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Abstract

Monitoring regression models for lifetimes

The current study addresses the monitoring of regression models with response variable
having a distribution for lifetimes. Certain aspects of this research have relevant
importance. First of all, in most of the existing literature, monitoring regression models is
treated as a special case of profile monitoring. However, especially in some industrial and
healthcare applications, regression models can adequately represent process quality but
cannot always be qualified as profiles. This is the case of regression models for lifetimes.
The fact is that lifetimes can be measured just once at most in the same experimental
unit. Consequently, the nature of responses while monitoring regression models is not
multivariate necessarily.

However, the main goal of monitoring regression models for lifetimes aims to check
the stability of the distributions of n response variables Yi, i = 1, · · · , n. As all these
distributions are linked by the same parameter vector, the stability of the formers
depends on the one of the latter. Thus, it is clear that profile monitoring and regression
monitoring share the same purpose. Techniques from profile monitoring can be used for
successfully monitoring regression models for lifetimes as well.

Some methodologies for monitoring Weibull regression models for lifetimes with common
shape parameter and in phase II processes will be addressed depending on the compo-
sition of available regression data structures. The monitoring of the parameter vector
characterizing the Weibull regression model allows us to make conclusions about the
mean value of the response variable.

It will be shown that the monitoring of regression models for lifetimes can be carried
out by redesigning existing methods from monitoring continuous quality variables and
profile monitoring. In the presence of uncensored lifetimes, it was found out that it is
possible to adapt conventional control charts for single observations to the monitoring
of the common shape parameter. It is also possible to adapt control techniques and
methodologies from profile monitoring to the case of monitoring the entire parameter
vector characterizing the basic model. In both cases, chart designing depends on the
asymptotic normality of the maximum likelihood estimator of the parameter vector. Thus,
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it is necessary to implement some existing corrections to the monitoring statistics so that
existing control charts work acceptably well when non-large enough data sets are available.

When a type I right-censored mechanism is operating on lifetimes, the monitoring can
be carried out with the help of one-sided likelihood ratio based cumulative sum control
charts. Theese procedures can be used for monitoring one or more of the parameters in
the parameter vector and has practically no restrictions respect to the dataset dimension
needed for monitoring. Conducted simulations suggest that this chart is more effective
than the multivariate exponentially weighted moving average method when detecting the
deterioration of the process is wanted.

Key words: Censorship, extreme value distribution, lifetimes, likelihood ratio, profile mon-
itoring, regression model, Weibull distribution.



Resumen

Monitoreo de modelos de regresión para tiempos de vida

El presente estudio se aborda el monitoreo de modelos de regresión para tiempos de
vida. Ciertos aspectos de este trabajo son de crucial importancia. Como primera medida,
en gran parte de la literatura especializada, el monitoreo de modelos de regresión se
trata como un caso particular del monitoreo de perfiles. Sin embargo, existen muchas
aplicaciones, especialmente en ingenieŕıa y en cuidados en salud, en las cuales los modelos
de regresión pueden caracterizar adecuadamente la calidad de los procesos pero no
siempre pueden considerarse como perfiles. Es el caso de los modelos de regresión para
tiempos de vida. El hecho es que, en general, un tiempo de vida puede medirse a lo
sumo una vez en la misma unidad experimental. Consecuentemente, la naturaleza de las
respuestas en el monitoreo de modelos de regresión no necesariamente es multivariada.

Sin embargo, el objetivo principal del montireo de modelos regresión apunta a verificar
la estabilidad de las distribuciones n variables respuesta Yi, i = 1, · · · , n. Como todas
estas distribuciones están relacionadas entre śı por un único vector de parámetros, la
estabilidad de las primeras depende de la estabilidad de este último. De este modo,
es claro que tanto el monitoreo de modelos de regresión como el de perfiles comparten
el mismo propósito. Es aśı como las técnicas usadas para monitorear perfiles pueden
también usarse par monitorear acertadamente los modelos de regresión para tiempos de
vida.

Se presentan algunas metodoloǵıas para monitorear modelos de regresión para tiempos
de vida con respuesta Weibull, dependiendo de cómo están conformadas los conjuntos
de datos disponibles. El monitoreo del vector de parámetros de modelos de regresión
Weibull permite hacer conclusiones acerca del valor medio de la variable respuesta.

Se mostrará además que se puede encarar el monitoreo de modelos de regresión para
tiempos de vida mediante el rediseño de las metodoloǵıas de control que comúnmente
se usan para monitorear variables de calidad continuas o para monitorear perfiles.
Cuando la respuesta no es censurada, se encontró que es posible adaptar las cartas de
control convencionales para observaciones individuales de la caracteŕıstica de calidad,
al monitoreo del parámtero de forma de un modelo de regresión Weibull. Es posible
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también adaptar las metodologÃas de control usadas en el monitoreo de perfiles para
monitorear todo el vector de parámetros que caracterizan los modelos de regresión
Weibull. En ambos casos, el diseño de las cartas se basa en la normalidad asintótica del
estimador máximo verośımil del vector de parámetros. Por consiguiente, se hace necesario
implementar correcciones existentes a las estad́ısticas de monitoreo para que las cartas
de control trabajen aceptablemente aún cuando no se disponga de conjuntos de datos lo
suficientemente grandes.

Cuando un mecanismo de censura a derecha de tipo I opera sobre los tiempos de vida,
se puede realizar el monitoreo con la ayuda de cartas de control unilaterales de sumas
acumuladas basadas en la estad́ıstica de razón de verosimilitudes. Estos esquemas se
pueden utilizar para monitorear uno o varios parámetros que conforman el vector de
parámetros y prácticamente no tienen restricciones respecto a la cantidad de observaciones
necesarias para realizar el monitoreo. Los estudios de simulación sugieren que estos
esquemas son más efectivos que los métodos multivariados de promedios móviles pon-
derados exponencialmente cuando se desea detectar el deterioro de los procesos de calidad.

Palabras clave: Censuramiento, distribución de valor extremo, distribución Weibull, mod-
elo de regresión, monitoreo de perfiles, razón de verosimilitudes, tiempos de vida.





Abbreviations and conventions

In the following table, there are listed some abbreviations and conventions used throughout
this document.

Short expression Extended expression

ARL Average run length

ARL0 In-control average run length

ARL1 Out-of-control average run length

CL Central line

CUSUM Cumulative sum

EV RM Extreme value regression model (or models)

EWMA Exponentially weighted moving average

GLM Generalized linear model

LRT Likelihood ratio test

LCL Lower control limit

MEWMA Multivariate exponentially weighted moving av-
erage

MLE Maximum likelihood estimator

pdf Probability density function

SPC Statistical process control

UCL Upper control limit

WRM Weibull regression model (or models)

EV (a;b) The extreme value distribution with parameter
vector (a;b)

EV (0; 1) The standardized extreme value distribution

N(a;b) The normal distribution with parameter vector
(a;b)

N(0; 1) The standard normal distribution

W (a;b) The Weibull distribution with parameter vector
(a;b)

χ2
p The chi-square distributions with p degrees of

freedom

X ∼ D(A) The random variable X follows a known distri-
bution D with parameter vector A
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CHAPTER 1

Introduction

1.1 Statistical quality control

The use of statistical methods in quality improvement is increasingly common. Years ago,
the concept of quality was exclusively associated to manufacturing processes. Nowadays,
methods for quality improvement are applied not only in manufacturing processes but in
service operations as well. Success or fail of companies depend on the quality of goods
or services they produce. Companies are aware that quality improvement leads to an
increasing productivity and consequently to a reduction in the cost per produced unit.

Several definitions of quality can be found in specialized literature. Duncan [17], Ryan
[53] and Montgomery [36] present a wide discussion on this topic. All of them agree that
process quality is closely related to the satisfaction of consumer’s needs. They insist that
quality of products can be measured in terms of the number of defects in them.

1.2 Charting procedures

In 1924, Walter A. Shewhart first implemented control charts as an essential statistical
tool for quality improvement. In Shewhart [60], theoretical basis for statistical quality
control are established. Conceptually, a control chart is a statistical plot for analysing
and monitoring repetitive processes. The theoretical framework of charting procedures
states that the variability in the quality of a product is mainly due to the joint action
of both random and assignable causes. If the observations of a process satisfy certain
desirable properties and their variability is only due to random causes, the process
is said to be in control. Otherwise, if assignable causes are identified, the process is
said to be out-of-control. Thus, a control chart is a monitoring procedure for verifying
the state of a process. The main objective of charting is to detect the occurrence of
shifts in the process as soon as possible, so that corrective actions can be undertaken in
order to bring the out-of-control process back to previously established working conditions.

1
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The basic design of a control chart is explained in the following. Suppose that the quality
of a process is defined in terms of a random variable. For monitoring one or more of
the parameters characterizing the distribution of the quality variable, a control chart is
designed by using a statistic T that is related to the parameters we are interested in. The
statistic T is evaluated each time a new sample is taken from the process. It is clear that
all the T values are subjected to sampling fluctuations that are distributed according
to a certain random pattern. The central line CL and the control limits of the chart
corresponds respectively to the mean and some extreme values of the distribution of the
plotting statistic T .

For instance, if the vertical axis of a coordinate system is calibrated in terms of the
units of the plotting statistic T and the horizontal axis represent the sampling sequence
j = 1, 2, · · · , then the horizontal lines drawn through the estimated mean and the extreme
quantiles of the distribution of T represent a control chart for monitoring the process
mean. The horizontal line for the estimated mean is often referred to as the central line
CL and the ones for the extremes of the distribution, the upper control limit UCL and the
lower control limit LCL. The chart is said to signal if Tj > UCL or Tj < LCL indicating
a possible out-of-control state. The basic sketch of a control chart for monitoring the
process mean is shown in Figure 1.1.
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Figure 1.1. Sketch of a control chart

The use of control charts often requires data analysis in two phases. In Phase I,
the in-control values of the process parameters are estimated after removing unusual
observations with assignable causes from available historical data sets. Chart performance
in Phase I studies is usually measured in terms of the probability of obtaining at least
one charted point beyond the control limits. This is called the probability of a signal.

In Phase II, the main purpose is to monitor on-line data in order to quickly detect shifts in
the process from the in-control state determined by a Phase I analysis. Chart performance
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in Phase II studies is often measured in terms of the run length distribution. The average
run length (ARL) is defined as the mean of the total samples inspected until the control
scheme first signals.

1.3 Monitoring continuous variables

In the following, it will be addressed the design of a control chart for monitoring the mean
level of a process whose quality characteristic follows a normal distribution. However,
the basic idea of the design can be extended for monitoring any parameter, rather than
a location one, of any distribution, rather than the normal one. For more details about
control charts for monitoring single quality variables, the reader is referred to Vargas [66]
or Montgomery [36].

1.3.1 The X̄ chart

The X̄ chart shows the variation pattern of the sample mean. Let X ∼ N(µ;σ2) be a
quality variable characterizing a process. In phase II analysis, the distribution parameters
are known, so the chart is set to be

µ± zα/2
σ√
n

(1.1)

where α is the false alarm rate, that is chosen to reach a desirable ARL0, and n is the
size of the subgroup of observations at every monitoring moment. In expression 1.1, there
are presented the control limits in phase II of a conventional control chart whose central
line is CL = µ.

However, in the first stages of monitoring, in phase I analysis, the normal parameters are
usually unknown. Historical data sets collected from the process are used to estimate
the normal parameters along with the debugging of the information until the process
is considered to be stable. By assuming equal subgroup sizes n, on-line monitoring is
continued with the help of the chart

¯̄X ±A2R̄ (1.2)

where A2 = 3
d2

√
n

and the constants d2 are tabulated. The quantities ¯̄X and R̄ are

estimations of µ and σ based on the sample means and the sample ranges, respectively,
of the in-control historical subgroups.

Both charts given by (1.1) and (1.2) are classic Shewhart charts. Charts with control
limits defined by the α×100% percentile of the plotting statistic T are often referred to as
probability limit schemes. These are Shewhart-type charts and are especially useful when
the distribution of the plotting statistics is different from the normal distribution and/or
in the case of monitoring subgroups with varying in time sample sizes. Shewhart-type
charts are proved to be effective in detecting large sustained shifts in the mean of the
quality characteristic. The sketch in Figure 1.1 is a classic Shewhart-type chart.
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1.3.2 Enhanced control charts

Basically a control chart indicates a possible out of control situation when one or more
points are located outside the control limits while monitoring is being carrying out.
Additional criteria are sometimes used to increase the sensitivity of control charts to a
small process shift in order to respond more quickly to assignable causes. The Western
Electric Handbook [69] suggests a set of sensitivity rules for detecting non-random
patterns in control charts. Champ and Woodall [9] investigated the performance of the
average run length for the Shewhart control chart with several sensitivity rules. They
found out that using these rules improves control chart ability to detect smaller shifts in
the process mean. However, they also found out that the in control average run length
can be substantially degraded.

In order to avoid an excessive number of false alarms due to the use of sensitivity rules,
Reynolds et al. [49] proposed to vary the time interval between successive sampling
moments during process monitoring. The X̄ chart with variable sampling interval (VSI)
uses a short interval if the sample mean is close but not outside the control limits and a
longer one if the sample mean is close to the target value. Comparison studies showed
that the VSI chart is more efficient than the traditional chart using the fixed sampling
interval (FSI). Further studies showed similar results. Moreno and Vargas [37] show that
the VSI scheme for monitoring process dispersion is better than the FSI scheme. Reynolds
and Stoumbos [50] study various combinations of VSI control charts for detecting changes
in process level and / or dispersion.

Besides the VSI schemes, control charts with variable sample sizes (VSS) have also been
proposed. The main goal in this case aims to increase sample size when a plotting point
falls in a certain warning region and to reduce sample size when it is close to CL. The
performance of VSS charts has been studied by Prabhu et al. [47] and Costa [11].

1.3.3 CUSUM charts for the mean

Cumulative sum (CUSUM) charts were first proposed by Page [40]. Let us suppose that
detecting shifts from the target value µ0 of the mean level of the quality characteristic
X ∼ N(µ;σ2) with stable σ = σ0 is wanted. Basically, a CUSUM procedure consists of
plotting the cumulative sums of the standardized values Zj of the variable X obtained at
the j−th, j = 1, 2, · · · , monitoring moment. This is, the procedure is based on the sums

SU,j = max [0;SU,j−1 + Zj −K] (1.3)

and
SL,j = min [0;SL,j−1 + Zj + K] (1.4)

where Zj =
Xj−µ0
σ0

; SU,0 = SL,0 = 0 and K is the reference value.

The monitoring is stopped when any of the sums in (1.3) or (1.4) lies beyond the threshold
given by (−h;h), where h is chosen to reach a desirable ARL0. The scheme indicates a
possible increase in the mean if SU,j > h and a possible decrease if SL,j < −h. CUSUM
charts are proved to be effective in detecting small or moderate sustained shifts in the
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mean of the quality characteristic in phase II clearly. In Figure 1.2, a CUSUM chart for
standard normal observations is illustrated.
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Figure 1.2. CUSUM chart for standard normal observations with K = 0.5 and h = 4.07.

1.3.4 EWMA charts for the mean

Exponentially weighted moving average (EWMA) charts were first proposed by Roberts
[51]. Let us still suppose that detecting shifts from the target value µ0 of the mean level
of the quality characteristic X ∼ N(µ;σ2) with stable σ = σ0 is wanted. At the j−th,
j = 1, 2, · · · , monitoring moment, the EWMA statistic is set to be

EWj = λXj + (1 − λ)EWj−1 (1.5)

where 0 < λ ≤ 1 is the smoothing constant and Z0 = µ0. It is recommended to set the
value of the smoothing constant λ as small as possible. In this case, the EWMA statistic
is a weighted function that gives less relevance to newer observations. The performance
of the EWMA chart is more similar to that of the Shewhart chart as the smoothing
constant λ is closer to unity.

When the Xj are independent observations of the in-control process, we have that the
variance of the EWMA statistic (1.5) is given by

V ar(EWj) = σ2
EWj

=
λ
[
1 − (1 − λ)2j

]
2 − λ

σ2
0 (1.6)

The chart is then given by
µ0 ± LσEWj (1.7)
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where the constant L is chosen to reach a desirable ARL0. The scheme indicates a possible
increase in the mean if EWj > UCL and a possible decrease if EWj < LCL. EWMA
charts are proved to be effective in detecting small or moderate sustained shifts in the
mean of the quality characteristic in phase II. In Figure 1.3, an EWMA chart for standard
normal observations is illustrated.
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Figure 1.3. EWMA chart for standard normal observations with λ = 0.1 and L = 2.148.

1.4 Monitoring multivariate characteristics

In some applications, it is needed to monitor two or more quality characteristics of the
same product or process simultaneously. Let us suppose that the quality of a process is
formally represented by a p−dimensional random vector X = (X1, · · · , Xp)

′. In this case,
the interest is focused on how to use those p variables simultaneously to check the stability
of the process over time. In the following, it is assumed that the random vector X follows
a p−dimensional normal distribution with mean vector µ and covariance matrix Σ. Shifts
from the target value µ = µ0, for instance, can be detected by control charts based on
the Hotelling’s T 2 statistic.

1.4.1 Hotelling’s T 2-based methods

As in the case of monitoring quality variables, Alt and Smith [3] have established two
phases of analysis in the design of a multivariate chart for the mean. Phase I is divided
into two stages: a retrospective and a prospective one. The main goal of the retrospective
stage aims to verify process stability when initial multivariate observations were taken.
In the prospective stage, it is tested whether the process still remains under control when
future observations are being collected.
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At first stages of monitoring, process parameters are usually unknown and have to be
estimated from a set of m observations of the quality vector X. Let Xj = (Xj1, · · · , Xjp)
be the j−th, j = 1, · · · ,m, observation of X. Let also X̄ and S be the estimates of
the mean vector µ and the covariance matrix Σ, respectively, based on the available m
observations. The Hotelling’s T 2 statistic for the j−th observation is defined to be

T 2
j = (Xj − X̄)′S−1(Xj − X̄) (1.8)

In the retrospective stage of phase I, the UCL of the chart is set to be

UCL =
(m− 1)2

m
B
(
p

2
,
m− p− 1

2
, 1 − α

)
(1.9)

where B(a, b, 1−α is the (1−α)×100% percentile of the beta distribution with parameters
a and b and α is the nominal false alarm rate.

When the chart signals, the corresponding multivariate must be investigated for possible
assignable causes. Observations corresponding to signaling points due to assignable causes
have to deleted from the initial set of observations and the UCL has to be recalculated
based on the remaining observations. This procedure must be continued until there are
no signaling points.

In the prospective stage of phase I, the UCL is set to be

UCL =
p(m′ + 1)(m′ − 1)

m′(m′ − p)
F(p,m′−p,1−α) (1.10)

where F(p,m′−p,1−α) is the (1 − α) × 100% percentile of the Fisher’s distribution with p
and m′−p degrees of freedom and m′ is the number of remaining observations with which
the process parameters were finally estimated at the end of the prospective stage of phase I.

Once the process is assumed to be stable, monitoring is continued in phase II with the
help of the statistic

T 2
j = (Xj − µ0)

′Σ−1
0 (Xj − µ0) (1.11)

where µ0 and Σ0 are the last estimates of the process parameters obtained at the end of
the prospective stage of phase I.

The upper control limit for phase II is set to be

UCL = χ2
(p,1−α) (1.12)

The chart signals as soon as T 2
j > UCL indicating a possible out-of-control situation.

Other Hotelling’s T 2-based methods have been studied in specialized literature. Lowry
and Montgomery [29] present a review of multivariate control charts. Sullivan and Woodall
[64] recommend to estimate the covariance matrix using the vector of differences between
successive single multivariate observations. Vargas [65] shows that multivariate control
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charts that use estimators of the minimum volume ellipsoid is efficient in the presence of
outliers. Vargas [68] presents a complete overview on T 2-based chart designing.

1.4.2 The multivariate EWMA chart

Lowry et al. [30] propose the multivariate EWMA chart often referred to as the MEWMA
chart. At the j−th monitoring moment, j = 1, 2, · · · , the MEWMA statistic is defined to
be

Zj = Λ(Xj − µ0) + (Ip − Λ)Zj−1 (1.13)

where Zj = 0p and Λ = diag(λ1, · · · , λp) with 0 < λl ≤ 1, l = 1, · · · , p.

The MEWMA chart signals as soon as

T 2
j = Z′

jΩ
−1
j Zj > h (1.14)

where Ωj is the covariance matrix of Zj and h is chosen to reach a desirable ARL0.

When there are no special reasons for assigning different weights to past observations, it is
assumed the same weight λ to all the components of the quality vector X = (X1, · · · , Xp)

′

and the MEWMA statistic is then given by

Zj = λ(Xj − µ0) + (1 − λ)Zj−1 (1.15)

and

Ωj =
λ
[
1 − (1 − λ)2j

]
2 − λ

Σ0 (1.16)

where Σ0 is the in-control value of the covariance matrix Σ.

1.5 Monitoring regression models

In most of the existing literature, the monitoring of regression models is a special case of
profile monitoring. However, in industrial or healthcare applications, a regression model
cannot always adequately represent a profile data structure in the sense given by Woodall
[71]. This is clearly the case of regression models for lifetimes. However, it is clear that
profile monitoring and regression monitoring share the same purpose, so techniques from
profile monitoring can be used for monitoring regression models for lifetimes as well.

1.5.1 Profile monitoring

There are a number of practical situations, where the state of a process or product is
better characterized by a functional relationship between a multivariate response variable
and one or more explanatory variables. This relationship is usually referred to as profile.
The most traditional way to represent profiles is by using an appropriate regression model
which can be linear or non-linear.
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An increasing attention in recent years has been paid to monitoring profiles. Profile
monitoring mainly focuses on checking the stability of the parameter vector characterizing
the basic regression model over time based on observed data. In profile monitoring, it
is assumed that N > 1 values of the response multivariate quality characteristic are
measured along with the corresponding values of a p−dimensional vector of explanatory
variables or covariates, reflecting the location of the measurement on a process. Woodall
et al. [72] and Woodall [71] provide complete overviews on profile monitoring.

There are many applications where the quality of a process can be expressed as a profile.
Linear profiles appear to be more common in industrial applications. Kang and Albin [24],
for instance, gives a calibration example in semiconductor manufacturing. Applications of
non-linear profiles are given by some other authors. Amiri et al. [5] discuss a case study
on monitoring polynomial profiles in the automotive industry. William et al. [70] consider
the non-linear profiles of a dose-response curve to monitor the quality of bioassays. For
more examples on profile monitoring please read Noorossana et al. [39].

1.5.2 Phases I and II in profile monitoring

As in the case of monitoring variables, monitoring profiles can also be studied via two
phases. In profile monitoring, Phase I consists of determining the stability of the process
by estimating profile parameters based on available historical data sets. Mahmoud and
Woodal [32] present a method for Phase I analysis of linear regression models based
on indicator variables. Mahmoud et al. [31] propose a change point method to detect
sustained shifts in linear profiles in Phase I. Kazemzadeh et al. [25] present three methods
for monitoring polynomial profiles in Phase I.

In Phase II, the main goal aims to monitor future data sets in order to detect departures
from the in-control parameter vector (determined in a Phase I analysis) as soon as possible.
For monitoring linear profiles in Phase II, Kang and Albin [24] propose the use of a
multivariate chart for checking the stability of parameter vector in combination with an
EWMA chart for ckecking the residuals of the classic linear regression model. In the same
direction, Zhang et al. [76] propose an EWMA chart based on the likelihood-ratio test
(LRT) and Saghaei et al. [54] propose a CUSUM chart. In Amiri et al. [4], a dimension
reduction method for monitoring multiple linear regression profiles is presented.

1.5.3 Generalized linear profiles

Generalized linear models (GLM) have also been used for representing profiles. Mon-
itoring GLM profiles is completely feasible by taking into account the asymptotic
distributional properties of the maximum likelihood estimator (MLE) of the parameter
vector characterizing the basic model. Yeh et al. [74] and Shang et al. [58] propose
methods for monitoring logistic profiles in Phase I and Phase II processes, respectively.
The Poisson response has been studied by Amiri et al. [6], Shadman et al. [55, 56]. A
method based on the use of U statistics for phase II monitoring of general linear profiles
with autocorrelation in the error terms is presented in Khedmati and Niaki [26].
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Different methodologies have been developed and modified in order to be applied for
monitoring GLM profiles. The use of LRT-based methods for monitoring GLM profiles
is quite common in recent years. As our interest is focused on LRT-based charts for
monitoring Weibull regression models (WRM) in Phase II, we will briefly review the
LRT, LRT-EWMA and MEWMA control charts proposed in Soleymanian et al. [61] for
monitoring the parameter vector ξ of binary profiles in Phase II processes. At the j−th
monitoring moment, j = 1, 2, · · · , the LRT statistic can be expressed as

LRTj = 2
[
ℓ(ξ̂j) − ℓ (ξIC)

]
(1.17)

where ℓ(�) is the log-likelihood function of the basic regression model and ξ̂ and ξIC are
the MLE and the in-control value of the parameter vector ξ, respectively. For the case of
large sample sizes, the LRT statistic given by (1.17) follows a chi-square distribution with
p degrees of freedom

(
χ2
p

)
. Accordingly, if LRTj ≤ χ2

1−α;p then the j−th profile is ruled
to be in-control.

Soleymanian et al. [61] also propose first normalize the LRT values obtained in (1.17) and
then evaluate the LRT-EWMA statistic by

LEj = λNLj + (1 − λ)LEj−1 j = 1, 2, · · · (1.18)

where NL is the normalized value of the corresponding LRT statistic, λ is the smoothing
parameter and LE0 = 0. The proposed charts signals when LEj > L λ

2−λ . The designing
constant L is chosen in such a way that a specified ARL0 is achieved.

The MEWMA monitoring statistic is defined to be

Mj = E′
jEj j = 1, 2, · · · (1.19)

where
Ej = λZj + (1 − λ)Ej−1 j = 1, 2, · · · (1.20)

and
Zj = ℑ1/2(ξ̂ − ξIC) j = 1, 2, · · · (1.21)

with ℑ being the asymptotic information matrix. Soleymanian’s version of the MEWMA
chart signals due to out-of-control state as soon as Mj > L λ

2−λ , where the constant L is
chosen to reach a desirable ARL0.

1.6 Monitoring lifetimes

In some practical situations the time from a well-defined starting point until certain
event occurs, often referred to as lifetime, is of interest. The Weibull model, due to its
flexibility, has been found to provide a good description of many types of lifetime data.
It has been widely used to model durability of manufactured items or the occurrence of
tumours in medical studies.
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In the context of statistical process control (SPC), Woodall and Montgomery [73] see
lifetime monitoring as a research area with considerable potential. Control charts for
monitoring the mean value of lifetime observations have been developed in last decades.
Steiner and MacKay [63] proposed five Shewhart-type charts to detect shifts in the
process mean with censored lifetimes for Weibull and exponential models. Zhang and
Chen [75] propose one-sided EWMA charts and Johnson [23] propose CUSUM charts
for detecting shifts in the Weibull mean assuming that the shape parameter is known.
Vargas and Montaño [67] extended the study by Steiner and MacKay [63] to the case of
Weibull-distributed lifetimes.

In more recent research, Dickinson et al. [15] present charting procedures for monitoring
shifts in the scale parameter of Type I right-censored Weibull lifetime data for a fixed
value of the shape parameter. They are especially interested in detecting decreases in the
scale parameter that lead to decreases in the mean value of Weibull-distributed lifetimes.
Shafae et al. [57] compare CUSUM control charts for monitoring the mean of time
between events of Weibull distributed observations.

Monitoring the shape parameter of Weibull distributed observations has also been a
research topic of great concern. Pascual [42] presents EWMA schemes based on two
different unbiased estimators of the Weibull shape parameter. Pascual and Zhang [45]
suggest Shewhart-type control charts based on the extreme value sample range. Pascual
and Nguyen [44] and Akhundjanov and Pascual [2] present control charts based on moving
range of single observations. Pascual and Li [43], Guo and Wang [19] and Chan et al. [10]
developed different methods for monitoring the Weibull shape parameter when available
samples are type II censored. Haghighi and Castagliola [20] proposed the monitoring of
the Weibull shape parameter under progressively type II censored data. Haghighi et al.
[21] proposed the monitoring of Weibull quantiles under type II censoring.

In other applications, a set of variables that could be correlated to lifetimes are involved.
The most effective way to assess the effect of these explanatory variables on lifetimes is
by using an appropriate regression model. The WRM with common shape parameter is
the most traditionally used parametric model to do so. Actually, there are not sufficiently
developed techniques for monitoring any kind of regression models beyond the research
area of profile monitoring.

1.7 Motivation

Monitoring regression models for lifetimes is a topic of great relevance. In last two
decades, companies have been asked to implement quality improvement programs.
These programs often include annually or semi-annually conducted essays consisting of
accelerated tests to determine the elapsed time until an event of interest occurs. Observed
elapsed times can depend on the experimental conditions they are measured. These
experimental conditions can be formally represented by n different fixed values of a set of
covariates. We would be interested in checking the stability of the elapsed times measured
in the same conditions over time. This is clearly a control process issue.
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In this document, some methodologies for monitoring WRM are presented. We propose
LRT-based procedures for monitoring the mean response of the WRM throughout the
monitoring of one or more of the regression coefficients in some special cases. In the case
of monitoring regression models with uncensored times, these methodologies represent
adaptations of the existing ones to the case of our particular interest. The fact is that these
methodologies are based on the asymptotic normality of the MLE of the parameter vector
characterizing the WRM. However, for on-line monitoring, we are really dealing with finite
sizes of the available data sets. In addition, distributions for modelling lifetimes are often
severely skewed and, in this case, the asymptotic distributional properties of the parameter
vector MLE just hold for quite large sample sizes. Thus, the existing methodologies have
to be modified in order to make them work as fair as in the asymptotic case but with finite
data-set dimensions.

