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Resumen

El objetivo de este trabajo es generalizar ideas basicas del algebra lineal y la topologia,
tales como trazas y puntos fijos, en un contexto categoérico. Cada una de esas gener-
alizaciones tiene detras objetos e ideas importantes, como el espectro de Thom y ho-
motropia estable. A lo largo de esta tesis, pretendemos conectar esas generalizaciones
por medio de la dualidad, para contar una historia desde enfoques tanto categoricos
como topologicos. Luego tratamos de ir mas alla de esos temas y estudiamos temas dis-
tantes pero relacionados que nacieron como ejemplos particulares de la teoria abstracta,
por ejemplo, la categoria de homotropia estable (ejemplo de categoria monoidal), la du-
alidad de Atiyah (ejemplo de dualizabilidad) y el espectro de Thom (ejemplo de objeto
dualizable).

Palabras clave: Trazas, puntos fijos, Categorias monoidales, Homotopia estable, Spec-
tro de Thom, Teorema de punto fijo de Lefschetz, Dualidad de Atiyah, Topologia de
cuerdas.
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Abstract

The objective of this work is to generalize basic ideas from linear algebra and topology,
such as traces and fixed points, into a categorical context. Each of those generalizations
has important objects and ideas behind, such as the Thom spectrum and stable homo-
topy phenomena. Throughout this thesis, we intend to connect those generalizations
by means of dualizability, in order to tell a story from both categorical and topological
approaches. We then try to go beyond those topics and we study distant but related
topics that were born as particular examples of the abstract theory, for instance, the
stable homotopy category (example of monoidal category), Atiyah duality (example of
dualizability), and the Thom spectrum (example of a dualizable object).

Keywords: Traces, Fixed points, Monoidal categories, Stable homotopy, Thom Spec-
tra, Lefschetz fixed-point theorem, Atiyah duality, String topology.



Contents

[Acknowledgments|

I

Letfschetz fixed point theorem

General trace and fixed point operator|

[2.1  Symmetric monoidal categories and dualizable objects|. . . . . . . . ..

[2.2.1  Freely generated category| . . . . . . ... ... ... ... ...

[2.3  Cartesian categories|. . . . . . . . . . . . ...

[2.5 Properties of traces| . . . . . . ... ... Lo

[2.6  Fixed point operator| . . . . . . ... o

[2.7  Fixed point operator and general tracel . . . . . . ... ... ...

Atiyah duality and Spectral

B.I Preliminaried . . . . . . . . . ...
3.2 Spectral . . . . ...
[3.3  Symmetric Spectrum| . . . .. ..o

x1

viii

16

18
20
30
33
38
41
49
26
58



xii Contents

[3.4 Stable homotopy category| . . . . . . . . . ... ... ... 80
[3.0 Atiyah duality|. . . . . . . ..o 86
[3.6  Lefschetz fixed point theorem| . . . . . . . . ... ... ... ... ... 95
[4  String topology| 100
[4.1  Pontrjagyn-Thom collapse map| . . . . ... ... ... ... ... ... 101
[4.2  Multiplicative structure of Thom spectrum| . . . . . . . . ... ... .. 103
4.3  Multiplicative structure of LM ™| .. ... ... ... 107
[A String diagrams| 110

[A.1 Important identities|. . . . . . . . .. ... ... 114




What is this thesis about?

There are two basic ideas involved in this thesis: traces and fixed points. In this work,
the author intends to study the connection between them in various topological and
categorical aspects. Following that path, interesting things emerge such as categorical
dualizability, which aims to extend notions from linear algebra.

Fixed points are solutions of the equation f(x) = z for a map f : M — M. This can
be studied from an algebraic, analytical, or topological point of view. In this work, we
have decided to take a topological approach. Thus, in Chapter 1 we study intersection
theory and how it fits in the study of fixed points. From that perspective, the Lefschetz
number of a smooth map f : M — M emerges, denoted by L(f), which in some way
"counts" the number of fixed points. Throughout Chapter 1 we will develop some
refinements of the Lefschetz number that allow us to work with that invariant in a
suitable way. In addition, Lefschetz number formulas suggest a relation between fixed
points and traces.

In linear algebra one defines the trace of a square matrix as the sum of the diagonal ele-
ments. One can "describe" the trace in a more abstract way in terms of the categorical
structure of the category of vector spaces, namely the tensor product. This will help us,
in Chapter 2, to extend the notion of trace to any symmetric monoidal category which,
in turn, gives us the notion of dualizable objects in monoidal categories. This notion
of general trace in symmetric monoidal categories satisfies many properties, some of
which come from linear algebra and others are technical properties. Those properties
allow us to characterize and extend the notion of traces as a certain family of maps
which satisfies special properties, even, that abstraction does not require a category
with dualizable objects. We culminate Chapter 2. by showing how general traces are
related to categorical fixed points. That part of the thesis is full of technical concerns
which arise from theoretical computer science, to be precise recursion theory.

The first step in this generalization is to extend the context where we will work, that
is, symmetric monoidal categories. They can be thought of as a natural generalization
of the category of finite-dimensional vector spaces, that is, categories with a product

xiil
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that mimics the features of the tensor product in linear algebra. It is then natural to
ask what structures from linear algebra can be extended to symmetric monoidal cate-
gories. Dualizability is one of those ideas, this can be described in terms of evaluation
and coevaluation maps. The idea of this thesis is to study other examples and their
relationship with fixed points. The goal of Chapter 3 is to study Atiyah duality. It is
an example of dualizability in the stable homotopy category. Thus, we need to stop for
a while to motivate and construct the category of spectra which is a predecessor of the
stable homotopy category or HoSpect.

