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Resumen 

La expansión de la frontera agrícola es una de las principales causas de pérdida de la 

biodiversidad y detrimento de las funciones ecosistémicas esenciales para la producción 

agrícola, entre ellas el control biológico de plagas. En este trabajo, se evaluaron las 

relaciones entre la pérdida de cobertura de los bosques nativos, la diversidad de arvenses 

y artrópodos dentro de los cultivos y su relación con la herbivoría y la producción en doce 

cultivos tradicionales de maíz en Topaipí (Cundinamarca), durante la segunda temporada 

de siembra de 2011. 

En los cultivos estudiados el control biológico de plagas fue proporcionado por predadores 

y parasitoides nativos, y estos a su vez dependieron del mantenimiento de la diversidad de 

arvenses dentro de los cultivos. La cobertura de bosques promovió la complejidad de las 

redes de interacción plantas-artrópodos en este sistema, en los que la riqueza de 

depredadores se asoció con una mayor producción de los cultivos.  Por  lo anterior, la 

conservación de los bosques en sistemas de cultivos tradicionales es esencial para  el 

control biológico, la producción y la conservación de la biodiversidad.   

 

Palabras clave: agrobiodiversidad, cobertura de bosque, control biológico, cultivos 

tradicionales, herbivoría, pérdida de hábitats, redes de interacción plantas-artrópodos, Zea  

mays L. 
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Abstract 

 

The expansion of the agricultural frontier is one of the main causes of biodiversity loss and 

detriment of ecosystem services essential for agricultural production, including biological 

pest control. In this work, the relationship between the loss of native forest cover, diversity 

of arthropods and weeds in crops and its relationship with herbivory  and crop production 

was examined, using twelve traditional corn crop fields in Topaipí (Cundinamarca) during 

the second growing season in 2011. 

In the studied cornfields pest control was provided by native predators and parasitoids, 

which in turn depended upon the maintenance of the diversity of weeds within crops. Forest 

cover promoted complexity of networks of plant-arthropod in this system, in which the 

richness of predators was associated with increased production of crops. Therefore, the 

conservation of forests in traditional crop systems is essential for biological control, 

production and biodiversity conservation. 

Keywords: agrobiodiversity, pest control, herbivory, habitat loss, interaction networks, 

traditional crop systems, Zea mays L.
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Introduction 

This work considers the impacts of landscape simplification on biodiversity, herbivory and 

production in traditional Andean cornfields. Forest conversion for agriculture reached 69% 

by 1998 in the Colombian Andean region (Etter et al. 2006), leading to more simplified 

landscapes currently dominated by agricultural areas. Previous work in highland Andean 

agroecosystems has shown that landscape simplification reduces the richness and 

abundance of herbivores and their natural enemies in crops, whereas increases pest 

pressure on crops (Poveda et al. 2012). However, in most cases the effect of natural habitats 

on diversity has been evaluated for arthropods at local spatial scales, in temperate regions 

(Bianchi et al. 2006, Chaplin-Kramer et al. 2011, Shackelford et al. 2013). Little is known 

about their effect on more complex crop systems, such as tropical indigenous crop systems 

that, besides arthropods, also maintain a high diversity of weeds. Furthermore, agricultural 

fields are also highly disturbed and homogenization of communities can occur through 

dominance of superior competitors and loss of rare species.Therefore, to conserve diversity 

and to develop more sustainable pest management strategies, we must understand the 

factors that influence patterns of species distribution and abundance in human-dominated 

landscapes.  

 

This work addressed basic research in Agroecolgy. First, results provide insight into the 

ecological mechanisms that explain why diversity and resilience to pest attack are higher in 

traditional crops than in conventional ones. Second, this work allows us to explore the role 

of biodiversity in specific ecosystem functions, such as herbivory, pest control and food 

production. And third, studying the role of native forest on agricultural biodiversity is relevant 

to reduce the trade-off between increasing food production and conservation of biodiversity 

and its associated ecosystem services, a major challenge for agriculture in the twenty-one 

century (Pretty et al. 2010).  
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This work also contributes to the knowledge of the ecological structure of the tropical 

agroecosystems, an issue poorly described until now, because of the reluctance of 

ecologists for studying patterns of diversity in agroecosystems. Besides classical descriptor 

of communities, such as species richness and diversity indexes, here I describe patterns in 

networks of species interactions, patterns in relative abundance of species and dominance, 

differences in species composition among the cornfields related to the presence of forest 

around the fields and patterns of meta-community level. Because these ecological patterns 

are frequently related to ecological processes, the results provide a useful tool to connect 

biodiversity and ecological processes with the agronomic characteristics of the farms and 

the provision of ecosystem services in human-dominated landscapes. These findings may 

contribute to develop generalizations about the mechanisms that explain why traditional crop 

systems conserve high diversity and maintain several ecological functions at the same time.  

 

To address these issues, I studied the relationships between the presence of native forest 

and the diversity of within crop weeds and arthropods, as well as their relationships with 

herbivory and production in traditional cornfields in the Colombian Andes, during the second 

growing season in 2011. 

I examine several predictions about the impact of native forest on biodiversity of weeds and 

arhtropods, herbivory and crop yield: First, as native forest is a permanent habitat in the 

agricultural landscape where populations of arthropods may build up longer without 

disturbance, I hypothesize that the amount of native forest around each cornfield will be 

associated with a higher diversity of arthropods within the fields, and with a more complex 

structure of ecological networks of plant-arthropod interactions. Second, I expect a positive 

relationship between the amount of native forest around the cornfield and the abundance 

and diversity of pest’s natural enemies, which in turn will translate into a better pest 

regulation in crops. Thus, I expect that the more forest around the crops, the less damage 

inflicted by herbivores to the crop and the higher the crop yield. Third, I expect a low turnover 

of species among the cornfields, with the same dominant species in most of the cornfields. 

That might happen because of the relative small area covered by the study, so dispersal 

limitation is not likely to occur for most mobile taxa. In addition, land preparation for sowing 

leads to a relative “homogeneity” of all fields on the initial stage of the crop. And fourth, as 
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vertebrate populations are highly dependent on the availability of forest for different 

resources, I expect that their role in the crops will increase as the cover of forest around the 

crop also increases. I expect that the role of vertebrates as natural enemies of insect pest 

populations will be greater than their role as herbivores in cornfields.  

I tested these hypotheses by selecting twelve traditional cornfields in an area of 14km2. The 

cornfields were located in a gradient of forest coverage within a radius of 250 m around on 

them. I also evaluated the effects of other covariates deemed of importance, including soil 

organic matter, field former land-use, altitude and perimeter--area-ratio of each field. Using 

such a system I addressed the following questions: 

 

 How does alpha biodiversity in cornfields change across a gradient of forest cover 

and other environmental factors for different taxa in this area? 

 To what extent beta diversity changes among different taxa and among rare and 

common species?  

 Which environmental factors are related to differences in species composition 

among cornfields?  

 How does species composition and relative abundance of species change between 

cornfields?  

 How does the structure of weed-arthropods assemblages change across a gradient 

of forest cover and other environmental factors?  

 To what extent are herbivory and crop yield affected by the amount of native forest 

and the biodiversity associated with corn crops?  

 What is the relative contribution of vertebrates to herbivory and pest control in 

traditional cornfields? 

Beyond the scientific results, this information should be useful for decision-makers to define 

policy such as payments for ecosystem services to small landholders who produce food in 

a sustainable way, and also as baseline for pest management programs based on habitat 

manipulation, where native plant diversity can be used in strategies such as trap plants and 

repellent plants for pest, as well as in conservational pest control. 
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1. Conceptual framework 

The development of a new model of sustainable agriculture is a major challenge in 

Agroecology (Altieri 1991, Prager et al. 2002, Gliessman 2007, Gliessman 2010, 

Vandermeer 2011, Altieri and Nicholls 2012). Indeed, it has been proposed that agro-

ecological technologies can be developed to tackle the environmental degradation, food 

insecurity and social inequity created by the current food system –the global network of food 

production, distribution, and food consumption– (Gliessman 2007, Gliessman 2010, Altieri 

and Nicholls 2012). Some authors have argued that to cope with the growing demand for 

food, as well as, for agricultural land, it is necessary not only to expand the agricultural 

frontier, but also to intensify food production with ecologic-based technologies (Tilman et al. 

2011, Cunningham et al. 2013).  

In such context, the ecological functions provided by biodiversity play a central role in 

achieving “a sustainable intensification of agriculture” (Pretty 2008). However, more 

research is warrant to understand: i) the impacts of habitat loss on biodiversity, ii) how 

biodiversity affects ecological functions, and iii) how such functions generate ecosystem 

services (Fig. 1).   

 

Figure 1-1. Conceptual framework showing the core concepts addressed by this work and its relationships. 
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1.1 Challenges for sustainable agriculture 

Currently, almost 40% of the Earth’s continental surface is covered by croplands and 

pastures. As agriculture and grazing expand, natural habitats have been reduced and 

fragmented and loss of species is occurring at the highest rate observed in the geological 

history of the Earth (Dirzo and Raven 2003). Poor management practices of modern 

agriculture are leading to degradation of agroecosystems with a negative effect on natural 

resources (“natural capital”) that sustain life and human well-being in the planet (Daily 1997). 

For instance, soils become more vulnerable to wind and water erosion because of practices 

such as elimination of vegetative cover, excessive mechanization and tillage, whereas in 

other areas land productivity is being destroyed by flood irrigation, which is leading to soil 

salinization  (Hillel and Rosenweigz 2008). In addition, the adoption of high-yielding crop 

varieties is leading to biological uniformity by eliminating the diversity of local or traditional 

crop varieties (Brush 1992).  

The dependence of agriculture on external inputs has also increased. For example, 

worldwide consumption of nitrogenous fertilizers has increased from 10.8 million tons to 85.1 

tons from 1960 to 2003 (MEA 2005), whereas the average annual worldwide consumption 

of pesticides was 292.050 tons between 1990 and 2010  (www.faostat.fao.org). Higher 

use of pesticides is prompted by landscape simplification (Meehan et al. 2011), as well as 

by the constant application of pesticides, which enhances problems such as pest 

resurgence, secondary pest outbreaks and pesticide resistance -a process known as the 

“pesticide treadmill”- (Vandermeer 2011). These processes occur because pesticides kill the 

target pest, but also kill the nontarget natural enemies and some pests may able to “resurge” 

after the pesticide use, whereas some secondary pests may be released from natural 

predatory control causing secondary pest outbreaks (Vandermeer 2011). In addition, the 

development of pesticide resistance reduces the efficacy of chemical control increasing the 

demand for pesticides, e.g. by 1991, 504 arthropods had developed resistance to at least 

one insecticide (Georghiou and Lagunes-Tejada 1991) 

Besides the detriment of biodiversity and ecosystem functioning, agriculture have to tackle 

some challenges imposed by human growth and global changes in climate and food trade. 

For instance, in the 21st century an increase in crop production by 70-100 per cent is needed 

to meet the growing demand for food, with only about 10 percent of land suitable for 

http://www.faostat.fao.org/
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agriculture (Pretty et al 2010). Food production has to be adapted to climate change, which 

increases the probability of extreme climatic events such as droughts, floods and frosts. In 

addition, changes in policies are needed to achieve equity in the access to land and water 

for irrigation as well as to stop the decline in the number of units of small traditional and 

family farmers, who have been forced off their land and out of agriculture (Gliessman 2010). 

Only by considering together ecological, social and economic factors of food systems it is 

possible to overcome the hunger and malnutrition that currently affect almost 870 million of 

people worldwide (www.faostat.org) 

In such a context, modern agriculture needs a transition towards sustainability.  This 

sustainability  refers to a model of agriculture that seeks to provide long-term sustained yield, 

using management technologies that integrate the components of the system in order to 

improve their biological efficiency and maintaining the productive capacity of the 

agroecosystem (Prager et al. 2002). At the same time, sustainable agriculture should have 

the capacity to buffer shocks and stresses (resilience) and the capacity to continue over long 

periods (Pretty 2008). 

 Agroecologists suggest that such transition towards sustainability should be done by 

designing agroecosystems that resemble as much as possible the functioning of natural 

ecosystems (Vandermeer 2011). Indeed, some ecological principles or commonalities have 

been drawn from studying sustainable traditional crop systems (Altieri 1991,  Gliessman 

2007 , Vandermeer 2011): 

 A large number of species associated with them, not only of intentionally introduced 

or maintained specifically by the farmers with utilitarian purpose, but also of 

associated species which are naturally distributed in agroecosystems. 

 Practice a low-input agriculture, relying mainly on human and animal energy and 

recycling within the farm. 

 Nutrient recycling tends to be relatively closed. They integrate crops with animal 

production, thus animal wastes are recycled into the cropping system. 

 They rely on traditional varieties of crops and animals 

 Are adapted to local conditions, rather than dependent on massive alteration or 

control of the environment. 

 Maximize yield without sacrificing the long term productive capacity of the entire 

system. 
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 Maintain the multifunctionality of agroecosystems, which means that food and fiber 

production is encompassed with other ecosystem services such as clean water 

provision, maintenance of soil fertility, and conservation of natural habitats, 

biodiversity and landscape quality.  

 They are built on the knowledge and culture of local inhabitants.  

These ecological principles can be used to design new, improved and sustainable 

agroecosystems (Altieri 1991). The intention is not to come back food production to 

traditional practices or translate them directly to regions dominated by modern agriculture 

(Gliessman 2007). However, these principles serve as general guidelines for the 

transformation of modern agriculture (Gliessman 2010).  

1.2. Land use intensification and habitat loss 

Modern agriculture based on external inputs and mechanization of soils has encouraged the 

specialization of entire regions to produce particular goods, as well as the conversion of 

natural habitats to intensive agricultural land (Firbank 2005). As a result, the diversity of 

habitats has declined and agricultural landscapes have become homogeneous (Firbank 

2008).  

 

The demand for agricultural crops is increasing and may continue to do so for decades 

(Tilman et al. 2011). Therefore, increasing food production will take place through both a 

more intensive use of existing croplands and increasing land clearing (Pretty et al. 2010, 

Tilman et al. 2011). A recent forecast of land clearing estimates that approximately one 

billion hectares of forest will be converted to croplands by 2050 if the actual trend of forest 

conversion is held (Tilman et al. 2011), and it is expectable that the highest rates of forest 

conversion occurs in Latin America (Tilman et al. 2001). In addition, most of the best quality 

farmland is already used for agriculture, thus the expansion of agriculture would occur on 

marginal land, that is unlikely to sustain high yields and is vulnerable to degradation (Tilman 

et al. 2002). 

 

Such estimations about the impacts of agriculture on natural habitats increase the concern 

about the loss of biodiversity, since habitat loss and fragmentation are the major threats to 

biodiversity (Sala et al 2000, Dirzo & Raven 2003, Tscharntke et al 2005). To tackle the 
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problem of deforestation growing rates  in developing countries, it has been suggested that 

“raising yields on existing farmland is essential for saving land for nature” (Tilman et al. 

2002). This assumption is based on the idea that if per unit production increase, the required 

land base would be reduced, more land will be available for conservation; however, as 

pointed by Vandermeer (2010) this argument is an “article of faith”, and it is also probable 

that technological progress makes agriculture more profitable and gives farmers an incentive 

to expand production to additional land. Thus, there is no simple solution to slow down forest 

conversion into croplands, and economic and cultural factors should be taken into account 

to tackle this problem. 

 

Intensification of agriculture through achievements in precision agriculture, as well as in 

breeding programs and biotechnology solutions that improve the efficiency of crop nitrogen, 

phosphorous and water use, have been proposed as possible solutions to meet the growing 

demand for food without compromising the natural resources (Tilman et al. 2001). However, 

translation of new innovations in plant sciences into concrete benefits for poor farmers had 

not occurred in the past decades of green revolution, and it will require incentives and 

funding mechanisms that promote technology transfer (Delmer 2005). On the other hand, 

focusing on increasing yield crops does not tackle the real causes of hunger and 

environmental degradation (Rosset et al. 2000), moreover, it is unlikely that the same 

technology that had destroyed the natural resources that support life and food production 

can solve its depletion and degradation. Thus, specific knowledge, technological 

innovations, and changes in policies are needed to cope with the fundamental conflict 

between the increasing needs of agriculture and the maintenance of non-crop biodiversity 

at present levels (Firbank et al. 2008). 

 

Environmental policy elements should on the one hand encourage agricultural practices that 

maximize diversity instead of minimizing it and on the other hand favor restoration and 

continuity of high quality more-natural habitats as part of the agricultural mosaic (Fahrig et 

al. 2011a, Cunningham et al. 2013). Additionally, to balance agriculture and food production 

it is necessary to identify which part of the existing biota is living in cultivated or human 

occupied areas (Paoletti et al. 1992), and if such diversity can be used as a tool for improving 

ecosystem service provision and human well-being. Finally, because much of the diversity 
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in agroecosystems may exist at scales beyond the farm (Swift et al. 2004), and dynamics of 

diversity operate at different spatial scales (Tscharntke et al. 2012), considering 

management strategies at the landscape level is necessary to meet the challenge of food 

demand while preserving natural resources. 

 

The management of land use patterns is of great importance for the conservation of 

biodiversity (Walz 2011). Nevertheless, a miscellany of terms in the literature has been 

utilized to refer to landscape structure and its impact on biodiversity, such as landscape 

simplification, landscape complexity, landscape heterogeneity, fragmentation and habitat 

loss. Thus, it is necessary to clarify what are the landscape characteristics addressed by 

these terms before discussing their relationships with the biodiversity and the supply of 

ecosystem services. 

 

Landscape structure refers to the pattern of landscape, which is determined by its type of 

use, as well as by the size, shape, arrangement and distribution of individual landscape 

elements (Walz 2011). Fragmentation is defined as the process of habitat breaking 

(Schüepp et al. 2011), reflecting aspects of habitat configuration modification, including 

number of habitat fragments, edge density, and patch shape (Swift and Hannon 2010). In 

addition, in fragmented landscapes, the distance to viable habitats or degree of isolation 

may determine patterns of diversity. Habitat loss refers to the entire quantity of habitat in a 

landscape and particularly to the decrease in its size across time and/or space  (Schüepp 

et al. 2011). Landscape heterogeneity indicates the variability of the landscape’s properties 

in spatial terms (Walz 2011), a more heterogeneous landscape is a landscape with a larger 

variety of different cover types (compositional heterogeneity) and/or a more complex spatial 

patterning of them (configurational heterogeneity) (Fahrig et al. 2011a). Landscape 

simplification indicates the transition from agricultural landscapes dominated by natural 

habitats to landscapes dominated by croplands (Meehan et al. 2011).  

 

As summarized by Walz (2011), the quality of landscape structure can be assessed by 

indicators of use intensity and structural diversity: i) the surface areas of natural and 

seminatural habitats types in the landscape is used as a measure of human influence on a 

natural environment; ii) the number of habitats types per area unit indicates habitat diversity; 
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iii) the proportional area of arable land in the landscape estimates the level of agricultural 

intensification; and iv) the distance to a particular type of habitat or the total length of all 

roads outside of settlements indicates isolation or  fragmentation of habitats.  

 

1.3 Impacts of habitat transformation on biodiversity loss 

and ecosystem functioning 

 

Habitat loss and fragmentation are the major causes of biodiversity loss (Tilman et al. 2001, 

Tilman et al. 2002, Dirzo and Raven 2003, Tscharntke et al. 2005a). Yet, not all species 

possess the same chance of being lost as a result of simplification of agroecosystems and  

even some species may be more tolerant to habitat loss than others (Tscharntke et al. 2012). 

Therefore, organism’s responses to landscape changes are extremely dependent on the 

species’ characteristics. For example, species with low reproductive rates are particularly 

sensitive to habitat loss or fragmentation, which suggests that these species suffer of a 

limited ability to respond to the effects of environmental disturbance (Swift & Hannon 2010). 

Species with greater emigration rates required more habitat for persistence, especially if 

mortality may be higher in the matrix than in habitat patches, due to such factors as predation 

and mortality from unfavorable physical conditions (Swift and Hannon 2010). Ultimately, 

increasing homogeneity of habitats causes loss of biodiversity if species associated with 

farmland cannot meet resources and habitat conditions required through their full life cycles 

(Firbank 2005). 

 

Besides local extinctions, changes in landscape and land management may involve 

changes in distribution and abundance of species (Firbank 2005), as well as in the ecological 

responses of organisms, including animal movement, population persistence, species 

interactions and ecosystem function (Fahrig et al. 2011a). The movement of animals 

between habitat types in the agricultural landscape can be viewed in  light of source-sink 

population dynamics: permanent and undisturbed habitats (e.g. forest, pasture, field margins 

and hedgerows), serve as a refuge and source habitats from which arthropods could 

recolonize crop fields following management practices (Thorbek and Bilde 2004). For 

example, forest patches in agricultural landscape can improve pollination and pest control 
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with a positive effect on crop yields  (Bodin et al. 2006). Otherwise, homogenization of 

habitats e.g. through expansion of monocultures, may facilitate the movement of invasive 

species and the introduction of a superior competitor of desirable species (Swift et al. 2004). 

For instance, increases in the size, density and connectivity of host crop patches are 

expected to facilitate movement and establishment of crop pests, leading to higher pest 

pressure regardless of natural enemy activity (Meehan et al 2011).  

 

Loss of natural habitats is associated not only with changes in species richness and diversity 

of pollinators, but also with the pattern of species interactions that link them in networks and 

the functions that species perform (Gonzalez et al. 2011), with serious implications for yield 

crops, given that 35% of the crop production volume and 70% of major global crops rely on 

animal pollination (Klein et al. 2007). In addition, the simplification of the environment and a 

decrease in trophic interactions is leading to the lack of self-regulation of population of crop 

plants or animals in agroecosystems, increasing the risk of pest and disease outbreak, 

despite the intensive human interference  (Gliessman 2007). 

 

The accessibility of natural habitats in agricultural landscapes is critical for pest control. 

Empirical evidence suggests that natural and semi-natural habitats embedded in 

agroecosystems maintain the regional pool of species of beneficial arthropods (Schmidt et 

al. 2005, Schmidt and Tscharntke 2005, Klein et al. 2006, Pluess et al. 2010, Wanger et al. 

2010, Chaplin-Kramer et al. 2011), whereas, isolation from forest, reduce the diversity of 

natural enemies in crops (Klein et al. 2006, Rand et al. 2006, Schüepp et al. 2011). Various 

mechanisms have been suggested to explain these relationships in addition to the source-

sink population dynamic previously described. First, natural habitats are permanent covers, 

where beneficial arthropods can build-up larger populations without disturbance. Second, 

arthropods benefit from natural habitats because they can meet sufficient food resources, 

such as nectar, pollen and alternative preys that enhance their longevity or fecundity  

(Tylianakis et al. 2004, Lee and Heimpel 2008). And third, field boundaries provide not only 

foraging habitats, but also nesting places and maintain populations of pollinators (Hellwing 

and Frankl 2000) and predators in crops (Drapela et al. 2008, Pluess et al. 2010). Non-crop 

plants may favor natural enemies by supporting non-pest alternative hosts or prey, and also 

provide shelter or a moderate microclimate (Gurr et al. 2003a). However, plants may also 
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benefit herbivores (Lavandero et al. 2006a) and thus increased plant diversity per se may 

not result in a better pest suppression. 

Despite of the fact that the positive effect of local and landscape factors on the biodiversity 

of pollinator and natural enemies is well known, the mechanistic link between biodiversity 

and the provision of ecosystem services is still poorly understood (Shackelford et al. 2013). 

Given that most studies evaluate the impact of biodiversity on pest control using the 

abundance or the richness of a service provider as a proxy for ecosystem service  

(Shackelford et al. 2013) examples of direct measurements of pest control are scarce 

(Gardiner et al. 2009).  

 

1.4. Links between biodiversity and ecosystem service 

provisioning 

 

Land use intensification, through both land conversion and agronomic practices that 

increase yield crops, may affect the provision of ecosystem services via the loss of 

biodiversity (Tscharntke et al. 2005a, Gonzalez et al. 2011). Particularly, agriculture is 

affected by the disruption of communities of arthropods which are responsible for the 

provision of pollination and pest control, which are services highly vulnerable to land-use 

intensification in agroecosystems (Firbank et al. 2008, Flynn et al. 2009, Lindenmayer et al. 

2012). For instance, in a review of the relationships among landscape composition, 

biodiversity and pest control (Bianchi et al. 2006) the authors reported that in 74% and 45% 

of the studies, natural enemy populations were higher and pest pressure lower in complex 

landscapes versus simple landscapes, suggesting that landscape simplification and the 

decline of biodiversity may affect the functioning of natural pest control. Likewise, in a review 

of landscape effects on crop pollination (Ricketts et al. 2008) the authors reported that crop 

visitation rates decline with increasing distance from pollinator habitats, suggesting that the 

declining on diversity of pollinator threatened the productivity, diversity and stability of food 

production systems. An economic assessment of pollination and pest control highlighted the 

importance of these services for agriculture, and estimated that both services are worth $8 

billion to the United States agriculture each year (Losey and Vaughan 2006).  
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Particularly for pest control, the efficiency of biological control might depend on the diversity 

within trophic levels: a higher diversity within the natural enemies’ trophic level may increase 

overall predator efficiency, via complementarity and sampling effects (Bohan et al. 2013). 

Therefore, biodiversity may enhance functioning when a diverse pool of species exploits the 

same resources in different ways (resource partitioning), thus each specie contributes to the 

function via a unique (complementary) occupation of the total niche (Tscharntke et al. 

2005a). On the other hand “sampling effect” refers to higher probability of  sampling species 

that have a higher potential contribution to the function in diverse species pool (Tscharntke 

et al. 2005a). Thus, positive effects of complementarity in pest control arise when natural 

enemies’ had little overlap but significant segregation in host/prey use (e. g. Tscharntke et. 

al. 1992, Schmidt et al 2003, Cardinale 2003, Crowder et al 2010). However, competitive 

interactions among natural enemies, as well as, omnivory and intraguild predation may 

constrain pest control in diverse agroecosystems (Thies et al. 2005, Martin et al. 2013). In 

addition, a larger diversity of primary consumers may also dilute the action of natural enemy 

predators by providing alternative preys (Bohan et al. 2013). 

 

Biodiversity also contributes to ecosystem functioning through redundancy in functional 

groups, which provides ‘resilience’ or the capacity of reorganization after disturbance  

(Tscharntke et al. 2005a). Such property is important in highly disturbed environments, in 

which spatial/temporal heterogeneity as well local extinctions are common. Thus, only 

diverse communities may support species that become important as soon as other 

disappear, which is known as “the insurance hypothesis” (Loreau et al 2003). For instance 

spatio-temporal variation in effectiveness of natural enemies has reported in aphid-enemy 

interactions, in which the importance of ground dwelling predators and parasitoids varied 

among localities and years (Ostman et al 2001, Schmidt et al 2003).  

 

Although it is likely that biodiversity enhance pest control in crops, sometimes empirical 

evidence fails to demonstrate that increasing richness or abundance of natural enemies 

always translates in increased crop yield (Chaplin-Kramer et al. 2011). Possible 

explanations for this failure include the biotic mechanisms previously referred (eg. omnivory, 

intraguild predation and apparent competition) but also limitations in methodological 

approaches, which are biased to assessment of biodiversity through changes in species 
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richness or abundance, while other characteristics of biodiversity, such as the variation in 

the number and type of interactions  among species have been largely omitted. Given that 

a network approach may help in understanding the overlap of species, as well as their 

function in agroecosystems (Bohan et al. 2013) their study could provide valuable 

information about the role of biodiversity in pest control and other ecosystem services. 

