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NONSTANDARD METHODS FOR

NA VIER-STOKES EQUATIONS

NIGEL J. CUTLAND AND MAREK CAPINSKI

INTRODUCTION

In this paper we give a survey of recent joint work of the authors in which
methods from nonstandard analysis are used to provide a new ap roach to the
solution of the Navier-Stokes equations. These methods provide relatively easy
and intuitive proofs of the classical existence results for deterministic Navier--
Stokes equations [5], and, as an almost immediate corollary, the construction of
statistical solutions, which was originally achieved by Foias using a somewhat
lengthy argument [11]. Finally we mention some new results concerning solu-
tions to the stochastic Navier-Stokes equations [6], [7] which solve a problem
that has been outstanding for many years.

We will only give sketches of the main ideas of the proofs; for full details, see
the original papers or the forthcoming book [10]. In §2 we will provide a very
brief introduction to nonstandard analysis, and we indicate references where
the reader can find a full exposition of this powerful technique.

§l. THE NAVIER-STOKES EQUATIONS

The classical Navier-Stokes equations describe the evolution in time of the
velocity field u : D --+ JRn of an incompressible fluid in a domain D ~ JRn, so
we consider a function u : D x (0,00) --+ JRn given by:

auat - vb.u + (u, \7)u + \7p = f (NS)

div u = O.

(where (,) denotes the inner product in JRn). There is a variety of possible
boundary conditions that can be considered; in this discussion we impose the
homogeneous Dirichlet boundary condition u(x, t) = 0 for x E Bl), which we
assume to be of class C2.

For applications the important case is n = 3 but mathematically we can
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allow n ~ 4. In this equation, p denotes the pressure, and f denotes the
external forces.

The usual setting for these equations involves the function spaces B, V, which
are obtained by closing the set {u E COO(D,~n): divu = O} in the norms 11·11
and II ·11 + II· II respectively, where

Ilull = (u,u)! (u,v) = L:7=lh ui (x)v1 (x)dx

lIu 11= «u, u))! «u, v)) = L:7=1 (:~, ::i)
H, V are Hilbert spaces,' and there is an orthonormal basis (en)nEN for H

consisting of eigenvectors of the operator -6. suitably extended to an operator
A on H; i.e. Au = L:Anunen where Un = (u,en) and 6.en = -Anen· In the
equation (NS) it is usual to take the force f E L2(0, T; V) for each T < 00,

and then the equation itself is understood as a Bochner integral equation in
V'. i.e. for each v E V:

(u(t), v) - (u(O), v) = it - I/«u(s), v)) - b(u(s), u(s), v) + (/(s), v)ds (1)

where (-,.) denotes the duality between V' and V extending the scalar product
in H. The pressure p has disappeared from (1) because (V'p, v) = p div v = 0
for v E V, so V'p = 0 in V'. The trilinear form b is used to denote the nonlinear
term in (NS):

n f . 8vi .
b(u,v,w)= L IT uJ(x)8x' (x)w'(x)dx = «u,V')v,w).

i,i=l' D J

Notice that b(u,w,v) = -b(u,v,w), so b(u,v,v) = O.
The difficulties in solving the Navier-Stokes equations arise from the non-

'linear term b(u,u,v) in (1); the construction of solutions (by any method)
depends on delicate continuity properties of b in a variety of norms. For our
purposes the crucial property is as follows. We write B(u) = b(u, u,·) viewed
as an element of VI (i.e. (B(u), v) = b(u, u, v)) and for mEN let Km be the
compact subset of H given by Km = {u: lIu II ~ m}. Then

Lemma 1.1. B: Km --> V' is continuous with respect to the theH-topology
on Km and the weak topology ofV'.

The second key factor in obtaining solutions for Navier-Stokes is the use of
energy estimates. Proceeding informally, if u is a solution to (1) with sufficient
regularity then

1dllu(t)W = (u(t), dud(t)) = -1/ lIu(t) W + (/(t), u(t))
2 dt t
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(since b(u, u, u) = 0), from which it is easy to derive the following energy
estimate :

1, Ii'Ilu(s)112 + v Ilu(t) 11
2dt :::;Ilu(0)112 + - Ilf(t)II~,dt

Q v Q

which might be expected of a solution (yet to be constructed). This leads to
the following definition:

Definition. Given UQ E Hand f E L2(0, T; V') for all T < oo, a weak
solution to the Navier-Stokes equations is a function u : (0, oo] -> H such that
equation (1) holds for each v E V and u E L2(0,T;V) n LOO(O,T;H) for all
T < oo.