In Chapter 3, we also present an alternative proof of the Lefschetz-Hopf theorem. We
will show that in the stable homotopy category the trace of a smooth map f: M — M
with M a compact and closed manifold is the fixed point index of f. It requires to extend
dualizability in simpler categories such as Alexander duality and Spannier-Whitehead
duality in the category of smooth manifolds and spectra, respectively. As a result, we
get the Thom spectrum, denoted by M~7M which is Atiyah-dual of the suspension
spectrum X°°M,. Thom spectrum is an important example of spectra and has many
connections with other topics like cobordism theory.

Another interesting subject related to Thom spectrum is the string topology, that
is, the study of the algebraic structure on the homology of the free loop space of a
smooth manifold. In Chapter 4, we start by studying the original ideas of the Chas
and Sullivan product. Then, we move to a more general context by using the tools
developed in Chapter 3. We will show how we can give to the Thom spectrum the
structure of symmetric ring spectrum. That structure is "pulled-back" to the evaluation
map ev : LM — M and it gives to the Thom spectrum LM ~TM the structure of ring
symmetric spectrum. We can induce a product into H,(LM), thanks to the product
structure in LM ~T™ | which coincides with the original ideas of Chas and Sullivan.

In the appendix of this work, we have decided to give a brief introduction to string dia-
grams. It is motivated, in Chapter 2, by studying freely generated monoidal categories,
because intuitively one-dimensional bordisms are just strings with certain relations.
Following this idea, we can use those diagrams to describe equations in any symmet-
ric monoidal category, that makes this theory more accessible and avoids complicated
proofs. Indeed, many of the proofs in Chapter 2 are made by deforming strings.

In conclusion, this thesis has the goal to generalize basic ideas from linear algebra and
topology, such as traces and fixed points, into a categorical context. Each of those
generalizations has important objects and ideas behind, such as the Thom spectrum
and stable homotopy phenomena. Throughout this thesis, we intend to connect those
generalizations by means of dualizability, in order to tell a story from both categorical
and topological approaches. Then, we try to go beyond those topics and we study
distant but related topics which were born as particular examples of the abstract theory,
for instance, the stable homotopy category (example of monoidal category), Atiyah
duality (example of dualizability), and the Thom spectrum (example of a dualizable
object).



Chapter

Lefschetz fixed point theorem

In this chapter we will give a brief introduction to fixed point theory for manifolds.
We will introduce the necessary tools in order to understand this theory, always with
a topological point of view. As a second step we will provide a short introduction to
intersection theory, the perspective used to study fixed points. Finally, we will present
the main theorem of this chapter, Lefschetz fixed point theorem, which will be proved
in Chapter 3 using the tools developed in a more abstract language in Chapter 2.

Let f: M — M be a smooth map on a compact and oriented manifold M. We want
to study the solutions to the equation f(z) = x. From a geometric point of view, we
can think of the set of fixed points as the pairs (z,y) € M x M that belong to the
intersection of the graph of f, denoted by Gy, and the diagonal submanifold denoted
by A. We may use intersection theory to count fixed points. We will do this with an
invariant called the Lefschetz number.

We will assume that the reader is familiar with basic concepts in differential topol-
ogy such as homology and cohomology, Poincaré duality, and tools of integration over
manifolds. Good and classical references include [31], [10], [30].

All the manifolds that we will consider in this chapter are smooth and oriented mani-
folds, unless otherwise stated.

1.1 Preliminaries

Let us start with a review of orientation and transversality. These definitions will be
fundamental in our study of intersection theory.

Let V' be a vector space of dimension n, {vy,--- ,v,} and {wq,-- ,w,} be two ordered
basis for V. Let A : V — V be the linear map defined by A(w;) = v; fori=1,--- n.

1



2 Chapter 1. Lefschetz fixed point theorem

We say that these bases are equivalently oriented if det(A) > 0, otherwise they have
opposite orientations. This determines an equivalence relation in the set of ordered
basis of V. An orientation of V' is a choice of one oriented class positive or negative.

Definition 1. Let M be a manifold, we say M s orientable if there is a smooth choice
of orientations for all tangent spaces T, M for x € M.

Let Vi and V5 be two oriented vector spaces, the direct sum Vi @ V5 is also an ori-

ented vector space with an orientation defined as follows. If {vy, -+ ,v,} is a posi-
tively oriented basis for V; and {wy, - ,w,,} is a positively oriented basis for V5 then
{v1,++ ,up,wq,- -+ ,wpy} is a positive oriented basis for V; @& V5.

This allows us to induce an orientation in M x N, the product of two oriented manifolds
M and N. For (xz,y) € M x N, we have a linear isomorphism 7{, (M x N) =
oM x T,N = T,M @& T,N, thus an orientation on M x N is obtained from the
orientation of M and N by taking the direct sum orientation of the oriented tangent
spaces T, M and T, N.

Example. Some examples of oriented manifolds include:

e The circle is an oriented manifold of dimension 1.

e n-dimensional spheres S™ are n-dimensional orientable manifolds.
o Surfaces with holes are examples of oriented manifolds.

Non-oriented manifolds also are interesting in the theory of differentiable manifolds,
but in this work non-orientable manifolds will not be considered. A great introduction
to non-orientable manifolds is [10].

Definition 2. Let N be a submanifold of M. We say that the map f : X — M 1s
transversal to N, denoted by f M N, if for each x € f~1(N) such that y = f(x),

im(d, f) + T,N = T, M. (1.1)

This means that at each point in #m(f) N N, the vectors tangent to im(f) and the
vectors tangent to N together span the ambient tangent space.

Let S be a closed submanifold of dimension k of a compact manifold M of dimension
n, we can define a functional from the k-cohomology of M to the real line.

