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Mentor: Prof. Eduardo Romero Castro

Jury composition:
Prof. Marcela Iregui (UMNG, Colombia)
Prof. Norberto Malpica (URJ, Spain)
Prof. Luis Niño (UNC, Colombia)
Dr. Javier Pascau (HGM, Spain)
Dr. Andrea Soddu (ULG, Belgium)

Thesis submitted in partial fulfillment of the requirements for the degree of
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Abstract

Recent advances in imaging technology have provided large volumes of
image data. This has imposed novel interaction requirements to medical
doctors. Development of these interaction mechanisms is a challenging un-
explored research problem. This thesis was devoted to the study of the com-
plex processes underlying the events produced when a medical user interacts
with a large volume of medical data, and how can be improved interaction
by using this information. Acquirement of medical knowledge from these
data implies intensive interaction. Our aim was to provide mechanisms for
obtaining significant information during this interaction in a minimal time.
To achieve this, we proposed original strategies for inferring and synthesiz-
ing medical knowledge from these data. Our inspiration was the biological
mechanism that controls the visual data exploration and the complex move-
ments involved in the navigation task. Proposed methods were successfully
used to improve navigation velocities in virtual microscopy and to increase
the tracking capabilities of the complex human motion.
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1
Introduction

1.1 Motivation

Nowadays, mega-images or images composed of a larger number of pixels
than those allowed by conventional capturing devices, are used in very diffe-
rent applications such as satellite, astronomic or medical images [22, 84, 147],
among others. Large medical images comprise barely every diagnostic modal-
ity because of the amount of information that each generates. Over the last
few years, medical specialties have been rapidly evolving from poorly de-
tailed human body observations to very accurate pictures about the internal
biological structures and body functions. These advances have been possible
by recent developments in imaging technology that provide non-invasive high
resolution 3D imaging. Others specialties such as pathology, are in a state
of transition, from classical instruments of visualization, such as light mi-
croscopy, to digital tools as virtual microscopy. Virtual microscopy is a last
technological innovation, consisting in merging digital imaging with conven-
tional light microscopy to enable exploration through high resolution digital
images of glass microscope slides, emulating tissue visualization, as in a real
microscope [104].

All these novel medical image applications have imposed high demanding
requirements for archiving, transmission, accessing and navigation. Since
the last decade, on new standards for high resolution image store and trans-
mission have been proposed [131]. However, many of their functionalities
have not been exploited in the medical image domain. Additionally, the
access velocity to these data is insufficient to have a seamless navigation.
There are several methods which allow improved navigation such as highly
scalable storage, prefetching and cache strategies, but their performance is
highly dependent on the degree of knowledge of the expert navigation pat-
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CHAPTER 1. INTRODUCTION

terns. Unfortunately, the underlying mechanisms which control the medical
image exploration have been poorly studied. A deep understanding of these
mechanisms is at the base of the fundamental question of how to store and
to deliver visual data according to the medical doctor expectations.

This thesis is devoted to the study of the complex process underlying the
events produced when a medical user interacts with a mega-image, and how
we can improve the adaptive delivery of visual data using this information.
In general, this type of processes are the result of the interaction between two
complementary factors: on the one hand, top-down mechanisms such as the
user knowledge or motor skills that govern many decisions and actions and,
on other hand, bottom-up information such as the image low-level content
that triggers particular types of associations. These mechanisms have been
identified in many different interaction scenarios [60]. They are very robust
to noise and allow to find a maximal amount of information with a minimum
effort [104]. In several applications, these mechanisms may improve the way
we use resources and the design of adaptable systems [60].

In this thesis we were focusing upon the particular domain of navigation
in virtual microscopy for histopathology. This is one of the most promising
technologies to be integrated in the clinical routines of pathology [104], but
also one of the less studied problems in the medical imaging domain [13].
One of the first challenges that we found was that simple request and send
operations, provided by the state-of-the-art image codification methods, were
really limited for a fluid navigation. For this reason, we developed a set of ef-
ficient techniques for representing and accessing digital slides, such as highly
scalable storage, prefetching and cache. Several tests were carried out in
real navigations resulting in improvements of the exploration times. These
first approaches were based on simple interaction mechanisms that neverthe-
less, resulted effective to accelerate the exploration. Later the research work
was oriented to the identification of exploration patterns in the pathologist’s
navigation. An experimental study was carried out to recognize the more
relevant characteristics of the navigation for diagnosis tasks in histopatho-
logy. Finally, several computational models for predicting these patterns and
delivering the image data adaptively were developed.

16
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1.2 Goals and Main Contributions

The main goal of this work was to reduce the navigation times in exploration
of medical mega-image through the use of several strategies for storing and
adaptive delivering the visual data. To meet this challenge we had explored
the image compression techniques, the communications protocol, the graphi-
cal user interface, the navigation patterns and in general every part involved
in the exploration of medical mega-images. During this work several original
contributions in the area of virtual microscopy for histopathology have been
produced and are summed up here after:

• A new strategy for efficiently browsing of histopathological images was
proposed. The whole proposal is supported on the JPEG2000 stan-
dard [131] and strategies for adaptive delivering of image data, namely
cache and prefetching. Main contribution was a complete analysis of
the virtual microscopy relevant aspects so that multiple recommenda-
tions were presented on using each of the virtual microscopy modules,
based on a detailed study from different perspectives by exploiting up-
to-date tools. The strategy was tested in a real scenario in pathology,
resulting in considerable reductions of the navigation times. An initial
version of this work titled Virtual microscopy using JPEG2000 was
presented in the 12th Conference on Computer Analysis of Images and
Patterns (CAIP2007) [54]. The complete contribution was published
in the specialized microscopy journal Micron as a research article titled
Strategies for efficient virtual microscopy in pathological samples using
JPEG2000 [68].