 

1.5 Indicators of biodiversity 

 

Most studies assessing the role of biodiversity on pest control have used the species 

richness and the abundance of individuals among species as indicators of diversity (Chaplin-

Kramer et al. 2011, Letourneau et al. 2011). However, there is a growing interest on 

evaluating changes in diversity at different spatial scales, e.g. by partitioning of biodiversity 

(Tscharntke et al. 2012), as well as by considering changes in the structure of interactions 

networks in agroecosytems (Bohan et al. 2013).  

 

Given that ecological processes that affect diversity in agricultural landscape operate at 

higher spatial scales than crop fields (Tscharntke et al. 2012), several spatial scales should 

be considered in evaluating patterns in diversity in agricultural landscapes. A partitioning of 

diversity serves as a methodological approach to accomplish this task. This method brakes 

down the regional gamma diversity (γ) into independent components of local alpha diversity 

(α) and beta diversity (β), in a multiplicative way: Dα × Dβ = Dγ (Jost 2006a). Alpha diversity 

is the diversity of a point location or a single sample; Beta diversity is the diversity due to 

multiple localities -or turnover in species composition among sites- and Gamma diversity is 

the diversity of a region, or at least the diversity of all species in a set of samples (Stevens 

2009). 

 

Empirical studies suggest that Beta diversity accounts for the major part of species richness 

in agroecosystems (Roschewitz et al. 2005, Clough et al. 2007). This increase in beta has 

been attributed to different factors: landscape heterogeneity, differences in habitat 

characteristics, low dispersal rates of organisms and deficient sampling effort. However, at 

larger spatial scales, landscape simplification in croplands may decrease beta diversity by 
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increasing the probability of local extinction of rare species, as well by prompting the 

dominance of communities by few species, which are superior competitors in highly 

disturbed habitats –a process known as the ‘homogenization’ of ecological communities– 

(Arroyo-Rodríguez et al. 2013b).  

 

On the other hand, crops can be viewed as islands in archipelagos or as patches in 

fragmented landscapes and thus they can be studied under the same perspective. An 

advantage of this approach is that it allows the description of species co-occurrence patterns 

under the theoretical framework of the metacommunity, defined as a set of local 

communities that are linked by dispersal of multiple potentially interacting species (Leibold 

et al. 2004). Thus, the organization of species interactions across agricultural landscapes 

can be described by incidence matrices summarizing which sites (columns) are occupied by 

which species (rows) (Leibold and Mikkelson 2002).   

 

By studying these matrices, ecologist have found broad and repeatable patterns, which 

generally do not occur by chance, including nestedness, turnover and compartmentalization 

(Leibold and Mikkelson 2002). Nestedness indicates that species assemblages present in 

species-poor sites are a proper subset of those present in species-rich sites (Patterson and 

Atmar 1986). Compartmentalization reflects the tendency for species to replace each other 

from site to site (Leibold and Mikkelson 2002). However, as many networks can lead to 

similar patterns, a correspondence between patterns and theory does not necessarily 

identify the correct causal processes of these patterns (Werner 1998), but may give insights 

into the hypothesis about their mechanistic explanation (Price et al 2012).  

 

Mechanisms for nestedness include passive sampling, neutrality, differential colonization or 

extinction among species along environmental or biological gradients (area, isolation, 

quality) of the target patches (Ulrich et al. 2009). Meanwhile, for compartmentalization major 

habitat divisions (Pimm and Lawton 1980) and habitat specialization have been proposed 

as the major drivers. Identifying these patterns provides insights into recognizing which 

species are more sensitive to habitat fragmentation, as well as understanding how species 

respond to environmental gradients; this information is useful in designing strategies for 
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conserving biodiversity, e.g. a single large area if metacommunities are nested or several 

smaller areas if they are compartmentalized   (Mendez 2004). 

 

Interaction Networks.  Ecological networks provide a complete and easy to understand 

description of biodiversity, interactions between species and the structure and function of 

ecosystems (Dunne et al. 2002, Memmott 2009). Species interaction networks are useful to 

provide comparable descriptions of the organization of local communities (Bascompte and 

Jordano 2007). Network analysis help into identifying keystones species or functional groups 

that contribute to the ecological function as well as to the stability and resilience of 

agroecosystems (Bohan et al. 2013). 

Typically network ecology has focused on three types of interactions: trophic (resource - 

consumer), mutualistic (pollination and frugivory) or host-parasitoid (Ings et al. 2009).  These 

interactions  can be described by bipartite networks, which are built from matrices in which 

rows represent one set of species (e. g., plants) and columns represent another set of 

species (e.g., herbivores).  

 

Several metrics have been developed to describe the structure of these networks  

(Bluethgen et al. 2008). Most basic metrics include: network size –or the total number of 

species or “nodes” involved in interactions-, the connectance –a measure of the density of 

links in the web-, the degree of each node –or the number of links per species, and the 

degree distribution. In addition, interactions networks may have nested structures as well as 

modular structures (Lewinsohn et al. 2006). Nestedness arises when species with fewer 

interactions are preferentially associated with a subset of species that interact with the most 

connected ones (Bascompte et al. 2003), whilst modularity arises when a group of species 

interact more often with species within the group than with the rest of the species in the 

network (Krause et al. 2003, Lewinsohn et al. 2006, Guimerà et al. 2010). 

 

These patterns have been proposed as a mechanism for stability of species assemblages. 

For instance, a nested interaction structure might buffer communities against extinctions or 

temporal fluctuations in the abundance of specialist species (Canard et al. 2012), and may  

reduce competition and then promote species coexistence and biodiversity (Bastolla et al. 
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2009). Modularity could increase the stability of interaction networks since the compartments 

retain the impact of a disturbance within a single compartment, minimizing impacts on other 

compartments in the food web (Krause et al. 2003), although strong compartmentalization 

may result in fragmentation of communities (Guimerà et al. 2010, Thebault and Fontaine 

2010). 

 

In agroecosystems, a network interaction approach has been used to explore the effects of 

land-use intensification on species interactions, as well as, in their associated ecological 

functions. Comparisons of networks structure between organic and conventional farming 

confirmed more diverse assemblages of plants and arthropods, as along with, more stables 

rates of parasitism under organic management (Macfadyen et al. 2009, Macfadyen et al. 

2011a). Some studies evaluating the influence of landscape structure on interactions 

networks in agroecosystems indicate that land-use intensification induces strong changes 

in network structure. For instance, in intensively managed agricultural habitats most energy 

flows along one or few pathways (Tylianakis et al. 2007), and modularity may increase 

(Macfadyen et al. 2011b).  Although landscape simplification is generally associated to loss 

of biodiversity, not always a complex landscape is associated with a more complex network 

structure. For instance, a lower complexity was reported for aphid-parasitoid interactions in 

complex landscapes (Gagic et al. 2011), due to higher dominance of one species of aphid 

in such landscape.  

 

Network analysis is being used to evaluate how the robustness of interaction networks -a 

measure of network’s vulnerability to species loss- varies across gradients of land use 

intensification and among different types of networks present in agroecosystems.  From 

these studies it is known that aphid, insect seed feeder, and pollinator networks appeared 

more fragile to local extinction of species (Pocock et al. 2012), whereas in host-parasitoids 

networks empirical evidence does not support the idea that land-use intensification 

influences negatively the robustness of ecological networks (Macfadyen et al. 2011b). 

However, these conclusions have been drawn from few studies, thus more research in this 

field is needed to establish clear patterns in networks’ robustness in agricultural 

environments. 
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Finally, the length of food chains is an important structural property required for top-down 

control of agricultural pests. The efficiency of biological control might depend on the number 

of trophic levels in the agricultural network, as well as, on the diversity within each one 

(Bohan et al. 2013). Besides diversity, further network analysis should consider plant quality, 

given that their characteristics can have strong bottom-up effects on herbivores like aphids 

an their natural enemies (Bohan et al 2007, Bukovinsky et al 2008, Lohaus et al 2013). 

Furthermore, network analysis may help in identifying the plant taxa that can potentially lead 

to disproportionate gains in biodiversity (Pocock et al. 2012). 

1.6 References 

Altieri, M. A. 1991. ¿Porque estudiar la agricultura tradicional? Revista Clades 1. 
Altieri, M. A., and C. I. Nicholls. 2012. Agroecology Scaling Up for Food Sovereignty and Resiliency. 

In: E. Lichtfouse (ed.), Sustainable Agriculture Reviews, Sustainable Agriculture Reviews 11, 
DOI 10.1007/978-94-007-5449-2_1, © Springer Science+Business Media Dordrecht 2012. 

Arroyo-Rodríguez, V., M. Rös, F. Escobar, F. P. L. Melo, B. A. Santos, M. Tabarelli, R. Chazdon, and T. 
Kitzberger. 2013. Plant β-diversity in fragmented rain forests: testing floristic 
homogenization and differentiation hypotheses. Journal of Ecology 101:1449-1458. 

Bascompte, J., and P. Jordano. 2007. Plant-Animal Mutualistic Networks: The Architecture of 
Biodiversity. Annual Review of Ecology, Evolution, and Systematics 38:567-593. 

Bascompte, J., P. Jordano, C. J. Melian, and J. M. Olesen. 2003. The nested assembly of plant-animal 
mutualistic networks. Proc Natl Acad Sci U S A 100:9383-9387. 

Bastolla, U., M. A. Fortuna, A. Pascual-Garcia, A. Ferrera, B. Luque, and J. Bascompte. 2009. The 
architecture of mutualistic networks minimizes competition and increases biodiversity. 
Nature 458. 

Bianchi, F. J. J. A., C. J. H. Booij, and T. Tscharntke. 2006. Sustainable pest regulation in agricultural 
landscapes: a review on landscape composition, biodiversity and natural pest control. 
Proceedings of the Royal Society B-Biological Sciences 273:1715-1727. 

Bluethgen, N., J. Fruend, D. P. Vazquez, and F. Menzel. 2008. What do interaction network metrics 
tell us about specialization and biological traits? Ecology 89:3387-3399. 

Bodin, O., M. Tengo, A. Norman, J. Lundberg, and T. Elmqvist. 2006. The value of small size: Loss of 
forest patches and ecological thresholds in southern Madagascar. Ecological Applications 
16:440-451. 

Bohan, D. A., A. Raybould, C. Mulder, G. Woodward, A. Tamaddoni-Nezhad, N. Bluthgen, M. J. O. 
Pocock, S. Muggleton, D. M. Evans, J. Astegiano, F. Massol, N. Loeuille, S. Petit, and S. 
Macfadyen. 2013. Networking Agroecology: Integrating the Diversity of Agroecosystem 
Interactions. Pages 1-67 in G. Woodward and D. A. Bohan, editors. Ecological Networks in 
an Agricultural World. 

Brush, S. B. 1992. Farmer's rights and genetic conservation in traditional farming systems. World 
Development 20:1617-1630. 

Canard, E., N. Mouquet, L. Marescot, K. J. Gaston, D. Gravel, and D. Mouillot. 2012. Emergence of 
structural patterns in neutral trophic networks. PLoS One 7:e38295. 

Chaplin-Kramer, R., M. E. O'Rourke, E. J. Blitzer, and C. Kremen. 2011. A meta-analysis of crop pest 
and natural enemy response to landscape complexity. Ecol Lett 14:922-932. 



Effects of forest remnants on pest control and production in traditional cornfields 33 

 

 

Clough, Y., A. Holzschuh, D. Gabriel, T. Purtauf, D. Kleijn, A. Kruess, I. Steffan-Dewenter, and T. 
Tscharntke. 2007. Alpha and beta diversity of arthropods and plants in organically and 
conventionally managed wheat fields. Journal of Applied Ecology 44:804-812. 

Cunningham, S. A., S. J. Attwood, K. S. Bawa, T. G. Benton, L. M. Broadhurst, R. K. Didham, S. 
McIntyre, I. Perfecto, M. J. Samways, T. Tscharntke, J. Vandermeer, M.-A. Villard, A. G. 
Young, and D. B. Lindenmayer. 2013. To close the yield-gap while saving biodiversity will 
require multiple locally relevant strategies. Agriculture, Ecosystems & Environment 173:20-
27. 

Daily, G. C. 1997. Nature's Services: Societal Dependence on Natural Ecosystems Island Press, 
Washington, D.C. 

Delmer, D. P. 2005. Agriculture in the developing world: Connecting innovations in plant research 
to downstream applications. Proc Natl Acad Sci U S A 102:15739-15746. 

Dirzo, R., and P. H. Raven. 2003. Global state of biodiversity and loss. Annual Review of Environment 
and Resources 28:137-167. 

Drapela, T., D. Moser, J. G. Zaller, and T. Frank. 2008. Spider assemblages in winter oilseed rape 
affected by landscape and site factors. Ecography 31:254-262. 

Dunne, J. A., R. J. Williams, and N. D. Martinez. 2002. Food-web structure and network theory: The 
role of connectance and size. Proc Natl Acad Sci U S A 99:12917-12922. 

Etter, A., C. McAlpine, K. Wilson, S. Phinn, and H. Possingham. 2006. Regional patterns of agricultural 
land use and deforestation in Colombia. Agriculture, Ecosystems & Environment 114:369-
386. 

Fahrig, L., J. Baudry, L. Brotons, F. Burel, T. O. Crist, R. J. Fuller, C. Sirami, and J. L. Martin. 2011. 
Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. 
Ecology Letters 14:101-112. 

Firbank, L. G. 2005. Striking a new balance between agricultural production and biodiversity. Annals 
of Applied Biology 146:163-175. 

Firbank, L. G., S. Petit, S. Smart, A. Blain, and R. J. Fuller. 2008. Assessing the impacts of agricultural 
intensification on biodiversity: a British perspective. Phil. Trans. R. Soc 363:777-787. 

Flynn, D. F., M. Gogol-Prokurat, T. Nogeire, N. Molinari, B. T. Richers, B. B. Lin, N. Simpson, M. M. 
Mayfield, and F. DeClerck. 2009. Loss of functional diversity under land use intensification 
across multiple taxa. Ecol Lett 12:22-33. 

Gagic, V., T. Tscharntke, C. F. Dormann, B. Gruber, A. Wilstermann, and C. Thies. 2011. Food web 
structure and biocontrol in four-trophic level system across a landscape complexity 
gradient. Procedings of the Royal Society 278 2946-2953. 

Gardiner, M. M., D. A. Landis, C. Gratton, C. D. DiFonzo, M. O'Neal, J. M. Chacon, M. T. Wayo, N. P. 
Schmidt, E. E. Mueller, and G. E. Heimpel. 2009. Landscape diversity enhances biological 
control of an introduced crop pest in the north-central USA. Ecological Applications 19:143-
154. 

Georghiou, G. P., and A. Lagunes-Tejada. 1991. The occurrence of resistance to pesticides in 
arthropods. An index of cases reported through 1989. FAO, Rome. 

Gliessman, S. R. 2007. Agroecology. The Ecology of sustainable food systems. 2nd ed. CRC Press: 
Boca Raton. 370 p. 

Gliessman, S. R. e. 2010. The conversion to sustainable agriculture. Principles, Processes, and 
Practices. CRC Press: Boca Raton. 370 p. 

Gonzalez, A., B. Rayfield, and Z. Lindo. 2011. The disentangled bank: How loss of habitat fragments 
and disassembles ecological networks. American Journal of Botany 98:503-516. 

Guimerà, R., D. B. Stouffer, M. Sales-Pardo, E. A. Leicht, M. E. J. Newman, and L. A. N. Amaral. 2010. 
Origin of compartmentalization in food webs. Ecology 91. 



Effects of forest remnants on pest control and production in traditional cornfields 34 

 

 

Gurr, G. M., S. D. Wratten, and J. M. Luna. 2003. Multi-function agricultural biodiversity: pest 
management and other benefits. Basic and Applied Ecology 4:107-116. 

Hellwing, K. W., and R. Frankl. 2000. Foraging habitats and foraging distances of bumblebees, 
Bombus spp. (Hym., Apidae), in an agricultural landscape. J. Appl. Ent. 124:299-306. 

Hillel, D., and C. Rosenweigz. 2008. Biodiversity and food production. In: Chivian, E. & A. Bernstein 
(eds.) 2008. Sustaining life. How human health depends on biodiversity. Oxford University 
Press: New York. 

Ings, T. C., J. M. Montoya, J. Bascompte, N. Bluthgen, L. Brown, C. F. Dormann, F. Edwards, D. 
Figueroa, U. Jacob, J. I. Jones, R. B. Lauridsen, M. E. Ledger, H. M. Lewis, J. M. Olesen, F. J. 
van Veen, P. H. Warren, and G. Woodward. 2009. Ecological networks--beyond food webs. 
J Anim Ecol 78:253-269. 

Jost, L. 2006. Entropy and diversity. Oikos 113: 363-375. 
Klein, A. M., I. Steffan-Dewenter, and T. Tscharntke. 2006. Rain forest promotes trophic interactions 

and diversity of trap-nesting Hymenoptera in adjacent agroforestry. J Anim Ecol 75:315-323. 
Klein, A. M., B. E. Vaissiere, J. H. Cane, I. Steffan-Dewenter, S. A. Cunningham, C. Kremen, and T. 

Tscharntke. 2007. Importance of pollinators in changing landscapes for world crops. 
Procedings of the Royal Society 274:303-313. 

Krause, A., K. Frank, D. Mason, R. Ulanowicz, and W. Taylor. 2003. Compartments revealed in food-
web structure. Nature 426:282-285. 

Lavandero, B., S. D. Wratten, R. Didham, and G. M. Gurr. 2006. Increasing floral diversity for 
selectiveenhancement of biological control agents: A double-edged sward? Basic and 
Applied Ecology 7:236-243. 

Lee, J. C., and G. E. Heimpel. 2008. Floral resources impact longevity and oviposition rate of a 
parasitoid in the field. Journal of Animal Ecology 77:565-572. 

Leibold, M. A., and G. M. Mikkelson. 2002. Coherence, species turnover and boundary clumping: 
elements of meta-community structure. Oikos 97:237-250. 

Leibold, M. A. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. 
B. Shurin, R. Law, D. Tilman, M. Loreau, and G. A. 2004. The metacommunity concept: a 
framework for multi-scale community ecology. Ecology Letters 7:601-613. 

Letourneau, D. K., I. Armbrecht, R. B. Salguero, L. J. Montoya, J. C. E., M. C. Daza, S. Escobar, V. 
Galindo, C. Gutiérrez, L. S. Duque, M. J. López, R. A. M. Acosta, R. J. Herrera, L. Rivera, C. A. 
Saavedra, A. M. Torres, and T. A. Reyes. 2011. Does plant diversity benefit agroecosystems? 
A synthetic review. Ecological Applications 21:9-21. 

Lewinsohn, T. M., P. I. Prado, P. Jordano, J. Bascompte, and J. M. Olesen. 2006. Structure in plant-
animal interactions assemblages. Oikos 113:174-184. 

Lindenmayer, D., S. A. Cunningham, and A. G. Young. 2012. Land Use Intensification - Effects on 
Agriculture, Biodiversity and Ecological Processes. CSIRO Publishing, Collingwood, Australia. 

Losey, J., and M. Vaughan. 2006. The economic value of ecological services provided by insects. 
BioScience 56:311-323. 

Macfadyen, S., P. G. Craze, A. Polaszek, K. van Achterberg, and J. Memmott. 2011a. Parasitoid 
diversity reduces the variability in pest control services across time on farms. Proc Biol Sci 
278:3387-3394. 

Macfadyen, S., R. Gibson, A. Polaszek, R. J. Morris, P. G. Craze, R. Planque, W. O. Symondson, and J. 
Memmott. 2009. Do differences in food web structure between organic and conventional 
farms affect the ecosystem service of pest control? Ecol Lett 12:229-238. 



Effects of forest remnants on pest control and production in traditional cornfields 35 

 

 

Macfadyen, S., R. Gibson, W. O. Symondson, and J. Memmott. 2011b. Landscape structure 
influencesmodularity patterns in farmfoodwebs: consequences for pest control. Ecological 
Applications 21:516-524. 

Martin, E. A., B. Reineking, B. Seo, and I. Steffan-Dewenter. 2013. Natural enemy interactions 
constrain pest control in complex agricultural landscapes. Proc Natl Acad Sci U S A 110:5534-
5539. 

MEA. 2005. Millenium Ecosystem Assessment. Ecosystem and Human Well'being: Synthesis. Island 
Press, Washington, D.C. 

Meehan, T. D., B. P. Werling, D. A. Landis, and C. Gratton. 2011. Agricultural landscape simplification 
and insecticide use in the Midwestern United States. Proc Natl Acad Sci U S A 108:11500-
11505. 

Memmott, J. 2009. Food webs: a ladder for picking strawberries or a practical tool for practical 
problems? Philos Trans R Soc Lond B Biol Sci 364:1693-1699. 

Mendez, M. 2004. La composición de especies de aves en islas y paisajes fragmentados: un análogo 
ecológico de las muñecas rusas. El Duque 5:199-212. 

Paoletti, M. G., D. Pimentel, B. R. Stinner, and D. Stiner. 1992. Agroecosystem biodiversity: matching 
production and conservation biology. Agriculture, Ecosystems & Environment 40:3-23. 

Patterson, B. D., and W. Atmar. 1986. Nested subsets and the structure of insular mammalian faunas 
and archipielagos. Biological Journal of the Linnean Society 28:65-82. 

Pimm, S. L., and J. H. Lawton. 1980. Are food webs divided into compartments. Journal of Animal 
Ecology 49:879-898. 

Pluess, T., I. Opatovsky, E. Gavish-Regev, Y. Lubin, and M. H. Schmidt-Entling. 2010. Non-crop 
habitats in the landscape enhance spider diversity in wheat fields of a desert 
agroecosystem. Agriculture, Ecosystems & Environment 137:68-74. 

Pocock, M. J., D. M. Evans, and J. Memmott. 2012. The robustness and restoration of a network of 
ecological networks. Science 335:973-977. 

Poveda, K., E. Martínez, M. F. Kersch-Becker, M. A. Bonilla, and T. Tscharntke. 2012. Landscape 
simplification and altitude affect biodiversity, herbivory and Andean potato yield. Journal of 
Applied Ecology 49:513-522. 

Prager, M., J. M. Restrepo, D. I. Angel, R. Malagon, and A. Zamorano. 2002. Agroecología. Una 
disciplina para el estudio y desarrollo de sistemas sostenibles de producción agropecuaria. 
Universidad Nacional de Colombia. Palmira.  333p. 

Pretty, J. 2008. Agricultural Sustainability: Concepts, Principles and Evidence. Philosophical 
Transactions: Biological Sciences 363:447-465. 

Pretty, J., W. J. Sutherland, J. Ashby, J. Auburn, D. Baulcombe, M. Bell, J. Bentley, S. Bickersteth, K. 
Brown, J. Burke, H. Campbell, K. Chen, E. Crowley, I. Crute, D. Dobbelaere, G. Edwards-Jones, 
F. Funes-Monzote, H. C. J. Godfray, M. Griffon, P. Gypmantisiri, L. Haddad, S. Halavatau, H. 
Herren, M. Holderness, A.-M. Izac, M. Jones, P. Koohafkan, R. Lal, T. Lang, J. McNeely, A. 
Mueller, N. Nisbett, A. Noble, P. Pingali, Y. Pinto, R. Rabbinge, N. H. Ravindranath, A. Rola, 
N. Roling, C. Sage, W. Settle, J. M. Sha, S. Luo, T. Simons, P. Smith, K. Strzepeck, H. Swaine, 
E. Terry, T. P. Tomich, C. Toulmin, E. Trigo, S. Twomlow, J. K. Vis, J. Wilson, and S. Pilgrim. 
2010. The top 100 questions of importance to the future of global agriculture. International 
Journal of Agricultural Sustainability 8:219-236. 

Rand, T. A., J. M. Tylianakis, and T. Tscharntke. 2006. Spillover edge effects: the dispersal of 
agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecology 
Letters 9:603-614. 



Effects of forest remnants on pest control and production in traditional cornfields 36 

 

 

Ricketts, T. H., J. Regetz, I. Steffan-Dewenter, S. A. Cunningham, C. Kremen, A. Bogdanski, B. 
Gemmill-Herren, S. S. Greenleaf, A. M. Klein, M. M. Mayfield, L. A. Morandin, A. Ochieng, 
and V. Blande. 2008. Landscape effects on crop pollination services: are the general 
patterns? Ecology Letters 11. 

Roschewitz, I., D. Gabriel, T. Tscharntke, and C. Thies. 2005. The effects of landscape complexity on 
arable weed species diversity in organic and conventional farming. Journal of Applied 
Ecology 42:873-882. 

Rosset, P., J. Collins, and F. Moore. 2000. Lecciones de la revolución verde ¿Tecnología nueva para 
acabar con el hambre? Revista dl Sur Julio/Agosto. 

Schmidt, M. H., I. Roschewitz, C. Thies, and T. Tscharntke. 2005. Differential effects of landscape and 
management on diversity and density of ground-dwelling farmland spiders. Journal of 
Applied Ecology 42:281-287. 

Schmidt, M. H., and T. Tscharntke. 2005. Landscape context of sheetweb spider (Araneae: 
Linyphiidae) abundance in cereal fields. Journal of Biogeography 32:467-473. 

Schüepp, C., J. D. Herrmann, and M. H. Schmidt-Entling. 2011. Differential effects of habitat isolation 
and landscape composition on wasps, bees, and their enemies. Oecologia 165:713-721. 

Shackelford, G., P. R. Steward, T. G. Benton, W. E. Kunin, S. G. Potts, J. C. Biesmeijer, and S. M. Sait. 
2013. Comparison of pollinators and natural enemies: a meta-analysis of landscape and 
local effects on abundance and richness in crops. Biol Rev Camb Philos Soc 88:1002-1021. 

Stevens, M. H. H. 2009. A primer of ecology with R. Springer, New York. 
Swift, M. J., M. N. Izac, and M. van Noordwijk. 2004. Biodiversity and ecosystem services in 

agricultural landscapes—are we asking the right questions? Agriculture, Ecosystems & 
Environment 104:113-134. 

Swift, T. L., and S. J. Hannon. 2010. Critical thresholds associated with habitat loss: a review of the 
concepts, evidence, and applications. Biol Rev Camb Philos Soc 85:35-53. 

Thebault, E., and C. Fontaine. 2010. Stability of ecological communities and the architecture of 
mutualistic and trophic networks. Science 329:853-856. 

Thies, C., I. Roschewitz, and T. Tscharntke. 2005. The landscape context of cereal aphid-parasitoid 
interactions. Proc Biol Sci 272:203-210. 

Thorbek, P., and T. Bilde. 2004. Reduced numbers of generalist arthropod predators after crop 
management. Journal of Applied Ecology 41:526-538. 

Tilman, D., C. Balzer, J. Hill, and B. L. Befort. 2011. Global food demand and the sustainable 
intensification of agriculture. Proc Natl Acad Sci U S A 108:20260-20264. 