S :H*(M) —R
la] — / a,
s
and by Poincaré’s duality we get an isomorphism between (H*(M))Y and H,,_(M), the
dual of the k-cohomology of M and the complementary homology of M, respectively.



1.1. Preliminaries 3

The Poincaré dual of S in M is the cohomology class ng € H"*(M) uniquely

determined by the equality
/a :/ a Ang, (1.2)
5 M

where « is any closed form over M and 7g correspond to S under the Poincaré’s duality
isomorphism.

A good reference is the famous book of V. Guillemin and A. Pollack, see |18].

Definition 3. Let S C M be a submanifold of M. The normal bundle of S in M is
the vector bundle over S defined by

Now let S C M be a submanifold of M. Then a natural question emerges: What does
M look like “near” S?7 The famous tubular neighborhood theorem claims that S always
admits a “tubular” neighborhood inside M. Moreover, the tubular neighborhood looks
like a neighborhood of S inside its “normal bundle”.

Theorem 1.1. Let S C M be a smooth submanifold. Then there exists a diffeomor-
phism from an open neighborhood of S in N(S) onto an open neighborhood of S in
M.

An example of a tubular neighborhood is described in the next figure.

Figure 1.1: Tubular neighborhood

As a special case we will consider a manifold embedded in an euclidean space, that
is possible thanks to Whitney’s embedding theorems. In this case we can describe in
detail tubular neighborhoods which we will call e-neigborhoods.

Theorem 1.2. Let . : M — RE be a smooth compact submanifold. Then there exists a
positive number € such that, if we let M, be the e-netghborhood of X,

M. :={y eR": |y — x| <e for somex € M}, (1.3)

then
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1. For each y € M, possesses a unique closest point m.(y) € M.

2. The map ©. : M. — M 1is a submersion.

e is defined by 7. (y) = mop ' (y) where w: N(M) — M is the vector bundle projection
and ¢ : N(M) — R™ is given by p(x,v) = x + v.

The following figure helps us visualize e-neighborhoods.

Figure 1.2: e-Tubular neighborhood.

The following definition is of extremely importance in Chapter 3,

Definition 4. The Thom space Th(V') of a real vector bundle m : V. — X over a
topological space X 1is the topological space obtained by first forming the disk bundle
D(V) of (unit) disks in the fibers of V' (with respect to a metric given by any choice of
orthogonal structure) and then identifying the boundaries of all the disks to a point, i.e.
forming the quotient topological space by the unit sphere bundle S(V)

Th(V) := D(V)/S(V). (1.4)

Intuitively, the Thom space are those collection of vectors in V' with norm less than 1
and we collapse to a point those vectors with norm equals to 1.

We will also denote the Thom space of a bundle V — M as MV

1.2 Intersection theory

As we mentioned in the previous section, intersection theory will help us to study fixed
points. The results presented here are a brief summary of a long theory.

Definition 5. Let S, L be submanifolds of M such that S, L, M are oriented and com-
pact. If S intersects L transversally, we denote it by S th L. Moreover, if dim(S) +
dim(L) = dim(M ) then the intersection number is

IIlt(S,L):/ 7]5/\77L,
M

where ng and ng, are the Poincaré’s duals of S and L, respectively.
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When S M L then the Poincaré’s duals g and 1y obey the following relation

Nsnr = Ns AL (1.5)

The above relation does not require a lot of computation, only requires writing the
Poincaré’s dual in term of the Thom class and its relation with the Whitney sum of
vector bundles. For more details, you can check Guillemin’s book [18].

Inside M x M we have two submanifolds: the diagonal A and the graph G;, which have
complementary dimension. We can then try to take the intersection number between
Gy and A. But we warn that Int(A,Gy) has to be interpreted carefully: it really
denotes a fixed point counted with multiplicities.

M

A(M

Gy

M

Figure 1.3: Intersection of G and A.

Definition 6. Let M be a compact and oriented manifold and f : M — M a smooth
map. Then the Lefschetz number of f is

L(f) = /M A, €R (1.6)

The transversality condition is important in the above definition, because the right-
hand side of Equation is, in fact, an intersection number. Note that, we can deform
the map f in such a way that G is always transverse to A(M).

Let us see a particular description of na the Poincaré’s dual of A. That will help us to
have more control over the formulas that will appear related to intersection theory.

Lemma 1.3. Let {ay, - ,a,} a graded basis for H*(M) and {B1,--- , 8.} the respec-

tive Poincaré dual basis, i.e. the bases must satisfy the equality Bi Aoy = 0;5. Then
M

n

na = Y (1) () A3(8), (1.7)

=1

where m; : M x M — M fori=1,2 are the natural projections.



6 Chapter 1. Lefschetz fixed point theorem

Proof. For any closed n-form w we want to prove the following formula

/AWZ/MXMWMA. (1.8)

We can write any closed n-form w € Q(M x M) in terms of the basis as follows

w= Y m(B) Am3(ay), (1.9)

k,j=1

For fixed k,j = 1,--- ,n we can consider the form
wi,j = T (Be) A my(ay), (1.10)

Let us calculate the left hand side of Equation [1.8

/A ey /M o) = /M (3 (B) A ()
- /M (m 0 9)*(Be) A (2 0 0)*(a)

and the right hand side

| winna =30 [ w0 Aias) Aia) A(5)

MxM

= Z(_1)|ai+|ai|aj|/ Wi(ﬁk A Oéz') A W;(Oéj A Bz)
i MxM

_ N (ol ( > < ) )
> [ senas) ([ asna
= 3 (el ol

- (_1)Iaj\JrlajHaj|+\aj|l,3k\(5kj

— (_1)|%‘H5k|5kj_
Thus, adding over k,j = 1,--- ,n we get the equality [1.§ O
With the above description of the Poincaré dual of the diagonal, we can calculate the