• An original soft-cache strategy to improve the navigation times in vir-
tual microscopy was formulated and tested. The main contribution was
the design of an adaptable task oriented model which takes advantage
from the JPEG2000 standard scalability by working at the minimal
JPEG2000 information unit: the packet. Evaluations in very variable
navigation patterns showed considerable reductions in the navigation
times when was compared with state-of-the-art approaches. Prelimi-
nary results of this work were presented in the peer-reviewed confer-
ence V international seminar of medical image processing - SIPAIM.
The complete contribution was accepted for publication in the spe-
cialized microscopy journal Microscopy Research and Technique under

17



CHAPTER 1. INTRODUCTION

the title A Soft-cache Strategy for Pathologist’s Navigation in Virtual
Microscopy.

• A novel pathologist’s exploration pattern was identified and explained.
The pattern was observed in the velocity navigation during explorations
between Windows of Interest and results of the interaction between
the neuromuscular user system and the tool used for the image explo-
ration. Evidence about the occurrence of this pattern was presented
in the Third IASTED International Conference on Human-Computer
Interaction as part of an article titled Prediction of Pathologist Navi-
gation Patterns In Virtual Microscopy Based on a Soft-Computing Ap-
proach [55]. More experimental evidence was presented in the research
article A Model for Predicting Pathologist’s Velocity Profiles When Na-
vigating Virtual Slides [57] published in the specialized microscopy jour-
nal Microscopy Research and Technique.

• A computational model for tracking and predicting biological complex
movements was formulated and evaluated. The model was based on a
two step Bayesian machine learning strategy. An offline step, where the
parameters of a hidden dynamical system which control the movement
are learned. Followed by an online tracking phase, where the optimal
trajectories are recursively approached from simple movement observa-
tions. The model was tested by predicting velocity patterns registered
in the pathologist’s navigations. The results showed that the proposed
model outperforms the state-of-the-art proposals. This contribution
was published in a chapter titled Predicting Complex Patterns of Hu-
man Movements Using Bayesian Online Learning in Medical Imaging
Applications [56] as part of the book Biomedical Image Analysis and
Machine Learning Technologies: Applications and Techniques. The ap-
plication of this model to the velocity prediction in virtual microscopy
was presented in the research article A Model for Predicting Patholo-
gist’s Velocity Profiles When Navigating Virtual Slides [57].

• A computational model for prediction of Regions of Interest in his-
topathology images was formulated and tested. The model emulates
the first slide examination phase, which consists on a coarse search of
structures to separate image in relevant regions. The computational
strategy is supported on visual attention model theory, the grouping
Gestalt laws and machine learning. The main contribution of this work
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was to model the visual attention process involved in histopathologi-
cal image exploration by bringing together bottom-up and top-down
information. The model was evaluated on manually segmented images
resulting in more consisting Regions of Interest compared to classical
visual attention models. This contribution was presented in the con-
ference SPIE Medical Imaging 2009 as a research article under the
title Finding Regions of Interest in Pathological Images: An Atten-
tional Model Approach [59]. The complete contribution was submitted
for publication consideration to the specialized publication Journal of
Visual Communication and Image Representation as a research article
titled A Supervised Attentional Model for Finding Regions of Interest
in Basal Cell Carcionoma Images [68].

During the development of this work we found interesting problems di-
rectly related with our original research question. Some methodological issues
involved in the development of this work are applicable to these problems.
Additional efforts were devoted to explore these problems and a series of
original contributions were proposed in these areas:

• The Center of Mass trajectory is of paramount importance for the de-
scription of the human movements, because provides measures about
the energy consumptions and their trajectories can be associated to
several neuromuscular diseases. However, the tracking of the Center
of Mass is a complicated problem since it is located inside the body.
We approached this problem by means of the proposed computational
model for predicting biological complex movements. Main contribu-
tion was to use a very simple methodology to follow the complex non
linear dynamic associated to the Center of Mass Movement. This con-
tribution was accepted for publication in the biomechanics specialized
journal Computer Methods in Biomechanics under the title A Kine-
matic Method for Computing the Motion of the Body Center-of-Mass
(CoM) During Walking: A Bayesian Approach.

• The texture is a fundamental characteristic for the histopathology image
representation. Some of the most commonly used texture features are
based on the application of bank filters, followed by a description of
the corresponding probability distribution function. These represen-
tations result in highly discriminative for classification and image re-
trieval problems. However, these strategies ignore the fundamental fact
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that many natural images are composed of directional information. In
this thesis, we proposed and tested a novel low level texture feature
based on sparse directional representations. The feature is based on
Curvelets and generalized Gaussian distributions. The main contribu-
tion was the construction of a highly discriminative, precise and simple
descriptor of natural textures. We demonstrated the effectiveness of
the proposed descriptor for classification and retrieval tasks in natu-
ral images, obtaining significant improvements. An initial version of
this contribution was published in the 14th Iberoamerican Congress on
Pattern Recognition (CIARP 2009) as a research article titled Texture
Characterization using a Curvelet Based Descriptor [58]. An extended
version of this work titled Rotation Invariant Texture Characterization
using a Curvelet Based Descriptor was invited to publish in a special
issue in the Pattern Recognition Letters journal.

We encourage the lector to review these references that has been annexed
at the end of this dissertation.

1.3 Structure of this Thesis

As we said previously, this thesis is focused on the following research goal:

To reduce the navigation times in exploration of medical
mega-image through the use of several strategies for storing and

adaptive delivering the visual data.

In order to meet this goal we propose to understand the dynamic generated
by navigation of these images, and therefore to construct strategies that
take advantage of this knowledge to accelerate exploration. In this context,
we consider the development of a system that allows exploration of high
resolution medical images. In this thesis we investigate three aspects of such
system:

1. the design of a computational tool for exploring these images, it in-
cludes the representation used to efficiently store these visual data,

2. the navigation patterns that arise during the medical doctor explo-
rations when he/she is using this tool,
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3. the computational model that would be used to accelerate the explo-
ration by taking advantage of the previously identified navigation pat-
terns.