Tilman, D., K. G. Cassman, P. A. Matson, R. Naylor, and S. Polasky. 2002. Agricultural sustainability 
and intensive production practices. Nature 418:671-677. 

Tilman, D., J. Fargione, B. Wolff, C. D'Antonio, A. Dobson, R. Howarth, D. Schindler, W. H. Schlesinger, 
D. Simberloff, and D. Swackhamer. 2001. Forecasting Agriculturally Driven Global 
Environmental Change. Science 292:281-284. 

Tscharntke, T., A. M. Klein, A. Kruess, I. Steffan-Dewenter, and C. Thies. 2005. Landscape 
perspectives on agricultural intensification and biodiversity – ecosystem service 
management. Ecology Letters 8:857-874. 

Tscharntke, T., J. M. Tylianakis, T. A. Rand, R. K. Didham, L. Fahrig, P. Batary, J. Bengtsson, Y. Clough, 
T. O. Crist, C. F. Dormann, R. M. Ewers, J. Frund, R. D. Holt, A. Holzschuh, A. M. Klein, D. 
Kleijn, C. Kremen, D. A. Landis, W. Laurance, D. Lindenmayer, C. Scherber, N. Sodhi, I. 
Steffan-Dewenter, C. Thies, W. H. van der Putten, and C. Westphal. 2012. Landscape 
moderation of biodiversity patterns and processes - eight hypotheses. Biol Rev Camb Philos 
Soc 87:661-685. 



Effects of forest remnants on pest control and production in traditional cornfields 37 

 

 

Tylianakis, J. M., R. K. Didham, and S. D. Wratten. 2004. Improved fitness of Aphid parasitoids 
receiving resource subsidies. Ecology 85:658-666. 

Tylianakis, J. M., T. Tscharntke, and O. T. Lewis. 2007. Habitat modification alters the structure of 
tropical host-parasitoid food webs. Nature 445:202-205. 

Ulrich, W., M. Almeida-Neto, and N. J. Gotelli. 2009. A consumer's guide to nestedness analysis. 
Oikos 118:3-17. 

Vandermeer, J. 2011. The ecology of agroecosystems. Jones & Bartlett: Sudbury, MA. 
Walz, U. 2011. Lanscape structure, landscape metrics and Biodiversity. Living Reviews in Landscape 

Research 5:[Online Article]: cited [ Feb 2014], http://www.livingreviews.org/lrlr-2011-2013. 
Wanger, T. C., D. T. Iskandar, I. Motzke, B. W. Brook, N. S. Sodhi, Y. Clough, and T. Tscharntke. 2010. 

Effects of land-use change on community composition of tropical amphibians and reptiles 
in Sulawesi, Indonesia. Conserv Biol 24:795-802. 

 

 

 

http://www.livingreviews.org/lrlr-2011-2013


Effects of forest remnants on pest control and production in traditional cornfields 38 

 

 

2.  Study Area 

 

2.1 Location 

Topaipí is a municipality in the Río Negro Province in Cundinamarca department, 

approximately 141 km northwest of Bogotá (Fig.2-1).The municipality stands at 1323 m 

altitude in the Western Cordillera of the Colombian Andes ( 5º 20´ 17´´N  and 74º 18´ 21´´W).  

 

Figure 2-1. Location of Topaipí  in the context of South America and Colombia 

Topaipi  was founded in 1806 and declared a municipality in 1927 officially (EOT, 2004). It 

comprises an area of 150.04 km2  and is bordered to the north by the Yacopí municipality, 

to the east by the municipalities of Pacho, Paime and Villa Gomez, to the west by La Palma 

municipality, to the south by the municipalities of El Peñón and Pacho. 

2.2 Climate 

No site specific climatic data are available for the study area, and therefore the statistics for 

three closer meteorological stations (Yacopí: 5° 29´ N ‘ 74° 21´ W;  Paime: 5° 22´ N ‘ 74° 9´ 

W; La Palma:  5° 20´ N ‘ 74° 23´W) were used to describe the climate of the area. Topaipí 

has a subtropical climate influenced by the northeastern trade winds. Rainfall is bimodal with 



Effects of forest remnants on pest control and production in traditional cornfields 39 

 

 

an average annual of 2521 mm which peaks in April and October (Figure 2-2.).  The average 

temperature is 21.3 °C and it varies between 19.9 °C and 23.5 °C.  

 

Figure 2-2. Multiyear average monthly rainfall and temperature (1992-2011) based on climatological data from 
three stations: La Palma, Paime and Yacopi. 

 

2.3 Environmental issues 

Topography is dominated by mountainous slopes, in which mass movements are a common 

phenomenon. Soils are acidic (average pH 4.8) with sandy loam to clay loam. Life zone is 

Premontane wet forest (Holdridge 1967) whose natural vegetation is an evergreen forest 

(30- 40 m tall) with abundant epiphytism. 

Hydric resources are abundant and are distributed among approximately 160 streams. Main 

rivers include Río Murca, Río Minero and Río Bunque which are tributaries of the Río Negro 

(EOT 2004). Most water is used for human consumption, which are delivered to population 

through a sewer system or through hoses. Although agriculture is performed without 

irrigation, water is taken up for local small hatcheries of Tilapia (Oreochromis spp.) 

The landscape in this region is a mosaic of native forest and human land-uses such as 

cultivated fields, fallows and pastures; but still forest covers more than 50% of the 

municipality (EMP Unpublished data). Extensive grazing of cattle is the main source of 

farmers’ livelihood, but they also grow marketable crops such as coffee and sugar cane. 

20.4

20.6

20.8

21

21.2

21.4

21.6

21.8

22

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Te
m

p
er

at
u

re
 (

°C
)

P
re

ci
p

it
at

io
n

 (
m

m
)

Month



Effects of forest remnants on pest control and production in traditional cornfields 40 

 

 

Subsistence crops included cassava, plantains and corn, which are mainly grown on steep 

slopes close to remnants of native forest. However, some farmers also grow these crops in 

more transformed areas such as home gardens.   

 

2.4 Socio economic issues 

Population. Topaipi population decreased by 22% between 1993 and 2005. The 1993 

Colombia Census reported a population of 6182, while the 2005 Census reported a 

population of 4187.  The intensity of violence suffered in this period led to large population 

movements as people left rural communities in fear of their lives. These movements were 

forced by the war between guerrillas and paramilitaries  

According to data reported by Arenas (2008), most population inhabits rural areas (85%) 

with 1467 people (39.7%) under the age of 20, 1489 people (40.3%) aged 20-60, and 711 

(20.0%) who were 61 years of age or older. For every 100 males there were 83 females 

(Figure 2-3).  

 

Figure 2-3. Topaipi rural population pyramid 2008, based on data reported by Arenas (2008). 

Sixty three percent of population had Unsatisfied Basic Needs (UBN), and 32.9% of 

population suffered from extreme poverty caused by inequality (Arenas, 2008). Poverty is 
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more critical in the rural area, where UBN was 69.61% compared to 29.49% in the urban 

area.  According to Sisben data (2007), 83% of population was classified in category one, 

followed by a 16.7% in category two. 

 

Land Tenure and Farming System. Topaipi is characterized as being 

economically dependent on the agricultural sector, mostly on coffee and sugar cane. The 

municipality  had a smallholder distribution of property.  2828 landowners (64.4% ) had farms 

averaging 5 hectares or less, which accounts for 64% (1729 farms) of the total number of 

farms in the municipality (Figure 2-4).   

 

Agricultural production is characterized by having limited access to resources such as land 

and capital. Food production is mainly based on family labor and; most of the household 

income is derived from agricultural activities. For some crops like corn, production is for own 

consumption, whereas other crops such as coffee or sugar cane, production is sold in local 

markets. These conditions indicate that family farming is the dominant production system in 

Topaipi. Some productive units correspond to subsistence agriculture, while the other ones 

are in the transition to a consolidated family farming, in the sense described by FAO- IDB 

(2007). 

 

Figure 2-4. Percentage of farms units and landholders according to farm size categories. The graph was 
constructed based on data reported by Arenas (2008). 
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3. Habitat heterogeneity induces plant and 
arthropod species turnover in traditional 
cornfields 

 

Abstract 

The expansion of the agricultural frontier by clearing remnant forests has led to landscape 

simplification in low-Andean tropical regions. Landscape simplification reduces the richness 

and abundance of arthropods in crop systems. Previous studies have evaluated the effect 

of natural habitats on arthropod diversity at local spatial scales in temperate regions, and 

little is known about their effects in more complex crop systems, such as tropical traditional 

crop systems that maintain a high diversity of weeds in addition to arthropods. To understand 

the factors that influence patterns of diversity in human-dominated landscapes, we 

investigated the effect of remnant forest on plant and arthropod diversity in traditionally 

managed corn crops.  

We conducted surveys of plants and arthropods in twelve traditional cornfields in the 

Colombian Andes during the second growing season in 2011. We estimated alpha and beta 

diversity to analyze changes in diversity related to forest cover within a radius of 250 m 

around each cornfield.  

We determined that the alpha diversity of plants and arthropods in cornfields was not 

associated with higher forest cover surrounding each field. Instead, the former land use of 

each cornfield affected local plant diversity, and plant diversity was positively related to the 

alpha diversity of herbivores. However, we determined that forest cover influenced changes 

in plant species composition and the turnover of herbivore communities among the 

cornfields. Dominant plant species varied among fields, resulting in high differentiation of 

plant communities. Predator communities also exhibited high turnover among cornfields, but 

differences in composition arose mainly among rare species.  

The crop system evaluated is a highly heterogeneous habitat due to its landscape 

configuration, high diversity of weeds and variations in historic land use among the 



Effects of forest remnants on pest control and production in traditional cornfields 44 

 

 

cornfields. Thus, these factors should be considered for diversity conservation and the 

development of sustainable pest management strategies in simplified agroecosystems. 

 

Keywords: Agrobiodiversity, Andean crops, Beta diversity, Habitat heterogeneity, 

Landscape complexity, Weed richness, Arthropod richness, True diversities, Zea mays L.  

 

Introduction 

Agroecologists propose that traditional farming systems may provide scientists with 

invaluable agro-ecological principles needed to develop global sustainable agriculture 

(Altieri 1991). These principles are useful in developing strategies for pest management in 

crops as well as conservation of biodiversity in human-modified landscapes. Indeed, 

traditional agriculture sustains a huge diversity of organisms that in some cases may be 

comparable to that of natural ecosystems (Settle et al. 1996). This diversity benefits 

agroecosystems through its positive effect on ecosystem functioning, increasing adaptability 

to extreme climatic conditions and resilience to biotic and abiotic stress (Kahane et al. 2013). 

However, underestimation of traditional knowledge, intensification of small family farming 

(Oyarzun et al. 2013), and rural-urban migration (Grau and Aide 2008) have led to the 

abandonment of traditional agriculture. The combination of these factors results in an 

irreparable loss of native varieties of crops, their wild relatives, and associated biota that 

perform essential ecological functions for agriculture (e.g., pest regulation, pollination and 

nitrogen fixation, etc.). Therefore, for agroecologists must elucidate how traditional farming 

systems prevent the loss of biodiversity, a key factor for achieving sustainable agriculture. 

 

Assessments of biodiversity in human-dominated landscapes indicates that less-intensive 

land use has a positive effect on biodiversity (Tylianakis et al. 2006, Tscharntke et al. 2012). 

For example, comparison of biodiversity between organic and conventional farms has 

demonstrated that the species richness of weeds and beneficial arthropods is higher in 

organic fields (Clough et al. 2006, Holzschuh et al. 2006, Holzschuh et al. 2008, Pluess et 

al. 2010, Letourneau et al. 2012a). At the landscape level, the presence of natural habitats 

may favor the species richness and abundance of beneficial arthropods in crops (Schmidt 

et al. 2005, Schmidt et al. 2008, Gardiner et al. 2009, Letourneau et al. 2012a). Although 
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these findings are consistent across different regions and crops (Chaplin-Kramer et al. 

2011), the methodological approaches of these studies have been criticized because they 

have mainly focused on the diversity at the plot-scale (Tylianakis et al. 2006, Clough et al. 

2007). Analysis of local diversity alone cannot capture all the processes that determine 

species richness at higher spatial scales (Tylianakis et al. 2006, Clough et al. 2007, 

Tscharntke et al. 2012). Consequently, the impacts of human activities on biodiversity in 

agricultural landscapes should consider different spatial scales, in order to gain more insight 

into the relationships among landscape structure, crop management practices and 

biodiversity. 

To tackle this challenge, a growing number of studies have partitioned of diversity into 

components (alpha, beta and gamma diversity) to assess the effects of crop management 

practices and landscape structure on biodiversity in agroecosystems (Roschewitz et al. 

2005, Tylianakis et al. 2006, Clough et al. 2007, Poggio et al. 2010, Armengot et al. 2012). 

Based on these studies, agroecologists have suggested that intensifying agriculture 

(through the transformation of natural habitats to agriculture or through crop management 

practices to increase crop yields) may homogenize biological communities across 

agricultural landscapes (Tylianakis et al. 2006, Armengot et al. 2012). Accordingly, we would 

expect the contribution of local diversity to overall diversity (gamma) to increase as the 

agroecosystem management becomes more  intense, which is referred to as low beta 

diversity (Tylianakis et al. 2006). This homogenization may arise either from the reduced 

availability of niches in simplified habitats, which can promote the loss of rare or habitat 

specialist species, or from the dominance of disturbance-adapted species that can dominate 

biological communities (Arroyo-Rodríguez et al. 2013a).  

However, agricultural intensification may also differentiate communities across agricultural 

landscapes; in this case, we would expect beta diversity to increase as land use intensifies. 

For instance, a higher contribution of beta diversity to overall diversity has been observed 

for weeds (Roschewitz et al. 2005) and arthropods (Clough et al. 2007) in temperate 

agroecosystems. Such differentiation may occur if the landscape configuration restricts the 

dispersion of organisms across different habitats. For example, food production activities 

result in habitat patchiness in the landscape, which in turn promotes differentiation of 

communities through extinction-colonization dynamics (Jimenez-Valverde et al. 2010). 

These processes are highly dependent on the spatial scale and the organisms’ life history 

traits, although geographical distances between plots and similarities in the environmental 
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conditions might also be important predictors of changes in the composition of species 

(Jimenez-Valverde et al. 2010). 

 

In this article, we aim to study the biodiversity of plants and arthropods in traditional 

cornfields located in a mountainous environment in the Colombian Andes. Biodiversity 

inventories were conducted in cornfields because corn is a native crop whose management 

practices remain in a traditional way (in contrast to introduced crops such as coffee or sugar 

cane). We analyzed diversity data with a multi-taxonomic focus (plants, herbivores and 

predators) and multi-scale perspective (within fields and among fields). In this context, we 

addressed the following questions.  i) How does alpha diversity change across a gradient of 

forest cover for different taxa in this area? ii) To what extent does beta diversity changes 

among different taxa and among rare and common species? iii) Are there environmental 

factors related to differences in species composition among cornfields? and, iv) How do 

species composition and the relative abundance of species vary among cornfields? 

Because a higher amount of natural habitats in agroecosystems is associated with higher 

species richness of arthropods in crops (Chaplin-Kramer et al. 2011), we expected that the 

biodiversity of plants and arthropods in cornfields would increase with increasing forest 

cover surrounding the crop. Due to the long human land-use history in this region (farmers 

have found archaeological remains of indigenous cultures) and distribution of the cornfields 

within a small area, we also predicted a low diversity in general for these plots. More 

importantly, the same species should be everywhere. Hence, we expected few changes in 

species composition and similar patterns of relative abundance, such that a few species 

should dominate all fields. Consequently, we hypothesized that beta diversity is low among 

cornfields, because most species should be everywhere and the dominant species should 

not vary.  We also expected the geographical distance between cornfields to explain the 

replacement of species with higher beta diversity as the distance between cornfields 

increased. 

 

Materials and Methods 

Study area. Fieldwork was conducted from August 2011 to February 2012 in the 

municipality of Topaipí, Cundinamarca; a rural area located on the west slope of the Central 
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Cordillera in Colombian Andes (5 23.366N, 74 18.125W). In this region, we choose twelve 

traditional cornfields with a minimum distance of 230 m from each other. All fields had small 

areas, which varied from 591 to 5112 m2. Cornfields were embedded in a landscape sector 

of 14 km2 in an altitudinal gradient ranging from 1296 to 1550 m. 

 

The landscape in this region is a mosaic of native forest and human land use such as 

cultivated fields, fallows and pastures, and but forest still covers more than 30% of the 

municipality (Riveros 2013). Annual rainfall in the region is 2525.8 mm, with peaks in April 

and September, and the average temperature is 21.3°C with a range of 19.9 to 23.3 °C. 

Extensive grazing is the main source of livelihood for farmers, who also grow marketable 

crops such as coffee and sugar cane. Subsistence crops included cassava and corn, which 

are mainly grown on steep slopes close to remnants of native forest. However, some farmers 

also grow these crops in more transformed areas such as home gardens.   

Crop management. Although corn is a semiannual crop, farmers prefer to sow it only 

in the second season of the year in order to avoid pest problems. Therefore, land is prepared 

for sowing in mid-July to mid-August, primarily by slash-and-burn agriculture. Farmers sown 

after mid-August and the emergence of corn seedlings corresponds with the onset of rains 

in the beginning of September. Farmers also perform hand weeding between 7-8 weeks 

after corn emergence, and they do not use chemical control of insect pests. Although 

peasants  partially harvest of corncobs in November, they allow the crop to dry until February 

or March, when the cornfield is harvested. Most of the crop biomass remains in the weedy 

field until the next crop season. In most cases, this cycle is repeated for 3 or 4 years, followed 

by a fallow period of variable length.   

Forest cover surrounding cornfields and other environmental 

descriptors. We registered the geographical coordinates, the altitude and the area for 

each cornfield by using a GPS.  We mapped the land-use types within a radius of 250 m 

around each cornfield, via field visits and inspections of aerial photographs (GSD = 27.7 

cm), and then we estimated the amount of area covered by each-land use type using Acview 

3.2 (ESRI 1999). We classified land-use types in the study area as native forest, secondary 

growth, hedges, pastures, transitional crops, perennial crops, home gardens and 

constructions.  
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The forest cover surrounding each crop was selected as the main predictor for further 

analysis. We observed a gradient in the proportion of forest from 0 to 62% among the twelve 

cornfields selected. This variable was negatively related to cropped area (Pearson’s r = -

0.80, p = 0.0017) and to habitat heterogeneity (r = -0.87, p = 0.0007), which was measured 

as the Shannon's Index for landscape data  (Turner 1989). 

To evaluate possible co-varying effects of soil quality on measurements of diversity, we 

sampled the soil in each plot at harvest time. Because the introduction of organic matter into 

soils may increase biomass and species numbers (Pimentel and Krummel 1987, Paoletti et 

al. 1992), we chose the percentage of carbon in soils as a predictor of species richness for 

further analysis. We also included as co-variables altitude, the perimeter-to-area ratio of 

each field, and the previous land use of the cornfield. 

 

The previous use of the plots differed among the cornfields. Therefore, we registered at the 

beginning of the study, we registered the former type of cover of each field. Five categories 

were established: native forest, fallows (secondary growth), pastures, other crops and 

invaded plots, which differed from fallow plots because these fields were dominated by a 

unique plant species. 

Arthropod Sampling. We sampled flying and leaf-dwelling arthropods on September 

and December 2011. Samples were obtained by sweep netting (N= 10 strikes) at the center 

of each cornfield. Arthropods were preserved in 70% alcohol until further identification of 

family level and morpho-species of herbivores and predators. We classified arthropods into 

five trophic groups (predators, parasitoids, herbivores, pollinators, nectarivores and 

saprophagous), according to reports in the literature for families or genera (Kaston 1978b, 

Wharton et al. 1997, Triplehorn and Johnson 2005, Fernández and Sharkey 2006b, 

Dippenaar-Schoeman and Jocqué 2007b).  

Weed Sampling. We sampled plants on December 2011, four months after the corn 

sowing date. We randomly selected five rows in the center of each cornfield. For each row, 

we used equidistant sampling stations along a 20-meter-long transect, thus totaling 25 

sampling stations per cornfield.  Each station was sampled by using a plastic quadrat (50 

cm x 50 cm) divided in 100 subquadrats. We recorded the presence of all plant species in 
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each station and counted the number of subquadrats occupied by each species as a 

measure of cover.  

A measure of dominance of each species per cornfield was estimated as the sum of their 

relative values of frequency and coverage. The relative frequency was estimated as the 

proportion of quadrats in which the species was present in each cornfield, whereas the 

relative coverage was the sum of the coverage of each species in all quadrants divided by 

the sum of the values of coverage for all species in each cornfield.  

Data analysis. Sample completeness in each cornfield was evaluated as the 

percentage of species observed relative to the number of species predicted by the 

Abundance Coverage-based Estimator of species richness  (ACE) by using EstimateS ver. 

8.2 (Colwell 2009). In addition, we estimated the sampling coverage of our data: these 

values represent the proportion of the total number of individuals in a community that belong 

to the species represented in a sample  (Chao and Jost 2012). 

Local diversity. We calculated the Hill numbers, or “true diversities” of each cornfield by 

following the methodological approach developed by Jost (2006). According to that method, 

common diversity indexes are converted into measures of diversity in the community, which 

are known as the “effective number of species” and obey the duplication principle  (Jost 

2006b). We calculated these numbers at three different orders (q) of diversity. The order q 

indicates the measurement’s sensitivity to common and rare species. A q value of 0 is 

indifferent to species abundance, such that all species are given the same weight, thereby 

favoring rare species. When q = 1, species are weighted exactly for their abundance in the 

community, rare or common species are not favored, whereas q = 2 favors the more 

abundant species (Jost 2006b). According to the above, species richness is a measure of 

diversity of order zero (0D), the exponential Shannon’s index is the measure of diversity of 

order one (1D), and the inverse of Simpson’s index is a measure of order two (2D) (Jost 

2006b, 2007). We constructed diversity profiles by plotting diversities at different orders in 

an increasing manner, which allowed us to identify patterns of dominance in cornfield 

communities. True diversities were calculated using R and a modified version of the Entropy 

calculator, an excel code developed by L. Jost.  

We used linear regression models to analyze possible relationships among diversity and 

cornfield characteristics. We used true diversities of plants, herbivores and predators as the 

response variables, whereas the proportion of forest cover within a radius of 250 m around 
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each cornfield was tested as the main predictor. To identify possible co-varying effects of 

the other characteristics of the cornfields, we included altitude, field perimeter-to-area ratio, 

soil organic matter content per field and the former land-use of each field in the models. We 

used a forward stepwise selection procedure to simplify the models. These analyses were 

performed in R (R Development Core Team, 2008). 

Turnover of species between cornfields. We used multiplicative diversity partitioning 

of Hill numbers, in their unweighted form, to analyze the changes in species composition 

between cornfields (Jost 2006b). This method partitions the regional gamma diversity (γ) 

into independent components of local alpha diversity (α) and beta diversity (β), in a 

multiplicative manner: Dα × Dβ = Dγ (Jost 2006b). Beta diversity can be transformed into 

values between 0 (all sampling units have different species) and 1 (all sampling units have 

the same species) as follows: 

 

When q = 0 and N = 2, the result is the Jaccard Index; when q = 2 the result  is the Morisita-

Horn-Index. This transformation is useful when comparing values based on a different 

number of sampling units (Jost 2007). 

We performed a Mantel test to evaluate whether the variation in the pairwise beta diversity 

of cornfields was related to pairwise crop distance. In addition, we performed a Mantel test 

between the pairwise beta diversity matrices and the environmental distance matrices to 

determine if the dissimilarity in species composition was related to environmental gradients. 

Environmental distance matrices were constructed based on pairwise differences between 

cornfields, including forest cover surrounding each cornfield, altitude, percentage of soil 

organic matter and the number of plant species in each cornfield. Correlation coefficients 

and p-values were estimated from 1000 permutations. Pairwise beta diversity matrices and 

the Mantel Test were performed in R (R Development Core Team, 2008).  

Patterns of relative abundance. For each cornfield we ranked species according to their 

abundance from the highest to the lowest values. We plotted the abundance of the ten most 

dominant species in each corn field. These graphs allowed us to identify changes in the 

dominance and in the composition of the more abundant species among the cornfields. 

𝐶𝑆𝑞
 = (1/ 𝐷𝛽  

𝑞 -1/N)/(1-1/N)      Eq.  1 Compositional similarity 



Effects of forest remnants on pest control and production in traditional cornfields 51 

 

 

Context-dependent changes in species composition. We performed Non-

Multidimensional Scaling analysis to visualize changes in species compositions as a 

function of the landscape context of the cornfields. Ordination was undertaken for 

quantitative data using the Jaccard index and Morisita-Horn index, which are also direct 

transformations of beta diversity of order 0 and 2, respectively. The stress values of each 

analysis are reported in the results. These analyses were performed in R (R Development 

Core Team, 2008). 

 

Results 

We collected 198 morpho-species of plants from 29 orders and 53 families; 5975 individuals 

of herbivores from 5 orders, 38 families and 217 morpho-species; and 1574 individuals of 

predators from 7 orders, 34 families and 132 morpho-species. According to the ACE 

richness estimator, we sampled 83%  and 70% of the total estimated number of plant and 

arthropod species, respectively, in the community. However, when we used sampling 

coverage values, we obtained coverage values of 90% to 95% which indicates that just 5% 

to 10% of individuals belonged to species not represented in our sampling. Therefore, we 

conclude that our sampling was sufficient to characterize the plant and arthropod 

communities within the cornfields.  

 

Local diversity. Alpha diversity profiles (Fig. 3-1) revealed that most of the species 

richness in each cornfield was attributable to rare species. In addition, we observed a large 

decrease in the effective number of species or true diversities as the order of diversity (q) 

increased, indicating a high degree of dominance in the community. This pattern of 

dominance was consistent throughout all cornfields and all taxonomic groups. Furthermore, 

high dominance of communities of plants and arthropods within the cornfields occurred 

regardless of whether the field was mainly surrounded by agricultural covers (A1-A6 

cornfields) or by native forest (F1-F6 cornfields). 

Our data also indicated a significant relationship between the proportion of native forest 

surrounding each cornfield and the local diversity of plants, as well with predators (q=1) and 

(See Appendix 2-1). However, we determined that other factors, such as the former land-

use of the cornfield and the diversity of plants was consistently related to the diversity of 
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organisms in the studied fields. The former land use of the crop field affected the diversity 

of plants regardless of the order of diversity considered (see Appendix 2-1, Fig. 2-2). In 

particular, the lowest values of plant diversity were observed in fields which, prior to being 

sown with corn, were invaded by a dominant plant (e.g., Hedychium coronarium Koening or 

Gynerium sagitatum Aubl.). Similarly, dominant and typical species of predators also had 

the lowest values of diversity in these invaded plots (Fig.3-2, see Appendix 3-2). 

We observed a strong positive relationship between herbivore diversity of this group and the 

diversity of typical plant species (q=1). This pattern was similar for all three orders of 

herbivore diversity (Fig. 3-3, Appendix 3-2). 

