
a direct implication from the adjunction between Σ and Ω.

Now, let us recall the axioms for a generalized cohomology theory due to Eilenberg and
Steenrod.

Definition 32. A reduced cohomology theory is a functor Ẽ∗ : (Top∗)op → AbZ

from the opposite of pointed topological spaces to Z-graded abelian groups (“cohomology
groups”); for maps we have

Ẽ : (f : X → Y ) 7→ (f ∗ : Ẽ(Y )→ Ẽ(X))

equipped with a natural isomorphism of degree +1, to be called the suspension isomor-
phism, of the form

σn : Ẽ∗+1(Σ−)→ Ẽ∗(−).

Ẽ∗ satisfies:

1. Homotopy invariance: If f1, f2 : X → Y are two morphisms of pointed topolog-
ical spaces such that, if there is a (base point preserving) homotopy f1 ' f2 between
them, then the induced homomorphisms of abelian groups are equal f ∗1 = f ∗2 .
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2. Exactness: For i : A ↪→ X an inclusion of based topological spaces, with j :
X → Cone(i) the induced mapping cone, then this gives an exact sequence of
graded Abelian groups

Ẽ∗(Cone(i)) Ẽ∗(X) Ẽ∗(A).
j∗ i∗

3. Additivity axiom: For {Xi}i∈I any set of based CW-complexes, then the canon-
ical comparison morphism

Ẽ∗
(∨
i∈I

Xi

)
→
∏
i∈I

Ẽ∗(Xi)

is an isomorphism.

Similarly, we say that a reduced homology theory is the same thing but contravariant,
written as Ẽ∗. We say that a cohomology theory is an ordinary cohomology theory if in
addition it satisfies the "dimension axiom" of the Eilenberg–Steenrod axioms, that is,
the homology of a point vanishes in dimension other than 0.

Remark 6. Homology and cohomology theories also satisfies the Mayer-Vietoris axiom.
It is not necessary to add it to the above list of axioms, since it follows directly from
the same one.

Definition 33. A homomorphism of reduced cohomology theories η : Ẽ∗ → F̃ ∗ is a
natural transformation between the underlying functors which is compatible with the
suspension isomorphisms in that the following square commutes

Ẽ∗(X) F̃ ∗(X)

Ẽ∗+1(ΣX) F̃ ∗+1(ΣX).

ηX

Σ Σ

ηΣX

Thanks to the above definitions we say that the reduced cohomology theories form a
category denoted by CohomThy, respectively there is a category of reduced homology
theory.

The most important property of Eilenberg-MacLane spaces is that they represent the
singular cohomology, i.e., there is an isomorphism

H̃n(X,G) = [X,K(G, n)]. (3.6)

Also, we can define the singular homology by the formula

H̃n(X,G) = colimkπn+k(X ∧K(G, k)). (3.7)
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In [21],the author proves that the above formulas satisfy the axioms in Definition 32.
By Proposition 3.3, we have an homotopy equivalence

σ̃n : K(G, n)→ ΩK(G, n+ 1). (3.8)

This map is adjoint to the map

σn : ΣK(G, n)→ K(G, n+ 1). (3.9)

In a more general sense, in order to construct a generalized homology or cohomology
theory, one can consider a family of based spaces endowed with relations among the
reduced suspensions of these spaces. It will turn out to be sufficient to consider only
a sequence E0, E1, E2, · · · of based spaces, together with maps ΣEn → En+1. Such a
sequence is called a spectrum. Throughout the literature, one finds various definitions
of spectrum that do not necessarly agree. Without going through the details, the reason
for these different definitions is to find a convenient category to work with. Here is where
the notion of stable homotopy category plays a key role because in all those definitions
of spectra, if we invert the weak equivalences, or we localize it using the Quillen’s model
theory, then we get the stable homotopy category.

The next theorem is due to Edgar H. Brown, see [12]. It states that any generalized
cohomology (equiv. homology) theory defined on the category Top of compactly gen-
erated weak Hausdorff spaces gives rise to a sequence of spaces {En}n∈Z such that the
functor Ẽn(−) is naturally isomorphic to the functor [−, En]. That is, En represents
the functor Ẽn(−). In a more general and precise language:

Theorem 3.4. (Brown’s representability theorem)
Let F be a contravariant functor from the category of topological spaces weakly equiva-
lent to CW complexes to the category of point sets and maps. Suppose F satisfies the
Mayer–Vietoris axiom, and the wedge axiom in Definition 32. Then there exists a CW
complex Y , unique up to homotopy, such that F (−) is naturally isomorphic to [−, Y ].
Furthermore, there is an element u ∈ F (Y ) such that this natural isomorphism is given
by [X, Y ] ∼= F (X) via f 7→ f ∗u.

Proof. See Theorem 4E.2 in [21].

Thus we get the following definition.

Definition 34. A spectrum is a sequence E = {En}n∈Z of based spaces together with
maps σn : ΣEn → En+1 called the structure maps. The space En is called the n-th term
of the spectrum E. If E and F are spectra, a map of spectra f : E → F is family of
maps {fn : En → Fn}n∈Z such that the following square commutes

ΣEn En+1

ΣFn Fn+1

Σf

σn σn+1

fn+1



3.2. Spectra 75

We will denote the category of spectra by Spect. Some examples of spectra include:

Example 15. The suspension spectrum: To each based space X one can associate
a spectrum. We define Σ∞X the suspension spectrum of X, where the n-th term is
given by the n-th reduced suspension of X, namely ΣnX, and its structure maps σn :
Σ(ΣnX) → Σn+1X are the obvious identity maps. For each based map f : X → Y
we define Σ∞f : Σ∞X → Σ∞Y as the family of maps {Σnf : ΣnX → ΣnY : n ≥ 0}.
Obviously, we have the required commutativity of the following diagram for each n ≥ 0

Σ(ΣnX) Σ(ΣnY )

Σn+1X Σn+1Y

Σ(Σnf)

id id

Σn+1f

making Σ∞f a map of spectra. Since compositions and identies are obviously preserved,
we have defined a functor Σ∞f : Top∗ → Spect.

The sphere spectrum S: A particularly nice example is given by the 0-sphere S0. Ap-
plying the suspension spectrum functor Σ∞ we get that its n-th term is homeomorphic
to Sn. Subsequently, we denote the sphere spectrum Σ∞S0 by S.

It is clear that the sequence of Eilenberg-MacLane spaces form a spectrum. Eilenberg-
MacLane spectrum enjoys a special property: The n-th space (HG)n and the loop space
of (HG)n+1 are both Eilenberg-MacLane spaces of type K(G, n) and in fact the map
σ̃n : (HG)n → Ω(HG)n+1 adjoint to the structure map is a weak equivalence for all
n ≥ 0. Spectra with this property play an important role in stable homotopy theory,
and they deserve a special name.

Definition 35. An Ω-spectrum E is a spectrum such that the adjoint map σ̃n : En →
ΩEn+1 of the structure map σn is a weak equivalence for each n ≥ 0. If E and F are
Ω-spectra, then a map of Ω-spectra f : E → F is a map of the underlying spectra.

In [3] Adams introduced his representability theorem that relates generalized cohomolgy
theories with Ω-spectra.

Theorem 3.5. Let H∗ be a generalized cohomology theory defined on finited CW-
complexes. Then H∗ is the generalized cohomology theory corresponding to a Ω-spectrum
E represented by the formula

Hn(X) = [X,En]. (3.10)

The sphere spectrum does not represent a cohomology theory given by Formula 3.10,
because it is not a Ω-spectrum. However, it is not hard to verify that the stable homo-
topy groups πsn defines a reduced homology theory, equivalently, the stable cohomotopy
groups defines a reduced cohomology theory.
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Formula 3.5 can be generalized at the level of spectra by the formula

πsn(E) = colimkπn+k(En+k) (3.11)

for E a spectrum.

In general, given a spectrum E and a based space X the following formulas

Ẽn(X) = [Σ∞X,ΣnE], (3.12)

Ẽn(X) = πsn(X ∧ E), (3.13)

where (X ∧ E)n = X ∧ En, define generalized reduced cohomology and homology
theories, respectively. One can also define homology and cohomology for spectra, and
the same results hold once we translate the Eilenberg-Steenrod axioms into the world
of spectra.

What gets confusing is that there are dozens of models of spectra, nearly all of which
give the same homotopy category, but which are pretty different on the point-set level.

We can extend the smash product E ∧ F of spectra E, F of the above spectra X ∧ E
where X is an space and E an spectrum. The definition (construction) of the smash
product of spectra can be found in the book by Adams [4].

Theorem 3.6. There is a construction which assigns to spectra E and F a certain
spectrum denoted by E ∧ F . This construction is called the smash product of spectra
and has the following properties:

1. It is a covariant functor of each of its arguments.

2. There are natural equivalences:

a : (E ∧ F ) ∧G→ E ∧ (F ∧G),

τ : E ∧ F → F ∧G,
l : S ∧ E → E,

r : E ∧ S→ E,

Σ : ΣE ∧ F → Σ(E ∧ F ).

3. For every spectrum E and CW-complex X, there is a natural equivalence e :
E ∧X → E ∧Σ∞X. In particular, Σ∞(X ∧ Y ) ∼= Σ∞X ∧Σ∞Y for every pair of
CW-complexes X, Y .

4. If f : E → F is an equivalence then f ∧ idG : E ∧G→ F ∧G is.

5. Let {Eλ} be a family of spectra, and let iλ : Eλ →
∨
λEλ be the inclusions. Then

the morphism

{iλ ∧ id} :
∨
λ

(Eλ ∧ F )→ (
∨
λ

Eλ) ∧ F.

is an equivalence.
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6. if A→ B → C is a cofiber sequence of spectra, then so is the sequence

A ∧ E → B ∧ E → C ∧ E. (3.14)

for every spectrum E.

Proof. See [4].

