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Abstract

Security of the infrastructure of Software Defined Net-

works (SDN) is a challenging problem. SDN introduces

new threat vectors in addition to those inherited from

legacy networks. Thus, it becomes an attractive target

for attackers. SDN separates the control and data planes,

and migrates the control functions to a logically central-

ized entity called controller which might be an attrac-

tive target for Denial-of-Service (DoS) and Distributed

Denial-of-Service (DDoS) attacks. These attacks can be

executed easily using open access tools and without re-

quiring specialized or high performance hardware. Ac-

cording to the literature, the protection of the SDN in-

frastructure, specially against this kind of threats has

not been widely addressed. Thus, we propose an al-

gorithm to detect DDoS attacks against SDN control

plane. Our algorithm considers both the OpenFlow traf-

fic towards the control plane and specific interfaces of

OpenFlow switches (local perspective detection) or the

whole agreggated OpenFlow traffic on the control chan-

nel (global perspective detection). In our evaluation, we

achieved a 99.94% of accuracy in detecting attacks with

a 0.04% of false positives and 0.07% of false negatives.



Keywords: SDN, OpenFlow, DDoS, SPRT, Control plane.
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Abstract

La seguridad de la infraestructura de las Redes Definidas

por Software (SDN por sus siglas en inglés) es un prob-

lema dif́ıcil. SDN introduce nuevos vectores de amenaza

adicionales a aquellos heredados de las redes tradicionales.

SDN se convierte entonces en un objetivo atractivo para

los atacantes. SDN separa el plano de control y el plano

de datos, y de manera que las funciones de control se mi-

gran a una entidad centralizada desde el punto de vista

lógico, llamada controlador el cual puede ser un obje-

tivo atractivo para ataques de Denegación de Servicios

(DoS) y de Denegación de Servicio Distribuidos (DDoS).

Estos ataques pueden ser ejecutados fácilmente usando

herramientas de acceso libre y sin requerir hardware es-

pecializado o de alto rendimiento. Según la literatura,

la protección de la infraestructura SDN, especialmente

contra este tipo de amenazas no ha sido abordada ampli-

amente. Proponemos un algoritmo para detectar ataques

DDoS contra el plano de control SDN. Nuestro algoritmo

considera el tráfico que pasa entre el plano de control y

las interfaces especificas de los suiches OpenFlow (per-

spectiva local de detección) y todo el tráfico OpenFlow

agregado en el canal de control (perspectiva global de de-

5



tección). En nuestra evaluación, logramos un 99.94% de

precisión en la detección de los ataques con un 0.04% de

falsos positivos (eventos que no corresponden a ataques)

y un 0.07% de falsos negativos (eventos de ataques que

fueron ignorados).

Keywords: SDN, OpenFlow, DDoS, SPRT, Plano de control.
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1 Introduction

Software-Defined Networking (SDN) is a network architecture based on three main prin-

ciples: (i) separation of control and data planes, (ii) logical centralization of the control

operations and unified view of the network state, and (iii) programmability of the network

through applications running on the control plane. The combination of these principles and

the advantages that they introduce allow to overcome difficulties typically associated to some

management tasks on legacy networks such as configuration of complex routing and security

policies [Benson et al., 2009].

SDN uses a standardized protocol to program devices, which as anecdotal evidence suggests,

it is most widely implemented by OpenFlow-compliant agents in switches [McKeown et al., 2008].

OpenFlow standardizes the communication between the control plane (controller) and the

data plane (forwarding devices). The main function of OpenFlow is to program the flow

tables of the forwarding devices according to high level network policies defined by network

operators [Xia et al., 2015]. Leveraging the principles of the SDN architecture and partic-

ularly features of OpenFlow such as the flow-oriented traffic management, novel solutions

can be developed in areas such as traffic engineering, wireless and mobility, monitoring,

datacenter networks, and security [Kreutz et al., 2015].

1.1 Motivation

A scenario where SDN can provide innovative solutions is network security. The literature re-

ports different use cases such as intrusion detection systems (IDSs) [Shanmugam et al., 2014]

[Hu et al., 2013], intrusion prevention systems (IPSs) [Giotis et al., 2014] [Xing et al., 2013],

and DDoS attack detection [Zargar and Joshi, 2013] [Li et al., 2014] [Dotcenko et al., 2014]

[Braga et al., 2010]. Despite the interest in using SDN to offer solutions in this area, the secu-

rity of the SDN infrastructure itself has not been widely addressed [Scott-Hayward et al., 2016].

The ability to control the network through software and the logical centralization of the net-

work control introduce new threat vectors and vulnerabilities causing the SDN infrastructure

to become an attractive target for attackers [Kreutz et al., 2013] [Benton et al., 2013]. The

most critical threat vectors and vulnerabilities are those that enable DDoS attacks against

the control plane because these attacks could render unavailable large segments or even the

entire network [Yan et al., 2015] [Benton et al., 2013].
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1.2 Hypothesis and research questions

DDoS attacks against SDN control plane are difficult to detect using traditional DDoS de-

fense mechanisms because these attacks have some specific features [Dong et al., 2016]. First,

it is difficult to detect malicious flows using OpenFlow devices. The OpenFlow devices do

not have intelligence to differenciate flows because they only have forwarding functionalities.

Second, the traffic of DDoS attacks is directed to the SDN control plane. These attacks have

a similar behavior to the one exhibited by reflection-based flooding attacks. These features

make the problem DDoS attack detection in the context of SDN hard [Zargar et al., 2013]. In

addition, DoS or DDoS attacks against the control plane, specifically against the controller,

might be executed by an attacker using easily accessible tools and they do not require spe-

cialized or high performance hardware [Kandoi and Antikainen, 2015] [Shin and Gu, 2013].

The literature addresses the problem of detect DDoS attacks against SDN control plane.

However, previous proposed methods have some limitations. First, the detection methods

could not detect attacks using low rate traffic. Second, detection and mitigation proposals

are not capable to detect DDoS attacks based on protocols different to TCP.

1.2 Hypothesis and research questions

In the context of detection of DDoS attacks against SDN control plane, this thesis presents

the following hypothesis:

Hypothesis: It is possible to detect DDoS attacks against the SDN control plane through the

extraction of OpenFlow traffic features by monitoring the traffic between the controller

and OpenFlow switches, in order to detect the attack and if possible, identify the

interfaces where the DDoS attacks come from.

In order to guide the investigation conducted in this thesis, the following research questions

(RQ) associated with the hypothesis are defined and presented:

RQ1: What are the threat vectors and vulnerabilities of the control plane designs that might

be exploited by an attacker to execute DDoS attacks?

RQ2: What is the impact that well-known DoS and DDoS attacks in the context of legacy

networks generate when executed in a network environment based on SDN?

RQ3: Which network anomaly detection techniques can be used in the context of SDN to

detect attacks aiming at achieving the premises of high accuracy, low false positives

rate and minimal overhead during the detection process?

At the end of this study, at least one possible answer for each question is provided. However,

this does not mean that different approaches could not accomplish similar results.
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1.3 Proposal

1.3 Proposal

During the development of this thesis, we propose an approach to detect DDoS attacks

against the control plane of SDN. We leverage the logically centralized control to monitor

the OpenFlow traffic looking for abrupt changes in the number of Packet-In messages in

comparison to the number of these messages during normal operation of the network.

Our approach tries to identify the sources of a DDoS attack against SDN control plane.

To achieve this, we monitor the OpenFlow traffic coming from each interface of OpenFlow

devices (local perspective detection). In addition, we complement the per-interface and per-

switch analysis through the monitoring of the aggregated OpenFlow traffic of the control

communication channel (global detection perspective). Furthermore, if local perspective

detection does not detect attacks coming from specific interfaces of the OpenFlow switches

(because the attacker uses low rate traffic), global perspective detection tries to detect low

rate attacks monitoring the OpenFlow traffic of all OpenFlow switches.

1.4 Objectives

1.4.1 General

Design an algorithm to detect DDoS attacks against the SDN control plane by monitoring

the traffic between controller and OpenFlow switches in OpenFlow-based SDN environment,

and if possible identify the interfaces of OpenFlow switches where the DDoS attacks come

from.

1.4.2 Specific

1. Identify specific threat vectors and vulnerabilities of state-of-art control plane designs

that might be target of DDoS attacks.

2. Analyze the impact that well-known DoS and DDoS attacks (reported in the literature

in the context of legacy networks) generate in the SDN control plane.

3. Determine a set of network intrusion detection techniques to perform attack detection,

applicable in the context of SDN and that aim at achieving the premises of high

accuracy, low false positives rate and mininal overhead during the detection process.

4. Specify an algorithm that implements detection of DDoS attacks against SDN control

plane by monitoring OpenFlow traffic in switches interfaces (local perspective detec-

tion) and the aggregated of OpenFlow traffic in the communication channel (global

perspective detection).
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1.5 Organization

1.5 Organization

This thesis is outlined as follows: Chapter 2 presents the fundamentals of our work: Software-

Defined networks (SDN), Distributed Denial-of-Service (DDoS) attack, and threat vectors

and vulnerabilities in SDN. Chapter 3 shows the related-work, research problem, threat

vectors and vulnerabilities in the SDN control plane, analysis of well-known attacks, and

analysis of anomaly detection techniques. Chapter 4 describe the DDoS detection algorithm.

Chapter 5 present the evaluation and results of the thesis. Finally, Chapter 6 provides a

discussion about the results, conclusions and future work.
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2 Background

This chapter presents the fundamental concepts used in our work. This chapter is divided

into three sections: Software-defined networks (SDN), Distributed Denial-of-Service (DDoS)

attacks, threat vectors and vulnerabilities in SDN.

2.1 Software-Defined Networks (SDN)

The main motivation for SDN is to accelerate innovation. In legacy networks, the control and

data planes are tighly coupled. As a consequence, the development of new functionality or

network features such as new routing algorithms is a very difficult task. These new function-

alities imply the modification of the control plane devices through the installation of firmware

or even new hardware. The deployment of new functionalities becomes expensive and it is

limited by hardware features. In addition, every change in the network topology, configu-

ration or functionality is very complex and tedious [Kreutz et al., 2015] [Benson et al., 2009].

Software-Defined Networking (SDN) is a network architecture where network control is de-

coupled from forwarding functionality. SDN is based on three main principles [Kreutz et al., 2015]:

1. Separation of the control and data planes: Control functionality is removed from

the forwarding devices. Thus, they become simple packet forwarding elements with

minimal intelligence embedded within them.

2. Logically centralized control providing a unified view of the topology and

network state to applications: Control logic is migrated to an entity called con-

troller which provides resources and abstractions to facilitate the configuration of the

forwarding devices.

3. Programmability of the network through applications running on the con-

troller: The network becomes programmable through software applications which can

be developed with either general-purpose languages such as Java, Python, and C++

or specific-purpose languages such as Frenetic, Nelttle, Netcore, Procera, and Pyretic.

These SDN principles introduce three fundamental abstractions: Forwarding abstraction,

distribution abstraction, and specification abstraction. Forwarding abstraction enables the

ability to program the forwarding devices, expressing the desired packet forwarding func-

tionality while hiding hardware implementation details. Distribution abstraction changes
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2.1 Software-Defined Networks (SDN)

Figure 2-1: Basic Architecture of SDN [Kreutz et al., 2015]

the network distributed control problem to a centralized one. Finally, specification abstrac-

tion makes it for network applications to express the desired network behavior without being

responsible of their actual implementation in the forwarding devices [Xia et al., 2015].