Lefschetz number only from the information provided by its cohomology (homology)
regardless of the choice of the coefficients. We get the following theorem.
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Theorem 1.4. Let M be a compact and oriented manifold and f : M — M a smooth
map. Then

L(f) =Y (=1)x(f* : H'(M) — H'(M)). (1.11)

120

Proof. Write the linear map f* : H'(M) — H'(M) in the form
Bi) = X (1.12)
i=1

where {f1,---,3,} is a basis defined as in the Lemma [1.3] By replacing Formula
in [L.6] we get

L(f) :/MXMnA/\nG(f) Z/G(f)UA:/MF*(UA)

- Z |al / F (i (w) Am5(5;))

_Z 1)l / (m1 0 F)*(aq) A (2 0 F)*(5))

- Z e [ (aen £1(3)

=> (D Ajai A B
Z( 1) /M a; A

= Z |al‘)\mﬂz az)

= Z - |al‘)\ii7

where F': M — G(f) is a diffeomorphism defined by F(z) = (z, f(z)). O

Lemma 1.5. Let M be a compact and oriented manifold and na the Poincaré dual of
the diagonal. Then

X(M):/MUA/\UA. (1.13)
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Proof. Let us calculate the right hand side. By the Formula we get

/MXMUA/\UAZ/UAZ/ ©*(na)

where ¢ : M — A is the diffeomorphism defined by ¢(z) = (z, x). O

A priori from Formulas([I.6]and[1.11]it is not clear why the Lefschetz number is an integer
number. The previous lemma tells us that when the self-map is just the identity then
we get an important invariant, the Euler’s characteristic x (M), which is a very famous
integer number. A natural question emerges: is the Lefschetz number always an integer
number? The answer to that question is affirmative. We will see why this is the case
using the following identification.

Definition 7. Let M be an oriented and compact manifold of dimension 0 i.e. M =
{p1,- -+ ,pn} is a finite set of points. An orientation in each point p; is a choice of +1
or —1 and will be denoted by sgn(p;). The cardinality of M denoted by #(M) is the
number of points counted with sign, that is

n

H(M) = sgnlp;). (1.14)

i=1

Lemma 1.6. Let S and L be compact and oriented submanifolds of M such that their
intersection is transversal. If dim(S) 4+ dim(L) = dim(M), then

Int(S, L) = #(SNL). (1.15)
Proof. Because S and L are transverses we get that S N L is a compact and oriented

submanifolds of zero dimension. Then it is a finite set of points with orientation and
must hold

/MUSnL =#(SNL). (1.16)
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By the identification [I.5] and Definition [7] we get

Int(S, L) = / Ns Anp = / Nsnr = #(SNL).
M M

The last equality is given by the following lemma. O]

Lemma 1.7. Let S be a submanifold of dimension zero of M. Suppose that S and M
are compact and oriented. Then

#(5) = /M 7s. (1.17)

Proof. Let S = {p1,---pm} be a finite set of points with orientation where the orienta-
tion of each point p; assigns a sign sign(p;) € {+1,—1}.

There are open sets {U;}i*, of M pairwise disjoint such that p; € U; = R". And Let 7;
be differential forms in Q2 (U;) for ¢ = 1,--- ,m such that

/ n; = sign(p;). (1.18)
U;

Then n = Z n; is a n-form over M. Thus, we get

/MU—Z/Ui mzzsign(pi) = #(9). (1.19)

We affirm that the Poincaré’s dual of S is 7, indeed we need to prove the following

equality
/a:/ aAn, (1.20)
S M

for o any closed form of degree zero. The closed forms of degree zero are the locally
constant functions, then a = f such that f|y, is constant for all ¢ = 1,--- ,m. We
calculate,

/Mf/\n:zi:/f\/ff/\m:zi:/Uif/\m:zi:f(pi)Sign(pi):/Sf:/sa'
O

By the previous identification we get that the Lefschetz number is an integer number,
because it is the intersection number between A and Gy submanifolds of M x M.

The next theorem is very relevant in this theory because it uses the Lefschetz number
to say when a self-map has fixed points. It is known as Lefschetz fixed point theorem.
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Theorem 1.8. Let M be a compact and oriented manifold and f : M — M a contin-
uous map. If L(f) # 0 then f has at least a fized point.

There is a classical proof of this result using simplicial approximation together with For-
mula the result follows. It is also a consequence from the Lefschetz-Hopf theorem,
in Chapter 3 we are going to prove that theorem by applying abstracts results.

Example 1. Let X = {p1,...,pn} be a finite set of points and f : X — X a function.
This function induces a R-linear transformation

/% Maps(X,R) — Maps(X,R)
g= 19 =geof

where Maps(X,R) is the vector space of functions from X to R, it coincides with the
Oth cohomology of X, H°(X,R) = Maps(X,R).

The set B = {01, ...,0n} forms a basis for Maps(X,R), where 6; : X — R is defined by
0i(pj) = 0ij, for alli=1,..,n. Let us consider A = [f*|g = |aij], the associated matriz
to f*, where a;; = 0;(f(p;)). Henceforth,

tr(f*) = Z Q.
i=1

Since a; = 6;(f(pi)), if pi 1s a fized point of f we have a;; = 1, and a; = 0 otherwise.
Thus, tr(f*) counts the number of fized points of f.

The following examples show how to calculate the Lefschetz number from Formula

Example 2. Let X be the figure eight (see Figure . Let f : X — X be a map which
is defined by the loops: fu(a) = o* and f4(B) = B~'. The function f has two fized
points xo and yo.