We explicitly considered histopathological images (also called virtual-
slides), but it is not a restrictive choice. Navigation in other medical image
domains could also be addressed by similar strategies. For instance, in neu-
roimage domain where data dimensionality is too high to explore with clas-
sical strategies, visual attention models as presented in chapter 7 would be
used to select relevant regions for diagnosis.

Regarding the image representation, the JPEG2000 algorithm has been
chosen. This choice was motivated by several reasons: their compression
efficiency and the growing interest that it has been generated in the medical
image domain [131]. But most importantly, this algorithm is highly scal-
able, a quite general concept that meets naturally the way experts exploring
medical images. We believe that this concept is going to remain valid in
novel compression algorithms and therefore strategies developed over this
general idea are going to be valid also in future. As we demostrated in this
investigation, navigation patterns arise from a complex interaction between
image, graphical user interface and image content. Their understanding is
of paramount importance not only for the acceleration of navigation pro-
blem, but also to answer a more relevant question: How medical doctors
explore visual data to devise a diagnosis?. The answer of this question is
out of scope of this thesis, however we identified exploration patterns that
would be of interest for the image perception and medical image commu-
nities. For instance, patterns related to the use of the neuromotor system
during exploration with mouse. In addition, we worked in the development
of computational models to predict and take advantage of these patterns.
These models were constructed based on our same observations of the explo-
ration nature, and prior biological knowledge about the neuromotor system
and the human visual system parts involved in exploration tasks. All these
knowledge were integrated over a general probabilistic setting that fits well
with machine learning, i.e., we were able to construct computational models
that learn from actual navigation. It provides flexibility for adaptation of
the proposed strategies to other domains. Finally, prediction strategies were
carefully designed to meet requirements of faster exploration, i.e., precision
and computational efficiency.
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In the following, each of the three aspects enumerated above are inves-
tigated in a separate part, which we now briefly introduce. We invite to
the reader to refer to Figure 1.1 to get a visual illustration of the thesis
organization.

Figure 1.1: Thesis organization. Three aspects of a system for exploring
high resolution medical images are studied: the computational tool for na-
vigating mega-images that also includes image storage, the exploration pat-
terns generated during navigation, and finally, strategies for accelerating the
exploration taking advantage of these patterns.

As complement to this introduction, the first chapter presents a state
of the art in virtual microscopy. In particular, we review the computational
pipeline used for virtual microscopy: stitching, storage and navigation. Diffe-
rent stitching approaches presented in literature are described. We review
main advantages and drawbacks of different methods used for high resolution
medical images storage. Later, we detail precedent works in navigation of
high resolution images, we are mainly concerned in strategies for accelerating
navigation of JPEG2000 high resolution images. We report also some ele-
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ments of the Graphical User Interface used to explore this images. Finally,
we conclude with some future works of interests for the area.

Part I is devoted to the design of a tool for exploring high resolution
medical images. Specifically, we detail the JPEG2000 functional and tech-
nical adaptations required to construct a digital tool to explore images in
histopathological domain. These adaptations are not limited to the standard
itself, but also include several strategies to address the problem of acce-
lerating the navigations. These strategies take advantage of the dynamic
nature of the image exploration. In this part we demonstrate improvements
in navigation velocities by a careful combination of JPEG2000 features and
strategies that exploit the exploration dynamic. The main conclusion of this
part was the relevance of a good exploration model, i.e., a model to predict
the navigation behavior in future.

In Part II we present an study carried out to identify pathologists navi-
gation patterns when exploring virtual microscopy slides using the previously
designed tool. A set of similar pathologists explored a series of high reso-
lution histopathological images. Different issues of these explorations were
evaluated, namely, the percentage of common visited image regions, the time
spent at each and its coincidence level, that is to say, the region of inter-
est location. In addition, navigation patterns were also assessed, i.e., mouse
movement velocities and linearity of the diagnostic paths. Results suggest
that RoIs are determined by a complex combination of the region visited,
the time spent at each visit and the coincidence level among pathologists.
Additionally, linear trajectories and particular velocity patterns were found
for the registered diagnostic paths. Presence of these patterns is quite rele-
vant, because it is an indicator of general behaviors that would be learned by
a computational system in order to construct predictions about navigation
future.

Part III deals with the construction of computational models that take
advantage of patterns identified in the navigations. The first strategy is a
new optimal cache strategy that improves the navigation times in medical
image exploration. The entire method includes an optimal soft-cache pol-
icy and a dynamical probabilistic model of a pathologist’s navigation. The
whole model is based on a general exploration pattern identified in Part
II. Results show improvements in velocity compared with state of the art
approaches. We presented also in this part, two computational models to
predict navigation in histopathological domain. Firstly, a soft computing
model that permits to anticipate the pathologist trajectories in diagnosis
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tasks when he/she is exploring virtual slides. The model combines in a very
general Bayesian framework both: an offline model of a baseline pathologist
knowledge (the prior) and a prediction online module (the likelihood) which
captures a particular pathologist navigation pattern. The prior knowledge is
learned from actual navigations performed by several pathologists in different
virtual slides. Results indicate high improvements in trajectories prediction
by using the proposed approach. Later, it is introduced a novel “bottomp-
up” and “top-down” visual attention model for finding diagnostic regions of
interest in histopathological images. The method is based on the cognitive
process of visual selective attention that arises during a pathologist’s image
examination. The method was evaluated on a set of histopathological im-
ages and compared with regions selected by an expert pathologists finding
considerable quality gains compared with state of the art methods.

Finally, in the last chapter, we summarize the contributions of each
chapter and present several future research directions. In particular, im-
portance of image quality in image exploration, development of automatic
image navigation systems and the use of the semantic knowledge associated
to images for improving navigation experience.