Nonstandard analysis allows us to formulate a hyperjinite version of (1), so
that (by transfer) all the techniques of finite dimensional ODE's are available
to solve it. In order to explain this we now give a brief introduction to the
basic ideas of nonstandard analysis.

§2. WHAT IS NONSTANDARD ANALYSIS?

Standard (real) analysis may be viewed as the study of the structure

8= (R,+, x,<,(J)!EF,(S)SES)

where :F and S denote the sets of all possible real functions f: JRffi -> Rand
relations S ~ JRffi for all m. The basic construction of nonstandard analysis
is to extend R to a larger field" R, the hyperreals or nonstandard reals, which
contains both infinitesimal and infinite members. At the same time all functions
and relations are extended to "R so we have the structure

"8 = CR," +," x," <, (*f)!EF, ("S)SES)

with the following properties:

1) "R=:>R;
2) "f extends f and S = JRffi n "S for every f and S;
3) "B and 8 Have exactly the same properties; i.e. properties that can be

expressed in the language of first order propositional logic. (For example,
("R, "+, "x , "<) is an ordered field since (R, +, x, <) is.)

The property 3) is known as the transfer principle, and is the key to the
whole of nonstandard analysis.

There are several ways to construct "B , perhaps the simplest being an
explicit ultrapower construction setting

"8= fr/u

where U is an ultrafilter on the natural numbers N.

The following definitions are fundamental:
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Definitions. Let x, y E •R.
(i) x is infinitesimal if IIxll < ~ for all n EN;

(ii) x ~ y if x - y is infinitesimal;

(iii) x is finite if Ilxll < n for some n EN;
(iv) x is infinite if x is not finite.

(Strictly in these definitions we should have used ·lIxll, •<, etc. but since ·1
extends 1for any function, we can often safely drop the • without ambiguity.)

The next result is crucial to the whole methodology - it allows results in
•R to be interpreted in R. It follows from (and is in fact equivalent to) the
completeness of the reals R.

2.1 Standard Part Theorem. If x E ·R is finite, there is a unique r ER
with r ~ x. This r is called the standard part of x, and is denoted either st( x)
or ox.

Here is an illustration of nonstandard analysis, showing how the presence of
infinitesimals allows a very intuitive (but rigorous) development of analysis.

2.2 Theorem. Let I; R ---+ Rand c E R. Then 1 is continuous at c if and
only if

x ~ c => ·/(x) ~ 'f(c).

From this result we get easy derivations of the algebra of continuous func-
tions.

The construction of •B from B can be repeated for any given mathematical
structure - and in fact there is a way to do it for all structures at once in a
way that preserves interrelationships between structures. This results in a non-
standard universe ·V extending the standard universe V, such that for every
mathematical object MEV there is a nonstandard counterpart ·M E ·V hav-
ing the "same" properties. For this, and a detailed exposition of nonstandard
analysis we recommend the reader to consult one of the references [1], first
part, [12], [15].

For our purposes, we need the nonstandard versions •Hand ·V of H and V
etc. By the transfer principle, •H has an orthonormal basis
{·el, ·e2, .... eu , ·eN+l, ... }, and taking an infinite natural number N E ·N
(i.e. N E •N \ N) we have the subspace

HN = span {*e1, ·e2, .. "eN}

which is a hyperfinite dimensional subspace of •H. For convenience we will
write e, = ·ek for k E ·N. If U E HN we have, writing Uk = (U, Ek) for
1~ k ~ N

and
N

11U1I2 = LU;,
k=l
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If IIUIl is finite, then Uk is finite for all k, so the following definition makes
sense.

Definition. For U E HN with IIUIl finite, the standard part of U, denoted
U = °U or u = st(U), is given by Uk = aUk for each finite k.

Thus we have a standard part mapping o = st : Fin(H N) -+ H, where
Fin(HN) denotes {U E HN : 11U11is finite}. It is clear that Ilull = WUII ::;
°11U11·

One further tool used widely in applications of nonstandard analysis is Loeb
measures. Briefly, if (X,A,JL) is a nonstandard measure space we can define
0JL : A -+ 0,00 by °JL(A) = ° (JL(A)) (defining Ox = 00 if x E *R is positive
infinite). Loeb [16] showed that 0JL has a unique extension to a standard measure
on the u-algebra u(A) generated by A. This extension is the Loeb measure JLL
given by JL, and results in the standard measure space (X, u(A), JLL). Instances
of this that we use here are (*(0, oo),(*m)L), where "m is the nonstandard
version of Lebesgue measure on (0, (0), and (in §5) we use the Loeb measure
obtained from a nonstandard Wiener measure on a hyperfinite dimensional
space.