However, there is not a natural definition of the smash product between spectra. Thus,
thanks to the previous theorem we can expect desirable properties for the smash prod-
uct.There is an obvious first generalization: For E and spectrum, X a space and Σ∞X
its suspension spectrum. Then, we may define E ∧ Σ∞X by

(E ∧ Σ∞X)n = En ∧ (Σ∞X)0 = En ∧X (3.15)

and the obvious structure maps, so we get E ∧ Σ∞X = E ∧ X. However, that con-
struction has a problem: If we suspend Σ∞X we get (Σ∞X)0 = ∗ and then the smash
product gives ∗, which is not the suspension of E ∧X.

There is a very intuitive construction called naive smash product : Let E and F be
spectra we can define a wedge product as the spectra E ∧ F defined by the formula

(E ∧ F )n =

{
Ek ∧ Fk if n = 2k,

Σ(Ek ∧ Fk) if n = 2k + 1.

Denoting the structure maps of E and F by e : ΣEn → En+1 and f : ΣFn → Fn+1,
then we define Σ(E ∧F )n → (E ∧F )n+1 by e∧ id : S1 ∧En ∧Fn → En+1 ∧Fn for even
n; for odd n we define it by S1 ∧ En ∧ Fn

τ∧id−−→ En ∧ S1 ∧ Fn
id∧f−−→ En ∧ Fn+1. This

defines a spectrum

We are ready now to give the following definition:

Definition 36. A ring spectrum is a triple (E, µ, ι) where E is a spectrum, µ :
E ∧ E → E and ι : S → E are morphisms such that the following diagrams commute
up to homotopy:

• Associativity:

(E ∧ E) ∧ E E ∧ E

E

E ∧ (E ∧ E) E ∧ E

α

µ∧id

µ

id∧µ

µ
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where a is a natural equivalence given by definition of the smash product of spectra.

• Unitary:

S ∧ E E ∧ E E ∧ S

E E E

l µ r

id id

where l, r are the natural equivalences given by definition of the smash product of
spectra.

In addition, we say that the ring spectrum is commutative if the following diagram
commutes up to homotopy

E ∧ E E ∧ E

E E

τ

µ µ

id

where τ twists the factors of the smash product.

A morphism of ring spectra ϕ : (E, µ, ι) → (E ′, µ′, ι′) is a morphism ϕ : E → E ′ such
that the following diagrams commute up to homotopy:

E ∧ E E ′ ∧ E ′ S E

E E ′ S E ′.

ϕ∧ϕ

µ µ

ι

ϕ

ϕ ι′

3.3 Symmetric Spectrum

The concept of spectrum was introduced by Lima in his Ph.D. thesis [25] and later
generalized by Whitehead [40]. Later, different categories of spectra were constructed.
We use the category suggested by Adams. Each construction was motivated by desirable
properties that a spectrum should have. However, the problem of which is a category
with good properties that allows us to capture the essence of stability was solved by
Boardman in his Ph.D. thesis and it was called the homotopy category of spectra or the
stable homotopy category. Therefore, a question emerges: What is the correct notion
of spectra?

One of the answers that got a remarkable attention was recently provided by Mark
Hovey, Brooke shipley and Jeff Smith in the famous work [22] and corresponds to the
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category of symmetric spectra. For a detailed description of symmetric spectra the
reader can consult the above article.

A symmetric spectrum is a spectrum equipped with an action of the symmetric group on
each component space, such that the structure maps intertwine these actions combined
with the canonical permutation action on the n-spheres.

Definition 37. A Symmetric spectrum consists of:

1. A sequence of {Xn}n∈N of pointed simplicial sets.

2. A basepoint preserving left action of the symmetric group Σn on Xn.

3. A sequence of morphisms of pointed simplicial sets σn : Xn ∧ S1 → Xn+1.

We require that for all n,m ≥ 0, the following composite is Σn × Σm-equivariant:

σn,m : Xn ∧ Sm → Xn+m. (3.16)

We should always think of Σn as acting on Sn by permuting sphere coordinates. And
the action in Xn+m is given by the injection of Σn × Σm ↪→ Σn+m.

A morphism f : X → Y of symmetric spectra consists of Σn-equivariant based maps
fn : Xn → Yn for n ≥ 0, which are compatible with the structure maps in the sense
that the following commutes for all n ≥ 0:

Symmetric spectra with the defined morphisms form a category usually denoted SpΣ.

Let us study a particular spectrum which can be gotten from the two previous con-
structions.

Definition 38. A symmetric ring spectrum R is

1. A sequence of pointed spaces {Rn}.

2. A basepoint preserving continuous left action of the symmetric group Σn on Rn

for each n ≥ 0.

3. For all m, k ∈ N a multiplication map µm,k : Rk ∧Rm → Rk+m.

4. Two unit maps i0 : S0 → R0 and i1 : S1 → R1.

such that the associativity, unit as in the previous definition plus the following diagram
commute:
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Rn ∧ S1 Rn ∧R1 Rn+1

S1 ∧Rn R1 ∧Rn R1+n

id∧i1 µn,1

γn,1

i1∧id µ1,n

where γn,1 ∈ Σn,1 is the shuffle permutation, which γn,m moves the block of n things
past the other m. In addition, we say that R is commutative if the following diagram
commutes

Rn ∧Rm Rm ∧Rn

Rn+m Rm+n

µn,m

twist

µm,n

γn,m

We can define a tensor product in the category of symmetric spectra, as follows. Let E
and F be symmetric spectra, then we can define a new spectrum given by

(E ⊗ F )n =
∨

p+q=n

(Σn)+
∧

Σp×Σq

(Ep ∧ Fq) (3.17)

Remark 7. It is clear that the above spectrum is equivariant under the action of the
symmetric group. In addition, it is the coequalizer of certain maps, for a detailed
description see [22].

Remark 8. The sphere spectrum is an example of a symmetric ring spectrum.

Remark 9. Given the symmetric spectrum category SpΣ, a tensor product given by For-
mula 3.17 and the sphere spectrum we can verify that (SpΣ,⊗,S) is a closed symmetric
monoidal category.

3.4 Stable homotopy category

We are going to list some properties that we would like to have in the stable homotopy
category to be defined, denoted by HoSpect. Those properties are imposed in order to
study stable phenomena. Formally, we can get the stable homotopy category inverting
weak equivalences in the sense of Quillen.

In addition, we will prove from the next list of axioms that objects in HoSpect can
define generalized homology and cohomology theories.

1. HoSpect is a closed symmetric monoidal category, i.e., HoSpect together with
a monoidal product denoted by ∧, an identity object denoted by S and a internal
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Hom which will be denoted by F . Thus, if X, Y, and Z are objects in HoSpect,
there are natural coherent isomorphisms in HoSpect such that

S ∧X ∼= X,

X ∧ (Y ∧ Z) ∼= (X ∧ Y ) ∧ Z,
X ∧ Y ∼= Y ∧X,
[X ∧ Y, Z] ∼= [X,F (Y, Z)],

F (S, X) ∼= X,

F (X ∧ Y, Z) ∼= F (X,F (Y, Z)).

The last two properties follow from the first four properties plus Yonneda’s lemma.
Indeed

[S, F (S, X)] ∼= [S ∧ S, X] ∼= [S, X].

By Yonneda’s lemma the result follows. For the last property, note that

[S, F (X ∧ Y, Z)] ∼= [S ∧ (X ∧ Y ), Z] ∼= [X ∧ Y, Z] ∼= [X,F (Y, Z)] ∼= [S, F (X,F (Y, Z)]

and again by Yonneda’s the result follows. Here, the bracket [−,−] denotes the
morphisms in HoSpect.

2. There is a faithfull monoidal functor Σ∞ : Top∗ → HoSpect. That is, some
objects in HoSpect come from based spaces. In addition, this functor must
respect product and coproduct, that is, Σ∞(X ∨ Y ) ∼= Σ∞X ∨ Σ∞Y for X, Y
based spaces.

3. There is a suspension functor Σ : HoSpect → HoSpect that comes from the
classical suspension in topological spaces. That is the following square commutes

Top∗ Top∗

HoSpect HoSpect.

∑
∑∞ ∑∞

∑
Even more, in HoSpect the functor Σ defines an equivalence of categories.

4. There is a right adjoint functor Ω∞ : HoSpect→ Top∗, that is, an isomorphism

[Σ∞K,X] ∼= [K,Ω∞X].

5. There is a loop functor Ω : HoSpect → HoSpect that comes from the usual
based loop space. That is, the following square commutes
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Top∗ Top∗

HoSpect HoSpect.

Ω

Ω∞

Ω

Ω∞

Here in HoSpect the functors Σ and Ω are adjoints and the compositions Σ ◦
Ω and Ω ◦ Σ are naturally isomorphic to the identity. In simple words, we can
write every object in HoSpect as a suspension or a loop of other object.

6. HoSpect must be an additive category. That is the set of morphisms is an
abelian group and composition of morphisms [X, Y ]× [Y, Z]→ [X,Z] is a bilinear
map that induces an abelian group homomorphism [X, Y ] ⊗ [Y, Z] → [X,Z]. In
addition, we require the existence of finite products and coproducts that we will
denote by X×Y and X∨Y , respectively. We can equip [X, Y ]∗ with the structure
of an Abelian group in the following way:

[X, Y ]n = [ΣnX, Y ].

Here the order of the suspensions does not matter if we put the suspension
on the left, we call the above convention the homological grading. Otherwise
[X, Y ]n = [X,ΣnY ] is called the cohomological grading. You should note that
[X, Y ] contributes to the 0-th level in the graded abelian group.

7. There is a zero object in HoSpect denoted by ∗, coming from the one-point
based space ∗ in Top∗. That is, there are unique maps ∗ → E → ∗ in HoSpect.
Therefore ∗ is the unit for both product and coproduct then E ∨ ∗ ∼= E and
E × ∗ ∼= E. In addition, in HoSpect the product and coproduct as above are
the same. For based spaces it is not true.

8. For an object X in HoSpect the stable homotopy group is defined by

πn(X) = [S, X]n = [ΣnS, X]. (3.18)

Let us consider now a topological based space K, then there is an isomorphism

[Σ∞K,X] ∼= [K,Ω∞(X)]

in HoSpect.

9. We will require a Whithehead’s theorem: If f : X → Y is a map inHoSpect that
induces an isomorphism f∗ : π∗(X) → π∗(Y ), then f is an isomorphism. Thus,
stable groups help us to identify isomorphisms in HoSpect.