 

Figure 3-1. Alpha diversity profiles of plants, herbivores and predators in 12 traditional 

cornfields at a locality in Topaipí (Colombian Andes). The cornfields are arranged in 

ascending way, according to the proportion of forest within a radius of 250 m cornfield.  A1-

A6 were cornfields mainly surrounded by agricultural covers, whereas F1-F6 cornfields 

were mainly surrounded by native forest. 
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Figure 3-2. Effective number of plant and predator species according to the previous land-use of the cornfields. 

Bars represent Mean ± 1 SD. The order of diversity is included as a prefix: 0D for all species, 1D for typical 

species and 2D for common species. Former land-use includes forest (n=1), crops (n=2), pasture (n=2), fallow 

(n=5) and invasion (n=2).  

 

 

Finally, regression analysis revealed a significant but inconsistent relationship between the 

diversity of the dominant species (q=2) of all taxa and the perimeter-to-area ratio of 

cornfields.  Similarly, the diversity of herbivores was significantly related to altitude but the 

predictive value of the independent variable was limited (see Appendix 3-2). 
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Figure 3-3. Relationships between the diversity of herbivores and plants in cornfields: a) for all species q = 0, 

b) for typical species or q = 1 and, c) for common species or q =2. Fitted values (lines) were calculated from 

Poisson regression models using the effective number of plants at q=1, as a predictor for the effective number 

of herbivores. 

  Species turnover among cornfields. Beta diversity profiles indicated that the 

turnover of species among cornfields differed for plants and arthropods. Plant beta diversity 

increased as the order of diversity increased, whereas arthropod beta diversity decreased 

(Fig. 3-4). Consequently, the highest differences in species composition among cornfields 

were stronger among abundant plant species, whereas for arthropods these differences 

arose among rare species, particularly for predators. 

 

Because we evaluated 12 cornfields in our study area, the true beta diversities could range 

in value from 1 to 12, providing an estimate of the number of effective communities in this 

landscape. These values for our data ranged from 1.8 to 5.2, with the lowest values for 

herbivores and the highest values for plant communities, regardless of the order of diversity 

considered (Table 3-1). Therefore, plant communities in this landscape tended to be 

different among cornfields, particularly dominant species, whereas herbivore communities 

tended to be more homogeneous (Table 3-1).  Common and abundant species of predators 

tended to be the same for most of the cornfields, whereas, rare species were substantially 

different among them. 



Effects of forest remnants on pest control and production in traditional cornfields 55 

 

 

 

Figure 3-4. Beta diversity profiles of plants, arthropods and predators collected in twelve traditional cornfields 

immersed in an area of 14 km2 in the Colombian Andes. The order of diversity indicates the measurement’s 

sensitivity to common and rare species. 

  

 

Table 3-1 True diversities of plants, herbivores and predators collected in twelve traditional cornfields in an 

area of 14 km2 in the Colombian Andes.  

Order of diversity Αlpha Βeta Gamma Homogeneity 

(α/γ) 

Plants:     

q=0 52 3.8 198 0.26 

q=1 18 3.9 70 0.26 

q=2 8 5.2 42 0.19 

Herbivores:     

q=0 73 2.9 217 0.33 

q=1 28 1.8 51 0.55 

q=2 12 2.1 25 0.48 

Predators:     

q=0 32 4.1 132 0.24 

q=1 14 2.4 33 0.42 

q=2 7 2.3 16 0.44 

 

 

Spatial autocorrelation and relationships between beta diversity 

and environmental gradients. We did not find evidence for spatial autocorrelation 
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in the dissimilarity of species composition (pairwise beta diversity matrices) and the 

geographical distance between cornfields (Table 3-2). By contrast, we determined that the 

turnover of herbivores between cornfields was associated with environmental gradients in 

forest cover surrounding the crop and differences in plant species richness between crop 

fields (Table 3-2). Therefore, the greater the difference in forest cover between two 

cornfields, the greater the difference in their herbivore communities (q = 1). In addition, our 

data suggested that increasing differences in the number of plant species between 

cornfields are associated with higher replacement of herbivore species between cornfields. 

 

Table 3-2. Pearsons’s  r correlation  from the Mantel test between Pairwise Beta Diversity matrices and 

distance matrices for geographical location and environmental gradients in twelve traditional cornfields.  

Environmental gradients included differences between fields in altitude, proportion of native forest in a radio 

of 250m from the centroid of each cornfield, percentage of soil organic matter (S. O. M.) and Plant species 

richness. Asterisk following each value indicates significant correlations at 95% of confidence. 

Group 
Order of 

diversity 

Geographical 

distance 

Differences in 

altitude 

Differences in 

forest cover 

surrounded the 

crop 

Differences in 

soil organic 

matter 

Differences in 

plant  species 

richness 

Plants q = 0 -0.04 0.15 0.04 0.13  

 q = 1 -0.19 0.07 0.04 0.18  

 q = 2 -0.17 0.01 0.09 0.19  

Herbivores q = 0 0.03 -0.06 0.06 0.02 0.33* 

 q = 1 0.08 0.05 0.23* 0.21 0.05 

 q = 2 0.07 0.13 0.21 0.12 0.01 

Predators q = 0 -0.21 0.01 -0.19 -0.02 -0.02 

 q = 1 -0.16 0.02 -0.20 0.00 0.04 

  q = 2 0.06 0.10 0.05 0.12 0.14 

 

Relative abundance patterns and changes in species composition. 

Rank-abundance curves for the ten most abundant species of plants, herbivores and 

predators confirmed that beta diversity was higher for plants than for arthropods (Fig. 3-5). 

We registered 65 different plant species in the ten first ranks, in contrast to 34 herbivore 

species and 38 predator species (Fig. 3-5). These graphs also revealed that the patterns of 

dominance were highly variable among the cornfields. For plants, two cornfields had the 

most uneven distribution of abundances (e.g. A5 and F1, Fig. 3-5). This uneven distribution 

was due to the presence of invasive species such as H. coronarium  and G. sagittatum 

whose cover values reached up to 71% and 45% of each cornfield. Herbivore communities 

also had uneven distributions of dominant species (Fig. 3-5b); the highest value of relative 

abundance was 46% and the four dominant species included two leafhoppers 
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(Cicadellidae), a leaf beetle (Chrysomeliade) and a katydid (Tettigonidae). Finally, predator 

communities had an uneven distribution of dominant species (Fig. 3-5c); the dominant 

species included flies from the families Dolichopodidae and Empididae, spiders from the 

genus Leucauge (Tetragnatidae) and ant species  from the genera Azteca, Linepithema, 

Brachymyrmex and Ectatomma (Fig. 3-5c). 

Figure 3-5. Rank-abundance curves for the ten most abundant species of plants, herbivores and 

predators collected en twelve traditional cornfields (A1-A6 for cornfields mainly surrounded 

by human land-uses and F1-F6 for cornfields mainly surrounded by native forest in a radius 

of 250 m from its centroid). The lower-case letters in the curves represent only shared species 

among fields. 

  

FARM CODE 
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The NMDS analysis indicated that dissimilarity in plant species composition was related to 

the landscape context in which the cornfield was located. Ellipses joining cornfields that were 

mainly surrounded by agricultural habitats (A1-A6) and cornfields mainly surrounded by 

native forest (F1-F2) conformed two distinct groups. This pattern was particularly evident 

when the similarity index was based on presence/absence data (Fig. 3-6a), whereas some 

overlapping occurred when the index favored common species (Fig. 3-6b). For herbivore 

species (q = 0) we observed a clear overlap in the composition of species between 

landscape contexts (Fig. 3-6c), whereas for abundant species (q=2) there was some degree 

of differentiation (Fig. 3-6d). Finally, we observed an overlap in species predator composition 

between landscape contexts (Fig. 3-6e-f). Therefore, the proportion of forest surrounding 

the crop did not have a substantial influence on the differentiation of arthropod communities 

among cornfields in the study area. 
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Figure 3-6.. Non-metric multidimensional scaling ordination diagrams based on the Jaccard (left column) and 

Morisita-Horn indexes (right column) for plants (a-b), herbivores   (c-d), and predators (e-f) collected in twelve 

traditional cornfields. Capital letters represent cornfield codes: A1-A6 for cornfields mainly surrounded by 

human land-uses and F1-F6 for cornfields mainly surrounded by native forest in a radius of 250 m from its 

centroid. Ellipses indicate the clustering of biological communities based on the landscape context of the 

cornfield. Stress values:  a = 0.01, b =0, c = 0.16, d=0, e=0.18 and f= 0. 
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Discussion 

We determined that the amount of forest surrounding traditional cornfields is unrelated to 

the species richness of plants, herbivores and predators collected in those fields. Although 

we observed significant effects between the amount of forest and the diversity of the typical 

plants and abundant predators, we did not observe a clear trend in these data. Instead, other 

cornfield characteristics, such as the field’s former land-use and the within-field diversity of 

typical plant species, were strongly related to diversity measurements. In particular, lower 

values of plant and predator diversities occurred in those fields  previous to be sown with 

corn were invaded by a dominant plant.  These results support a central role for local factors, 

such as crop management practices, in the assemblage of weed communities in crops. As 

discussed by Navas (2012), the structure of plant communities in agroecosystems depends 

on current conditions and the legacy of previous land use, because weeds can recover from 

the seed bank or through vegetative reproduction, after the destruction of plants in crop 

fields by agricultural practices. Therefore, the plant diversity in each field may reflect the 

composition and size of the seed bank, which in turn is mainly affected by field management 

(Franke et al. 2009).  

Although no relationship was identified between the amount of forest around the crop and 

plant diversity, the results of NMDS analyses suggest that the closeness of cornfileds to 

forest do affect the composition of plant species. For instance, the dominant species in the 

agricultural context were Pteridium aquilinum (L.), H. coronarium and Spermacoce sp., 

whereas in the forest context the dominant species were Impatiens balsamina L., Cortaderia 

sp., Brachiaria sp. Alocasia sp. and  Drymaria cordata cordata (L.) Willd. ex Schult. 

Therefore, future research should consider the impacts of landscape configuration and field 

management practices on not only on the diversity but also on the composition of the seed 

bank in crop fields.  

 

Our results contrast with previous findings of a positive relationship between predator 

diversity and proximity to forest, in agroecosystems (Klein et al. 2006, Clough et al. 2009). 

Furthermore, when we analyzed the percentage of natural habitats surrounding the crop, 

our data did not support the hypothesis that non-cropped areas have a positive effect on the 

species richness of pest’s natural enemies, in contrast to several previous studies (Clough 
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et al. 2005, Schmidt et al. 2005, Schmidt et al. 2008). Therefore, predators in cornfields may 

be able to obtain resources, such as alternative prey, pollen and refuge in other 

anthropogenic habitats surrounding the field, including pastures and other crops. For 

example, the abundance of earwigs –a main predator of Spodoptera frugiperda J.E. Smith 

(Lepidoptera:Noctuidae) in maize crops-, was associated with higher cover of grassland 

habitats in the landscape, whereas spiders and ground beetles were more abundant in 

environments dominated by coffee plantations (Wyckhuys and O'Neil 2007). Clearly, further 

research is also needed to determine the role of habitat configuration and  different land-use 

types on the  population dynamics of a pest’s natural enemies in crop systems. 

 

Regardless of the order of diversity considered, we observed a strong and positive 

relationship between herbivorediversity and the diversity of common plant species in the 

cornfields.These results are consistent with the Plant Richness Hypothesis, which was 

initially formulated for galling insects and argues that the higher the number of plant species 

in a given site, the higher the number of herbivore species (Fernandes and Price 1988). 

Mechanisms explaining this relation may include higher host specialization by herbivores 

and the increase in plant species per se, if the number of herbivore species is similar among 

plant species but the number of plant species per area is higher (De Souza 2007, Lewinsohn 

and Roslin 2008). Becuase most phytophagous insect species  (>70%)  are specialized in 

their use of host plants (Price et al. 2011), the herbivores collected in cornfieds likely exhibit 

a high level of host specialization.  

 

Contrary to our expectation of low species turnover among the twelve cornfields studied, we 

observed high beta diversity values, particularly for plants and predators in our study area.  

Dominant plant species were quite different among fields, which translated into high 

differentiation of plant communities. Predator communities also exhibited high turnover 

among the cornfields but differences in composition arose among rare species. Although, 

herbivore communities tended to be more homogeneous across cornfields, they also 

exhibited a high degree of differentiation. Our results support the idea of high turnover of 

weed species in agroecosystems (Navas 2012), as well as higher turnover of sessile 

organisms such as plants, in comparison with mobile species such  as herbivores and 

predators (Jimenez-Valverde et al 2010). Similar findings of high beta diversity values for 
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agroecosystems have been reported for weeds (Roschewitz et al. 2005) and arthropods 

(Clough et al. 2007) in temperate regions. Overall, these results indicate a high 

heterogeneity at small spatial scales, particularly if we take  into account the small size of 

the study area (14 km2). Such heterogeneity may be linked to the environmental gradients 

typical of mountain areas, landscape spatial configuration and crop management practices 

such as weeding and crop rotation. For instance, in mountainous environments it is possible 

to observe large changes in surface slope are possible at fine spatial scales, which in turn 

may affect soil properties, such as depth and water retention capacity, key factors for plant 

development (Western et al. 2002). In addition, plants can modify microhabitats through 

facilitating or inhibiting the colonization of other species (Callaway and Walker 1997), which 

in turn increases habitat heterogeneity, particularly because of the high number of species 

inhabiting traditional cornfields. Furthermore, if we consider plants as arthropod habitats, 

then plants deliver a high variety of resources and thus a higher number of potential niches, 

which also increases habitat heterogeneity, particularly for herbivores (Sobek et al. 2009, 

Price et al. 2011). This may explain why the turnover of herbivores was related to differences 

in plant richness among the cornfields.  

We did not observe significant correlations between beta diversity matrices and 

environmental distance matrices for most groups of organisms. However, for herbivore 

communities, we observed that the higher the dissimilarity in the amount of surrounding 

forest, the higher the turnover of herbivores between cornfields. This result suggests that 

landscape configuration and, in particular, habitat patchiness may promote community 

differentiation through extinction-colonization dynamics (Jimenez-Valverde et al. 2010). 

Possible mechanisms explaining this result might include a reduction in the matrix 

permeability to the dispersal of organisms. For instance, some habitats can act as barriers 

to an organism’s movement, such as open pastures to understory birds (Sieving et al. 1996), 

or tall vegetation in crop borders to some wind-dispersed species like aphids (Fereres 2000). 

However, we did not find evidence for spatial autocorrelation in our data, and thus, 

mechanisms other than matrix impermeability and limited dispersal ability of organisms 

should be considered as factors explaining the high turnover of species among cornfields. 

Crop management practices at the local (in-field) and landscape scales, may contribute to 

beta diversity patterns by creating a mosaic of different disturbed patches (Limberger and 

Wickham 2012). Nonetheless, disturbances associated with crop management likely 

increase the productivity of the system, leading to high dominance of the fastest-growing 

species (Limberger and Wickham 2012), a pattern also observed in our data.  By contrast, 
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the high turnover of rare predator species might indicate that some species cannot remain 

in disturbed habitats, whereas, the dominant species might be agrobionts (Samu and 

Szinetár 2002). Thus, it remains unclear why so many plant species could dominate 

cornfields in this small sector of the landscape. We speculate that the number of plant 

species might be related to the composition of the seed bank and the land use history of the 

cornfields, which are factors that merit more attention in future research.  

In summary, plant and arthropod diversity in traditional cornfields is not associated with a 

higher amount of native forest surrounding crop fields. However, the presence of forest may 

influence changes in plant species composition and turnover of herbivore communities 

among the cornfields. High habitat heterogeneity, derived from environmental gradients in 

mountain areas, high plant species richness, and high levels of disturbance associated with 

agricultural practices might be the most important factors explaining the high differentiation 

of plants and arthropods in cornfields. Moreover, the local distribution of plants  has a 

substanbtial influence on the local distribution of herbivores, making this crop system ideal 

for developing better pest management strategies based on habitat manipulation (Isaacs et 

al. 2009, Landis et al. 2012a). 
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4. The structure of arthropod-weed 
assemblages associated to traditional corn 
crops in the Colombian Andes 

 

Abstract  

Understanding the processes that shape biodiversity in agroecosystems is a key 

requirement for the design of strategies promoting the long-term sustainability of ecosystem 

services, such as food production, pest control and pollination.  

We studied the organization of arthropod-weed assemblages in twelve traditional corn crops 

in the Colombian Andes. First, we investigated the effects of environmental factors on the 

structure of arthropod and plant metacommunities. Second, we described the architecture 

of species interaction networks.  

The assemblages of plants associated to corn crops were significantly nested, i. e., species 

composition of cornfields holding fewer species are subsets of those fields holding more 

species. Altitude and content of organic carbon in soil were the most important factor 

accounting for the nestedness of plant assemblages, whereas the degree of forest cover 

surrounding the crops was the most important factor explaining the nestedness of arthropod 

assemblages. Only plant assemblages exhibited significant, albeit low modularity. 

Species interaction networks were highly modular, with plants acting as module hubs and 

arthropods, particularly herbivores, being peripheral nodes. A strong modular structure of 

arthropod-plant interaction networks suggests that herbivores exhibit high specialization in 

host plant preferences. Forest cover in the landscape and weed richness within the cornfield 

influenced network size, the average number of links per species and modularity. Larger 

networks, more connected and less compartmentalized were observed in cornfields with 

larger forest cover around on them. Finally, network size affected herbivory and corn yield. 

Our approach brings out the opportunity to study field and species traits that might be useful 

in ecological strategies for pest management. For example, our findings support the notion 

that increasing forest cover surrounding crops will rise the local diversity of herbivores' 

natural enemies and thus decrease the demand for the use of agrotoxicals. Additionally, the 
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identification of few plant species working as module hubs in arthropod-plant interaction 

networks can provide useful information for the selective management targeting 

simultaneously weed and herbivore control. 

Key words. -Agrobiodiversity, Herbivore Networks, land-use intensification, meta-

community, modularity, nestedness. 

Introduction  

 

The challenge of supplying the growing global food demand and simultaneously reconciling 

agricultural production to environmental integrity requires a more in-depth understanding of 

the role that ecological interactions play in structure and functioning of agro-ecosystems 

(Robertson and Swinton 2005). Species interactions, such as pollination and natural control 

of pest crop populations, regulate agro-ecosystems functions that are critical to ensure food 

production (Memmott 2009). Empirical studies suggest that more diverse assemblages of 

pest’s natural enemies may enhance biological control in crops (Symondson et al. 2002, 

Bianchi et al. 2006), as well as, that pest’s natural enemies are more abundant and diverse 

in complex landscapes, e.g. those with larger percentage of natural and semi-natural 

habitats (Bianchi et al. 2006, Chaplin-Kramer et al. 2011). However, agroecosystems with 

diverse assemblages of herbivores and their natural enemies may have reduced pest control 

as a consequence of intraguild predation and apparent competition between herbivores 

(Thies et al. 2005, Bohan et al. 2013, Martin et al. 2013). Therefore, a classical approach to 

evaluate pest control based on measurements of species richness or abundance of 

arthropods has limitations understanding the mechanisms through which biodiversity 

improves pest regulation in agroecosystems.  

As an alternative, the study of ecological interactions between species in crops may solve 

that problem by identifying keystones species or functional groups that contribute to the 

ecological function, as well as to the stability and resilience of agroecosystems (Bohan et al. 

2013). Previous research in agroecosystems has explored the effects of land-use 

intensification on species interactions, as well as, in their associated ecological functions.  

For example, comparisons of networks structure between organic and conventional farming 

confirmed more diverse assemblages of plants and arthropods, as along with, more stables 

rates of parasitism under organic management (Macfadyen et al. 2009, Macfadyen et al. 

2011a). Likewise, in intensively managed agricultural habitats most energy flows along one 
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or few pathways (Tylianakis et al. 2007), and modularity may increase (Macfadyen et al. 

2011b). However, not always a complex landscape is associated with a more complex 

network structure, for example a lower complexity was reported for aphid-parasitoid 

interactions in complex landscapes (Gagic et al. 2011), due to higher dominance of one 

species of aphid in such landscape. Thus, more research is needed to understand the 

impacts of land-use intensification and particularly, landscape simplification on ecological 

network structure in agroecosystems. 

Additionaly, network analysis is being used to evaluate how the robustness of interaction 

networks -a measure of network’s vulnerability to species loss- varies across gradients of 

land use intensification and among different types of networks present in agroecosystems. 

From these studies it is known that aphid, insect seed feeder, and pollinator networks 

appeared more fragile to local extinction of species (Pocock et al. 2012), whereas in host-

parasitoids networks empirical evidence does not support the idea that land-use 

intensification influences negatively the robustness of ecological networks (Macfadyen et al. 

2011b). However, these conclusions have been drawn from few studies in temperate 

regions, and little is known from network structure in tropical agroecosystems. 

Given that ecological processes that affect diversity in agricultural landscape operate at 

higher spatial scales than crop fields (Tscharntke et al. 2012), we must consider several 

spatial scales for evaluating patterns in diversity in agricultural landscapes. As crop fields 

are discrete habitats in the landscape, with particular assemblages of species and  territories 

beyond field limits, we could apply the concept of metacommunity  –a set of local 

communities that are linked by dispersal of multiple potentially interacting species (Leibold 

et al. 2004)– to analyze the organization of plant and arthropod communities across the 

landscape in relation to environmental gradients in agroecosystems.  

Metacommunities could exhibit nestedness and/or modularity. Nestedness merges when 

species composition of crop fields holding fewer species are subsets of those fields holding 

more species, whereas modularity reflects the tendency for species to replace each other 

from site to site (Leibold and Mikkelson 2002). Identifying these patterns allows us to 

recognize which species are more sensitive to habitat fragmentation, as well as, to 

understand how species respond to environmental gradients. This information is useful to 

design strategies for conserving biodiversity, e.g. a single large area if metacommunities are 

nested or several smaller areas if they are compartmentalized (Mendez 2004). 
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Here we address these issues by studying the organization of arthropod-weed assemblages 

in traditional corn crops in the Colombian Andes. First, we investigated the effects of forest 

cover and other environmental factors on the structure of arthropod and plant 

metacommunities. Second, we described the architecture of species interaction networks 

and their relationships with forest cover and ecosystem functioning. We addressed the 

following questions: i) How are plant and arthropod communities organized across the 

studied landscape? ii) To what extent is the organization of these communities influenced 

by environmental factors and forest cover in the landscape? iii) How does the structure of 

weed-arthropods networks change across a gradient of forest cover and other 

environmental factors? iv) To what extent are herbivory and crop yield affected by arthropod-

weed network structure? 

 

We predict that organization of species across the landscape respond to ecological 

processes, thus the structure of metacommunities will not be random, and forest cover in 

the landscape will be a major factor explaining such patterns. We also expect  the cover of 

forest in the landscape to affect the structure of arthropod-weed networks in cornfields; then 

we expect a more complex network structure in cornfields with larger cover of forest around 

on them. Finally we expect less damage in corn plants and a higher production as the 

arthropod-weed networks become more complex. 

This work improved our understanding of interactions that occur in complex 

agroecosystems, as well as their relationships with provision of ecosystem services. Such 

information is useful to manipulate agroecosystems in order to achieve a sustainable 

intensification of agriculture. 

   

Material and Methods 

Description of study area and environmental descriptors of cornfields were provided in the 

section of materials and methods in chapter 2. Similarly, sampling of arthropod and weed 

data for meta-community analysis, as well as, measruments of herbivory and crop yield were 

described in chapter 2.  

Co-occurrences of arthropod and plant species. On September 2011, we 

performed five manual sampling events for each study site. In each sampling event, all 
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arthropods found on maize plants were collected during 5 minutes by two people. On 

December 2011, we sampled the arthropods species occurring on the three dominant weeds 

for each maize field, following the former procedure and taking five manual-collecting 

samples per plant species. A total of 20 hours of observations were accumulated in both 

sampling dates.  

Data analyses. We used incidence matrices to construct species accumulation curves 

in Estimates 8.2 (Colwell 2009). To determine if the sampling effort was sufficient to 

characterize arthropods and plants communities colonizing maize fields, we used the 

completeness of the non-parametric estimator ICE (Colwell 2009). A Pearson Product 

Moment Correlation Test was conducted to determine association among environmental 

and field traits, in order to select only independent variables for further analysis. We defined 

a significance level of 0.05.  

To describe the distribution of arthropod and weed species through the cornfields, we 

constructed incidence matrices in which localities correspond to rows and species to 

columns. We computed nestedness for each incidence matrix using the NODF index 

(Almeida-Neto et al. 2008) for rows. To determine if observed nestedness departs from 

values expected under randomness, we used the null model 2 presented in Bascompte et 

al. 2003., in which  the probability of presence of a specie in a determinate site is proportional 

to the total number of species presents in all sites. We ran 100 simulations to report P-values 

representing the probability of the observed nestedness overlaping the distribution of 

nestedness values generated by the null model. The nestedness analyses were performed 

in the software ANINHADO version 3.0 (Guimarães & Guimarães, 2006) with ordered 

matrices.  

To identify environmental factors or field traits that can account for nestedness, we re-

ordered the rows (localities) in the incidence matrices according to altitude, field size, the 

proportion of forest cover in a radius of 250 m from the center of each crop, the percentage 

of organic carbon in the soil, and plant species richness. Except for altitude, all factors were 

ordered in a decreasing way. Thus we  computed nestedness using ANINHADO to calculate 

NODF values without ordering the matrix. In order to get an error measure for NODF’s 

values, we used a resampling Jacknife procedure implemented in the R  

(R_Development_Core_Team 2008) to obtain 95% confidence intervals, assuming a normal 

distribution of NODF’s values. 
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To evaluate the degree of compartmentalization in incidence matrices, we computed 

modularity (M) using the software Modular version Alfa 0.1 (Marquitti et al. 2012). We applied 

the method of Barber available in Modular to maximize M, and used a number of 100 

simulations to contrast observed M-values with a null model. 

Arthropods – plants network topology. We constructed bipartite networks for each 

cornfield and calculated the following network structure descriptors: network size, 

connectance, average number of links per species, nestedness, number of compartments 

and modularity. Network size was defined as the total richness of arthropod species. 

Connectance was calculated as the fraction of recorded interactions relative to the total 

possible interactions. The average number of links per species was used as a measure of 

cohesion of the network. Nestedness, a topological pattern in which species with fewer 

interactions are preferentially associated with a subset of species that interact with the most 

connected ones (Bascompte et al. 2003), was calculated with the nested overlap and 

decreasing fill (NODF) metric, using the software ANINHADO. The significance of this metric 

was estimated with a Monte Carlo procedure, performing 100 randomizations created from 

the null model two (Bascompte et al 2003), in which the probability of an interaction between 

a plant and an animal is proportional to the total observed number of their interactions. 

Finally, we tested the networks for modularity, an ecological pattern that occurs when a 

group of species interact more often with species within the group than with the rest of the 

species in the network (Krause et al. 2003, Lewinsohn et al. 2006, Guimerà et al. 2010). 

Modularity was estimated by using the index M from the software Modular, version Alfa 0.1 

(Marquitti et al. 2012), based on the algorithm of Barber, while its significance was estimated 

using a Monte Carlo procedure created by the null model two presented in Bascompte et al. 

(2003). To carry on comparisons among networks from different cornfields, standardized 

modularity (M’) was calculated as  

M’ = (M- Mnull model)/Mnull model 

Where M is the value of modularity of the current matrix, while Mnull model refers to the average 

value of modularity of the random replicates. Graphs depicting the ecological interaction 

networks were built using Ucinet, version 6.414  (Borgatti et al. 2002). 