Compared with legacy networks, SDN architecture has several advantages [Reitblatt et al., 2012]:

1. It is easier to develop network applications due to the offered abstractions (forwarding,

distribution, and specification).

2. Network applications can implement consistent and effective network policies leverag-

ing the logically centralized control (control plane).

3. Network applications use the logical centralization of network control and the unified

view of the network to dynamically change the configuration of the forwarding devices.

4. The logical centralization of the network control and the unified view of the network

state simplify the information sharing among applications. Thus, each application can

leverage information provided by other applications to improve its operation.

2.1.1 Basic Architecture

SDN architecture is shown in Figure 2-1. The SDN architecture is composed by the following

elements:

1. Management plane: The management plane is the set of applications that levarages

the functions offered by the northbound interface and the control plane. The man-
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2.1 Software-Defined Networks (SDN)

Figure 2-2: Basic architecture of an OpenFlow device [McKeown et al., 2008]

agement plane defines the network policies and remotely monitors and configures the

control functionalities using control stations.

2. Control plane: The control logic operation of the network resides in the control

plane. The control plane translates the high level network policies defined by the

network applications and programs the forwarding devices according to these policies.

In addition, the control plane provides a unified view of the network state to network

applications running on it. The communication between network applications and the

control plane is performed through the northbound interface. This interface abstracts

to the developers the configuration steps necessary to program the forwarding devices

[Kreutz et al., 2015].

3. Data plane: Forwarding devices and the connection between them compose the data

plane. The data plane elements are programmed by the control plane through the

southbound interface. The most common implementation of SDN southbound interface

is the OpenFlow protocol [Xia et al., 2015].

2.1.2 OpenFlow

OpenFlow is the protocol used by the control plane to program the forwarding devices.

Since OpenFlow has gained significant traction in the industry and academic, with no clear
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2.1 Software-Defined Networks (SDN)

Figure 2-3: Flow table of an OpenFlow device.

competitor as is informally known, we focus on OpenFlow-based SDN architectures in the

remainder of this work.

An OpenFlow device is an element that performs packet forwarding according to the con-

figuration defined from the control plane. Figure 2-2 shows the basic architecture of an

OpenFlow device.

An OpenFlow forwarding device consists of at least three parts [Xia et al., 2015]:

1. The flow table with matching fields, actions and counters. Figure 2-3 shows an example

of a flow table in an OpenFlow device.

2. The bidirectional communication channel with the controller. In the downstream di-

rection (controller to devices), it is used to send messages to program the flow table

of the devices. In the upstream direction (devices to controller), it is used by the for-

warding devices to request configurations from the controller and reporting statistics

or network state changes.

3. The OpenFlow protocol that standardizes the communication between control and

data planes.

An OpenFlow device can operate in reactive or proactive mode [Benton et al., 2013]. The

reactive mode consists in requesting configuration information to the controller whenever

a packet does not match any entry on the flow table. Network applications such as in-

trusion detection systems (IDS) and network monitoring usually operate in reactive mode

[Shirali-Shahreza and Ganjali, 2013]. The reactive mode operation is described as follows

[Yan et al., 2015] [Kandoi and Antikainen, 2015]:

1. Whenever a packet is received, the switch looks up for any matching flow rule. A flow

rule can be defined as a combination of matching fields.

2. If a match is found, then the action specified in the matching flow rule entry is per-

formed. Also, the statistics (counters) of the entry are updated. In case several rules

might match the packet, a priority value assigned to the rule is used to determine

which rule to apply. If several rules have the same priority, the first match is applied.

9



2.1 Software-Defined Networks (SDN)

Figure 2-4: Out-of-band (left) and in-band (right) communication design

[Kandoi and Antikainen, 2015].

3. If the packet does not match any of the rules in the flow table, then the OpenFlow

device generates a Packet-In message. A Packet-In message is an OpenFlow message

containing the header or the entire packet. Next, the encapsulated packet is sent to

the controller so that it decides what to do with the packet.

4. The controller processes the Packet-In message. When the processing is finished, the

controller may discard the packet or may generate a FlowMod message which is sent

back to the OpenFlow device. The FlowMod message contains the packet and the

configuration information to program the flow table in the OpenFlow device. Thus,

the OpenFlow device will not need to generate further Packet-In messages for pacekts

of the same flow, which will match this newly configured flow entry. An exception to

this condition would be the case where the flow rule action is actually generating a

Packet-In message.

In contrast, the proactive mode consists in programming in advance a set of rules in the

OpenFlow devices according to the patterns of traffic that are expected or considered as

usual in the network operation.

Finally, the design of the communication channel between the controller and OpenFlow

devices can be in-band or out-of-band [Kandoi and Antikainen, 2015]. In in-band design,

the communication is performed across the same network infrastructure. It implies that

communication between controller and OpenFlow devices must be ensured somehow. In out-

of-band communication, there is a dedicated infrastructure for the communication between

the controller and the OpenFlow devices. This dedicated infrastructure might consist of

separated switching and routing hardware additional to the user network infrastructure.

Figure 2-4 shows the out-of-band and in-band communication designs.
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2.2 Distributed Denial-of-Service (DoS) attack

2.2 Distributed Denial-of-Service (DoS) attack

Despite many efforts, the magnitude and frequency of DDoS attacks has grown drastically

in the last years [Zhang et al., 2016] [Wueest, 2014]. Therefore, they have become a critical

threat to the security of different networks.

A Denial of service (DoS) attack tries to disrupt the availability of network resources to legit-

imate users. If the attack is originated from multiples sources, it is called Distributed Denial

of Service (DDoS) attack. DDoS attacks can be launched by two methods [Yan et al., 2015]:

1. By sending malformed or corrupt packets trying to induce crashes, race conditions or

unexpected behaviors in software modules implementing protocols or network services.

Considering that these modules usually run within the operating system kernel or with

privileged permission, the attacks migh have catastrophical consequences.

2. By disrupting the connectivity. In these attacks, high volumes of valid packets are sent

aiming at exhausting resources of switches, routers and servers such as bandwidth,

sockets, CPU and memory.

DDoS attack execution usually follows a DDoS attack strategy with the following typical

steps [Zargar et al., 2013]: selection, compromise, communication and attack execution. In

the selection step, the attacker identifies hosts that can be incorporated to the attack infras-

tructure as agents. An agent is a host that has a given vulnerability that can be exploited

by the attacker in order to gain access to it. Usually, the user of the host that becomes an

agent is not aware of this fact. In the compromise step, the attacker actually exploits the

identified vulnerabilities and installs malicious code in the agents. This malicious code is

usually composed by backdoors that enable the remote control of the host and the actual

programs that perform the DDoS attack. In the communication step, the attacker configures

different parameters of the attack code. This configuration is performed via handlers. These

are hosts that communicate with the agents using well-known protocols such as TCP, UDP,

ICMP or even application protocols such as IRC or HTTP in order to coordinate the agents

to launch the attack. Finally, in the execution step, the attack is actually performed. The

attacker uses the handlers to trigger the attack execution from the agents.

2.2.1 Classification of DDoS attacks

DDoS attacks have been classified using different criteria. Some exhaustive and complete tax-

onomies can be found in the literature [Yan et al., 2015] [Zargar et al., 2013] [Peng et al., 2007]

[Mirkovic and Reiher, 2004] [Douligeris and Mitrokotsa, 2004]. We review the taxonomies

and conclude that the most common classification criteria are victim type and protocol level

.
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2.2 Distributed Denial-of-Service (DoS) attack

2.2.1.1 Classification by victim type

According to the victim type criteria, DDoS attacks can be classified into three categories:

application, host, and network [Yan et al., 2015] [Peng et al., 2007].

1. Application: They aim at exploiting vulnerabilities in software and/or specific ver-

sions of operating systems and even hardware platforms.

2. Host: In this case, the target is a particular host. Therefore, all the services running

on the host become affected. These attacks usually target network connectivity or in

some cases power resources.

3. Network: These attacks aim at isolating large segments or even the entire network by

targetting elements providing interconnection such as router interfaces or trunk links

of switches. They typically require high volumes of traffic.

2.2.1.2 Classification by protocol level

According to the protocol level criteria, DDoS attacks can be classified into two categories:

Network/Transport-level and Application-level [Mirkovic and Reiher, 2004].

Network/transport-level

These DDoS attacks are launched using network/transport protocols such as TCP, UDP and

ICMP. Network/transport-level attacks can be classified into four sub-categories [Zargar et al., 2013]:

1. Flooding attacks: The attackers try to disrupt the connectivity of the legitimate

users of the network. The disruption is made by exhausting the bandwidth of the links

connected to the victim target sending a high volume of traffic based on TCP, UDP

or ICMP protocols. Examples of these attacks are spoofed and non-spoofed UDP flood,

ICMP flood, and TCP SYN flood (Neptune) [Peng et al., 2007] [Douligeris and Mitrokotsa, 2004].

2. Protocol exploitation attacks: The attackers exploit features and operations of

the standard implementation of transport and network protocols which might lead to

unexpected situations and/or excessive consumption and exhaustion of CPU or mem-

ory resources. Examples of these attacks are TCP SYN-ACK flood, TCP PUSH-ACK

flood, and TCP RST/FIN flood [Peng et al., 2007] [Douligeris and Mitrokotsa, 2004].

3. Reflection/Amplification-based attacks: These attacks leverage on request/response

protocols which are characterized by small requests and large response messages.

In these attacks, agents send a request to a server with a spoofed source address.

This spoofed address corresponds to the attack target. By performing this action,

the responses from the servers (typically larger than the requests) are directed to-

wards the victim (indicated by the spoofed source address). The servers involved in
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these attacks are known as reflectors. Examples of these attacks are Smurf, Fraggle,

NTP-based attacks, TCP-based attacks and DNS-based attacks [Kührer et al., 2014b]

[Peng et al., 2007].

4. Malformed packet attacks: The attackers send packets with malformed headers to

the victim target trying to confuse some protocol implementations. These packets in-

duce excessive resource consumption in the victim system due to the attempts to parse

the malformations in the packets. Some examples of this category are IP fragmentation

attack and TCP Kamikaze segments [Douligeris and Mitrokotsa, 2004].

Application-level

Attackers flood with application level protocols the victim server with a few packets that con-

sume a lot of processing resources (CPU, memory and database capabilities) on the victim

services. Connectionless protocols such as DNS, SNMP, VoIP and connection-oriented proto-

cols such as FTP, HTTP, SSH and Telnet are used to launch these attacks [Kührer et al., 2014b]

[Kührer et al., 2014a]. Examples of these attacks are session flooding attacks, request flood-

ing attacks, asymmetric attacks and repeated one-shot attacks [Ranjan et al., 2009] [Ranjan et al., 2006].

Anomaly detection techniques have been used to detect and mitigate network/transport-level

and application-level DDoS attacks in computer networks. Anomaly detection techniques

create a model of the normal traffic behavior and then this model is compared with the cur-

rent network state to detect DDoS attacks [Yan et al., 2015]. Anomaly detection techniques

can be used in the context of SDN to protect the control plane.