1.8 Outline of the thesis

Chapters 2 and 3 are devoted to monitoring WRM with uncensored response. In
Chapter 2, the monitoring of the common WRM shape parameter is presented. It
is assumed that the regression coefficients β1, · · · , βp−1 are stable but not necessarily
known. It is proposed the monitoring by adapting the conventional EWMA, CUSUM
and Shewhart-type charts for single normal observations to the case of the WRM shape
parameter. The monitoring is completely feasible by taking into account the asymptotic
distributional properties of the MLE of the log-transformation of the WRM shape pa-
rameter. However, this circumstance has to be faced carefully. In the case of the Weibull
distributed-response, preliminary simulations suggest that the normal approximation of
the marginal distribution of the log-transformation of the shape parameter MLE is just
valid for regression models whose dimension is greater than 1500 approximately. Having
such a data-set dimension for monitoring purposes is not a realistic issue.

The main goal in Chapter 2 aims to monitor the common WRM shape parameter when
relatively small and moderate data sets are available. This is possible by using control
charts based on the relative LRT statistic defined for the log-scale parameter of the
log-transformation of the Weibull-distributed response. Some existing adjustments of
order OP (N−3/2), where N is the data-set dimension, are needed in order to correct the
LRT statistic for monitoring purposes when non-large enough data sets are available. It
was found out that the resulting schemes work fairly acceptable for N ≥ 30. Detection
skills of the studied schemes improve as data-set dimension increases.

In Chapter 3, the monitoring of the entire WRM parameter vector is presented. As in this
case the main purpose of monitoring aims to check the stability of the WRM parameter
vector over time, we feel that techniques from profile monitoring can be adapted for
successfully monitoring the WRM parameter vector with not sufficiently large data sets.
This is completely possible by using one-sided control charts based on the deviance
form of the relative LRT statistic for the log-transformation of the Weibull-distributed
response. As in the case of monitoring a single parameter, some existing adjustments
of order OP (N−3/2), often referred to as Bartlett’s adjustments, are needed in order to
correct the deviance form of the LRT statistic for monitoring purposes when non-large
enough data sets are available. It was also found out that the resulting schemes work
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fairly acceptable for N ≥ 30. The detection abilities of the studied control schemes
improve when data set dimension increases as well. Actually, the methodology described
in Chapter 3, developed for a single scalar parameter (p = 1) in the WRM parameter
vector, represents a special case of the one presented in this chapter.

In Chapter 4, it is presented a LRT-based CUSUM methodology for monitoring the WRM
paremeter vector when a type I right-censoring mechanism is operating. The monitoring
of one of the regression coefficients of the WRM parameter vector, leading to decreases
in the mean response, is presented for a fixed value of the shape parameter. The fact is
that changes in the slope of the linear specification for the scale parameter of the WRM
lead to changes of the same kind in the mean response. Particularly, the main interest is
focused on detecting decreases in the slope that lead to unwanted decreases in the mean
of the lifetime response. Thus, one-sided CUSUM charts were designed. The impact that
the fixed value of the shape parameter, the data-set dimension, the theoretical censoring
rate and the desired shift to be detected have on the performance of the schemes was
established via simulation. The resulting schemes can be used for monitoring decreases
in the mean response due to changes in all regression coefficients. Increases in the mean
response due to changes in the parameter vector for a fixed value of the shape parameter
can be detected as well. However, it is worth mentioning that increases in the mean
response lead to undesirable higher censoring rates.

The performance of the proposed CUSUM procedures was compared with that of the
MEWMA chart first proposed by Zou et al. [78] and adapted by Soleymanian et al. [61]
for monitoring binary profiles. It was found out that the CUSUM chart outperform the
adapted version of the MEWMA chart in most of the studied cases.

An illustrating example and some concluding remarks referring to a particular method-
ology are provided at the end of the respective chapter. General conclusions and some
directions of our future research work are present in the last two sections of this document.





CHAPTER 2

Monitoring the WRM shape parameter

2.1 The problem

Let us suppose that at the j−th moment in time, j = 1, 2, ..., a data set with the structure
shown in Table 2.1 is available. In Table 2.1, x′

i, i = 1, ..., n, represent n different levels
or settings of the same experimental situation. These may be n different values of a
(p − 1)-dimensional vector of explanatory variables. This is, x′

i = (x1i, . . . , xp−1,i). The
values of x′

i are assumed to be fixed in repeated sampling. In the i−th level, i = 1, . . . , n,

y
(j)
ik represent the k−th observation, k = 1, . . . ,mi, of the random variable Yi measured

at the j−th moment. The variables Yi, i = 1, ..., n, represent the response variable in
the i−th experimental level. The quantities mi are the total observations in the i−th
level and are also set to be fixed for every j value. Thus, for a given experimental level

i = 1, · · · , n, the set of values y
(j)
ik can be treated as a random sample of size mi taken

from the population Yi at the j−th moment. We have
∑n

i mi = N observations at the
j−th moment. In the following, we will refer to N as the data-set dimension and will
treat it as a sample size.

x′
1 x′

2 · · · x′
n

y
(j)
11 y

(j)
21 · · · y

(j)
n1

y
(j)
12 y

(j)
22 · · · y

(j)
n2

...
... · · ·

...

y
(j)
1m1

y
(j)
2m2

· · · y
(j)
nmn

Table 2.1. Data structure at the j−th moment

For further discussion, in order to simplify the writing, the time super index will be
avoided hereafter. It will be assumed that the reader understands that the analysis we
will present has to be made at every j−th moment. We will write the time super index
again if it is needed. Let us suppose that the variables Yi share the same distribution
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with parameter vector depending on the level they are observed. Let Θi be the parameter
vector characterizing the distribution of Yi at the i−th level. As the parameter vector
Θi may likely define the mean and the variance of Yi, we may be interested in verifying
whether the estimations Θ̂i obtained at every j−th moment come from a known basic
model.

In the context of GLM, the interest is often focused on another parameter vector ξ
whose dimension is lower than n and links one or more of the parameters in Θi with the
experimental settings x′

i. In other words, we can indirectly know about the distributions
of the variables Yi over time by knowing what is exactly happening with the parameter
vector ξ at the j−th moment. This is clearly a control process issue.

Formally, let be a process in which, at the j−th moment, a linear dependence between
the response variables Yi and the fixed x′

i values reasonably satisfies the data structure in
Table 2.1. This relationship can be analytically written as

y
(j)
ik = x′

iβ + σz
(j)
ik , j = 1, 2, . . . (2.1)

where β = (β1, ..., βp−1)
′ is a vector of unknown constants. It is usual to set xi1 = 1 such

that β1 is the intercept of the model. In model (2.1), σ > 0 is the scale parameter and
the terms zik at the j−th moment are independent observations of the random variable
Z having a known distribution. For further discussion, it will be assumed that the vector
ξ = (β′, φ)′, where φ = log σ, characterizes model (2.1). The reparametrization φ = log σ
is needed because the variables Yi we will be interested in represent a log-transformation
of Weibull-distributed time measurements.

Let us suppose further that we are interested in testing over time the hypothesis

H0 : σ(j) = σ0

H1 : σ(j) = d3σ0, d3 > 0
(2.2)

This is, we are interested in detecting a d3 × 100% shift (increase or decrease) in the
known value of the scale parameter σ0. As it will be seen later, for stable regression
coefficients β1, · · · , βp−1, both increases and decreases in σ0 imply a lower mean value
of the responses Yi at all experimental levels and, consequently, the deterioration of
the process. It is clear that hypothesis (2.2) can be equivalently expressed in terms of
φ = log σ.

Hypothesis (2.2) can be tested over time by using LRT-based procedures. In this case, the
use of LRT-based methods can lead to the use of conventional schemes for monitoring a
continuous quality variable. However, distributions for modeling times-to-event data are
often skewed, so that the use of the LRT statistic for designing control charts may be
restrictive to large enough data sets. As it will be explained later, some adjustments to
the LRT statistic are needed so that it can be used in conventional charting procedures
for monitoring the parameter φ when non-large enough data sets are available.
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2.2 Using existing methods for monitoring the WRM shape
parameter

In general linear modeling, LRT-based procedures allow partitioning the parameter vector
characterizing the basic model in order to make inferences about the parameters we
are interested in. The rest of the parameters in the vector are assumed to be nuisance
parameters. In model (2.1), let us suppose that we are interested in the parameter
φ = log σ of ξ = (β1, · · · , βp−1, φ)′ and let R(φ) be the signed square root of the LRT
statistic defined for the single parameter φ as it is indicated in expression (2.9). It is
known that R(φ) approximately follows the standard normal distribution as N → ∞.

In the context of SPC, it is possible to check the stability of model (2.1) over time by
checking the stability of the parameter φ if the parameters β1, · · · , βp−1 are known to
be stable. This can be achieved, for instance, by taking advantage of the asymptotic
distributional properties of R(φ) with the help of a conventional EWMA control chart.

Crowder’s EWMA of R(φ) EWMA of Rc(φ)

L method N = 30 N = 50 N = 100 N = 30 N = 50 N = 100

2.00 73.28 22.66 30.50 42.27 72.64 73.17 73.30
(68.45) (17.47) (25.03) (36.86) (67.70) (68.19) (68.67)

2.25 125.10 29.18 41.10 60.79 124.18 125.59 124.91
(119.26) (22.76) (24.26) (54.11) (118.18) (119.37) (118.93)

2.50 223.35 37.94 56.23 89.10 220.37 223.50 222.75
(216.45) (30.16) (48.13) (80.66) (213.11) (215.58) (215.80)

2.75 420.78 50.19 67.43 101.26 414.79 420.51 421.30
(412.83) (40.53) (59.18) (98.04) (404.96) (413.14) (413.00)

3.00 842.15 68.30 84.54 121.19 823.55 832.73 846.74
(833.19) (57.56) (73.18) (110.49) (815.39) (827.77) (840.54)

Table 2.2. Approximated ARL0 for the EWMA charts based on R(φ) and Rc(φ) with λ = 0.1
and different N and L values.

For illustrating purposes, let us suppose for a moment that N = 30 is a large enough
value of the data-set dimension so that the standard normal approximation of R(φ)
defined as in (2.9) is valid. We built an EWMA chart based on R(φ) with smoothing
parameter λ = 0.1 for checking the stability of φ in a simple WRM with xi = log (10i)
and ξ = (β1, β2, φ)′ = (3; 2; 0.4055)′. Approximated ARL0 for different values of the
data-set dimension N ≤ 30 and the chart designing constant L are shown in Table 2.2.
For each combination of designing parameters, ARL0 in the table were obtained via
simulation by generating 50000 run length values. The corresponding UCL was set to
be that of the conventional EWMA chart with smoothing parameter λ = 0.1 for single
normal observations. An estimation of the respective standard deviation of the run length
values is reported in brackets.

The second column of Table 2.2 contains the ARL0 values of the conventional EWMA
chart with λ = 0.1 for single normal observations. Reported ARL0 values were obtained
by solving a Fredholm’s integral of the second kind for different values of the chart
designing parameter L. The values were taken from Crowder [12]. As we have assumed
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that N = 30 is a sufficiently large value of the data-set dimension, then R(φ) should be
normal-distributed approximately and the EWMA chart based on R(φ) should exhibit
a similar performance to that reported in the second column of Table 2.2 for the same
explored chart designing parameters and N ≥ 30. As it can be seen in Table 2.2, the
performance of the EWMA chart based on R(φ) is substantially different from that of
the conventional EWMA chart for single normal observations for all reported N values.
Although it is noted that chart performance is closer to the expected one as N increases.
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(d) N=100
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Figure 2.1. Normal approximation for the distribution of R(φ), graphics (a)-(b), and the distri-
bution of Rc(φ), graphics (c)-(d), for different values of the data-set dimension N of
the WRM model yik = 3 + 2 log (10i) + 1.5zik.

The fact is that the standard normal approximation of R(φ) holds just asymptotically
and the reported values of N are not large enough. Graphics (a) and (b) of Figure 2.1
clearly illustrate the departure of the distribution of R(φ) (in black) from the standard
normal distribution (in red) when N = 30 and N = 100, respectively. For each case, the
distribution of R(φ) was simulated by generating 100000 values from the simple WRM
with xi = log (10i) and ξ = (β1, β2, φ)′ = (3; 2; 0.4055)′.

In addition, it is known that the values of R(φ) depend on the MLE of φ. Thus, let φ̂ be
the MLE of φ. It is also well known that under certain mild conditions φ̂ asymptotically
follows a normal distribution with mean value φ and variance given by ℑ−1

φ̂ , where ℑ−1
φ is

the corresponding element of the observed covariance matrix ℑ−1. Table 2.3 shows some
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quantiles Q∗, the mean and the variance of the distribution of U(φ) = (φ− φ̂)/ℑ−1/2
φ̂ for

different values of the data-set dimension N . The same quantities for the standard normal
distribution are reported in the last row of Table 2.3. It can be noted that the distribution
of U(φ) is close to the standard normal distribution just for N ≥ 1500 approximately. This
has a relevant practical implication: for monitoring the parameter φ of a simple WRM,
we should have a data set with the structure in Table 2.1 containing 1500 observations at
least at every monitoring moment j = 1, 2, · · · . This is clearly not a realistic issue, even
less for monitoring purposes.

N Q0.025 Q0.25 Q0.75 Q0.975 Mean Variance

30 -1.5405 -0.3183 1.0864 2.5528 0.4036 1.0940
50 -1.6181 -0.3931 0.9897 2.4079 0.3137 1.0557

100 -1.7118 -0.4740 0.8902 2.2655 0.2185 1.0276
500 -1.8455 -0.5840 0.7747 2.0918 0.0994 1.0101

1000 -1.8752 -0.6126 0.7372 2.0501 0.0668 1.0038
1500 -1.8920 -0.6227 0.7286 2.0314 0.0555 1.0022
2000 -1.8988 -0.6258 0.7241 2.0184 0.0498 0.9995

N(0;1) -1.9600 -0.6745 0.6745 1.9600 0.0000 1.0000

Table 2.3. Simulated distribution of the MLE of φ for different values of the data-set dimension
N of the WRM model yik = 3 + 2 log (10i) + 1.5zik.

Consequently, the need of making adjustments to the existing charts arises. We proposed
to use Bartlett’s adjustments to the relative LRT statistic presented in DiCiccio [14] to
improve the performance of LRT-based charts. Indications on how to make corrections to
the relative LRT satistic and, consequently, to R(φ) are addressed in Section 2.3.2. The
implementation of such adjustments to R(φ) leads to the corrected statistic Rc(φ), whose
distribution looks more like the standard normal distribution (see the graphics (c) and (d)
in Figure 2.1) for relatively small or moderate N values and makes the performance of
the EWMA chart based on Rc(φ) be closer to that of the EWMA chart for single normal
observations (see the last three columns of Table 2.2).

2.3 Theoretical framework

2.3.1 The Weibull and the extreme value models for lifetimes

Let the random variable T denote Weibull-distributed times. The probability density
function (pdf) and the survivor function of the Weibull distribution with scale parameter
θ > 0 and shape parameter γ > 0, respectively, are

f(t) =
γ

θγ
tγ−1 exp

[
−
(
t

θ

)γ]
, t > 0 (2.3)

and

S(t) = exp

[
−
(
t

θ

)γ]
, t > 0 (2.4)

The mean and the variance of the Weibull distribution are E(T ) = θΓ
(
1 + γ−1

)
and

V (T ) = θ2
[
Γ
(
1 + 2γ−1

)
− Γ2

(
1 + γ−1

)]
, where Γ(�) is the gamma function.
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Let now be Y = log T , where T ∼ W (θ, γ). The random variable Y is said to follow the
smallest extreme value distribution, often referred to as the Gumbel distribution, with
location parameter −∞ < β < ∞ and scale parameterσ > 0. Shortly written, we have
Y ∼ EV (β;σ) with EV symbolizing the extreme value distribution. The pdf and the
survivor function of a random variable Y following the smallest extreme value distribution
respectively are

f(y) =
1

σ
exp

[
y − β

σ
− exp

(
y − β

σ

)]
, −∞ < y < ∞ (2.5)

and

S(y) = exp

[
− exp

(
y − β

σ

)]
, −∞ < y < ∞ (2.6)

It is easy to show that the parameters of both the Weibull and the smallest extreme value
distributions are linked by the expressions β = log θ and σ = γ−1.

The EV (0, 1) distribution is the standardized extreme value distribution. Clearly, if
Y ∼ EV (β, σ), then (Y − β)/σ ∼ EV (0, 1). The mean and the variance of the general

extreme value distribution are β − νσ, and
(πσ)2

6
, respectively, where ν = 0.5772... is the

Euler’s constant. More details about the Weibull and the extreme value distributions can
be read in Lawless [27] or Martinussen and Sheike [33].

Data often include explanatory variables related to time measurements. A regression
model is an important tool to take into account the heterogeneity of the experimental
units. In generalized linear modeling, it is possible to construct a regression model by
specifying a relationship between one or more model parameters and a certain covariate
pattern. In the context of SPC, let be n independent settings of the same experimental

situation at the j−th moment. For the i−th setting, i = 1, ..., n, let T
(j)
i denote lifetimes

measured at the j−th moment. If it is assumed that T
(j)
i ∼ W (θi, γ), then WRM and the

EVRM are related by the expression (2.1) by making y
(j)
ik = log t

(j)
ik . This is, y

(j)
ik represents

the log-transformation of the k−th time observation measured in the i−th setting of the

experiment at the j−th moment. In this case, Yi ∼ EV (x′
iβ, σ) and the terms z

(j)
ik are

independent observations of the variable Z ∼ EV (0, 1). More about the WRM and the
EVRM can be read in Lawless [27].

2.3.2 Estimation and inference in the WRM

Let (x′
i, yik), i = 1, . . . , n; k = 1, . . . ,mi, be a random data set of N observations taken from

model (2.1) at the j−th moment. It is possible to estimate the p-dimensional parameter
vector ξ = (β′, σ)′ characterizing model (2.1) at every j−th moment. The likelihood
function for β and φ = log σ at the j−th moment, when there are no censored observations,
is given by

ℓj(ξ) = −Nφ +
n∑
i=1

mi∑
k=1

[
yij − x′

iβ

eφ
− exp

(
yij − x′

iβ

eφ

)]
(2.7)

The MLE of the parameter vector ξ at the j−th moment is obtained by solving the
equation system defined by Up = 0p, where the components of the p−dimensional vector
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U are the first order partial derivatives of the likelihood function (2.7) respect to ξ. The
system must be solved numerically by a numerical method.

Let ξ̂ = (β̂
′
, φ̂)′ be the MLE of the parameter vector ξ. It is well known that under

certain regularity conditions the vector ξ̂ follows a p−dimensional normal distribution
with mean vector ξ and covariance matrix ℑ−1, where ℑ is the information matrix,
when N → ∞. Details on how to proceed with the Newton-Raphson method for
finding ξ̂ and estimating ℑ can be read in Lawless [27]. An approximated method for
estimating the asymptotic information matrix ℑ is presented in Paul and Thiagarajah [46].

DiCiccio [14] presents some interesting results on how to make approximate inference
about the parameter vector ξ = (β′, φ)′ characterizing model (2.1) for non-large enough
N . In the following discussion, we will address to some aspects of his work that we have
adapted to the special case of our interest.

According to DiCiccio [14], several authors as Fraser [18] have stated that inference about
the parameters β and φ should be made conditionally on the vector ẑ of the standardized
residuals ẑij = (yij − x′

iβ̂)/σ̂. The joint conditional density of the pivotal quantities

P1 = (β − β̂)/σ̂ and P2 = φ− φ̂ given the vector ẑ is known to have an intractable form.
Accurate approximated LRT-based methods for making inference about ξ = (β′, φ)′ are
available. For instance, let the parameter vector ξ be partitioned in the form (ϕ′,ψ′)′ so
that, for convenience and simplicity, the sub-vector ϕ consists of the first q components of
ξ. By fixing the value of ϕ, the relative LRT statistic for that parameter is defined to be

Λ(ϕ) = 2ℓ(ξ̂) − 2ℓ(ϕ, ψ̃ϕ) (2.8)

where ξ̂ is the unrestricted MLE of the parameter vector ξ and ψ̃ϕ is the MLE of the
parameters ψ when it is assumed that ϕ is fixed at the given value.

If the parameter vector ξ = (β′, φ)′ is partitioned so that the sub-vector ϕ consists of
a single parameter, for instance ϕ = φ, then the signed square root of the relative LRT
statistic for φ is defined to be

R(φ) = sign(φ0 − φ̂)
√

Λ(φ) (2.9)

where φ0 is the assumed fixed value of φ.

It can be shown that the marginal distributions of Λ(ϕ) and R(φ) tend to the chi-square
distribution with one degree of freedom and to the normal standard distribution,
respectively, as N increases. Hinkley [22] has shown that these limits also hold for
the distribution of Λ(ϕ)|ẑ and R(φ)|ẑ. More details about the use of the relative LRT
statistic conditioned by the residuals of the basic model for making inference can be read
in Lawless [28].

The standard normal approximation to the conditional distribution of R(φ) has an error
of order OP (N−1/2) that can be reduced to order OP (N−3/2) by taking its conditional
mean and variance into account. Formulae for these adjustments are presented in the rest
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of this section. Corrections to the signed root of the relative LRT statistics for a single
parameter have been discussed very generally by Barndorff-Nielsen [7] and in the case of
location-scale models by DiCiccio [13].

In the following, we will adopt the convention according to which the partial derivatives
of the likelihood function (2.7) are dlr... = [∂1+1+...ℓ(ξ)/∂ξl∂ξr . . . ]ξ=ξ̂, l, r, t, u = 1, ..., p.

Let also ((vlr)) = ((d2lr))
−1 = ((ℑlr))−1 be the elements of the observed covariance matrix.

Then, according to Sprott [62] and DiCiccio [14], from the Taylor expansion of Λ(φ) about
φ̂, with an error of order OP (N−3/2), it follows that

Λ(φ) ≈ U2 − 1
3AU

3 − 1
12BU4 (2.10)

and
R(φ) ≈ U − 1

6AU
2 − 1

72(3B + A2)U3 (2.11)

where

U =
φ− φ̂
√
vpp

=
log σ − log σ̂

√
vpp

(2.12)

A = v−3/2
pp

p∑
l=1

p∑
r=1

p∑
t=1

dlrtvlpvrpvtp (2.13)

and

B = v−1/2
pp

(
p∑
l=1

p∑
r=1

p∑
t=1

p∑
u=1

dlrtuvlpvrpvtpvup + 3

p∑
l=1

p∑
r=1

SlSrJlr

)
(2.14)

with

Sl =

p∑
r=1

p∑
t=1

dlrtvrpvtp (2.15)

and
Jlr = vlr − v−1

pp vlpvrp (2.16)

By making calculations similar to those described in Hinkley [22], the conditional mean
of R(φ) is

m ≈ 1

6
v−1/2
pp

p∑
l=1

p∑
r=1

p∑
t=1

dlrtvlp

(
3vrt −

vrpvtp
vpp

)
(2.17)

and the conditional variance of R(φ) is

s2 ≈ 1 + 1
4C + 1

12D −m2 (2.18)

where

C =

p∑
l=1

p∑
r=1

p∑
t=1

p∑
u=1

dlrtu(vlrvtu − JlrJtu) (2.19)

and

D =

p∑
l=1

p∑
r=1

p∑
t=1

dlrt

(
p∑
a=1

p∑
b=1

p∑
c=1

dabc [3M1 + 2M2]

)
(2.20)

where M1 = vlrvtavbc − JlrJtaJbc and M2 = vlavrbvtc − JlaJrbJtc.
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According to DiCiccio [14], the quantity m is of order OP (N−1/2), whereas s2 is of order
1 + OP (N−1). Thus, with an error of order OP (N−3/2), it can be obtained for relatively
small and moderate data-set dimensions that

RC(φ) =
R(φ) −m

s
∼

appr.
N(0; 1) (2.21)

where the acronym ”appr.” means ”approximately”.

From DiCiccio [14] with an error of order OP (N−3/2) for relatively small and moderate
samples it can be also obtained that

ΛC(φ) =
Λ(φ)

m2 + s2
∼

appr.
χ2
1 (2.22)

Moreover, by inverting expression (2.11), the α quantile of U , given by (2.12), correct to
order OP (N−3/2), is found to be

uα = rα + 1
6A(rα)2 + 1

72(3B + 5A2)(rα)3 (2.23)

where rα = m + szα with zα being the α quantile of the standard normal distribution.
Expression (2.23) provides the same order of accuracy as the direct use of the standard
normal approximation for RC(φ) in making inference about the parameter φ. However,
as DiCiccio [14] states, in very small datasets, expression (2.23) may suffer from failure of
monotonicity and produce inaccurate results.

2.4 Control charts for monitoring the parameter φ

2.4.1 Preliminary considerations

According to the fact that σ = γ−1, it is clear that monitoring the EVRM scale parameter
σ is equivalent to monitoring the WRM shape parameter γ. Thus, the monitoring of the
WRM shape parameter is proposed via the log-transformation of the Weibull-distributed
response. Thus, model (2.1) is of interest. Actually, chart designing is based on the
EVRM log-scale parameter φ = log σ. Such parameterization does not substantially
change the essence of the design but does make it an easier task to address instead.

In the context of SPC, let us suppose a process characterized by model (2.1) and let
ξ0 = (β′

0, φ0)
′, with φ0 = log σ0, be the in-control parameter vector. For the i−th level of

the experiment at the j−th moment, we have

E(Y
(j)
i ) = x′

iβ0 − σ0ν (2.24)

V ar(Y
(j)
i ) =

(πσ0)
2

6
(2.25)

where ν = 0.5772... is the Euler’s constant.
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Let us assume further that detecting departures from the known value of the scale
parameter σ0 is wanted. From expressions (2.24) and (2.25), changes in the extreme value
scale parameter σ will generate changes in both the mean, for stable β, and the variance
of the log-transformed times Yi. Particularly, increases (or decreases) in σ result in a
lower mean value of the log-transformed times with a greater (or a lower) variance. Both
cases imply the deterioration of the process.

Let us suppose that at the j−th moment, j = 1, 2, · · · , a sample (y
(j)
ik ,xi), i = 1, ..., n,

k = 1, · · · ,mi, from model (2.1) is available. Adjustments to ancillaries (2.8) and (2.9)
and pivotal (2.12) can be used to design control schemes for detecting departures from
σ = σ0 (or, equivalently, from φ = φ0). It is clear that chart designing is based on
approximations of order OP (N−3/2), so the effectiveness of the schemes are correct to
that order. The design does not require the parameters βl, l = 1, · · · , p− 1, to be known,
only requires them to be stable.

At this point, it should be noted that the EWMA and CUSUM schemes proposed further
are based on functions of R(φ) or Λ(φ) rather than on φ directly. So, the behaviors of the
ancillary quantities (2.21) and (2.22) as functions of φ have to be well understood. The
fact is that increases (or decreases) in the EVRM log-scale parameter φ lead to decreases
(or increases) in RC(φ). Thus, when increases in φ occur, a decrease in the mean value of
RC(φ) is expected and viceversa. In the other hand, increases or decreases in φ lead to
increases in both the mean and the variance of R2

C(φ) and ΛC(φ). Consequently, shifts
in φ can be detected by detecting either changes in the mean level of RC(φ) or increases
in the variance of R2

C(φ) or ΛC(φ). The following methodologies take into account these
facts.

2.4.2 The CU–Chart

From the adjustment (2.23) to the α quantile of pivotal U given by (2.12), it is approxi-
mately obtained that

P

(
uα/2 ≤

φ0 − φ̂
√
vφφ

≤ u1−α/2

)
= 1 − α (2.26)

where φ0 is the in-control value of the EVRM log-scale parameter φ. From expression
(2.26), it is obtained the Shewhart-type control chart whose central line is CL = φ0 and
control limits are

LCLj = φ0 − v1/2φφ

[
r
(j)
1−α/2 +

Aj
6

(
r
(j)
1−α/2

)2
+

3Bj + 5A2
j

72

(
r
(j)
1−α/2

)3]
(2.27)

UCLj = φ0 − v1/2φφ

[
r
(j)
α/2 +

Aj
6

(
r
(j)
α/2

)2
+

3Bj + 5A2
j

72

(
r
(j)
α/2

)3]
where j = 1, 2, · · · , and α is the false alarm rate.

This scheme will be called the CU -Chart (Shewhart–type chart based on the corrected α
quantile of pivotal U). Note that the quantities vφφ, A, B, m and s are calculated each
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time for the given data set, so the control limits of the chart are variable. If for any j
value, φ̂j < LCLj the chart signal indicating a possible decrease in φ. If φ̂j > UCLj , an
increase in φ could happen.

2.4.3 The CR–EChart

Since the standard normal approximation to the conditional distribution of RC(φ) is fea-
sible, it is thus possible to define the EWMA statistic

EWj = λ
Rj(φ) −mj

sj
+ (1 − λ)EWt−1 (2.28)

where 0 < λ ≤ 1 is the smoothing constant and EW0 = 0. By taking into account
approximation (2.21), when samples are taken from the process independently, we have
that

V ar(EWj) ≈
λ[1 − (1 − λ)2j ]

2 − λ
(2.29)

The control chart is then defined by

LCLj = −L

√
λ[1 − (1 − λ)2j ]

2 − λ

CL = 0 (2.30)

UCLj = L

√
λ[1 − (1 − λ)2j ]

2 − λ

where j = 1, 2, · · · , and L is a positive constant.

This scheme will be called the CR-EChart (EWMA chart based on the standard normal
approximation of the corrected R(φ) statistic). The chart signals if, for any j, EWj <
LCLj indicating a possible increase in φ. If EWj > UCLj , it could be a decrease in φ.

2.4.4 The CR–CChart

The standard normal approximation to the distribution of RC(φ) also makes possible the
design of the CUSUM procedure given by

SUj = max

[
0;

Rj(φ) −mj

sj
− C+ + SUj−1

]
(2.31)

SLj = min

[
0;

Rj(φ) −mj

sj
+ C− + SLj−1

]
(2.32)

where j = 1, 2, · · · , SU0 = SL0 = 0, C+ and C− are reference values that are chosen as
in the coventional CUSUM for single normal observations.

This scheme will be called the CR-CChart (CUSUM chart based on the standard normal
approximation of the corrected R(φ) statistic). If for any j, SLj < LCL the procedure
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indicates a possible increase in φ. If SUj > UCL, a possible decrease in φ could take
place.

2.4.5 The CP–CUSUM charts

As it was stated in Section 2.4.1, shifts in φ can also be detected by detecting increases
in the variance of R2

C(φ) or ΛC(φ). Acosta-Mej́ıa and Pignatiello [1] proposed the CP-
CUSUM chart for monitoring the dispersion of a normal process with single observations.
Let Xj ∼ N(µ, ζ) be a single observation from a normal process at the j-th sampling
moment. The CP-CUSUM chart is based on the statistic Z2

j = (Xj − µ)2/ζ2 which
follows a chi-squared distribution with one degree of freedom.