1.4 Publications

1.4.1 International Journals, Book Chapters and Peer-
Reviewed Conferences

• Romero E., Gómez F., Iregui M., Virtual Microscopy in Medical Im-
ages: a Survey, in Mendez-Vilas A. Diaz J. (eds.) Modern Research
and Educational Topics in Microscopy, Formatex. pages 996-1006,
2007.

• Gómez F., Iregui M., Romero E., Virtual microscopy using JPEG2000,
12th Conference on Computer Analysis of Images and Patterns. Lectu-
res Notes in Computer Science series. Springer Verlang. LNCS 4673,
pages 181-188,2007

• Iregui M., Gómez F., Romero E., Strategies for efficient virtual mi-
croscopy in pathological samples using JPEG2000, Micron Vol 38 pag
700-713, 2007.
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2
Virtual Microscopy in Medical Images:

a Survey

Romero E., Gómez F., Iregui M., Virtual Microscopy in Medical Images: a
Survey, Modern Research and Educational Topics in Microscopy, Formatex,
2007.

Abstract A major objective of the present chapter is to provide a compre-
hensive vision of the most recent methods for the construction of a Virtual
Microscopy Viewer. The Virtual Microscopy is the microscopy area that pro-
vides a realistic digital emulation of a conventional light microscope and the
VMV is the software tool that provides such emulation. Construction of a
mega-image by stitching a sequential set of microscopic fields of view is the
first step toward a useful VMV development. Once the mega-image is assem-
bled, this huge amount of generated data should be compressed and stored in
hard disk for later recovery. Finally, whether this mega-image is compressed
or not, data should be suitably accessed for navigation. The reviewed ap-
proaches are herein classified according to their role in VM, that is to say,
at the stitching, storage and navigation phases. Main contributions, advan-
tages, and drawbacks of the current navigation methods are presented and
discussed, as well as the outlook for future research.

2.1 Introduction

Microscopic pathology is a subdiscipline of pathology, devoted to the study
of the disease manifestations which are visible only at the histological level.
The main core of the present disease knowledge comes up with the His-
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tology development, a period spanning the nineteenth century and part of
the twenty. The former light microscope is nowadays part of a large set of
observation tools which together with the available number of dyes, allows
precise exploration of cellular and sub-cellular microstructures. Microscopi-
cal examination of tissues requires a biological sample is cut into very thin
slices which are deposited on glass slides. Once this tissue lies down onto
the slide, a staining process highlights the relevant cellular information ei-
ther by specifically staining nuclei or cytoplasm organelle. A very recent
field, known as Virtual Microscopy (VM), makes possible digital exploration
of these histological slides [104] as well as information archiving, tissue or
cellular quantification and easy access to the information using modern com-
munication resources. This technology shall be in the very near future a
useful tool in most routine microscopical applications. Theses mega-images
are constructed by a sequential capturing process which results in the called
virtual slide which makes possible a so far unknown information availability
for image retrieval in case of latter studies, medical training, distribution by
electronic media, image exchange between pathologists, annotation capabili-
ties and morphometrical measurements [21, 48, 104, 81, 117]. Overall, these
virtual slides are high resolution images whose visualization requires special-
ized software: the Virtual Microscopy Viewer (VMV), a specific tool devised
for running over images composed of thousands of microscopical fields of view
(FOVs). Efficient navigation strategies within such virtual slides should take
into account the multiple disk accesses and network latencies for locating,
extracting and processing the requested information. Minimal requirements
for this kind of viewer are: spatial random access to image information, rep-
resentation of the different magnification levels and an adaptable interface
to the user needs.

Construction of such a VMV implies to solve different kind of problems,
whose nature depends on the different involved steps: assembling the mega-
image, efficient storage and rapid information availability for navigation.
These three general requirements define three complementary processes:

• Stitching. The different microscopical FOVs, result of the digitalization
process, must be assembled together into a single high resolution image
[9], a process which involves registering strategies for finding overlaps
between neighboring FOVs.

• Storage. Clever storage strategies are needed since the virtual slide
demands a huge amount of memory space. For this reason it is required
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an intensive use of image compression methods [128], but subjected to
the restriction that such methods must also allow an efficient access
to information when required. Additionally, compression in medical
images must be lossless since minimal distortions may lead to a false
diagnosis [106].

• Navigation. This is the process which permits a user to carry out a
microscopical examination of a particular sample as it would be possible
using a conventional microscope. This virtual microscope must allow
sequential and random translational movements at any of the xy-axes
or zooms when moving along the z-axis [51].

Figure 2.1: The whole scheme illustrates the Virtual Microscopy process:
first a sequence of microscopical FOV is assembled into a mega-image, which
must be stored because of its large size. Finally, the navigator must facilitate
visualization of different windows of interest at different enlargements and
with variable spatial displacements.

In conclusion, virtual microscopy requires a VMV which is able to inte-
grate these three different processes. The main objective of this work is to
give a brief introduction to some of the different strategies used in VMVs.
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2.2 Stitching

A complete digitalization of histological slides is reached using a Whole-Slide-
Imaging (WSI) device [116]. These systems must be capable of digitizing
slides at any magnification and any desired resolution. The whole system
is usually composed of an optical microscopy system, an acquisition system
and a software that controls the scan process, as illustrated in Figure 2.2.

Figure 2.2: A Whole-Slide-Imaging is basically composed of a conventional
optical system to which a motorized device is somehow adapted for automatic
control of the stage. Likewise, a digital imaging system allows capturing the
observed microscopical FOV.

The acquisition system is constituted of a digital camera provided with
a good charged coupled device (CCD) sensor, a motorized stage which is
controlled by some electronic device and a high resolution monitor for visua-
lization of the digitalized FOV. Acquisition of microscopical FOV is usually
performed frame per frame, following a particular order in the slide, i.e., most
cases from upper left to the lower right corners (Figure 2.1), a frame of coor-
dinates which is usually set on the computer screen for lower magnifications
of the microscopical image to be captured. As a general rule, the capturing
frame is overlaid with its neighbors in order to avoid possible information
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losses.