In zero degree we get tr(fuo) = 1 because the induced linear map f.o : Ho(X) — Hy(X)
is the identity. In dimension one, the integral homology of X 1is

H(X)=Z®Z=(a,p).

2 0
f*l:<0 _1)7

L(f)=1—-(2—1)=0.

Therefore,

In the last example the Lefschetz number is zero but it has two fixed points. It is an
example where the reciprocal of the Lefschetz fixed point theorem is not true.
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X

Yo
Figure 1.4: FEight figure.

Example 3. Consider the surface of genus three X3 given by Figure[1.5 Let f : 33 —
Y3 be the map defined to be the 180 degree rotation about a vertical axis passing through
the central hole. Since f has no fixed points, we should have

2

L(f) =) (=1)tr (fu : H; (S3) — H; (33)) = 0.

=0

At degree 0 the induced map f.o is the identity, as always for a path-connected space, so
this contributes 1 to L(f). At degree 1, it induces a map fq :Z2OZOZ —-ZHZHZ
defined by the matriz

00 1/0 00
010/000
1 00]|000
f*1_000001’
000/010
000100

Thus, it contributes —2 in L(f). That is because there is only one way to send vertical
loops a1 — a3, ag +— g and ag — aq, 1n a similar way are sent the horizontal loops.

Figure 1.5: Genus 3 surface.
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In degree 2, fi.o : Z — Z contributes 1 in L(f) because the map f preserve the orien-
tation, it thanks to the right-hand rule, see figure below. Then, the Lefschetz number
18:

L(f)y=1-2+1=0.

The next lemma is a local characterization of transversal intersection.

Lemma 1.9. Let f : M — M be a smooth map and p € M a fized point. Then Gy M A
at p € M if and only if dpf — 1 : T,M — T,M is a linear isomorphism.

Proof. It Gy M A at ¢ = (p,p), then
im (dpp) (idar % f)) + T A = Tpp (M x M), (1.21)
that can be written as
im(I x dyf) + TppA =T,M x T, M. (1.22)
Note that the subspaces im(I x d, f) and T}, A have the same dimension inside 7, M x
T,M. Therefore, we get the next quality
im(! x dyf) @ Ty A =T,M x T,M, (1.23)

That is equivalent to im(/ x d, f) N T, A = 0. Then, there are not non-zero vectors
such that d,f has no fixed points. Thus, we get

ker(d,f — 1) =0.
It is d,, f — I is an injective map between vector spaces of the same dimension, and hence
it is an isomorphism. O

Proposition 1.10. With the conditions presented in the previous lemma, the orien-
tation number of ¢ € G(f) m A is in fact the sign of the determinant of the linear
transformation d,f — I.

Proof. Let {vy,--- v} be a linear basis for T,M. Then {v; x vy, , v, X v} and
{vi xdyf(v1), - ,vp xdpf(vi)} are bases for T{, ,) A and im(I x d,, f) respectively. The
set

C={vy xvp, - v XV, 01 Xdpf(vy), -+ v X dpf(vi)}

forms a basis for T,M x T,M =2 T, (M x M). We can represent the transformation
d,f — I using this basis as the following matrix

vy e 0 1 e 0

o ... Vg, 0 .. Vg,

vy - 0 |dpf(vy) - 0 v
0 Vi 0 dpf(vk)
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applying elementary matrix operations to the previous matrix we get

v, - 0 o 0
0 --- 0 Uk
dpf(v1) —v1 - 0
0 : :

0 e dpf(uk) — vk

Hence, the above basis is positively oriented in the product M x M if and only if the
isomorphism d, f — I preserves the orientation. O

The following is a local characterization of Lefschetz number in term of the fixed points.

Definition 8. Let x € M be a fixzed point of the map f: M — M. The local Lefschetz
number of f at x, denoted by L,(f), is defined to be the sign of det(d,f — I).

Proposition 1.11. Let M be a compact and oriented manifold, and f: M — M such
that Gy m A. Then

L= 5 L(p). (1.24)

f(z)==

Proof. From definition we know the Lefschetz number is the intersection number be-
tween A and Gy. Hence, we get

L(f)= ) sen(p),

f(p)=p

where sgn(p) is the orientation number as in Lemma [I.7] The result follows from
Proposition [I.10] O

We can consider another approach to compute the Lefschetz number. This point of
view is studying zeros of vector fields. Recall that a vector field is a smooth asignment
that correspond to each point p a tangent vector in T, M.

Definition 9. Let V' be a vector field over M. The image of V is
I(V)={veT,M:v=V(p) for somepe M}, (1.25)
which is a submanifold of TM. In fact I(V) = M.

Lemma 1.12. Let N(A) be the normal bundle of the diagonal in M x M. Then there
is a diffeomorphism of vector bundles N(A) = TM.
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Proof. Take (p,p) € A and consider the following commutative diagram

0 —— T(p’p)A —L> TpM X TpM e N(pm)(A) — 0

bl

0 —— Ty,M —— Tpp(M x M) —— T,M ——— 0

where ¢ : Tip ) A — T,M x T,,M is defined as (v, v) = (v,v), the map

6 T,M — Tippy (M x M) is defined by d(v) = (v,v), and ¢ is the canonical linear
isomorphism between M and its diagonal induced at the tangent space level defined for
any vector v € T,M as p(v) = (v,v).

Those horizontal exact sequences have the same cokernel. Thus, we can conclude
Npp)(A) = T,M for all p € M. This previous fact, together with the homomorphism
of vector bundles

7:TM — N(A)

defined by 7(z,v) = ((z, z), (—v,v)) for (z,v) € TM and v € T, M, allow us to conclude
that the vector bundles TM and N(A) are isomorphic. O

Let U be an open subset of M x M such that U = N(A), i.e. U is a tubular neighbor-
hood. Let ¢ : U — T'M be the isomorphism between the tubular neighborhood and the
tangent bundle given by the composition between the isomorphism ¢ : U = N(A) and
the isomorphism ¢ : N(A) — T'M in the above lemma. Figure (1.6 helps us understand
this situation.