The distributional properties of Z2
j , and the fact that at each sampling moment a unique

value of the corrected relative LRT statistic ΛC(φ) or the corrected square root RC(φ) is
available, suggest that Acosta-Mej́ıa and Pigniatello’s chart can be adapted for monitor-
ing the log-scale parameter φ of the EVRM by using the ancillaries given in (2.21) or (2.22).

As the variances of R2
C(φ) and ΛC(φ) increase when φ increases or decreases, upper CP-

CUSUM charts based on (2.21) or (2.22) could be designed for detecting both increases
or decreases in the EVRM log-scale parameter φ. The scheme based on (2.21) is given by

SUj = max

[
0;

(
Rj(φ) −mj

sj

)2

− C± + SUj−1

]
(2.33)

The scheme based on (2.22) is given by

SUj = max

[
0;

Λj(φ)

m2
j + s2j

− C± + SUj−1

]
(2.34)

For both schemes given by (2.33) and (2.34), SU0 = 0 and the reference values C± are
defined as

C± =
c± log c±

c± − 1

and c± represents a specified standardized increase or decrease in φ, respectively, that
is to be detected quickly. These charts signal as SUj exceeds its respective control limit hU .

For further discussion, the scheme based on ancillary (2.21) will be called the CP-CUSUM
of CR (the CP-CUSUM chart based on the standard normal approximation of the corrected
R(φ) statistic) and the scheme based on ancillary (2.22) will be called the CP-CUSUM of
CL (the CP-CUSUM chart based on chi-squared with one degree of freedom approximation
of the corrected Λ(φ) statistic).

2.5 Performance evaluation of the control charts

In phase II processes, the ARL is the traditionally used measure to evaluate control chart
performance. This is the mean number of inspected samples until the scheme first signals.
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Large values of ARL0 are desirable. When the process is out-of-control, the shorter the
ARL is, the better the ability of the scheme to detect an out–of–control state. When
the process is in control, a short ARL implies an increase of the false alarm rate. In this
work, ARL for each scheme was obtained by simulation.

One of the main purposes of this research is to find a value of the data-set dimension N
from which approximations (2.21), (2.22) and (2.23) can be applied for monitoring phase
II processes. Reported results suggest that the schemes work reasonably well for relatively
small and moderate data-set dimensions.

2.5.1 Simulation settings

For simplicity, it is assumed that p = 3. This is, model (2.1) has an intercept β1, a slope
β2 and a scale parameter σ. At the j−th moment, the model can be written in the form

y
(j)
ik = β1 + β2xi + σz

(j)
ik = β1 + β2 log (10i) + σz

(j)
ik (2.35)

where zik at every j−th moment are independent observations from EV (0; 1) and
xi = log (10i), i = 1, 2, ..., n, where n = 10 are the numeric levels of the unique covariate
in the study. The parameters β1 and β2 are supposed to be stable. In-control values of
the components of the parameter vector are (β10, β20, σ0)

′ = (3; 2; 1.5)′ or, equivalently,
(β10, β20, φ0)

′ = (3; 2; 0.40546)′. These simulation settings are similar to those used by
Yeh et al. [74] for carrying out their simulation study in phase I processes for the logistic
profile. The number of observations in each level of the unique covariate is set to be
mi = 3, 5 or 10 so that explored values for the data-set dimension are N = 30, 50 or 100,
respectively. For a given N , covariate values are assumed to be the same in repeated
sampling.

For convenience, model (2.35) will be rewritten in the form

y
(j)
ik = 3 + 2 log (10i) + 1.5d3z

(j)
ik (2.36)

or equivalently

y
(j)
ik = 3 + 2 log (10i) + z

(j)
ik e0.40546+∆3 (2.37)

This is, we are interested in detecting a d3 × 100% change in the in-control value of σ
(or, equivalently, a departure of ∆3 = log d3 from the in-control value of φ). Decreases in
the value σ0 are obtained when 0 < d3 < 1. Increases in the value σ0 are obtained when
d3 > 1. The in-control model is obtained when d3 = 1.

2.5.2 ARL estimation

Approximated ARL were obtained via simulation as it is described below:

1. A single observation zik is generated from the standardized extreme value distribu-
tion. Then, for the given values of the simulation settings and the contamination
constant d3, the generated observation zik is replaced in (2.36) to obtain a log-
transformed lifetime yik. Repeat until a set of N observations is completed.
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2. Once a data set is completed, fit the model (2.35). The fit results in the MLE of
ξ = (β1, β2, φ) and the observed information matrix ℑ−1.

3. With the help of the third– and fourth–order derivatives of the likelihood function
(2.7) evaluated at the MLE of ξ, find the quantities U , A, B, C and D by using
formulae (2.12), (2.13), (2.14), (2.19) and (2.20).

4. Compute R(φ), m and s throughout expressions (2.11), (2.17) and (2.18).

5. (a) For the CU–Chart, control limits are found by (2.27) for a given α.

(b) For the rest of the schemes, let G denote either the quantity given by (2.21) or by
(2.22). Compute G and, subsequently, the EWMA statistic (2.28), the CUSUM
statistics (2.31) and (2.32) and the CP–CUSUM statistics (2.33) or (2.34).

6. For a given scheme, repeat steps 1–5 until the signaling condition first holds. The
total number of data sets generated this way is called a run length. A lot of run
length values are needed to obtain. The mean of these values is an ARL estimate.

2.5.3 Simulations results

Described procedure for ARL estimation was run out for N = 30, 50 and 100. All the
schemes were calibrated to reach ARL0 = 200. This is obtained by choosing α = 0.005
for the CU–Chart; λ = 0.1 and L = 2.4536 for the CR–EChart; C+ = C− = 0.5 and
UCL = −LCL = 4.07 for the CR–CChart; C± = 1.09393 and hU = 14.10 for the
upper CP–CUSUM of CR. It is worth mentioning that these designing parameters are
approximately the same used for monitoring single normal observations.

Designing parameters for the CP–CUSUM of CL depend on the data-set dimension N
and were set to be C± = 1.19337 and hU = 12.11 for N = 30, hU = 12.00 for N = 50 and
hU = 11.92 for N = 100. In this case, the designing parameters for the largest studied
N are approximately those of the unbiased chart for monitoring dispersion of a normal
process with single observations.

Designing parameters ARL0, α, λ and C∗ were set to be fixed. The rest of the designing
parameters: L, UCL, LCL and hU , were found via simulation by using a bisection
search algorithm in order to achieve the desired ARL0 value. In the bisection search
algorithm, for each intermediary value of the designing parameters, 20000 run lengths
were simulated. If the estimated ARL0 was sufficiently close to 200, the current value of
the corresponding designing parameter was retained. Otherwise, the search was continued.

Approximated ARL values were obtained by generating 50000 run-length values and are
presented in Tables 2.4 and 2.5. These tables also contain an estimation of the respective
standard deviation of the run lengths in brackets. Results for decreases in σ0 greater than
50% and increases greater than twice the in-control value are not reported because these
large shifts are detected as soon as they occur in mean terms.

Table 2.4 shows the performance of the CU–Chart, the CR–EChart and the CR–CChart
when sustained shifts (increases or decreases) in the log–scale parameter φ of the EVRM
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CU–Chart CR–EChart CR–CChart

d3 N=30 N=50 N=100 N=30 N=50 N=100 N=30 N=50 N=100

0.5 1.06 1.00 1.00 2.01 1.72 1.01 1.83 1.23 1.00
(0.25) (0.02) (0.00) (0.20) (0.45) (0.08) (0.38) (0.42) (0.01)

0.6 1.62 1.07 1.00 2.46 2.01 1.46 2.19 1.81 1.09
(1.00) (0.28) (0.01) (0.23) (0.23) (0.50) (0.46) (0.41) (0.29)

0.7 4.18 1.86 1.06 3.40 2.60 1.99 3.06 2.31 1.74
(3.64) (1.27) (0.26) (0.83) (0.59) (0.25) (0.86) (0.54) (0.45)

0.8 15.75 6.79 2.28 5.49 4.06 2.12 5.24 3.72 2.50
(15.25) (6.27) (1.71) (1.84) (1.15) (0.67) (2.07) (1.22) (0.66)

0.9 71.85 43.22 17.84 14.00 9.70 6.15 16.20 10.24 5.96
(70.68) (42.71) (17.34) (7.88) (4.62) (2.30) (11.18) (5.89) (2.63)

1.0 198.62 199.20 199.81 199.04 199.55 200.15 198.69 199.76 200.22
(198.12) (198.70) (199.31) (192.81) (192.99) (192.51) (196.96) (197.60) (197.75)

1.1 52.22 31.83 15.15 15.67 10.50 6.58 17.83 11.08 6.42
(51.72) (31.33) (14.64) (9.84) (5.57) (2.77) (13.26) (7.00) (3.19)

1.2 12.94 6.70 2.80 6.43 4.63 3.15 6.22 4.31 2.85
(12.43) (6.18) (2.24) (2.76) (1.67) (0.92) (3.13) (1.79) (0.93)

1.3 5.03 2.64 1.35 4.15 3.10 2.22 3.81 2.78 1.96
(4.50) (2.08) (0.69) (1.45) (0.93) (0.52) (1.53) (0.93) (0.55)

1.4 2.70 1.58 1.07 3.15 2.42 1.82 2.83 2.15 1.52
(2.14) (0.96) (0.27) (0.97) (0.63) (0.44) (0.99) (0.63) (0.51)

1.5 1.81 1.22 1.01 2.60 2.05 1.48 2.31 1.79 1.21
(1.21) (0.51) (0.10) (0.73) (0.48) (0.50) (0.73) (0.54) (0.41)

1.6 1.41 1.08 1.00 2.25 1.81 1.20 1.99 1.52 1.06
(0.76) (0.29) (0.03) (0.58) (0.46) (0.40) (0.61) (0.52) (0.23)

1.7 1.22 1.03 1.00 2.02 1.60 1.06 1.75 1.31 1.01
(0.51) (0.17) (0.01) (0.50) (0.50) (0.24) (0.56) (0.47) (0.10)

1.8 1.11 1.01 1.00 1.85 1.40 1.01 1.57 1.17 1.00
(0.36) (0.01) (0.00) (0.48) (0.49) (0.12) (0.54) (0.37) (0.04)

1.9 1.06 1.00 1.00 1.70 1.24 1.00 1.41 1.08 1.00
(0.25) (0.05) (0.00) (0.50) (0.43) (0.05) (0.51) (0.27) (0.02)

2.0 1.03 1.00 1.00 1.55 1.13 1.00 1.29 1.04 1.00
(0.18) (0.31) (0.00) (0.51) (0.34) (0.02) (0.46) (0.18) (0.01)

Table 2.4. Approximated performance of the proposed charts for detecting a d3 × 100% shift in
the parameter σ = 1.5 of the simple WRM yik = 3 + 2 log (10i) + 1.5zik with different
dimensions N . Shifts in σ are detected via drops in the mean value of the corrected
monitoring statistic.

are detected by detecting shifts in the mean level of the respective plotting statistics.
All the schemes detect changes (increases or decreases) in φ. For all studied cases,
changes are detected earlier as N increases. As it was expected, the CR–EChart and
the CR–CChart detect small changes faster with a lower standard deviation of the run
lengths than the CU–Chart. The CU–Chart, instead, detects large shifts faster with a
lower standard deviation. In general, the CR–CChart performs slightly better than the
CR–EChart except for small shifts (increases or decreases) and small and moderate N
values.

The performance of the CP–CUSUM of CR and the CP–CUSUM of CL schemes are
presented in Table 2.5. In this case, sustained shifts in the EVRM log-scale parameter φ
are detected by detecting increases in the variability of the quantities R2

C(φ) and ΛC(φ).
Simulations suggest that the CP–CUSUM of CL detects decreases in φ faster than the CP–
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CP–CUSUM of CR CP–CUSUM of CL

d3 N=30 N=50 N=100 N=30 N=50 N=100

0.5 1.47 1.04 1.00 1.26 1.01 1.00
(0.52) (0.19) (0.00) (0.44) (0.10) (0.00)

0.6 2.25 1.47 1.00 1.88 1.26 1.00
(0.79) (0.53) (0.00) (0.67) (0.45) (0.05)

0.7 3.99 2.46 1.40 3.07 2.03 1.23
(1.61) (0.91) (0.52) (1.23) (0.77) (0.43)

0.8 9.32 5.43 2.81 6.30 4.07 2.31
(4.58) (2.41) (1.11) (3.02) (1.82) (0.95)

0.9 41.25 23.01 10.85 20.90 14.01 7.87
(29.72) (14.28) (5.68) (13.82) (8.50) (4.22)

1.0 198.68 200.73 200.02 198.99 199.79 199.84
(183.67) (183.87) (183.15) (189.36) (189.61) (190.01)

1.1 32.99 20.59 10.79 148.90 48.02 14.59
(23.13) (13.00) (5.99) (139.05) (39.85) (9.50)

1.2 9.95 6.13 3.30 19.91 8.37 3.54
(5.55) (3.16) (1.54) (13.92) (4.87) (1.78)

1.3 5.06 3.18 1.81 7.55 3.73 1.84
(2.60) (1.51) (0.78) (4.34) (1.92) (0.82)

1.4 3.24 2.10 1.28 4.23 2.30 1.28
(1.58) (0.94) (0.48) (2.24) (1.10) (0.49)

1.5 2.36 1.58 1.08 2.86 1.67 1.07
(1.10) (0.67) (0.27) (1.44) (0.74) (0.26)

1.6 1.86 1.30 1.01 2.15 1.35 1.01
(0.84) (0.49) (0.10) (1.03) (0.54) (0.12)

1.7 1.55 1.14 1.00 1.74 1.17 1.00
(0.67) (0.35) (0.05) (0.79) (0.39) (0.04)

1.8 1.35 1.06 1.00 1.48 1.08 1.00
(0.54) (0.24) (0.02) (0.63) (0.27) (0.01)

1.9 1.22 1.02 1.00 1.31 1.03 1.00
(0.44) (0.15) (0.00) (0.52) (0.17) (0.00)

2.0 1.14 1.01 1.00 1.20 1.01 1.00
(0.35) (0.10) (0.00) (0.42) (0.11) (0.00)

Table 2.5. Approximated performance of the proposed CP–CUSUM charts for detecting a d3 ×
100% shift in the parameter σ = 1.5 of the simple WRM yik = 3 + 2 log (10i) + 1.5zik
with different dimensions N . Shifts in σ are detected via drops in the dispersion of
the corrected monitoring statistic.

CUSUM of CR but takes longer to detect increases in φ for all reported N . For the largest
reported data-set dimension, both schemes exhibit similar performances approximately.

2.6 Example

Nelson [38] describes a life test experiment in which specimens of an electrical insulating
fluid were subjected to a constant high-voltage stress. The elapsed time until each
specimen failed was observed. There were seven groups of specimens tested at voltages
ranging from 26 to 38 kilovolts. There were 76 specimens at 7 defined voltage levels.
Data are presented in Table A.1 of Appendix A.1.
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A preliminary analysis suggested a Weibull accelerated failure time model (2.1) with x′
iβ =

β1 + β2 log Vi, where V is the voltage level. The likelihood ratio test for H0 : β2 = 0 gives
LRT = 77.6 (p = 0.0000; d.f. = 1) what suggests that part of the variability observed in
failure times can be explained by the voltage stress. The fitted model is

ŷik = log t̂ik = 64.8472 − 17.7296xi + 1.2877zik (2.38)

For further illustration and monitoring purposes, it will be assumed that fit (2.38)
represents the in-control model and it is wanted to detect departures from σ = 1.2877
(or, equivalently, from φ = 0.2529). Thus, 20 independent samples were generated with
the same covariate pattern; first 10 from the in-control model and the last ones from the
model whose shape parameter shifts to the value 1.2877d3.
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Figure 2.2. Control charts for detecting a 15% increase in φ0 = 0.2529 for the failure time data.
There are shown the charts for detecting shifts via changes in the mean value of the
corrected U(φ) or R(φ) statistics.

The proposed Shewhart-type, EWMA, CUSUM and CP-CUSUM control schemes based
on the corrected statistics were built for verifying the out-of-control detection ability. The
CU–Chart was designed for α = 0.005; the CR–EChart, for λ = 0.1 and L = 2.4536; the
CR–CChart, for C+ = C− = 0.5 and UCL = LCL = 4.07; the upper CP–CUSUM of CR,
for C± = 1.09393 and hU = 14.10 and the upper CP–CUSUM of CL, for C± = 1.19337
and hU = 11.92. All designs result in a nominal ARL0 = 200.
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The schemes for detecting a 15% increase in the scale parameter of the EVRM are
presented in Figure 2.2 and Figure 2.3, respectively. In Figure 2.2, there are shown the
charts for detecting the increase in φ via the increase in the mean value of the corrected
U(φ) statistic or the decrease in the mean value of the corrected R(φ) statistic. All the
schemes detect the planned increase at the 13−th monitoring moment, three moments
later than it actually occurs. However, the CR-EChart and the CR-CChart show a
sustained increase. The CU -Chart, instead, shows a stable process after having signaled
when it really is out-of-control.

5 10 15 20

0
10

20
30

40

CP−CUSUM of CR

Sampling sequence

U
pp

er
 C

U
S

U
M

 o
f C

R

UCL=14.10

5 10 15 20

0
5

15
25

CP−CUSUM of CL

Sampling sequence

U
pp

er
 C

U
S

U
M

 o
f C

L

UCL=11.92

Figure 2.3. Control charts for detecting a 15% increase in φ0 = 0.2529 for the failure time data.
There are shown the charts for detecting shifts via increases in the dispersion of the
corrected R(φ) or Λ(φ) statistics.

In Figure 2.3, the planned increase in φ is detected via the increase in the dispersion of
the corrected R(φ) and Λ(φ) statistics. As it can be seen, both the CP-CUSUM charts
detect the planned increase. However, the CP-CUSUM chart based on the corrected
R(φ) statistic signals one monitoring moment earlier than the CP-CUSUM chart based
on the corrected Λ(φ) statistic. The CP-CUSUM of CR delays two monitoring moments
to detect the planned increase.

The schemes for detecting a 10% decrease in the scale parameter of the EVRM are pre-
sented in Figure 2.4 and Figure 2.5, respectively. In Figure 2.4, there are shown the charts
for detecting the planned decrease in φ via the decrease in the mean value of the corrected
U(φ) statistic or the increase in the mean value of the corrected R(φ) statistic. All these
schemes detect the planned decrease at the 16-th monitoring moment, six moments after
it really occurs. Again, the CR-EChart and the CR-CChart show the sustained pattern of
the simulated decrease, the CU -Chart does not. However, although the CU -Chart takes
longer to detect the planned decrease in φ, a trend in the values of the plotting statistic
to lie below the central line of the chart can be observed.



2.6. EXAMPLE 33

5 10 15 20

−
0.

2
0.

2
0.

6

CU−Chart

Sampling sequence

lo
g(

sh
ap

e)

CL=0.2529

UCL

LCL

5 10 15 20

−
0.

5
0.

5
1.

5
CR−EChart

Sampling sequence

E
W

M
A

 o
f C

R

CL=0

UCL

LCL

5 10 15 20

−
5

0
5

10
15

CR−CChart

Sampling sequence

C
U

S
U

M
 o

f C
R

UCL=4.07

LCL=−4.07

Figure 2.4. Control charts for detecting a 10% decrease in φ0 = 0.2529 for the failure time data.
There are shown the charts for detecting shifts via changes in the mean value of the
corrected U(φ) or R(φ) statistics.
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Figure 2.5. Control charts for detecting a 10% decrease in φ0 = 0.2529 for the failure time data.
There are shown the charts for detecting shifts via increases in the dispersion of the
corrected R(φ) or Λ(φ) statistics.



34 CHAPTER 2. MONITORING THE SHAPE PARAMETER

Figure 2.5 shows the detection of the planned decrease via the increase in the dispersion
of the corrected R(φ) and Λ(φ) statistics. Both of the charts detect the decrease but not
at the same monitoring moment. The CP-CUSUM of CR detects the decrease substan-
tially earlier than the CP-CUSUM of CL. The CP-CUSUM of CR signals at the 12-th
monitoring moment, whilst the CP-CUSUM of CL takes three more monitoring moments
to detect the simulated decrease.

2.7 Recommendations

The presented methodology strongly depends on the amount of covariates in the model
being monitored and the assessment of the quantities A, B, C and D depends on the
number of third– and fourth–order derivatives of the underlying likelihood function.
Thus, when a covariate is added, calculations for obtaining mentioned quantities become
a hard task. However, this drawback could be overcome by designing a specialized software.

Due to particular theoretical aspects of the methodology for making Bartlett’s correc-
tions, we believe that the proposed methodology could be successfully extended to new
monitoring conditions, rather than the ones presented herein, since:

• It turns the problem of monitoring the parameter vector of a WRM into the simpler
problem of monitoring the mean level or the dispersion of a continuous quality
characteristic whose distribution is known.

• With the exception of the CU–Chart, resulting control schemes are based on ancillary
statistics. So, chart designing does not depend on the true value of the parameter
being monitored.

• It could be used for monitoring regression models with response variable in the
log-scale family.

• Although the methodology is developed for the special case of monitoring the EVRM
log–scale parameter, it can be used for monitoring any single parameter of a param-
eter vector. This is, resulting schemes do not depend directly on the nature of the
parameter being monitored. This fact has an important implication: regardless the
parameter (a scale, a location or a shape one), the methodology always leads to
simple schemes based on the same type of ancillary statistics.

• When monitoring a single parameter from a parameter vector, the rest of the pa-
rameters are treated as nuisance and do not need to be known.

• The methodology could represent an approximated but fairly acceptable procedure
for monitoring a single parameter from a parameter vector when non-large enough
data sets are available from regression models with response in the log-scale family.

2.8 Conclusions

In this chapter, some different control mechanisms were studied for monitoring the
log-scale parameter of the EVRM in phase II processes. This is equivalent to monitoring
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the shape parameter of the WRM. Simulation results suggest that Bartlett’s adjustments
to the relative LRT statistic (2.8), to the signed square root defined for the log-scale
parameter R(φ) given by (2.9) and to the (α × 100%)-th quantile of U given by (2.12)
make the resulting schemes a fairly acceptable procedure to carry out the monitoring for
detecting sustained shifts in the log-scale parameter of the EVRM. None of the schemes
exhibited an overall best performance. Each of them can be used upon certain conditions
depending on the need of practitioners.

Although the presented methodology was developed for the particular case of the log-
scale parameter of the EVRM, they could be applied for successfully monitoring one
single parameter, not necessarily a scale one, of any regression model with response in the
location-scale family. For instance, the monitoring of one of the coefficients βl, j = 1, ..., p−
1, of the EVRM can be carried regardless the value of the rest of the parameters including
the scale one. At this point, this fact has a relevant importance because monitoring the
parameters βl, j = 1, ..., p− 1, would be equivalent to monitoring risks.

REMARK

Part of the results presented in this chapter are reported in the paper “Monitoring the
shape parameter of a Weibull regression model in Phase II processes” published in 2016 in
Journal of Quality and Reliability Engineering International, volume 36, pages 195− 207.





CHAPTER 3

Monitoring the WRM parameter vector

3.1 The problem

Let us suppose again that at the j−th moment in time, j = 1, 2, ..., a data set with the
structure in Table 2.1 is available. All the quantities in the table retain their primary
meanings. Let us suppose further that we are still interested in the stability of the
distributions of the variables Yi, i = 1, · · · , n over time. In the preceding chapter, we
made the same assumptions and proposed the monitoring of the WRM shape parameter
in order to achieve our objective. As in a given moment in time, all the parameters of
the model can change, in the following, we will propose the monitoring of the entire
parameter vector linking the distributions of all the variables Yi.

In some applications, the Yi are time-to-event variables so that the data collection process
may require the deterioration of the experimental units in which they are being measured.

Thus, the measurements y
(j)
ik at every j−th moment can be obtained just once at most

from the same produced item or individual. Although under the definition provided by
Woodall [71], the structure in Table 2.1 cannot be qualified as a profile, the statistical
analysis in such situations aims to the same goal of profile monitoring.

For instance, the example from the food industry reviewed in Section 3.7 perfectly
illustrates our point of view. In this example, we are interested in the stability of the
distribution of the shelf life of sweet cookies in different storage conditions over time. This
is, we would like to know whether the shelf time of different produced items subjected to
the same storage conditions at different moments in time has the same distribution.

Moreover, from a preliminary graphical analysis of the 17 annually collected data batches
in the example, it can be noted a decreasing linear trend for the log-transformation of
the shelf life in accelerated conditions as temperature level increases. This trend is shown
in solid lines for each annual batch in Figure 3.1. We have found enough reasons to think
that methodologies from the monitoring of GLM profiles can be adapted for successfully
monitoring regression models with time-to-event response.

37
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Figure 3.1. Preliminary graphical analysis for the food industry example

If a linear dependence between the response variables Yi and the fixed x′
i values is assumed

at the j−th moment, then this relationship can be analytically expressed by model (2.1)
and we would be interested in testing over time the hypothesis

H0 : ξ(j) = ξ0

H1 : ξ(j) = ξ0 + ∆
(3.1)

This is, we would be interested in detecting departures ∆ from a known value ξ0. Depar-
tures can take place in one or more components of the parameter vector characterizing
model (2.1). At this point, this fact has a great relevance because changes in the value of
ξ will necessarily imply changes in the distributions of the responses Yi at all experimental
levels.

The hypothesis (3.1) can be tested over time by using LRT-based procedures. However,
as it was stated earlier, distributions for modeling times-to-event data are often skewed,
so that the use of the LRT statistic for designing control charts may be restrictive to large
enough data sets. The need of making adjustments to the LRT statistic arises again for
monitoring purposes when non-large enough data sets are available.

3.2 Using techniques from profile monitoring

As it was stated in Section 3.1, profile monitoring and monitoring regression models share
the same objective. Thus, we feel that techniques from profile monitoring can be adapted
for checking the stability of the parameter vector characterizing a regression model.



3.2. USING TECHNIQUES FROM PROFILE MONITORING 39

Different methodologies have been developed in order to be applied for monitoring GLM
profiles. Soleymanian et al. [61] and Qi et al. [48] propose the monitoring of GLM
profiles by using LRT-based charts. It is easy to realize that in most of the existing work
on GLM monitoring the main purpose is focused on profiles with counting response.
Maybe either the binary or the Poisson responses make the MLE of the parameter vector
characterizing the model quickly converge to the asymptotic normality. That is perhaps
the reason for the charts based on this asymptotic property to work reasonably well even
for non-large enough profile dimensions.

Although in some of afore-cited articles it is stated that the proposed methodologies
can be extended to the case of continuous response variable, they cannot be directly
applied in the case of severely skewed response variables. For instance, we calculated
ARL0 for the Shewhart-type LRT chart presented in Soleymanian et al. [61] for
monitoring the parameter vector of a simple WRM with the structure in Table 2.1
for different values of the data-set dimension N . In all cases, the upper control limit
was set to be UCL = χ2

(0.995;3) = 12.83816, regardless the N value. This should lead

to ARL0 = 200. Estimated ARL0 were obtained by setting xi = (1, log (10i))′ and
ξ = (β1, β2, φ)′ = (3; 2; 0.4055)′. Results are shown in the last row of Table 3.1.

χ2
(3) N = 30 N = 50 N = 100 N = 300 N = 500 N = 1000

Q0.25 1.2125 1.2883 1.2507 1.2367 1.2207 1.2179 1.2169
Q0.5 2.3659 2.5066 2.4439 2.4113 2.3844 2.3752 2.3682
Q0.75 4.1083 4.3452 4.2472 4.1848 4.1389 4.1201 4.1071
Q0.995 12.8381 13.5255 13.2889 13.0197 12.9533 12.8926 12.8152
Mean 3.0000 3.1772 3.1013 3.0528 3.0207 3.0117 3.0007

V ariance 6.0000 6.7035 6.4242 6.1898 6.0862 6.0429 5.9999

ARL0 200.10 134.41 165.56 179.05 185.55 190.84 197.08

Table 3.1. Numerical characteristics of the distribution of the LRT statistic for different dimen-
sions N of the simple WRM yik = 3 + 2 log (10i) + 1.5zik.

Table 3.1 also contains some approximated quantiles Q∗, the mean and the variance of
the distribution of the LRT statistic defined for the WRM parameter vector for different
N values. These approximated results were also obtained by simulation. The same
numeric characteristics for the chi-square distribution with three degrees of freedom are
reported in the second column of Table 3.1. As it can be seen, ARL0 values are far from
the nominal one for small and moderate N dimensions. ARL0 values begin to be close to
the nominal ARL0 = 200 just for N = 1000. The fact is that the distribution of the LRT
statistic is not exactly that of the chi-square distribution. This is due to the skewness of
the response variable in the WRM. This fact has the same practical implication that we
faced while were trying to monitor a single parameter and can be overcome in the same way.

Table 3.2 shows the simulated distribution of the adjusted LRT statistic for different N
values. Note that the distribution of the adjusted LRT is now closer to the chi-square dis-
tribution for all reported N values practically. Approximated ARL0 of the Shewhart-type
LRT chart in Soleymanian et al. [61] with UCL = χ2

(0.995;3) = 12.83816 are also reported.

All results were obtained by setting xi = (1, log (10i))′ and ξ = (β1, β2, φ)′ = (3; 2; 0.4055)′.
It is clear that the chart that uses the corrected monitoring statistic performs fairly ac-
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ceptable even for non-large enough N . This is, with the help of Bartlett’s adjustments, the
monitoring of the WRM parameter vector can be now carried out with a data structure
whose dimension is approximately 33 times smaller. Indications on how to use Bartlett’s
adjustments for correcting the LRT statistic in a WRM will be addressed in the following
sections.