We used Poisson log-link Regression and Ordinary Least Square Regression (OLS) to 

analyze changes in network size, links per species, and relative modularity in relation to the 

proportion of forest in a radius of 250m around each cornfield. Field size, altitude and plant 
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species richness were included in the models as covariates. Similarly, regression models 

were used to assess the relationships within network’s metrics and foliar herbivory and crop 

yield.  

In all cases we used stepwise forward simplification for model specification in order to 

comply with the principle of parsimony (Crawley 2003). To control  possible multicollinearity 

among predictors we calculated the Condition Number and the Variance Inflation Factor 

(Chen et al. 2003). Outliers and influential points were identified graphically by plotting 

normalized residuals squared against leverage (Chen et al. 2003). Points with the largest 

leverage and the largest residual square were checked before to define the models. 

Constant error variance was checked by plotting the standardized residuals against fitted 

values, while normality of residuals was checked graphically plotting residuals and fitted 

values (Crawley 2003). Independence in residuals was evaluated with a Durbin-Watson’s 

Test  (Chen et al. 2003). All the analyses were conducted using R software 

(R_Development_Core_Team 2008).  

Results 

Plant species richness and composition. The richness of plants 

associated to traditional maize fields in Topaipí totalized 198 species distributed in 29 orders 

and 53 families. Most species belong to the classes Magnoliopsida (70.2%), Liliopsida 

(24.7%), and Polypodiopsida (4.5%). With regards to growth forms, there was a prevalence 

of herbaceous plants (69.7%), although vines (9.1%), shrubs (7.6%), dwarf shrubs (6.6%), 

ferns (4.5%) and re-growth of trees (2.5%) were also present. According to measures of 

relative coverage and frequency, the weeds Drymaria cordata cordata (L.= Willd. Ex Schult 

(Caryophylaceae) and Spermacoce assurgens Ruiz & Pav. (Rubiaceae) dominated the 

plant assemblages associated to traditional maize fields. Other specie recurrently observed 

in the study sites were Impatiens sp. (Balsaminaceae), Cyperus luzulae (L.) Rottb. Ex Retz.. 

(Cyperaceae), Commelina erecta L. (Commelinaceae), Panicum sp. (Poaceae) and Sida 

rhombifolia L. (Malvaceae).  On the other hand, invasive species as Pteridium aquilinum (L.) 

Kuhn (Dennstaedtiaceae), Hedychium coronarium Koenig (Zingiberaceae), Brachiaria sp. 

(Poaceae) and Impatiens balsamina L. . (Balsaminaceae) had the higher values of 

coverage. 
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Arthropod species richness and composition  Our samples totalized 

10.662 individuals of arthropods distributed in nine orders and 125 families. Most specimens 

were herbivores (66.7%), followed by predators (17.9%) and parasitoids (12.6%). 

Cicadellidae (Hemiptera) and Chrysomelidae (Coleoptera) were the most abundant families 

among herbivores. Formicidae (Hymenoptera), Dolichopodidae (Diptera) and Araneidae 

(Araneae) were the most abundant taxa among predators, whereas Braconidae and 

Pteromalidae (Hymenoptera) were the most abundant families among parasitoids. The most 

diverse groups were herbivores and predators with 260 and 152 morphospecies, 

respectively. However, we did not determine the morphospecies of parasitoids and 

saprophagous. 

 

Meta-community structure.  Table 4-1 summarizes the structure of weed 

and arthropod assemblages associated to traditional maize crops. The local assemblages 

of herbivores, predators and total arthropods exhibited higher nestedness than it would be 

expected by chance. However, modularity did not differ from values expected by chance for 

all arthropod trophic groups. Weed assemblages are significantly and highly nested and 

present a low, albeit significant, degree of modularity. 

 

Reordering the incidence matrices according to environmental gradients unraveled the 

effects of field traits on metacommunity structure.  For weeds, altitude and the percentage 

of carbon in soil were the most important environmental variables affecting observed 

nestedness (Fig. 4-1). Other factors, such as field size and the percentage of surrounding 

forest cover also explained the nestedness in weed composition. For herbivores and total 

arthropods, the most important factor affecting nestedness was the number of weed species 

(Fig. 4-1 b & c), whereas the percentage of surrounding forest cover was the most important 

environmental factor affecting nestedness of predator assemblages (Fig. 4-1d). 

 

Table 4-1. Summary statistics for indices of nestedness (NODFrows) and Modularity calculated for weed and arthropod 

species composition in twelve corn fields. Values for NODFrows and Modularity from null models were averaged from 100 

randomization simulations ± one standard deviation. P-values represent the probability that the observed value came from 

the same distribution of null models.  

 Group Nestedness Modularity  
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NODFrowsobs NODFrowsnull 
P-

value 

Modularity 

obs 

Modularity 

null 

P-

value 

Plants 44.58 32.10 ± 1.68 <0.001 0.33 0.29 ± 0.01 <0.001 

Herbivores 61.59 40.79 ± 1.45 <0.001 0.21 0.21 ± 0.01 ~1 

Predators 43.66 30.78 ± 2.23 0.02 0.29 0.29 ± 0.01 0.85 

Total 

Arthropods 
56.35 38.16 ± 1.27 <0.001 0.22 0.23 ±0.01 ~1 

 

 

Weed-arthropod interaction networks.  We registered 264 species of 

arthropods interacting with 24 weed species along the twelve studied cornfields. Most 

species were herbivores (154 morpho-species, 58.3%) and predators (75 morpho-species, 

28.4%).  Table 4-2 summarizes the structure of matrices describing the co-occurrence of 

arthropods and weeds –used here as proxy for the local ecological interaction networks–. 

Both plant richness within cornfields and  the proportion of forest in a radius of 250 m around 

on each cornfield had positive relationships with the size of the  arthropod-weed networks, 

but only predator richness did not respond to changes in plant richness (Fig. 4-2 a-f). 

Additional environmental descriptors of cornfields, such as altitude and field size, were 

unrelated to changes in arthropod species richness regardless the trophic group considered 

(Fig. 2 g-l see Appendix 4-1). 
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Figure 4-1  Contribution of environmental gradients to nestedness in Plants  (a), Total arthropods (b), Herbivores (c)  and 

Predators communities (d), studied in twelve traditional cornfields in the Colombian Andes. In each plot, the  axis represent 

the maximum. observed value of nestedness, while arrows indicates the value of nestedeness calculated from an incidence 

matrix, in which sites were ordered  following gradients in altitude, field size, forest cover in the landscape, content of 

organic carbon in soil and weed richness (only for arthropods). 

  

The interaction matrices were not significantly nested but  highly compartmentalized (Table 

4-2). The number of identified modules corresponds to the number of weeds species 

sampled in each field, as observed in the respective graphs (Fig. 4-3). Connectance values 

ranged from 0.29 to 0.40 and were unrelated to network size (Pearson’s r test = -0.18, p = 

0.56). The average number of links per species was 1.19 ± 0.08 and it had a positive 

relationship with the proportion of forest around cornfields (Fig. 4-4a). In contrast, the 

standardized values of modularity were negatively related to forest cover in the landscape 

(Fig. 4-4b, Appendix 4-1). 
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Table 4-2. Structure network’s metrics for arthropod-weed assemblages collected in twelve 

traditional cornfields in the Colombian Andes.  

Cornfield 
 code 

Connectance  
(C) 

Average links  
per specie 

Nestedness 
 (NODF) 

Modularity  
(M) 

Standardized 
 modularity 

A1 0.30 1.10 67.21 0.59 0.31 

A2 0.29 1.05 61.99 0.61 0.30 

A3 0.32 1.17 43.74 0.54 0.23 

A4 0.32 1.22 53.91 0.53 0.26 

A5 0.33 1.21 46.02 0.52 0.25 

A6 0.31 1.13 58.23 0.56 0.27 

F1 0.40 1.09 49.07 0.49 0.22 

F2 0.35 1.30 48.62 0.47 0.19 

F3 0.33 1.23 59.19 0.52 0.24 

F4 0.34 1.28 58.24 0.49 0.23 

F5 0.32 1.20 51.42 0.53 0.23 

F6 0.35 1.30 53.67 0.47 0.21 

 

Network size influenced foliar herbivory and crop yield. Particularly, herbivore richness had 

a positive and significant relationship with herbivory (Fig. 4-5a, Appendix 4-2), while predator 

richness was positively related to crop yield (Fig. 4-5b, Appendix 4-3). Other network’s 

metrics such as connectace, average links per species and modularity were unrelated to 

herbivory or corn production in the studied cornfields. 



Effects of forest remnants on pest control and production in traditional cornfields 78 

 

78 
 

 

Figure 4-2.. Variation in network size defined as the total richness of arthropods (a, b & c), herbivore richness (d, e & f) 

and predator richness (g, h, & i) in relation to changes in the proportion of forest in a 250m radius around on  each cornfield 

(a, d & g), altitude  (b, e & h) and field size (c, f & i). Lines indicates predicted values of Poisson regression models and 

only were plotted when the factor was significant at a confidence level of 95%.  
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Figure 4-3. Modular structures from weeds and arthropod co-occurrence networks for each corn field.  Corn plants and the three dominant weeds in each field were inspected for 

arthropods.  Plant species were represented by white circles, herbivores by black circles, predators by  squares, pollinators by plus, parasitoids by up triangles and saprophagous 

morphospecies by down triangles. Farm codes were in the upper right corner of each graph. 
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Figure 4-4 Average number of links per species (a) and Standardized Modularity in relation to the proportion of native 

forest in a radius of 250m around of each crop field measured on arthropod-weed interactions networks in traditional 

cornfields in the Colombian Andes. 

 

 

Figure 4-5 Relationship between herbivory index and herbivore richness (a) and between crop yield and predator richness 

(b), measured in arthropod-weeds interaction networks in twelve traditional cornfields in the Colombian Andes. 
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Discussion 

Plant and arthropod assemblages in the studied agricultural landscape had a nested 

structure, which means that species composition of cornfields holding fewer species are 

subsets of those fields holding more species. Altitude and the content of organic carbon in 

soils were the most important factors accounting for the nestedness of plant assemblages, 

whereas the degree of forest cover surrounding the crops and plant richness were the most 

important factors explaining the nestedness of arthropod assemblages. Only plant 

assemblages exhibited significant, albeit low modularity.  

These results suggest that colonization of cornfields by plant species may depend more on 

local characteristics and crop management practices than on landscape configuration. For 

instance, the content of organic carbon in soil is highly dependent on management practices 

such as tillage, land preparation for sown, (e.g.  Slash and burn, mulch or weeding with 

glyphosate) and fertilization, which are recognized factors influencing community structure 

of weeds in agricultural landscapes (Navas 2012). Plant assemblages were more diverse at 

higher altitudes, however when we considered previous land-use of plots in analysis 

explaining plant species richness, the importance of altitude as explaining factor diminished, 

whereas former land-uses such as pastures or previously invaded plots accounts for most 

reduction on plant diversity (EMP, unpublished data). Therefore, further research should 

address the effect of biological invasions on seed banks in agricultural fields and their impact 

on plant community assemblage.   

Nevertheless, a significant but low modularity in plant assemblages may indicate a high 

turnover of species across the landscape, what was demonstrated in previous analysis of 

beta diversity in the same data (EMP, Unpublished data). It suggests that habitat 

heterogeneity is high in the studied landscape, and even more importantly, that the negative 

impacts of agricultural intensification through transformation of forest in croplands in 

biological communities (e.g. homogenization of communities) occurs at larger spatial scales 

than the one we considered here. 

In regard to nestedness in herbivore and predator assemblages, our results support the idea 

that plant richness is the main factor explaining herbivore richness (Lewinsohn and Roslin 

2008), and also that natural habitats, like forest cover in the landscape, are related to higher 

diversity of predator assemblages in crops (Bianchi et al. 2006, Klein et al. 2006, Chaplin-

Kramer et al. 2011).  Differences in plant species compositions across cornfields in the 
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landscape also may explain nestedness in herbivore assemblages, given that most 

phytophagous insects have specific associations with their host plants (Novotny and Basset 

2005).  

Nested patterns in predator composition related to gradients in forest cover in the landscape 

could indicate that the presence of permanent habitats from which predators can spill-over 

onto other habitats would be determining of crop natural enemies assemblages in crops 

(Klein et al. 2006, Holzschuh  et al. 2009, Tscharntke et al. 2012). For example, the presence 

of forests could be shelter for predators in the seasons in which the crop is not present or is 

subject to disturbance, such as weeding or harvesting (Klein et al. 2006). Moreover, for 

predators, the supply of alternative prey habitats and extra resources such as nectar and 

pollen, or refuges in proximity of natural habitats can improve habitat suitability (Isaacs et al. 

2009, Landis et al. 2012a, Rusch et al. 2013b).  

Even though the relation between nestedness and gradients in environmental factors 

evaluated helps to improve our understanding of mechanisms that explain the distribution 

patterns of the species in the agro-landscape, further research should consider that species 

in agroecosystems exploit resources in different habitats (Fahrig et al. 2011b, Tscharntke et 

al. 2012). Therefore,  we must take into account habitat suitability of different land-uses and 

covers in the landscape, as well as, the permeability of the matrix of landscape to species 

dispersion (Hadley and Betts 2012). In this way, we could assess how habitat loss affect 

community assemblages and ecological functions in agroecosystems.  

 

The network of species co-occurrences between weeds and arthropods in cornfields were 

highly modular with only a few plant species structuring arthropod assemblages. Dominant 

weeds in each corn field acted as a module hub, which were connected to a number of 

peripheral nodes conformed by arthropods.  

Our results are consistent with the expectation that antagonistic networks, such as 

herbivore-plant or prey-predator tend to be more compartmentalized (Prado and Lewinsohn 

2004, Guimaraes et al. 2006). Similar results, reporting high modularity in herbivory 

networks, have been shown both in natural ecosystems (Prado and Lewinsohn 2004, 

Cagnolo et al. 2011) and agricultural contexts (Macfadyen et al. 2011b). However, 

modularity is not restricted to antagonistic interactions, and it has also been reported for 

mutualistic networks like plant-pollinators (Olesen et al. 2007, Dupont and Olesen 2009, 



Effects of forest remnants on pest control and production in traditional cornfields 83 

 

83 
 

Martín González et al. 2012), seed-dispersers (Donatti et al. 2011, Mello et al. 2011) and 

ant-plants (Fonseca and Ganade 1996, Guimaraes et al. 2007, Dáttilo et al. 2013). 

A possible explanation for compartments in our network may include high specialization in 

host preferences by herbivores (Prado and Lewinsohn 2004).  According to  a previous 

review on host specificity in herbivore communities (Novotny and Basset 2005), we could 

expect  the proportion of herbivores feeding on a single plant species, and hence 

specialization, to increase as the taxonomic dissimilarity in plant species composition also 

increases in the community. In fact, in most of the corn fields studied (nine out of twelve), 

weeds species belonged to different plant families, which could promote differences in the 

composition of herbivore assemblage for each plant and hence modularity. Some ecological 

constraints to species interactions imposed by plant defenses and detoxification 

mechanisms in their counterparts herbivores also might shape herbivores assemblages 

(Agrawal 1998, Kareiva 1999, Ohgushi 2005) and compartmentalized plant –herbivore 

networks (Cagnolo et al. 2011).  On the other hand, we need to explore if modules in our 

network are composed by closely taxonomic related species of herbivores. If that is true, 

modules can be the result of a phylogenetic signal (Rezende et al. 2009, Guimerà et al. 

2010). However, our scarce knowledge of tropical insect’s taxonomy and their host 

specificity, limit us in our understanding of the relative importance of different mechanism as 

a determinants of compartmentalization in ecological networks. In addition, other factor as 

phenology (Martín González et al. 2012), habitat preferences (Guimerà et al. 2010), and the 

role of different species in the networks (Dupont and Olesen 2009) needs to be considered. 

 

In regard to the question of how forest cover affects the structure of arthropod-weed network 

our result supports the idea that simplification of landscape through land clearing simplify 

network structure. For instance, we observed higher links per species, as well as, larger 

network size in cornfields with larger forest cover around  them, but modularity had a 

negative relationship with changes in forest cover. Then, these findings support the idea that 

agriculture most often produces compartmentalized food webs (Macfadyen et al. 2011b, 

Bohan et al. 2013), and in this case increasing modularity may indicate that the destruction 

of forest in the agricultural landscape is leading to the fragmentation of food webs in 

cornfields (Guimerà et al. 2010). 
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Finally, we observed that network’s metrics were related to ecological functions such as 

herbivory and yield crop in the studied cornfields. Herbivory was higher in cornfields with 

more species of herbivores in the network. However, production of corn was higher in 

cornfields that hold networks with more predator species. These results support the 

hypothesis that more diverse assemblages of predator’s enhance biological pest control in 

crops by increasing complementarity of predator species in regulating populations of 

herbivores (Bohan et al. 2013). However, complementarity among herbivore species may 

lead to higher herbivore in crops with negative consequences for crop yield (EMP 

Unpublished data).  

To sum up, in complex agroecosystems such as the traditional cornfield studied, forest cover 

in the landscape and plant diversity play a central role in structuring assemblages of species 

in the landscape as well as in structuring arthropod-weed networks in each cornfield. We 

conclude that landscape simplification reduces species diversity arthropods in cornfields and 

it may lead to fragmentation of arthropod-weed food webs.  The structure of these food-

webs influences crop production: on one hand more diverse predator assemblages favor 

pest regulation, on the other hand more diverse assemblages of herbivores increases 

herbivore pressure on crops.  

Our findings support the notion that increase of forest cover surrounding crops will increase 

the local diversity of herbivores' natural enemies and thus decrease the demand for the use 

of agrotoxicals. Additionally, the identification of few plant species working as module hubs 

in arthropod-plant interaction networks can provide useful information for the selective 

management targeting simultaneously weed and herbivore control. 
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5. Landscape simplification and weed diversity 
affect pest control and production in Andean 
traditional cornfields 

 

Abstract 

Land clearing increases landscape simplification and threats biodiversity and ecosystem 

service provision in agroecosystems. However, the evidence of detrimental effects of 

landscape simplification on biodiversity and pest control is scarce in complex 

agroecosystems such as tropical traditional crop systems. 

We studied the relationships between forest cover, weed and arthropod diversity, herbivory 

and crop production in twelve traditional cornfields in the Colombian Andes. The cornfields 

were located in a gradient of forest cover within a radius of 250 m around on them, which 

enabled us to assess changes in diversity related to this factor. We also evaluated the effects 

of other covariates such as soil organic matter, previous former land-use and perimeter-to-

area ratio of cornfields.  

Forest cover had positive relationships with the coverage of weeds and the richness of leaf-

chewer herbivores. However, the proportion of forest was related negatively to the 

abundance of sap-feeder herbivores and parasitoids.  

Plant richness within cornfields enhances the abundance of natural enemies, particularly of 

parasitoids. Whereas the richness of grasses was associated to lower infestation levels by 

whorl worms. Richness and coverage of plants responded to changes in soil organic matter 

and previous use of cornfields.  

Corn production had a negative relationship with foliar herbivory, which in turn was positively 

related to the richness of leaf-chewer herbivores. 

Plant diversity had an indirect positive effect on corn production, by enhancing the 

abundance of natural enemies and pest control in cornfields. Whereas forest may negatively 

affect indirectly corn yield by enhancing the richness of leaf-chewer herbivores and herbivory 

in the studied crops. This apparently “dis-services” of forest in pest control need to be 

considered with caution, because forest in agricultural landscapes are essential for the 
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provision of additional ecosystems services, that should be taken into account to have an 

accurately assessment of their role in sustainable agriculture. 

Key Words: Zea mays, conservational pest control, associational resistance, enemies 

hypothesis, agrobiodiversity, weeds, herbivory, traditional crops. 

Introduction 

Remnants of native forests in agricultural landscapes provide valuable ecosystem services 

to society; they can minimize flooding, moderate regional climate, remove and store 

atmospheric carbon dioxide and enhance pest regulation in crops (Tilman et al. 2002, Klein 

et al. 2006). However, the growing demand for agricultural land prompts the conversion of 

more natural habitats into croplands with serious long-term implications for the environment 

(Tilman et al. 2011). For instance, habitat destruction is the major cause of biodiversity loss 

(Dirzo and Raven 2003), whilst simplification of the agricultural landscape through land 

clearing is leading to a higher pest pressure on crops (Poveda et al. 2012), lower abundance 

of natural enemies and less pest control in agroecosystems (Bianchi et al. 2006, Chaplin-

Kramer et al. 2011) 

The availability of natural habitats in agricultural landscapes is critical for conservative pest 

control (Gurr et al. 2003b, Tscharntke et al. 2012, Rusch et al. 2013a). Empirical evidence 

suggests that natural and semi-natural habitats embedded in agroecosystems maintain the 

regional pool of species of beneficial arthropods (Schmidt et al. 2005, Schmidt and 

Tscharntke 2005, Klein et al. 2006, Pluess et al. 2010, Chaplin-Kramer et al. 2011, 

Letourneau et al. 2012b). Some mechanisms have been proposed to explain these 

relationships. For instance, natural habitats are permanent covers, where beneficial 

arthropods can built-up larger populations without disturbance (Klein et al. 2006); these 

habitats exhibit a source-sink dynamic, serving as a source habitat for arthropods in the 

initial colonization of the crop fields  (Schuepp et al. 2011), and as a sink habitats when the 

management practices force them to abandon the crop fields (Rand et al. 2006) 

Better pest suppression in complex landscapes may occur due to higher plant diversity. For 

instance, the ‘enemies hypothesis’ predicts that  natural enemies will increase in diversified 

agroecosystems and thereby control herbivores more effectively (Risch 1987). Therefore 

natural habitats closer to crops provide nesting places and a variety of feeding resources to 

arthropods, such as nectar, pollen and alternative preys that may enhance the abundance 

of natural enemies, as well as, their longevity and fecundity (Gurr et al. 2003b, Tylianakis et 
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al. 2004, Drapela et al. 2008, Lee and Heimpel 2008, Pluess et al. 2010, Rusch et al. 2013a). 

However, resources provided by plants in natural habitats may also benefit herbivores in 

crops (Lavandero et al. 2006b), thus increased plant diversity per se may not result in a 

better pest suppression (Fiedler et al. 2008, Isaacs et al. 2009).  

Despite the well known positive effect of plant diversity and landscape complexity on pest’s 

natural enemies, the mechanistic link between biodiversity and provision of ecosystem 

services is still poorly understood (Shackelford et al. 2013). Most studies have been 

evaluated the impact of biodiversity on pest control using the abundance or richness of a 

services’s provider as a proxy for ecosystem service (Shackelford et al. 2013) and examples 

of direct measurements of pest control are scarce (Gardiner et al. 2009). In addition, 

empirical evidence fails to demonstrate that increasing richness or abundance of natural 

enemies always translates in increased crop yield (Chaplin-Kramer et al. 2011). Clearly, the 

idea that higher biodiversity of natural enemies improves crop productivity through top-down 

effects on crop plants warrants more research. 

Gaps in research remain in regards to the role of native forest on pest control, since most 

studies include a diverse set of land-uses within the category of natural habitats, e.g. flower 

strips, hedgerows, fallows, grassland and forest (Thies et al. 2003, Schmidt and Tscharntke 

2005). Thus, knowing the particular role of native forest is relevant in multifunctional 

agroecosystems, in which this habitat plays an important role in the provision of several 

ecosystem services, including the conservation of wildlife (Perfecto and Vandermeer 2008).  

In addition, research efforts in these topics are biased to arthropods in temperate zones, 

and little is known about their effect on both arthropods and weeds in more complex 

agroecosystems, such as tropical indigenous crop systems. 

Here we addressed these issues by studying the relationships between cover of native forest 

in the landscape and diversity of plants and arthropods, as well as, their relationships with 

herbivory and production in traditional cornfields. Previous analysis demonstrated that the 

diversity and richness of plants and herbivores were not related to the cover of native forest 

around the crops but it had an effect on species composition (EMP, Unpublished data). 

Therefore, we classified plants in three categories: grasses, non-grass weeds and low-

dominance native species. This classification allows us to re-evaluate the relationships 

between plant diversity and the amount of forest taking into account some plant 

characteristics that affect pest management. For instance, grasses were considered by 

separated because they may serve as alternative host of the whorl worms such as 
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Spodoptera frugiperda  J. E. Smith the main pest on corn (Pashley 1988). Therefore, 

grasses may affect corn yield by enhancing or reducing the cornfield susceptibility to the 

attack of whorl worms (Barbosa et al. 2009). Similarly, non-grass weeds may affect the 

production of corn negatively by competing with the corn plants or by enhancing populations 

of herbivores (Ryan et al. 2010, Smith et al. 2010). However, weeds may affect corn yield 

positively by enhancing populations of natural enemies in the cornfields (Fiedler and Landis 

2007, Lu et al. 2013).   

We examined the following predictions about the impact of native forest on biodiversity, 

herbivory and crop yield. First, we expect a positive relationship between cover of native 

forest and cover/abundance and species richness of plants, herbivores and pest’s natural 

enemies in the cornfields. Second, we expect a significant positive relationship between the 

cover and richness of grasses and the damage inflicted to corn plants by whorl worms. Third, 

we expected a positive relationship between plant richness and  abundance/richness of 

natural enemies, and a negative relationship between natural enemies and herbivory in corn 

plants. Fourth, we expect higher forest cover around the crops to results in the less the 

damaged inflicted by herbivores to the crop and higher crop yield. 

We tested these hypotheses by selecting twelve traditional cornfields in the Colombian 

Andes. The cornfields were located in a gradient of forest cover within a radius of 250 m 

around on them, which enabled us to assess changes in diversity related to this factor. We 

also evaluated the effects of other covariates such as soil organic matter, field former land-

use, altitude and perimeter-to-area-ratio of each cornfield. In such system we addressed the 

following questions: i) how do species richness and cover/abundance of weeds, grasses, 

native herbs, herbivores and natural enemies change in relation to percent forest cover 

around the crop? ii) How is the relationship between the crop infestation level by whorl 

worms and the richness or coverage of grasses and other weeds in cornfields? iii) How is 

the relationship between plant richness and the abundance and richness of herbivores, 

predators and parasitoids? And iv) to what extent are herbivory and crop yield affected by 

forest cover and the biodiversity associated with corn crops?  

 

Materials and Methods 

Descriptions of study area, as well as, environmental descriptors were described in the 

previous chapter. 
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Arthropod sampling.   We sampled flying and leaf-dwelling arthropods on September 

and December 2011. Samples were taken by five sweep-nets that captured arthropods in 

the center of each cornfield. Arthropods were preserved in 70% alcohol for further 

identification to family level and morpho-species of herbivores and predators.  We classified 

arthropods into five trophic groups (predators, parasitoids, herbivores, pollinators, 

nectarivores and saprophagous), according to reports in literature for families or genera  

(Kaston 1978a, Triplehorn and Johnson 2005, Fernández and Sharkey 2006a, Dippenaar-

Schoeman and Jocqué 2007a). In order to get an accurate assessment of herbivore’s effect 

on foliar herbivory, herbivores were classified in sap-feeders and leaf-chewers depending 

whether they had exogenous or endogenous feeding. For herbivores and predators we 

choose the abundance and the total number of morpho species as indicators of their 

diversity in cornfields, whereas for parasitoids we used abundance and the total number of 

families. 