10. We require a triangulated structure in HoSpect. Before talking about triangu-
lated categories, let us start by describing triangles and then we will describe a
triangulated category. We can form a sequence

X Y Z ΣX
f g h (3.19)
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and we say that (X, Y, Z, f, g, h) is a triangle. In HoSpect, there are triangles
that we will call distinguished triangles, that satisfy the following properties:
For each distinguished triangle

X Y Z ΣX,
f g h (3.20)

and each object W in HoSpect there are long exact sequences of abelian groups

· · · [W,X]n [W,Y ]n [W,Z]n [W,Y ]n−1 · · ·

· · · [X,W ]n [Y,W ]n [Z,W ]n [X,W ]n+1 · · ·
(3.21)

If we take W = S, then the previous sequence gives rise to a long exact sequence

· · · πn(X) πn(Y ) πn(Z) πn−1(X) · · · (3.22)

In addition, we require that Σ∞ takes cofiber sequences in Top∗ to distinguished
triangles in HoSpect. Also, Ω∞ takes distinguished triangles in HoSpect to
fiber sequences in Top∗.

In the stable homotopy level we can say that a generalized reduced cohomology (equiv-
alently homology) theory can be represented whitout distinction with the spectra case,
we will call it the Adams-Brown representability theorem.

Theorem 3.7. (Adams-Brown representability theorem). Every cohomology (resp.
homology) theory is represented (resp. corepresented) by an object in HoSpect. That
is, there is a functor Ẽ : HoSpect → CohomThy which is full and faithfull. The
functor is defined by

Ẽn(Y ) = [Σ∞Y,ΣnE] (3.23)

where Y is a based space and E an object in HoSpect.

Proof. To see that the functor defined by Formula 3.23 is a generalized reduced co-
homology theory we need to check that our construction satisfies the conditions of
Definition 32.
By definition Ẽn(X) is a set of morphisms in Hospect which are abelian groups. Now
we need to verify that Ẽ satisfies all the the axioms of Definition 32.

1. Suspension condition: Let E be an object in Hospect and X a based space.
Then we have the following sequence of isomorphisms

Ẽn(X) = [Σ∞X,ΣnE]→ [Σ(Σ∞X),Σ(ΣnE)] ∼= [Σ∞(ΣX),Σn+1E] = Ẽn+1(ΣX).

Here we used that Σ∞ ◦Σ = Σ ◦Σ∞ and that the suspension is an equivalence in
HoSpect.
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2. Homotopy invariance: Let f, g : X → Y be two maps in Top∗ such that f ∼ g
are homotopy equivalent. We know the functor Σ∞ factors through HoTop∗,
that is, the following composite represents the functor Σ∞

Top∗ HoSpect

HoTop∗
W

Σ∞

Σ∞

By abuse of notation we will call Σ∞ the functor from HoTop∗ to HoSpect.

3. Exactness axiom: Let f : X → Y be a map in Top∗, then there is a cofiber
sequence

X Y Cone(f) ΣX · · ·f j h

again in Top∗. We can apply the functor Σ∞ and then we get a distingished
triangle in Hospect

Σ∞(X) Σ∞Y Σ∞Cone(f).
Σ∞(f) Σ∞(j)

Applying the functor [−,ΣnE] we get

· · · [Σ∞(Cone(f)),ΣnE] [Σ∞Y,ΣnE] [Σ∞X,ΣnE] · · ·j∗ f∗

Since Hospect is a triangulated category, then the functor [−,ΣnE] induces a
long exact squence of abelian groups. Then, we can conclude that there exists an
exact sequence

Ẽn(Cone(f)) Ẽn(Y ) Ẽn(X).
j∗ f∗

4. Additivity axiom: Let {Xi}i∈I be a collection of based spaces, then

Ẽn

(∨
i∈I

Xi

)
=

[
Σ∞(

∨
i∈I

Xi),Σ
nE

]
∼=

[∨
i∈I

Σ∞Xi,Σ
nE

]
.

A map
∨
i∈I (Σ∞Xi) → Z in Hospect is the same as a collection of maps

{Σ∞Xi → Z} for any object Z in Hospect. Then,[∨
i∈I

(Σ∞Xi) ,Σ
nE

]
∼=
∨
i∈I

[Σ∞Xi,Σ
nE] ∼=

∏
i∈I

[Σ∞Xi,Σ
nE] .

The last isomorphism is due to the fact that inHospect products and coproducts
are the same.
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We can extend the previous construction and equivalently show that En(X) = Ẽn(X+)
form an unreduced cohomology theory, following in a similar way the axioms that
describe the unreduced cohomology; see these axioms in [21].

Remark 10. The abelian groups Ẽn(X) = [S, ((Σ∞X) ∧ E]n ∼= πn(Σ∞X) ∧ E) define a
reduced homology theory. The proof is very similar to the one presented from reduced
cohomology theory.

We can extend the notion of generalized reduced homology and cohomology theories
for objects in Hospect with the formulas

Ẽn(Y ) = [S, Y ∧ E]n ∼= πn(Y ∧ E), (3.24)

Ẽn(Y ) = [Y,E]−n ∼= π−n(F (Y,E)), (3.25)

where E, Y are objects in Hospect.

We have shown a list of axioms that a stable homotopy category should have. However,
we do not know so far if we are constructing an empty category. Historically, we
have many attempts: S-category, category of Spectra but as we said before those
categories do not satisfy properties that we would like to have. Thus, let us stop for a
while to study a construction made by Adams and convince ourselves that this theory
which satisfies all those axioms is not empty. A historical reference is Adams [4], but a
good and clear reference is the book by Margolis, see [28].

First of all, the constructions of HoSpect require the category of spectra motivated in
the previous sections. Then, let us consider a spectrum E = {En, en} with the following
properties: The sequence of based spaces En is a CW-complex, and it gives to the bases
space ΣEn the a structure of CW-complex by the obvious one on En ∧ S1, where S1 is
thought as a CW-complex with a 0-cell and one 1-cell. Thus, ΣEn has a 0-cell and one
cell ΣCα for Cα cell of En. In addition, we require that the map ΣEn ↪→ En+1 be an
inclusion of subcomplex. This is the definition of a CW-spectrum.

Note that every k-cell in En becomes a (k+1)-cell in En+1, a (k+2)-cell in En+2 and so
on. This is an stable phenomenon and we will call it a stable (k-n)-cell, at this point
negative dimensional cells are allowed. That is an intuitive idea of a CW-spectrum like
a CW-complex where we allow negative dimensional cells.

We define the homotopy stable category to be the category Ad, by Adams, whose
objects are CW-spectra and morphisms are homotopy class of maps of CW-spectra,
where homotopy, as in the case of ordinary topology, is defined from a cylinder. More
precisely, we can define the cylinder spectrum Cyl(E) by

(Cyl(E))n := I+ ∧ En
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with structure maps given by

(I+ ∧ En) ∧ S1 id∧en−−−→ I+ ∧ En+1

Thus, we say that two maps of spectra f0, f1 : E → F are homotopic if there exists a
map h : Cyl(E) → F such that f0 = hi0 and f1 = hi1 with the inclusions i0, i1 : E →
Cyl(E).

In addition, we can define a functor Σ∞ : HoTop∗ → Ad whose n − th-term is ΣnX
and with structure maps the identity. That functor allows us to get two familiar objects
such as the zero object defined by ∗ := Σ∞({pt}), i.e. the image of a point, and the
sphere spectrum S := Σ∞(S0). Those objects where examples of spectra, but they also
have structure of CW-spectra.

In [4], Adams shows that this category satisfies the following properties:

• Arbitrary coproducts.

• Ad is a triangulated category.

• Whitehead theorem.

However, the big issue is the smash product: How we can get a "good" symmet-
ric monoidal structure? We know that the category of symmetric spectra and or-
thogonal spectra. The idea of Adams was the following. Given two CW-spectra
X = {Xn, en} and Y = {Yn, e′n} there are Z × Z collection of spaces Xm ∧ Yl with
obvious structure maps. That is the reason why there are many notion of smash
product and by the stability conditions all of them are equivalent. The idea is then
consider a sequence of pairs of nonnegative integers {(in, jn) : n ≥ 0, in + jn =
n, and {in}, {jn} are monotone unbounded sequences}. Let X ∧ Y be the spectrum
with (X ∧ Y )n = Xin ∧ Yjn , the structure maps are induced from X and Y .

3.5 Atiyah duality

As we did in the previous chapter, we are interested in studying dualizability in sym-
metric monoidal categories. By the axiomatic construction made of HoSpect, we know
that the tuple (HoSpect,∧,S) is a symmetric monoidal category. Thus, two natural
questions emerge: What does dualizability in the homotopy stable category represent?
Given a dualizable object A in HoSpect, what does its dual represent?

To recap, A,B are n-dual if A ∼= Sn+1 \ B in the S-category; some authors also refer
to them as strongly n-duals. By Alexander duality, we get isomorphisms:

H̃q(A) ∼= H̃n−q(B),

H̃q(A) ∼= H̃n−q(B).
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Then, we can say that Spanier-Whitehead duality generalizes the Alexander duality in
a broder context.

Remark 11. The sphere Sn is dualizable in the S-category with dual S−n.

If two spaces A,B are strongly n-dual we can define a map

u : Σk+l(A ∧B)→ Σk+lSn. (3.26)

We call this map the n-duality map. Applying the top-dimensional cohomology functor
we get a map

u∗ : Hn+k+l(Σk+lSn)→ Hn+k+l(Σk+l(A ∧B)). (3.27)

Hence

u∗ : Hn(Sn)→ Hn(A ∧B). (3.28)

Let γn be a generator of Hn(Sn), then the slant product u∗(γn)/− : Hq(A)→ Hn−q(B)
realizes the Alexander duality isomorphism. Thus, we can form a weaker definition due
to Spanier.

Definition 39. Two spaces A and B are n-dual if there is a map A ∧ B → Sn which
gives the isomorphisms

H̃q(A) ∼= H̃n−q(B),

H̃q(A) ∼= H̃n−q(B).