§3. NONSTANDARD SOLUTION OF THE NAVIER-STOKES EQUATIONS

In this section we outline a nonstandard proof of the following classical result
(see [17] for the standard approach).

Theorem 3.1. For any Uo E Hand f : D x (0, (0) -+ ~n with f E
L2(0, T; V) for all T < 00, there exists a weak solution u to the Navier-Stokes
equations with u(O) = uo.

Sketch of the Proof of Theorem 3.1 Using the nonstandard framework
outlined in the previous section, we can write down the following N-dimensional
*ODE for the time evolution U(r) of an element U E HN for 0::; r E *R:

(2)

(recall that Ak is the eigenvalue of -Ll corresponding to ek), where Fk(r) =
(*f(r), Ek), and we take as initial condition Uk(O) = (*uo, Ek) .

The transfer of the theory of ODE's immediately gives a unique nonstandard
classical solution U( r) to the equation (2), and consideration of the energy
IIU(r)1I2 shows that it satisfies

sup IIU(r)112 + v fT IIU(r) Wdr < IIU(0)112+ ~ r IIf(t)II~/dt (3)
T~T 10 v 10
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for each finite T. So, for finite times t E R we can define

u(t) = °U(t)

and it is easy to see that

so that u E L2(0, T;V) n Loo(O, T;H). It remains to check that u(t) satisfies
the equation (1), and the steps are as follows. It is sufficient to check it for
v = ek, and we have

(u(t), ek) - (u(O), ek) = °(uk(t) - Uk(O))

= °i
t

( - v>'kUk(r) - (*B(U(r)), Ek) + Fk(r))dr

= it (- V>'koUk(r) - O(*B(U(r)),Ek) + °Fk(r))dLr

(using Loeb integration theory)

= it - v«u(s), ek)) - b(u(s), u(s), ek) + (I(s), ek)ds

where the last step uses the continuity property of B (Lemma 1.1).
This method of proof works for dimensions n ::;4 and significantly simplifies

traditional existence proofs. The advantage lies in avoiding the use of spe-
cialised compactness theorems that have to be formulated carefully in advance
in order to ensure convergence of sequences arising from finite dimensional
approximations to (1).

In dimension n ::;2 the solution to the Navier-Stokes equations is unique,
and this can be established also by our techniques - see [9]. The question
"of uniqueness is open in dimensions n ~ 3, and if indeed this fails a possible
explanation in our framework is given by examining perturbations of the initial
data U(O). If we take as initial condition U(O) with IIU(O) - U(O)II ~ 0 and
solve (2) to obtain V(r), this yields another weak solution to the Navier-Stokes
equations, u(t) =0 U(t), with u(O) = uo, and we do not know whether u = u.
In [9] it is shown that a suficiently small infinitesimal perturbation of the initial
data and the force f does allow a definition of a subclass of the solutions in
which we do have uniqueness.

§4. S'!:ATISTICAL SOLUTIONS

In the previous section we assumed that the initial condition in equation (1)
is a given point Uo E H. For statistical solutions the initial condition is replaced



NONSTANDARD METHODS FOR NAVIER-STOKES EQUATIONS 31

by an initial measure J.lo on B and the idea is to find and solve an equation for
a time evolving measure J.l(t) on B. The informal idea is that

J.lo(A) == P(u(O) E A)

for some underlying probability measure, and then

J.lt(A) = P(u(t) E A)
= J.lo(S;I(A))

for t ~ 0, where A ~ H, and where S;l(u) is "the solution" of (1) at time
t with initial condition u E H. This is problematic because the question of
uniqueness for (1) is still open for n > 2. Nevertheless, using this informal idea
Foias [11] obtained the following equation for the family of measures (J.lt}t:?:o:

L ep(u)dJ.lt(u) - L ep(u)dJ.lo(u) =

it L - v«u, ep'(u))) - b(u, u, ep'(u)) + (I(s), ep'(u))dJ.l.(u)ds , (4)

where ep is any suitable test function. It is sufficient to consider only test
functions of the form ep(u) = exp(i(u, v)) with v E V. In [11] Foias solved
(4) by a rather involved approximating procedure. The nonstandard approach
described in §3 .allows an easy proof that makes Foias' heuristic derivation
entirely rigorous.

Note first that at the nonstandard level, equation (2) does have a unique
(nonstandard) solution Sr(U) for any initial condition U E HN, which satisfies
the energy inequality (3). For U with 11U11 finite we can thus define "S by
°5t(U) = O(St(U)) E H and the proof in §3 shows:

Theorem 4.1. If 11U11 is finite then the function u(t) = °St(U) is a weak
solution to the Navier-Stokes equations with u(O) = °U. .