The output of this process is a set of images with overlapping frames,
corresponding to the virtual slide. Although the digitalization process is
simple, several sources of errors may come out in the process such as variable
illumination conditions between different FOV, geometric deformations due
to the radial camera distortion and aligning errors because of the microscope
stage backlashes [119], resulting in variable seams between neighboring FOVs.

Adequate microscopic virtual reconstruction of a desired part of a bio-
logical sample is achieved using image registration and stitching. In the VM
context, registration is the process of finding the amount of overlay between
two neighbor frames by maximizing a particular similarity measure between
them. Two kinds of similarity measures have been used in VM systems:

• Area based methods. These measures are based on the similarity of
intensities between the two neighbors FOV, using their intersected re-
gions. They are based on low-level image intrinsic properties and there-
fore they are very sensible to the type of noise.

– Sum of squared differences. Thévenaz et. al. have used the sum
of squared differences as similarity measure in a VM system [136].
This measure has shown to be appropriate in many applications
since it is simple and optimal under controlled conditions, i.e.,
when differences between images are exclusively caused by Gaus-
sian noise [144]. However, inter-image intensity variations are
mostly linear in histological applications and constitute the major
source of noise [9], together with the unavoidable biological vari-
ability and the technical difficulties of any histological procedure.

– Correlation. In routine microscopy, illumination settings are con-
trolled in such a way that most changes regarding intensities bet-
ween neighboring FOVs can be modeled as linear [68]. Therefore,
similarity measures based on correlation such as the normalized
cross correlation or phase correlation [120, 14], result more robust
and become also more general. They are remarkably less sensi-
ble to noise than simple measures at the level of pixel differences
such as the sum of squared differences and they are also robust
to image displacement or rotations produced by microscope stage
instabilities.
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• Feature based methods. These approaches are based on the detection
of salient features in the image intersection which can be used in a
general manner [158].

– Corners. Sun et al. [129] have proposed a method which finds a
set of corners in the overlapping region of each field of view, based
on the Harris corner detector method [65], which is followed by
a match of the corresponding features. In this case the simila-
rity measure is the Euclidean distance between the corresponding
features. Although the method is rapid, this is not general or ro-
bust since there are no guarantees for the corners to exist in every
microscopical image.

After a similarity measure has been set, the registering phase consists in
finding the optimal transformation function which maximizes that similarity
between neighboring FOV. Notice that a large image must be generated by
registering hundred or thousand FOVs, whereby optimal registration schemes
are required. A simple naive registration of one image with its neighbors can
result expensive from a computational standpoint because of the number of
needed registrations. An efficient strategy consists in registering a couple of
neighboring images, which then form a new image. This new image is then
registered against a third consecutive image to construct a new image and
so on along the selected row. The process is performed in parallel until rows
of images constitute individual images which are then registered to generate
the final mega-image. Rankov et al. [112] proposed to start at the center
of the digitalization framework and to follow a spiral-like pattern, under the
hypothesis that the image at the center contains the higher information,
as illustrates Figure 2.3. Appleton et al. [9] aligned simultaneously rows
of FOV, while images associated to each row are firstly stitched into one
single image using an efficient dynamic programming algorithm for solving
the optimization problem. Thévenaz [136] developed a method for refining a
rough stitching, starting with an initial conventional stitching. During this
phase, images are ordered after the intersection surface between them and
then aligned following this order.

After an optimal displacement is found, it is quite frequent that visible
seams persist between two neighboring FOV. The stitching process must then
correct the seam between two FOV by modifying the intensity values within
the boundary of the overlap region. For so doing, Iregui et al. [68] proposed
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Figure 2.3: A sequence of microscopical fields of view is assembled together
into a single large image, as illustrated in upper left panel. Different stitching
schemes are showed in the other panels: a serpentine pattern in the upper
right panel, a spiral-like pattern in the lower left panel and a structural
generation for which the large image is constructed by aligning rows of FOV.

to apply a Gaussian filter on the two neighboring rows of pixels to smooth
them out. Rankov et al. [112] and Thévenaz et al. [136] calculated a weighted
bilinear interpolation of the two overlaid images. A pixel value is calculated as
an average of its values at both overlaid images, weighted by their distances to
their closest image edge. Correction of the illumination differences in different
FOV is achieved in Sun [129] by weighting the intensity values with a second
order polynomial which attempts to compensate the intensity differences
between every pair of neighboring images and approximate the corrected
illumination to the mean intensity value. Although differences are corrected
using this low pass filtering scheme, it is very difficult to ensure that also
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relevant information could not be hidden.

2.3 Storage

A virtual slide is a high resolution image, for instance a typical digitalization
of a 1 cm2 glass slide using 20× objective, results in 64 × 64 FOVs [68].
Provided that FOV are digitized to a resolution of 720 × 520 pixels, it is
produced a reconstructed image of 45000×32000 pixels and 4.3 Gbytes. The
demanded high resolution of the virtual slide leads to several problems:

• Large storage requirements. Although the cost of devices for storage is
lately falling while their capacity is increasing, the massive application
of VM would require an unthinkable amount of storage. A specialized
hospital produces between 100.000 - 500.000 histological slides every
year [122]. The storage of only a 10% of these preparations, suppose
the hospital can count on at least 50 Petabytes [122]. It is then manda-
tory to incorporate efficient compression techniques into the storage
procedures.

• Lossless compression. Image compression can solve the problem of
efficient storage, but it is important to take into account some particu-
larities of medical images. Lossless compression techniques allow exact
reconstruction of the original image and avoid annoying distortions in-
troduced by the broadly used loss compression approaches. Overall,
in virtual slides of pathology the lossless compression is preferred by
several reasons: firstly, it is not easy to reach a consensus about an
acceptable quality loss since this is based on exclusively subjective cri-
teria. Second, loss compression can lead to legal disagreements as for
instance a controversial diagnosis which could be based on artifacts
produced by the compression, or in case of a malpractice suit, if only
the compressed version of the image is available [106].