By abuse of notation, we will say that duality in the above definition and definition 28
are both called Spanier-Whitehead duality or S-duality.

Remark 12. A geometric (n+ 1)–dual A∗ gives rise to an n–duality map A∧A∗ → Sn.
Spanier suggested that it would be more natural to call A∗ an n–dual of A, which is
the terminology that is now used.

Thanks to the theory developed in Chapter 2, we say that two objects A,B inHoSpect
are dual if there are maps

A ∧B → S and S→ B ∧ A,

which satisfy the snake identities. However, HoSpect is a closed category, then dual-
izable objects in that category have a particular description, see Formula 2.6.

Therefore, we say that two objects A,B in HoSpect are n-dual if A and Σ−nB are
dual, or equivalently B and Σ−nA are dual

Σ−nA ∼= F (B,S) and Σ−nB ∼= F (A,S). (3.29)
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Then we get the induced isomorphisms

A = DB ∼= F (B,ΣnS)

B = DA ∼= F (A,ΣnS),

where DB amd DA are the duals of B and A, respectively.

Given two n-dual spaces A and B, then we can consider the class of maps

[Σk+l(A ∧B),Σk+lSn].

Taking the colimit when k + l → ∞ we get a map in the S-category. Moreover, we
get a map in HoSpect

Σ∞A ∧ Σ∞B → S. (3.30)

Thus a natural question emerges: Does the suspenstion functor Σ∞ preserve duality?
That is, for A and B n-dual spaces, are the objects Σ∞A and Σ∞B n−duals as well?
Theorem 3.8. If A and B are n-dual spaces, then Σ∞A and Σ∞B are n-dual spectra.

Proof. We must verify the isomorphism Σ∞A ∼= F (Σ∞B,Sn), or equivalently Σ∞B ∼=
F (Σ∞A,Sn). The idea here is to prove that a map f : Σ∞A → F (Σ∞B,Sn) is a
weak equivalence in the homotopy stable world. Hence, by the Whitehead theorem in
HoSpect, see [14], the conclusion holds if we verify that there is an isomorphism

H̃∗(F (Σ∞B,Sn)) ∼= H̃∗(Σ
∞A). (3.31)

Indeed, let HZ be the Eillenberg-MacLane spectrum given by the spaces (HZ)n =
K(Z, n). Then by Brown’s representability theorem, Theorem 3.5, we get the following
sequence of isomorphisms

H̃m(F (B,Sn)) ∼= πm(F (B,Sn) ∧HZ) ∼= πm(F (B,K(Z, n))) ∼= [Σ∞B,K(Z, n)]

∼= [ΣnΣ∞B,HZ] ∼= H−m(ΣnB) ∼= H̃n−m(B) ∼= H̃m(A)

∼= H̃m(Σ∞A).

All the steps above are clear except that

F (B,S) ∧HZ ∼= F (B,HZ). (3.32)

More generally, for X,W and Z objects in HoSpect and X a dualizable object there
is an isomorphism

[W,Z ∧X∗] ∼= [W ∧X,Z] ∼= [W,F (X,Z)].

The first isomorphism is given by the adjuntion between ∧X and ∧X∗, and the second
isomorphism is given by the adjuntion between ∧X and F (X, )̇. We know HoSpect is
a closed category then we get the isomorphism X∗ ∼= F (X,S). Thus,

[W,Z ∧ F (X,S)] ∼= [W,F (X,Z)]

and by Yonneda’s lemma the conclusion holds.
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It is a technical fact that if two based spaces A and B are (n− 1)-dual, then taking the
suspension of whichever A or B makes them n-dual. Thus, we get the following lemma.

Lemma 3.9. Let A and B be two based spaces which are n-duals, then the spaces ΣA
and B are (n+ 1)-dual, or equivalently A and ΣB are (n+ 1)-dual.

Proof. Let us prove one of the results and the other will follow by the symmetric
conditions. Let u : A ∧B → Sn be the n-duality map, then we get

Σ(A) ∧B Σ(A ∧B) ΣSn ∼= Sn+1.Σu

Let us call the above composite v : Σ(A) ∧ B → Sn+1. Then we can induce a map at
top degree cohomology

v∗ : H̃n+1(Sn+1)→ H̃n+1(Σ(A) ∧B) ∼= H̃n+1(Σ(A ∧B)) ∼= H̃n(A ∧B).

Similarly, let γn be a generator of Hn(Sn). Thus we can get a map v∗(γn)/ : H̃q(A)→
H̃n−q(B) which by hypothesis is an isomorphism. Then we conclude that ΣA and B
are (n+ 1)-dual.

It is time to give a geometric interpretation of the definitions presented in this section.
By Whitney’s theorem we know there exists a number n >> 0 such that e : M ↪→ Rn

is an embedding, for a smooth manifold M . We can assume M is compact then we can
get an embedding e+ : M+ ↪→ Sn with M+ = M

⊔
∗.

Let νe →M be a normal bundle of M in Rn associated to the embedding e : M ↪→ Rn,
and ϕ : νe ∼= Mε the ε-neighborhood. Let us also consider D the disk bundle and we
will denote the image of the disk bundle as W := ϕ(D) ⊂ Rn.

Lemma 3.10. Let M be a compact manifold of dimension m, and e : M ↪→ Rn an
embedding, then M+ and Rn −M are strongly (n− 1)-dual.

Proof. The embedding e : M ↪→ Rn can be compactified to get e+ : M+ ↪→ Sn an
embedding of M+ into the n-dimensional sphere. On the other hand, it is clear that

Sn −M+
∼= Rn −M (3.33)

is a homotopy equivalence given by the identity map. Thus, the conditions of Definition
28 hold. Hence we can conclude the lemma.

By Lemma 3.9, we can conclude that M+ and Σ(Rn −M) are strongly n-duals. The
following two technical lemmas allow us to conclude Atiyah’s duality.
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Lemma 3.11. Let f : X → Rn be a continuous function with cone Cone(f). Then,
there is an homotopy equivalence

Cone(f) ∼= Σ(X). (3.34)

Proof. Let us define a function g : Cone(f)→ Σ(X) by

g(p) =

{
(x, t) if p = (x, t),

(x, 1) if p ∈ Rn.

By Tietze extension theorem we can conclude that g is a continuous function. This map
collapses Rn to a point and, as result, we get a space which is homotopically equivalent
to Σ(X). On the other hand, consider r : Σ(X)→ Cone(f) given by

r(x, t) =

{
(x, 2t) if t ≤ 1/2,

H2t−1(f(x)) if t ≥ 1/2

where Ht is a retraction of Rn to q = f(p). Intuitively this map is collapsing the second
half cone to the point q. It is clear that the compositions r◦g and g◦r are homotopic to
the identity. Hence, there is a homotopy equivalence between Cone(f) and Σ(X).

Lemma 3.12. Let e : M ↪→ Rn be an embedding with tubular neighborhood ϕ : ν → U
and with disk bundle D. Let X = Rn − ϕ(Do), and j : X ↪→ Rn given by the inclusion.
Then, the projection map ρ : Cone(j)→ Rn/X is an homotopy equivalence.

Proof. Let us define a function ξ : Rn/X → Cone(j) given by:

ξ(p) =


(p, 0) if p /∈ ϕ(D0),

(ϕ( v
|v| , 2− 2t) if p = ϕ(v) with |v| ≥ 1/2,

ϕ(2v) if p = ϕ(v) with |v| ≤ 1/2.

By Tietze extension theorem we can conclude that ξ is a continuous function. It is not
hard to see that ρ ◦ ϕ and ϕ ◦ ρ are homotopic equivalent to the identity.

The following lemma states that the suspension of Rn−M has the same homotopy type
of the Thom space of the normal bundle.

Lemma 3.13. Let M be a manifold and e : M ↪→ Rn and embedding with normal bundle
νe → M . The Thom space Th(νe) = Mνe is homotopy equivalent to the suspension of
Rn −M .

Proof. Let us fix a metric in the normal bundle νe. Let ϕ : ν
∼=−→ Mε be a tubular

neighborhood and D the disk bundle of νe, and W = ϕ(D). Then,

Th(ν) ∼= D/∂D ∼= W/∂W ∼= Rn/(Rn −W 0).
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Hence, if we prove that Rn/(Rn−W o) is homotopy equivalent to Σ(Rn−M), the result
follows. On the other hand, due to the deformation retract

Ht(v) =
|v|+ t(1− |v|)

|v|
v,

we get that D−D0 is a deformation retract of D−M , then Rn−W 0 is a deformation
retract of Rn −M . Therefore, it is enough to prove that Rn/(Rn −W o) is homotopic
equivalent to Σ(Rn −W o).

Let us call X = Rn−W o and j the inclusion of X in Rn. By Lemma 3.11 we know that
Cone(j) is homotopy equivalent to Σ(X), and by Lemma 3.12 we get that Cone(j) is
homotopy equivalent to Rn/X. Then, we can conclude:

Rn/(Rn −W o) ∼= Rn/X ∼= Σ(X) = Σ(Rn −W o).

Therefore, M+ and Th(ν) are strongly n-dual. Lemma 3.8 allows us to transfer by
means of the suspension functor Σ∞ this dualizability to the stable homotopy category

Σ∞(M+) ∼= F (Σ∞(Th(ν)),Sn),

Σ∞(Th(ν)) ∼= F (Σ∞(M+),Sn).

That is Σ∞(M+) and Σ∞(Th(ν)) are n-dual. That notion of duality was classically
called Atiyah duality. Then in HoSpect we get a particular object defined by:

M−TM := Σ−nΣ∞(Th(ν)) ∼= F (Σ∞(M+),S).

and known as Thom spectra. That means that M−TM is dual to Σ∞(M+) in HoS-
pect.

This result can be viewed as a refinement of Poincare duality. It implies, for instance,
the Poincare duality theorem in generalized cohomology theories, assuming that M is
an orientable manifold.

Let E be an object in HoSpect, then we get isomorphisms

Ẽq(Th(ν)) ∼= En−q(M) ∼= Ẽn−q(M+),

Ẽq(Th(ν)) ∼= En−q(M) ∼= Ẽn−q(M+).