2.2.2 Anomaly detection and DDoS attacks

Anomaly detection addresses the problem of identifying patterns in data that do not conform

to some expected behavior. These non-conforming patterns are commonly called anomalies

or outliers [Bhuyan et al., 2014]. There are many application domains for anomaly detec-

tion. Some examples are fraud detection, health care, intrusion detection for cyber-security,

and fault detection in critical systems. In order to assure the correct operation of sys-

tems, detection of anomalies or outliers is important because anomalies or outliers might

be symptom of malfuctions or situations that need to be addressed as soon as possible

[Chandola et al., 2009]. For example, an anomalous traffic pattern in a computer network

could be a symptom of intrusions or attacks.

Network intrusion detection (NID) refers to the application of anomaly detection (AD) in

computer networks to find intrusions or attacks [Chandola et al., 2009]. NID refers to de-

tection of malicious activity in computer networks. AD techniques are applicable in NID

because the behavior of the network under attack presents noticeable differences with the
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behavior in normal conditions [Bhuyan et al., 2014].

NID is based on features extracted from network traffic measurements or system call traces.

In order to apply anomaly based network intrusion detection, two things are assumed

[Gogoi et al., 2011]:

1. Most of the traffic corresponds to the normal operation of the network and only a small

portion of the traffic represents malicious activities.

2. The patterns of the malicious traffic are very different to those that can be observed

in normal traffic.

However, in general these assumptions might not be true in real world scenarios. For example,

when a network is under an intense DDoS attack, the anomalous traffic is actually more

frequent than the normal traffic [Zargar et al., 2013].

2.2.2.1 Types of anomaly detection techniques

NID techniques are classified into three main categories: statistical, machine learning, and

data mining techniques.

1. Statistical: Statistical techniques fit a statistical model for normal behavior to the

given network data and then apply a statistical inference or decision boundary to

determine if an unseen instance belongs to the normal traffic. Instances that have a

low probability to be generated from the statistical model are considered anomalies.

This approach designates an anomaly score to unseen instances and then the score is

compared using a statistical test or a predefined threshold to determine whether the

unseen instance is anomalous or not [Ahmed et al., 2016] [Patcha and Park, 2007].

2. Machine learning: Machine learning techniques improve the ability to distinguish

normal behavior from anomalies using a learning process. These techniques construct a

function that maps instances to defined classes. To achieve this goal, machine learning

mapping functions use labeled training data sets, where each instance in the train-

ing data set is labeled with one known class. Machine learning techniques consist

of two phases: training and testing. In the training phase, the normal traffic pat-

terns are defined. In the testing phase, the learnt model is applied to new network

instances, and every instance in the testing set is classified as normal or anomalous.

Machine learning techniques can be divided into classification and clustering techniques

[Buczak and Guven, 2015].

The anomaly detection techniques described above can be applied to the context of network

intrusion detection. An important feature of anomaly detection techniques is the degree

of human intervention in the training and operation on the systems developed using these
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techniques. In the context of network intrusion detection, the systems developed using

anomaly detection are usually classified in supervised, semi-supervised and unsupervised

[Chandola et al., 2009].

1. Supervised: They require a traning process consisting in feeding to the system data

sets that indicate if instances in the data sets are normal or intrusions. In the training

process, the parameters that control the detection are adjusted by a human operator.

NID techniques use training data sets that contain labeled observations for normal

and intrusion or attacks classes. Network observations are compared with the normal

model to determine if observations belong to normal or intrusion/attack classes.

2. Semi-Supervised: They require a partial training process where a data set indicating

the normal behavior is fed to the system. They tend to be more applicable but they

might be also less accurate. These techniques are more applicable than supervised

operation because they do not require labelled intrusions and attacks classes.

3. Unsupervised: These systems do not require a previous training. They adjust their

control parameters by themselves according to observation of the data and inferences

or predictions that are built. These predictions and inferences rely on the assumption

that normal behavior is more frequent than normal behavior. If this assumption is not

true, network intrusion detection techniques might suffer of high false positive rate.

2.3 Threat vectors and vulnerabilities in SDN

The security of SDN by itself has not been widely addressed [Scott-Hayward et al., 2016].

SDN separates the network into three layers: application layer, control layer, and infrastruc-

ture layer. Since SDN separates the network into layers, each layer can be vulnerable to

DDoS attacks [Kandoi and Antikainen, 2015] [Kreutz et al., 2013].

According to the targets in the SDN architecture, DDoS attacks against SDN are divided

into three categories: DDoS attacks against application layer, DDoS attacks against control

layer and DDoS attacks against infrastructure layer [Yan et al., 2015].

1. DDoS attacks against application layer: The DDoS attacks against application

layers are directed to network applications and northbound interfaces. DDoS attacks

against network applications and northbound interfaces can affect the normal behavior

of the network. For example, a malicious network application can force a behavior on

the flow rules in the flow table on forwarding devices to deny all the network traffic.

2. DDoS attacks against control layer: Despite the fact that the centralization of

the controller is logical rather than physical, it could be seen as a single point of fail-

ure. DDoS attacks against control layer can be directed to the controller, northbound
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Table 2-1: Summarization of previous work in threat vectors and vulnerabilities in SDN.

Authors Year Short description

Kandoi and Antikainen 2015 Possible DoS attacks against SDN and their

impact

Duner and Kellerer 2015 TLS could be exploited by attackers to

execute DDoS attacks against SDN due to

the costs of encryption and decryption

Hommes et al. 2014 Implications of DDoS attacks against SDN

environment and their impact

Benton et al. 2013 Overview of the vulnerabilities that can be

exploited to trigger DoS attacks

Kloti et al. 2013 Security analysis of the OpenFlow protocol

Kreutz et al. 2013 Several threat vectors and vulnerabilities in

the SDN/OpenFlow networks

Shin and Gu 2013 Scanner which launches fingerprinting

attacks against SDN networks

Fonseca et al. 2012 DDoS attack against SDN based on the

generation of packets with random IP

sources

interfaces, and southbound interfaces. A successful DDoS attack against control layer,

specially against the controller could disrupt the connectivity of the entire network.

3. DDoS attacks against infrastructure layer: DDoS attacks against infrastructure

layer are directed towards switches and southbound interfaces. The main idea of these

attacks is overwhelming the flow table capabilities of forwarding devices, and/or ex-

hausting the available bandwidth of the control channel. The final effect of this action

is hindering or totally disrupting the operation of the forwarding devices.

Some recent works explore the threat vectors and vulnerabilities of SDN. The literature

shows that SDN control plane is vulnerable to DDoS attacks. Table 2-1 summarizes the

previous work in threat vectors and vulnerabilities in SDN.

Kandoi and Antikainen [Kandoi and Antikainen, 2015] discuss two possible DoS attacks

against SDN networks and analyze the impact of these attacks. They show the relation-

ship between timeouts and bandwidth necessary for an attacker to execute a successful DoS

attack. They also discuss the necessity of prevention and mitigation strategies to overcome

these attacks.
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Duner and Kellerer [Durner and Kellerer, 2015] explore the current adoption of TLS in the

SDN/OpenFlow architecture and present measurements that show the cost of TLS encryp-

tion. They study the delay aspects and impact of TLS encryption in controllers and switches.

The results show that encryption has a severe impact on control plane performance due to

the high resource consumption that it might generate. Therefore, it might be exploited in

order to induce DoS attacks.

Hommes et al. [Hommes et al., 2014] show the implications of DDoS attacks against SDN

environments and analyze their impact. They conclude that DoS attacks might affect the

performance of controller and data plane devices. They propose a DDoS detection method

using information theory measurements to analyze the variations in the logical topology.

Benton et al. [Benton et al., 2013] provide an overview of the vulnerabilities that can be

exploited to trigger DoS attacks. They show how the vulnerabilities that present DoS risks

to SDN. They present that the reactive mode operation could be exploited by attackers to

launch a Denial-of-Service (DoS) attacks against SDN platforms.

Kloti et al. [Kloti et al., 2013] present a security analysis of the OpenFlow protocol. They

discover vulnerabilities where the attacker sends new flows to generate Packet-In messages

directed to the controller. This could lead to Denial-of-Service (DoS) attacks and Infor-

mation Disclousure. In addition, they elaborate recommendations to prevent and mitigate

these vulnerabilities.

Kreutz et al. [Kreutz et al., 2013] present several threats identified in the SDN/OpenFlow

networks. They identify seven main threat vectors that affect SDN and propose mechanisms

to overcome possible attacks and build a secure and dependable SDN control platform. They

show that DoS attacks against the SDN control plane have critical consequences in the SDN

infraestructure.

Shin and Gu [Shin and Gu, 2013] introduce a fingerprinting attack against SDN networks.

They develop a scanner that generates new flows and measures the delays in order to detect

whether a network uses SDN architecture. In addition, they show how this scanner could be

used to execute DDoS attacks against SDN architecture.

Fonseca et al. [Fonseca et al., 2012] show a DDoS attack against SDN. This attack is based

on the generation of packets with random IP sources from distributed compromised hosts.

The high volume of traffic processed by the controller leads to a non-responsive state where

the forwarding devices can not communicate with the control plane, which cause the Open-

Flow switch not to forward traffic.
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techniques

In this chapter we describe the research problem and relevant techniques considered in the

development of the tesis. We present the state-of-the-art, research problem and the develop-

ment of specific objectives. We divide the chapter into five sections: Related-work, research

problem, threat vectors and vulnerabilities in SDN control plane, analysis of well-known

attacks, and analysis of anomaly detection techniques.

3.1 Related-work

We make a review of the state-of-the-art looking for DDoS detection methods and other

proposals to address the problem of DDoS attacks against the SDN control plane. The

literature reports some recent works in detection and mitigation of DDoS attacks against

the SDN control plane. We separate the related-work into two categories: DDoS control

plane attack detection and other approaches.

3.1.1 DDoS control plane attack detection

Some recent works show DDoS detection methods to detect and mitigate DDoS attacks

against the SDN control plane:

Dong et al. [Dong et al., 2016] present a detection method for DDoS attacks against SDN

controller. They inject vast number of flows with few packets (low-traffic flows). The detec-

tion method is designed to locate the compromised interfaces where malicious attackers are

connected. In addition, they show lists of DDoS attacks presented in traditional network

that could generate DDoS attacks against SDN controller.

Mousavi et al. [Mousavi and St-Hilaire, 2015] propose an early detection method of DDoS

attacks against SDN controllers. The method compares the variations of the entropy of the

destination IP addresses of the flows. This measurement determines if the rate of new flows

are directed to the same destination.
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Ashraf et al. [Ashraf and Latif, 2014] study and suggest the use of machine learning tech-

niques to mitigate intrusion and attacks in SDN with OpenFlow protocol. The proposal

presents a comparison of the machine learning techniques which can be applicable to achieve

high detection rate with their pros and cons. They conclude that machine learning techniques

can be used in the context of intrusion detection.

3.1.2 Other approaches

Some recent work show other approaches used to address the detection and mitigation of

DDoS attacks against the SDN control plane.