The storage problem for VM has been approached using two different
strategies: uni-resolution and multi-resolution formats.

2.3.1 Uni-resolution image storage

The virtual slide or mega-image is subdivided into smaller images called tiles
[21] and each is stored in a classical format, such as JPEG, TIFF, or RAW
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[90], as is illustrated in Figure 2.4. All these sub-images or tiles are stored
at the original virtual slide resolution. This virtual slide partition facilitates
spatial random access to certain regions of the virtual slide. However, gen-
eration of an entire virtual slide thumbnail requires both access to every tile
and data down sampling. Chang et al. [21] developed a uni-resolution VM
system which runs in parallel architectures. This system spends between 1s -
8s to perform extraction of different Windows of Interest (WoIs) at different
resolutions. When the requested WoI intersects two or more tiles, the size
of the initial tiles becomes definitive, i.e., the largest the selected tile the
more time the system spends. Fontelo et al. [48] compared a real microscopy
system with a uni-resolution VM system using surgical pathology specimens
commonly encountered in a University Hospital. This work shows an 88%
agreement level when comparing both systems. However, this study reports
low satisfaction rates when pathologists navigates using low band channels
(modem channel - 56 kbps).

2.3.2 Multi-resolution formats

The multi-resolution formats [88] are characterized by access to different
resolutions of the image which is compressed in a unique file.

Pyramidal formats

In these formats, the high resolution image is subdivided into spatial tiles
which will be used for generating the whole image at different resolutions
(see Figure 2.4). After an initial tiling, image versions of multiple resolu-
tions (different levels of enlargement) are obtained from each tile and each
one is stored in JPEG or TIFF formats, for lossy or lossless compression,
respectively. FlashPix [66] is the typical example, this format provides spa-
tial random access to the image data using the tile as the information unit
and multiple zoom levels, including the thumbnail. However, storage require-
ments are very high since multiple versions of the high resolution image are
independently stored into the same file. This type of information manage-
ment is not optimal in cases in which the requested region overlaps four tiles
and therefore the four tiles must be decompressed. In this kind of applica-
tions, a compromise must be reached between the size of the tile and the
amount of available information. Fred et al. [30] evaluated the utility of the
VM as a complementary learning tool during a Cancer Workshop using pyra-
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Figure 2.4: Different storage strategies from the original virtual slide. Thick-
line corresponds to the spatial subdivision into sub-images or tiles. The Fi-
gure illustrates also different available storage formats. Uni-resolution allows
only spatial random access. Pyramidal storage provides spatial random ac-
cess at several magnifications, but multiple versions of the image are needed
to be stored for reconstruction. Storage based on wavelets needs a unique
version of the image for spatial random access at various magnifications. Fi-
nally, J2K uses all wavelet advantages and introduces the additional property
of progression in quality.

midal formats. Results show that VM is most effective when compared with
traditional microscopy, but this study fails to present storage results. Mikula
et al. [95] developed a VM system for display of high resolution brain maps
and atlases. The store strategy supports up to 35 Terabytes of information
using a standard lossless JPEG compression.

Wavelet based formats

Zhang et al. [145, 156] used the Haar wavelet [142] for efficiently storing large
resolution images. The proposed algorithm starts by separately processing
each component of the RGB image and is as follows:

1. Computes the average of 22 non-overlapping blocks.
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2. Differences between these averages and the original 22 blocks is calcu-
lated and stored.

3. A new image with every calculated average is constructed.

4. Repeat steps 1-2 on the new image of step 2 until the size of the low
resolution version achieves a desired dimension.

5. Store the last low resolution version in a separated file.

The average values correspond to a low frequency version of the image
while the differences keep information of details, that is to say, image high
frequencies. Every frequency sub-band is stored in a separate file. Spatial
random access is reached by splitting the larger high frequency files into
several files, each corresponding to spatial blocks of wavelet coefficients, as
shown in Figure 2.4. After the image is decorrelated using this wavelet trans-
formation, every file is codified using a Huffman coder. Lossless compression
is achieved using integer arithmetic. The Haar transform allows multiple en-
largement versions of the mega-image from a unique representation. Besides,
provided that wavelets are local operators, the use of the spatial sub-division
of the coefficients guarantees a spatial random access. Yet this approach is
suitable for many VM applications, a great limitation is that there is no a
progressive quality representation which then results in a major drawback
for image transmission and seamless navigations.

JPEG2000 (J2K)

J2K [131, 111] is a compression standard developed by the Joint Photographic
Expert Group and is based on the Discrete Wavelet Transform (DWT) and
the Embedded Block Coding with Optimized Truncation (EBCOT) [130].
The compression algorithm works in different complementary steps as de-
tailed in Chapter 3.

Wildermoth et al. [15] proposed a VM system with an extended depth
of field, which for the registering phase uses a normalized cross correlation
similarity measurement and J2K for storing. However, the least information
units for decompression are the tiles, which correspond to the primary J2K
image partition that could not be optimal for navigation since they need to
be large enough for avoiding distortion effects at low bit rates [111]. This
study fails to exploit the minimal coding unit allowed by the standard: the
precinct [150].
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Iregui et al. [68] developed a VM system which allows progression by
quality and uses strategies such as cache and pre-fetching for accelerating
navigation. The storage uses the J2K algorithm in mode lossless, while ex-
traction time amounts to 500 ms in average for real pathology navigations,
using the precinct as the basic information unit. Additionally, this study
reports that a correct tuning of the compressor parameters reduces the size
of the file up to a 20%.