There is a generalization of the Thom-Dold isomorphism to generalized cohomology
and homology theories, so we get the isomorphism:

Ẽ•+k(Th(ν)) ∼= E•(M) (3.35)
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where k is the rank of ν, that is, k = n−m. Then, we get

E•(M) ∼= En−(•+k)(M) ∼= Em−•(M)

which is the Poincaré duality at the level of generalized cohomology theory E.

Let us study the idea of Atiyah. Recall that for e : M ↪→ Rn an embedding with tubular
neithgborhood Mε(e), then for small enough ε

Th(ν) ∼= Rn/(Rn −Mε(e)).

Bε(0) will denote the ball of radius ε centred in the origin of Rn. In the 30’s, Alexander
considered the map

(Rn −Mε(e))×M → Rn −Bε(0) ∼= Sn−1. (3.36)

That induces a map in homology

Hn−q−1(Rn −Mε(e))⊗Hq(M)→ Hn−1(Sn−1) ∼= Z, (3.37)

that is adjoint to the map

Hq(M)→ Hn−q−1(Rn −Mε(e)).

This gives us the Alexander duality isomorphism. In the 60’s, Atiyah in [5] considerd
the map

Th(ν) ∧M+ → Sn (3.38)
(v, y)→ v − e(y) (3.39)

This produces a map

Th(ν)→ Maps(M+, S
n). (3.40)

Then, at the spectrum level we get

M−TM → F (Σ∞M+,S). (3.41)

We showed that the previous map is an equivalence in HoSpect.

We can rewrite the above characterization of Atiyah’s duality in terms of theory devel-
oped in Chapter 2. We are able to construct morphisms ε and η in HoSpect which
will turn out to be the evaluation and coevaluation for the duality between M+ and
M−TM .

Let us consider first in HoSpect

ε : Σ−n
Rn

(Rn −M)
∧M+ → S0, (3.42)

but instead of defining the above morphism, let us define Σnε which can be gotten from
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Rn

(Rn−M)
∧M+ ΣnS0

Rn

(Rn−M)
×M+ Sn

Rn×M
(Rn−M)×M

Rn

Rn−0

p

Σnε

id

∼=

ρ

∼=

where ρ is the diffeomorphism defined by the formula

ρ(x, k) = x− k. (3.43)

Now we consider again in HoSpect the morphism

η : S0 →M+ ∧ Σ−n
Rn

(Rn −M)
. (3.44)

Similarly, we can define Σnη by

Sn M+ ∧ Rn

Rn−M+

Rn

Rn−0
M+ × Rn

Rn−M+

Rn

Rn−B
M+×Rn

M×(Rn−M)

V
V−M

V×Rn

V×(Rn−M)

∼=

Σnη

p

⊂

∼=

∆

r×id

where B is a closed ball centred in 0, r : V →M is a retraction of V an open subset in
Rn and ∆ is the diagonal morphism defined by

∆(v) = (v, v). (3.45)

Thanks to the above descriptions of the evaluation and coevaluation morphisms we
can define a geometric construction that we will use in order to find tr(f). First, the
map Σnη can be easily constructed in the following way: We identify Sn with the one
point compactification of Rn. Then, points outside the tubular neighborhood go to the
basepoint. On the other hand, points inside the tubular neighborhood go to themselves,
paired with their projection to M .

Σnη(x) =

{
(m, v) if x ∈Mε

∞ if x /∈Mε
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MMε x

v

m

∗(basepoint)

Figure 3.1: η(x) = (v,m)

The following figure represents intuitively the morphism Σnη

The evaluation map ε can be constructed in the following way:

First of all, let (v,m) be a pair in Th(ν) ∧M+. If m and v are far apart, then (v,m)
goes to the infinite point, see the following figure

MMε

v

∗(basepoint)

m

Figure 3.2: m and v distant.

On the other hand, if m and v are close, we can add them and we apply the formula
used by Alexander and Atiyah. Thus we get:

Σnε(v,m) =

{
v − e(m) if v,m are close
∞ in other case.

Remark 13. Maps Σnη and Σnε will be denoted just by η and ε in order to alleviate the
notation; the context will allow us to recognize them.

The following figure represents intuitively what the map ε does for m and v close
together.
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MMε ε(v,m)
v

m

∗(basepoint)

Figure 3.3: evaluation map-ε

In [2] Dold and Puppe show that M+ and Th(ν) are strongly n-duals proving that ε
and η satisfy the snake identities in the stable context.

3.6 Lefschetz fixed point theorem

Using the formulations given in the last section plus theory developed in Chapter 2 we
are going to prove the Lefschetz fixed point theorem. There are many proofs of this
theorem, the common one is due to algebraic topology using simplicial approximation.

In Chapter 1 we introduced the fixed point index of a self map, see Definition 11. In [17],
Dold describes the fixed-point index using the maps presented in the above section as
follows: Let F be the set of fixed points of f : M →M . We can describe the trace with
the following diagram

Sn Sn

Rn

Rn−0
Rn

Rn−0

Rn

Rn−B

Rn

Rn−M
V

V−M
V

V−F

tr(f)

∼= ∼=

⊂

⊂

∼= ⊂

ψ

where ψ(v) = v − f(r(v)) for r : V →M a retraction. Applying the homology functor
Hn(−,Z) one gets a homomorphism which is multiplication by a number. That number
is the fixed-point index.
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Now, we can try to extend the above construction to a more general framework. Thanks
to the notion of trace we get the following definition.

Definition 40. Let M be a compact manifold embedded in Rn for some n >> 0 and
f : M → M a smooth map, then the fixed-point index of f is the degree of the
following composite

Sn M+ ∧ Th(ν) M+ ∧ Th(ν) Th(ν) ∧M+ Sn.
Σnη f∧id ∼= Σnε

We will denote the previous composite as tr(f).

Remark 14. We must note that the above composite is defined at the level of based
spaces. However, it is not a trace in the sense of Chapter 2. Denoting it as a trace is
an abuse of notation. However, we can recover the notion of trace by translating it to
HoSpect. If we apply the suspension functor Σ∞ to the previous composite we get

Sn Σ∞(M)+ ∧ Σ∞Th(ν) Σ∞(M+) ∧ Σ∞Th(ν) Σ∞Th(ν) ∧ Σ∞(M+) Sn.
η f∧id ∼= ε

If we "desuspend" n-times, i.e., apply the functor Σ−n we get in HoSpect the following
composite

S Σ∞(M)+ ∧ Σ∞−nTh(ν) Σ∞(M+) ∧ Σ∞−nTh(ν) S,
Σ∞η Σ∞f∧id Σ∞ε

which is tr(Σ∞−n(f)) in HoSpect. We must also note that the class of homotopy maps
from the sphere spectrum S to itself is Z. In addition, if we apply the functor Σ∞−n to
tr(f) we get

tr(Σ∞−n(f)) = Σ∞−n(tr(f)).

It is also important to note that we are not applying Proposition 2.22. Actually, we
can not do it. Thus, the above equality means that applying the suspension functor
Σ∞ and then calculating the trace in HoSpect is the same as applying the composite
in Definition 40 and then applying the suspension functor.

So, we can conclude that tr(Σ∞−nf) is a number, and we will call it the categorical
fixed-point of f . For a map f : M → M , we can explicitly calculate the above
composite from a geometric point of view and check that it counts fixed points.

Let us find the above trace tr(f)(x) for x ∈ Sn. Consider the compactification Sn ∼=
Rn ∪∞. Then, there are two cases:

• If x /∈Mε, the above composition sends x to ∞.



3.6. Lefschetz fixed point theorem 97

MMε

∗(basepoint)

x

v

m

f(m)

Figure 3.4

• If x ∈ Mε, we first apply Σnη and we get (m, v) as in Figure 3.1. Then we apply
f ∧ id and we get (f(m), v) as in the above figure

Therefore we have two cases:

• f(m) is far from m, we get tr(f)(x) =∞, see Figure 3.5.

• f(m) is close to m, we get tr(f)(x) as in the Figure 3.6.

MMε

∗(basepoint)

x

v

m

f(m)

tr(f)(x)

Figure 3.5: f(m) is far from m

MMε

∗(basepoint)

x

v

m
f(m)

tr(f)(x)

Figure 3.6: f(m) is close to m

Whichever the case, the trace as the previous composite is a map from a sphere to a
sphere. As m varies near a fixed point, tr(f)(x) has some degree. Everywhere else the
degree is zero. Hence, we have

ind(f) = H(tr(f),Z). (3.46)

Remark 15. We say that m and f(m) are close together if the vector v − e(f(m)) is
inside Mε, in other case we say that they are far apart. The following figure represents
intuitively that

We have two important consequences of the above result. First, the Lefschetz-Hopf
theorem:
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M
Mε

∗(basepoint)

x

v

m
f(m)

Figure 3.7

Corollary 3.14. (Lefschetz–Hopf theorem)
If f : M → M is a map of a compact manifold into itself then the index of f is equal
to the Lefschetz number of f .

Proof. We must note that the rational homology functor from the category of based
spaces to the category of graded vector spaces, denoted by H̃∗ : Top∗ → Grvect,
factors through HoSpect. That is, the following diagram commutes

Top∗ GrVectk

HoSpect

Σ∞−n

H̃∗

H∗

Hence,

ind(f) = H∗(tr(f),Z) ∼= H̃∗(tr(f+),Q) = H∗(Σ
∞−ntr(f)) = H∗(tr(Σ

∞−n(f)))

= tr(H∗(Σ
∞−n(f))) = tr(H̃∗(f,Q)) = L(f),

where f+ : M+ → M+ is a based map which sends ∞ to itself. In addition, the last
equality is given by Proposition 2.22.

Corollary 3.15. (Lefschetz–fixed point theorem)
Let M be a closed smooth manifold and f : M →M a smooth map, and let H : Mfd→
GrVeck denote rational homology, H(M) = H∗(M,Q). If

L(f) = tr(H(f)) =
∑
n6=0

(−1)ntr(Hn(f)) (3.47)

is nonzero, then f has a fixed point.