Mohammadi et al. [Mohammadi et al., 2017] propose a countermeasure to mitigate TCP

SYN flooding attacks in SDN. Their proposal takes advantage of dynamic programmability

nature of SDN to detect and prevent control plane saturation attacks. However, DDoS at-

tacks against the SDN control plane are possible using protocols different to TCP.

Wang et al. [Wang et al., 2015] propose a protocol-independent defense framework for SDN

networks to migitage data-to-control plane saturation attacks. Their proposal uses proac-

tive flow rule analyzer that derives proactive flow rules by reasoning the runtime logic of the

SDN controller and its applications, and a packet migration module that caches the flooding

packets and submits them to the controller using rate limit.

Shin et al. [Shin et al., 2013] propose an extension to OpenFlow data plane which reduces

the amount of data-to-control plane interactions that arise during control plane saturation

attacks. The authors addresses control plane saturation attacks based on TCP protocols.

However, SDN control plane is still vulnerable to DDoS attacks based on protocols different

to TCP.

3.1.3 Discussion

The literature shows some research works in the discovery of threat vectors and vulnerabil-

ities in SDN environments. DDoS attacks against SDN networks, specially directed to the

control plane have severe impact in the performance of the controller and forwarding devices.

These attacks are easy to execute and do not need specialized high performance devices.

We find that some DDoS detection methods have been proposed to overcome these issues.

Ashraf et al. [Ashraf and Latif, 2014] suggest machine learning techniques to detect and

mitigate attacks against SDN infrastructure such as DDoS attacks. However, training and

testing process is difficult due to the lack of datasets with labeled attacks against SDN.

Mousavi et al. [Mousavi and St-Hilaire, 2015] propose a method for early detection based on
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the entropy of the destination IP address. They assume that there exists a difference between

the distributions of destination IP under DDoS attacks and normal conditions. However,

an attacker can generate a high number of new flows with their destination IP evenly dis-

tributed and still overloads the SDN control plane. Finally, Dong et al. [Dong et al., 2016]

propose a DDoS detection method based on SPRT to detect a compromised interface during

DDoS attacks against the controllers. It assumes that only flows with few packets (low-

traffic flows) can overload the SDN control plane. However, their proposed method cannot

identify attacks where those attacks are executed using low rate traffic, bypassing the de-

tection and overloading the SDN control plane. In other approaches, the authors propose

extensions and frameworks to OpenFlow control and data planes to detect and mitigate

DDoS attacks against the SDN control plane. However, the proposals address DDoS attacks

based on TCP protocols. Table 3-1 shows an overview of the related-work and their analysis.

However, the related-work addresses the problem with the following limitations:

1. The DDoS detection methods could be bypassed by the attackers using multiples

sources using low rate traffic.

2. The proposed mitigation methods detect DDoS attacks based on TCP protocols. An

attacker can use protocols different to TCP to execute DDoS attacks against the SDN

control plane.

Now, we need to achieve a detection of DDoS attacks against the SDN control plane ex-

tracting OpenFlow traffic features in order to detect attacks and if possible, identify the

interfaces where the attacks come from. We need to identify specific vulnerabilities in con-

trol plane design, analyze the impact of these attacks, determine network intrusion detection

techniques applicable in the SDN context to detect the attacks and specify an algorithm for

the detection process.

Our DDoS detection algorithm detects DDoS attacks against the SDN control plane based

on abrupt changes in the number of Packet-In messages in a defined period of time. This as-

sumption eliminates the limitation of flow-traffic flows made by Dong et al. [Dong et al., 2016]

because our detection algorithm processes Packet-In mesages comming from all OpenFlow

switches to the controller. In addition, our detection algorithm tries to locate the source

of the DDoS attack identifying the interfaces on OpenFlow switches that generate abrupt

changes in the number of Packet-In messages generated (local perspective detection). If the

algorithm does not detect the interfaces of OpenFlow switches due to the low generation rate

of Packet-In messages, our algorithm processes the aggregated OpenFlow traffic to detect

attacks with low generation traffic rate.
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Table 3-1: Overview of related-work in DDoS attack detection against the SDN control

plane.

Authors Year Short description Analysis

Mohammadi et

al.

2017 A countermeasure to

mitigate TCP SYN

flooding attacks in SDN

The solution focusses on

detecting TCP SYN

flooding attacks. Other

attacks are not addressed

Dong et al. 2016 A detection method based

on SPRT for DDoS attacks

against SDN controllers

The method does not

detect attacks based on low

rate traffic

Mousavi et al. 2015 An early detection method

based on entropy for DDoS

attacks against SDN

controllers

The entropy measurement

could be bypassed using

multiple sources with

similar traffic rate

Wang et al. 2015 A lightweight and

protocol-independent

defense framework against

data-to-control plane

saturation attacks

Data plane cache is still

vulnerable to DDoS

resource consumption

attacks

Ashraf et al. 2014 An study of machine

learning techniques to

mitigate intrusions and

attacks in SDN with

OpenFlow protocol

The training of machine

learning techniques could

be complex in comparison

to other techniques

Shin et al. 2013 An extension to the

OpenFlow data plane

which reduces

data-to-control plane

interactions

The solution does not

address DDoS attacks using

protocols different to TCP
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3.1.4 Contribution and Scope

Our contribution is a DDoS detection method which:

1. Addresses DDoS attacks using low rate traffic by monitoring the whole aggregated

OpenFlow traffic in the control communication channel.

2. Detects the attacks independent to the protocol used by attackers.

3. Tries to identify where the DDoS attacks come from.

The following items delimit the scope of our proposal:

1. We consider OpenFlow as the SDN implementation architecture. Different implemen-

tations and realizations of SDN architecture will not be considered.

2. We will address the detection of Network/transport-level DDoS flooding attacks. We

do not address application-level or other kinds of DDoS attacks against the SDN control

plane.

3. We consider the attacks which target the controllers. Attacks against northbound and

southbound interfaces are out of the scope.

4. We consider the attacks which affect controller capabilities. Flow tables capabilities

are out of the scope of the tesis.

3.2 Research problem

In this section we present the problem statement, threat model, and attack traffic analysis.

3.2.1 Problem statement

Successful DDoS attacks against the SDN control plane, specially against the controller,

could render unavailable a large segment or even the entire network [Yan et al., 2015] [Benton et al., 2013].

These attacks have some specific features that make difficult their detection using traditional

DDoS defense mechanisms [Dong et al., 2016]:

1. It is difficult for OpenFlow devices to detect DDoS traffic, specially if the attacker

compromises multiple user subnets using low traffic rate attacks.

2. It is difficult to differentiate DDoS traffic and bursty non-malicious traffic.

3. These attacks have a similar behavior of reflection-based flooding attacks, so that the

DDoS traffic is not directed to the control plane.
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Figure 3-1: Threat model [Dong et al., 2016].

4. DoS and DDoS attacks against the SDN control plane might be executed using easily

accessible tools. In addition, these attacks do not require specialized or high perfor-

mance hardware.

Anomaly detection techniques could be applied in the context of network intrusion to protect

the SDN infraestructure against DoS and DDoS attacks [Ashraf and Latif, 2014]. However,

the properties of DDoS attacks against the SDN control plane make difficult or even impos-

sible the development of universal detection mechanism to detect all possible variations of

these attacks. Furthermore, the selection of anomaly techniques in the context of network

intrusion depends on the scenerio where they will be used. Thus, choosing network intrusion

detection techniques is not a straightforward task [Yan et al., 2015] [Bhuyan et al., 2014]

[Zargar et al., 2013].

3.2.2 Threat model

Figure 3-1 shows the threat model. We employ the same threat model used by Dong. et al.

[Dong et al., 2016]. In the basic threat model, the SDN network has a controller, OpenFlow

switches and user subnets. OpenFlow switches are connected to the controller. OpenFlow

devices are connected between them. We assume that the attacker takes control of one or

more hosts inside user subnets. We also assume that the SDN network is working in reactive

mode.

During the DDoS attack, we further assume that DDoS attacks can be originated from any
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user subnet connected to any OpenFlow switch. In addition, the attacker can generate new

flows using the compromised hosts in the user subnets. Considering that the network is

operating in reactive mode, when a large number of new flows are created by the attacking

hosts, the OpenFlow switches will generate high volume of Packet-In messages towards the

controller. Thus, the purpose of the attack is to overload the SDN controller to render it

unavailable. This will cause that the OpenFlow switches can not forward traffic coming from

the non-compromised hosts in the network.

Dong et al. [Dong et al., 2016] made the assumption that only flows with few packets (low-

traffic flows) can be used to launch DDoS attack against SDN control plane. The premise

says that the attacker can not execute a effective DDoS attack against SDN control plane if

he does not use low-traffic flows. However, it is not difficult to attackers to generate high-

traffic flows and damage the SDN control plane. In addition, Dong et al. [Dong et al., 2016]

develop their DDoS detection method to find the compromised interface of OpenFlow devices

where the attacks comes from. However, it is possible that the attacker executes a DDoS

attack using multiple compromised hosts generating a low rate of new flows to overload the

controller. We extend the method proposed by Dong et al. [Dong et al., 2016] with the

analysis of the aggregated OpenFlow traffic in the communication channel trying to detect

DDoS attacks against the SDN control plane when DDoS attacks are generated using low

traffic rate.

3.2.3 Attack traffic analysis

The attacker has to discover the conditions that generate new configuration requirements in

the flow table in OpenFlow devices (Packet-In events). Then, the attacker sends packets with

random headers using the agents to generate new flows matching the new flow generation

condition. Next, the OpenFlow switch encapsulates every packet and sends a Packet-In

message to the controller. We observe that the features of a DDoS attack against SDN

control plane (the controller) are the following:

• The attacker uses the compromised hosts in user subnets to generate new flows.

• Due to the reactive mode operation, OpenFlow devices encapsulate the packet in a

Packet-In message and sent it to the controller.

• The controller receives a high volume of Packet-In messages in a short period of time.

We find that the main feature of the attack is the generation of Packet-In messages in a

short period of time. Then, we suspect to find DDoS attacks when the network presents

abrupt changes in the number of Packet-In message in short periods of time. Figure 3-2

shows an example of the DDoS attack behavior. The red box in the figure represents the

moment when network traffic could be a symptom of a suspicious behavior such as a DDoS

executed by an attacker.
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Figure 3-2: Suspicious behavior of the network traffic.

3.3 Threat vectors and vulnerabilities in the SDN control

plane

The following corresponds to the development of the specific objective 1. SDN has two

properties which makes attractive to attackers. In this section, we analyze the threat vec-

tors and vulnerabilities of the SDN infraestructure. We analyze the vulnerabilities in the

control plane that could lead to a successful DDoS attack against SDN control plane.

The Figure 3-3 shows the threat vectors and vulnerabilities of SDN. Kreutz et al. [Kreutz et al., 2013]

present seven threat vectors and vulnerabilities of SDN environments: faked traffic flows

(threat vector 1), exploitation of vulnerabilities on switches (threat vector 2), attacks against

control-data plane communications (threat vector 3), exploitation of vulnerabilities on con-

trollers (threat vector 4), lack of mechanisms to ensure trust between the controller and

management applications (threat vector 5), attacks to administrative stations and vulnera-

bilities presented on them (threat vector 6), and lack of trusted resources for forensics and

remediation (threat vector 7).