 

Weed sampling. We sampled plants on December 2011, four months after the corn 

sowing date. We randomly selected five rows in the center of each cornfield. On each, we 

used equidistant sampling stations along a 20 meter-long transect, thus totalizing 25 

sampling stations per corn field.  Each station was sampled by using a plastic quadrat (50 x 

50 cm) divided in 100 subquadrats. We recorded the presence of all plant species in each 

station and counted the number of subquadrats occupied by each species as a measure of 

cover.  

A measure of dominance of each specie per cornfield was estimated as the sum of their 

relative values of frequency and coverage. Relative frequency was estimated as the 

proportion of quadrats in which the specie was present in each cornfield, whereas the 

relative coverage was the sum of the coverage of each specie in all quadrants divided by 

the sum of the values of coverage for all species in each cornfield.  

Due to the amount of forest around each corn influenced changes in plant species 

compositions in the studied cornfields (EMP Unpublished data), we classify plants in 

categories relevant to pest management: grasses, weeds and low-dominance species. 

Weeds included species with weed habit e.g. high values of dominance, as well as species 
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reported as weeds in Colombia (Fuentes and Romero 1991). The reasons to separate 

grasses were given in the introduction, and as the dominant species may have a higher 

importance in ecological processes in cornfields than the occasional ones we decided to 

analyze them separately.  

 

Foliar herbivory. We evaluated leaf damage on October 18 -24 (7-8 weeks after corn 

emergence), 2011 and January 2 – 5 2012 (4 month after corn emergence). A total of 30 

corn plants per cornfield were selected randomly to evaluate herbivory using a weighted 

method to asses herbivory (Dirzo and Domínguez 1995b): each leaf of the plant is scored 

on a scale from 0 to 5, with 0 being a leaf with no damage, 1 a leaf with 1 and 6% of foliar 

consumption, 2 a leaf with a damage between 6% and 12%, 3 a leaf with a damage between 

12% and 25%, 4 a leaf with a damage between 25% and 50% and 5 a leaf with more than 

50% of foliar area consumption by herbivores. For each corn field we pooled the total 

number of leaves considering all plants and calculated the Herbivory index according to the 

following equation: 

𝐼𝐻 =
∑ 𝑛𝑖 × 𝑖

𝑁
 

In this equation ni is the number of leaves in each category i multiplied by the category’s 

value (0-5). N is the total number of observations.  

 

Infestation of cornfields by whorl worms.  On October 18-24th, 2012 (7-8 

weeks after corn emergence), we evaluated the incidence of the major pest in corn crops 

(S. frugiperda) and other whorl worms in corn plants (e.g. Copitarsia decolora Guenée). We 

choose 100 corn plants randomly selected in each crop. Corn plants whorls were visually 

inspected looking for larvae or evidence of damage by whorl worms. We registered the 

proportion of plants with damage by whorl worms in each cornfield. 

 

Crop yield. We randomly selected 10 plants per cornfield to evaluate production. All 

plants were harvested on January 18-30  2012 (5-6 months after sown).  We separated 

vegetative structures from ears, and all materials were dried in an air flow stove (60°C) over 

the course of a week until constant weight. We registered the weight of healthy grain per 
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plant and calculated the average of healthy grain per plant for each corn field for data 

analysis. We report mean values per plant as a measure of crop yield as a way to 

standardize for differences in among fields, such as field size and other physical properties. 

Data analysis 

Species richness. Sampling completeness was calculated in order to evaluate the 

adequacy of sampling effort. We developed species accumulation curves based on species 

presence-absence matrices by using the Incidence-based Coverage Estimator (ICE). These 

analyses were performed with the software Estimates, Version 8.2.0 (Colwell 2009) with 500 

randomizations. The degree of saturation was indicated by the percentage of observed 

morpho-species relative to the estimated species richness. For plant sampling this value 

was 83% for pooled data. For arthropods completeness was 70%. 

To evaluate the effect of the amount of native forest around the cornfields on plant and 

arthropod richness and foliar herbivory, whorl worm infestation level and corn yield crop, we 

used generalized linear models. Given the natural variation between fields, we used former 

land-use of each cornfield, altitude and field perimeter-area ratio in the models as a 

covariates. We also included in the model interactions between these factors and we scaled 

all predictor variables by mean and standard deviation.  

  

We used Poisson log-link Regression to analyze discrete variables such as species 

richness. For continuous data, like crop yield and herbivory index, we used Ordinary Least 

Square Regression (OLS). For proportional data (whorl worm infestation level) we used 

logistic regression. In all cases we used stepwise forward simplification for model 

specification in order to comply with the principle of parsimony (Crawley 2003). To control 

for possible multicollinearity among predictors we calculated the Condition Number and the 

Variance Inflation Factor for OLS and Poisson Regression (Chen et al. 2003). We checked 

all model assumptions and all analyses were conducted using R software 

(R_Development_Core_Team 2008).  

 

We used structural equation modeling (SEM) to examine the direct and indirect relationships 

among the availability of native forest, perimeter-to-area ratio, plant and arthropod diversity, 

herbivory and yield (Path Analysis). SEM analysis was based on a conceptual model built 
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under the following premises:  i) native forest may enhance arthropod diversity in crops 

because they may develop larger populations in permanent habitats and then spill over onto 

crops (Klein et al. 2006, Rand et al. 2006, Tscharntke et al. 2012); ii) plant diversity within 

the cornfields may enhance crop yield through a positive effect on natural enemies which 

benefit from extra-resources (food and shelter) that non-crop plants provide to them (Gurr 

et al. 2003b, Isaacs et al. 2009, Landis et al. 2012b) and; iii)  higher herbivore abundance 

and richness may lead to higher herbivory and lower crop yield, due to the negative effects 

of herbivory on plant performance (Agrawal 1998). Former models also include control 

variables, such as the altitude, the percentage of soil organic matter  and the percentage of 

soil organic carbon.  

 

We fitted a theoretical model using the function SEM in R (R Core Team 2012) package 

lavaan (Rosseel 2012) and evaluated the adequacy of selected models by testing if there 

were no significant differences (P>0.05) between the likelihood of the model and data, via 

chi-square tests (Grace 2006). We also evaluated the explanatory power of competing 

models using the Akaike Criterion (AIC) (Burnham and Anderson 2004) by ranking 

candidate models according to ΔAIC (difference between model’s AIC and min AIC). Lower 

ΔAIC indicates higher support for a given model.  

Results 

We registered a total of 198 plant species from 29 orders and 53 families in the corn fields. 

Most of them (N= 122) were low-dominance species (61.6%) with low relative frequency and 

coverage, followed by 45 species of weeds (22.7%) and 29 species of grasses (14.6%). The 

dominant weeds, plants with the highest values of frequency and coverage in the whole 

area, were Pteridium aquilinum, Drymaria cordata, Cyperus sp., and Hedychium 

coronarium. Grasses were dominated by Brachyaria sp (Appendix 3-1). 

In regards to arthropods, we captured a total of 9043 individuals from eight orders and 116 

families. Most of them were herbivores (66.1%), followed by predators (17.4%) and 

parasitoids (14.2%). Herbivores and predators were the most diverse groups with 254 and 

152 morpho-species, respectively.  The predominant feeding guild among herbivores was 

sap-feeders (63.0%), followed by leaf- chewers (30.3%) and finally, concealed feeders 

(6.7%) (Appendix 5-2). 
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Relationships between forest cover and plant richness and cover. 

Plant richness did not correlate to changes in forest cover around on cornfields, regardless 

the group considered (Appendix 5-3). However, the coverage of weeds and low-dominance 

herbs, but not grasses, was higher in cornfields with higher proportion of forest around on 

them (Fig.5-1 a,c & e). Instead, different previous-land uses of cornfields were associated 

with changes on richness and coverage of grasses and low-dominance herbs, but not weeds 

(Fig. 5-2).  

Other environmental factors, such as soil organic matter had positive relationships with the 

cover of grasses and weeds but no effect on low-dominance herbs (Fig 5-1 b, d & f ). Soil 

organic matter was also positively related to the richness of weeds (Appendix 5-3). The 

perimeter-to-area ratio of each cornfield was related to higher cover of weed and grasses, 

but richness of species and cover of low-dominance weeds did not respond to changes in 

this factor (Appendix 5-3).  

Responses of plants to changes in altitude were highly variable, having negative 

relationships with the coverage of grasses, but positive relationships with the coverage of 

weeds and the richness of low-dominance herbs (Appendix 5-3). 
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Figure 5-1. Coverage of grasses (a &b), weeds (c & d) and low-dominance herbs (e&f) measured on 
traditional cornfields in the Colombian Andes in relation to the proportion of forest in a radius of 250m 
around each crop (a,c & e) and the percentage of organic carbon in soils (b, d & f). Lines indicate 
predicted values of regression models, and it only were plotted when the relationships were significant 
at a 95% confidence level. 
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Figure 5-2. Mean number of morpho-species (left side) and mean values of relative coverage (right 
side) of weeds, grasses and low-dominance herbs (left side) collected in tradition cornfields in the 
Colombian Andes, in relation to the previous use of the crop fields: one field previously covered by 
forest; two fields planted with other crops; two fields covered by pasture; five fields in fallow and two 
fields covered by invasive herbs. 
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Relationships between forest cover and arthropod richness and 

abundance. The richness of leaf-chewers herbivores was positively correlated with the 

percentage of forest cover (Pearson’s r = 0.58, p = 0.0463), but the rest of arthropod trophic 

groups did not respond to changes in forest cover around the crops, or to other 

environmental predictors (Appendix 5-4). Both altitude and forest cover within a radius of 

250m around each cornfield had a negative relationship with the abundance of herbivores 

and parasitoids (Fig. 5-3 a,b & e,f), but predators did not respond to changes in these factors 

(Fig. 5-3c & d, Appendix 5-4). 

The richness of plants was positively related to the richness of herbivores and predators, 

however these relationships varied among groups (Fig. 5-4). Only weed richness had a 

positive relationship with herbivore richness (Pearson’s r = 0.86, p = 0.0003, Fig. 5-4b), 

whereas low-dominance plants were positively related to richness of predator (Pearson’s r 

= 0.69, p=0.0124, Fig. 5-4c). Parasitoid family richness had lower variability among the 

cornfields and they did not respond to changes in plant richness (Fig. 5-4g-i, Appendix 5-4).  

Grass richness was positively correlated to the abundance of herbivores and natural 

enemies (Fig 5-5a, d & g). Weed richness had a positive relationship with the abundance of 

parasitoids and herbivores (Fig. 5-5 b&h), but it was unrelated to changes on predator 

abundance (Fig. 5-5e). Overall, weed richness had a negative relationship with the 

abundance of herbivores, regardless the trophic group considered (Fig. 5-5b, Appendix 5-

4). The richness of low-dominance plants had a positive relationship with the abundance of 

herbivores, but predators and parasitoids did not respond to changes in this variable (Fig. 

5-5c, f & i). 
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Figure 5-3. Abundance of herbivores (a & b), predators (c & d) and parasitoids (e & f) collected on  
traditional cornfields in the Colombian Andes in relation to the percentage of forest in a radius of 250m 
around each crop (a, c & e) and the altitude at the site of each cornfield (b, d & f). Lines indicate 
predicted values of regression models, and it only were plotted when the relationships were significant 
at a 95% confidence level.  
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Figure 5-4. Morpho-species richness of herbivores (a - c), predators (d - f), and family richness of parasitoids (g - i) collected in traditional cornfields 
in the Colombian Andes in relation to the grass richness (a, d & g), weed richness (b, e & h), and low-dominance herb richness (c, f & i) registered 
in each cornfield. Lines indicate predicted values of regression models, and it only were plotted when the relationships were significant at a 95% 
confidence level. 
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Figure 5-5. Abundance of herbivores (a - c), predators (d - f), and parasitoids (g - i) collected in 
traditional cornfields in the Colombian Andes in relation to the grass richness (a, d & g), weed richness 
(b, e & h), and low-dominance herb richness (c, f & i) registered in each cornfield. Lines indicate 
predicted values of regression models, and it only were plotted when a significant relationship 
between variables was found at a 95% confidence level. 
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Crop damage and yield. Field perimeter-to-area ratio of each field was positively 

correlated with the herbivory index in corn plants (Fig. 5-6a), the richness of leaf-chewer 

herbivores (Fig. 5-6b) and abundance of predators (Fig. 5-6d). Weed cover was positively 

correlated with foliar herbivory, but this relationship was only marginally significant (Fig. 5-

6c, Appendix 5-4).  

 

 

Figure 5-6. Herbivory Index measured in corn leaves in traditional cornfields in the Colombian Andes, 
in relation to the perimeter-to-area ratio of each field (a), the richness of leaf-chewer herbivores (b), 
the coverage of weeds (c), and the abundance of predators (d). Lines indicate model prediction 
values.  
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The richness of leaf-chewers herbivores was positively related to damage by whorl worms 

(Fig. 5-7a), whereas the richness of grasses had a negative relationship with this damage 

(Fig. 5-7b, Appendix 5-5). Neither the proportion of forest in a radius of 250m around the 

crop nor additional environmental predictors had a significant relationship with the proportion 

of corn plants affected by whorl worms. Finally, foliar herbivory had a negative relationship 

with the production of healthy grain in corn plants (R2=  0.30, F(1,10)= 5.78, p= 0.0369, Fig. 5-

8). 

 

 

 

Figure 5-7.  Proportion of corn plants damaged by whorl worms in traditional cornfields in the Colombian Andes, 
in relation to the richness of leaf-chewer herbivores (a) and the richness of grasses (b). Lines indicate model 
prediction values. 
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Figure 5-8.  Average weight of healthy grain produced per plant in relation to foliar herbivory measured 
in traditional cornfields in the Colombian Andes. Line indicates model prediction values 

 

The path analysis evaluating relationships between forest cover, weed and arthropod 

diversity, herbivory and corn yield fitted the data adequately (CFI= 0.85, RMSEA=0.25 

p=0.11, and Chi-square= 12.01, p=0.098). This analysis showed that cornfields with a more 

rich assemblage of leaf-chewer herbivores had higher foliar herbivory on corn plants, and 

this damage reduced corn yield. Weed richness did not affect production directly, but 

indirectly enhanced corn yield by increasing the abundance of natural enemies -particularly 

of parasitoids-, which in turn was negatively related to the richness of leaf-chewing 

herbivores (Fig. 5-9).  

The richness of leaf-chewer herbivores was higher in cornfields with higher proportion of 

forest around on them. Thus, forest increased foliar herbivory indirectly, which in turn 

reduced the production per plant.  Cornfields with higher edge effect due to high values of 

perimeter-to-area ratio tended to have higher herbivory, but this variable had no significant 

impact on any of the study factors (Fig. 5-9).  
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Figure 5-9. Path diagram for direct and indirect relationships among the proportion of native forest in 
a radius of 250m around each cornfield and the perimeter-to-area ratio of each crop field, the richness 
of weeds,  the abundance of natural enemies, the richness of leaf-chewing herbivores, foliar herbivory 
and corn yield. Solid lines indicate significant effects and dashed lines indicate a non-significant 

effects. .Width of each line is proportional to the strength of the relationship.  •P<0.1, *P <0.05, **P 

<0.01, ***P <0.001.  

 

Discussion 

Contrary to previous findings suggesting that natural enemies are more diverse and 

abundant in landscapes containing large amounts of natural or semi-natural habitats (Öberg 

2007, Schmidt et al. 2007, Oberg et al. 2008, Gardiner et al. 2009, Diekötter et al. 2010, 

Ekroos et al. 2010, Pluess et al. 2010, Chaplin-Kramer et al. 2011, Woltz et al. 2012) , a 

larger amount of forest around the crop fields did not enhance the abundance or richness of 

predators and parasitoids in cornfields. Even more, the abundance of parasitoids was lower 

in cornfields with higher proportion of forest around on them. In addition, forest cover 

indirectly enhanced foliar herbivory in corn plants through its positive relationships with the 

richness of leaf-chewer herbivores.  

Antagonistic interactions such as intra-guild predation has been suggested as the main 

mechanism explaining why pest control is constrained in complex landscapes. Thus, 

increasing the proportion of intraguild predator species diminish herbivore suppression 

(Finke and Denno 2005). For instance, when crops are embedded in complex landscapes, 
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e.g. with larger amounts of natural habitats,  hyper-parasitism rates may be higher (Thies et 

al. 2005), and the presence of insectivorous birds may reduce pest control performed by 

insects (Martin et al. 2013). Antagonistic interactions between predator are likely to operate 

in the studied cornfields, because they had a diverse assemblage of generalist predators, in 

which intraguild predation have been reported previously as a common phenomenon 

(Rickers et al. 2006).  

In regard to herbivores, their responses to changes in forest cover differed between trophic 

groups. Forest cover had positive relationships with the richness of leaf-chewer herbivores, 

but was negatively related to the abundance of sap-feeders. These results support evidence 

that habitat loss does not affect all species equally (Butsic et al. 2012, Tscharntke et al. 

2012). Thus, responses of organisms to landscape complexity vary among taxa and  will 

depend on habitat suitability to each species, as well as, on species characteristics such as 

feeding habit, body size, dispersion capacity and population size  (Tscharntke et al. 2005a, 

Tscharntke et al. 2005b, Fahrig et al. 2011a). Then a functional characterization of diversity 

is needed to understand how habitat loss affects pest control and other ecosystem services 

in agroecoystems. 

 

Our results contrast with previous works suggesting that parasitoids assemblages are more 

diverse and abundant in more complex landscapes (Haenke et al. 2009, Jonsson et al. 2010, 

Letourneau et al. 2012b). Given that herbivore’s feeding niche has a major influence on the 

number of primary parasitoids, as well as on hyperparasitoids (Hawkins 1994), it is possible 

that the observed negative relationships between forest cover and herbivore abundance had 

translated into a reduced abundance of parasitoids in cornfields with larger amounts of forest 

around of them. In addition, the distribution of parasitoids is also related to the availability of 

resources provided by plants in the agricultural landscape. For instance, nectar and pollen 

may enhance the longevity and fecundity of parasitoids (Tylianakis et al. 2004, Berndt and 

Wratten 2005, Lee and Heimpel 2008) and plants host herbivores that could serve as 

alternative host for parasitoids (Barberi et al. 2010). Plant diversity was high in all cornfields 

regardless the cover of forest around them, floral resources and alternative host were 

available in more transformed areas, leading to more abundant assemblages of parasitoids 

in cornfields isolated from forest. Therefore, plant diversity and host distribution directly 

influence the abundance of parasitoids in cornfields, whereas the cover of forest in the 

landscape may have an indirect influence on parasitoids by reducing the availability of 
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herbivores in adjacent cornfields.  However, a more detailed analysis of parasitoid species 

composition and behavioral ecology is needed to get insight into understanding how species 

perceive their environment, as well as in evaluating habitat suitability from the insect’s 

perspective (Fahrig et al. 2011a).  

Given that the richness of plants did not respond to changes in forest cover, our data do not 

support the expectation that landscape complexity enhanced the diversity of arable weeds 

(Roschewitz et al. 2005). However weed cover and low-dominance herbs, but not grasses 

were positively correlated to forest cover. In addition, weed and grass coverage was higher 

in smaller-size area cornfields, with high perimeter-to-area ratio and higher content of soil 

organic matter. The previous land-use of the cornfields was the most important factor 

influencing changes in the richness of low-dominance plants and grasses, as well as, in the 

coverage of all groups of plants. Overall species richness of plants was lower in cornfields 

previously covered by pastures, as well as, in cornfields previously covered by invasive 

plants. Similarly, cornfields previously covered by fallows had lower coverage of grasses 

and weeds, but higher coverage of low-dominance weeds. These results support the idea 

that weed communities are mainly affected by local conditions and crop abiotic factors, such  

soil properties, preceding crop type, fertilization, tillage and land drainage (Navas 2012). In 

addition, plant diversity in each field may reflect the composition and size of the seed bank, 

which in turn is mainly affected by field management (Franke et al. 2009). So further 

research should evaluate the expression of seed bank, as well as, the responses of arable 

weeds to management practices. 

The diversity of plants in the crop fields influenced the richness and abundance of overall 

arthropods collected in the cornfields. Weed richness enhanced pest control in traditional 

cornfields through their positive relationship with the abundance of natural enemies, 

particularly with parasitoid abundance, which in turn were related to lower richness of leaf-

chewer herbivores. In addition, the richness of grasses were related to lower incidence of 

damage inflicted by whorl worms in cornfields. These results are consistent with the 

‘enemies hypothesis’ which predicts that abundance of predator and parasitoids will be 

augmented in species-rich plant assemblages and thereby control herbivores more 

effectively (Risch 1987). Therefore, resources provided by weeds in traditional cornfields 

enhance pest control probably by increasing the fecundity and longevity of natural enemies, 

which has been previously documented (Tylianakis et al. 2004, Lee and Heimpel 2008). A 

positive relationship between the richness of low-dominance herbs and the richness of 
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predators also support this hypothesis and agree with previous work suggesting that plant 

diversity within crop reinforces the richness of natural enemies  (Altieri and Letourneau 1982, 

Gurr et al. 2003b, Isaacs et al. 2009, Barberi et al. 2010, Letourneau et al. 2011). 

 

The fact that grass richness had a negative relationship with the incidence of damage of 

whorl worms (e. g. S. frugiperda and C. decolora) in the studied cornfields, suggests that 

grass diversity may decrease crop’s susceptibility to the attack of these herbivores. This 

result is consistent with the idea of associational resistance, which propose that specific 

plant associations may decrease the likelihood of detection by, and/or vulnerability of focal 

plants to herbivores (Barbosa et al. 2009). Thus, further research in pest managemet 

strategies of whorl worms based on plant diversity and insect’s behavioral ecology (e.g. trap 

crops and  repellent plants) should focus on grass species. 

On the other hand, the richness of weeds and low-dominance herbs had a positive 

relationship with the richness of sap-feeder herbivores, but their abundance was negatively 

related to it. Unlike the richness of grasses was positively related to the abundances of both, 

leaf-chewers and  sap-feeders herbivores. These results highlight the positive role of arable 

weeds in pest control in traditional cornfields, and suggest complex mechanism involving 

associational resistance, enhancing natural enemy’s populations and possibly, more 

attractive plants to herbivores, e.g. grasses (Poveda et al. 2008, Barbosa et al. 2009, Barberi 

et al. 2010)  In addition, the richness of plants did not show a negative relationship with crop 

production. Thus the specific farmer’s knowledge about the right time of weeding in 

cornfields enhanced the benefits that arable weeds provided to corn crops. 

We observed that foliar herbivory in corn decreased the production of healthy grain per plant 

and that richness of leaf-chewing herbivores was the best predictor for this foliar herbivory. 

As foliar herbivory measured the amount of foliar area consumed by herbivores, it is 

reasonable to argue that changes in this variable were mainly explained by the richness of 

leaf-chewer herbivores and not by the species richness of sap-feeders herbivores. This 

result agree with the expectation that herbivory may reduce plant performance (Agrawal 

1998) leading to a reduction in crop yield.  

 

The path analysis confirmed the positive but indirect effect of plant diversity on crop 

production, by enhancing the abundance of natural enemies and pest control in cornfields, 
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as well as, the negative indirect effect of forest on corn yield by enhancing the richness of 

leaf-chewer herbivores and herbivory in the studied crops.  

This apparently “dis-services” of forest in pest control need to be considered with caution. 

For instance, soil organic matter is higher in cornfields closer to forest, and such conditions 

is related to higher richness and cover of arable weeds, which in turn enhanced pest control. 

Thus, the assessment of the importance of native forest for agriculture should take into 

account multiple ecosystem services in the same area (Raudsepp-Hearne et al. 2010), as 

well as, the cultural and socio-economics processes that affect their management (Swinton 

et al. 2007). Such methodological approach would give more insights into understand the 

components and processes that make traditional agriculture multifunctional and more 

sustainable (Altieri 2004, Gliessman 2007, Vandermeer 2011). Therefore, further research 

about the importance of forest in agriculture should consider their role in other ecosystem 

services, e.g.  in water provision,  preservation of soil nutrients and high content of soil 

organic matter, control erosion and flooding, provision wood and other non-timber-

resources, as well as, in conservation of  wildlife (Tilman et al. 2002, MEA 2005, Perfecto 

and Vandermeer 2008).  

To sum up, the traditional cornfields studied are a good example of sustainable agriculture, 

given that production of corn is carried out with minimum external inputs and pest regulation 

is achieved by maintaining an outstanding diversity of plants inside the cornfields. 

Management of pest and weeds are based on local knowledge, by avoiding to sown corn 

during months with higher pest pressure and by controlling weeds in critical stages of the 

crop. This crop systems resembles natural ecosystems in  different ways, such as high 

diversity, complex interactions between components, and minimum loss of nutrients. To 

improve crop yields in such system, more attention have to be paid to aspects such as field 

size and shape, in order to reduce edge effects and avoid higher press of herbivores on field 

margins.  
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6. Limited effect of diurnal and nocturnal 
vertebrate predators on pest control in maize 
crops 

 

Abstract 

Vertebrate predators can reduce the pest population in agricultural crops and their effect 

can cascade down to plants, improving yield crops. Partitioning the global impact of 

vertebrate predators into diurnal and nocturnal species, and evaluating the influence of 

forest cover on their activity may improve our understanding of mechanisms underlying top-

down controls in agro-ecosystems.  

We conducted two predator-exclusion experiments to measure  i) the differential impact of  

diurnal and nocturnal vertebrate predators in terms of herbivore damage and overall 

productivity in corn plants, and, ii)  the effect of landscape structure on the relative 

importance of vertebrate predators on pest control in maize plants. Additionally, we 

estimated the rate of consumption of cobs by vertebrates and carried out a survey with maize 

producers to document local extinction or reduction of vertebrate predator species.  

Both experiments involving predator-exclusion had the same results in which no significant 

difference was observed in herbivory or production between corn plants exposed to 

vertebrate predators and corn plants located inside enclosures. The average consumption 

of cobs by vertebrates was 5.72% ±. 4.19% with an extreme value of 45% observed in a 

cornfield with strong edge effect due to small size area. The perceptions of corn producers 

suggests that damage inflicted by vertebrate herbivores and particularly squirrels, has 

increased over the last 30 years. At the same time, producers reported that the potential 

predator vertebrates of these herbivores have been locally extinct or their abundance has 

been reduced. 

A high diverse assemblage of pest’s natural enemies in complex agroecosystems  may  

constraint pest control due to complex food webs, in which omnivory and intraguild predation 

are common. In such system, diurnal and nocturnal predators have an equally important role 

in pest control in cornfields, and an additive effect on pest-suppression in maize crops. 

Damage by granivorous vertebrates could be minimized by encouraging conservation of 
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carnivore taxa and by reducing edge effects through changes in the shape and size of the 

cornfields.  

 

Keywords. De-faunation, Herbivory, Pest Control, Predator exclusion, Traditional crops, 

Vertebrate predators, Zea mays (L).  