Proof. Thanks to the above corollary, if L(f) 6= 0, then the degree of the map tr(f) is
not zero. Thus, by the composite at the beginning of this section we can conclude that
there exist a fixed point for f .
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Chapter 4
String topology

In [13] Chas and Sullivan started the study of spaces of loops and path in a manifold.
For a smooth closed manifoldM of dimension d, the space of smooth free loops onM is
LM := Maps(S1,M) . The string topology is the study of the all possible structures
in the homology of LM . In that work, Chas and Sullivan define a product in H∗(LM)
of degree −dim(M), that is a map

◦ : Hi(LM)⊗Hj(LM)→ Hi+j−d(LM). (4.1)

The idea of the authors was to consider and combine two constructions from algebraic
topology: the intersection product and the concatenation of paths.

Intersection product: We know there is not a ring structure in the homology ofM an
oriented manifold of dimension d. However, due to the Poincare duality and assuming
that M is also compact we can define a ring structure ∩ in H∗(M) by the following
composite

HP (M)⊗Hq(M) Hp+q−n(M)

Hn−p(M)⊗Hn−q(M) H2n−p−q(M)

P.D.

∩

t

P.D.

where t : Hn−p(M) ⊗ Hn−q(M) → H2n−p−q(M) is the smash product of classes of
forms in H∗(M). It is called the intersection product. This product can be interpreted
in terms of intersection theory, let α and β be two representative classes of H∗(M) with
transverse intersection, then the intersection product ∩ is defined by

[α] ∩ [β] := [α ∩ β], (4.2)

it is of degree −d, associative, graded commutative and it can be defined as the dual
of the cup product in cohomology. It can be interpreted geometrically as follows: A

100
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p-homology class can be represented by a p-dimensional submanifold P of dimension
p. Similarly, a q-homology class can be represented by a submanifold Q of dimension
q. We can perturb P,Q so as to make their intersection transverse. Then, P ∩ Q is
p+ q−n dimension submanifold of M , hence determines a chain. Passing to homology
this all is well defined and reproduces the above product.

Remark 16. We say that a homology class σ ∈ Hp(M) can be represented by subman-
ifold if there exists a p-dimensional closed oriented submanifold P , such that σ is the
push forward of the fundamental class of P under the inclusion map.

Let LM be the space of piecewise smooth maps from S1 to M , the free loop space. We
can try to mimic the above idea of the intersection product but the great issue is that
LM is an infinite dimensional manifold and we do not have Poincare duality.

However, we do not expect to have a non-trivial ring structure on the homology. In
despite of that, Chas and Sullivan defined a "loop product” in the homology of the free
loop space of a closed oriented d-dimensional manifold using the intersection product
and the concatenation of based loops.

In C∗(LM), each loop has a marked point, namely the image of 0 ∈ S1, there is a map
ev : LM → M . Consider α ∈ Cp(LM) and β ∈ Cq(LM), the set of marked points are
submanifolds of dimension p and q respectively, i.e. p, q-chains onM . Their intersection
give us a (p+ q−n)-chain γ on M . Then, when the marked points of α and β coincide
then we can form a loop by the concatenation of loops of α then β. This defines a
(p+ q − n)-chain in LM . Passing to homology we get the Chass-Sullivan product 4.1.

However, Cohen and Jones in [16] got the same formulas of string topology product
thanks to Atiyah duality. The goal of this chapter is understand the constructions made
by the authors and apply the tools developed in the previous chapters.

4.1 Pontrjagyn-Thom collapse map

Let us start by recalling the famous Thom-Pontrjagyn map and study some generaliza-
tions of this construction. For e : P ↪→ N an embedding with νe tubular neighborhood
of the image of P under the embedding. Let τ : N → P νe ∼= νe ∪∞ be defined by

τ(x) =

{
x if x ∈ νe
∞ if x /∈ νe.

The map τ is the Thom-Pontrjagyn collapse map. If we consider an oriented context
we get by the Thom isomorphism, the following:

e! : Hq(N)
τ∗−→ Hq(P

νe)
Thom−−−→ Hq−n(P ).
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In particular, if we consider the diagonal embedding ∆M : M →M ×M of a oriented,
closed manifold M of dimension d. Then the Thom-Pontrjagin map is a map

τ : M ×M →MTM , (4.3)

In the same way we can define the push forward

∆! : H∗(M ×M)
τ∗−→ H∗(M

TM)
∼=−→ H∗−d(M).

which is simply the intersection product.

We can extend the Thom-Pontrjagin collapse map for any vector bundle (or virtual
vector bundles). Let us consider the case of an embedding e : P ↪→ N and any vector
bundle π : ξ → N , then we define the pull back bundle e∗(ξ) → P such that the
following diagram commutes

e∗(ξ) ξ

P N.

π

e

The embedding e∗(ξ) ↪→ ξ gives us a tubular neighborhood ν(e∗(ξ)), then we can get
the Thom-Pontrjagin map

τ : ξ ∪∞ → ν(e∗(ξ)) ∪∞. (4.4)

It can also be written as

τ : N ξ → P ν(e∗(ξ)) (4.5)

with the identification of the Thom spaces as: N ξ ∼= ξ∪∞ and P ν(e∗(ξ)) ∼= ν(e∗(ξ))∪∞
is the Thom space of ν(e∗(ξ)). Note that ν(e∗(ξ)) ∼= e∗(ξ)⊕ νe it can be checked from
the following exact sequence of vector bundles over P :

0→ νe
dσ−→ ν(e∗(ξ))

dπ−→ e∗(ξ)→ 0 (4.6)

where σ : N → ξ is the zero section of the bundle π : ξ → N . Thus, we get the map

τ : N ξ → P e∗(ξ)⊕νe .

The above construction also applies for virtual vector bundles.

Thus, for the diagonal embedding ∆ : M →M×M and using the virtual vector bundle
−TM ×−TM over M ×M , we get the Thom-Pontrjagin map

τ : (M ×M)−TM×−TM →MTM⊕∆∗(−TM×−TM). (4.7)
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which can be simplified as

τ : M−TM ∧M−TM →M−TM . (4.8)

The above map defines a ring structure for M−TM , we will see that tangentially in the
following section.

For the Thom space of a normal bundle we will require the following technical fact:
given two embeddings e1 : M ↪→ Rk and e2 : M ↪→ Rr with tubular neighborhoods
νε1(e1) and νε2(e2), respectively. There is a projection map

Rm

(Rm − νε1(e1))
∧ Rk

(Rk − νε2(e2))
→ Rn+k

Rm+k − νε1,2(e1×e2)

(4.9)

Thus, for x ∈Mνε1 (e1) and y ∈Mνε2 (e2) its smash product x∧y lives in the Thom space
M

νε1,2(e1×e2) .

4.2 Multiplicative structure of Thom spectrum

In this section we want to show how to get the structure of symmetric ring spectrum by
considering all the possible choices that were not considered before. First, let us recall,
the evaluation map, defined by the Formula 3.42, is a map

ε : M−νε ∧M+ → Sn

that allow us to define an adjoint map in the homotopy stable category

α : M−TM ∼= F (Σ∞M+,S). (4.10)

In category of symmetric spectra the spectrum of maps F (Σ∞M+,S) has the structure
of commutative ring spectrum. Thus, emerges a natural question that comes from the
above isomorphism in HoSpect: Is the Thom spectrum a symmetric ring spectrum
that makes the adjoint map α a map of symmetric ring spectra?

In [16], R. Cohen and Jones, proved that by constructing a new spectrum denoted
by M−τ , stable equivalent to the Thom spectrum, that does not depend of the choice
of the embedding nor tubular neighboorhod. In this section we want to study that
construction and try to understand the ideas of that work before we start with the goal
of this chapter.

The central issue of Atiyah duality and the construction of Thom spectrum is the
arbitrary choice of the embedding, tubular neighboorhod and the dimension of the Eu-
clidean space. Cohen and Jones solved that problem by considering all the possible
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embedding and possible tubular neighborhoods. First, let us denote the space of em-
bedding of M in some euclidean space by Emb(M,Rk). We can consider the following
set of embeddings and tubular neighborhood

M̃−τ
k :=


∗ if Emb(M,Rk) = ∅,
(e, ε, x) if e : M ↪→ Rk is an embedding,

0 < ε < Lε, and x ∈ Rk/(Rk − νe)
(4.11)

where Lε := min{1, ε} and ε > 0 is the least upper bound of those which satisfying the
tubular neighborhood theorem. That set has a structure of topological space given by
the topology given by the fiber bundle

p : M̃−τ
k → εk (4.12)

where the space εk = {(e, ε) : e ∈ Emb(M,Rk), and ε ∈ (0, Lε)}.

Note that bundle has a lot of points at infinite, in fact to each fibre (e, ε) which is
the Thom space associated to the normal bundle νe we get a point at infinite, we will
call them without distinction as ∞. Then, we can consider the natural section of this
bundle σk∞ : εk → M̃−τ

k given by σk∞(e, ε) = (e, ε,∞). We can take the quotient of that
section and get a new space

M−τ
k := M̃−τ

k /σk∞(εk). (4.13)

It is, we collapse all the infinite point in each fiber Thom space to a single point and
we get a space with one infinite point.

Fixing an embedding e : M ↪→ Rk and ε > 0 as above; the tubular neighborhood
theorem give us an homeomorphism φ : Mνe → Rk/(Rk − νe). This defines an inclusion
je : M νe ↪→M−τ

k given by je(x) = (e, ε, x).
Remark 17. In the last chapter we identified the Thom space as: Th(νe) ∼= Rk/(Rk−Mε),
with Mε

∼= νe the tubular neighborhood. In this chapter, we have decided to use the
identification Th(νe) ∼= Rk/(Rk− νε(e)) in order to have in mind that it depends on the
embedding and the tubular neighbohood.