χ2
(3) N = 30 N = 50 N = 100

Q0.25 1.2125 1.2165 1.2150 1.2136
Q0.5 2.3660 2.3741 2.3702 2.3669
Q0.75 4.1083 4.1173 4.1191 4.1065
Q0.995 12.8381 12.9154 12.8434 12.8378
Mean 3.0000 3.0095 3.0020 3.0002

V ariance 6.0000 6.0473 6.0126 5.9997

ARL0 200.10 193.75 197.32 198.12

Table 3.2. Numerical characteristics of the distribution of the corrected LRT statistic for different
dimensions N of the simple WRM yik = 3 + 2 log (10i) + 1.5zik.

3.3 Theoretical framework

We are still interested in regression models of the form

y
(j)
ik = log t

(j)
ik = x′

iβ + σz
(j)
ik (3.2)

where j = 1, 2, . . . is the monitoring moment and t
(j)
ik , k = 1, · · · ,mi, are observations of

the variables Ti ∼ W (θi; γ) measured at the j−th moment. Some details about the WRM
(3.2) were already discussed in Section 2.3.1. Among other things, there was pointed that
the p−dimensional vector ξ = (β′, φ)′, where φ = log σ, characterizes the WRM.

In previous chapter, the main objective was to monitor a single component of the param-
eter vector ξ. Thus, the vector ξ was partitioned so that one of the resulting sub-vectors
was formed by the single parameter we were interested in. The relative LRT-statistic
defined for that parameter helped us to carry out the monitoring. We are now interested
in monitoring the entire WRM parameter vector ξ. Then, we will turn back to DiCicio’s
methodology based on Bartlett’s adjustments to the LRT-statistic and will develop it for
the special case of a sub-vector having dimension 2 ≤ q ≤ p. This is, let the WRM
parameter vector be partitioned of the form ξ = (ϕ′,ψ′)′, so that the sub-vector ϕ with
dimension 2 ≤ q ≤ p is of interest. In Section 2.3.2, it was stated that when we fix the
value of ϕ, the relative LRT statistic for that parameter is defined to be

Λ(ϕ) = 2ℓ(ξ̂) − 2ℓ(ϕ, ψ̃ϕ) (3.3)

where ξ̂ is the unrestricted MLE of the parameter vector ξ and ψ̃ϕ is the MLE of the
parameters ψ when it is assumed that ϕ is fixed at the given value.
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It was also stated that under some mild conditions Λ(ϕ) ∼ χ2
q when N → ∞. This limit

also holds for the conditional distribution of Λ(ϕ)|ẑ, where the vector ẑ consists of the
residuals of model 3.2. The chi-square approximation to the conditional distribution of
Λ(φ) has an error of order OP (N−1) that can be reduced to order OP (N−3/2) by using a
scaling factor that takes into account its conditional mean. A formula for this adjustment
is given in the following paragraphs. This correction to the relative LRT statstic, often
referred to as Bartlett’s adjustment, has been discussed in [8].

For further discussion, we will return to the convention presented in Section 2.3.2, so the
high-order partial derivatives of the likelihood function (2.7) for the WRM are assumed
to be dlr... = [∂1+1+...ℓ(ξ)/∂ξl∂ξr . . . ]ξ=ξ̂, l, r, t, u = 1, ..., p. Let also the elements of the

observed covariance matrix be ((vlr)) = ((d2lr))
−1 = ((ℑlr))−1. Let be the partitioned

observed information matrix

ℑ =

[
ℑϕϕ ℑϕψ
ℑψϕ ℑψψ

]
According to DiCiccio [14], it can be shown that, with an error of order OP (N−3/2), the
conditional expectation of the relative LRT statistic defined for ϕ can be approximated
by the expression

bϕ ≈ q + 1
4C + 1

12D (3.4)

where

C =

p∑
l=1

p∑
r=1

p∑
t=1

p∑
u=1

dlrtu(vlrvtu −KlrKtu) (3.5)

and

D =

p∑
l=1

p∑
r=1

p∑
t=1

dlrt

(
p∑
a=1

p∑
b=1

p∑
c=1

dabc [3M1 + 2M2]

)
(3.6)

where M1 = vlrvtavbc −KlrKtaKbc, M2 = vlavrbvtc −KlaKrbKtc and K = ((Klr)) = diag
(0,ℑ−1

ψψ).

The χ2
q approximation to the conditional distribution of Λ(ϕ)|ẑ is of order OP (N−1),

whereas the error in the approximation for q
bϕ

Λ(ϕ) is of order OP (N−3/2). Thus, with an

error of order OP (N−3/2), it can be obtained for relatively small and moderate data-set
dimensions that

q

bϕ
Λ(ϕ) ∼

appr.
χ2
q (3.7)

It is easy to see that for q = p, it is obtained the deviance form of the relative LRT statistic
(3.3) defined for ξ and, with the help of Bartlett’s adjustments, the χ2

p distribution will
better approximate the distribution of p

bξ
Λ(ξ) for non-large enough samples, with an error

of order OP (N−3/2). In this case, Klr = 0, l, r = 1, ..., p.

Moreover, from Lawless [27], it can be stated that the random variable V 2 = log
[
p
bξ

Λ(ξ)
]

follows approximately a normal distribution whose mean and variance can be approxi-
mated by the expressions E(V 2) = log 2 + g(p2) and V ar(V 2) = g′(p2), respectively. In
these expressions, g(�) and g′(�) are the digamma and the trigamma functions, respectively.
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3.4 Control charts for monitoring WRM parameter vector

3.4.1 Preliminary considerations

As it was done in the case of monitoring a single parameter, monitoring the WRM
parameter vector is proposed via the log-transformation of the Weibull-distributed
response. Thus, the EVRM in the form given by (3.2) is of interest. In the context
of SPC, let us suppose again a process characterized by the relationship (3.2) and let
ξ0 = (β′

0, φ0)
′, with φ0 = log σ0, be the in-control parameter vector. For the i−th

level of the experiment at the j−th moment, the in-control mean and variance of the
log-transformed Weibull-distributed lifetimes are given by expressions (2.24) and (2.25).

Other quantities related to the distribution of the log-transformed Weibull lifetimes in the
i−th level at the j−moment are presented below. The in-control r × 100% percentile,
r ∈ (0, 1), of the distribution of Yi is

y
(j)
i,r = x′

iβ0 + σ0 log [− log (1 − r)] (3.8)

Note that the in-control r× 100% percentile of the Weibull distribution is ti,r = exp (yi,r).
Note also that the mean and/or the median of the variables Yi can be verified with the
help of (3.8) by making r = 0.4296 and/or r = 0.5.

The in-control survival probability corresponding to a particular value y
(j)
i0 is

S(y
(j)
i0 ) = exp

[
− exp

(
y
(j)
i0 − x′

iβ0

σ0

)]
(3.9)

Let us assume further that detecting departures from the known value of the parameter
vector ξ0 = (β′

0, φ0)
′ is wanted. It is clear that changes in the parameter vector will

generate changes in all quantities of main interest related to the distribution of Yi.
It is also clear that changes (increases or decreases) in the mean of log-transformed
times depend on the combinations of increases and decreases in all or several compo-
nents of ξ. We are particularly interested in detecting decreases in the mean response
value of Yi because they lead to the deterioration of a process characterized by model (3.2).

Let us suppose that at the j−th moment a data set (x′
i, y

(j)
ik ), from model (3.2) is

available. Adjustments to ancillary (3.3) and the log–transformation V 2 can be used to
adapt existing control schemes for detecting departures from the known value ξ = ξ0.

Chart designing has to take into account the behaviors of the ancillary quantity (3.7) and
V 2 as functions of ξ. Simulations suggest that whatever the combinations of increases and
decreases in the components of ξ are, they lead to increases in the mean value of p

bξ
Λ(ξ).

Consequently, shifts in ξ can be detected by detecting increases in the mean level of either
p
bξ

Λ(ξ) or V 2. Thus, upper–sided control schemes has to be designed.
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3.4.2 The LRT–Chart

Based on approximation (3.7), it is possible to design the Shewhart-type chart whose UCL
is given by

UCLj =
bξ,j
p

QN,1−α (3.10)

or
UCL = QN,1−α (3.11)

where α is the desired false alarm rate and QN,1−α is the (1 − α) × 100% percentile of
a large enough set of values of CW = p

bξ
Λ(ξ) corresponding to the data-set dimension

N . It is worth mentioning that QN,1−α is closer to the chi-squared percentile χ2
p;1−α as

N increases. Simulations suggest that the χ2
(p;1−α) percentile works fairly acceptable for

N ≥ 50. As we are dealing with an approximated methodology, it is preferable to take
the UCL as it is indicated in (3.10) for N < 50.

When the UCL of the scheme is established as in (3.10), the LRT-Chart has varying
in time control limit. In this case, the chart signals if Λj(ξ̂) > UCLj for a given j,

where Λj(ξ̂) is the relative LRT statistic (3.3) defined for the entire parameter vector ξ
evaluated at the MLE of ξ = (β′, φ)′ obtained from the j-th data set.

When the UCL of the scheme is established as in (3.11), the LRT-Chart has a constant
control limit and signals if ˆCW j = p

bξ,j
Λ(ξ̂j) > UCL, where the quantities bξ,j and Λ(ξ̂j)

are obtained from the j−th data set.

Both of the charts in (3.10) and (3.11) represent the adapted version of the LRT chart in
Soleymanian et al [61] in which Bartlett’s corrections have been implemented. For further
discussion, the formulation given in (3.11) is adopted.

3.4.3 The LRT–EChart

It was established that CW = p
bξ

Λ(ξ) ∼ χ2
p for non-large enough data sets, so it is possible

to define the EWMA statistic

EWj = λ
ĈW j −med

sd
+ (1 − λ)EWj−1 (3.12)

where ĈW j is the value of the corrected LRT statistic CW evaluated at the MLE of ξ at
the j−th moment, 0 < λ ≤ 1 is the smoothing constant, EW0 = 0, med = χ2

(p;0.5) and

sd =
√

2p. The quantities med and sd can be replaced by the median and the standard
deviation of a set of simulated values of CW for a given N but the values of the χ2

p

distribution work quite acceptable for N ≥ 50.

The UCL is defined to be

UCLj = L

√
λ[1 − (1 − λ)2j ]

2 − λ
(3.13)
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where L is a positive constant that is chosen to reach a desirable ARL0. This scheme
signals if EWj > UCLj . This is the adapted version of the LRT-EWMA chart in Soley-
manian et al [61] with the implemented Bartlett’s corrections.

3.4.4 The LRT–CChart

The normal approximation of the log-transformation V 2 makes also possible to design the
CUSUM procedure given by

SUj = max

[
0;

V 2
j − µ

ζ
−K± + SUj−1

]
(3.14)

where SU0 = 0 and K± is the reference value that is chosen as for the conventional CUSUM
chart for single normal observations. For further discussion, this scheme will be called the
LRT–CChart (CUSUM chart based on the log-transformation of the scaled relative LRT
statistic). This scheme signals when it holds that SUj > h. The upper control limit h has
to be chosen to reach a desirable ARL0. This chart is introduced to verify the performance
of the conventional CUSUM chart under the implemented corrections to the monitoring
statistic.

3.4.5 The MEWMA chart

In this section, we adapt the MEWMA scheme first developed by Zou et al. [78] for GLM
profiles to the case of monitoring the WRM parameter vector. First of all, it is needed to
define the vectors

Aj = ℑ1/2
(
ξ̂j − ξ0

)
(3.15)

where ξ̂j is the MLE of the parameter vector ξ at the j− moment and ℑ is the asymptotic
information matrix.

The MEWMA statistic is then define to be

Ej = λAj + (1 − λ)Ej−1 (3.16)

where 0 < λ ≤ 1 is the smoothing constant and E0 = 0(p)×1. The MEWMA control chart
signals as soon as Mj = E′

jEj > UCL. The UCL is determined to reach a desirable ARL0.

When monitoring EVRM, the multivariate normality of ξ̂ holds just asymptotically, so it
will be needed to obtain ℑ in an appropriate way for a given data-set dimension N .

3.5 Performance evaluation of the control charts

As in the case of monitoring a single parameter, the ARL was used to evaluate control
charts performance. This is the mean number of inspected samples until the scheme first
signals.
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3.5.1 Simulation settings

As in the simulation settings for the case of monitoring a single parameter, it is assumed
that p = 3. Thus, at the j−th moment, the model can be written in the form given by
(2.35) and the values of n and mi are the ones established then. Thus, that explored
values for the data-set dimension also are N = 30, 50 or 100. For a given N , covariate
values are assumed to be the same in repeated sampling.

For convenience, model (2.35) will be rewritten in the form

y
(j)
ik = (β10 + ∆1) + (β20 + ∆2) log (10i) + z

(j)
ik eφ0+∆3 (3.17)

This is, let ξ0 = (β10, β20, φ0)
′ = (3, 2, 0.4055)′ be the in-control parameter vector. Let

us also define the vector ∆ = (∆1,∆2,∆3)
′, so that the vector ξ0 + ∆ represents an

out–of–control situation. The quantities in the vector ∆ are determined as follows:

∆f = Cf

√
V ar

(
β̂f

)
, for f = 1, 2, and ∆3 = logC3. The contamination constants

Cf are such that, for f = 1, 2, a decrease (or an increase) in the parameter βf occurs
when Cf < 0 (or Cf > 0) and a decrease (or an increase) in the parameter σ occurs for
0 < C3 < 1 (or C3 > 1). The in-control model is obtained for Cf = 0, f = 1, 2, and C3 = 1.

The asymptotic information matrix can be approximated for each needed case by simula-
tion or by using the methodology presented in Paul and Thiagarajah [46]. The variances

V ar
(
β̂f

)
, f = 1, 2, were taken from the diagonal of these approximations.

3.5.2 Estimation algorithm

For a given scheme, ARL values were simulated as it is described below:

1. Set j = 1 and proceed as follows. A single observation z
(1)
ik is generated from

EV (0; 1). Then, for given values of the contamination constants Cf , the gener-
ated observation is replaced in expression (3.17) to obtain a log-transformed time

y
(1)
ik . Repeat this procedure until a data set of N log-transformed times is completed.

2. Once a data set is completed, fit the model yik = β1 +β2xi +σzik. The fit results in

the MLE ξ̂
(1)

= (β̂
(1)
1 , β̂

(1)
2 , φ̂(1)) and the observed information matrix ℑj .

3. With the help of the third– and fourth–order derivatives of the likelihood function
(2.7) evaluated at the MLE of ξ, find the quantity bξ by using formula (3.4) for the
case q = 3.

4. Compute the corresponding scaled value of Λj(ξ̂) by (3.7) for the case q = 3 or its
corresponding log-transformation V 2.

5. For the Shewhart-type chart, establish the respective control limit for the available
sample by (3.11). For the rest of the schemes, let G denote either the quantity
given in (3.7) defined for the case q = 3 or its corresponding log-transformation V 2.
Compute G and, subsequently, the EWMA statistic given by (3.12) or the upper
CUSUM statistic given by (3.14).
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6. For a given scheme, repeat steps 1–5 increasing the value of j in a unit until the
signaling condition first holds. The total number of samples generated this way is
called a run length. A lot of run length values is needed to obtain. The mean of the
run length values is an estimate of the ARL of the scheme.

In-control ℑ0 needed for carrying out the monitoring was obtained by simulation for each
studied data-set dimension N . Software needed for carrying out the study, including the
one based on the simulation algorithm described above, was designed in R language.

data set LRT–Chart LRT–EChart LRT–CChart MEWMA

dimension α = 0.005 λ = 0.1 K± = 0.5 λ = 0.1

30 12.915 0.8044 2.6911 0.6298

50 12.843 0.8042 2.6740 0.6056

100 12.837 0.8042 2.6740 0.5853

Table 3.3. UCL of the proposed schemes, leading to ARL0 = 200, for monitoring the WRM
yik = 3 + 2 log (10i) + 1.5zik.

3.5.3 Simulation results

All the schemes were calibrated to reach ARL0 = 200. This is obtained by choosing chart
designing parameters as it is presented in Table 3.3 for the special case of p = 3. Chart
parameters in the second row of Table 3.3 were set to be fixed, the corresponding UCL
were obtained via simulation by a bisection search algorithm based on 20000 run length
values. Note that for N ≥ 50 the difference in the UCL values is negligible for the LRT–
based schemes. Thus, it is possible to conclude about the robustness of these schemes
respect to the data-set dimension N . The UCL of the MEWMA chart depends on N .

As it was stated earlier, we are especially interested in the deterioration of the process. This
is, in decreases in the mean of the response variables Yi, i = 1, . . . , n. Simulated ARL’s for
decreases in the mean response were obtained, for instance, by planning increases in the
scale parameter σ and/or decreases in one or both β1 and β2 coefficients. For fixed values of
the contamination constants C3 and C2, out-of-control ARL’s were estimated for several
values of C1. Further, the contamination constant C2 was shifted to a larger decrease
with the given values of C1 and C3 remaining at their previous values. Thus, the mean
values EOC(Yi) for out-of-control situations are expected to decrease and, subsequently,
corresponding out-of-control ARL’s to be shorter. Alternative ways for planning changes
in the parameter vector leading to decreases in the mean response are possible.

Out-of-control ARL’s are based on 50000 run-length values and are reported in Tables
3.4–3.9 for some studied shifting patterns. In each table, approximated ARL are reported
for a given shift in the WRM shape parameter σ and the shifting patterns shown in the
first two columns. Tables also show results for the mean value of the first experimental
level E(Y1) in the fourth column for the shifting pattern given in the preceding columns.
The rest of the columns contain the respective out-of-control ARL’s with an estimate of
the standard deviation of the run lengths in brackets for each proposed chart.
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Shifting pattern LRT-Chart LRT-EChart LRT-CChart MEWMA

C1 C2 E(Y1) ARL SD ARL SD ARL SD ARL SD

0.00 0.0 6.75 200.14 (199.16) 199.97 (198.87) 200.41 (198.76) 199.92 (198.14)

0.00 -0.1 6.65 137.36 (136.86) 91.68 (80.20) 99.86 (96.33) 27.92 (19.37)
-0.2 6.56 60.31 (59.81) 26.37 (19.03) 28.06 (24.14) 10.15 (4.42)
-0.3 6.47 24.31 (23.81) 11.07 (6.02) 10.06 (6.47) 6.12 (1.96)
-0.4 6.38 10.58 (10.07) 6.19 (2.77) 5.37 (2.48) 4.44 (1.18)
-0.5 6.29 5.09 (4.57) 4.12 (1.62) 3.70 (1.26) 3.53 (0.81)
-0.6 6.20 2.83 (2.27) 3.01 (1.07) 2.90 (0.80) 2.96 (0.63)
-0.7 6.11 1.80 (1.20) 2.36 (0.78) 2.43 (0.57) 2.55 (0.54)
-0.8 6.02 1.34 (0.67) 1.95 (0.61) 2.16 (0.37) 2.24 (0.44)
-0.9 5.93 1.13 (0.38) 1.66 (0.54) 2.04 (0.19) 2.06 (0.28)
-1.0 5.84 1.04 (0.20) 1.42 (0.50) 2.00 (0.10) 2.04 (0.26)

-0.02 -0.1 6.62 115.34 (114.84) 70.97 (61.64) 79.26 (74.65) 21.22 (13.12)
-0.2 6.53 48.31 (47.81) 21.54 (14.49) 22.00 (17.77) 8.98 (3.59)
-0.3 6.44 17.87 (14.83) 9.68 (5.06) 8.61 (5.30) 5.68 (1.75)
-0.4 6.35 9.07 (8.56) 5.63 (2.46) 4.93 (2.16) 4.22 (1.90)
-0.5 6.26 4.50 (3.97) 3.82 (1.46) 3.51 (1.16) 3.40 (0.77)
-0.6 6.17 2.55 (1.99) 2.84 (0.98) 2.80 (0.74) 2.86 (0.60)
-0.7 6.08 1.69 (1.08) 2.26 (0.73) 2.37 (0.53) 2.48 (0.53)
-0.8 6.00 1.28 (0.60) 1.89 (0.59) 2.12 (0.33) 2.20 (0.41)
-0.9 5.90 1.10 (0.33) 1.61 (0.54) 2.02 (0.16) 2.04 (0.25)
-1.0 5.80 1.03 (0.17) 1.37 (0.49) 1.99 (0.09) 2.03 (0.24)

-0.04 -0.1 6.59 101.42 (100.92) 54.73 (46.04) 60.95 (56.20) 16.84 (9.59)
-0.2 6.50 41.29 (40.78) 17.80 (11.26) 17.60 (13.77) 8.04 (3.02)
-0.3 6.41 17.11 (16.61) 8.59 (4.30) 7.53 (4.26) 5.29 (1.55)
-0.4 6.32 7.84 (7.32) 5.18 (2.18) 4.54 (1.84) 4.03 (1.01)
-0.5 6.23 3.96 (3.42) 3.60 (1.34) 3.32 (1.04) 3.27 (0.72)
-0.6 6.14 2.33 (1.77) 2.69 (0.92) 2.68 (0.69) 2.78 (0.59)
-0.7 6.05 1.58 (0.96) 2.18 (0.70) 2.31 (0.49) 2.42 (0.51)
-0.8 5.96 1.24 (0.54) 1.82 (0.57) 2.09 (0.30) 2.16 (0.38)
-0.9 5.87 1.08 (0.29) 1.56 (0.53) 2.02 (0.14) 2.02 (0.23)
-1.0 5.78 1.02 (0.15) 1.34 (0.48) 1.99 (0.08) 2.01 (0.23)

Table 3.4. Performance of the proposed schemes for data-set dimension N = 30 of the simple
WRM yik = 3 + 2 log (10i) + 1.5zik with C3 = 1 (no changes in σ = 1.5) and decreases
in both β1 and β2.

Shifting pattern LRT-Chart LRT-EChart LRT-CChart MEWMA

C1 C2 E(Y1) ARL SD ARL SD ARL SD ARL SD

0.00 -0.1 6.48 26.19 (26.99) 15.41 (10.0) 16.17 (12.54) 8.21 (3.22)
-0.2 6.39 22.30 (21.79) 12.97 (7.85) 12.95 (9.67) 7.04 (2.62)
-0.3 6.29 14.44 (13.93) 8.98 (4.94) 8.50 (5.41) 5.54 (1.86)
-0.4 6.20 8.36 (7.84) 6.13 (3.01) 5.62 (2.91) 4.40 (1.32)
-0.5 6.11 4.96 (4.43) 4.38 (1.94) 4.07 (1.71) 3.61 (0.97)
-0.6 6.02 3.09 (2.54) 3.29 (1.36) 3.16 (1.06) 3.06 (0.76)
-0.7 5.94 2.11 (1.53) 2.59 (0.99) 2.64 (0.74) 2.65 (0.63)
-0.8 5.85 1.55 (0.93) 2.12 (0.76) 2.31 (0.52) 2.36 (0.52)
-0.9 5.76 1.27 (0.59) 1.81 (0.63) 2.12 (0.35) 2.14 (0.40)
-1.0 5.68 1.12 (0.37) 1.55 (0.55) 2.02 (0.21) 2.06 (0.28)

-0.02 -0.1 6.44 25.23 (24.72) 14.99 (9.64) 15.89 (12.41) 8.06 (3.17)
-0.2 6.36 20.63 (20.13) 12.13 (7.36) 11.99 (8.65) 6.74 (2.48)
-0.3 6.27 12.57 (12.06) 8.30 (4.48) 7.76 (4.66) 5.28 (1.72)
-0.4 6.18 7.41 (6.89) 5.70 (2.77) 5.23 (2.61) 4.23 (1.23)
-0.5 6.09 4.45 (3.92) 4.14 (1.82) 3.84 (1.52) 3.48 (0.92)
-0.6 6.00 2.83 (2.28) 3.12 (1.25) 3.05 (0.98) 2.97 (0.73)
-0.7 5.91 1.97 (1.38) 2.48 (0.94) 2.58 (0.70) 2.59 (0.60)
-0.8 5.82 1.48 (0.85) 2.05 (0.74) 2.27 (0.48) 2.31 (0.50)
-0.9 5.73 1.23 (0.53) 1.75 (0.62) 2.10 (0.32) 2.10 (0.37)
-1.0 5.64 1.10 (0.33) 1.51 (0.54) 2.01 (0.20) 2.05 (0.26)

-0.04 -0.1 6.41 25.33 (24.82) 15.31 (9.86) 15.42 (11.95) 7.92 (3.10)
-0.2 6.32 18.80 (18.29) 11.34 (6.68) 11.07 (7.77) 6.46 (2.36)
-0.3 6.23 11.36 (10.85) 7.70 (4.08) 7.19 (4.24) 5.05 (1.62)
-0.4 6.14 6.72 (6.20) 5.34 (2.53) 4.90 (2.36) 4.05 (1.16)
-0.5 6.06 4.06 (3.53) 3.86 (1.66) 3.67 (1.40) 3.37 (0.88)
-0.6 5.97 2.63 (2.07) 2.98 (1.18) 2.95 (0.93) 2.89 (0.70)
-0.7 5.87 1.85 (1.26) 2.38 (0.89) 2.50 (0.65) 2.53 (0.58)
-0.8 5.78 1.42 (0.77) 1.98 (0.70) 2.23 (0.45) 2.26 (0.48)
-0.9 5.70 1.20 (0.49) 1.69 (0.60) 2.08 (0.28) 2.08 (0.36)
-1.0 5.62 1.08 (0.30) 1.47 (0.53) 2.00 (0.18) 2.04 (0.26)

Table 3.5. Performance of the proposed schemes for data-set dimension N = 30 of the simple
WRM yik = 3 + 2 log (10i) + 1.5zik with C3 = 1.2 (20% increase in σ = 1.5) and
decreases in both β1 and β2.
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Shifting pattern LRT-Chart LRT-EChart LRT-CChart MEWMA

C1 C2 E(Y1) ARL SD ARL SD ARL SD ARL SD

0.00 0.0 6.75 199.69 (198.96) 199.76 (198.87) 200.13 (199.16) 200.90 (199.22)

0.00 -0.1 6.65 130.55 (130.05) 88.81 (78.98) 96.51 (92.08) 27.46 (18.57)
-0.2 6.56 50.43 (49.92) 24.39 (17.68) 26.37 (18.00) 9.99 (4.27)
-0.3 6.47 19.07 (19.56) 10.24 (5.64) 9.27 (5.92) 6.04 (1.93)
-0.4 6.38 8.91 (8.40) 5.86 (2.66) 5.13 (2.36) 4.39 (1.15)
-0.5 6.29 4.37 (3.83) 3.88 (1.54) 3.57 (1.25) 3.49 (0.80)
-0.6 6.20 2.48 (1.91) 2.84 (1.02) 2.78 (0.76) 2.93 (0.62)
-0.7 6.11 1.65 (1.03) 2.23 (0.76) 2.35 (0.53) 2.52 (0.54)
-0.8 6.02 1.26 (0.57) 1.84 (0.61) 2.12 (0.33) 2.22 (0.42)
-0.9 5.93 1.09 (0.32) 1.55 (0.54) 2.02 (0.16) 2.05 (0.27)
-1.0 5.84 1.03 (0.16) 1.32 (0.47) 1.99 (0.14) 2.00 (0.26)

-0.02 -0.1 6.62 107.30 (106.80) 67.90 (57.89) 75.97 (71.94) 20.72 (12.58)
-0.2 6.53 44.52 (44.02) 20.24 (13.61) 20.50 (16.87) 8.86 (3.56)
-0.3 6.44 17.22 (16.71) 9.07 (4.73) 8.27 (5.06) 5.16 (1.72)
-0.4 6.35 7.76 (7.25) 5.31 (2.35) 4.71 (2.06) 4.16 (1.06)
-0.5 6.26 3.86 (3.32) 3.63 (1.40) 3.36 (1.12) 3.36 (0.72)
-0.6 6.17 2.25 (1.68) 2.70 (0.96) 2.67 (0.71) 2.84 (0.60)
-0.7 6.08 1.55 (1.92) 2.14 (0.72) 2.29 (0.49) 2.47 (0.53)
-0.8 6.00 1.22 (0.51) 1.77 (0.60) 2.09 (0.29) 2.18 (0.40)
-0.9 5.90 1.07 (0.28) 1.50 (0.53) 2.01 (0.15) 2.03 (0.24)
-1.0 5.80 1.02 (0.14) 1.28 (0.45) 1.98 (0.14) 2.00 (0.23)

-0.04 -0.1 6.59 92.68 (92.18) 52.16 (43.05) 57.98 (53.77) 16.36 (9.00)
-0.2 6.50 36.50 (35.99) 16.73 (10.36) 16.69 (13.00) 7.89 (2.94)
-0.3 6.41 14.50 (13.99) 8.06 (4.02) 7.16 (4.05) 5.24 (1.54)
-0.4 6.32 6.62 (6.10) 4.86 (2.08) 4.36 (1.79) 3.97 (0.98)
-0.5 6.23 3.43 (2.89) 3.40 (1.29) 3.19 (1.01) 3.23 (0.71)
-0.6 6.14 2.06 (1.48) 2.55 (0.89) 2.58 (0.66) 2.76 (0.59)
-0.7 6.05 1.46 (0.82) 2.05 (0.68) 2.23 (0.45) 2.39 (0.51)
-0.8 5.96 1.18 (0.46) 1.71 (0.58) 2.06 (0.25) 2.14 (0.36)
-0.9 5.87 1.06 (0.25) 1.46 (0.52) 2.00 (0.13) 2.01 (0.22)
-1.0 5.78 1.01 (0.12) 1.25 (0.43) 1.97 (0.12) 1.99 (0.20)

Table 3.6. Performance of the proposed schemes for data-set dimension N = 50 of the simple
WRM yik = 3 + 2 log (10i) + 1.5zik with C3 = 1 (no changes in σ = 1.5) and decreases
in both β1 and β2.