We find that faked traffic flows (threat vector 1), exploitation of vulnerabilities on switches

(threat vector 2), exploitation of vulnerabilities on controllers (threat vector 4) and attacks

to administrative stations and vulnerabilities present on them (threat vector 6) might be

doors for DDoS attacks against the SDN control plane. These threat vectors are described

as follows:

1. Faked traffic flows (threat vector 1): Faked traffic flows are flows where packets

are created, modified or altered by spoofing one or more headers. The generation of
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Figure 3-3: SDN theat vector map [Kreutz et al., 2013].

these flows can be used to attack control and data planes targeting the flow tables

of OpenFlow switches and controller resources. The attacker could trigger this threat

using compromised devices such as switches, servers or personal computers. Authenti-

cation mechanisms and TLS communications could help to mitigate the problem where

only legitimate users could generate flows. However, if an attacker compromises legiti-

mate users hosts, the threat continues. In addition, authentication mechanisms or TLS

communications can generate an additional cost in the SDN infraestructure worsening

the impact of the attacks [Durner and Kellerer, 2015].

2. Exploitation of vulnerabilities on switches (threat vector 2): An attacker that

takes control of OpenFlow switches in SDN infraestructure can use them to drop, clone,

inject or slow down packets in the network. If an attacker exploits vulnerabilities in

the switches and takes control of them, it is possible to make DDoS attacks against the

SDN control plane injecting high volume of Packet-In messages towards the controller.

3. Exploitation of vulnerabilities on controllers (threat vector 4): A faulty or

malicious controller could compromise the entire network. If an attacker compromises

the controller, he can potentially do anything it pleases in the network.

4. Attacks to administrative stations and vulnerabilities present on them (threat

vector 6): The administrative stations are an exploitable target in the network. If

an attacker takes control of administrative stations and these stations control elements

such as switches and controllers, he can make malicious actions on the entire network

such as DoS and DDoS attacks shutting down the control and data plane elements.
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Threat vectors 4 and 6 can be used to shutdown the control plane of the network. How-

ever, an attacker can not easily take control of the controller and administrative stations

in the SDN infraestructure because these devices are usually isolated or have been heavily

hardened due to the importance of these elements in the network. Threat vectors 1 and 2

can be exploited to generate high volume of Packet-In messages directed to the controller.

However, if the attacker want to use the threat vector 2 to compromise the controller, he

needs to exploit vulnerabilities on switches to take the control of them. Then, the attacker

can generate high volume of Packet-In messages and overload the control plane. An attacker

can prefer to use the threat vector 1 because taking control of hosts in the network might be

easier than compromising forwarding devices. Threat vector 1 permits an attacker to execute

easily DDoS attacks against the SDN control plane. In addition, the attacker can generate

easily faked packets using the compromised hosts in the network using easily accessible tools.

SDN becomes attractive to attackers due to logical centralization of the control operations

in the controller [Kloti et al., 2013]. The controller can be seen as a single point of failure in

the network. Despite this notion of single point of failure could be mitigated with physically

distributed control plane, each instance might be target of an attack and depending on how

the distribution is implemented, the DDoS attacks migh still affect the network depending

on the operation mode of OpenFlow switches.

An OpenFlow switch can operate in proactive or reactive mode [Benton et al., 2013]. In this

mode, the controller has to process the Packet-In messages and then send back to the switch

the configuration of flow rules in response to these Packet-In messages. OpenFlow switches

which operate in reactive mode might be vulnerable to DDoS attacks [Kandoi and Antikainen, 2015].

If an attacker floods the control plane with faked traffic flows at a high rate and the flooded

flows requests arrive at the controller, and they will consume resources such as CPU, mem-

ory and bandwidth [Zhang et al., 2016]. If the control plane does not have any protection,

the resources of the controller might be exhausted and the controller might crash. When

the controller crashes, forwarding devices can not manage new flows and the connectivity

becomes unavailable to legitimate users.

Most of DDoS attacks against the SDN control plane have severe impact in networks using

reactive mode operation. An attacker can easily overload the control plane if the network

operates in reactive mode. Networks using proactive mode operations do not have the same

exposure to DDoS attacks unless explicit flow rules force to encapsulate and send Packet-In

messages to the controller [Benton et al., 2013].
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3.4 Analysis of well-known attacks

The following corresponds to the development of the specific objective 2. We analyze the at-

tacks presented in 1999 DARPA Intrusion Detection Evaluation Data sets [Laboratory, 1999].

We use these data sets because they are widely used in intrusion detection evaluation and

contain about 56 types of attacks and 201 attack instances. Throughout our analysis, the

packets with the same four-tuple (source IP, source port, destination IP, and destination

port), were considered to belong to the same flow. In addition, each packet using network

protocol such as ICMP packets (that do not have source IP and destination IP) is considered

as an individual flow.

In this section, we analyze how the attacks that are present on the data sets might impact

the SDN control plane when they are executed in the context of SDN.

DoS attacks in legacy networks

We analyze the DDoS attacks in the data set and find that the following well-known DDoS

attacks can be used for an attacker to execute DDoS attacks against the SDN control plane.

The DDoS attacks are: Neptune and Smurf [Dong et al., 2016] [Laboratory, 1999].

1. Neptune: This is a SYN flood attack directed to one or more ports in the victim

hosts. A SYN flood attack is a form of DoS attack in which an attacker sends high

number of SYN requests to a victim host. The attacker attempts to consume server

resources to make the system unresponsive to legitimate traffic. Neptune attacks can

generate high volume of flows in a short perior of time. Neptune attacks can generate

high volume of flows in a short period of time, overloading controller.

2. Smurf: This is a DDoS attack in which large numbers of ICMP requests with the

spoofed source IP of the victim and a broadcast address as a destination IP are sent to

a network. Most devices on the network send responses to the source IP address sent

in the ICMP request. High number of ICMP responses flood the victim hosts. This

attack generates high number of flows in a short period of time.

Probe attacks in legacy networks

We analize the Probe attacks in the data set and find that the following well-known probes

attacks presented in legacy networks can be used for an attacker to execute DDoS at-

tacks against the SDN control plane. The probes attacks are: Portsweep and Ipsweep

[Dong et al., 2016] [Laboratory, 1999].

1. Portsweep: The attacker scans many ports of a computer system to determine which

services are supported by the system. An attacker can use multiples sources to scan

many ports of one or more hosts of a network, generating a high number of new flows.
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2. Ipsweep: The attacker sends an ICMP request to all hosts of a network to determine

which hosts are alive in the network. If the attacker targets a network with many hosts

and launches a ipsweep, he can generate high number of flows.

DDoS attacks against the SDN control plane

An attacker could use the generation of faked packets in short periods of time to execute a

resource consumption attack of the control plane. If an attacker knows how to generate flows

that do not match the flow rules in the flow table of OpenFlow switches, the attacker can use

this condition and send many packets with random headers to create new flow rules. These

packets will be reported to the control plane as Packet-In messages. The processing of high

volume of Packet-In messages consumes a lot of resources and can overload the controller.

The attacker can infer the condition that he will use to generate new flow traffic using a

SDN fingerprinting attack against SDN environments [Shin and Gu, 2013].

If the attacker knows the condition, he can use it to generate high volume of new flows

that are directed to the controller as a Packet-In messages and make the unavailable the

connectivity of the user subnets.

In conclusion, SDN attacks against the SDN control plane have severe impact in the SDN

infraestructure. The controller can crash due to the high resource consumption produced by

high volume of Packet-In messages processed, causing a disruption of the network connectiv-

ity as OpenFlow switches can no longer forward traffic. The attacker can employ well-known

attacks presented in the legacy networks such as Neptune, Smurf, Portsweep and Ipsweep

to execute DDoS attacks against the SDN control plane. These attacks can generate high

volume of new flows and can be executed using easily accesible tools.

3.5 Analysis of anomaly detection techniques

The following corresponds to the development of the specific objective 3. We need to

choose an anomaly detection technique to be used in our DDoS detection algorithm to

detect DDoS attacks against the SDN control plane. We select the anomaly detection tech-

niques aiming at premises of high accuracy, low false positive rate and minimal overhead

that literature used in the context of SDN [Dong et al., 2016] [Mousavi and St-Hilaire, 2015]

[Ashraf and Latif, 2014] [Xing et al., 2013]. We describe the following anomaly detection

techniques: Sequential Probability Ratio Test (SPRT), entropy, Support Vector Machine

(SVM) and Rules based.
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Sequential Probability Ratio Test (SPRT)

Sequential Probability Ratio Test (SPRT) is a statistical method to detect anomalies in com-

puter networks. SPRT is a sequential hypothesis that tests a sequential data to determine

if the observations belong to normal or anomalous classes. SPRT minimizes the number of

successive observations needed to take a decision: accept or reject the null hypothesis.

We consider a simple hypothesis as follows:

{
H0 : normal

H1 : anomalous

We can make two types of errors: false positives and false negatives defined as α and β,

respectively. We can see α and β as follows:

{
α = P (deciding for H1whenH0 is true)

β = P (deciding for H0whenH1 is true)

The next step is calculated the accumulative sum defined as:

Si = Si−1 + log

(
P (xi|H0)

P (xi|H1)

)
where xi corresponds to the current observation.

The idea behind the sequential testing gets an observation xi one at a time and calculates

the function Si to take a decision according to the stopping rule:


A < Sn < B : collectmore observations and repeat the process

Sn ≥ B : acceptH1 and stop the hypothesis test

Sn ≤ A : acceptH0 and stop the hypothesis test

The values of A and B depend on the values of α and β and should be defined as [Wald, 1973]:

{
A = ln

(
β

1−α

)
B = ln

(
1−β
α

)
Dong et al. [Dong et al., 2016] use SPRT to detect novel DDoS attacks against the SDN

control plane. They compare SPRT and entropy and conclude that SPRT can achieve better

results according to the measures of accuracy, false positive rate and false negative rate in

comparison with entropy solutions.
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Entropy

Entropy is a statistical method to detect anomalies in a traffic data. Entropy measures the

randomness in a network. The higher the randomness, the higher is the entropy and vice

versa.

Let define W as a set of data x1, x2, ..., xn where n corresponds to the number of observations

of the variable x. The probability of xi happening in W is:

Pi =
xi
n

Now, we measure the entropy, referred to as H (x), with the formula:

H (x) = −
n∑
i

(Pi ∗ log (Pi))

If all the elements have the same probabilities, the value of the entropy is the maximum.

If an element appears more than others, the entropy will be lower. Then, a classification

function is defined to normal and anomalous classes as:

f (H (x)) =

{
anomalous, H (x) < threshold

normal, Otherwise

Mousavi et al. [Mousavi and St-Hilaire, 2015] use entropy of the destination IP addresses

to detect DDoS attacks against SDN controllers. If the entropy is low, then a DDoS attack

against SDN controller was executed. However, a widely distributed DDoS attack can lead

to a maximum entropy and bypass the detection.

Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised machine learning technique widely used in

the context of network intrusion detection. SVM built a model constructing a hyperplane

in a high-dimensional space which is used to classify network observations into normal or

anomalous classes. The hyperplane separates the normal and anomalous using the largest

distance to the nearest training data points between normal and anomalous classes. The

distance between the hyper plane that separates the anomaly and normal classes and the

closes network data points is maximized and is called the margin. Figure 3-4 shows a sim-

ple example of a SVM classifier using a linear hyperplane. Since, linear hyperplane is not

applicable to all possible training data, the hyperplane is defined by a kernel function. The
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Figure 3-4: Simple example of SVM classifier [Ashraf and Latif, 2014].

kernel function takes the nearest training data points and creates a function that separates

the classes. SVM is considering one of the fastest machines learning techniques and usually

performs better than other classification techniques.

Ashraf et al. [Ashraf and Latif, 2014] suggest the use of SVM to detect and mitigate attacks

against SDN infrastructure because in the context of intrusion detection has shown accuracy

results in legacy networks.

SVMs have the advantages that in the context of intrusion detection report attacks with

an accuracy of around 98%. However, SVMs need a training dataset with labelled normal

and anomalous classes. In addition, the improper distribution of the training network traffic

data could lead to low accuracy and high false positive rate.

Rule-based approach

Rule-based approach is one of the most widely used machine learning techniques to detect

anomalies in computer networks. Rule-based approach has associated a knowledge base

that contains the rules that describe the normal and anomalous classes, and rule engine that

matches rules against the current state of the network traffic. Depending on the results of the
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matching, one or more rules can be evaluated and finally reach into normal or anomalous

classes. A rule is described as a relationship between different attributes of a network

observation. For example, we have an observation with the attributes X and Y. We can

define a rule as follows:

IF (X isA) AND (Y isB) THEN (ANOMALOUS TRAFFIC)

Xing et al. [Xing et al., 2013] uses Snort and OpenFlow to detect and mitigate attacks in

the network. Snort is a popular open source rule-based IDS that matches each observed

packets against a set of rules. Thus, Snort rules idenfity attacks based on headers such as

Ip address, TCP or UDP port numbers, and ICMP headers.

The selected anomaly detection techniques shows high accuracy, low false positive rate,

low false positive rate and mininal overhead during the detection process. However, we

choose to use of SPRT as our DDoS detection due to comparable results with the others

anomaly detection algorithm, but the implementation of the technique is easier than the

other techniques. In addition, SPRT has beed used in the context of SDN with good results

[Dong et al., 2016].
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4 Solution description

In this chapter we describe our proposed solution. We present the research problem and

the results of each specific objective. We divide the chapter into five sections: Research

problem, threat vectors and vulnerabilities in SDN control plane, analysis of well-known

attacks, analysis of anomaly detection techniques, and detection of DDoS attacks against

SDN control plane.

4.1 Detection of DDoS attacks against SDN control plane

The following corresponds to the development of the specific objective 4. In this section,

we present the detection function based on SPRT, we introduce the notion of local perspec-

tive and global perspective detection functions, and finally we define our DDoS detection

algorithm.

4.1.1 Detection function based on SPRT

In this section, we describe the detection function used in our detection algorithm. The de-

tection function is based on the proposed detection method by Dong et al. [Dong et al., 2016]

using SPRT. Let define the variable Xt as the number of Packet-In messages in the interval

∆t.

We define a function f (Xt) as:

f (Xt) =

{
1, if Xt ≥ Xmax

0, otherwise
(4-1)

Where:

Xmax is a threshold for the variable Xt

Now, we consider the following hypothesis test:

{
H1 : network under attack

H0 : network under normal conditions
(4-2)
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In reality, the detection function can make two types of errors: false positives and false neg-

atives. False positives correspond to the acceptance of H1 when H0 is true. False negatives

correspond to the acceptance of H0 when H1 is true. To avoid these two errors, α and β are

defined as the probabilities of false positives and false negatives, respectively. The error rate

for false positive and false negative should not exceed α and β.

Next, We define a function Sn n = 1, 2, · · · , n as the evaluation the values f1, f2, ..., fn.

Then, the function Sn evaluates:

Sn = ln

(
P [f1, f2, · · · , fn | H1]

P [f1, f2, · · · , fn | H0]

)
(4-3)

Each observation of the variable Xt does not depend on the previous observations and has

the same distribution. Then, we assume that each value of the function f is independent

and identically distributed, and then we have:

Sn = ln

(
n∏
i

P [fi | H1]

P [fi | H0]

)
=

n∑
i

ln

(
P [fi | H1]

P [fi | H0]

)
(4-4)

where:

{
P [fi | H0] 6= {0, 1}
P [fi | H1] 6= {0, 1}

Let define:

P (f (Xt) = 1 | H1) = 1− P (f (Xt) = 0 | H1) = λ1 (4-5)

P (f (Xt) = 1 | H0) = 1− P (f (Xt) = 0 | H0) = λ0 (4-6)

where λ1 > λ0 because is more probably that high number of Packet-In messages are injected

in a network under attack than under normal conditions. We find a limitation in the values

of λ1 and λ0. The detection function works if the values of λ1 and λ0 are different to {0,1}.
However, these values of these parameters are unrealistic. If we put a value of λ1=1, this

means that in a network under attack, the number of flows in a period of time will be always

high. If we put a value of λ1=0, this means that an attacker can generate DDoS attacks

against SDN control plane without the generation of high number of Packet-In messages in

a short period of time, attacks such as Portsweep, Smurf and Neptune can generate high

number of Packet-In messages in short periods of time. Furthermore, if we put a value

of λ0=1, this means that a network during normal conditions always has high volume of
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Packet-In messages. Finally, if we put a value of λ0=0, this means that a network during

normal conditions never has high volume of Packet-In messages, but bursty nonmalicious

traffic could exists.

According to the equations (4-1) (4-3) (4-4) we get:

Sn (Xt) =

Sn−1 + ln
(
P (f(Xt)=1|H1)
P (f(Xt)=1|H0)

)
, if Xt ≥ Xmax

Sn−1 + ln
(
P (f(Xt)=0|H1)
P (f(Xt)=0|H0)

)
, otherwise

(4-7)

According to the equations (4-5) (4-6) (4-7) we get:

Sn (Xt) =

{
Sn−1 + lnλ1

λ0
, if Xt ≥ Xmax

Sn−1 + ln1−λ1
1−λ0 , otherwise

(4-8)

Where S0 = 0.

The values of A and B depend on the values of α and β and should be defined as [Wald, 1973]:

{
A = ln

(
β

1−α

)
B = ln

(
1−β
α

)
where the value of α and β is choosen between the inverval (0, 1). The recommended values

of α and β are between 0 and 0.05 [Dong et al., 2016].

Now, we define the detection function based on the equation (4-8) to test wheter the network

is under attack and under normal conditions. The detection function is a simple thresholding

scheme given as follows:

Dn =


A < Sn < B : indicate that needmore observations tomake a decision (return − 1)

Sn ≥ B : acceptH1 and reset to the initial values of the detection function (return 1)

Sn ≤ A : acceptH0 and reset to the initial values of the detection function (return 0)

(4-9)

4.1.2 Local perspective and global perspective detection functions

We separate the functionality of our algorithm in two perspectives: local perspective detec-

tion and global perspective detection. Local perspective detection analyzes the OpenFlow
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traffic passing through specific interfaces in OpenFlow switches. Local perspective detec-

tion evaluates the detection function defined above for every interface of OpenFlow switches

connected to user subnets. This perspective tries to identify where DDoS attacks come

from. Global perspective detection tries to detect DDoS attacks when local perspective

detection could not report detection of DDoS attacks. This situation could happen when

the attacker launch a DDoS attack using low flow rate. Global perspective evaluates the

detection function, taking the number of the aggregated Packet-In messages in the entire

control communication channel.

For local detection perspective, we define the variables Xs,i
t as the number of Packet-In

messages in 4t passing through the interface i of the OpenFlow switch s, and Xs,i
max as the

threshold for the function f. For global detection perspective, we define the variable XG
t as

the number of the aggregated Packet-In messages during 4t in the control communication

channel, and the XG
max as the threshold for the function f . In local perspective detection, we

define the functions f s,in and Ss,in as the functions f
(
Xs,i
t , X

s,i
max

)
and Sn

(
Xs,i
t , X

s,i
max

)
. In global

perspective detection, we define the functions fGn and SGn as the functions f
(
XG
t , X

G
max

)
and

Sn
(
XG
t , X

G
max

)
.

Now, the detection function for local perspective detection corresponds to the evaluation of

the function Dn using the functions f s,in and Ss,in . Global perspective detection evaluates the

function Dn using the functions fGn and SGn .

4.1.3 DDoS detection algorithm

Figure 4.1 shows the DDoS detection algorithm. First, the algorithm reads the parameters

∆t, λ1, λ0, α, β,X
G
max andX

s,i
max. Then, we initialize the variables for local perspective detec-

tion and global perspective detection. The variable statuss,i and statusG indicate if local per-

spective detection or global perspective detection is analyzing the variables XG
max andX

s,i
max

and are set true when abrupt changes in the number of Packet-In messages. The variables

alarms,i and alarmG indicates when the algorithm raises an alarm detection. Then, the algo-

rithm monitors the control communication channel every ∆t waiting for a Packet-In arrives.

If a Packet-In arrives the monitor function is executed. Figure 4.2 shows the monitor func-

tion of the DDoS detection algorithm. Next, the algorithm executes the local perspective

detection and global perspective detection functions.

Figure 4.3 shows the local perspective detection function. Local perspective detection func-

tion evaluates every interface connected to user subnets in every OpenFlow switch in the

network. First, the function f s,i is executed to verify an abrupt change in the number of

Packet-In messages in the ∆t. If the function f returns 1, the value of variable statuss,i is set

true. This means that the local perspective detection is running because an abrupt change
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Algorithm 4.1 DDoS detection algorithm.

1. function DDoSDetectionAlgorithm():

2. read parameters (∆t, λ1, λ0, α, β,X
G
max, X

s,i
max)

3. initialize variables

4. ’Variables for Local Perspective Detection and Global Perspective Detection’

5. Xs,i
t , X

G
t = 0

6. statuss,i, statusG = false

7. Ss,in , S
G
n = 0

8. alarms,i, alarmG = false

9. while (Time) do:

10. while(inside ∆t) do:

11. get Packet-In message

12. execute Monitor()

13. endwhile

14. execute LocalPerspectiveDetection()

15. if(LocalPerspectiveDetection does not detect an attack):

16. execute GlobalPerspectiveDetection()

17. if(∆t+1):

18. Xs,i
t , X

G
t = 0

19. endwhile

20. endfunction

Algorithm 4.2 Monitor function.

1. function Monitor():

2. ’Calculate variables for local perspective detection’

3. get i = interface

4. get s = switch

5. Xs,i
t = Xs,i

t + 1

6. ’Calculate variables for global perspective detection’

7. XG
t = XG

t + 1

8. endfunction
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Algorithm 4.3 LocalPerspectiveDetection function.