There is a fun fact: we know the symmetry group Σk acts on Rk by permuted of the
coordinates, then it induces an action on εk, and on M−τ

k . In addition, there is an
action of Σm in the unit sphere Sm given by the identification Sm = Rr/(Rm − B1(0)).
Thus, we can define the maps

σm,k :Sm ∧M−τ
k →M−τ

m+k (4.14)
t ∧ (e, ε, x)→ (0× e, ε, t ∧ x). (4.15)

where M ↪→ Sk ×M
0×e−−→ Rm+k, and t ∧ x ∈ Rk+m/(Rk+m − νε(0 × e)) is the image

under the following projection

Rk

(Rk −B1(0))
∧ Rm

(Rm − νε(e))
→ Rk+m

(Rk+m − νε(0× e))
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It is clear that the following diagram commutes

M−τ
k ∧ Sm M−τ

k+m

M−τ
k ∧ Sm M−τ

k+m

πk×πm

σm,k

πk×πm

σm,k

where πk ∈ Σk and πm ∈ Σm. Then, we can conclude that the maps σk,m are Σk ×Σm-
equivariant. Thus, we can conclude that {M−τ

k , σm,k : Sm ∧ M−τ
k → M−τ

m+k} is a
symmetric spectrum.

So this is true for the spectrum M−τ , but what about with the Thom spectrum defined
in the previous chapter? The following proposition clarifies that.

Proposition 4.1. The inclusion je : Mνe →M−τ
k induces an isomorphism in homotopy

groups trough dimension k
2
− n− 2.

Proof. Let us consider the fibration

Mνe →M−τ
k → εk (4.16)

This fibration induces a long exact sequence in homotopy groups

· · · → πq(M
νe)→ πq(M

−τ
k )→ πq(εk)→ πq−1(Mνe)→ · · ·

It is a technical fact that the space Emb(M,Rk) is (k
2
−n−2)-connected. Hence, the base

space εk also has the same connectedness number. Therefore, the long exact sequence

· · · → π k
2
−n−1(εk)→ π k

2
−n−2(Mνe)→ π k

2
−n−2(M−τ )→ π k

2
−n−2(εk)→ · · · (4.17)

satisfies that π k
2
−n−1(εk) = 0 and π k

2
−n−2(εk) = 0. Hence, we can conclude

π k
2
−n−2(Mνe) ∼= π k

2
−n−2(M−τ

k ). (4.18)

Remark 18. The above result states that M−τ
k has the right homotopy type, that is, in

a homotopy category of spaces HoTop, M−τ
k is just Mνe .

Remark 19. We will denote the spectrum {M−τ
k } as M−τ .

Then is intuitively natural to consider this new spectrum M−τ in order to study prop-
erties of the Thom spectrum.

We are ready with the main theorem of this section.
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Theorem 4.2. M−τ is a symmetry ring spectrum without unit.

Proof. We can define maps

µm,k : M−τ
m ∧M−τ

k →M−τ
m+k (4.19)

by the formula

µm,k((e1, ε1, x1) ∧ (e2, ε2, x2)) = ((e1 × e2) ◦∆M , ε1,2, x1 ∧ x2) (4.20)

where ε1,2 = min{ε1, ε2, Le1×e2} and x1 ∧ x2 is in the image of the following map

Rm

(Rm − νε1(e1))
∧ Rk

(Rk − νε2(e2))
→ Rn+k

Rm+k − νε1,2(e1×e2)
.

There are basic properties that the map µm,k satisfies. For example, it is Σm × Σk-
equivariant and for k, r,m the following diagram commutes

(M−τ
k ∧M−τ

r ) ∧M−τ
m M−τ

k ∧ (M−τ
r ∧M−τ

m )

M−τ
k+r ∧M−τ

m M−τ
k ∧M

−τ
r+m

M−τ
r+k+m M−τ

r+k+m,

µk,r∧id id∧µr,m

µk+r,m µk,r+m

=

that is, the collection of maps {µm,r} is associative. Those maps also define a map in
spectra

µ : M−τ ⊗M−τ →M−τ . (4.21)

It is clearly commutative, given by the following commutative diagrams

M−τ
p ∧M−τ

q M−τ
p+q

M−τ
q ∧M−τ

p M−τ
p+q.

µp,q

τp,q

µq,p

We can also give the sphere spectrum the structure of symmetric ring spectrum, also
without unit, in a similar way, we can define

(S̃M)k = {(e, ε, t) : (e, ε) ∈ εk and t ∈ Rk/(Rk −Bε(0))},
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in the same way, it can be topologized by the bundle p : (S̃M)k → εk and there is a
canonical section σ∞(e, ε) = (e, ε,∞). Then we consider the symmetric spectrum

(SM)k = (S̃M)k/σ∞(εk). (4.22)

Similarly as before, it can be shown that the maps

βr,k : Sr ∧ (SM)k → (SM)k+r (4.23)

by s∧ (e, ε, t)→ (ϕe, ε, s∧ t), where ϕe is the embedding y → (0, e(y)) ∈ Rr × Rk. And
also the maps

mr,s : (SM)r ∧ (SM)s → (SM)r+s (4.24)

defined by (e1, ε1, t1) ∧ (e2, ε2, t2)→ (e1 × e2,min(ε1, ε2, ), t1 ∧ t2). Those maps provide
SM the structure of symmetric spectrum without unit. Furthermore, it is a clear map
SM → S, which is indeed an equivalence of symmetric ring spectra.

The above construction allows us to define the symmetric ring spectrum F (Σ∞M,SM),
induced by (SM). If we write Atiyah’s ideas in this new context we have a map

M−τ
k ∧M+ → (SM) (4.25)

(e, ε, x) ∧ y → (e, ε, x− e(y)). (4.26)

This defines an adjoint map of symmetric ring spectra

α : M−τ → F (Σ∞M,SM),

the above defines a homotopy equivalence.

Unfortunately there is not a good choice for the unit in the above symmetric ring spectra
construction. However, the problem was solved in [15] by modifying the constructions
presented above to restrict to embeddings of the form ϕ◦ e, with ϕ : Rk → Rkn a linear,
isometric embedding. For a detailed description, the reader can consult [15].

4.3 Multiplicative structure of LM−TM

In this section we will finish discussing the ring structre of LM−TM from the ring
structure gotten from the Thom spectrumM−TM , from the previous section. Moreover,
we are interested in proving the following theorem.

Theorem 4.3. Let M be a smooth, closed manifold of dimension d. The spectrum
LM−TM is a ring spectrum with unit and multiplication

µ : LM−TM ∧ LM−TM → LM−TM .

In addition, if M is also orientable the ring structure is compatible with the Chas-
Sullivan homology product:
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Hq(LM
−TM)⊗Hr(LM

−TM) Hq+r(LM
−TM ∧ LM−TM) Hq+r(LM

−TM)

Hq+d(LM)⊗Hr+d(LM) Hq+r+d(LM)

Thom∼=

µ∗

Thom∼=

◦

Before we study a proof of the above theorem, let us study for a second a formal
construction made by Chass and Sullivan in order to develop intuition in the case of
spectra. We can define LM ×M LM to be the pull back

Map(8,M) = LM ×M LM LM × LM

M M ×M

ev

∆̃

ev×ev

∆

which coincides with Map(8,M) the space of piecewise smooth maps from the figure 8
to M . And it can be thought as

LM ×M LM = {(α, β) ∈ LM × LM : α(0) = β(0)}.

The evaluation map ev : LM → M can be considered as a fiber bundle (of infinite
dimensional manifolds), then the map Map(8,M) → LM × LM is an embedding of
finite codimension d and its tubular neighborhood is the pull back of the normal bundle
of the diagonal embedding, which is TM , thus ν(∆̃) = ev∗(TM). Then, the Thom-
Pontrjagin construction gives us a map

τ : LM × LM → Map(8,M)ev
∗(TM). (4.27)

In the oriented case, we have

H∗(LM × LM)
τ∗−→ H∗(Map(8,M)ev

∗(TM))
Thom−−−→∼= H∗−d(Map(8,M)).

There is also a map γ : Map(8,M)→ LM gived by the concatenation of loops, that is,
for α and β loops in M with the same base points, i.e. α(0) = β(0), γ is defined by

γ(α, β) = α ∗ β

where

α ∗ β(t) =

{
α(2t),

β(2t− 1).

Then we have
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Hp(LM)⊗Hq(LM) Hp+q−n(LM)

Hp+q(LM × LM) Hp+q(Map(8,M)ev
∗(TM)) Hp+q−n(Map(8,M))

Kunneth

◦

τ∗ Thom

γ∗

which by Kunneth’s theorem we can take a cycle in LM ×LM and intersecting it with
the d-submanifold Map(8,M) and the resulting is mapped via γ to LM . This is the
exactly idea of the Chass and Sullivan product in H∗(LM).

As we did before, we can construct the Thom-Pontrjagin map with the virtual vector
bunlde −TM ×−TM over LM × LM . Thus we get the map

τ : (LM × LM)(ev×ev)∗(−TM×−TM) → Map(8,M)ev
∗(TM)⊕ev∗(∆∗(−TM×−TM))

but note that ∆∗(−TM ×−TM) = −2TM . Thus we get

τ : LM ev∗(−TM) ∧ LM ev∗(−TM) → Map(8,M)TM⊕−2TM = Map(8,M)−TM (4.28)

In the same way the concatenation map γ : Map(8,M) → LM defines a map at the
level of Thom spectra

γ : Map(8,M)ev
∗(−TM) → LM ev∗(−TM). (4.29)

Thus, from Equations 4.28 and 4.29 we get

µ : LM ev∗(−TM) ∧ LM ev∗(−TM) τ−→ Map(8,M)ev
∗(−TM) γ−→ LM ev∗(−TM) (4.30)

that is associative up to homotopy.

Let σ : M → LM be a section of the evaluation map, it is, points in M can be
interpreted as constant loops. Then, it can induce a map, denoted also by σ, at the
level of Thom spectra

σ : M−TM → LM−TM

and join with the unit of the ring spectrum of M−TM defined in the previous section
by j : S0 →M−TM , we can define a unit for LM−TM by the composition

i : S0 i−→M−TM σ−→ LM−TM .

Thus, we conclude Theorem 4.3. In addition, for M an oriented manifold we have
following commutative diagram

Hq−2d(LM
−TM ∧ LM−TM) Hq−2d(LM

−TM)

Hq(LM × LM) Hq−d(LM)

µ∗

∼= ∼=

◦

which again realizes the string topology.