Shifting pattern LRT-Chart LRT-EChart LRT-CChart MEWMA

C1 C2 E(Y1) ARL SD ARL SD ARL SD ARL SD

0.00 -0.1 6.48 12.28 (11.77) 8.74 (4.92) 8.43 (5.44) 6.03 (1.97)
-0.2 6.39 11.79 (11.28) 8.22 (4.50) 7.78 (4.83) 5.63 (1.81)
-0.3 6.29 8.77 (8.26) 6.66 (3.41) 6.17 (3.40) 4.86 (1.47)
-0.4 6.20 5.93 (5.41) 5.04 (2.39) 4.69 (2.21) 4.08 (1.14)
-0.5 6.11 3.85 (3.31) 3.80 (1.68) 3.64 (1.43) 3.46 (0.90)
-0.6 6.02 2.57 (2.01) 2.97 (1.24) 2.95 (0.96) 2.98 (0.72)
-0.7 5.94 1.85 (1.26) 2.39 (0.92) 2.53 (0.69) 2.61 (0.61)
-0.8 5.85 1.44 (0.79) 1.98 (0.74) 2.24 (0.47) 2.33 (0.51)
-0.9 5.76 1.21 (0.51) 1.69 (0.62) 2.08 (0.31) 2.13 (0.38)
-1.0 5.68 1.00 (0.07) 1.18 (0.38) 1.97 (0.19) 2.03 (0.37)

-0.02 -0.1 6.44 12.63 (12.2) 8.79 (4.90) 8.49 (5.57) 5.99 (1.94)
-0.2 6.36 11.43 (10.92) 7.97 (4.32) 7.54 (4.64) 5.51 (1.74)
-0.3 6.27 8.27 (7.76) 6.30 (3.20) 5.85 (3.20) 4.68 (1.39)
-0.4 6.18 5.45 (4.92) 4.77 (2.25) 4.46 (2.05) 3.97 (1.09)
-0.5 6.09 3.56 (3.02) 3.64 (1.58) 3.49 (1.30) 3.36 (0.85)
-0.6 6.00 2.42 (1.85) 2.85 (1.17) 2.86 (0.91) 2.90 (0.69)
-0.7 5.91 1.75 (1.15) 2.29 (0.87) 2.46 (0.64) 2.56 (0.59)
-0.8 5.82 1.38 (0.73) 1.92 (0.71) 2.20 (0.44) 2.28 (0.48)
-0.9 5.73 1.18 (0.47) 1.64 (0.61) 2.06 (0.29) 2.10 (0.36)
-1.0 5.64 1.00 (0.06) 1.15 (0.35) 1.95 (0.18) 2.01 (0.34)

-0.04 -0.1 6.41 12.89 (12.38) 8.70 (4.83) 8.33 (5.33) 5.95 (1.94)
-0.2 6.32 10.88 (10.37) 7.74 (4.10) 7.26 (4.37) 5.34 (1.67)
-0.3 6.23 7.72 (7.20) 5.99 (3.01) 5.53 (2.90) 4.55 (1.34)
-0.4 6.14 5.07 (4.53) 4.51 (2.09) 4.24 (1.85) 3.82 (1.03)
-0.5 6.06 3.25 (2.71) 3.45 (1.47) 3.35 (1.22) 3.26 (0.80)
-0.6 5.97 2.25 (1.68) 2.71 (1.09) 2.77 (0.85) 2.83 (0.68)
-0.7 5.87 1.66 (1.05) 2.22 (0.84) 2.38 (0.59) 2.50 (0.57)
-0.8 5.78 1.34 (0.67) 1.86 (0.69) 2.17 (0.40) 2.24 (0.46)
-0.9 5.70 1.15 (0.42) 1.59 (0.58) 2.05 (0.26) 2.07 (0.34)
-1.0 5.63 1.00 (0.04) 1.12 (0.32) 1.94 (0.18) 2.99 (0.31)

Table 3.7. Performance of the proposed schemes for data-set dimension N = 50 of the simple
WRM yik = 3 + 2 log (10i) + 1.5zik with C3 = 1.2 (20% increase in σ = 1.5) and
decreases in both β1 and β2.
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All the tables are organized in blocks of ten rows such that each block considers a decreasing
pattern in the mean response as decreases in one or both β parameters are larger. For
understanding the performance of the proposed schemes, just take a glimpse between
columns or between the corresponding rows of different blocks of the same table or between
columns or rows of different tables. For instance, given a value of the scale parameter,
chart performance for changes in the slope can be established by making a comparison
between rows of the first block of each table or comparing first blocks of different tables.

Shifting pattern LRT-Chart LRT-EChart LRT-CChart MEWMA

C1 C2 E(Y1) ARL SD ARL SD ARL SD ARL SD

0.00 0.0 6.75 200.02 (199.69) 199.89 (198.78) 200.23 (199.36) 200.42 (199.01)

0.00 -0.1 6.65 127.23 (126.73) 86.64 (75.93) 95.44 (90.50) 27.31 (18.67)
-0.2 6.56 48.68 (48.18) 23.94 (16.83) 25.08 (21.01) 9.87 (4.15)
-0.3 6.47 18.44 (17.93) 9.91 (5.34) 9.16 (5.85) 5.96 (1.87)
-0.4 6.38 7.76 (7.24) 5.56 (2.51) 4.95 (2.27) 4.35 (1.13)
-0.5 6.29 3.90 (3.36) 3.71 (1.50) 3.43 (1.19) 3.46 (0.79)
-0.6 6.20 2.25 (1.67) 2.71 (.99) 2.69 (0.75) 2.90 (0.62)
-0.7 6.11 1.54 (0.91) 2.11 (0.75) 2.28 (0.49) 2.51 (0.54)
-0.8 6.02 1.21 (0.51) 1.74 (0.61) 2.09 (0.29) 2.20 (0.41)
-0.9 5.93 1.07 (0.28) 1.46 (0.52) 2.00 (0.17) 2.04 (0.25)
-1.0 5.84 1.02 (0.14) 1.25 (0.44) 1.96 (0.20) 1.97 (0.22)

-0.02 -0.1 6.62 105.34 (104.87) 66.16 (53.70) 73.93 (69.31) 20.34 (12.47)
-0.2 6.53 39.74 (39.24) 19.39 (12.82) 20.07 (16.19) 8.68 (3.46)
-0.3 6.44 15.39 (14.88) 8.70 (4.48) 7.89 (4.79) 5.56 (1.67)
-0.4 6.35 6.77 (6.25) 5.08 (2.24) 4.54 (1.95) 4.11 (1.03)
-0.5 6.26 3.40 (2.86) 3.46 (1.36) 3.25 (1.07) 3.33 (0.74)
-0.6 6.17 2.06 (1.47) 2.55 (0.93) 2.60 (0.69) 2.82 (0.59)
-0.7 6.08 1.45 (0.81) 2.04 (0.71) 2.23 (0.45) 2.44 (0.52)
-0.8 6.00 1.17 (0.45) 1.67 (0.59) 2.06 (0.26) 2.17 (0.39)
-0.9 5.90 1.06 (0.25) 1.42 (0.51) 1.99 (0.15) 2.03 (0.23)
-1.0 5.80 1.01 (0.12) 1.22 (0.41) 1.95 (0.22) 1.96 (0.23)

-0.04 -0.1 6.59 88.10 (87.60) 50.70 (42.19) 56.46 (52.19) 16.33 (9.02)
-0.2 6.50 32.48 (31.94) 16.00 (10.60) 16.08 (12.33) 7.80 (2.88)
-0.3 6.41 12.75 (12.24) 7.74 (3.89) 6.94 (3.91) 5.17 (1.50)
-0.4 6.32 5.79 (5.27) 4.64 (1.99) 4.19 (1.72) 3.93 (0.97)
-0.5 6.23 3.07 (2.52) 3.23 (1.25) 3.09 (0.97) 3.22 (0.71)
-0.6 6.14 1.90 (1.31) 2.44 (0.89) 2.50 (0.64) 2.73 (0.58)
-0.7 6.05 1.38 (0.72) 1.95 (0.67) 2.18 (0.41) 2.37 (0.50)
-0.8 5.96 1.14 (0.40) 1.62 (0.57) 2.04 (0.23) 2.13 (0.35)
-0.9 5.87 1.04 (0.22) 1.34 (0.50) 1.99 (0.16) 2.01 (0.21)
-1.0 5.78 1.01 (0.11) 1.19 (0.39) 1.94 (0.24) 1.94 (0.24)

Table 3.8. Performance of the proposed schemes for data-set dimension N = 100 of the simple
WRM yik = 3 + 2 log (10i) + 1.5zik with C3 = 1 (no changes in σ = 1.5) and decreases
in both β1 and β2.

In Table 3.4, results for data-set dimension N = 30, no shifts in σ0 = 1.5 (C3 = 1) and
decreases in both the intercept and the slope of the linear specification for the WRM
scale parameter are reported. As it can be seen, all the schemes detect planned shifts
in the parameter vector. The larger the decrease in the mean response, the sooner each
scheme detects planned shifts.

However, none of the charts exhibits an overall best performance. The MEWMA chart
outperforms its competitors for relatively small and moderate decreases in the mean
response. The LRT–EChart and the LRT–CChart are alternative to the MEWMA chart
for detecting small and moderate decreases in the mean response. Both of them are
substantially less effective in detecting small decreases in the mean response than the
MEWMA chart, but almost as effective as the latter in detecting moderate and large
decreases. The LRT–EChart is the best option for detecting larger decreases among the
non-Shewhart-type charts. The LRT–EChart and the LRT–CChart exhibit a similar
performance, but the LRT–CChart is a slightly better option than the LRT–EChart for
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Shifting pattern LRT-Chart LRT-EChart LRT-CChart MEWMA

C1 C2 E(Y1) ARL SD ARL SD ARL SD ARL SD

0.00 -0.1 6.48 4.63 (4.02) 4.36 (2.05) 4.20 (1.86) 4.05 (1.04)
-0.2 6.39 4.52 (3.99) 4.33 (2.07) 4.13 (1.85) 4.02 (1.04)
-0.3 6.29 4.13 (3.59) 4.05 (1.86) 3.87 (1.60) 3.78 (0.95)
-0.4 6.20 3.33 (2.79) 3.49 (1.53) 3.41 (1.29) 3.46 (0.85)
-0.5 6.11 2.56 (1.99) 2.96 (1.25) 2.97 (0.99) 3.10 (0.74)
-0.6 6.02 1.96 (1.37) 2.48 (1.00) 2.61 (0.76) 2.77 (0.65)
-0.7 5.94 1.55 (0.93) 2.09 (0.81) 2.32 (0.55) 2.49 (0.57)
-0.8 5.85 1.30 (0.63) 1.79 (0.68) 2.14 (0.40) 2.26 (0.47)
-0.9 5.76 1.15 (0.41) 1.55 (0.59) 2.03 (0.27) 2.09 (0.35)
-1.0 5.68 1.07 (0.27) 1.36 (0.60) 1.96 (0.25) 1.99 (0.29)

-0.02 -0.1 6.44 4.56 (3.93) 4.33 (2.06) 4.16 (1.85) 4.05 (1.03)
-0.2 6.36 4.51 (3.97) 4.31 (2.05) 4.07 (1.77) 3.99 (1.02)
-0.3 6.27 3.96 (3.42) 3.96 (1.82) 3.76 (1.55) 3.73 (0.94)
-0.4 6.18 3.15 (2.60) 3.38 (1.48) 3.34 (1.24) 3.40 (0.82)
-0.5 6.09 2.42 (1.86) 2.87 (1.20) 2.90 (0.95) 3.04 (0.72)
-0.6 6.00 1.87 (1.27) 2.39 (0.96) 2.54 (0.71) 2.72 (0.63)
-0.7 5.91 1.50 (0.87) 2.03 (0.79) 2.29 (0.52) 2.44 (0.55)
-0.8 5.82 1.26 (0.58) 1.75 (0.67) 2.12 (0.37) 2.22 (0.44)
-0.9 5.73 1.13 (0.38) 1.50 (0.57) 2.02 (0.27) 2.06 (0.33)
-1.0 5.68 1.05 (0.24) 1.33 (0.49) 1.95 (0.26) 1.97 (0.28)

-0.04 -0.1 6.41 4.53 (4.00) 4.34 (2.05) 4.14 (1.86) 4.06 (1.04)
-0.2 6.32 4.43 (3.90) 4.26 (2.01) 4.04 (1.78) 3.95 (1.01)
-0.3 6.23 3.88 (3.34) 3.86 (1.77) 3.70 (1.51) 3.67 (0.91)
-0.4 6.14 3.00 (2.45) 3.28 (1.41) 3.22 (1.16) 3.32 (0.81)
-0.5 6.06 2.30 (1.73) 2.78 (1.16) 2.82 (0.91) 2.97 (0.70)
-0.6 5.97 1.78 (1.18) 2.30 (0.93) 2.48 (0.67) 2.39 (0.61)
-0.7 5.87 1.44 (0.79) 1.96 (0.76) 2.24 (0.49) 2.19 (0.53)
-0.8 5.78 1.23 (0.53) 1.70 (0.64) 2.09 (0.34) 2.05 (0.42)
-0.9 5.70 1.11 (0.35) 1.46 (0.55) 2.00 (0.26) 1.99 (0.32)
-1.0 5.62 1.05 (0.22) 1.30 (0.47) 1.94 (0.25) 1.95 (0.27)

Table 3.9. Performance of the proposed schemes for data-set dimension N = 100 of the simple
WRM yik = 3 + 2 log (10i) + 1.5zik with C3 = 1.2 (20% increase in σ = 1.5) and
decreases in both β1 and β2.

detecting moderate decreases in the mean response. The LRT–CChart and LRT–CChart
detect small decreases in the mean response faster than the LRT–Chart. For larger de-
creases, the LRT–Chart performs slightly better than the LRT–CChart and LRT–CChart
but does not show a substantially better ability.

As it can be noted from Table 3.5, the increase in the scale parameter, for the same
decreasing patterns in the β parameters, makes the proposed charts detect small decreases
in the mean response substantially faster and detect moderate and larger decreases,
slightly slower. Simulations also suggest that large decreases in the mean response are
detected the sooner as N increases. However. small decreases in the mean response
are detected just slightly sooner as N increases. For details please compare results in
Tables 3.4 and 3.5 with those reported in Tables 3.6 and 3.7, for N = 50, and with those
reported in Tables 3.8 and 3.9, for N = 100.

Increases in the mean response can also be monitored by using the same schemes and just
taking appropriate values for the contamination constants Cf given in Section 3.5.2. For
details see Appendix A.2.
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3.6 Diagnostic aid

It was stated in Section 3.4.1 that changes in the WRM parameter vector lead to changes in
the distribution of the random variable Yi measured in the i−th, i = 1, · · · , n experimental
setting. Once the control chart signals, from the signaling data set it is possible to evaluate,
for instance, the r × 100% percentile of the distribution of Yi in the i−th experimental
level. Departures from the in-control r × 100% percentile of the distribution of Yi in the
i−th experimental level, yi,r, can be established from the fact that for large data sets we
have

Z0 =
ŷi,r − yi,r
se (ŷi,r)

∼ N(0; 1) (3.18)

where ŷi,r = x′
iβ̂ + aσ̂ y se (ŷi,r) =

[
(x′
i, a)ℑ−1(x′

i, a)′
]1/2

with β̂ and σ̂ being the MLE of
the parameter vector and ℑ, the observed information matrix for the signaling data set,
respectively, and a = log [− log (1 − r)].

Although approximation (3.18) just holds asymptotically, simulations suggest that it
works quite acceptable for the data-set dimensions explored in this study. Thus, for a
given significance level α, a decision about a possible increase in yi,r could be made when
Z0 > z1−α/2 and about a possible decrease in yi,q, when Z0 < zα/2. In particular, possible
increases or decreases in the mean or the median of the distribution of the random
variable Yi in the i−th experimental setting can be evaluated with the help of the MLE
of the parameter vector for the signaling data set by making r = 0.4296 or r = 0.5,
respectively, in (3.18).

If it is the case, some punctual results of the methodology presented in DiCiccio [13],
developed separately for the particular case of the intercept, the slope or the log-scale
parameter can be used to identify possible increases or decreases in each parameter once
control schemes signal. The procedure is based on the fact that, for large N we have

Uf =
ξ̂f − ξf√

ℑ−1
ff

∼ N(0, 1), f = 1, 2, 3. (3.19)

with (ξ1, ξ2, ξ3) = (β1, β2, φ). For non–large enough N , the α× 100% percentile of U can
be corrected as it is indicated in DiCiccio [13]. Details on how to do it for the particular
case of the log-scale parameter were explained in the preceding chapter and can be easily
extended to the rest of the cases.

3.7 Example from the food industry

One of the most important aspects of quality improvement in food industry consists of
determining the shelf life of processed foods. This is, the elapsed time before a product
is deemed to be inappropriate for human consumption. The shelf life of processed foods
depends on their storage and exhibition conditions. Temperature and relative humidity
are the main causes of deterioration of physical, chemical and organoleptic properties of
processed foods.
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By following the recommendations of quality authorities, a company dedicated to
biscuit production implemented new methods for verifying storage conditions of filled
sweet cookies. Besides the usual tests, since 1997 the company has annually conducted
accelerated tests to determine the shelf life of cookies in different storage conditions.
Seven specimens of 4 g weight are subjected to five different high-temperature levels at a
fixed 75% relative humidity level. Temperature levels range from 36 to 44◦C with a 2◦C
increase between levels. A climatic device is used to control temperature levels, so that
one day in the device chamber is equivalent to 4 − 8 days in normal storage conditions
depending on the temperature level.

The response variable is the elapsed time in days until a specimen achieves a 40% moisture
gain. There are N = 35 uncensored observations in an annual batch. The complete data
set consists of 14 annual batches collected in the period 1997 − 2010 and 3 additional
batches of the same dimension collected in 2011 that are known to be out-of-control
because of a lack of calibration of the climatic device. The use of data for academic
purposes was allowed exclusively. Data are shown in Appendix A.3.

A preliminary graphical analysis is shown in Figure 3.1. It suggests that the problem of
verifying the shelf life in different storage conditions can be approached from the perspec-
tive of regression models. Different models with a single covariate were proved to fit the
available data sets corresponding to the period 1997 − 2010. The EVRM (2.1) appears
to give a good description for the log-transformation of the shelf time in terms of the
log-transformation of the temperature levels (p − value = 0.037). The fit results in the
model

ŷij = 18.1692 − 3.8365xi + 0.7242zij (3.20)

where xi is the log-transformation of the temperature level.

For further discussion, and just for illustrating the proposed methodologies, fit (3.20) was
assumed to be the in-control model. Corrected control charts were built for all available
data sets. All schemes were calibrated to reach ARL0 = 200. Designing parameters for
each chart are reported in Table 3.10. Control charts are presented in Figure 3.2.

LRT–Chart LRT–EChart LRT–CChart MEWMA

α = 0.005 λ = 0.1 K± = 0.5 λ = 0.1

UCL =12.891 L = 3.518 h = 2.683 h = 0.621

Table 3.10. Designing parameters of the proposed schemes leading to ARL0 = 200 for the food
industry example

As is can be seen in Figure 3.2, LRT-based charts detect the out-of-control situations
as soon as they occur. The MEWMA chart does it one sampling moment later. This
is perhaps due to the fact that we are dealing with a substantial decrease in the mean
response and the LRT-based charts outperform the MEWMA scheme in such cases. It is
worth mentioning that the LRT chart is the only one scheme that identifies the last data
set as an in-control point when it is really an out-of-control one.
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Figure 3.2. Control charts for the food industry example

Let us suppose further that we want to know what happened to the mean response as
soon as the charts first signal. The in-control mean shelf time in days for the five fixed
temperature levels in accelerated conditions are 76, 62, 51, 42 and 35, respectively. The
EVRM fit to the 15−th data set results in β̂1 = 18.439, β̂2 = −4.001 and σ̂ = 0.773 with
(p− value = 0.10147). Thus, the approximated mean shelf time based on the information
from the signaling data set are 56, 45, 37, 30 and 25, respectively, in accelerated condi-
tions. Thus, cookies should be lasting less time in shelves in mean terms. For instance,
cookies at a 44◦ temperature level in accelerated conditions last 10 days less in mean terms
approximately. This is equivalent to 40 − 80 days in normal conditions. This particular
shift in the mean response value was correctly identified by the diagnostic aid.

3.8 Conclusions

In this study, some different control mechanisms were improved for monitoring the
parameter vector of the EVRM with uncensored observations in phase II processes. This
is equivalent to monitoring the WRM parameter vector. The results of the conducted
simulation study suggest that adjustments to the relative LRT statistic (3.3) defined for
the entire parameter vector ξ make the proposed schemes a fairly acceptable procedure
to carry out the monitoring for detecting sustained shifts in the parameter vector of the
EVRM with uncensored observations.
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None of the schemes exhibited an overall best performance. For all studied data-set
dimensions, the MEWMA chart was found to be the best option for detecting small
and moderate decreases in the mean response, whilst the LRT chart is the best option
for detecting larger decreases. The LRT-EChart and LRT-CChart exhibit a similar
performance. The LRT-EChart may be considered as a good alternative to the LRT
chart for detecting large decreases in the mean response. The LRT-CChart is the best
alternative to the MEWMA chart for detecting moderate decreases in the mean response.

Special attention has to be paid to the MEWMA chart. It certainly outperforms the rest
of the schemes for detecting small and moderate decreases in the mean response. However,
the UCL of this chart strongly depends on the data-set dimension N . Furthermore, its
performance also depends on the distribution of the MLE of the EVRM parameter vector
for non-large enough N values, which is unknown. This drawback makes its use more
restrictive than that of the competing methodologies. The fact is that the adjustments
introduced into the LRT statistic make the schemes based on them, work approximately
as well as in the asymptotic case even for non-large enough N . Moreover, the UCL of the
corrected schemes seems to be robust respect to the N values.

Furthermore, once out-of-control signals are obtained while monitoring, it is possible to
know approximately what happens to the main quantities related to the distribution
in the i−th experimental level. An approximated procedure based on the asymptotic
distribution of the r×100% percentile in the i−th covariate level was presented for making
conclusions about the mean (or the median, if it is the case) response in the respective
level. It is also possible to judge about the survival probabilities in the i−th covariate level.

Although the presented methodology was developed for the special case of the WRM, it
could be applied for successfully monitoring regression models with response variable in
the location-scale family. Whatever the response in this family is, the parameter vector β,
that measures the effects of covariates on times, can be monitored by taking an adequate
partition of the entire parameter vector. This is achieved by letting the parameters that
we are not interested in to form a sub-vector and treating them as nuisance parameters
that do not have to be known but stable.

REMARK

Part of the results presented in this chapter are reported in the paper “Monitoring
the parameter vector of regression models with time-to-event response in phase II pro-
cesses” published on line in 2017 in Journal of Statistical Computation and Simulation,
http://dx.doi.org/10.1080/00949655.2017.1344240



CHAPTER 4

Monitoring WRM with censored observations

4.1 The problem

Let us suppose that at the j−th moment in time, j = 1, 2, ..., a data set with the structure
shown in Table 4.1 is available. In Table 4.1, x′

i, i = 1, ..., n, represent n different levels
or settings of the same experimental situation. These may be n different values of a
p−dimensional vector of explanatory variables. This is,x′

i = (x1i, . . . , xpi). The values of
x′
i are considered to be fixed in repeated sampling.
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Table 4.1. Data structure at the j−th moment

Before going further, some notation is needed to clarify. At the j−th moment in

the i−th level, i = 1, . . . , n, a random variable T
(j)
i representing lifetimes has to be

measured. However, instead of the observed real lifetime values, we have a time t
(j)
i

that we know is either an observed lifetime or a fixed time value previously established
Ci. The values Ci are often referred to in specialized literature as censoring times. Let

us also define the status indicator δ
(j)
i for t

(j)
i that tells us if t

(j)
i is an observed lifetime

(δ
(j)
i = 1) or a censoring time (δ

(j)
i = 0). Formally, we have t

(j)
i = min

[
T
(j)
i ;C

(j)
i

]
and

δ
(j)
i = I

[
T
(j)
i ≤ C

(j)
i

]
. In this formulation we made a mistake by letting ti represent

either a random variable or a realized value but no confusion should arise.
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Thus, in Table 4.1, t
(j)
ik represents the k−th observation, k = 1, . . . ,mi, of the random

variable ti at the j−th moment and δ
(j)
ik is the status indicator for t

(j)
ik . The censoring

times cik are assumed to be the same for every j value. The quantities mi are the total
observations in the i−th level and are also set to be fixed for every j value. We have∑n

i mi = N observations at the j−th moment. In the following, as in previously reviewed
cases, we will refer to N as the data-set dimension.

In the context of GLM, the variables t
(j)
i share the same distribution but with parameters

depending on the i−th experimental level. It is well known that all these distributions
are linked by a parameter vector ξ = (β1, · · · , βp, σ) whose dimension p + 1 < n. If we
assume a linear dependence between the response vector and the experimental levels, then
the structure in Table 4.1 can be written in the form

y
(j)
ik = log t

(j)
ik = x′

iβ + σz
(j)
ik , j = 1, 2, ... (4.1)

This is exactly the same functional dependence as in models (2.1) and (3.2), but with a
little difference. There is a right-censoring mechanism operating on the response variables
ti. In addition, it will be assumed that the scale parameter σ > 0 is fixed at a given
known value. The rest of the quantities in model (4.1) have the same meaning as in
models (2.1) and (3.2).

In the context of SPC, we are formally interested in testing over time the hypothesis

H0 : β = βIC = β0

H1 : β = βOC = (1− d) ◦ β0

(4.2)

where the circle symbol represents the Hadamard product, d is a p−dimensional vector
whose components are such that −1 < dq < 1, q = 1, · · · , p, and 1 is the p−dimensional
unitary vector. This is, in the most general case, we would be interested in detecting
d × 100% shifts from β0. Departures can take place in one or more components of the
parameter vector β. The importance of detecting these drops lies on the fact that changes
in the value of β will necessarily imply changes in the distributions of the responses ti at
all experimental levels. However, the main goal of this study will be focused on the early
detection of decreases in one or more regression coefficients β1, ..., βp because this kind
of shifts imply a lower mean value of the response variable. This is achieved by making
0 < dq < 1, q = 1, · · · , p.

We propose to test hypothesis (4.2) over time by using a CUSUM procedure based on the
LRT statistic defined by

LRTj = ℓj(βOC) − ℓj(βIC), j = 1, 2, ... (4.3)

where ℓj(βOC) and ℓj(βIC) are the likelihood functions for model (4.1) defined for
the out-of-control and the in-control states at the j−th moment, respectively. This
formulation was first used by Dickinson et al. [15] for monitoring censored Weibull
lifetimes without covariates.
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This is one of the first attempts for monitoring regression models with censored lifetimes.
Thus, there are no methodologies to compare with. Although the structure in Table 4.1 is
not that of a profile, we have adapted the MEWMA chart for monitoring binary profiles
to the case of our particular interest. The MEWMA chart for monitoring profiles was
first proposed by Zou et al. [78] and extended by Soleymanian et al. [61] to the case of
binary profiles. Soleymanian’s version of the MEWMA chart was proved to outperform
its LRT-based competitors when detecting small and moderate shifts in the parameter
vector characterizing binary profiles is needed.

However, as it will be seen later, the use of Soleymanian’s MEWMA chart is restrictive
when regression models for censored lifetimes have to be monitored. The fact is that
the MEWMA chart is based on the asymptotic normality of the MLE of the parameter
vector characterizing the basic model. Panza and Vargas [41] have shown by simulations
that in the case of the WRM for uncensored lifetimes this property just holds for N >
1500. In addition, for relatively small and moderate data-set dimensions and theoretical
censoring rates pC ≥ 50%, the expected value of the parameter vector MLE is substantially
different from that of the in-control value. For instance, Table 4.2 shows the approximated
expected value of the MLE of both the intercept and the slope of simple linear WRM for
different data-set dimensions N , theoretical censoring rates pC and fixed shape parameter
γ. Reported results were obtained by simulating random data sets with the structure in
Table 4.1 for the WRM with xi = log (10i) and βIC = (β10, β20)

′ = (3, 2)′.

N γ = 0.5 γ = 1.0 γ = 1.5

pC = 30% pC = 50% pC = 70% pC = 30% pC = 50% pC = 70% pC = 30% pC = 50% pC = 70%

30 3.1439 3.4209 3.9430 2.9977 3.1029 3.3642 3.0841 3.3099 3.7554

1.9930 1.9771 1.9298 2.0009 1.9809 1.9306 1.9958 1.9778 1.9278

50 3.1282 3.3672 3.7616 3.0001 3.0566 3.1856 3.0761 3.2607 3.5673
1.9961 1.9873 1.9648 2.0002 1.9896 1.9647 1.9970 1.9870 1.9644

100 3.1162 3.3298 3.6567 3.0021 3.0272 3.0827 3.0679 3.2219 3.4629
1.9984 1.9944 1.9848 1.9997 1.9950 1.9845 1.9986 1.9946 1.9845

Table 4.2. Expected value of the MLE of the WRM parameter vector for different data-set dimen-
sions N , theoretical censoring rates pC and fixed shape parameter γ. The expected
value of MLE of the intercept (or the slope) is reported in the upper (lower) row for
each data-set dimension value N .

As it can be seen in Table 4.2, E(β̂) ≈ βIC for theoretical censoring rates pC < 50% and
all the reported γ values. For greater pC values, the approximation holds as N increases.
The design of the adapted MEWMA chart takes into account this circumstance.

4.2 Theoretical framework

Details about the Weibull and the extreme value models were already presented in Sec-
tion 2.3. We will refer instead to some particular aspects of the WRM with censored
observations.
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4.2.1 Censoring mechanisms

While dealing with lifetimes, it may not be possible to assess when exactly a failure or
an event of interest occurs, because time needed to observe the lifetimes of all items or
individuals involved in the study may be large enough that researchers cannot make all
measurements. This leads to so called censoring, in which the lifetime of an individual is
known only to exceed a certain fixed value.

Several censoring mechanisms can operate while observing lifetimes. We are in the
presence of a right-censoring mechanism when only lower bounds on lifetime are available
for some individuals. A Type I censoring mechanism is said to apply when each individual
has a fixed censoring time cik > 0 such that the lifetime tik is observed if tik ≤ cik;
otherwise, it is only known that tik > cik. Type I censoring often arises when a study is
conducted over a specified time period. In clinical trial, for instance, there are entries
of individuals to a study combined with a specified ending date. Type II censoring
appears when only the r smallest lifetimes in a random sample of N are observed. This
mechanism arises when N individuals start on a study at the same time and the study
ends once r lifetimes have been observed.

There are other censoring mechanisms in specialized literature. However, we will not
refer to them since our interest is focused on Type I right censoring for being the most
presented mechanism in practical situations. For more details about censoring please
address to Lawless [27] or Meeker and Escobar [34].