2.4 Virtual Microscopy and Modern Communica-

tion Scenarios

Conventionally, virtual microscopy systems are implemented as a client-
server architecture [116], basically because this configuration is based on
a central processing-storage and therefore clients with low computational re-
sources can access to such level of information. Unfortunately, current imple-
mentations hardly will meet modern client requirements [95], mainly because
the communication velocity results limited for the high spatial resolution of
these images. In client-server architectures, the client runs on an end-user’s
laptop which allows exploration over the VS while the server provides stor-
age, retrieving and processing of the huge VS data. Many client-server ar-
chitectures have been proposed in the literature for VM, its goes from simple
storage strategies, based on a unique server [100], to parallel computers with
high computational resources [8]. Most of these approaches have been pro-
posed for a low number of pathologists, navigating a reduced number digital
slides, i.e., they do not take into account the use of network resources. Lately,
there has appeared a growing trend for digitizing the whole tissue slide as
part of the clinical routine in pathology [148]. Moreover, many novel edu-
cational scenarios require a concurrent VS exploration. In conclusion most
actual scenarios require an intensive use of the available network resources.
This limitation would be addressed by using the J2K high scalability [150]. It
allows flexible access to the virtual slide in several image resolutions, spatial
regions and quality layers [150]. The J2K standard defines a representation
composed by a wavelet transform followed by a scalable codification using
EBCOT to achieve this flexibility. Unfortunately, this standard does not
specify how to access to J2K data stored in a remote way. A major question
that must be addressed in order to have real and useful applications, such as
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virtual microscopy over network environments.
Several computational architectures had been proposed to access high

resolution J2K images in a remote way [3, 36, 102]. Most of them aim to
exploit the scalability property to consume less bandwidth, by sending small
image units such as tiles, packets or precincts, rather than the complete
image. The JPIP protocol is defined in the part 9 of the J2K standard is an
evolution of the JPIK protocol proposed by Tubman [133]. The associated
J2K image communication protocol (JPIP) was devised to save work at the
client side by concentrating the maximum processing at the server side [3].
Under this protocol, the client requests only WoIs and the server brings back
large structural units such as tiles or precincts, who are finally decompressed.
Microscopical navigations demand more flexible information representations
because of the complex exploration paths, namely, series of back and forth
direction changes, sideway movements, different magnification requests, all
at different speeds and times. Therefore, any design must be as adaptable
as possible to these complex requirements. Recently, an extension to the
JPIP protocol, called JPIP-W, has been proposed [102]. This extension im-
proves the J2K image transmission by means of a proxy cache that provides
faster delivery by exploring the content redundancy of the navigated areas.
Deshpande et al. [36] proposed a Web oriented architecture based on the
HTTP protocol. Their solution consists in creating an index file, associated
to every J2K image file. This file contains the byte range corresponding to a
J2K image unit. This file can be downloaded from a client, which can use it
for accessing the appropriate image parts by using the byte-ranging feature
offered by HTTP/1.1. This approach is very flexible, requires a simple im-
plementation in the clients and provides a full integration in Web Systems.
The major limitation of this proposal is that clients must to have previously
the complete index before accessing data, i.e., it is required to wait before to
show any reconstruction. All these architectures are suitable to remote access
to the image data, however the J2K decompression process introduces time
latencies, because the standard complexity, that would affect the navigation
velocities. For this reason many research efforts have been oriented to deal
with this problem [67, 33, 18, 151, 41]. Two interesting approaches [67, 33],
which are closely related to the proposals herein presented were developed in
the UCL /TELE laboratory, these two doctoral works exploit the dynamic
nature of navigation in high resolution images to propose novel cache and
prefetching approaches in J2K adapted to the problem of navigation of nat-
ural images [134]. The work herein developed would be interpreted as a
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natural application and extension of these techniques to the specific domain
of virtual microscopy in pathology.

2.4.1 Cache Strategies in Virtual Microscopy

The cache problem in virtual microscopy can be twofold addressed: by data
granularity, i.e., the level flexibility of data representation in the cache, and
the cache replacement policy, which should specify how data must be replaced
when a new image portion arrives. In terms of granularity, the simpler stra-
tegy may be to store the lower image resolution levels [8, 68] so that a fast
access to WoIs at specific zoom levels is reached, but at a high memory cost.
Besides, the size of the cache information units to be stored is important
for devising a preference model. If these units are small, a large image WoI
can be more probable than another with less elements of higher size [151].
Furthermore, cache elements with larger size, associated to relevant informa-
tion [134], can yield smaller distortion results when they are queried [134].
Another factor, which influences the weight given to this basic cache unit,
is its associated cost [8], expressed in terms of processing or transmission
time. Therefore, a proper balance for a particular application should be
maintained. An alternative to this choice may be to store complete portions
of the coded image, whereby the granularity level is determined by the com-
pression format. Overall, JPEG is the broadly used format in many virtual
microscopy applications [18, 151, 41]. Nevertheless, this format does not pro-
vide access by resolution and introduces quality losses in the final result, an
unacceptable issue in most diagnostic tasks [106]. In contrast, J2K is a more
flexible alternative [68, 102], provided with random spatial access at different
levels of resolution, quality, and lossless codification.

The cache replacement policies should be based on the user preferences,
that is to say, elements with lower preference levels should be firstly removed,
but only when the cache is full. The most popular cache replacement policy
in virtual microscopy has been the Last Recently Used (LRU) [8, 68], for
which the user preference is modeled as a function that decreases with the
element age. The underlying hypothesis in this model is that the pathol-
ogist will revisit, with higher probability, the image zones that she/he just
visited, a navigation pattern that very rarely is observed in actual navi-
gations [79], above all when the pathologist reaches a particular degree of
expertise. Another broadly used strategy is the Last Frequently Used (LFU)
[102, 151, 8, 68], whose fundamental assumption is that higher probabilities
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are given to those regions with larger number of visits. These two strategies
turn out to be quite general for a very oriented domain as virtual microscopy,
for which times associated to navigations are straightforwardly related to ex-
pertise. In the context of the present investigation, both strategies can be
considerate as comparable since experimental evidence in multiclient envi-
ronments reports similar performances with LRU and LFU, for queries from
multiple applications and variable input/output requirements [64]. Finally,
Iregui et al. proposed [67] a packet importance by using information, such as
their location and resolution. It is interesting to point out the importance of
prefetching strategies for accelerating the navigation. In this type of strate-
gies the times in which user does explore the image are exploited to preload
image data. Two main proposals had been proposed. Firstly, a dynamical
rate-distortion scheduling [132] that maximizes the received image quality
within the Window of Interest, at each point in the transmission. Later, the
anticipated prefetching proposed by Descampe et al. [35] where is demon-
strated that priori knowledge about future navigation patterns may help to
improve the overall reactivity of the navigation system.