Appendix A
String diagrams

An important tool used in monoidal categories is called string diagrams, it is a way
to represent morphisms and objects as union of arrows and nodes. These diagrams,
which are sometimes also called Penrose diagrams, have their origins in the work of
Roger Penrose in physics. Later Turaev started to use those diagrams to study braid
monoidal categories, that is monoidal categories with "weaker" symmetry condition.
String diagrams give us intuition and make some arguments obvious as we have seen in
Chapter 2. In this appendix we are going to give a brief overview of string diagrams,
for a detailed treatment the reader can consult Turaev [39].

First of all, let us fix a convention for this work, there are many approaches and there
is not a common agreement of which is the correct one, all of them are correct and
equivalent to each other. The author of this thesis has chosen to draw the diagrams
vertically from top to bottom, that is, the source is in the top and the target is in the
bottom. Thus, given a category C, the identity idX of an object X of C, a morphism
f : X → Y in C, and the composition of two morphisms f : X → Y and g : Y → Z
may be graphically represented as follows:

X =

���� X

, f= f

X

Y

����

����

, and g ◦ f =
f

X

Y

��

��
g

�� Z

where X, Y, Z are objects in C.
We sometimes omit the object labels (e.g. X and Y above) when they are clear or
unimportant.
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We will consider oriented diagrams, that is, with a given an orientation in the arrows:
downwards arrows represent the duals of the upwards arrows. Thus, we will denote the
morphism f : X → Y by the following equivalent diagrams:

f

X

Y

��

��

= f

X∗

Y

OO

��

= f

X

Y ∗

��

OO
= f

X∗

Y ∗

OO

OO
.

The monoidal product of two morphisms f : X → Y and g : U → V in C is represented
by juxtaposition:

f ⊗ g = f g
���� ����

��������

We can also use boxes with several strands attached to their horizontal sides. For
example, a morphism f : X ⊗ Y ⊗ Z → A ⊗ B with X, Y, Z,A,B ∈ Ob(C) may be
represented in various ways, such as:

f

X

���� ����

Y

����

Z

A
����

B
����

With the above convention the tensor product also can be represented as

f ⊗ g = f ⊗ g

X

����

U

����

Y
����

V
����

Some objects and morphisms are special; we draw them more simply. The identity
morphism of an object X we will draw just as arrow without any vertex.
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idX =

����
X

, 1=

the unit object will be denoted as the empty arrow. The product with unit X ⊗ 1 ∼= X
is denoted by:

����
X

=

��
X

The composition of f : X → Y with identity idX : X → X, f ◦ idX = f can be
simplified as:

f

idX
��

��

��

X

X

X

=

X

f

X

��

��

The symmetry condition X ⊗ Y ∼= Y ⊗X can be represented by

X Y

����Y X

We will omit the unit object, so the evaluation and co-evaluation morphisms can be
noted as follows:

ε =
��

η =
OO

Theorem A.1. (Coherence theorem)
Any two string diagrams which are topologically equivalent represent equal morphisms
in a symmetric monoidal category.
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By "topologically equivalent", we mean that two diagrams, drawn in a rectangle in the
plane with incoming and outgoing wires attached to the boundaries of the rectangle,
are equivalent if it is possible to transform one to the other by continuously moving,
without allowing boxes or wires to cross each other or to be detached from the boundary
of the rectangle during the move. For precise definitions and a proof of the coherence
theorem, see Joyal and Street [23].

The formulas presented in Chapter 2 were obtained from manipulating string diagrams.
Each of these equations can be described in terms of diagrams. Let us see a different
proof of Lemmas 2.12 and 2.13

Observation. The following sequence of diagrams represent an alternative proof of
Lemma 2.12.

tr(g ◦ f) =

f

g

��

��

OO

��

KK
=

f

g
��

PP

��

OO

<<

""
MM

=

g

f

��

OO

OO

��
��

%%

77

PP

=

g

f

��

OO

��

88

OO

!!

=

g

f

��

OO

��

>>

=

g

f

��

��

OO
��

LL
= tr(f ◦ g).

Observation. The following sequence of diagrams represents an alternative proof of the
Proposition 2.13.
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tr(f ∗) = f ∗
MM

OO
��

OO

= fOO
��

\\

��

��

= f

��

��
MM

��

SS
= f

��

�� OO





= tr(f).

Let us describe some different kinds of diagrams useful for cartesian categories, their
description is fundamental for many proofs presented in Chapter 2. For this category,
we will represent maps of the form f : A×X → X ×B in the same way that for maps
in a symmetric monoidal category we exchange × by ⊗.

In cartesian categories we have two kinds of special maps the diagonal map ∆X : X →
X × X and the projection maps which will be denoted by πA,B : A × B → A and
π′A,B : A × B → B the projections to the first and second component, respectively.
Then

πA,B = ����

A B

��
A

and π′A,B = ����

A B

��
B

And the diagonal map can be represented as

��

�� ��

X

X X

A.1 Important identities

We have seen a description of basic string diagrams and relations. Through this work
we presented proofs only using string diagrams, those proofs required identities that
were not proved in the respective sections. So, we have dedicated this section to explain
how to prove those identities using string diagrams.
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Consider the following lemmas, they are used in Chapter 2 to prove the bijective relation
given by Hasegawa.

Lemma A.2. Let C be a traced monoidal category, for f : A×X → B ×X we have

tr(f) = πB,X ◦ f ◦ (idA × tr(∆X ◦ π′B,X ◦ f)) ◦∆A : A→ B (A.1)

where πB,X : B ×X → B and π′B,X : B ×X → X are the projections to the first and
second component respectively.

Proof. First of all, we need to note that f can be represented as

f
��

A
��
X

��
X

��
B

=
�� ��A X

�� $$zz ��

�� �� �� ��
f f

�� �� �� ��

�� ��B X

Using the above description of f we can rewrite the trace as follows

tr(f) = f
��

A

��
B

�� X
EE

''
PP

= f f

A X

�� ��

�� ~~ ## ��

�� �� �� ��

�� �� �� ��

B
��

��

OO

��

��

AA

OO

=

f

f

A X

�� ��

�� ~~ ## ��

�� ��

�� ��

�� ��

�� ��

B
��

��

��

��

CC

OO

=

f

f

��
A

B

		

�� ��

�� ��

�� ��

��

��

��

����

HH

%%
OO

OO

--

The second equality follows by the above description. The third equality is given by
Proposition 2.15, and the last equality holds by naturality in X, see Proposition 2.16.
If we continue transforming the diagram we get
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f

f

A ��

��

�� ��

��
B

B X

�� ��

��
vv

��

��

LL

OO

ll
--

22

=

f

f

A ��

��

�� ��

��
B

�� ��

��
vv

��

$$

II

OO

!!

B X

The first equality holds by yanking the loop on the right corner. Now we can simplify
the diagram inside the red rectangle as tr(∆X ◦ π′B,X ◦ f) : A → X then we get the
following diagram

f

tr(∆X ◦ π′B,X ◦ f)

A
��

�� 


B X

B
��

��

��

++

ww

A

A

X

where the last diagram is πB,X ◦ f ◦ (idA × tr(∆X ◦ π′B,X ◦ f)) ◦∆A : A → B then we
can conclude the lemma.

Lemma A.3. Let ()† : C(A × X,B × X) → C(A,B) be a fixed point operator which
satisfies properties 1 ∼ 4 of Definition 25. Then, for f : A×X → B ×X,

trX(f) = πB,X ◦ f ◦ (idA × (π′B,X ◦ f)†) ◦∆A. (A.2)

Proof. For this lemma it is most convenient to work with equations. Thus, by property
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1 we get

trx(f) = πB,X ◦ (f ◦ (idA × π′B,X))†

= πB,X ◦ f ◦ (idA × π′B,X) ◦ (idA × (f ◦ (idA × π′B,X))†) ◦∆A

= πB,X ◦ f ◦ (idA × (π′B,X ◦ (f ◦ (idA × π′B,X))†)) ◦∆A

by Property 3 we can conclude the result.

Lemma A.4. (Bekic Lemma)
Let A,X and Y be objects in C, a cartesian category, and f : A × X × Y → X and
g : A×X × Y → Y , then the maps

((f × g) ◦∆X×Y )† : A→ X × Y (A.3)
(π′x,A × g†) ◦∆A×X ◦ (idA × (f ◦ (idA×X × g†) ◦∆A×X)†) ◦∆A : A→ X × Y. (A.4)

are the same.

Proof. It can be proved with the properties 1 ∼ 4 of Definition 25. The reader can
consult the proof in [?].

Lemma A.5. Let f : A ×X × Y → B ×X × Y be a map in a cartesian category C.
Then,

π′B,X×Y ◦ f = ((π′B,X ◦ πB×X,Y ◦ f)× (π′B×X,Y ◦ f)) ◦∆A×X×Y .

Proof. Using the description of a function given in the proof of Lemma A.2 we get

f

π′B,X×Y
�� �� ��

�� �� ��

��X × Y

A X Y

= π′B,X×Y ◦ f π′B,X×Y ◦ f

yy
&&

yy
&&

yy
&&

�� ��

�� �� ��

X × Y X × Y

A X Y

πX,Y π′X,Y

�� ��X Y

In addition, note that πX,Y ◦ π′B,X×Y = π′B,X ◦ πB×X,Y and π′X,Y ◦ π′B,X×Y = π′B×X,Y ,
then the conclusion holds.

Lemma A.6. Let g : Y → X be a map and B an object in C, a cartesian category,
then:

πB,X ◦ (idB × g) = πB,Y . (A.5)
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Proof. Let us consider the following string diagram deformation

πB,X ◦ (idB × g) = g
�� ��

!! }}

��

B Y

X

B

= πB,Y

It is due to the fact that projection πB,X deletes the information of the second compo-
nent, and both maps have the same input and output.

Lemma A.7. Consider the conditions as in the previous lemma (A.6), then

π′B,X ◦ (idB × g) = g ◦ π′B,Y . (A.6)

Proof. Let us consider the following string diagram deformation

g
�� ��

!! }}

��

B Y

X

X

=

g

�� ��

B Y

��

��X

Y

It is due thanks to the second projection because the information given by B is deleted.
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