4.2.2 Estimation in the WRM

At every j−th moment, based on a censored data set (tik, δik) of dimension N , it is
possible to estimate the regression parameters β1, · · · , βp characterizing model (4.1) for a
fixed value of the shape parameter γ = σ−1. The likelihood function for the parameter
vector β = (β1, · · · , βp)′ with right censored observations and fixed γ is

 Lj(β) =

n∏
i=1

mi∏
k=1

[
f
(
t
(j)
ik

)]δ(j)ik
[
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ik
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(4.4)

where θ
(j)
i = θ(x′

i) = exp (x′
iβ

(j)) and rj =
∑n

i=1

∑mi
k=1 δ

(j)
ik .

At every j−th moment, the MLE of the parameter vector β is obtained by solving
numerically the equation system defined by the scores Ul = ∂ℓ(β)

∂βl
= 0, l = 1, 2, ..., p.
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Let β̂ be the MLE of the parameter vector β. The components of the observed information
matrix ℑβ̂ are of the form

ℑlm =

[
− ∂2ℓ(β)

∂βl∂βm

]
β=β̂

, l,m = 1, 2, ..., p (4.5)

It is also well known that under certain regularity conditions the vector β̂ follows a
p−dimensional normal distribution with mean vector β and covariance matrix ℑ−1

β̂
as

N → ∞.

4.3 Particularities of the monitoring

Let Ti ∼ W (θi, γ), i = 1, ..., n, be random variables denoting lifetimes. The regression
model (4.1) can be written in the form

t
(j)
ik = exp

(
x′
iβ

(j) + γ−1z
(j)
ik

)
(4.6)

For p = 2, this is x′
iβ = β1 +β2xi, simulations suggest that increases (or decreases) in one

of the components of the parameter vector β = (β1;β2)
′ generates increases (or decreases)

in the mean value of ti for a given value of the shape parameter γ. Moreover, for
theoretical censoring rates pC ≥ 10%, it was also observed that increases (or decreases) in
the slope β2 generate increases (or decreases) in the mean response regardless the changes
in the intercept β1. For pC < 10%, changes in the mean response due to combinations of
different shifting patterns in all parameters, especially those with small shifts in one of
them, need more careful investigation.

In addition, as it was stated earlier, we are interested in detecting decreases in the mean
time response. The deterioration of the process is achieved by considering decreases in
just one of the regression coefficients or combinations of changes in all of them. Although
the methodologies that will be introduced in next section is proposed to deal with simulta-
neous shifts in the regression coefficients, the decrease in the slope β2 is the only one case
to be considered. When simultaneous changes are taken into account, additional changes
in the intercept β1, for instance, could lead to a faster reaction of the control schemes due
to larger decreases in the mean time response. However, if it is desired, the redesign of
the prosposed methodologies in order to consider new monitoring needs is straightforward.

Above mentioned circumstances allow us to design control schemes for detecting decreases
in the slope that imply the deterioration of the mean response. Although increases in
the slope could imply the improvement of the process, increases in the mean response
also lead to undesirable higher censoring rates. In the following, for designing purposes,
we will consider that β2 = β21 = (1 − d2)β20 for out-of-control states, where β20 is the
known stable value of the slope. The constant d2 represents a d2×100% shift in the slope.
Decreases in the slope can be obtained for 0 < d2 < 1. If it is desired, increases in the
slope can be modeled by making d2 < 0. The in-control state is obtained for d2 = 0.
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4.4 Control charts for the WRM

4.4.1 The WRM–CUSUM chart

A CUSUM scheme based on the LRT statistic (4.3) has the form

Dj = max [0;Dj−1 + LRTj ] , j = 1, 2, ... (4.7)

with D0 = 0. The chart signals when, for any j, the corresponding value Dj exceed a
threshold h that is chosen to reach a desired ARL0.

For the WRM, the LRT statistic (4.3) for testing the hypothesis (4.2) takes the form

LRTj = −
n∑
i=1

mi∑
k=1

[
δ
(j)
ik logωi − ai

(
t
(j)
ik

exp (x′
iβ0)

)γ]
(4.8)

where ωi = exp [−γx′
i(d ◦ β0)] and ai = (ωi − 1) /ωi.

It has to be noted that, in general, the performance of the CUSUM charts based on the
LRT statistic (4.8) depends on the data-set dimension N , the fixed value of the shape
parameter γ, the in-control value of the parameter vector β0, the nominal shift to be
detected d, the fixed covariate pattern and the amount of censored observations in the
available data set. However, no concern should arise because all these quantities are
supposed to be known in phase II monitoring.

When we are interested in monitoring the slope β2 of the simple WRM, in expression
(4.8) we have d = (d1, d2)

′ = (0, d2) and then ωi = exp (−γd2β20xi). Other shifting
patterns leading to decreases of the mean response value are easy to design by taking an
appropriate form of vector d.

At this point, it is worth mentioning that simulations suggest the increase of the mean of
the second weighted sum in the right part of expression (4.8) when β2 decreases. Thus,
for detecting decreases in β2, it can be used the upper CUSUM chart defined by

D+
j = max

[
0;D+

j−1 −Kj +

n∑
i=1

mi∑
k=1

ai

(
t
(j)
ik

exp (x′
iβ0)

)γ]
, j = 1, 2, ... (4.9)

where D+
0 = 0 and Kj =

∑n
i=1

∑mi
k=1 δ

(j)
ik logωi is the reference value for the j−th data

set. The chart signals if D+
j > h+, for any j, indicating a possible decrease in β2. This

scheme will be called the WRM-CUSUM chart.

4.4.2 The adapted MEWMA chart

Soleymanian [61] proposed a MEWMA chart for monitoring the parameter vector of binary
profiles. Soleymanian’s version of the MEWMA chart was found to detect small shifts in
the parameter vector substantially faster than the Shewhart-type and EWMA charts based
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on the deviance form of the LRT statistic. To design the chart, it is first needed to define
the vectors

Vj = ℑ1/2
(
β̂j − β0

)
(4.10)

where β̂j is the MLE of the parameter vector β at the j− moment and ℑ is the asymptotic
information matrix. In order to use the most of the information in the available data sets,
we propose to replace the asymptotic matrix ℑ in (4.10) by the observed information
matrix for the j−th data set ℑβ̂.

The MEWMA statistic is then defined to be

Ej = λVj + (1 − λ)Ej−1 (4.11)

where 0 < λ ≤ 1 is the smoothing constant and E0 = 0p×1. The MEWMA control chart
signals as soon as Mj = E′

jEj > h, where h is the UCL that is determined to reach a
desirable ARL0.

It is clear that MEWMA chart performance strongly depends on the distribution of the
parameter vector MLE for a given data-set dimension N , a fixed shape parameter γ and
the amount of censored observations in the available datasets. As the distribution of
the parameter vector MLE is unknown, we take into account the results in Table 4.2 for
designing the corresponding MEWMA charts. Because of these circumstances, we feel
that the use of the MEWMA chart is very restrictive for monitoring WRM with censored
observations, but we do introduce it for comparing purposes.

4.5 Performance evaluation of the control charts

As it was done in the case of monitoring the WRM with uncensored observations, the
ARL was used to evaluate control chart performance. This is the mean number of
inspected samples until the scheme first signals. In this study, ARL for each scheme was
obtained by simulation.

4.5.1 Simulation settings

For simulation purposes, model (4.1) will be written in the form

t
(j)
ik = exp

[
β1 + β2 log (10i) + γ−1z

(j)
ik

]
(4.12)

It is set that at every j−th moment we have n = 10 fixed in repeated sampling levels of
the same experimental situation. Thus, for i = 1, · · · , 10, we have that Ti ∼ W (θi, γ),
with scale parameter θi = exp [β1 + β2 log (10i)], and zik being independent observations
of the variable Zi ∼ EV (0; 1). The in-control regression coefficients are set to be β10 = 3
and β20 = 2. These settings are similar to those used by Yeh et al. [74] in their Phase I
study for monitoring binary profiles.
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To take into account out-of-control states, model (4.12) will be rewritten in the form

t
(j)
ik = exp

[
3 + 2(1 − d2) log (10i) + γ−1z

(j)
ik

]
(4.13)

The performance of the proposed schemes depend on the scenario of interest. These
scenarios include combinations of different values of the fixed Weibull shape parameter γ,
the data-set dimension N , the in-control theoretical censoring rate pC and the decrease
size d2. To evaluate the impact of these factors in chart performance, were considered
values for the fixed shape parameter γ = 0.5, 1.0 and 1.5; censoring rates pC = 30%, 50%
or 70% and decreases of size d2 ∈ [0.0(0.01)0.2]. We also set the fixed total amount of
observations per level mi = 3, 5 or 10 leading to explored data-set dimensions N = 30, 50
and 100, respectively

For each considered scenario, censoring times Ci, i = 1, ..., n, were generated, for given
values of the shape parameter γ, the in-control scale parameter θi = exp [3 + 2 log (10i)]
and the in-control censoring rate pC , by using the expression

Ci = θi [− log (pC)]1/γ (4.14)

A similar expression to that in (4.14) was used by Dickinson et al. [15] to generate
censoring times for monitoring Weibull-distributed observations without covariates. As
these censoring times represent an in-control situation, they will be assumed to be fixed
in repeated sampling.

4.5.2 Obtaining control limits

The control limits for the studied charts were estimated using a bisection search algorithm
so that each scheme reach ARL0 = 200. For each scenario of interest, in-control data sets
of a given dimension N , that included Type I right-censored observations, were generated.
For intermediary values of the control limit, 20000 run-length values were simulated. When
the obtained ARL0 was sufficiently close to 200, the current value of the corresponding
control limit was retained. Otherwise, the search was continued.

4.5.3 ARL estimation algorithm

For a scenario of interest, proceed as follows:

1. Set the values for λ, γ, N , pC and d2.

2. Generate a single observation zik from the standardized extreme value distribution
and replace it in expression (4.13) to obtain a lifetime tik. Repeat until a set of N
uncensored lifetimes is completed.

3. Generate the censoring times cik by formula (4.14).

4. Compare each tik with its corresponding cik. If tik < cik, retain tik and consider it
as an exact lifetime with δik = 1. Otherwise, make tik = cik and consider it as a
censored observation for which δik = 0.
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5. For a given scheme, proceed as follows:

(a) For the CUSUM charts, compute the upper CUSUM statistic (4.9) for the ob-
tained censored data set.

(b) For the MEWMA charts, fit the model tik = exp
(
β1 + β2xi + γ−1zik

)
and com-

pute the MEWMA statistic (4.11) and the corresponding plotting statistic Mj .

6. Repeat steps 2–5 until the signaling condition holds. The total number of generated
data set is a run length. A lot of run-length values are needed to obtain. The mean
of them is an estimate of the scheme ARL.

For carrying out simulations, all the schemes were calibrated to reach ARL0 = 200.
Estimated ARL’s were obtained by generating 50000 run-length values for each scenario
of interest. Needed software was designed in R language.

4.5.4 Simulation results

In Tables 4.3, 4.4 and 4.5, simulated ARL of the WRM-CUSUM charts for detecting
a nominal 1% decrease in the slope β2 of the linear specification for the WRM scale
parameter are presented. Tables include the results for three values of the fixed WRM
shape parameter, γ = 0.5, 1.0 and 1.5. It can be noted that the larger the decrease
is, the sooner each CUSUM scheme detects it. As it was expected, the increase of the
theoretical censoring rate makes the schemes work less effective in detecting decreases in
β2. For a given censoring rate, the schemes take shorter to detect an out-of-control state
as data-set dimension N increases. Charts designed for larger values of the fixed shape
parameter react faster to out-of-control states for all reported censoring rates and data-set
dimensions.

d2 pc = 30% pc = 50% pc = 70%

N = 30 N = 50 N = 100 N = 30 N = 50 N = 100 N = 30 N = 50 N = 100

0.00 199.92 200.30 200.59 199.58 199.54 200.16 199.39 200.82 198.91

0.01 60.28 47.42 32.68 68.85 55.05 39.11 83.22 68.84 50.42
0.02 30.61 22.67 14.68 36.18 27.26 17.94 46.43 35.89 24.24
0.03 20.02 14.63 9.32 23.83 17.59 11.43 31.19 23.54 15.54
0.04 14.84 10.78 6.87 17.58 12.92 8.34 23.16 17.32 11.35
0.05 11.80 8.57 5.45 13.96 10.23 6.60 18.30 13.63 8.90
0.06 9.80 7.12 4.55 11.51 8.43 5.44 15.04 11.18 7.29
0.07 8.40 6.11 3.92 9.82 7.17 4.66 12.74 9.46 6.18
0.08 7.37 5.36 3.47 8.53 6.24 4.07 11.03 8.19 5.36
0.09 6.57 4.80 3.12 7.56 5.54 3.63 9.70 7.21 4.72
0.10 5.95 4.35 2.86 6.78 4.98 3.28 8.64 6.43 4.23
0.20 3.28 2.45 1.97 3.46 2.62 1.98 4.05 3.08 2.08

Table 4.3. Approximated performance of the WRM–CUSUM charts for the fixed shape param-
eter γ = 0.5 and different values of the data-set dimension N , censoring rate pC and
nominal 1% decrease in the slope of the linear specification of the scale parameter.

For instance, when γ = 0.5, the WRM-CUSUM for detecting decreases in slope in data
sets of dimension N = 30 with a 30% of censored observations has ARL1 = 11.80 for
d2 = 0.05. This means that this chart detects a 5% decrease in the slope at the 12−th
sampling moment, in mean terms, from the beginning of the monitoring, approximately.
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d2 pc = 30% pc = 50% pc = 70%

N = 30 N = 50 N = 100 N = 30 N = 50 N = 100 N = 30 N = 50 N = 100

0.00 200.99 200.61 200.60 201.01 200.55 199.30 200.51 200.11 198.79

0.01 29.35 21.65 13.59 35.20 26.17 16.79 45.93 34.72 23.20
0.02 12.96 9.18 5.58 15.75 11.27 6.72 21.28 15.39 9.73
0.03 8.24 5.82 3.56 9.94 7.05 4.34 13.40 9.58 6.01
0.04 6.08 4.32 2.67 7.23 5.14 3.20 9.66 6.90 4.35
0.05 4.87 3.47 2.19 5.69 4.06 2.55 7.50 5.36 3.41
0.06 4.09 2.94 1.97 4.70 3.38 2.17 6.10 4.38 2.81
0.07 3.57 2.56 1.80 4.02 2.90 1.97 5.13 3.70 2.39
0.08 3.19 2.26 1.55 3.53 2.55 1.81 4.11 3.21 2.12
0.09 2.93 2.08 1.27 3.17 2.77 1.58 3.88 2.83 1.96
0.10 2.71 2.01 1.08 2.89 2.10 1.31 3.46 2.53 1.82
0.20 2.00 1.06 1.00 2.00 1.04 1.00 1.99 1.16 1.00

Table 4.4. Approximated performance of the WRM–CUSUM charts for the fixed shape param-
eter γ = 1.0 and different values of the data-set dimension N , censoring rate pC and
nominal 1% decrease in the slope of the linear specification of the scale parameter.

d2 pc = 30% pc = 50% pc = 70%

N = 30 N = 50 N = 100 N = 30 N = 50 N = 100 N = 30 N = 50 N = 100

0.00 200.81 199.54 199.87 200.08 198.97 200.33 200.51 199.77 200.50

0.01 17.65 12.50 7.53 21.45 15.36 9.57 28.97 21.02 13.33
0.02 7.40 5.11 3.09 8.98 6.27 3.80 12.29 8.71 5.36
0.03 4.70 3.28 2.06 5.62 3.92 2.42 7.58 5.35 3.29
0.04 3.53 2.48 1.59 4.10 2.88 1.88 5.41 3.82 2.41
0.05 2.88 2.09 1.18 3.26 2.33 1.49 4.17 2.99 1.96
0.06 2.44 1.94 1.02 2.73 2.03 1.31 3.42 2.46 1.64
0.07 2.14 1.76 1.00 2.35 1.88 1.02 2.88 2.13 1.31
0.08 2.03 1.47 1.00 2.11 1.66 1.00 2.49 1.94 1.09
0.09 2.00 1.20 1.00 2.01 1.37 1.00 2.22 1.77 1.01
0.10 1.99 1.05 1.00 1.99 1.14 1.00 2.05 1.53 1.00
0.20 1.03 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 4.5. Approximated performance of the WRM–CUSUM charts for the fixed shape param-
eter γ = 1.5 and different values of the data-set dimension N , censoring rate pC and
nominal 1% decrease in the slope of the linear specification of the scale parameter.

When there are more censored observations in data sets of the same dimension N = 30,
the chart detects the mentioned 5% decrease approximately at the 14−th sampling
moment (ARL1 = 13.96) for pC = 50% or approximately at the 18−th sampling moment
(ARL1 = 18.30) for pC = 70%. For a given censoring rate, say pC = 30%, a faster
detection is achieved by increasing the data-set dimension. The WRM-CUSUM for data
sets containing 50 observations detects the mentioned 5% decrease a little earlier than
that for N = 30, approximately at the 9−th sampling moment (ARL1 = 8.57). The
WRM-CUSUM for N = 100 detects such decrease approximately at the 5−th sampling
moment (ARL1 = 5.45). The 5% decrease is detected sooner when the shape parameter
increases. When γ = 1.0, the decrease is detected at the 5−th sampling moment
(ARL1 = 4.87), at the 4−th sampling moment (ARL1 = 3.47) or at the 2−nd sampling
moment (ARL1 = 2.19), for N = 30, N = 50 or N = 100, respectively.

Similar performance to that described in the preceding paragraphs was observed for the
WRM-CUSUM designed for detecting larger nominal decreases in β2. In particular, in
Tables B.1,B.2 and B.3 of Appendix B.1, simulated ARL of the WRM-CUSUM charts
designed for detecting a nominal 3% decrease in β2 are shown. It can be seen that these
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d2 pc = 30% pc = 50% pc = 70%

N = 30 N = 50 N = 100 N = 30 N = 50 N = 100 N = 30 N = 50 N = 100

0.00 200.02 200.10 200.12 199.37 199.23 200.05 200.91 200.87 200.64

0.01 75.73 59.39 29.22 83.68 73.50 57.71 101.27 88.87 72.10
0.02 39.31 29.18 16.85 45.97 42.14 33.69 62.99 53.31 43.17
0.03 25.01 18.80 11.86 33.11 29.94 24.93 45.53 38.46 32.19
0.04 18.10 13.90 9.21 26.05 23.63 20.33 35.65 30.68 26.29
0.05 14.14 11.02 7.51 21.76 19.78 17.32 29.76 25.89 22.57
0.06 11.57 9.11 6.36 18.70 17.14 15.12 25.63 22.58 19.96
0.07 9.83 7.78 5.52 16.51 15.10 13.52 22.59 20.10 17.97
0.08 8.52 6.80 4.89 14.74 13.58 12.24 20.24 18.12 16.36
0.09 7.51 6.01 4.37 13.38 12.35 11.16 18.35 16.60 15.06
0.10 6.71 5.41 3.97 12.23 11.32 10.27 16.90 15.28 13.96
0.20 3.25 2.74 2.03 6.54 6.14 5.71 9.30 8.62 8.05

Table 4.6. Approximated performance of the MEWMA chart with λ = 0.1 for the fixed WRM
shape parameter γ = 0.5 and different values of the data-set dimension N and cen-
soring rate pC .

d2 pc = 30% pc = 50% pc = 70%

N = 30 N = 50 N = 100 N = 30 N = 50 N = 100 N = 30 N = 50 N = 100

γ = 1.0

0.00 199.35 199.85 200.64 200.49 199.99 199.22 200.60 199.92 200.67

0.01 36.56 26.24 16.37 44.30 31.76 20.13 60.52 45.21 28.21
0.02 14.67 10.43 6.76 18.84 12.89 8.21 25.70 18.89 11.47
0.03 8.75 6.36 4.29 11.18 7.84 5.12 15.06 11.32 7.00
0.04 6.24 4.61 3.17 7.89 5.57 3.71 10.34 7.91 5.00
0.05 4.84 3.61 2.55 6.05 4.34 2.94 7.82 6.09 3.89
0.06 3.97 3.00 2.15 4.90 3.55 2.44 6.18 4.90 3.17
0.07 3.38 2.57 1.97 4.12 3.02 2.13 5.10 4.09 2.70
0.08 2.96 2.26 1.82 3.56 2.62 1.96 4.36 3.50 2.32
0.09 2.62 2.06 1.57 3.14 2.32 1.81 3.78 3.07 2.09
0.10 2.37 1.96 1.29 2.81 2.11 1.59 3.34 2.72 1.95
0.20 1.15 1.00 1.00 1.49 1.00 1.00 1.67 1.16 1.00

Table 4.7. Approximated performance of the MEWMA chart with λ = 1.0 for the fixed WRM
shape parameter γ = 1.0 and different values of the data-set dimension N and cen-
soring rate pC .

d2 pc = 30% pc = 50% pc = 70%

N = 30 N = 50 N = 100 N = 30 N = 50 N = 100 N = 30 N = 50 N = 100

0.00 199.56 200.59 200.50 199.60 199.34 200.23 200.32 200.95 200.93

0.01 21.63 15.44 9.90 27.53 19.33 12.23 40.74 28.41 17.11
0.02 9.03 6.56 4.42 11.50 8.12 5.30 17.63 11.73 7.17
0.03 5.62 4.18 2.94 7.05 5.05 3.42 10.57 7.06 4.40
0.04 4.12 3.13 2.22 5.03 3.69 2.54 7.32 4.93 3.16
0.05 3.31 2.53 1.97 3.94 2.92 2.08 5.48 3.78 2.49
0.06 2.77 2.14 1.75 3.24 2.42 1.89 4.34 3.04 2.08
0.07 2.40 1.99 1.34 2.77 2.10 1.60 3.57 2.55 1.86
0.08 2.12 1.91 1.06 2.41 1.98 1.22 3.02 2.20 1.60
0.09 2.01 1.73 1.00 2.14 1.88 1.03 2.62 1.99 1.28
0.10 1.98 1.44 1.00 2.02 1.67 1.00 2.32 1.86 1.07
0.20 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00

Table 4.8. Approximated performance of the MEWMA chart with λ = 0.1 for the fixed WRM
shape parameter γ = 1.5 and different values of the data-set dimension N and cen-
soring rate pC .
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charts perform slightly better than those designed for detecting a 1% decrease in β2 for
decreases that are closer or greater than the nominal decrease value they are designed to
detect. Approximated performance of the WRM-CUSUM charts for detecting decreases
in the intercept β1 of the lineal specification for the WRM scale parameter is presented
in Appendix B.2.

Tables 4.6, 4.7 and 4.8 report simulated ARL for the MEWMA charts with λ = 0.1 and
three different values of the fixed shape parameter γ. The MEWMA charts were not
optimized because our interest is focused on the WRM-CUSUM. However, it is worth
mentioning that the performance of the MEWMA charts with λ = 0.05 and λ = 0.15
were also investigated. Simulations suggest that the performance of these charts is not
quite different from that of the MEWMA chart with λ = 0.1. As there are no reasons to
think that MEWMA control charts with smoothing parameter λ > 0.15 would exhibit a
substantially better performance to those of the explored MEWMA schemes, we decided
to report in this document obtained results for the MEWMA chart with λ = 0.1.

The MEWMA charts show a similar performance to that of the WRM-CUSUM. This is,
they react sooner to the increase of the shift value, the data-set dimension and the shape
parameter value. As in the case of the WRM-CUSUM, detecting skills of the MEWMA
charts become less effective as the censoring rate increases. However,in general, except for
the planned 1% decrease in β2, the MEWMA charts react slower than the WRM-CUSUM
charts to the same combination of factors determining out-of-control states. For instance,
the above mentioned 5% decrease in the slope is detected at the 14−th (ARL1 = 14.14),
11−th (ARL1 = 11.02) and 8−th (ARL1 = 7.51) sampling moments from the beginning
of the monitoring for N = 30, N = 50 or N = 100, respectively, when pC = 30% and
γ = 0.5; a little slower than the corresponding WRM-CUSUM charts.

4.6 Example

In recent years, production companies have been asked to implement quality improvement
programs. Conducting experiments has been turned an effective way for verifying desired
properties of products. The results of an annually conducted accelerated experiment in
the laboratory of a pharmaceutical company were collected during the period 1999–2013.
In this experiment, specimens of certain type of tick were exposed to different concentra-
tions of a solution used for aspersion baths in domestic animals against mite infection.
The elapsed time, in hours, until death was observed.

The interest focuses on verifying whether the distribution of the elapsed time until death
in each of the six experimental levels does not change over time. This would guarantee
that the mean elapsed time until death of ticks treated with different concentrations
of the same solution is holding at the same assessment level over time. For that, six
specimens of the selected type of ticks were tested at six different concentration levels of
the active principle of the solution ranging from 2% to 12% with a 2% increase between
levels. For instance, the first experimental level, i = 1, corresponds to a 2% solution used
against tick infection in small dogs. The 12% solution is used in cattle.
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Figure 4.1. Control charts for the in–control process in the pharmaceutical industry example

The experiment is planned to terminate testing after a fixed time in hours, that depends
on the concentration level, had elapsed. Thus, for instance, the censoring time in
accelerated conditions for ticks treated with the 2% solution is 75.2 hours, while for those
treated with the 12% solution is 25.1 hours. Times measured in accelerated conditions
correspond approximately to half the elapsed times in normal conditions. The complete
data set consists of 15 annually collected batches of N = 36 observations each with
the same covariate pattern and an operating Type I censoring mechanism. Data were
provided by the Quality Laboratory of a pharmaceutical company and can be used under
request for academic purposes only. The use of these data for other purposes is not
allowed. Data are reported in Appendix B.3.
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Figure 4.2. Control charts for the out–of–control process in the pharmaceutical industry example

A preliminary graphical analysis for all observations suggested that the Weibull acceler-
ated failure time model of the form (4.1) was reasonable (p− value = 1.7e− 15). The fit
results in the model

t̂ik = exp (1.798 − 0.613xi + 0.667zik) (4.15)

where xi, i = 1, · · · , 6, is the log-transformation of the active principle concentration
in percentages. For further discussion, it will be assumed that fit (4.15) represents the
in-control model.
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To check the stability of the process, the upper WRM-CUSUM charts for nominal
d2 = 0.01, 0.05 and 0.10 decreases in the slope and the MEWMA chart with λ = 0.1 were
designed. All the designs result in a nominal ARL0 = 200. The respective upper control
limits are h0.01 = 1.278, h0.05 = 3.098 and h0.10 = 3.647 for the WRM–CUSUM charts
and h = 0.4273 for the MEWMA chart. It can be seen in both Figures 4.1 and 4.2, the
first 15 points in each chart, the ones before the vertical dashed line, are in-control, as
they actually were.

For illustrating purposes, 10 additional data sets with the same dimension, covariate
pattern and censoring times were artificially generated. In Figure 4.1, the last 10 points
correspond to 10 additional batches generated from the in-control model (4.15). There
is no evidence of out-of-control situations. In Figure 4.2, the additional batches were
generated from a model whose slope shifts from β20 = −0.613 to β21 = −0.644. This is,
the slope exhibits a 5% decrease approximately. The rest of the parameters remain at
their previous values. Corresponding points to these batches are the last drawn after the
in-control ones in each chart of Figure 4.2.

As it was expected, the WRM–CUSUM charts designed for nominal d2 = 0.05 and d2 =
0.10 detects the simulated decrease in β2 earlier than any of the other charts (at the 2-nd
batch after it actually occurs). The WRM–CUSUM for d2 = 0.01 lasts a little more at the
4−th batch. This is maybe due to the fact that the WRM–CUSUM 0.05 and 0.10 charts
were specially designed to detect such decreases. The MEWMA chart does not react at
all.

4.7 Monitoring WRM with time-varying dimension

In some applications such as healthcare surveillance, it is practically impossible to guar-
antee fixed values of the covariate matrix at every monitoring moment. It is necessary
to develop methodologies for monitoring WRM with time-varying dimension and/or with
random effects of the explanatory variables. This need arises when, for instance, observa-
tions in Table 4.1 are such that:

• The amount of individuals mi subjected to the same experimental level xi ,

i = 1, · · · , n, depends on the monitoring moment; this is, when we have m
(j)
i ,

j = 1, 2, · · · . These could be survival times measured at different moments in dif-
ferent groups of advanced cancer patients having approximately the same prior to
diagnosis status.

• The covariates X1, · · · , Xp are exactly the same at every j−th moment but their
values (and may be the amount of individuals having the same covariate value at the
j−th moment) depend on the monitoring moment. This is, at the j−th monitoring

moment, j = 1, 2, · · · , we have x
(j)
i = (X

(j)
1 , · · · , X(j)

p )′. These could be survival
times measured at different moments in different groups of advanced cancer patients
having a prior to diagnosis status of their own.

In SPC, control charts for monitoring quality characteristics with time-varying sample
size have been developed in recent years. Dong et al. [16], Ryan and Woodall [52] and
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Mei et al. [35] propose EWMA-based and CUSUM-based methodologies for monitoring
processes with subgroups of observations having different sizes at every monitoring
moment under the assumption of time-varying sample size can be characterized by a
deterministic function or a random distribution.

Unfortunately, as it is pointed out in Zhou et al. [77], the afore-mentioned method-
ologies are very sensitive to the specification of sample sizes. However, in practice,
there is no way to know which will be the size of future samples prior the monitoring.
Making wrong assumptions of the mechanism generating sample sizes could lead to
unexpected performance of the control schemes. To overcome this problem, Shen et
al. [59] propose the use of probability limits based on on-line realization of sample
sizes. Shen et al. [59] discuss in detail two computational procedures for determining
the time-varying UCL of an EWMA-type statistic. The EWMA chart with probability
limits was found to be an effective tool for monitoring Poisson count data. Shen et
al. [59] also suggest the use of time-varying probability limits in any effective control chart.

As the numerical assessment of the upper CUSUM statistic given in (4.9) strongly
depends on the total number of censored observations per sample, it is clear that also
depends on the amount of individuals or items at each monitoring moment. Thus, the
monitoring of WRM with type I right-censored observations and time-varying dimension
Nj , j = 1, 2, · · · can be carried out by applying Shen’s procedures to the upper CUSUM
statistic (4.9). When the covariates are random variables, the monitoring is also possible

by conditioning on the x
(j)
i values at every monitoring moment j.