Introduction 

(Hairston et al. 1960) introduced the notion of predation or top-down control, as an essential 

force structuring natural communities. They stressed the importance of natural enemies in 

controlling herbivores as one mechanism to explain why the world is green. According to 

their hypothesis, the action of natural enemies keeps herbivore populations below the levels 

at which they would otherwise exhaust their food supply. Biological pest control in 

agricultural fields is based on such top-down forces. Most studies on biological control have 

focused on pest’s arthropod natural enemies like predators and parasitoids, however, 

recently a growing number of studies have evaluated the role of vertebrates in pest control. 

For instance, predation on agricultural pests by insectivorous birds reduces plant damage 

and mortality (Van Bael et al. 2008, Philpott et al. 2009, Mantyla et al. 2011)  and may reduce 

the frequency of required spraying and ultimately delaying the need for new pesticides 

(Federico et al. 2008, Kellermann et al. 2008, Johnson et al. 2010). 

 

These positive effects of organisms in higher trophic levels (e.g. insectivorous bats and birds 

or predators and parasitoids) on plants through predation of herbivores, are known as 

trophic cascades, which are common in natural ecosystems (Schmitz et al. 2000) as well as 

in agricultural ones (Halaj and Wise 2001, Mantyla et al. 2011). Most evidence for trophic 

cascades comes from predation exclusion experiments in which plants benefits from natural 

enemies (Halaj and Wise 2001, Mantyla et al. 2011). For instance, numerous experiments 

on predation exclusion in agricultural crops have demonstrated that plants outside predator 

exclosures had less damage and lower pest infestation levels (Aflegrim 1989, Greenberg et 

al. 2000, Tremblay et al. 2001, Mols and Visser 2002, Hooks et al. 2003, Kellermann et al. 

2008, Johnson et al. 2010, Xiao and Fadamiro 2010). In the majority of these studies the 

effects are attributed to birds, however, the enclosures used also restricted the entrance of 

both diurnal and nocturnal predators. Partitioning the effects of diurnal and nocturnal 

predator groups is essential for understanding the respective roles of vertebrates in 
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agricultural pest control, especially because bats are important predators of agricultural pest 

(Cleveland et al. 2006, Federico et al. 2008, Williams-Guillen et al. 2008). 

 

On the other hand, cultivated areas may attract granivorous vertebrate species that exploit 

temporal pulses of abundant resources in crops. For instance, in sorghum crops in Brazil 

the rate of grain consumption for granivorous birds was estimated in more than 30%  (de 

Melo and Cheschini 2012), whereas, birds and small mammals were responsible for 9% of 

harvest losses in cornfields in Mexico (Romero-Balderas et al. 2006). Thus, evaluating the 

role of vertebrates in tropical agroecosystems should consider their relative contribution to 

pest control, as well as, their impact on crop yields through herbivory.  

 

Finally, pest suppression in agricultural crops by vertebrates could diminish if habitat 

disturbance and fragmentation increases the mortality of bats (Kunz et al. 2011) and causes 

the disappearance of insectivorous birds (Sekercioglu et al. 2002). Predator-exclusion 

experiments and bird census in coffee agroecosystems suggest that habitat heterogeneity 

may allow primary predator to provide pest control broadly, despite localized farming 

intensity (Kellermann et al. 2008). Likewise, a forest matrix around sorghum crops had lower 

damage by granivorous birds, suggesting a positive effect of forest by providing enough 

resources for birds and by acting as barriers to “farm-land granivorous species” which prefer 

more open habitats (de Melo and Cheschini 2012). However, more research is needed to 

have more insights into understanding the impacts of agricultural intensification on 

ecosystem services and disservices (Zhang et al. 2007) provided by vertebrates in 

croplands. 

 

To evaluate the contribution of vertebrates to pest control and herbivory in croplands we 

combine an experimental and observational approach with farmer’s perception surveys 

about vertebrates’ role in traditional cornfields in the Colombian Andes. The cornfields were 

located in a gradient of forest cover, which enable us to assess changes in insect foliar 

herbivory, vertebrate damage and corn production in relation to this factor. In this context 

we formulated the following questions: i) to what extent are herbivory and production of corn 

plants affected by the exclusion of diurnal and nocturnal vertebrate predators? ii) How to 

vary herbivory and production of corn plants excluded from predators in relation to changes 
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in forest cover around each cornfield? iii) How much corn yield is affected by granivorous 

vertebrates? iv) What are farmer’s perceptions about the changes in abundance of 

vertebrate predators and about their role as herbivorous in cornfields? 

 

Firstly, we expect that excluding vertebrates predator from corn plants translates into higher 

populations of whorl worms (e.g. S. frugiperda and C. decolora), increasing foliar herbivory 

while reducing corn production in enclosed plants. Secondly, we expect a similar 

contribution of diurnal and nocturnal predators on pest control. Thirdly, we expect forest 

cover would have a positive relationship with the pest control performed by vertebrates, as 

well as lower damage of vertebrates as the cover of forest surrounding each cornfield 

increases.  

 

This study contributes to understand the differential role of birds and bats in controlling pests 

in cornfields and also allows us to understand how habitat heterogeneity affects top-down 

controls in agro-landscapes. The results can be useful for designing pest control strategies 

based on habitat manipulation and conservative biological control. 

 

Materials and methods 

Study area. Fieldwork was carried out from August 2011 to February 2012 at the 

municipality of Topaipí, Cundinamarca; a rural area located on the west slope of the Central 

Cordillera in Colombian Andes (5 23.366N, 74 18.125W). In this region, we choose twelve 

traditional cornfields each of which is at least 230m from each other. All fields had small 

areas, which varied from 591 to 5112 m2. Cornfields were embedded in a landscape sector 

of 14 km2 in an altitudinal gradient ranging from 1296 to 1550 m. 

 

The landscape in this region is a mosaic of native forest and human land-uses such as 

cultivated fields, fallows and pastures; but forest still covers more than 50% of the 

municipality (EMP Unpublished data). Annual rainfall in the region is 2525.8 mm with peaks 

in April and September, whereas average temperature was 21.3°C ranged from 19.9 to 23.3 

°C. Extensive grazing is the main source of farmers’ livelihood, but they also grow 
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marketable crops such as coffee and sugar cane. Subsistence crops included cassava, 

green banana, and corn, which are mainly grown on steep slopes close to remnants of native 

forest. However, some farmers also grow these crops in more transformed areas such as 

home gardens.   

 

Forest cover and other environmental descriptors. We registered 

geographical coordinates, altitude and area for each cornfield by using a GPS. We mapped 

the land-use types within a radius of 250 m around each cornfield, through field visits and 

inspections of aerial photographs (GSD = 27.7 cm), and then we estimated the amount of 

area covered by each-land use type using Arcview 3.2 (ESRI 2009). We classified land-use 

types in the study area as native forest, secondary growth, hedges, pastures, transitional 

crops, perennial crops, home gardens and constructions.  

 

We observed a gradient in forest cover from 0 to 62%. This variable was negatively related 

to cropped area (Pearson’s r = -0.80, p = 0.0017) and to habitat heterogeneity (r = -0.87, p 

= 0.0007), which was measured as the Shannon's Index for landscape data (Turner 1989).  

 

Experimental design. We conducted two predator exclusion experiments in order to 

evaluate the ecological effect of vertebrate predators on herbivory and production in 

traditional maize crops. In the first experiment we compared the effect of diurnal and 

nocturnal exclusion of vertebrates on herbivory and production. In the second experiment 

we took into account the effect of landscape context on the result of predator exclusion 

treatment. In both experiments mesh exclosures permitted access to arthropods but 

prevented vertebrate (birds or bats) from gleaning them off of the plants. 

Ecological effect of diurnal and nocturnal vertebrate predators on herbivory 

and production of corn plants. A randomized block design was used to evaluate 

differences in leaf and grain damage along with production between corn plants excluded 

from vertebrates and control plants totally exposed to vertebrates.  

We chose one cornfield of 3036 m2 in the study area (5°23'35, 1’’ N, 74°17'52,4'' W,  altitude:  

1273m). In this field we selected eight blocks with four plants each one. Within each block, 
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plants  were randomly assigned to the treatments and control. The treatments consisted on 

plastic net enclosures that maintained corn plants inaccessible to vertebrates. In the first 

treatment, corn plants were excluded from nocturnal vertebrate predators (N = 8). In the 

second, corn plants were inaccessible to diurnal vertebrates, and in the last treatment, corn 

plants were totally inaccessible to vertebrate (N=8). Controls for these treatments consisted 

of uncovered corn plants, in which vertebrates had free access during the entire season (N 

= 8).  

Exclosures were constructed with plastic nets 2.8m high with a mesh size of 2.5 x 3.0 cm. 

Four bamboo poles 3.4 m long, sunk 60 cm into the ground in the corner of one square of 

80 x 80 cm were used to support the net. A field assistant, from September 8th, 2011 to 

December 28th, 2012 performed the opening and closing of the exclosures personally (at 

6:00 am and 18:00 hours every day).  

We evaluated leaf damage on October 20th 2011 and January 2th 2012 following Dirzo’s 

methodology (Dirzo and Domínguez 1995a) According to this method, each leaf of the plant 

is scored on an herbivory scale from 0 to 5, with 0 being a leaf without herbivory and 5 a leaf 

with more than 50% of foliar area consumption by herbivores (Appendix S1). For each plant 

we estimated the Herbivory Index (IH) according to the following equation: 

𝐼𝐻 =
∑ 𝑛𝑖 ∗ 𝑖

𝑁
 

In this equation ni indicates the number of leaves in each category multiplied by the score i 

(0-5), an N indicates the total number of leaves evaluated.  

 

All plants were harvested on January 18th, 2012. We separated vegetative structures from 

cobs, and all material was dried in an air flow stove at 60 ˚C, over the course of a week until 

constant weight. Finally, we registered the weight of healthy grain per plant. 

Effect of landscape on biological control of maize pest provided by vertebrate 

predators. We used a factorial design to evaluate the effect of both landscape and vertebrate 

exclusion on foliar herbivory, grain damage and production of corn plants. Based on forest 

cover we classified the twelve cornfields in two groups: those fields surrounded by less than 
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35% of forest were considered the group of “agricultural context”, whereas those surrounded 

by more than 35% of forest were considered in the group of “forest context”.  

The exclusion experiment was set up in a 8m2 plot located at the center of each field. In 

each plot three plants were randomly selected and covered with mesh exclosures, whereas 

controls were randomly selected between the closer corn plants around the treated one. The 

exclosures remained closed during the entire season, since September 8th 2011 up to 

harvest time in January 18th2012.   

We compared leaf damage on October 20-24th 2011 and between January 2-8th, 2012 on 

maize plants inaccessible to vertebrate predators and controls. At the time of harvest we 

measured on each plant the healthy grain weight and the proportion of cobs with damage 

by herbivores. 

 

Assessment of cobs damage by vertebrate herbivores.  At each maize 

field we randomly chose 100 plants. On each plant we registered the proportion of cobs with 

evidence of damaged inflicted by vertebrate herbivores, which leaves a signal (scarf) easily 

recognizable by corn producers.   

De-faunation surveys. Surveys were conducted on October 6th, 2012 in a meeting 

with 68 small landholders from the study area. Each participant had planted corn on his 

farm. Before the survey, a list of vertebrate species including mammal predators, as well as, 

herbivores present in the region was made according to information provided by (Alberico 

et al. 2000). Slides of each species were shown to the landholders while we asked questions 

regarding the presence of each animal in the region and about its past (30 years ago) and 

present abundance. We also asked the participants about their perceptions of squirrel 

damage in maize crops; in particular, if they believed that the damaged has increased over 

the last three decades. 

 

Data Analysis. We conducted a permutation test in order to compare the differences in 

herbivory and production on maize plants among inaccessible plant treatments and controls. 

We used a null scenario of non-differences with 1000 simulations. We calculated P-values 

that represent the probability that observed differences between control and treated plants 
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came from the same distribution of a non-difference scenario. The same procedure was 

used to evaluate the effect of landscape complexity and vertebrate exclusion treatment on 

herbivory and production, but differences between treated plants and controls were 

evaluated separately for each landscape context. 

 

Logistic regression model was used to analyze the effects of field traits (altitude, perimeter 

area ratio and cover of forest) on the proportion of cobs with damage by vertebrates. Outliers 

and influential points were identified graphically by plotting normalized residuals squared 

against leverage (Chen et al. 2003). Points with the largest leverage and the largest residual 

square were checked before to define the model. All statistical analyses were performed 

using the statistical program R, version 2.15 (R Development Core Team 2012). 

 

Results 

Ecological effect of vertebrates predators on herbivory and 

production.  Low levels of foliar herbivory were measured in all treatments and control 

plants (Table 6-1), with an average score around two, which indicates that between 6% and 

12% of foliar area of corn plants was removed by herbivores. Nocturnal, diurnal and total 

exclosures did not increase foliar damage in maize plants, given that observed differences 

between control and treated plants came from the same distribution of a non-difference 

scenario (p>0.05).  

Production of healthy grain per plant was lower in corn plants totally excluded from 

predators, however these differences were not significantly different from control plants 

(Table 6-1, p >0.05).  

 

Effect of landscape on biological control of maize pest provided by 

vertebrate predators. Herbivory (IH) and production of healthy grain (HGW) at 

harvest time did not differ between enclosed and control plants (Fig. 6-1, p>0.05). 

Landscape did not affect biological control provided by vertebrates, although herbivory was 

slightly higher on agricultural landscapes than in forested ones (IH forest mean= 2.22±0.43 

vs. IH agricultural mean = 2.36 ± 0.37, p=0.15). Healthy grain weight did not differ between 
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control and enclosed plants neither between landscapes types (HGW agricultural mean = 

130.88 ± 124.18 g vs. HGW forest mean = 95.02 ± 72.67g).  

 

Table 6-1. Mean values ± 1 SD for healthy grain weight and damaged grain weight per maize plants in diurnal 
and nocturnal exclusion predator experiments.  

 

Treatment Herbivory index 

(IH) 

Healthy grain weight  

per plant (g) 

Control plants 2.08 ± 0.23 119.75 ± 52.23 

Diurnal exclusion 2.14 ± 0.58 128.43 ± 51.01 

Nocturnal exclusion 2.15 ± 0.45 125.06 ± 77.86 

Total exclusión 2.30 ± 0.67 84.88 ± 44.73 

 

 

 

 

 

 

Figure 6-1. Mean and confidence intervals for herbivory index, healthy grain weight per plant  and proportion of 
damaged grain per plant, comparing control plants with the treated plants in agricultural (white bars) and forest 
landscapes (gray bars). 
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Assessment of cobs damage by vertebrate herbivores. The damage 

inflicted by vertebrates to ears tended to be higher in cornfields with higher forest cover 

around  them (Fig. 6-2). Although regression models indicated significant relationships 

between vertebrate damage and forest cover, perimeter-to-area ratio of each cornfield and 

altitude, these relationships were no longer significant when an extreme value was excluded 

from the data (Fig. 6-2). 

 

 

Figure 6-2 Relationships between the incidence of damaged by vertebrates in cornfields, measured as the 
proportion of cobs with evidence of damage by vertebrates (n=100), and forest cover in a radius of 250 around 
each field  (a), and  the perimeter-to-area ratio of each field (b). 

 

Small landholders perceptions of de-faunation. Twenty species of 

mammals were identified by landholders (Table 6-2). All Carnivora taxa was reported as 

scarce now and just two species: omnivorous marsupial (Micoureus regina) and squirrels 

(Microsciurus pucheranii), were reported as being currently more abundant than 30 years 

ago. Besides mice and pigeons, five mammal species were identified as herbivores in maize 

fields: Microsciurus pucheranii, Nasuella olivacea, Coendou bicolor, Dasyprocta fuliginosa 

and Cebus albifrons malitiosus.  
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Table 6-2  Description of mammal species composition in Topaipí (Cundinamarca, Colombia), 
and small landholders’ perceptions concerning their abundance over the last 30 years. 

Orden (Family) Scientific Name Common 
name 

Perception’s 
abundance 

Carnivora (Canidae) Cerdocyon thous (Linnaeus, 1766) Fox Scarce 

Carnivora (Felidae) Leopardus tigrinus (Schreber, 
1775) 

Ocelot Scarce 

Carnivora (Canidae) Potos flavus (Schreber, 1774) Kinkajou Scarce 

Carnivora (Mustelidae) Mustela Felipei (Izor & de la Torre, 
1978) 

Otter/Weasel Scarce 

Carnivora (Procyonidae) Bassariscus sumichrasti y 
Bassaricyon gabbii (J.A. Allen, 
1876) 

 Scarce 

Carnivora (Procyonidae) Nasua nasua (Linnaeus, 1766)  Scarce 

Carnivora (Procyonidae) Nasuella olivacea (Gray, 1865) Mountain 
Coati 

Scarce 

Didelphimorphia 
(Didelphidae) 

Micoureus regina (Thomas, 1898) Woolly Mouse 
Opossum 

More 
abundant 

Phyllophaga 
(Bradypodidae- 
Megalonychidae) 

Bradypus variegates  (Schinz, 
1825) y Choloepus hoffmanni 
(Peters, 1858) 

 Scarce 

Rodentia (Dasyproctidae) Dasyprocta fuliginosa (Wagler, 
1832) 

Black Agouti Scarce 

Rodentia(Agoutidae) Agouti paca (Linnaeus, 1766) Limpet Scarce 

Cynculata (Dasypodidae) Dasypus novemcinctus (Linnaeus, 
1758) y D. septemcintus 
(Linnaeus, 1758) 

Armadillo Scarce 

Rodentia (Sciuridae) Microsciurus pucheranii (Fitzinger, 
1867)* 

Squirrel More 
abundant 

Vermilingua 
(Myrmecophagidae) 

Tamandua tetradactyla (Linnaeus, 
1758) y T. mexicana (Saussure, 
1860) 

 

Ant-eater Scarce 

Rodentia (Erethizontidae) Coendou bicolor (Tschudi, 1844) Bicolored-
spined 
porcupine 

Scarce 

Primates (Cebidae) Cebus albifrons malitiousus, 
(Humboldt 1812) 

White-fronted 
capuchine 

Scarce 
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Discussion 

Role of vertebrates in pest control. Both experiments involving predator-

exclusion had the same results in which, no significant difference was observed in herbivory 

or production between corn plants exposed to vertebrate predators and corn plants located 

inside enclosures. In the first experiment the herbivory tended to be lower in plants excluded 

from diurnal and nocturnal predators and higher on plants totally excluded from both 

predators, however these differences were not significant.  Likewise, in the second 

experiment evaluating the effect of landscape on predation-exclusion experiments herbivory 

was slightly higher on enclosed plants than in controls but differences were not significant.  

 

Our results are contrary to other predator exclusion studies conducted in other agro-

ecosystems in which enclosed plants were reported to have higher pest infestation levels 

and greater damage than control plants (Aflegrim 1989, Greenberg et al. 2000, Tremblay et 

al. 2001, Mols and Visser 2002, Hooks et al. 2003, Kellermann et al. 2008, Johnson et al. 

2010). In order to explain why vertebrate predator exclusion did not lead to either an increase 

in cob damage or crop yield in maize plants, we propose several explanations.  

 

First, it is possible that neither diurnal nor nocturnal vertebrates are effective in controlling 

the main pest typical of maize crops (S. frugiperda), as these particular larvae utilize the 

whorl as a refuge, or because the larvae, due to their small size, are not ideal sustenance 

for vertebrate predators. Larvae of S. frugiperda are usually located hidden inside the corn 

whorl, hence, they are not accessible to birds during the larvae stage of their life cycle. 

Similar findings was reported by Hooks et al. (2003) who suggested that caterpillars that 

attack Brassica crops are protected from bird predation inside the inflorescence of these 

plants, which could serve as a refuge or enemy-free space for this pest. Additionally, the 

first stage larvae of S. frugiperda measures 30 mm long and 4.5 mm wide (Angulo et al. 

2006) and therefore, they are too small for big predators like birds or bats, which prefer 

larger size prey (Greenberg et al. 2000, Mols and Visser 2002, Hooks et al. 2003). 

 



Effects of forest remnants on pest control and production in traditional cornfields 128 

 

128 
 

Our second explanation is that mortality inflicted by invertebrates could compensate for the 

absence of vertebrate predators, given that ants, wigs, spiders and predator beetles were 

able to enter the enclosures and could have eaten the eggs and larvae of insect pests. Bird 

exclusion might reinforce the predatory activity of invertebrate predators such as earwigs 

(Dermaptera: Forficulidae). Earwigs are one of the main predators of eggs and first stage 

larvae of S. frugiperda (Sueldo et al. 2010). In addition, earwigs have been noted to be one 

component in the diet of birds in forest habitats (Pinol et al. 2010).  In cornfields, this group 

of predators was always found inside the whorl corn, the same habitat as the S. frugiperda 

larvae.  Therefore, enclosures might have protected earwigs from predation from vertebrates 

and reinforced their role as consumers of eggs and first stage larvae in S. frugiperda.  

 

Other predators and parasitoid were also abundant in maize plants, specifically 

Hymenoptera parasitoids (29 families, 37% of indviduals), spiders (60 morpho species; 19% 

ofindividuals), predator diptera (3 morpho-species, 13% on individuals) and ants (47 

morpho-species, 12% of individuals) (EMP Unpublished data). The overall abundance of 

these groups of natural enemies had a negative relationship with the richness of leaf-chewer 

herbivores in the same cornfields (EMP Unpublished data). Therefore, these diverse 

assemblage of pest’s natural enemies could preyed or parasited on S. frugiperda eggs and 

larvae, reinforcing the control of this pest in maize plants inside and outside the enclosures, 

especially as they are able to capture small and concealed prey. However, the relative 

importance of invertebrate predators could be diminished by intraguild predation, but we had 

not data available to test differences in the abundance of predators or herbivores between 

covered plants and controls. 

 

A third explanation of the results from the predator exclusion experiments is that the 

abundance of S. frugiperda during the time span of the experiments was limited and it does 

not allow for the appropriate evaluation of the role of vertebrate predators. One evidence to 

support this hypothesis is that we were unable to capture male moths in our pheromone 

traps for a period of six weeks during the experiment.  In addition, it has been suggested 

that insectivorous birds and bats (Kunz et al. 2011) seek out areas of concentrated prey 

sources. Therefore, further analysis should consider temporal variation in the population of 

whorl worms in cornfields in order to establish the periods more critical for pest control, as 

well as, foraging behavior of vertebrate species. 
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Finally high habitat heterogeneity also could attenuate top-down control in the studied 

cornfields. For instance, the first experiment was carried out in a complex habitat, 

surrounded by 62% of native forest and with a great diversity of weeds inside the field (48 

species, Unpublished data). In such complex agroecosystems, the effects of top predators 

on plants are attenuated through the pass over a complex food web with higher species 

diversity and many omnivorous species and intra-guild predation (Schmitz et al. 2000). 

Although we had a gradient on forest cover in the landscape that varied from 0% to 62%, 

this gradient did not affect the richness of weeds, which was high everywhere. Thus habitat 

heterogeneity due to high richness of weeds prompted the abundance of arthropod natural 

enemies in the entire landscape (EMP Unpublished data). 

 

The results of predator exclusion experiments did not respond to changes in forest cover 

around the crops. Differences in herbivory and production of healthy grain per plant between 

control and enclosed plants behaved according to our expectation of higher damaged in 

enclosed plants, which in turn translate into lower production in enclosed plants, particularly 

in cornfields mainly surrounded by agricultural areas. Non-significant differences between 

control and enclosed plants might had occurred due to the small number of replicates used 

in this experiment.  

 

Role of vertebrates as herbivores. The average consumption of cobs by 

vertebrates was 5.72% ±. 4.19% with an extreme value of 45% observed in a cornfield with 

strong edge effect due to small size area. We also observed a trend to higher press of 

vertebrates in more forested landscapes, however it depends on other factors such as field 

size. Thus smaller fields closer to forest suffered more damage by vertebrates such as 

squirrels and other small mammals.  

 

The perceptions of corn producers suggests that damage inflicted by vertebrate herbivores 

and particularly squirrels, has increased over the last 30 years. At the same time, producers 

reported that the potential predator vertebrates of these herbivores have been locally extinct 

or their abundance has been significantly reduced in the region.  The decrease or loss of 

other predators in agricultural landscapes could explain the increase in damage inflicted by 

squirrels as reported by producers. Furthermore, this problem was more evident in crop 
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fields located next to native forests. In order to test the de-faunation hypothesis, further 

research should measure diversity and abundance of insectivorous vertebrate species.  

 

To sum up, a high diverse assemblage of  pest’s natural enemies in complex 

agroecosystems  may  constraint pest control due to complex food webs, in which omnivory 

and intraguild predation are common. In such system, diurnal and nocturnal predators have 

an equally important role in pest control in cornfields, and an additive effect on pest-

suppression in maize crops. Damage by granivorous vertebrates could be minimized by 

encouraging conservation of carnivore taxa, meanwhile, the shape and size of the cornfields 

could be designed in order to reduce granivory performed by vertebrates. 
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7. Synthesis 

 

Clearance of forest remnants in the studied crop systems had complex relationships with 

the diversity of weeds and arthropods within crops. The results clearly support the idea that 

a simple measurement of diversity, such as, species richness or abundance of species does 

not capture all this complexity. Therefore, the study of changes in diversity in relation to land-

use intensification should consider a wider notion of biodiversity, taking into account: i) 

different spatial scales ii) the interaction networks between plant and arthropods, and iii) the 

spatial distribution of species in landscape. 

Local diversity 

Alpha diversity was high for plants and arthropods in the twelve studied cornfields. The 

average plant richness per cornfield was 52 ± 14 morpho-species, average herbivore 

richness was 73 ± 16 morpho-species, average predator richness was 32 ± 8 and parasitoid 

richness was 17 ± 2 families per cornfield. High dominance of communities of plants and 

arthropods within cornfields happened regardless of whether the field was mainly 

surrounded by agricultural covers or by native forest. 

Relationship between forest cover and alpha diversity  

Classical diversity measures, such as species richness of plants and arthropods, did not 

show a significant relationship with native forest cover surrounding each cornfield. However, 

when ‘true diversities’ analysis was applied, plant species of intermediate abundance and 

abundant predators had a negative relationship with forest cover. Likewise, a functional 

classification of plants and herbivores species revealed that these groups had differential 

responses to forest cover. For example, the richness and cover of weeds and low-

dominance herbs were positively related to forest cover, while grasses did not respond to 

changes in this variable  

The richness and abundance of leaf-chewers herbivores was positively correlated with the 

percentage of forest cover, but the rest of arthropod trophic groups did not respond to 

changes in forest cover around the crops or to other environmental predictors. However, 

when a network approach was applied, and arthropods were collected directly on corn plants 
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and dominant weeds within each cornfield, a significant and positive realtionship between 

forest cover and predator richness was observed. Finally, the abundance, but not the 

richness of parasitoid families was related positively with forest cover. 

Other cornfield characteristics, such as the field’s previous land-use and the content of soil 

organic matter influenced within-field plant diversity. Particularly, a strong reduction in plant 

species richness was observed in conrfields previously dominated by one plant species and 

in those fields previously covered by pastures and other crops. When a functional 

characterization of plants was applied, the analysis revealed that negative relationships 

between field’s previous land-use and plant richness were restricted to grasses and low-

dominance herbs, but not weeds. However, weed coverage was reduced significantly in 

these cornfields. These results support the idea that local factors such as crop management 

practices and the legacy of previous land use of the cornfield may play a central role in the 

assemblage of weed communities in crops. Therefore, plant diversity in each field may 

reflect the composition and size of the seed bank, which in turn is mainly affected by field 

management (Franke et al. 2009). 