1. function LocalPerspectiveDetection():

2. foreach (i = interface, s = OpenFlow switch) do:

3. if (f s,i = 1):

4. statuss,i = true

5. endif

6. if (statuss,i = true):

7. Ss,in = Sn
(
Xs,i
t , X

s,i
max

)
8. Ds,i

n = Dn (Ss,in )

9. if (Ds,i
n = 1):

10. alarms,i = true

11. Ss,in = 0

12. else if (Ds,i
n = 0):

13. alarms,i = false

14. statuss,i = false

15. Ss,in = 0

16. endif

17. if (alarms,i = true):

18. generate alert - Local perspective detection - (Timestamp ,Switch:

s, Interface: i)

19. endif

20. endif

21. endforeach

22. end

was found. If the value of the variable statuss,i is true, then the algorithm executes the

functions Ss,in and Ds,i
n . If the value of Ds,i

n is 1, then the value of alarms,i is set to true. This

means that an attacks is detected and the variable Ss,in is reseted to 0. By the other hand, if

the value of Ds,i
n is 0, then the network is under normal conditions and the value of alarms,i

is set to false and the value of Ss,in is reseted to 0. Finally, the algorithm evaluates the value

of the alarms,i. If the value of alarms,i is true, an attack was detected and the algorithm

raise an alarm showing the timestamp, the OpenFlow switch and the interface where the

attack comes from. Otherwise, if the value of alarms,i is false, this means that the network

is under normal conditions.

Now, global perspective detection is always applied if local perspective detection could not

detect an attack. Figure 4.4 shows the global perspective detection function. Global per-

spective detection function does the same steps that local perspective detection using the

global perspective funtions that evaluate the variables XG
t and XG

max. Finally, the algorithm

passes to the next ∆t+1 and the values of the variables Xs,i
t andXG

t for local perspective
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Algorithm 4.4 GlobalPerspectiveDetection function

1. function GlobalPerspectiveDetection():

2. if (fG = 1):

3. statusG = true

4. end

5. if(statusG = true):

6. SGn = Sn
(
XG
t , X

G
max

)
7. DG

n = Dn

(
SGn
)

8. if (DG
n = 1):

9. alarmG = true

10. SGn = 0

11. else if (DG
n = 0):

12. alarmG = false

13. statusG = false

14. SGn = 0

15. end

16. if (alarmG = true):

17. generate alert - Global perspective detection - Timestamp

18. end

19. end

20. end

detection and global perspective detection are set to 0.
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5 Evaluation

In this chapter, we present the evaluation of our DDoS detection algorithm We conduct a

series of experiments to answer the following three questions:

1. What is the accuracy, false positive rate and false negative rate of our DDoS

detection algorithm? Using data sets, we evaluate the measures of accuracy, false

positive rate and false negative rate for our DDoS detection algorithm.

2. How sensitive is our DDoS detection algorithm to parameters settings? We

perform the sensibility analysis to parameter settings. We show how the detection time

changes in function of the parameters required.

3. What are the limitations of our DDoS detection algorithm? We analyze the

results of the accuracy, false positive rate and false negative rate to find the limitation

of our DDoS detection algorithm.

We divide the chapter three sections: Analytical evaluation, implementation, sensibility

analysis and limitations.

5.1 Analytical evaluation

In this section, we present the analytical evaluation of the DDoS detection algorithm. We

evaluate the measures of accuracy, false positive rate and false negative rate of our solution.

The local perspective detection and global perspective detection of the DDoS detection al-

gorithm use the detection function to analyze abrupt changes in the number of Packet-In

messages in a period of time. We can evaluate the measures of accuracy, false positive rate

and false negative rate evaluating the detection function on either local perspective detection

or global perspective detection due to both use the same detection function using different

parameters.

In the analytical evaluation, we use data sets to measure the accuracy, false positive rate

and false negative rate. Then, we use the detection function on global perspective detection

for the analytical evaluation because the data sets do not have interfaces and OpenFlow

switches to use local perspective detection.
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5.1.1 Measures

We measure the accuracy, false positive rate and false negative rate for our DDoS detection

algorithm using the following metrics:


Accuracy = TP+TN

TP+FP+TN+FN

False PositiveRate (FPR) = FP
FP+TN

FalseNegativeRate (FNR) = FN
FN+TP

where:


TP = True positives

TN = True negatives

FP = False positives

FN = False negatives

5.1.2 Data sets

We chose the same Data Set used in Dong et al. [Dong et al., 2016] evaluation. We chose

the 1999 DARPA Intrusion Detection Evaluation Data Set. This dataset is widely used in

intrusion detection and contains both training data without/with attacks and testing data

with abundant types of attacks.

The evaluation methodology is described as follows:

1. We use the data sets to calculate an initial parameters setting for the DDoS detection

algorithm.

2. We evaluate the initial parameters setting using experiments to determine the best

parameters for our DDoS detection algorithm.

3. We evaluate the accuracy, false positive rate and false negative rate for our DDoS

detection algorithm.

The data sets used for training and testing are shown as follows:

Data set March 4th: This data set corresponds to the network traffic without attacks.

This data set is used to calculate the threshold Xmax for the detection function on global

perspective detection in the DDoS detection algorithm using different values of 4t.
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Figure 5-1: Number of flows on Data Set April 5th.

Data set April 5th: This data set is used to determine what values of the parameters 4t

and Xmax result in the highest accuracy, lowest false positive rate and lowest false negative

rate. The Figure 5-1 shows the number of flows in this data set between 8:00:00 and 20:00:00.

Three attacks that might generate high number of flows in a short period of time have been

identified in dataset April 5th:

1. Portsweep: This attack is executed at 9:43:11 and has duration of 223 seconds.

2. Smurf: This attack is executed at 13:18:12 and has duration of 1 second.

3. Neptune: This attack is executed at 18:04:04 and has duration of 411 seconds.

The data set shows other points where the number of flows is high. These points are consid-

ered as bursty non-malicious flows. We evaluate the metrics of accuracy, false positive rate

and false negative rate considering and excluding the Portsweep attacks due to these attacks

could generate or not high volume of new flows.

Data set April 6th: This corresponds to a testing data set. It is used for the testing pro-

cess. The Figure 5-2 shows the number of flows between 8:00:00 and 20:00:00. Two attacks

that might generate high number of flows in a short period of time have been identified in

data set April 6th:

1. Neptune: This attack is executed at 11:38:04 and has duration of 821 seconds.

2. Neptune: This attack is executed at 18:16:05 and has duration of 206 seconds.
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5.1 Analytical evaluation

Figure 5-2: Number of flows on Data Set April 6th.

5.1.3 Parameter settings

Table 5-1 shows the values of parameter settings that we use in the analytical evaluation.

The values of the parameters of the DDoS detection algorithm are chosen as follows:

1. 4t: We define the domain for 4t as the list of values 0.1, 0.2, 0.5 and 1.0 seconds.

2. Xmax: We choose the value of Xmax as the mean of the number of flows plus three

times the value of the standard deviation for each 4t. We calculate the value of Xmax

for each 4t using the dataset March 4th and count the number of flows in the 4t that

are normal according the Xmax. We find that 96% of the number of flows in 4t are

considered as normal analyzing the data set March 4th.

3. α, β, λ1, λ0: We use the same parameter settings used by Dong et al. [Dong et al., 2016].

The values of α, β, λ1, λ0 are 0.01, 0.02, 0.6 and 0.33, respectively.

5.1.4 Experiments

The experiments for the analytical evaluation are the following:

1. Run the algorithm using 41
t and X1

max on Data Set April 5th.

2. Run the algorithm using 42
t and X2

max on Data Set April 5th.

3. Run the algorithm using 43
t and X3

max on Data Set April 5th.

4. Run the algorithm using 44
t and X4

max on Data Set April 5th.

5. Run the algorithm on Data Set April 6th.
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5.1 Analytical evaluation

Table 5-1: Parameters settings values.

Parameter Value

41
t 0.1

42
t 0.2

43
t 0.5

44
t 1.0

X1
max 8.0

X2
max 11.0

X3
max 17.0

X4
max 26.0

α 0.01

β 0.02

λ1 0.6

λ0 0.33

We divide the experiments in training and testing experiments. The first four experiments

corresponds to the training experiments. The training experiments are done to compare the

results between them and select the parameters that result with the highest accuracy, lowest

false positive rate and lowest false negative rate. Finally, the last experiment corresponds

to the testing experiment. The testing experiment evaluates the algorithm using a testing

data set using the metrics of accuracy, false positive rate and false negative rate.

5.1.5 Results

We show the results of the training and testing experiments. The Figures 5-3, 5-4, 5-5,

5-6 and 5-7 shows the results of the training and testing experiments. The Table 5-8 and

Table 5-9 shows the metrics of the training experiments considering and excluding Portsweep

attacks, respectively. The Table 5-10 shows the metrics for the testing experiments.

5.1.5.1 Results using 41
t and X1

max on Data Set April 5th

For this experiment we run the DDoS detection algorithm using the parameters 41
t and

X1
max. If we consider the Portsweep attack, we achieved a 98.12% of accuracy with 0.77%

of false positives and 72.16% of false negatives. If we do not consider the Portsweep attack,

we achieve a 98.72% of accuracy, 0.77% of false positives and 95.67% of false negatives. The

algorithm does not detect all the traffic generated by the Portsweep. The traffic generated

by the Smurf attack is detected. However, the most of the attack traffic is generated by

the Neptune attack. Only some traffic generated by the Neptune attack is detected by the

algorithm. These situation leads to an extremely high false negative rate.
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5.1 Analytical evaluation

Figure 5-3: Results using 41
t and X1

max on

Data Set April 5th.

Figure 5-4: Results using 42
t and X2

max on

Data Set April 5th.

Figure 5-5: Results using 43
t and X3

max on

Data Set April 5th.

Figure 5-6: Results using 44
t and X4

max on

Data Set April 5th.

Figure 5-7: Results using the best 4t and Xmax on Data Set April 6th.
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Figure 5-8: Metrics of the training experiments considering Portsweep.

Experiment Accuracy FPR FNR

Results using 41
t and X1

max 98.12% 0.77% 72.16%

Results using 42
t and X2

max 98.86% 0.52% 44.97%

Results using 43
t and X3

max 98.68% 0.85% 17.22%

Results using 44
t and X4

max 98.37% 1.17% 18.15%

Figure 5-9: Metrics of the training experiments without considering Portsweep.

Experiment Accuracy FPR FNR

Results using 41
t and X1

max 98.72% 0.77% 95.67%

Results using 42
t and X2

max 99.12% 0.52% 41.52%

Results using 43
t and X3

max 99.23% 0.77% 0.49%

Results using 44
t and X4

max 98.85% 0.001% 0.01%

Figure 5-10: Metrics of testing experiments.

Metric Values

Accuracy 99.94%

FPR 0.04%

FNR 0.07%
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5.1.5.2 Results using 42
t and X2

max on Data Set April 5th

For this experiment we run the DDoS detection algorithm using the parameters 42
t and

X2
max. If we consider the Portsweep attack, we achieved a 98.86% of accuracy with 0.52% of

false positives and 44.97% of false negatives. If we do not consider the Portsweep attack, we

achieve a 99.12% of accuracy, 0.52% of false positives and 41.52% of false negatives. This

experiment shows results similar to the parameters delta1 and delta1. Only some traffic of

the Portsweep and Neptune attack is considered an attack. The traffic generated by the

smurf attack is detected by the algorithm. The results of the experiments for 41
t ,X

1
max and

42
t ,X

2
max leads to excessive false negative rate. These parameters will not be used in the

testing experiment.