From this we can write down a statistical solution in the following way.
Suppose that J.l is a given Borel probability measure on B. This gives a standard
probability measure jJ. on the nonstandard space HN by

for X ~ HN, where *J.lN is the projection of *J.l onto H N. It is a fundamental
fact of Loeb measure theory that

for A ~ H. It is now routine to establish:
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Theorem 4.2. Suppose that a Borel probability measure J-l on H is given,
with J Ilull2dJ-l < 00. Then the family of measures J-lt on H defined by

is a statistical solution to the Navier-Stokes equations, with J-lo = J-l. i.e. J-lt
satisfies equation (4) and for all T < 00 the function t 1--+ JH Ilul12dJ-lt (u) is
Loo (0, T), and

The proof of this result can be found in [5].

§t:i. STOCHASTIC NAVIER-STOKES EQUATIONS

The general stochastic Navier-Stokes equations with full feedback take the
form

du(t) = vLlu(t) - B(u(t)) + /(t, u(t))dt + g(t, u(t))dw(t) (5)

u(O) = uo

where Uo E Hand w is an infinite dimensional Wiener process on B. The noise
coefficient g(t, u(t)) is given bya suitable linear operator. Notice that we have
allowed feedback in the forces / as well as in the new noise coefficient g, and
of course this would have been possible in the deterministic equation (1). It
is implicit that u given by (5) is now a stochastic process - i.e. u(t) = u(t,w)
for w belonging to some underlying probability space. The equation (5) is a
nonlinear SPDE, considered as an integral equation in V' using the Bochner
integral for the drift terms and the stochastic integral of Ichikawa [13]; it is not
susceptible to conventional SPDE methods. The case g == 1 with no feedback
was considered in [4] and later in [18], and here a pathwise solution is possible
in principle. No progress on the case of general noise coefficient was made
for 18 years, when the results [3], [6] and [7] were obtained. In the paper [3]
Bensoussan deals with dimension n = 2, whereas the nonstandard methods
developed in [6] and [7] handle all dimensions n :5 4 in full generality. The
approach is similar to that used for the deterministic equations in §3, and we
now sketch the main points.

The nonstandard universe contains the nonstandard Wiener process 'w
whose projection onto H N we denote by W. This lives on a nonstandard
probability space (0, J-l) ,say. Using W we can write down a nonstandard SDE

for a stochastic process U (r, w) E H N, which is the stochastic counterpart of
(2):

dU( r) = (-lIANU(r) - BN (U(r)) + F(r, U(r))dr + G(r, U(r))dW(r) (6)
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U(O) = U«
where AN, BN, F, G, Uo are the projections of*A, *B, *1, 's, *uo onto HN. The
transfer principle applied to the standard theory of finite dimensional SDE's
ensures that (6) has a unique nonstandard solution on the space (0, /1-), and
a careful investigation of the energy evolution shows that (with the conditions
on ts as in the theorem below):

for all finite T.
From this it is routine to define a stochastic process u by

u(t,w) = °U(t,w)

for ° ::;t E Rand w EO, on the probability space (n, P), where P is the Loeb
measure /1-L. To check that u is a solution to (5), for the drift part the steps
are the same as for the deterministic equation. For the stochastic integral, the
steps are similar, and follow the same pattern as in the pioneering work on
stochastic integrals on Loeb spaces by Anderson [2] and Keisler [14]. Thus we
have the following existence theorem [6].

Theorem 5.1. Suppose that Uo E H and the functions 1 : (0,00) X V -+

V' and 9 : (0,00) x V -+ £(H, H) are jointly measurable with the following
properties:

(i) I(t,') E C(I{m, V'weak) for all m,
(ii) g(t,') E. C(I{m, an, 1i)weak) for all m,
(iii) II/(t, u)llvf + Ilg(t, u)IIH,H ::; a(t)(1 + IIull) for some a with a E L2(0, T)

for all T.
Then equation (5) has a solution u such that for all T < 00

E (sup IIu(t)II2 + ( IIu(t) 11
2) < 00.

t~T 10
It is quite straightforward to incorporate a random initial condition into our

construction of a solution, and hence we can obtain statistical solutions for the
stochastic Navier-Stokes equations also - see [8]. In [6]uniqueness of solutions is
established for n ::;2 provided the coefficients I, 9 satisfy appropriate Lipschitz
conditions. Similar results are obtained in [7] for a stochastic equation in which
the noise term 9 is given by an unbounded operator of a particular kind. The
method employed there is similar to that described above, but it is not covered
by the general scheme of Theorem 5.1.
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