According to Shen et al. [59], at the j−th monitoring moment, the UCL for the upper
CUSUM D+

j has to be set to satisfy

P (D+
1 > h1(α)|N1) = α

P (D+
j > hj(α)|D+

j > hl(α), 1 ≤ l < j,Nj) = α, j > 1
(4.16)

where α is the desired false alarm rate. It is clear, from (4.16), that the UCL is determined
right after the data-set dimension Nj is observed at time j. Consequently, future data-set
dimensions do not have to be known.

Operatively, the UCL is evaluated as the (1 − α) × 100% percentile of the upper CUSUM
statistic D+

j at the j−th monitoring moment. A simulation-based procedure is summarized
below:

1. At a given j−th monitoring moment, j = 1, 2, · · · , if there is no out-of-control signal
at moment j − 1, M values of D+

j are calculated from randomly generated data
sets with the structure in Table 4.1 for a given dimension Nj . The quantity M is a
sufficiently large integer.

2. The (1 − α) × 100% empirical quantile of the M values of D+
j is an approximation

of the control limit hj(1 − α), where α is the desired false alarm rate.
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3. Find the value of D+
j based on the observed data set and compare it with hj(1−α).

If D+
j < hj(1 − α), continue to the next monitoring moment. Otherwise, stop the

monitoring.

4. If it is decided to continue, retain the first M × (1 − α) values of D+
j , eliminate the

ones in the upper tail and go to step 1.

As it was stated at the beginning of this section, there were identified two main scenarios
at least, in which CUSUM charts with probability limits can be used for monitoring WRM
with censored observations and time-varying dimension. Although much work is still to
be done, preliminary results suggest that the WRM-CUSUM charts exhibit a similar
performance to that reported in Tables 4.3–4.5 and in Tables B.1–B.3 when the total
observations mj

i in each fixed experimental level i = 1, · · · , n over time are uniformly
distributed. Analogue conclusions were obtained when experimental levels change over
time but the monitoring of the covariate values is not concerned.

4.8 Conclusions

In this chapter some different control mechanisms were presented for monitoring the
slope of the linear specification of the WRM scale parameter in phase II processes. A
LRT-ratio based CUSUM procedure is proposed to detect sustained decreases in the slope
of the linear specification of the WRM scale parameter.

The performance of the WRM-CUSUM chart strongly depends on the known value
of the shape parameter of the basic model, the data-set dimension, the theoretical
censoring rate, the desired decrease to be detected and the fixed covariate pattern. The
WRM-CUSUM procedure was found to exhibit a satisfactory performance in detecting
decreases in the slope of the linear specification of the WRM scale parameter. The
increase of the censoring rate makes the control schemes work less effectively.

The performance of the proposed WRM-CUSUM charts was compared with that of the
MEWMA method for monitoring generalized linear profiles. It was found out that the
WRM-CUSUM charts outperform the MEWMA method in most of the studied cases.
Moreover, the use of the WRM-CUSUM chart is less restrictive than that of the MEWMA
chart because its performance does not depend on unknown quantities.

Although the proposed methodologies detect decreases in the slope of the linear specifica-
tion of the WRM scale parameter, they can be easily redefined for successfully detecting
decreases in the intercept or combinations of changes (increases or decreases) in all the
parameters of the linear specification of the WRM scale parameter as well. The results for
monitoring decreases in the intercept of the WRM with p = 2 are presented in Appendix
B.2.

Detecting increases in the mean response value is also possible but has to be faced carefully
because they could lead to unwanted higher censoring rates. However, in highly reliable
processes, the increase of the mean time response is expected, so it would be needed to
develop control methodologies for monitoring degradation models, for example.
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Monitoring WRM with uncensored observations

A.1 Data for the electrical insulating fluid example

Table A.1 contains the time to breakdown, in minutes, at each of seven levels of the voltage
stress, in kilovolts. The results of this life test experiment were discussed in Nelson [38]
and taken form Lawless [27, pag.3]

Voltage stress, kV

26 28 30 32 34 36 38

5.79 68.85 17.05 0.40 0.96 1.97 0.47
1579.52 426.07 22.66 82.85 4.15 0.59 0.73
2323.70 110.29 21.02 9.88 0.19 2.58 1.40

108.29 175.88 89.29 0.78 1.69 0.74
1067.60 139.07 215.10 8.01 2.71 0.39

144.12 2.75 31.75 25.50 1.13
20.46 0.79 7.35 0.35 0.99
43.40 15.93 6.50 0.99 2.38

194.90 3.91 8.27 3.99
47.30 0.27 33.91 3.67
7.74 0.69 32.52 2.07

100.58 3.16 0.96
27.80 4.85 5.35
13.95 2.78 2.90
53.24 4.67 13.77

1.31
12.06
36.71
72.89

Table A.1. Times to breakdown (in minutes) at each of seven voltage levels for the insulating
fluid example.
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A.2 Control charts for detecting increases in the mean re-
sponse of the WRM

Tables A.2–A.7 show the approximated performance of the corrected LRT-based and
MEWMA charts for detecting increases in the mean response due to changes in the
WRM parameter vector for different data-set dimensions N and shifting patterns. Tables
A.2 and A.3 present the results for N = 30; Tables A.4 and A.5, for N = 50 and Tables
A.6 and A.7, for N = 100. Planned shifting patterns leading to increases in the mean
response involve decreases in the scale parameter σ along with increases in both the
intercept β1 and the slope β2 of the WRM.

The reported results were obtained by simulating random data sets with the structure in
Table 2.1 from the model yik = (3 + ∆1) + (2 + ∆2) log (10i) + zike

0.4055+∆3 , where the
drops ∆f , f = 1, 2 or 3, depend on the contamination constants Cf , f = 1, 2 or 3, that
are chosen as it was indicated in Section 3.5.2.

Shifting pattern LRT-Chart LRT-EChart LRT-CChart MEWMA

C1 C2 E(Y1) ARL SD ARL SD ARL SD ARL SD

0.00 0.0 6.75 200.14 (199.16) 199.97 (198.87) 200.41 (198.76) 199.92 (198.14)

0.00 0.1 6.95 113.12 (112.62) 80.90 (75.21) 94.64 (90.64) 28.29 (18.88)
0.2 7.03 38.89 (38.39) 21.89 (15.36) 23.80 (20.14) 10.00 (8.42)
0.3 7.11 12.86 (12.35) 8.80 (4.95) 8.56 (7.47) 6.05 (5.96)
0.4 7.19 5.28 (4.75) 4.82 (2.39) 4.60 (2.48) 4.40 (2.98)
0.5 7.27 2.71 (2.16) 3.12 (1.42) 3.16 (1.26) 3.50 (1.81)
0.6 7.35 1.74 (1.13) 2.24 (0.97) 2.48 (1.08) 2.95 (1.63)
0.7 7.43 1.31 (0.64) 1.72 (0.73) 2.14 (0.57) 2.54 (1.54)
0.8 7.51 1.13 (0.38) 1.39 (0.56) 1.94 (0.37) 2.23 (1.44)
0.9 7.60 1.04 (0.22) 1.20 (0.42) 1.75 (0.19) 2.07 (1.28)
1.0 7.68 1.00 (0.10) 1.02 (0.38) 1.51 (0.10) 2.03 (0.56)

0.02 0.1 6.97 104.93 (104.43) 49.91 (42.15) 72.34 (68.76) 21.04 (12.71)
0.2 7.06 31.89 (31.38) 17.79 (11.86) 18.80 (15.00) 8.83 (3.41)
0.3 7.14 10.69 (10.17) 7.68 (4.06) 7.38 (4.49) 5.60 (1.67)
0.4 7.22 4.54 (4.01) 4.38 (2.13) 4.22 (1.93) 4.21 (1.06)
0.5 7.30 2.43 (1.87) 2.89 (1.32) 2.99 (1.05) 3.39 (0.75)
0.6 7.38 1.62 (1.01) 2.12 (0.91) 2.40 (0.65) 2.86 (0.61)
0.7 7.46 1.27 (0.58) 1.65 (0.68) 2.10 (0.44) 2.47 (0.54)
0.8 7.54 1.11 (0.34) 1.36 (0.52) 1.90 (0.39) 2.19 (0.39)
0.9 7.62 1.04 (0.19) 1.17 (0.39) 1.72 (0.46) 2.04 (0.23)
1.0 7.70 1.00 (0.07) 1.01 (0.34) 1.39 (0.39) 2.00 (0.32)

0.04 0.1 7.00 80.00 (79.50) 48.69 (40.94) 55.40 (51.25) 16.67 (8.99)
0.2 7.08 25.14 (24.64) 14.58 (9.27) 14.95 (11.51) 7.91 (2.87)
0.3 7.16 8.96 (8.44) 6.77 (3.55) 6.42 (3.66) 5.26 (1.51)
0.4 7.24 3.95 (3.42) 3.99 (1.91) 3.90 (1.71) 4.00 (0.98)
0.5 7.33 2.22 (1.65) 2.71 (1.21) 2.84 (0.95) 3.26 (0.71)
0.6 7.41 1.52 (0.89) 2.01 (0.86) 2.31 (0.59) 2.78 (0.59)
0.7 7.49 1.22 (0.52) 1.58 (0.65) 2.06 (0.42) 2.40 (0.51)
0.8 7.57 1.09 (0.30) 1.32 (0.50) 1.87 (0.40) 2.15 (0.36)
0.9 7.65 1.03 (0.17) 1.15 (0.36) 1.67 (0.48) 2.03 (0.21)
1.0 7.73 1.00 (0.05) 1.00 (0.31) 1.19 (0.36) 1.98 (0.29)

Table A.2. Performance of the proposed schemes for data-set dimension N = 30 of the simple
WRM yik = 3+2 log (10i)+1.5zik with C3 = 1 (no changes in σ = 1.5) and increases
in both β1 and β2.
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Shifting pattern LRT-Chart LRT-EChart LRT-CChart MEWMA

C1 C2 E(Y1) ARL SD ARL SD ARL SD ARL SD

0.00 0.1 7.06 90.17 (89.67) 48.49 (40.31) 54.44 (50.87) 17.22 (9.26)
0.2 7.14 42.30 (41.79) 21.31 (14.59) 22.10 (17.99) 9.80 (3.77)
0.3 7.22 16.57 (16.06) 9.62 (5.28) 8.89 (5.66) 6.34 (1.89)
0.4 7.30 6.58 (6.06) 5.25 (2.49) 4.86 (2.29) 4.63 (1.13)
0.5 7.39 3.11 (3.57) 3.36 (1.46) 3.28 (1.17) 3.66 (0.78)
0.6 7.47 1.87 (1.28) 2.38 (0.99) 2.55 (0.73) 3.07 (0.59)
0.7 7.55 1.34 (0.68) 1.81 (0.72) 2.18 (0.46) 2.64 (0.54)
0.8 7.63 1.13 (0.38) 1.44 (0.56) 1.98 (0.33) 2.29 (0.46)
0.9 7.72 1.04 (0.21) 1.22 (0.43) 1.81 (0.40) 2.08 (0.28)
1.0 7.80 1.00 (0.08) 1.10 (0.55) 1.68 (0.42) 2.05 (0.48)

0.02 0.1 7.08 79.55 (79.05) 41.91 (33.79) 46.45 (42.21) 15.57 (12.06)
0.2 7.17 37.20 (36.70) 17.90 (11.64) 18.06 (14.22) 8.93 (7.94)
0.3 7.25 14.11 (13.60) 8.38 (4.43) 7.71 (4.59) 5.89 (3.23)
0.4 7.33 5.58 (5.06) 4.77 (2.21) 4.41 (1.98) 4.38 (1.66)
0.5 7.41 2.79 (2.23) 3.12 (1.33) 3.10 (1.08) 3.53 (1.03)
0.6 7.50 1.72 (1.12) 2.24 (0.92) 2.45 (0.66) 2.98 (0.73)
0.7 7.58 1.28 (0.61) 1.73 (0.69) 2.13 (0.41) 2.56 (0.57)
0.8 7.66 1.10 (0.34) 1.40 (0.54) 1.96 (0.33) 2.23 (0.54)
0.9 7.74 1.03 (0.19) 1.19 (0.39) 1.79 (0.42) 2.06 (0.43)
1.0 7.83 1.00 (0.06) 1.08 (0.51) 1.66 (0.40) 2.02 (0.46)

0.04 0.1 7.71 74.91 (74.40) 36.36 (28.52) 39.95 (36.13) 13.84 (12.16)
0.2 7.19 31.47 (30.96) 15.20 (9.45) 15.10 (11.47) 8.13 (6.56)
0.3 7.28 11.73 (11.22) 7.43 (3.78) 6.78 (3.86) 5.54 (2.76)
0.4 7.36 4.84 (4.31) 4.37 (1.99) 4.08 (1.72) 4.19 (1.50)
0.5 7.44 2.49 (1.93) 2.91 (1.23) 2.95 (0.97) 3.40 (0.96)
0.6 7.52 1.60 (0.98) 2.12 (0.86) 2.37 (0.60) 2.89 (0.68)
0.7 7.61 1.24 (0.54) 1.65 (0.65) 2.09 (0.38) 2.49 (0.56)
0.8 7.69 1.08 (0.30) 1.34 (0.51) 1.92 (0.34) 2.19 (0.52)
0.9 7.77 1.01 (0.14) 1.16 (0.37) 1.75 (0.44) 2.04 (0.39)
1.0 7.85 1.00 (0.04) 1.05 (0.49) 1.59 (0.38) 2.00 (0.44)

Table A.3. Performance of the proposed schemes for data-set dimension N = 30 of the simple
WRM yik = 3 + 2 log (10i) + 1.5zik with C3 = 0.9 (10% decrease in σ = 1.5) and
increases in both β1 and β2.

Shifting pattern LRT-Chart LRT-EChart LRT-CChart MEWMA

C1 C2 E(Y1) ARL SD ARL SD ARL SD ARL SD

0.00 0.0 6.75 199.69 (198.96) 199.76 (198.87) 200.13 (199.16) 200.90 (199.22)

0.00 0.1 6.93 153.35 (152.83) 80.44 (71.53) 91.72 (88.72) 22.34 (15.15)
0.2 6.99 37.74 (37.23) 21.76 (15.37) 23.80 (19.56) 8.47 (3.48)
0.3 7.05 14.39 (13.88) 8.82 (4.95) 8.49 (5.69) 5.49 (1.69)
0.4 7.12 5.36 (4.84) 4.83 (2.37) 4.57 (2.12) 4.03 (1.08)
0.5 7.18 2.67 (2.11) 3.16 (1.44) 3.14 (1.17) 3.24 (0.75)
0.6 7.24 1.71 (1.10) 2.28 (0.99) 2.47 (0.69) 2.72 (0.61)
0.7 7.31 1.31 (0.63) 1.73 (0.72) 2.14 (0.45) 2.35 (0.50)
0.8 7.37 1.12 (0.36) 1.41 (0.55) 1.96 (0.37) 2.13 (0.36)
0.9 7.43 1.06 (0.24) 1.22 (0.43) 1.78 (0.42) 2.02 (0.24)
1.0 7.50 1.01 (0.11) 1.09 (0.28) 1.56 (0.49) 1.93 (0.27)

0.02 0.1 6.95 142.86 (142.36) 62.20 (54.21) 71.08 (66.69) 17.41 (10.01)
0.2 7.01 30.30 (29.80) 17.24 (11.19) 17.83 (13.73) 7.96 (3.16)
0.3 7.08 10.93 (10.42) 7.46 (4.19) 7.41 (4.51) 5.12 (1.54)
0.4 7.14 4.34 (3.81) 4.35 (2.07) 4.21 (1.93) 3.84 (0.96)
0.5 7.20 2.45 (1.89) 2.89 (1.28) 2.96 (1.03) 3.13 (0.73)
0.6 7.26 1.58 (0.96) 2.19 (0.94) 2.39 (0.63) 2.68 (0.58)
0.7 7.33 1.28 (0.60) 1.67 (0.68) 2.10 (0.42) 2.30 (0.48)
0.8 7.39 1.10 (0.34) 1.37 (0.52) 1.92 (0.37) 2.10 (0.31)
0.9 7.45 1.04 (0.19) 1.17 (0.38) 1.75 (0.45) 2.00 (0.22)
1.0 7.52 1.01 (0.11) 1.08 (0.27) 1.54 (0.50) 1.90 (0.31)

0.04 0.1 6.97 60.61 (60.10) 44.87 (38.51) 54.54 (48.37) 14.33 (7.75)
0.2 7.03 25.32 (24.81) 14.53 (8.80) 14.33 (10.50) 7.16 (2.62)
0.3 7.10 8.33 (7.82) 6.71 (3.51) 3.46 (3.73) 4.78 (1.33)
0.4 7.16 4.07 (3.54) 4.04 (1.86) 3.89 (1.61) 3.66 (0.92)
0.5 7.22 2.27 (1.69) 2.71 (2.21) 2.83 (0.91) 3.00 (0.67)
0.6 7.29 1.54 (0.92) 1.99 (0.83) 2.32 (0.58) 2.56 (0.58)
0.7 7.35 1.23 (0.53) 1.59 (0.64) 2.06 (0.41) 2.25 (0.44)
0.8 7.41 1.07 (0.29) 1.33 (0.51) 1.88 (0.39) 2.07 (0.28)
0.9 7.48 1.03 (0.17) 1.16 (0.38) 1.72 (0.46) 1.97 (0.23)
1.0 7.54 1.00 (0.07) 1.06 (0.23) 1.48 (0.50) 1.88 (0.33)

Table A.4. Performance of the proposed schemes for data-set dimension N = 50 of the simple
WRM yik = 3+2 log (10i)+1.5zik with C3 = 1 (no changes in σ = 1.5) and increases
in both β1 and β2.
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Shifting pattern LRT-Chart LRT-EChart LRT-CChart MEWMA

C1 C2 E(Y1) ARL SD ARL SD ARL SD ARL SD

0.00 0.1 7.04 68.97 (68.46) 31.49 (23.83) 33.53 (29.70) 10.95 (5.11)
0.2 7.10 34.48 (33.98) 17.44 (11.25) 17.44 (14.25) 7.98 (2.97)
0.3 7.17 18.02 (17.51) 8.83 (4.60) 8.21 (4.92) 5.53 (1.58)
0.4 7.23 6.43 (5.91) 5.14 (2.39) 4.70 (2.20) 4.20 (1.02)
0.5 7.29 3.18 (2.64) 3.40 (1.41) 3.26 (1.16) 3.38 (0.73)
0.6 7.36 1.90 (1.30) 2.41 (0.95) 2.56 (0.73) 2.87 (0.60)
0.7 7.42 1.31 (0.64) 1.87 (0.73) 2.19 (0.45) 2.44 (0.53)
0.8 7.49 1.13 (0.39) 1.47 (0.56) 2.01 (0.32) 2.17 (0.38)
0.9 7.55 1.04 (0.22) 1.24 (0.44) 1.87 (0.36) 2.03 (0.20)
1.0 7.61 1.01 (0.11) 1.10 (0.30) 1.68 (0.47) 1.97 (0.18)

0.02 0.1 7.06 71.43 (70.93) 28.59 (21.60) 30.49 (16.47) 10.57 (4.73)
0.2 7.12 29.85 (29.35) 15.19 (9.72) 15.46 (11.95) 7.29 (2.52)
0.3 7.19 12.35 (11.84) 8.07 (4.24) 7.18 (4.22) 5.21 (1.45)
0.4 7.25 5.48 (4.95) 4.68 (2.15) 4.30 (1.88) 4.03 (0.97)
0.5 7.31 2.71 (2.16) 3.16 (1.29) 3.07 (1.04) 3.26 (0.69)
0.6 7.38 1.68 (1.07) 2.29 (0.92) 2.47 (0.66) 2.77 (0.58)
0.7 7.44 1.28 (0.60) 1.77 (0.68) 2.15 (0.41) 2.38 (0.50)
0.8 7.51 1.11 (0.36) 1.43 (0.56) 1.97 (0.30) 2.13 (0.34)
0.9 7.57 1.03 (0.18) 1.21 (0.41) 1.82 (0.39) 2.02 (0.20)
1.0 7.64 1.01 (0.11) 1.09 (0.29) 1.63 (0.48) 1.97 (0.20)

0.04 0.1 7.08 46.51 (46.01) 25.46 (17.95) 26.97 (23.27) 9.89 (4.28)
0.2 7.14 28.57 (28.07) 13.38 (7.94) 12.74 (9.29) 6.95 (2.32)
0.3 7.21 11.63 (11.12) 7.07 (3.51) 6.56 (3.64) 4.93 (1.34)
0.4 7.27 5.23 (4.71) 4.32 (1.94) 3.98 (1.62) 3.87 (0.89)
0.5 7.34 2.44 (1.88) 2.91 (1.19) 2.92 (0.92) 3.14 (0.66)
0.6 7.40 1.59 (0.97) 2.14 (0.86) 2.38 (0.59) 2.71 (0.56)
0.7 7.47 1.25 (0.56) 1.70 (0.67) 2.09 (0.35) 2.31 (0.47)
0.8 7.53 1.08 (0.30) 1.37 (0.52) 1.95 (0.32) 2.09 (0.30)
0.9 7.59 1.03 (0.18) 1.16 (0.37) 1.80 (0.41) 2.01 (0.17)
1.0 7.66 1.01 (0.09) 1.06 (0.24) 1.58 (0.50) 1.95 (0.23)

Table A.5. Performance of the proposed schemes for data-set dimension N = 50 of the simple
WRM yik = 3 + 2 log (10i) + 1.5zik with C3 = 0.9 (10% decrease in σ = 1.5) and
increases in both β1 and β2.

Shifting pattern LRT-Chart LRT-EChart LRT-CChart MEWMA

C1 C2 E(Y1) ARL SD ARL SD ARL SD ARL SD

0.00 0.0 6.75 200.02 (199.69) 199.89 (198.78) 200.23 (199.36) 200.42 (199.01)

0.00 0.1 6.91 125.00 (124.50) 83.55 (73.07) 96.13 (92.17) 23.14 (15.41)
0.2 6.95 40.82 (40.31) 21.99 (14.87) 23.49 (19.86) 8.87 (3.57)
0.3 7.00 13.51 (13.00) 9.08 (5.19) 8.27 (5.20) 5.52 (1.79)
0.4 7.04 5.76 (5.24) 4.88 (2.42) 4.59 (2.06) 4.08 (1.06)
0.5 7.09 2.98 (2.43) 3.18 (1.40) 3.17 (1.14) 3.28 (0.75)
0.6 7.13 1.74 (1.14) 2.29 (0.96) 2.50 (0.70) 2.75 (0.60)
0.7 7.18 1.31 (0.64) 1.77 (0.72) 2.14 (0.42) 2.35 (0.50)
0.8 7.22 1.13 (0.38) 1.45 (0.56) 1.97 (0.35) 2.13 (0.35)
0.9 7.27 1.04 (0.21) 1.23 (0.43) 1.84 (0.39) 2.01 (0.22)
1.0 7.31 1.01 (0.10) 1.10 (0.30) 1.63 (0.48) 1.93 (0.26)

0.02 0.1 6.93 111.11 (110.61) 60.83 (50.62) 71.83 (68.88) 18.27 (10.91)
0.2 6.97 37.04 (36.53) 17.80 (11.62) 18.19 (14.92) 7.91 (2.99)
0.3 7.01 9.90 (9.39) 7.79 (4.09) 7.27 (4.49) 5.15 (1.53)
0.4 7.06 4.74 (4.21) 4.41 (2.14) 4.23 (1.92) 3.92 (0.99)
0.5 7.10 2.56 (1.99) 2.97 (1.24) 3.03 (1.09) 3.14 (0.72)
0.6 7.15 1.65 (1.04) 2.18 (0.88) 2.41 (0.65) 2.66 (0.59)
0.7 7.19 1.28 (0.60) 1.70 (0.67) 2.11 (0.41) 2.32 (0.49)
0.8 7.24 1.10 (0.33) 1.39 (0.53) 1.96 (0.34) 2.09 (0.32)
0.9 7.28 1.01 (0.21) 1.18 (0.39) 1.79 (0.42) 2.00 (0.20)
1.0 7.33 1.01 (0.09) 1.09 (0.28) 1.62 (0.49) 1.93 (0.28)

0.04 0.1 6.94 71.43 (70.93) 46.03 (39.12) 53.09 (48.19) 14.43 (7.63)
0.2 6.98 20.41 (19.90) 14.28 (8.88) 14.56 (11.48) 7.26 (2.61)
0.3 7.03 9.48 (8.96) 6.85 (3.58) 6.39 (3.59) 4.89 (1.44)
0.4 7.07 4.11 (3.58) 4.00 (1.86) 3.88 (1.62) 3.73 (0.93)
0.5 7.12 2.22 (1.64) 2.79 (1.20) 2.86 (0.96) 3.04 (0.67)
0.6 7.16 1.58 (0.95) 2.07 (0.85) 2.34 (0.59) 2.59 (0.58)
0.7 7.21 1.24 (0.54) 1.62 (0.64) 2.05 (0.36) 2.26 (0.46)
0.8 7.25 1.09 (0.32) 1.36 (0.52) 1.93 (0.34) 2.07 (0.28)
0.9 7.30 1.02 (0.15) 1.18 (0.39) 1.77 (0.42) 1.97 (0.20)
1.0 7.34 1.01 (0.10) 1.07 (0.25) 1.58 (0.49) 1.88 (0.33)

Table A.6. Performance of the proposed schemes for data-set dimension N = 100 of the simple
WRM yik = 3+2 log (10i)+1.5zik with C3 = 1 (no changes in σ = 1.5) and increases
in both β1 and β2.
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Shifting pattern LRT-Chart LRT-EChart LRT-CChart MEWMA

C1 C2 E(Y1) ARL SD ARL SD ARL SD ARL SD

0.00 0.1 7.02 29.85 (29.35) 25.44 (19.22) 25.32 (18.77) 23.04 (15.17)
0.2 7.06 24.69 (24.19) 11.42 (6.55) 10.85 (7.23) 9.11 (3.80)
0.3 7.11 12.74 (12.23) 7.59 (3.95) 6.68 (3.81) 5.57 (1.80)
0.4 7.16 6.31 (5.79) 4.87 (2.18) 4.44 (1.92) 4.03 (1.05)
0.5 7.20 3.12 (2.57) 3.32 (1.37) 3.20 (1.11) 3.26 (0.79)
0.6 7.25 1.94 (1.34) 2.46 (0.97) 2.53 (0.69) 2.74 (0.62)
0.7 7.29 1.38 (0.73) 1.88 (0.71) 2.20 (0.44) 2.36 (0.50)
0.8 7.34 1.14 (0.40) 1.52 (0.58) 2.02 (0.29) 2.14 (0.36)
0.9 7.38 1.06 (0.25) 1.27 (0.46) 1.90 (0.32) 2.01 (0.21)
1.0 7.43 1.01 (0.12) 1.12 (0.33) 1.75 (0.44) 1.94 (0.27)

0.02 0.1 7.03 29.85 (29.35) 18.46 (10.87) 18.61 (11.11) 16.94 (10.71)
0.2 7.08 19.80 (19.30) 10.62 (5.91) 9.87 (6.77) 8.12 (3.11)
0.3 7.13 10.36 (9.85) 6.71 (3.39) 6.00 (3.16) 5.16 (1.51)
0.4 7.17 5.33 (4.81) 4.41 (1.90) 4.09 (1.68) 3.90 (0.99)
0.5 7.22 2.85 (2.30) 3.11 (1.27) 3.06 (1.01) 3.12 (0.73)
0.6 7.26 1.78 (1.17) 2.33 (0.91) 2.46 (0.67) 2.65 (0.57)
0.7 7.31 1.33 (0.66) 1.81 (0.69) 2.17 (0.42) 2.31 (0.47)
0.8 7.35 1.11 (0.36) 1.49 (0.57) 2.00 (0.27) 2.10 (0.32)
0.9 7.40 1.04 (0.22) 1.27 (0.45) 1.88 (0.34) 2.00 (0.22)
1.0 7.44 1.01 (0.09) 1.09 (0.29) 1.71 (0.45) 1.92 (0.28)

0.04 0.1 7.05 23.90 (23.39) 14.53 (9.12) 14.32 (10.57) 14.19 (7.53)
0.2 7.10 17.54 (17.04) 9.80 (5.14) 9.05 (5.53) 7.20 (2.26)
0.3 7.14 10.17 (10.06) 6.17 (2.98) 5.52 (2.76) 4.86 (1.39)
0.4 7.19 4.54 (4.01) 4.09 (1.78) 3.80 (1.46) 3.73 (0.92)
0.5 7.23 2.55 (1.99) 2.88 (1.15) 2.90 (0.94) 3.03 (0.67)
0.6 7.28 1.65 (1.04) 2.18 (0.86) 2.40 (0.61) 2.60 (0.58)
0.7 7.32 1.25 (0.56) 1.72 (0.66) 2.12 (0.38) 2.27 (0.46)
0.8 7.37 1.09 (0.31) 1.42 (0.56) 1.97 (0.28) 2.07 (0.29)
0.9 7.41 1.03 (0.16) 1.22 (0.42) 1.86 (0.36) 1.97 (0.23)
1.0 7.46 1.00 (0.08) 1.08 (0.27) 1.68 (0.47) 1.89 (0.31)

Table A.7. Performance of the proposed schemes for data-set dimension N = 100 of the simple
WRM yik = 3 + 2 log (10i) + 1.5zik with C3 = 0.9 (10% decrease in σ = 1.5) and
increases in both β1 and β2.

A.3 Data sets for the food industry example

Since 1997 a biscuit company has annually conducted accelerated tests to determine the
shelf life of cookies in different storage conditions. Seven specimens of 4 g weight are
subjected to five different high-temperature levels at a fixed 75% relative humidity level.
Temperature levels range from 36 to 44◦C with a 2◦C increase between levels. A climatic
device is used to control temperature levels. Temperature levels are shown in the second
column of the table below.