5.1.5.3 Results using 43
t and X3

max on Data Set April 5th

For this experiment, we run the DDoS detection algorithm using the parameters 43
t and

X3
max. If we consider the Portsweep attack, we achieved a 98.68% of accuracy with 0.85%

of false positives and 17.22% of false negatives. The value of the false positive rate is high

because the Portsweep attack is not detected by the algorithm because this attack generates

low number of flows in a short period of time. If we do not consider the Portsweep attack,

we achieve a 99.23% of accuracy, 0.77% of false positives and 0.49% of false negatives. The

traffic generated by the Smurf attack is not detected in both cases. This situation happens

due to the duration of the attack (1 second). The traffic generated by the Neptune attack

is detected and the algorithm raises detection.

5.1.5.4 Results using 44
t and X4

max on Data Set April 5th

For this experiment, we run the DDoS detection algorithm using the parameters 44
t and

X4
max. If we consider the Portsweep attack, we achieved a 98.37% of accuracy with 1.17% of

false positives and 18.15% of false negatives. We analyze the false negative rate and we find

that this value is due to the algorithm does not detect the Portsweep attack. If we do not

consider the Portsweep attack, we achieve a 98.85% of accuracy, 0.001% of false positives

and 0.01% of false negatives. In addition, the algorithm does not detect the traffic generated

by Smuft attack because the short duration of the attack (1 second). In both cases, the

traffic generated by the Neptune attack is detected.

We find that the parameters that show the highest accuracy, lowest false positive rate

and lowest false negative rate correspond to 43
t and X3

max. The parameters 43
t ,X

3
max and

44
t ,X

4
max show similar results. However, the parameters 43

t and X3
max reduce the time of

the detection. These parameters are used in the testing experiment using the dataset April

6th.
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5.2 Implementation

Figure 5-11: Mininet topology used in the implementation.

5.1.5.5 Results on Data Set April 6th

For this experiment we run the DDoS detection algorithm using the parameters 4t and

Xmax that shows the highest acuracy, lowest false positive rate and lowest false negative

rate. These parameters correspond to the values of 43
t and X3

max . In this experiment, we

achieved an accuracy of 99.94% with a 0.04% of false positives and 0.07% of false negatives.

In addition, we found that the algorithm has a delay to raise a detection of the two attacks

of four seconds.

5.2 Implementation

We have implemented our DDoS detection algorithm. The implementation evaluates how the

DDoS detection algorithm works in real environments. We show the setup and the results.

5.2.1 Setup

We program the DDoS detection algorithm that consists in an script in Python. Table 5-1

shows the parameter setting used in the implementation based on the results of the ana-

lytical evaluation. We simulate a simple topology using Mininet. Figure 5-11 shows the

topology. The topology consists in one controller, and three OpenFlow switches connected

to it. We connect four hosts to every OpenFlow switch simulating the user subnets. In

addition, we use the POX controller installed in the Mininet virtual machine as the SDN

controller. The flows are managed using the l2 learning program of POX controller and

the attacks are launched using a script in Python that we program that generates packets

using random headers to create new flows. The normal traffic is simulated using the ping

command of the hosts.
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Table 5-2: Parameters settings values for the implementation.

Parameter Value

41
t 0.5

Xs,i
max 26.0

XG
max 26.0

α 0.01

β 0.02

λ1 0.6

λ0 0.33

We monitor the OpenFlow traffic during 510 seconds and execute the following DDoS attacks:

1. Attack 1: We evaluate the local perspective detection. We execute the script of the

attack during 1 second in the 30 seconds of the interval using the hosts 1 and 2.

2. Attack 2: We evaluate the local perspective detection. We execute the script of the

attack during 2 seconds in the 90 seconds of the interval using the hosts 1 and 4.

3. Attack 3: We evaluate the local perspective detection. We execute the script of the

attack during 4 seconds in the 150 seconds of the interval using the hosts 1, 4 and 7.

4. Attack 4: We evaluate the local perspective detection. We execute the script of the

attack during 10 seconds in the 210 seconds of the interval using the hosts 2, 5 and 8.

5. Attack 5: We evaluate the local perspective detection. We execute the script of the

attack during 20 seconds in the 270 seconds of the interval using the hosts 6.

6. Attack 6: We evaluate the local perspective detection. We execute the script of the

attack during 30 seconds in the 330 seconds of the interval using the hosts 1.

7. Attack 7: We evaluate the global perspective detection. We execute an attack using

the pingall command in Mininet to simulate a IpSweep attack inside the network. We

execute this attack during 15 seconds in the 390 seconds in the interval using all the

hosts.

8. Attack 8: We evaluate the global perspective detection. We modify the script of the

attack to send low rate of forged packets and execute the script during 40 seconds in

the 450 seconds of the interval using all hosts.

The DDoS attacks are executes using different hosts connected to a different OpenFlow

switches to evaluate the behavior of the algorithm comming from different OpenFlow switches.
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Figure 5-12: Results of the implementation.

5.2.2 Results

In this experiment, we achieved an accuracy of 99.62% with a 0.06% of false positives and

1.2% of false negatives detecting the eight attacks. Figure 5-12 shows the points where

the DDoS detection algorithm raise an alarm. Table 5-3 shows the individual results of

the implementation experiments. We analyze each attack to discover features of our DDoS

detection algorithm in a real environment. The attacks 1 to 6 evaluate the local perspective

detection. The DDoS detection algorithm does not detect the attacks 1 and 2. These attacks

are reflected in the false positive rate. The algorithm detects the attack 3 using the local

perspective detection and reports the hosts 1, 4 and 7 as the source of the DDoS traffic. The

attack 4 is detected and the algorithm reports that hosts 2, 5 and 8 are the sources of the

DDoS traffic. The attacks 5 and 6 are detected and the algorithm reports the hosts 6 and

1 as the source of the DDoS traffic for the attack 5 and 6, respectively. The attack 7 and 8

evaluates the global perspective detection of the DDoS detection algorithm. The algorithm

detects these two attacks but they are shown by the global perspective detection because

the source of the attacks are not detected by local perspective algorithm.

5.3 Sensibility analysis

We perform a sensibility analysis on the DDoS detection algorithm. The purpose of this

analysis is show the variability of the number of successive observations needed by the algo-

rithm to detect an attack. The number of successive observations needed to detect a DDoS

attack against SDN control plane affects the detection time of the algorithm because each

observation is performed in a 4t.

We perform the sensibility analysis as follows:
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Table 5-3: Individual results of the implementation experiments.

Experiment Perspective Detection Observation

Attack 1 Local Not detected Attack is not detected due

to the duration of the

attack

Attack 2 Local Not detected Attack is not detected due

to the duration of the

attack

Attack 3 Local Detected Hosts 1, 4 and 7 are

reported

Attack 4 Local Detected Hosts 2, 5 and 8 are

reported

Attack 5 Local Detected Host 1 is reported

Attack 6 Local Detected Host 6 is reported

Attack 7 Global Detected The source of the attack is

not reported

Attack 8 Global Detected The source of the attack is

not reported

5.3.1 Varying α and β.

We fix the values of λ1 and λ0 as 0.6 and 0.33, respectively. These values are chosen accord-

ing to the parameters setting defined in the Table 5-1. Then, we vary the values of α and β

between 0.05 and 0.5. The Figure 5-13 shows the variability of the number of successive

observations needed by the algorithm to detect an attack. The number of successive obser-

vations increases when α and β are closer to zero. The Figure 5-13 shows that the maximum

value the number of successive observations between 0.05 and 0.5 is 11 observations. This

means that the maximun time needed to detect a DDoS attack against SDN control plane

is around 11 times the value of 4t.

5.3.2 Varying λ1 and λ0.

We fix the values of α and β as 0.01 and 0.02, respectively. These values are chosen according

to the parameters setting defined in the Table 5-1. Then, we vary the value of λ1 between

0.5 and 0.7 and the value of λ0 between 0.4 and 0.5. We choose these intervals because the

DDoS detection algorithm consider that λ1 > λ0. The Figure 5-14shows the variability of

the number of successive observations needed by the algorithm to detect an attack. We find

that the number of successive observatios increases when the values of λ1 and λ0 are closer

between them and viceversa.

52



5.3 Sensibility analysis

Figure 5-13: Number of successive observations depending of the parameters α and β.

Figure 5-14: Number of successive observations depending of the parameters λ1 and λ0.
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5.3.3 Varying 4t.

We analyze the time needed by the algorithm to detect an attack varying the value of 4t.We

fix the values of α, β, λ1 and λ0 as 0.01, 0.02, 0.6 and 0.33, respectively. These values are

chosen according to the defined parameters in the Table 5-1. According to the Figure 5-

13 and Figure 5-14, the DDoS detection algorithm using these parameters needs at least

7 successive observations to detect an DDoS attack against the SDN control plane. Each

successive observations is made in 4t. We conclude that our DDoS detection algorithm is

highly dependent of the parameter 4t because this value defines the detection time of the

algorithm. For example, we define the value of 4t as 0.5 seconds in our analytical evaluation

and this means that the algorithm need at least 3.5 seconds to detect an attack taking 7

successive observations of 4t.

5.4 Limitations

During the evaluation, we find some limitations presented in our DDoS detection algorithm.

First, the algorithm can not to detect attacks with a short time duration such as Smurf

which has a duration of one second. Second, the algorithm can not detect attacks with a

duration under the 3.5 seconds. The algorithm needs at least 7 successive observations to

detect an attack and this results in at least 3.5 seconds analyzing the successive observations.

If the attacker executes attacks with a duration under the 3.5 seconds such as Smurf, the

algorithm does not detect the attack and the controller can be overloaded.
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6 Conclusion

SDN can provide innovative solutions in network security. However, the security of SDN

architecture has not been widely addressed. SDN architectures that operate in reactive

mode could be very vulnerable to DDoS attacks against the SDN control plane. An attacker

can execute a DDoS attack against the SDN control plane by generating high number of

new flows. These new flows generate a high volume of Packet-In messages to the controller

causing a crash of the controller due to high resource consumption.

We propose the design of an algorithm to detect DDoS attacks against the SDN control plane.

We leverage the logical centralized control to monitor the OpenFlow traffic of the interfaces

of the OpenFlow switches and the aggregated OpenFlow traffic of the SDN communication

channel. We make the assumption that DDoS attacks against SDN control plane shows

an abrupt changes in the number of Packet-In messages during the time. Our algorithm

considers both the OpenFlow traffic coming from a specific interface of an OpenFlow switch

towards the control plane (local perspective detection) and the whole aggregated OpenFlow

traffic on the control channel (global perspective detection). In our evaluation, we achieved

a 99.94% of accuracy in detecting DDoS attacks against SDN control plane with a 0.04%

of false positives and 0.07% of false negatives. However, we identify some additional issues

that need to be improved. Our DDoS detection algorithm needs at least four seconds to

raise detection. An attacker can generate enough high volume of new flows during the first

four seconds of the attacks and crash the controller. In addition, attacks such as Portsweep

could not be detected if the attacker generates low number of flows and generate high false

negative rate.

For our future work, we will improve the false negative rate and the detection time of our

DDoS detection algorithm. We will explore the use of misuse detection techniques to create

signatures for Portsweep, Smurf and Neptune to make a quick detection of these attacks

that could be used to generate attacks against the SDN control plane.
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