Local diversity of arthropods was higly dependent on the availability of their resources. For 

instance, herbivore richness was positively related to plant species richness, regardless the 

order of diversity considered. Nonetheless, the responses of herbivores to plant diversity 

varied between leaf-chewer and sap-feeder species. Only sap-feeder richness was 

positively related to weed and low-dominance herbs, whereas leaf chewer richness was 

related only to forest cover. 

The responses of arthropods to plant diversity varied among trophic groups and were 

dependent on plant dominance. For instance, the richness of weeds was negatively related 

to the abundance of predator but it was positively related to parasitoid abundance. Likewise, 

the abundance of herbivores was negatively related to the richness of weeds, but was 

positively related to the richness of grasses and low-dominance herbs. Therefore, a deeper 

knowledge of the trophic interaction between plants, herbivores and predators is needed to 

understand the contribution of plant diversity to pest control.  

Plant-arthropod networks  

Dominant weeds within cornfields play a central role structuring the communities of 

herbivores. Plants and arthropods within cornfields were organized in a strong modular 

structure, with plants acting as module hubs and arthropods, particularly herbivores, being 



Effects of forest remnants on pest control and production in traditional cornfields 135 

 

135 
 

peripheral nodes. High modularity in arthropod-plant interaction networks suggests that 

herbivores exhibit high specialization in host plant preferences, which was indicated by the 

lower number of average links per species (1.2 ± 0.1). 

 Forest cover in the landscape and weed richness within the cornfield influenced network 

size, as well as, the average number of links per species and modularity. Larger networks 

more connected and less compartmentalized were observed in cornfields with larger forest 

cover around them. The trend of higher modularity in more altered landscape suggests that 

herbivores may change their use of resources, focusing in lower number of species as the 

cover of forest decreases, a trend previously documented in agroecosystems (Tylianakis et 

al. 2007).  

Between field diversity  

Weed and predator assemblages had a higher turnover of species between cornfields in the 

landscape. Although each cornfield community was highly dominated by few species, 

different species dominated each cornfield. Higher values of beta diversity were observed 

among dominant plants and among rare species of predators. Furthermore, forest cover 

influenced changes in plant species composition among cornfields. The results suggest that 

the structure of weed communities depended on local factors, such as historical use of fields, 

composition of seed bank and soil characteristics, as well as, on landscape factors e.g. the 

cover of forest. 

Changes in beta diversity in weeds and arthropods were not related to geographical distance 

between cornfields. This results suggest that dispersion capacity of species has less 

importance than species interactions in structuring these communities. Only turnover of 

herbivores species responds to gradients in forest cover and gradients in plant species 

richness, which add evidence to the central role that forest cover and weed richness play in 

the organization of herbivore assemblages within the cornfields.  

Plant and arthropod meta-communities were nested, which indicates that species 

composition of cornfields holding fewer species are subsets of those fields holding more 

species. Nestedness in plants was mainly explained by altitude and content of organic 

carbon in soils, but not by forest cover. This result suggests that colonization of cornfields 

by plant species may depend more on field characteristics and crop management practices 

than on landscape configuration. Nestedness in arthropod meta-communites was explained 

mainly by gradients in forest cover surrounding the crops as well as by plant richness. This 
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finding confirms the strong bottom up controls in this agroecosystem, in which plant diversity 

prompted herbivore and natural enemy diversity.  

 

Relationships between forest cover, biodiversity and crop 

production. 

Native forest influenced ecological essential processes in corn yield. On one hand forest 

cover indirectly enhances herbivory in corn plants by maintaining more diverse assemblages 

of leaf-chewers herbivores –the main factor associated with herbivory-. On the other hand 

forest cover enhances crop yields through its positive effects on interaction networks, in 

which cornfields with diverse assemblages of predator had higher crop yields. Thus, the 

relative importance of native forest on pest control and production in traditional cornfields 

depends on the balance of those two effects. Pest control in traditional cornfields in this 

locality has been long dependent exclusively on biological pest control, and supported by 

the lower levels of whorl worms measured at field, it is likely that the positive effects of native 

forest on pest´s natural enemies overcome their negative effect through increased diversity 

of leaf-chewer herbivores. 

Classification of plants and herbivores in relevant categories for pest managements 

provided valuable insights into exploring the functional role of these groups in the 

agroecosystem. The richness of grasses may enhance pest regulation cornfields, as 

suggested by their positive relationship with the richness of leaf-chewer herbivores, but a 

negative relationship with the damage inflicted to corn plants by whorl worms (Spodoptera 

frugiperda and Copitarsia decolora). These insects are a major pest in corn crops in other 

areas, but in the study area their populations still lower across all crop season. In addition, 

a feeding preference for grasses has been reported to these species, thus it is likely that 

higher diversity of grasses within cornfields may help regulate their populations via 

associational resistance (Barbosa et al. 2009).  

Conclusion 

To sum up, weed richness had strong bottom-up control of herbivores and pest´s natural 

enemies in traditional cornfields, which in turn translate into herbivory and corn yield. In the 

studied cornfields pest control was provided by native predators and parasitoids, which in 

turn depended upon the maintenance of the diversity of weeds within crops. Forest cover 
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promoted complexity of networks of plant-arthropod in this system, in which the richness of 

predators was associated with an increased production of crops. Therefore, the 

conservation of forests in traditional crop systems is essential for biological control, 

production and biodiversity conservation. 

The traditional cornfields studied are a good example of sustainable agriculture, given that 

production of corn is carried out with minimum external inputs and pest regulation is 

achieved by maintaining an outstanding diversity of plants inside the cornfields. 

Management of pest and weeds are based on local knowledge, by avoiding to sow corn 

during months with higher pest pressure and by controlling weeds in critical stages of the 

crop. This crop system resembles natural ecosystems in different ways, such as high 

diversity, complex interactions between components, and reduced loss of nutrients 

 

Recommendations 

This work provides basic knowledge about the patterns of biodiversity in traditional 

agroecosystems, which could be useful for future research on pest management strategies 

based on native biodiversity. On one hand, our results add evidence to the hypothesis that 

plant diversity within plots is essential to support more abundant and diverse assemblages 

of pest’s natural enemies. On the other hand, our data also confirmed that a functional 

characterization of diversity is needed to gain insights into understanding how this 

vegetation diversity enhances pest control in crops. For instance, low-dominance herbs, but 

not weeds or grasses were positively associated with most diverse assemblages of 

predators.  

More detailed analysis of composition of plant-arthropod networks could provide information 

that enables us to detect native plants that shared herbivores with corn plants, as well as, 

native plants that host more abundant and diverse assemblages of predators and 

parasitoids. Such information is fundamental for biological control and to design pest 

management strategies such as trap plants (Shelton and Badenes-Perez 2006), repellent 

plant and push-pull strategies (Midega et al. 2008, Khan et al. 2011), which are based on 

specific ecological and behavioral knowledge of preference-performance of herbivores on 

their host plants (Poveda et al. 2008, Finch and Collier 2012). In such context, we 

recommend to focus on grasses to carry on experiments in preference-performance for 
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major pest in corn crops, such as S. frugiperda and C. decolora, given that the damage 

inflicted by these whorl worms to corn plants was negatively related to grass richness.  

The studied agroecosystem is highly vulnerable to habitat disturbance. Firstly, habitat 

heterogeneity induces strong turnover of species for plants and arthropods, which means 

that ecosystem functioning in this landscape depends on a diverse assemblage of 

organisms, more than in few dominant highly effective species. Second, along with pest 

control, other ecosystem services strongly depend on low-input management of cornfields.  

For instance, soil fertility, water infiltration and control of flooding are maintained by reducing 

tillage, a permanent cover of weeds and a relatively closed nutrient cycling, given that crop 

litter remain in the plot after harvest. Thus, the ecological structure of this agroecosyems, as 

well as their agronomic properties depends on the preservation of farmer’s local knowledge 

and its traditional agricultural practices. 

 

Furthermore, farmers’ perception of vertebrate diversity indicates that besides production, 

this landscape is able to preserve wild fauna through preserving remnants of native forest. 

The damaged inflicted by vertebrates in cornfields can be controlled by reducing edge 

effects. Thus the producer should avoid to grow corn in small fields (e.g. 500-1000 m2) 

mainly surrounded by forest. Moreover, environmental education programs should carry on 

to stop de-faunation of forest, promoting the conservation of small predator species, which 

in turn could enhance control of rodent species that attack cornfields. 

Further research is needed to understand how biodiversity in complex landscapes is 

maintained, besides the intensity of local management. We hypothesize that field borders, 

hedgerows, way/road borders and fallows prompted process such as dispersion and 

colonization of organism across the landscape. However, we recommend focusing on 

habitat suitability for each group of organisms, more than on the effects of classical 

landscape metrics to study the effects of habitat loss and landscape configuration on 

biodiversity. 

Finally, our results could be used by decision-makers in order to define payments for 

provision of ecosystem services to farmers who produce food in a sustainable way. We 

consider that the studied municipality fulfills all conditions for access to some system of 

ecological certification in good agronomic practices, in order to improve the income of 

farmers and to support familiar agriculture in marginal areas. Thus, agroecological research 
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with a participatory focus should be done in this area, in order to get benefits from 

biodiversity to poorest farmers and to continue preserving such diversity.  

In addition, we hope that our results help farmers to change their perceptions about forest 

in agricultural landscapes, in a way that the presence of forest in farm increases the 

commercial value of farms instead of reducing it. Thus, the conservation of remnants of 

native forest is only possible through the social acceptance of their utilitarian and non-

utilitarian value for all sectors in society. 
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Appendixes 

Appendix 3.1 Results of linear regression models for biodiversity of plants and five field characteristic measures in twelve 
traditional cornfields located in the Colombian Andes. Coefficient values of predictor variables and p-values are shown for 
significant effects, at a 90% confidence level. 

Response 
variable 

Forest cover Field 
perimeter
-to-area 
ratio 

Soil 
organic 
carbon 

Altitude Former land-use Explai
ned 
varianc
e 

Crops Pasture
s 

Fallow Biologic
al 
invasion 

Diversity of plants 
0D 

 
n.s. 

 
n.s. 

 
0.15 
P=0.07 

 
n.s. 

 
-0.43 
P= 0.04 

 
-0.47 
P= 0.04 

 
n.s. 

 
-0.69 
P= 0.0001 

 
75% 

1D -0.16 
P= 0.047 

0.29 
P= 0.002 

n.s. n.s -0.91 
P= 0.014 

-0.67 
P= 0.025 

-0.82 
P= 0.004 

-2.24 
P<0.0001 

89% 

2D n.s. 0.23 
P=0.028 

n.s. n.s. n.s. n.s. -0.86 
P=0.016 

-2.45 
P<0.0001 

92% 

 

Appendix 3.2. Results of linear regression models for biodiversity of plants and six field characteristic measures in twelve 
traditional cornfields located in the Colombian Andes. Coefficient values of predictor variables and p-values are shown for 
significant effects, at a 90% confidence level. 

Respons
e 
variable 

Forest 
cover 

Altitud
e 

Field 
perimet
er-to-
area 
ratio 

Diversity of plants S.
O.
M. 

Former land-use of the cornfield Explain
ed 
varianc
e 

0D 1D 2D Crops Pasture
s 

Fallows Biologi
cal 
invasio
n 

Herbivor
es 

            

0D n.s. n.s. n.s. n.s. 0.19 

P<0.0001 

n.s. n.s. n.s. n.s. n.s. n.s. 76.5% 

1D n.s. n..s. n.s. n.s. 0.24 

P<0.0001 

n.s. n.s. n.s. n.s. n.s. n.s. 46.0% 

2D n.s. -0.16 

P=0.064 

n.s. n.s. 0.27 

P= 0.003 

n.s. n.s. n.s n.s. n.s. n.s 49.6% 

Predators             
0D n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s.  
1D n.s.  0.19 

P=0.042 

n.s. n.s. n.s. n.s -0.98 

P=0.007 

n.s. -0.49 

P=0.08 

-1.43 

P=0.0002 

73.6% 

2D -0.314 

P=0.065 

n.s. 0.71 

P=0.011 

-0.46 

P=0.029 

n.s. n.s n.s -3.04 

P=0.0009 

-2.09 

P=0.0118 

-2.54 

P=0.0063 

-5.34 

P=0.0031 

97.3% 
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Appendix 4-1. Results of regression models analyzing relationships between networks’s metrics and environmental descriptor 

of cornfields. Values represent coefficients of each factor and asterisks indicate their significance:  *P <0.05, **P <0.01, 
***P <0.001.  

Network’s  metrics Forest cover Plant richness Altitude (m) Field size (m
2
) Variance explained 

Network-size:      

Total arthropod richness 0.100* 0.104* n.s. n.s. Null deviance= 21.45 (df=11 

Residual deviance = 10.86 (df=9) 

Herbivores richness 0.113* 0.212* n.s. n.s. Null deviance= 26.45 (df=11 

Residual deviance = 8.73 (df=9) 

Predator richness 0.211* n.s. n.s. n.s Null deviance= 28.29 (df=11 

Residual deviance = 22.54 (df=10) 

Average links per species 0.046* n.s. n..s. n.s. R
2
= 0.59, F(2,9)= 8.83** 

Standardized modularity -0.028** n.s. n.s. n.s. R
2
= 0.69, F(2,9)= 17.54** 

 

Appendix 4-2. Results of regression models analyzing relationships between herbivory, networks’s metrics and other 
environmental descriptor of cornfields.  Values represent coefficients of factors that remained significant after a forward 

simplification procedure. Asterisks indicate their significance:  *P <0.05, **P <0.01, ***P <0.001.   

Factor Coefficient 

Herbivory index -30.43* 

Predator richness 28.98 * 

Forest cover n.s. 

Adjusted R-squared:  0.5176, F-statistic: 4.934 on 3 and 8 DF,  p-value: 0.0316 

 

Appendix 4-3. Results of regression models analyzing relationships between crop yield, networks’s metrics and other 
environmental descriptor of cornfields.  Values represent coefficients of factors that remained significant after a forward 

simplification procedure. Asterisks indicate their significance:  *P <0.05, **P <0.01, ***P <0.001.   

Factor Coefficient 

Herbivore richness 3.21 **. 

Average number of links per specie plant (g) n.s. 

Overall plant richness -0.28* 

Altitude n.s. 

Adjusted R-squared:  0.6892, F-statistic: 5.878 on 5 and 6 DF,  p-value: 0.02609 
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Appendix 5-1 Composition and relative coverage of plants registered in twelve traditional cornfields in the Colombian Andes. 

Family Relative  
Coverage (%) 

 Family Relative  
Coverage (%) 

Poaceae 16.24  Cucurbitaceae 0.36 
Asteraceae 11.94  Lythraceae 0.31 
Dennstaedtiaceae 10.70  Sterculiaceae 0.29 
Cyperaceae 7.44  Oxalidaceae 0.28 
Zingiberaceae 6.39  Cecropiaceae 0.28 
Euphorbiaceae 4.92  Melastomataceae 0.27 
Balsaminaceae 3.95  Phytolaccaceae 0.27 
Araceae 3.82  Heliconiaceae 0.19 
Commelinaceae 3.50  Onagraceae 0.16 
Caryophyllaceae 3.35  Piperaceae 0.15 
Lamiaceae 3.12  Caesalpiniaceae 0.12 
Rubiaceae 2.85  Cannaceae 0.12 
Amaranthaceae 2.32  Mimosaceae 0.11 
Apiaceae 1.80  Ptridaceae 0.08 
Solanaceae 1.58  Apocynaceae 0.08 
Malvaceae 1.43  Selaginellaceae 0.08 
Urticaceae 1.36  Brassicaceae  0.07 
Vitaceae 1.24  Rosaceae 0.05 
Boraginaceae 1.21  Myrtaceae 0.05 
Convolvulaceae 1.19  Begoniaceae 0.02 
Fabaceae 1.05  Aspleniaceae 0.01 
Thelypteridaceae 1.04  Iridaceae 0.01 
Scrophulariaceae 1.02  Eriocaulaceae 0.01 
Blechnaceae 0.67  Ochnaceae 0.01 
Acanthaceae 0.64  Chenopodiaceae 0.00 
Verbenaceae 0.61  Not identified 0.81 
Menispermaceae 0.46       
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Appendix 5-2. Composition and relative abundance of herbivores, predators and parasitoids collected in twelve traditional 
cornfields in the Colombian Andes.  

HERBIVORES   PREDATORS   PARASITOIDS 

Family 
Rel. ab. 
(%)   Family 

Rel. ab.  
(%)   Family 

Rel. ab.  
(%) 

Cicadellidae 47.30  Dolichopodidae 21.08  Syrphidae 12.02 
Chrysomelidae 17.24  Formicidae 15.68  Pteromalidae 11.87 
Miridae 11.00  Araneidae 12.20  Eulophidae 6.79 
Tettigoniidae 5.46  Tetragnatidae 11.29  Scelionidae 6.71 
Acrididae 5.09  Empididae 8.38  Phoridae 5.46 
Bruchidae 2.51  Linyphiidae 3.90  Cynipidae 5.39 
Agromyzidae 1.52  Silvanidae 3.82  Figitidae 4.53 
Eumastacidae 1.32  Berytidae 3.49  Chalcididae 3.59 
Delphacidae 1.19  Reduviidae 2.74  Ichneumonidae 2.97 
Gryllidae 1.10  Theridiidae 2.49  Encyrtidae 2.73 
Largidae 0.77  Staphylinidae 2.41  Eurytomidae 2.65 
Tetrígidae 0.65  Lycosidae 2.16  Diapriidae 2.42 
Curculionidae 0.62  Thomisidae 1.91  Perilampidae 1.64 
Dictyopharidae 0.49  Salticidae 1.58  Tachinidae 1.64 
Tephritidae 0.47  Oxyopidae 1.49  Mymaridae 1.48 
Membracidae 0.45  Forficulidae 1.08  Crabronidae 1.17 
Tingidae 0.45  Vespidae 1.08  Platygastridae 1.09 
Cixiidae 0.40  Scydmaenidae 0.58  Ceraphronidae 0.94 
Anobiidae 0.33  Cantharidae 0.41  Bethylidae 0.62 
Otitidae 0.23  Coccinellidae 0.41  Eucharitidae 0.62 
Platystomatidae 0.20  Carabidae 0.25  Torymidae 0.31 
Aphididae 0.18  Pompilidae 0.25  Agaonidae 0.23 
Cercopidae 0.15  Mysmenidae  0.17  Liopteridae 0.23 
Lygaeidae 0.15  Nesticidae 0.17  Sierolomorphidae 0.23 
Cecidomyiidae 0.12  Pselaphidae 0.17  Eupelmidae 0.16 
Coreidae 0.10  Theridiosomatidae 0.17  Evaniidae 0.16 
Lonchaeidae 0.08  Anyphaenidae 0.08  Monomachidae 0.16 
Psyllidae 0.07  Asilidae 0.08  Pipunculidae 0.16 
Thyreocoridae 0.07  Cicindellidae 0.08  Proctotrupidae 0.16 
Pentatomidae 0.05  Cleridae 0.08  Tiphidae 0.16 
Elateridae 0.03  Lampyridae 0.08  Trichogrammatidae 0.16 
Fulgoridae 0.03  Sparassidae 0.08  Ormyridae 0.08 

Oedemeridae 0.03  Sphecidae 0.08    
Pyrrocoridae 0.03  Not identified 0.08    
Rhyparochromidae 0.03       
Cerambycidae 0.02       
Mordellidae 0.02       
Tenthredinidae 0.02             
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Appendix 5-3. Results of generalized linear models (Poisson regression)  with a stepwise forward simplification of  the richness 
and abundance of weeds, grasses and native plants, collected in tradition cornfields in the Colombian Andes, in relation to 
native forest cover in a 250 m radius around the crop and other environmental predictors such as altitude, perimeter-to-area 
ratio of each cornfield, percentage of soil organic carbon, as well as to the richness of weeds, grasses and native plants. 
Values correspond to coefficient of each factor in the model and p-values when the relationship was significant 

 Group 
Forest 
cover  

Field 
perimeter
-to-area 
ratio 

Soil 
organic 
carbon 
(%) 

Altitude 
(m) 

Previous use of each cornfield 

Explained variance Other 
crops 

Pasture 
Seconda
ry growth 

Invade
d fields 

 

PLANT 
RICHNESS 

Pooled data 

 

n.s. 

 

n.s 

 

0.15 

P=0.0738 

 

 
n.s. 

 

-0.43 

P=0.0423 

 

-0.47 

P=0.0471 

 

 

n.s. 

 

-0.69 

P=0.000
1 

 

Null deviance: 40.6 (11 d.f.) 

Residual deviance: 10.1 (5 
d.f.) 

Weeds n.s. n.s. 0.10 

P=0.0916 

n.s. n.s. n.s. n.s. n.s. Null deviance: 12.1 (11 d.f.) 

Residual deviance: 9.4 (10 
d.f.) 

Grasses n.s. n.s. n.s. 0.22 

P=0.1111 

n.s. n.s. -0.80 

P=0. 0399 

-0.97 

P=0.050
4 

Null deviance: 25.1 (11 d.f.) 

Residual deviance: 4.4 (6 
d.f.) 

Low-
dominance 
herbs 

n.s. n.s. n.s. 0.14 

P=0.0473 

-0.43 

P=0.0507 

n.s. n.s. -0.92 

P<0.000
1 

Null deviance: 34.3 (11 d.f.) 

Residual deviance: 8.4  (6 
d.f.) 

 
PLANT 
COVERAGE 

         

Weeds 0.05 

P<0.0001 

0.07 

P<0.0001 

0.59 

P<0.0001 

0.05 

P<0.0001 

-1.15 

P<0.0001 

-1.07 

P<0.0001 

-0.37 

P<0.0001 

-0.13 

P<0.000
1 

Null deviance: 3063.5 (11 
d.f.) 

Residual deviance: 1193.5  
(3 d.f.) 

Grasses n.s. 0.37 

P<0.0001 

0.18 

P<0.0001 

-0.04 

P=0.0199 

-1.33 

P<0.0001 

n.s. -1.79 

P<0.0001 

-0.6 

P<0.000
1 

Null deviance: 5083.1 (11 
d.f.) 

Residual deviance: 2580.3  
(4 d.f.) 

Low-
dominance 
herbs 

0.07 

P<0.0001 

n.s. -0.29 

P<0.0001 

n.s. 0.78 

P<0.0001 

0.38 

P<0.0001 

0.22 

P<0.0001 

-1.07 

P<0.000
1 

Null deviance: 1701.2 (11 
d.f.) 

Residual deviance: 317.14  
(5 d.f.) 
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Appendix 5-4. Results of generalized linear models (Poisson regression)  with a stepwise forward simplification of  the richness 
and abundance of herbivores, predator and parasitoids collected in tradition cornfields in the Colombian Andes, in relation to 
the percentage of native forest in a 250 m radius around the crop and other environmental predictors such as altitude, 
perimeter-to-area ratio of each cornfield, percentage of soil organic carbon, as well as to the richness of weeds, grasses and 
native plants. Values correspond to coefficient of each factor in the model and p-values when the relationship was significant. 

 

 Group 
Forest 
cover  

Field 
perimeter-
to-area 
ratio 

Soil organic 
carbon 

Altitude Weeds Grasses 
Low-
dominanc
e herbs 

Explained variance 

HERBIVORE 
RICHNESS 

Pooled data 

 

n.s. 

 

n.s. 

 

n.s. 

 

n.s. 

 

0.14 

P<0.0001 

 

n.s. 

 

0.07 

P=0.0562 

 

Null deviance: 37.6 (11 d.f.) 

Residual deviance: 12.5 (9 
d.f.) 

Leaf’chewer 
herbivores 

0.16 

P=0.0064 

n.s. n.s. n.s. n.s. n.s. n.s Null deviance: 22.0 (11 d.f.) 

Residual deviance: 14.5 (10 
d.f.) 

Sap feeders n.s. n.s. n.s. n.s. 0.24 

P<0.0001 

n.s. 0.09 

P=0.0556 

Null deviance: 43.5 (11 d.f.) 

Residual deviance: 8.3 (10 
d.f.) 

NATURAL ENEMY 
RICHNESS 

Predators 

 

n.s. 

 

n.s. 

 

n.s. 

 

n.s. 

 

n.s. 

 

n.s 

 

0.16 

P=0.0016 

Null deviance: 21.3 (11 d.f.) 

Residual deviance: 11.5 (10 
d.f.) 

Parasitoids n.s. n.s. n.s. n.s. n.s. n.s. n.s.  
HERBIVORE 
ABUNDANCE 

Pooled data 

 

-0.11 

P<0.0001 

 

0.36 

P<0.0001 

 

0.05 

P=0.0238 

 

-0.46 

P<0.0001 

 

-0.24 

P<0.0001 

 

0.26 

P<0.0001 

 

0.58 

P<0.0001 

 

Null deviance: 781.3 (11 d.f.) 

Residual deviance: 194.9 (4 
d.f.) 

Free-living chewers n.s. 0.21 

P<0.0001 

-0.07 

P=0.046 

-0.55 

P<0.0001 

-0.34 

P<0.0001 

0.30 

P<0.0001 

0.52 

P<0.0001 

Null deviance: 522.7 (11 d.f.) 

Residual deviance: 230.2  (5 
d.f.) 

Sap feeders -0.13 

P<0.0001 

0.44 

P<0.0001 

0.10 

P=0.0007 

-0.45 

P<0.0001 

-0.22 

P<0.0001 

0.32 

P<0.0001 

0.56 

P<0.0001 

Null deviance: 647.9   (11 d.f.) 

Residual deviance: 211.9  (4 
d.f.) 

NATURAL ENEMY 
ABUNDANCE 

Predators 

 

n.s. 

 

n.s. 

 

n.s. 

 

n.s. 

 

-0.05 

P=0.101 

 

0.16 

P<0.0001 

 

n.s. 

 

Null deviance: 57.0 (11 d.f.) 

Residual deviance: 32.6 (9 
d.f.) 

Parasitoids -0.18 

P<0.0001 

n.s. -0.25 

P<0.0001 

-0.14 

P=0.0019 

0.38 

P<0.0001 

0.25 

P<0.0001 

n.s. Null deviance: 294.9 (11 d.f.) 

Residual deviance: 72.1 (6 
d.f.) 
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Appendix 5-5. Summary of regression models with a stepwise forward simplification of foliar herbivory and crop infestation 
level by whorl worms, measured in tradition cornfields in the Colombian Andes. 

Dependent variable Independent variables Coefficient p-values Model fit 

Herbivory index Richness of leaf-chewer herbivores 2.36 0.0199 R2=0,67 
 Abundance of Predators 0.23 0.0132 F(4,7)=6.61, p=0.015 
 Perimeter-to-area ratio of each 

cornfield 
0.18 0.0373  

 Coverage of weeds 0.15 0.0638  
     
Crop infestation 
level by whorl 
worms (%) Richness of leaf-chewer herbivores 0.59 0.00041 Pseudo R2= 0.5917 
 Richness of grasses -0.53 0.0021 Phi coeff. 17.81, p=0.0367 

 