U

/ TM

On

M
Figure 1.6: Tubular neighborhood of A.

Intuitively, we can transfer information of fixed points inside the tubular neighborhood
to vector fields over M. Fixed points are in fact intersection points, and zeros of vector
fields are also intersection points between sections in the tangent bundle and the zero
section. The bridge between them is the tubular neighborhood ¢ : U — T'M.
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Theorem 1.13. (Poincaré-Hopf index theorem) Let M be an oriented and compact
manifold, and V" a vector field over M such that I1(V') th I1(0), i.e, the image of the vector
field intersects transversally the zero section, then

X(M) = )" indy, (V). (1.26)

V(p)=0

Proof. See [18].

The following figure shows an idea of the isomorphism .

TM

M

M
Figure 1.7: Poincaré-Hopf

However, There is a classical version of Formula [1.26| For f: M — M a self map with
M an oriented and compact n-manifold with discrete set of fixed points.

Definition 10. Let M, N be compact manifolds with the same dimension and f : M —
N a smooth map. If y € Y is a reqular value of f, the degree of f at y is given by

deg,(f)= Y sgn(det(d.f)).

zef~1(Y)

It is not hard to see that the degree of a map does not depend on the choice of regular
value, thus we can define a global degree denoted by deg(f). Moreover, this degree is
a homotopy invariant; that is, if f is homotopic to g then deg(f) = deg(g).

If we consider any self map f : S™ — S™ of spheres, we can define an equivalent notion
of degree as follows: first we can induce an homology homomorphism f, : I:In(S”) —
H,(S™), which is a map f. : Z — Z. The degree is given by f.(an) = deg(f)an, where
o, is the fundamental class of H,,(S™).

Using this formulation of degree we can give an equivalent notion of index. We will
refer to both as index, the context will help us to differentiate each one.
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Let © € M be a fixed point of f, then there exists a (n— 1)-sphere S, around x which is
approximately mapped to itself by f. Thus, the restriction of f to S, is fls, : Sz — Sq,
a self map of spheres. Hence, we get the following definition.

Definition 11. Let M be a closed smooth n-manifold and f : M — M a map with a
discrete (hence finite) set of fixed points. The fized-point index is the sum

S deg(fls,),

f(z)==

over all fixed points of f.

1.3 Lefzschet number and trace

In the previous section, we defined an invariant purely in a topological way. That admits
many descriptions, but one, Formula in Theorem tells us that the Lefschetz
number of any map f : M — M is the alternating sum of the trace of the map induced
at the cohomology level.

In Example [1, we found that for a map f : X — X with X a finite set, we can
find the Lefschetz number just applying a functor which sends f to the linear map
f*: Maps(X,R) — Maps(X,R). Now, in the world of linear maps we can calculate the
trace of f* and we get

tr(f*) = Number of fixed points of f. (1.27)

Following this idea, taking cohomology generalizes the idea of the functor Maps(—, R).
In fact, it is the result of cohomology at the zero dimensional level. Now, If we consider a
smooth map f : M — M, with M be a compact and oriented manifold, we can apply the
cohomology functor denoted by H(—). Thus, we get a linear map f*: H(M) — H(M)
and we can calculate its trace. H(M) is a graded vector space, commonly written as
@ H'(M), and its trace is the sum of the alternating trace in each degree. The sign
i>0

of each degree is not a convention. The sign comes from the sign in the symmetric
condition V@ W — W ® V in the vector space level is defined by the formula:

Y v @w = (=1)Ivly @ v, (1.28)

We can conclude that Formula relates the trace of f* : H(X) — H(X) and the
number of fixed points of f counted with multiplicity, in other words trace and number
of fixed points (with multiplicity) are the same thing. That is

() = S (=1 (f), (1.29)

i>0
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In summary, we have the following:

L(f) = tx(H(f)), (1.30)

where we just replaced f* = H(f), that represents the induced linear map at cohomol-
ogy.

In the next chapter we will give an introduction to this categorical language. Let us
stop for a second and consider the situation in which for a smooth map f : M — M
we may find the trace, denoted by ¢r(f). This trace has the interesting property of
commutativity with the homology functor H. In that situation, the Lefschetz number
is

L(f) = H(tx(f))- (1.31)

That is the starting point of this work, we will see in the following chapter that the trace
can be defined in a more general context. That connection is beyond topological spaces
or even from a set-theoretic environment. We are interested in developing a categorical
framework where we can conclude some of the results presented in this chapter but
from a more abstract point of view.



Chapter

General trace and fixed point operator

In this chapter we will introduce some motivations towards the concept of general traces
in any symmetric monoidal categories and its relation with fixed points. Thanks to the
work of Dold and Puppe, (see |2]), about the theory of dualizable objects in monoidal
categories, we can extend the notion of trace to monoidal categories. As an important
pedagogical ingredient, we will discuss some examples where traces give us information
about fixed points, in special, the stable homotopy category. Historically, it was the
category in which Dold and Puppe worked motivating the study of general trace, and
it will serve as the starting point of Chapter 3. Finally, we will see a relation between
general trace and fixed point operator, independently found by Hyland and Hasegawa,
see [20] and [?], respectively.