The response variable is the elapsed time, in days, until a specimen achieves a 40% moisture
gain. There are N = 35 uncensored observations in each annual batch. The complete
data set consists of 14 annual batches collected in the period 1997−2010 and 3 additional
batches of the same dimension collected in 2011 that are known to be out-of-control
because of a lack of calibration of the climatic device. Data are shown in the table below.
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----------------------------------------------------------------------------

X 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 11 11

----------------------------------------------------------------------------

[1,] 36 15 104 6 121 29 111 79 27 26 85 37 109 48 11 55 24 58

[2,] 38 99 5 2 42 78 20 76 47 14 23 37 67 37 6 95 43 73

[3,] 40 25 45 118 12 68 67 55 110 75 78 20 56 48 28 9 43 2

[4,] 42 19 62 29 24 16 15 15 42 45 43 75 18 23 1 16 37 74

[5,] 44 15 18 29 88 86 77 24 9 95 11 56 3 38 26 25 10 65

[6,] 36 22 166 109 105 42 7 176 39 43 62 56 83 183 18 109 22 61

[7,] 38 38 10 11 36 114 27 27 62 89 85 155 34 126 31 35 36 25

[8,] 40 94 22 58 116 130 190 39 7 126 7 54 99 72 38 2 22 97

[9,] 42 41 53 38 26 13 43 11 32 73 24 25 135 37 56 23 58 68

[10,] 44 16 7 25 20 62 50 16 39 33 46 64 57 11 23 22 17 28

[11,] 36 51 105 8 18 36 111 3 118 34 150 60 53 74 84 100 64 83

[12,] 38 45 20 44 30 10 98 63 59 62 33 57 42 40 96 38 60 3

[13,] 40 2 65 10 76 81 22 126 91 62 73 23 88 25 49 8 57 32

[14,] 42 49 108 57 95 28 36 105 19 23 16 6 31 27 7 37 4 41

[15,] 44 7 39 56 33 54 38 70 56 25 23 92 18 30 28 113 8 53

[16,] 36 129 45 182 89 138 102 136 48 128 117 24 8 66 80 56 42 8

[17,] 38 36 47 71 28 52 39 174 182 61 65 88 37 9 74 9 57 45

[18,] 40 97 2 33 58 127 36 137 40 9 60 22 15 26 47 6 58 29

[19,] 42 56 27 5 48 38 65 6 14 15 101 29 32 69 25 14 3 11

[20,] 44 39 45 4 22 44 27 60 14 26 17 34 13 50 25 8 16 12

[21,] 36 41 114 81 102 182 157 172 64 109 143 90 53 9 32 44 34 42

[22,] 38 31 69 53 26 23 14 74 13 183 97 110 170 27 63 32 76 9

[23,] 40 45 10 46 46 36 10 34 52 19 4 48 2 20 123 4 82 27

[24,] 42 27 34 36 31 9 24 84 16 20 18 38 93 67 25 32 28 72

[25,] 44 43 64 38 5 89 20 50 23 13 22 11 19 19 83 7 26 6

[26,] 36 114 32 35 93 31 64 46 4 2 48 92 25 43 139 3 2 111

[27,] 38 57 84 31 11 174 38 6 28 10 15 20 112 69 65 13 1 27

[28,] 40 60 91 73 57 59 11 64 59 57 39 5 79 15 20 187 31 26

[29,] 42 52 24 14 3 1 28 35 53 52 61 29 43 8 44 28 12 26

[30,] 44 53 54 55 7 24 29 49 23 58 119 24 31 56 12 4 44 31

[31,] 36 102 66 49 28 93 20 19 36 183 185 143 146 38 83 57 85 21

[32,] 38 22 81 52 46 178 111 83 21 69 95 115 17 3 15 10 5 16

[33,] 40 33 10 22 9 35 79 42 22 28 14 1 24 117 19 19 16 52

[34,] 42 56 18 29 37 73 82 59 59 29 82 18 44 13 11 1 66 72

[35,] 44 27 14 24 3 17 8 66 27 55 85 13 49 14 39 49 45 28

----------------------------------------------------------------------------



APPENDIX B

Monitoring WRM with right-censored

observations

B.1 CUSUM control charts for a nominal decrease d2 = 0.03
in the slope β2 of the WRM with p = 2

Tables B.1,B.2 and B.3 show the approximated performance of the WRM-CUSUM charts
for detecting a larger nominal decrease in the slope β2 of the linear specification for the
WRM scale parameter. The reported results were obtained by simulating random data sets
with the structure in Table 4.1 from the model tik = exp

[
3 + 2(1 − d2) log 10i + γ−1zik

]
,

where 0 < d2 < 1. Thus, the interest is focused on detecting a (1 − d2) × 100% decrease
in β2 with a CUSUM chart designed for a nominal 3% decrease.

d2 pc = 30% pc = 50% pc = 70%

N = 30 N = 50 N = 100 N = 30 N = 50 N = 100 N = 30 N = 50 N = 100

0.00 199.66 200.61 200.88 200.50 201.02 200.01 200.41 199.87 199.28

0.01 65.99 54.51 40.15 73.68 61.76 46.62 87.42 73.58 56.78
0.02 30.08 22.30 14.21 35.89 26.80 17.51 46.15 35.51 23.91
0.03 17.61 12.46 7.60 21.48 15.37 9.53 28.95 21.14 13.40
0.04 12.13 8.45 5.08 14.87 10.47 6.35 20.34 14.55 8.98
0.05 9.18 6.37 3.82 11.24 7.87 4.75 15.43 10.93 6.70
0.06 7.38 5.11 3.08 8.98 6.29 3.80 12.34 8.71 5.33
0.07 6.19 4.29 2.61 7.49 5.22 3.18 10.25 7.20 4.42
0.08 5.33 3.71 2.28 6.40 4.47 2.75 8.73 6.15 3.77
0.09 4.70 3.28 2.06 5.62 3.92 2.43 7.58 5.34 3.30
0.10 4.21 2.95 1.89 4.99 3.50 2.19 6.69 4.72 2.93
0.20 2.22 1.84 1.00 2.46 1.93 1.04 3.04 2.22 1.42

Table B.1. Approximated performance of the WRM–CUSUM charts for the fixed shape param-
eter γ = 0.5 and different values of the data-set dimension N , censoring rate pC and
nominal 3% decrease in the slope of the linear specification of the scale parameter.
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d2 pc = 30% pc = 50% pc = 70%

N = 30 N = 50 N = 100 N = 30 N = 50 N = 100 N = 30 N = 50 N = 100

0.00 198.93 200.30 200.18 199.31 199.68 199.46 200.63 198.99 200.09

0.01 37.41 29.62 21.35 42.82 33.91 24.73 52.25 42.49 31.03
0.02 12.57 8.81 5.39 15.28 10.94 6.70 20.90 15.02 9.43
0.03 6.58 4.48 2.65 8.12 5.56 3.30 11.35 7.89 4.72
0.04 4.37 2.99 1.76 5.37 3.66 2.18 7.46 5.14 3.07
0.05 3.31 2.28 1.35 3.98 2.74 1.63 5.51 3.78 2.28
0.06 2.69 1.87 1.12 3.19 2.22 1.32 4.34 3.00 1.82
0.07 2.31 1.59 1.03 2.68 1.88 1.12 3.57 2.49 1.52
0.08 2.07 1.36 1.00 2.33 1.63 1.03 3.04 2.15 1.29
0.09 1.89 1.19 1.00 2.09 1.42 1.01 2.65 1.89 1.13
0.10 1.74 1.08 1.00 1.92 1.24 1.00 2.36 1.68 1.05
0.20 1.00 1.00 1.00 1.00 1.00 1.00 1.04 1.00 1.00

Table B.2. Approximated performance of the WRM–CUSUM charts for the fixed shape param-
eter γ = 1.0 and different values of the data-set dimension N , censoring rate pC and
nominal 3% decrease in the slope of the linear specification of the scale parameter.

d2 pc = 30% pc = 50% pc = 70%

N = 30 N = 50 N = 100 N = 30 N = 50 N = 100 N = 30 N = 50 N = 100

0.00 200.34 199.61 199.95 198.74 199.92 200.41 199.32 200.09 200.94

0.01 25.81 20.38 14.36 29.43 22.76 18.08 37.09 29.65 21.06
0.02 7.24 4.96 2.92 9.67 6.05 3.78 11.92 8.49 5.09
0.03 3.57 2.41 1.44 4.28 2.90 1.77 6.05 4.13 2.44
0.04 2.37 1.59 1.07 2.84 1.92 1.22 3.91 2.66 1.59
0.05 1.82 1.23 1.01 2.14 1.44 1.03 2.87 1.97 1.22
0.06 1.48 1.06 1.00 1.73 1.17 1.00 2.26 1.56 1.06
0.07 1.24 1.01 1.00 1.44 1.04 1.00 1.89 1.29 1.01
0.08 1.09 1.00 1.00 1.23 1.01 1.00 1.61 1.11 1.00
0.09 1.02 1.00 1.00 1.09 1.00 1.00 1.38 1.03 1.00
0.10 1.00 1.00 1.00 1.03 1.00 1.00 1.20 1.01 1.00
0.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table B.3. Approximated performance of the WRM–CUSUM charts for the fixed shape param-
eter γ = 1.5 and different values of the data-set dimension N , censoring rate pC and
nominal 3% decrease in the slope of the linear specification of the scale parameter.

B.2 Control charts for detecting decreases in the intercept
β1 of the WRM

The WRM-CUSUM chart can also be used for detecting decreases the intercept β1
of the linear specification for the WRM scale parameter. Decreases in the intercept
lead to decreases in the mean response and to the deterioration of the process consequently.

Let ℓj(β1) be the likelihood ratio statistic defined for the intercept β1 of the WRM given
a data set of times with type I right-censored observations (ti, δi), i = 1, . . . , n at the j−th
monitoring moment. Then,

ℓj(β1) = ℓj(β11) − ℓj(β10), j = 1, 2, . . . (B.1)

where ℓj(β21) and ℓ(β20) are the log-likelihood function for model (4.1) defined for the
out-of-control and the in-control states, respectively.
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A CUSUM statistic for detecting decreases in β1 based on the scores (B.1) has the form

D−
j = min

(
0;D−

j−1 − kj +

n∑
i=1

[
ti

exp (x′
iβ)

]γ)
, j = 1, 2, ... (B.2)

where D−
0 = 0 and kj = −ra(1 − ea) is the reference value with a = d1β1γ. The chart

signals when D−
j < h−, for any j, indicating a possible decrease in β1.

Tables B.4,B.5 and B.6 show the approximated performance of the WRM-CUSUM charts
for detecting decreases in the intercept β1 of the linear specification for the WRM scale
parameter. The reported results were obtained by simulating random data sets with the
structure in Table 4.1 from the model tik = exp

[
3(1 − d1) + 2 log 10i + γ−1zik

]
, where

0 < d1 < 1. Thus, the interest is focused on detecting a (1 − d1) × 100% decrease in the
intercept β1 with CUSUM charts designed for a nominal 5% decrease.

d1 pc = 30% pc = 50% pc = 70%

n = 30 n = 50 n = 100 n = 30 n = 50 n = 100 n = 30 n = 50 n = 100

0.00 200.71 200.30 200.59 199.58 199.54 200.16 199.39 200.82 198.91

0.01 120.25 107.21 90.94 127.38 115.06 98.43 138.74 126.91 110.95
0.02 77.46 63.97 47.74 86.38 72.50 54.86 100.31 85.66 67.47
0.03 53.69 41.88 28.79 61.48 48.77 34.34 75.33 61.24 44.62
0.04 39.43 29.56 19.44 46.50 35.31 23.64 58.85 46.15 31.89
0.05 30.58 22.36 14.23 36.48 27.10 17.56 47.30 36.08 24.22
0.06 24.73 17.71 11.16 29.64 21.73 13.80 39.02 29.35 19.22
0.07 20.49 14.70 9.08 24.87 18.03 11.34 33.13 24.54 15.87
0.08 17.57 12.48 7.69 21.30 15.33 9.59 28.58 20.95 13.40
0.09 15.26 10.85 6.65 18.60 13.35 8.28 25.02 18.27 11.61
0.10 13.56 9.57 5.86 16.50 11.77 7.28 22.16 16.17 10.23
0.15 8.61 6.08 3.74 10.39 7.39 4.56 14.00 10.09 6.34
0.20 6.36 4.49 2.79 7.58 5.38 3.35 10.13 7.27 4.58

Table B.4. Approximated performance of the WRM-CUSUM charts for the fixed shape param-
eter γ = 0.5 and different values of the data-set dimension N , censoring rate pC and
nominal 5% decrease in the intercept of the linear specification of the scale parameter.

d1 pc = 30% pc = 50% pc = 70%

n = 30 n = 50 n = 100 n = 30 n = 50 n = 100 n = 30 n = 50 n = 100

0.00 200.99 200.61 200.60 201.01 200.55 199.30 200.51 200.11 198.79

0.01 86.84 75.89 61.85 94.31 82.97 68.01 106.02 93.84 78.60
0.02 44.20 34.50 24.33 50.73 40.29 28.57 62.20 50.44 36.48
0.03 25.83 19.00 12.06 31.03 23.15 14.88 40.17 30.52 20.45
0.04 17.15 12.15 7.42 20.82 14.97 9.29 28.20 20.52 13.03
0.05 12.51 8.68 5.20 15.35 10.76 6.51 21.04 15.11 9.33
0.06 9.72 6.69 3.99 11.94 8.33 4.99 16.50 11.68 7.15
0.07 7.91 5.46 3.24 9.75 6.74 4.05 13.45 9.49 5.76
0.08 6.69 4.58 2.75 8.19 5.67 3.40 11.34 7.96 4.80
0.09 5.79 3.98 2.39 7.06 4.89 2.94 9.78 6.82 4.13
0.10 5.10 3.52 2.14 6.21 4.29 2.60 8.56 5.99 3.62
0.15 3.28 2.32 1.39 3.88 2.72 1.71 5.20 3.66 2.28
0.20 2.49 1.87 1.04 2.86 2.08 1.21 3.73 2.64 1.71

Table B.5. Approximated performance of the WRM-CUSUM charts for the fixed shape param-
eter γ = 1.0 and different values of the data-set dimension N , censoring rate pC and
nominal 5% decrease in the intercept of the linear specification of the scale parameter.
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d1 pc = 30% pc = 50% pc = 70%

n = 30 n = 50 n = 100 n = 30 n = 50 n = 100 n = 30 n = 50 n = 100

0.00 200.81 199.54 199.87 200.08 198.97 200.33 200.51 199.77 200.50
0.01 69.99 60.35 48.70 76.53 66.18 53.10 87.43 75.94 62.00
0.02 29.78 22.83 15.70 34.68 26.94 18.41 43.83 34.33 23.91
0.03 15.62 11.21 6.93 18397 13.69 8.56 25.34 18.72 11.89
0.04 9.80 6.75 4.03 12.02 8.43 5.07 16.60 11.82 7.22
0.05 6.93 4.73 2.80 8.57 5.87 3.48 11.94 8.31 5.00
0.06 5.32 3.63 2.14 6.57 4.48 2.65 9.17 6.33 3.78
0.07 4.31 2.94 1.74 5.30 3.62 2.15 7.37 5.09 3.04
0.08 3.65 2.51 1.48 4.45 3.03 1.82 6.16 4.25 2.54
0.09 3.18 2.19 1.30 3.83 2.63 1.57 5.26 3.63 2.20
0.10 2.82 1.96 1.16 3.37 2.34 1.39 4.59 3.18 1.93
0.15 1.96 1.25 1.00 2.18 1.51 1.01 2.80 2.00 1.19
0.20 1.52 1.01 1.00 1.72 1.08 1.00 2.07 1.44 1.01

Table B.6. Approximated performance of the WRM-CUSUM charts for the fixed shape param-
eter γ = 1.5 and different values of the data-set dimension N , censoring rate pC and
nominal 5% decrease in the intercept of the linear specification of the scale parameter.

Tables B.7,B.8 and B.9 also show the approximated performance of the WRM-CUSUM
charts for detecting decreases in the intercept β1 of the linear specification for the WRM
scale parameter. The interest is focused on detecting a (1 − d1) × 100% decrease in
the intercept β1, but this time with CUSUM charts designed for a larger nominal 10%
decrease. As it was expected, the latter charts take a little longer to detect planned
decreases d1 < 0.1 than the WRM-CUSUM designed for detecting a lower 5% nominal
decrease. These charts also detect planned decreases d1 ≥ 0.1 slightly faster than the
WRM-CUSUM for the lower nominal decrease.

d1 pc = 30% pc = 50% pc = 70%

n = 30 n = 50 n = 100 n = 30 n = 50 n = 100 n = 30 n = 50 n = 100

0.00 199.66 200.61 200.88 200.50 201.02 200.01 200.41 199.87 199.28
0.01 128.71 120.37 108.01 136.03 125.12 114.44 143.62 135.22 122.20
0.02 86.88 76.07 61.52 94.64 82.32 68.09 106.44 94.77 78.21
0.03 60.72 50.09 37.32 68.33 56.30 42.96 80.65 67.75 52.25
0.04 44.03 34.55 24.21 50.86 40.14 28.50 62.52 50.14 36.66
0.05 33.11 24.88 16.63 39.03 29.79 20.07 49.36 38.63 26.70
0.06 25.83 18.94 12.07 30.99 22.96 14.87 40.23 30.54 20.20
0.07 20.71 14.94 9.28 25.17 18.18 11.55 33.26 24.69 15.99
0.08 17.18 12.12 7.40 20.87 14.98 9.24 28.11 20.59 13.05
0.09 14.49 10.16 6.12 17.67 12.54 7.67 24.12 17.42 10.86
0.10 12.47 8.72 5.20 15.34 10.73 6.54 20.95 15.10 9.33
0.15 7.26 4.99 2.98 8.91 6.14 3.70 12.39 8.67 5.25
0.20 5.16 3.52 2.14 6.23 4.30 2.60 8.58 5.97 3.63

Table B.7. Approximated performance of the WRM-CUSUM charts for the fixed shape param-
eter γ = 0.5 and different values of the data-set dimension N , censoring rate pC
and nominal 10% decrease in the intercept of the linear specification of the scale
parameter.
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d1 pc = 30% pc = 50% pc = 70%

n = 30 n = 50 n = 100 n = 30 n = 50 n = 100 n = 30 n = 50 n = 100

0.00 198.93 200.30 200.18 199.31 199.68 199.46 200.63 198.99 200.09

0.01 105.67 97.93 88.42 110.58 102.80 93.12 119.03 110.48 99.18
0.02 58.87 50.80 41.16 64.39 55.83 45.39 74.13 64.44 52.59
0.03 34.96 27.93 20.73 39.65 32.00 23.81 48.32 39.36 29.36
0.04 22.02 16.72 11.42 25.89 19.71 13.53 33.10 25.50 17.67
0.05 14.95 10.80 6.89 17.76 13.07 8.40 23.64 17.51 11.46
0.06 10.69 7.53 4.63 13.01 9.28 5.74 17.65 12.69 7.98
0.07 8.10 5.62 3.36 9.93 6.94 4.17 13.67 9.70 5.92
0.08 6.43 4.38 2.60 7.89 5.46 3.24 11.00 7.65 4.62
0.09 5.29 3.60 2.11 6.51 4.45 2.63 9.10 6.30 3.76
0.10 4.46 3.03 1.79 5.48 3.46 2.21 7.73 5.31 3.14
0.15 2.57 1.74 1.11 3.08 2.11 1.28 4.25 2.91 1.75
0.20 1.88 1.24 1.00 2.19 1.49 1.03 2.91 2.02 1.23

Table B.8. Approximated performance of the WRM-CUSUM charts for the fixed shape param-
eter γ = 1.0 and different values of the data-set dimension N , censoring rate pC
and nominal 10% decrease in the intercept of the linear specification of the scale
parameter.

d1 pc = 30% pc = 50% pc = 70%

n = 30 n = 50 n = 100 n = 30 n = 50 n = 100 n = 30 n = 50 n = 100

0.00 200.34 199.61 199.95 198.74 199.92 200.41 199.32 200.09 200.94

0.01 97.17 88.42 72.24 98.50 91.81 78.36 105.83 98.71 88.29
0.02 47.22 40.65 28.71 50.71 44.20 33.83 58.64 50.99 40.87
0.03 25.08 20.01 12.80 27.98 22.80 15.68 34.41 27.90 20.40
0.04 14.44 10.80 6.43 16.72 12.67 8.11 21.45 16.47 10.99
0.05 9.01 6.47 3.70 10.73 7.74 4.70 14.32 10.49 6.62
0.06 6.13 4.25 2.41 7.38 5.18 3.06 10.09 7.17 4.37
0.07 4.49 3.05 1.76 5.45 3.75 2.20 7.58 5.27 3.14
0.08 3.49 2.36 1.39 4.23 2.88 1.71 5.90 4.07 2.41
0.09 2.83 1.92 1.20 3.43 2.34 1.41 4.81 3.29 1.94
0.10 2.39 1.62 1.09 2.88 1.96 1.23 4.03 2.73 1.64
0.15 1.38 1.06 1.00 1.62 1.16 1.00 2.18 1.50 1.06
0.20 1.06 1.00 1.00 1.15 1.01 1.00 1.50 1.09 1.00

Table B.9. Approximated performance of the WRM-CUSUM charts for the fixed shape param-
eter γ = 1.5 and different values of the data-set dimension N , censoring rate pC
and nominal 10% decrease in the intercept of the linear specification of the scale
parameter.

B.3 Data sets for the pharmaceutical industry example

There are presented the results of annually conducted accelerated experiments in the
laboratory of a pharmaceutical company. The results were collected during the period
1999–2013. In each annual experiment, six specimens of ticks were tested at six different
concentration levels of a poisonous solution ranging from 2% to 12% with a 2% increase
between levels. Concentration levels are shown in the second column of the table. The
experiment is planned to terminate testing after a fixed time in hours, that depends on
the concentration level, had elapsed. The censoring times for each of the levels were set
to be C1 = 75.2, C2 = 49.1, C3 = 38.3, C4 = 32.1, C5 = 28.0 and C6 = 25.1. The elapsed
time, in hours, until death is reported in the respective column of the presented table. The
plus symbol indicates a censored observation that has to be replaced by the corresponding
value Ci, i = 1, · · · , 6. The complete data set is given below.
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----------------------------------------------------------------------------------------------------

X 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

----------------------------------------------------------------------------------------------------

[1,] 0.02 52.6 20.2 52.1 20.1 25.3 + 57.7 42.1 59.3 41.9 24.7 53.8 + 32.2 +

[2,] 0.04 + 26.3 6.3 16.2 27.8 41.9 + 18.3 31.1 27.4 17.2 33.4 37.6 + +

[3,] 0.06 34.0 21.6 + 17.2 19.5 16.2 + 9.9 + + + 22.7 24.2 21.3 8.6

[4,] 0.08 + + 13.9 8.1 15.3 5.5 19.7 6.6 12.7 + 5.8 12.7 26.8 22.1 +

[5,] 0.10 18.1 22.3 2.8 0.6 12.4 + + + 7.9 18.0 + 10.7 25.3 + 9.0

[6,] 0.12 24.6 20.5 13.1 4.9 7.2 8.5 23.7 + + + + + 19.2 9.5 +

[7,] 0.02 13.0 54.6 9.9 67.1 + 56.5 30.5 + 71.7 + 51.3 48.1 52.4 + 71.0

[8,] 0.04 14.5 + 35.7 28.5 36.5 11.9 46.8 + 21.4 34.2 + 9.4 11.0 12.6 26.1

[9,] 0.06 11.9 16.6 29.8 30.9 30.3 34.2 5.0 27.1 34.7 + 29.9 32.6 27.2 + 28.7

[10,] 0.08 23.2 24.8 9.1 14.2 22.7 17.4 + + 18.6 10.6 23.7 14.1 + 11.7 4.6

[11,] 0.10 17.9 11.8 9.6 + + 13.0 16.1 24.8 19.9 + 12.7 19.1 19.9 + 20.5

[12,] 0.12 6.8 + + 22.1 4.6 + 21.8 21.6 22.7 13.2 12.5 11.0 8.7 3.6 19.6

[13,] 0.02 35.8 36.3 23.8 16.0 20.0 37.7 27.3 + 52.1 71.0 45.1 + + 42.2 43.5

[14,] 0.04 + 48.5 + + 46.6 + 43.8 + + 16.7 27.1 + + 41.2 +

[15,] 0.06 18.8 10.7 7.6 + + 12.5 18.1 18.9 30.4 13.0 + 20.4 16.0 12.9 +

[16,] 0.08 28.4 + 15.7 12.0 + 14.8 + 9.0 17.6 8.9 17.9 21.5 24.1 20.1 13.8

[17,] 0.10 17.6 15.4 13.8 19.5 + 20.6 + 25.7 22.7 22.0 15.8 + + 27.9 15.8

[18,] 0.12 4.3 0.9 + 6.3 13.6 + 4.2 + 23.5 6.6 + 7.5 13.6 15.4 +

[19,] 0.02 69.6 + 45.8 40.2 + 41.1 + 62.5 63.1 + 72.6 63.2 18.2 73.0 61.1

[20,] 0.04 35.2 18.2 15.2 + 2.3 29.9 26.4 24.6 27.7 37.3 26.2 + + + 25.9

[21,] 0.06 11.1 25.9 + + 5.3 21.9 + 33.1 + 19.7 1.3 30.6 + 32.0 32.4

[22,] 0.08 29.2 14.5 15.8 14.6 + 26.9 16.4 17.9 26.3 18.8 20.0 23.7 12.3 + 24.2

[23,] 0.10 11.5 18.6 15.1 14.8 15.3 + + 15.0 15.8 19.8 5.9 21.4 11.2 + +

[24,] 0.12 8.3 12.2 9.5 9.6 + 14.2 6.2 16.3 18.6 9.6 23.4 + + 4.2 19.9

[25,] 0.02 + + 39.8 30.1 8.3 29.8 + 13.9 + 33.0 + + 19.8 73.6 +

[26,] 0.04 32.0 16.5 + 4.1 + + 23.9 + + 40.3 40.3 + 46.2 38.1 19.7

[27,] 0.06 + 36.9 24.2 31.3 36.5 + + 21.7 15.4 21.3 29.2 35.9 8.1 12.8 21.0

[28,] 0.08 30.2 26.5 + + 21.4 24.7 7.1 9.3 + + 32.1 5.4 13.3 29.2 30.3

[29,] 0.10 + 10.5 7.0 + 12.7 25.0 9.0 4.1 16.7 16.4 12.0 + + 13.0 7.5

[30,] 0.12 + + 6.8 + 9.0 13.8 + 4.7 17.0 12.5 3.1 12.4 18.1 + +

[31,] 0.02 22.4 41.9 + + + + 28.1 9.4 28.2 26.3 + 23.4 58.4 49.6 35.4

[32,] 0.04 21.9 39.8 48.5 23.0 7.5 7.9 22.5 46.5 + 40.4 48.9 44.0 2.0 17.3 24.8

[33,] 0.06 8.5 13.1 + + 24.8 + 9.9 + + 11.7 7.6 19.4 13.6 8.4 +

[34,] 0.08 28.5 + 29.0 12.3 + 29.2 8.2 + 23.4 + 5.4 + + 30.9 +

[35,] 0.10 24.1 + 23.7 19.3 16.6 + 15.2 + + 15.2 + + 19.3 23.9 15.5

[36,] 0.12 9.2 19.0 + 6.8 + 14.3 3.2 16.4 + + + + 21.2 20.9 13.9

----------------------------------------------------------------------------------------------------



Conclusions and recommendations

We have presented three different ways of monitoring Weibull regression models with
common shape parameter and censored and uncensored observations in phase II pro-
cesses. It was shown that existing control schemes can be also used for monitoring
the parameter vector of regression models with severely skewed response variable.
However, existing control procedures have to be modified or generalized so the mon-
itoring of one or more of the parameters in the WRM parameter vector can be carried out.

In the case of monitoring WRM with uncensored observations, the design of the existing
control charts is based on the asymptotic normality of the MLE of the WRM parameter
vector. Nevertheless, it is almost impossible to guarantee the existence of large enough
data sets in on-line monitoring. Existing control charts have to be adapted so they can
work with finite data-set dimensions. We proposed to implement Bartlett’s adjustments
to LRT statistic in chart designing in order to improve control scheme performance when
non-large enough data sets are available over time. The resulting control charts have
proved to work fairly acceptable for data-set dimensions greater than 30 uncensored
observations.

We have also extended Dickinson’s LRT-based CUSUM procedure for monitoring
the characteristic life of right-censored Weibull lifetimes to the more general case of
monitoring type I right-censored lifetimes that depend on a set of explanatory vari-
ables. The methodology can be used for virtually any data-set dimension because it
does not depend on distributional assumptions beyond those required to the response
variable. However, chart performance strongly depends on multiple known factors
that must be taken into account for designing purposes. Conducted simulations sug-
gest that this CUSUM chart outperforms the MEWMA chart in most of the studied cases.
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Current and further work

Our current research work is mainly focused on completing the monitoring of WRM with
type I right-censored observations, time-varying dimension and/or random explanatory
variables. The fact is that not all the scenarios of interest have been exhaustively and
deeply explored. Especially, it is needed to

• Investigate other mechanisms for generating the number of observations in each
experimental level over time rather than the uniform distribution. However, it is
expected that the generating mechanism, deterministic or random, does not seriously
affect the performance of the WRM-CUSUM with probability limits.

• Evaluate the effect of the distribution of the explanatory variables on charting pro-
cedures when the monitoring of the coveriates is not concerned.

• Investigate drops from the in-control state due to drops in the values of the explana-
tory variables. This is, the monitoring of the random predictors is also concerned.

For further work, it could be useful to implement the conditional expected value (CEV)
method for monitoring WRM with censored observations. It was established that higher
censoring rates make the control schemes work less effectively. The use of the CEV
method could improve the performance of control charts when a censoring mechanism is
operating. The CEV method proposes to replace censored observations by its conditional
expected value based on the Weibull or the extreme value distributions. The method has
been proved to overcome the difficulty of having too many censored observations in the
available samples. Existing proposals of CEV-based control charts work fairly acceptable
for monitoring lifetimes without covariates.

Some other related topics are also of great relevance when the main goal of the monitoring
aims to the WRM with uncensored observations. For instance, in Chapters 2 and 3, it was
established that the control limits of the resulting corrected schemes appear to be robust
to the data-set dimension, if N > 30 approximately. Thus, we have thought, as it was
presented in Section 4.7, that the proposed methodologies can also be adapted for mon-
itoring WRM with uncensored observations and time-varying dimension by conditioning
on the values of the experimental levels.
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