Let us begin by recalling some facts of linear algebra. Let V' be a finite dimensional
vector space over a characteristic zero field k. We can define the trace of a linear map
f:V — V as the following composition

El s ver My 2L vrev Sk

tr(f)

where V* is the dual vector space of V', 1 is the co-evaluation map, € is the evaluation
map and < is the canonical isomorphism between V @ V* and V*® V. Let {vq,...,v,}
be a basis for V' and {v7,--- , v} its dual basis defined by v} (v;) = d;;, with §; ; being
the Kronecker delta. We can write the evaluation and co-evaluation maps in terms of
the bases as follows

n(1) :Zvi®v;‘, € (v; ® v7) = v (v;), (2.1)

18
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n extends by linearlity to any r € k, so it is only necessary to define what happens to
1. The trace in terms of these bases is the following composition

n Z f®idy = Z Y Z Z
1 —— V; & ’UZ< — ;505 (029 U: — (lij’U;k X Vj l;> Ay

(]

tr(f)

where a;; € k are the coeflicients of the matrix representing f, i.e., f(v;) = Z;”Zl a;V;
for all ¢ = 1,--- ,n. This notion of trace allows us to recover the classical notion of

trace as the sum of the diagonal elements of a square matrix. Therefore, the previous
composition is extremely important because with it in mind we can extend the notion
of trace to a more general context, where the classical notion of trace as a sum makes
no sense.

An objective of this chapter is to develop the abstract theory behind the general trace
and show, with illustrative examples, its relation with fixed points. That was an idea
from Hasegawa in [19] and Hyland in |[?] who independently discovered the abstract
relation between traces and fixed points. In particular, they discovered Theorem [2.23
which we will prove at the end of this chapter.

The idea of Hasegawa was to imitate the notion of feedback, such as in the analysis
with the use of contractive maps where we can reproduce fixed points with iterative
composition. Let us consider f : A x X — X, the string diagram that represents the
map f is given by

X.

This map must satisfies the property that the X input and output have been “fed back
into each other” somehow.

A

X
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We can decompose the above string diagram in short pieces which together bring us
the feedback diagram:
A .
[ e
e

\\/f ¢

Note that the levels of each diagram correspond to the individual functions that we are
composing. Using the description presented in the Appendix A, we can write the feed
back with a composition of morphism:

co(f®idx«)o(idg®@n): A— 1. (2.2)

We must pay attention to this composite. We will come back to this later in this
chapter when the notion of trace is defined. That is because with suitable topological
modifications of the above diagram we can recover the notion of trace. Sometimes we
will write identity maps as objects, for example Equation (2.2)) may be written as

eo(f@X")o(Aan).

In summary, the notions of trace and fixed point meet thanks to "feedback". Theorem
describes this relationship and it will be the main objective in this chapter.

2.1 Symmetric monoidal categories and dualizable ob-
jects

The first type of categories that we will introduce are monoidal categories. Intuitively,
we say that a category C is monoidal if there exists some notion of product, denoted by
®, and a unit object with respect to the product, denoted by 1. This definition extends
in a natural way the notion of monoid in a categorical sense. That, is a well defined
binary operation, with an identity element which is associative. In addition, we say C is
symmetric if the product is as commutative as possible, i.e., there exists a map  such
that for each pair of objects X,Y in C we get an isomorphism 7xy : X ® Y 2Y ® X.

The next definition might seem bulky, but one only has to keep in mind that it is
defined in way such that the tensor product of morphisms is also associative.

Definition 12. A symmetric monoidal category C is a category equipped with.:

1. A functor ® : C x C — C called the tensor product.
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2. An object 1 € Ob(C) called the unit object.

3. A natural isomorphism axyz : X @ (Y @ 2Z) =2 (X ®Y)® Z for X,Y,Z objects
i C, called the assoctator.

4. Natural isomorphismslx : 10X — X andryx : X®1 — X called the left unitor
and right unitor, respectively.

We demand the commutativity of the following diagrams:

Pentagon identity:

WeX)e(Y®Z)

CYW@M WQ/@Z

(WeX)eY)® Z WeXe(Y®Z)

aw. XY ® idZ ZdW X axy,z

WeXeY))eZ T We(XY)® 2)

Hexagon identity:

(XeY)®Zz 2% veox)oZ

ax% av,x,z

X® (Y ®Z) Y®(X®2Z)

7Y®A VY, X®2

YRZ2)X — Y ® (Z® X)

ay,z, X

Triangle identity:

(X®1)®Y XLy s X® (1Y)
TXM %IY
X®Y

These are called coherence diagrams or MacLane azxioms.
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Dualizability of objects in a monoidal category defined by Dold and Puppe, see [2],
is a way of saying that an object is “small”. For example, in Vect, the category of
vector spaces, dualizable objects are the finite dimensional vector spaces and their dual
is given by V* = Homy,(V, k). The definition presented here of dualizable objects in any
monoidal category does not follow immediately from the notion of dual vector space as
the set of homomorphisms from the vector spaces to the field k. Therefore, considering
the dual of any object M as Hom(M,1) does not make sense, at least in categories
which do not have internal homomorphisms.

Definition 13. An object M € 0b(C) is called dualizable if there exists an object
M* € ob(C) called its dual, and maps

n:1— M M, eM*" @M — 1, (2.3)
satisfying the triangle identities
(tdpyy @ €) o (n®idyy) =idpy and (€ @ idyyy) o (idpy+ @ M) = idpys.

We call € the evaluation and n the coevaluation map.
Most of the proofs for some of the results are inefficient and complicated. The approach
that we will use corresponds to drawing morphisms in C as boxes, and objects in C as

arrows. The images bellow describe the snakes identities in terms of these diagrams.
These diagrams will be described in depth in Appendix A.

M| M\ M = M MY M| M = M~

Example 4. Examples of symmetric monoidal categories and its dualizable objects
are:

(a) Vector spaces. Let Vecty, the category of finite dimensional vector spaces over a
field k. The usual tensor product and the field k as the unit object give us the struc-
ture of a monoidal category. Its symmetric structure is given by the isomorphism
of vector spaces yyw VW — W @V defined by v(v @ w) = w @ v. All finite
dimensional vector spaces are dualizables with a canonical dual V* = Hom(V, k).

(b) R-Modules. Let R be a commutative ring and Modg be the category of R-modules.
Then Modg s a symmetric monoidal category with the usual tensor product over
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R. The ring R thought of as a module over itself is the unit. The dual of a finitely
generated free R-module M is Homg(M, R). This is also a finitely generated free
R-module. If M has basis {my,mo,--- ,m,} and dual basis {m’,my,--- m.} the
coevaluation and evaluation

n:R— M®g Homg(M,R) and € : Homg(M,R) g M — R
are R-module homomorphisms defined by e(¢p, m) = ¢(m) and n(1) = > . m; ®pm,.

(¢) Chain complexes. Let R be a commutative ring and consider the category Chgr
of chain complexes of R-modules equipped with the structure of monoidal category
by taking the monoidal product to be the graded tensor product @ and the monoidal
unit to be the module R, viewed as a chain complex with non-trivial degree only in
degree 0. Its symmetric structure is given by a®b = (—=1)Plelb@a. A chain complex
over a ring R is dualizable if and only if it is bounded and is a finitely generated
projective module in the finitely many degrees where it is non-zero.

(d) The categories Set and Top of sets and topological spaces, respectively. Both are
symmetric monoidal categories. The tensor product is the set theoretic cartesian
product, and any singleton can be fixed as the unit object, uniqueness is given by
the fact that they are all canonically isomorphic to one another, and we denote the
one point set by *. The only dualizable object is *, and its dual is itself.

(e) Let G be a group, the category Rep,(G) of all representations of G over k is a
monoidal category, with ® being the tensor product of representations: if for a
representation V' one denotes by p(V') the corresponding map G — GL(V'), then

p(V- @ W)(g) == p(V)(g) @ p(W)(9)-

The unit object in this category is the trivial representation 1 = k. A similar
statement holds for the category Rep,(G) of finite dimensional representations of

G.

(f) Cobordism. Let Bord, be the category whose objects are closed (n — 1)-manifolds
and the morphisms are n-manifolds. Composition of morphisms is given by gluing

(see figure below). For each'Y the bordism cylinder [0,1] x Y isidy : Y — Y. The
disjoint union and the empty manifold (0,,_, defines a symmetric monoidal category.

(g) The stable homotopy category HoSpect is an example of symmetric monoidal cat-
egory. In the Chapter 3, we are going to describe this category, Dold and Puppe
used tools developed in this chapter and the category HoSpect to prove the Lefschetz
fized point theorem.

It is easy to see that in a symmetric monoidal category the dual of the unit object is
itself, i.e. 1* = 1. It is also obvious from the definition that if M™* is the dual of M,
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P 3 P

Figure 2.1: Gluing of manifolds

then M is the dual of M*. Let us see that any two duals of an object M must be
isomorphic.

Proposition 2.1. Let C be a symmetric monoidal category and M € Ob(C). FEvery
pair (M, e1,m1) and (M, €z, 1) of duals of M are isomorphic.

Proof. Let (M{,e1,m) and (M, €2,m2) be duals of M. We can define a morphism
o1 : M7 — M given by the composite

sz* N2 M M3

My 55 My o (M @ M) N @ M) @ My —2 Mg,
and 9 : My — M given by

ZdM* ®@m

My 5 My o (Mo M) N v @ M) @ My —2 M

We claim that these morphisms are inverse to each other. In fact, we are going to use
string diagrams, as follows. The red string represents the object M; and the blue one
represents the object Ms. For a detailed description, you can see the Appendix A of
this work.

2
p1 = and Py =

€1 €9
©2

The composition ¢ 0ps and py0¢; can be represented by the following string diagrams
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gplo{p2: LM 9020@1: %

Let us prove that the above string diagrams are the identity maps, that is, they satisfy
p10pg = idpzy and pa 0 = idyr. We only prove one case, the other one being similar.
Let us divide the string diagram in sections, as in the following diagram

LM

The string in the middle is just the identity of M thanks to the snake identities presented
in Definition [I3] Thus, we get the following diagram

Applying again the snake identities the above equality holds and then we can conclude
that P2 0 Y1 = ldMQ* L]

In other words, the above proposition tells us that dualizability is a well defined prop-
erty. The following lemma plays an important role in what follows.

Lemma 2.2. Let C be a symmetric monoidal category, and A a dualizable object with
dual A*. Then there is an adjunction between — ® A and — ® A*, that is, there are
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canonical isomorphisms

Hom(X ® A,Y) = Hom(X,Y @ A*),
Hom(A*® X,Y) = Hom(X, A®Y).

Proof. Let us consider the morphism ¢ : Hom(X ® A,Y) — Hom(X,Y ® A*) which
is defined by assigning a morphism f: X ® A — Y to the composite

f@id 4x
_feida- |

X X9 v 9 A A Y @ A*.

We will show that its inverse is the function ¢ : Hom(X,Y ® A*) - Hom(X ® A,Y)
which sends each g : X — Y ® A* is sent to the composite

g®id 4

X®A VoA @ A -y

To prove it, we are going to use string diagrams. First note that

X X
A A* A
P(H= 1 ] : v9)= [
A*
Y Y
Their composition yields
v 7N
X A A
You(f) = A |4 potl)= & | -
Y

\_/ vl

From the snakes identities the result follows. O

Definition 14. Le