2.5 Navigator

Even in the larger monitor screens it is impossible a complete display of
the virtual slide since its resolution is much higher than typical resolutions
supported by conventional display devices, below 2000×2000 pixels. In con-
sequence, it is essential a design of methods for efficient access to the image
data regarding the different dimensions of the problem: spatial displacements
and enlargement representations. A Graphic User Interface (GUI) in a VM
system should emulate a microscopical examination performed by an expert
in a real microscope. In general, this design should exploit the importance
of low magnification for exploration and high enlargements for navigation.
Typically, the navigator consists of two windows: (i) a thumbnail version
of the mega-image, in which a re-sizable window is displaced and used to
define a particular WoI and (ii) the window in which the larger resolution
is displayed. Several approaches have been introduced in VM systems. A
rough approximation has been to bring together this WoI into the whole sys-
tem by a second re-sizable window with the original resolution [122]. Iregui
et al. [68] proposed the use of a second window for displaying intermediate
resolutions, while higher resolutions are displayed in a third window. This
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WoI can be configured by size, resolution and quality [21, 68]. The expert
can then request a rectangular area at any resolution and any quality while
the WoI can be displaced for exploration. Mikula [95] proposed an interface
for faster visualization of stacks of virtual slides by pyramidal resolution rep-
resentations which are stored using a quadtree structure [46]. Quadrants are
related by their parent tile. This method displays with higher resolution the
quadtree nodes whose pixels are closest to the screen.

2.6 Acceleration of Navigation

Spatial locations, decompression and visualization unavoidably introduce
considerable response delays, which make impossible interactive and fluid
navigations [116]. Strategies such as the cache or the pre-fetching have been
developed for decreasing the latency times and therefore to permit a fluid
navigation. Cache is a rapid access to a space of memory in which it is stored
the portions of the image that shall be visited in the future [29]. Prefetching
is the anticipated uploading of those parts of the mega-image to which the
navigation will be addressed in the future [34]. Those techniques have shown
to highly improve navigation times [19].

Spatial cache [68] is a reserved part of memory, which is set to store
visited pixels. When a WoI is requested, the algorithm calculates the inter-
section between what is stored in the cache and what the WoI is demanding,
and this intersection is displayed directly from the cache. In zoom-in ope-
rations, Catalayeuk [18] used information of the thumbnail for a temporal
display while the rest of data are being loaded. Iregui et al. [68] used the
multi-resolution nature of the DWT while the cache was dynamically cons-
tructed by storing the wavelet coefficients of lower resolutions, which had
been already visited. This strategy is a soft cache [141], which maintains
image wavelets coefficients of low resolution versions in memory for reusing
them to construct high resolution versions of the image [141]. Using these
two strategies, navigation velocities grows up to a 30 %.

2.7 Future Works

VM is an incipient area with multiple open problems and a great variety of
applications. So far the state-of-the-art technology has allowed development
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of useful prototypes with some critical limitations, which have restricted a
broader use. Future navigators would require faster registering methods for
handling the huge amount of data generated from each particular applica-
tion. These navigators also require flexible storage methodologies with op-
timal compromise between a quantity of stored data and image processing
for reconstructing requested pieces of images. Acceleration of the navigation
turns out to be a critical factor in seamless navigation either when images
are locally stored or must be remotely accessed from a local client. VM can
not be a real option until it is fully reliable, efficient and easy to use when
accessing sets of mega-images. Main open problems which need new ap-
proaches are a more flexible access to image data, efficient indexing of data
for rapid and opportune retrieval, compression strategies able to adapt to
this kind of applications and seamless navigation methods. J2K has intro-
duced a preliminary step toward novel navigation proposals; the paradigm
has been changed into a fast, easy and optimal access to the image data
rather than simple compression policies. New techniques must easily allow
adaptation of interfaces for the use of experts and analysis of the image con-
tents for selective compression or selection of a particular multi-dimensional
representation which can be set after a matching pursuit [89] assessment.
These new approaches must also include decompression parameters which
must permit integral tunings for increasing benefit of information packets
from quality and utility standpoints. Furthermore, in cases in which VM is
used in server-client systems, it is fundamental to count on optimal strategies
for managing information when the band channel is narrow as it will always
be when one considers the amount of data that may be generated. Cache and
prefetching have shown to be efficient strategies for accelerating navigations
in VM, but more sophisticated methods are nevertheless needed for reaching
real time performances in those navigations.
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Strategies for efficient virtual

microscopy using JPEG2000

Iregui M., Gómez F., Romero E., Strategies for efficient virtual microscopy
using JPEG2000, Micron, Elsevier. Vol 38, 2007.

Abstract This chapter describes the design, implementation and validation
of a new strategy for efficiently browsing large microscopical images (mega-
images). The mega-image is constructed by registration a sequential set of
microscopic fields of view, compressed and stored in hard disk using the J2K
standard. Navigation is accelerated by fully exploiting J2K properties through
the introduction of a cache strategy and an optimal delivering of quality infor-
mation. Cache is introduced at the level of the spatial and resolution dimen-
sions while optimal delivering is implemented on the organization of minimal
information units. Navigation with the conventional use of J2K results in
extraction times of about 500 ms. We show that these strategies can im-
prove navigation velocities up to a 30 %, while we can efficiently represent
high-quality and high-resolution colour images of microscopic specimens.

3.1 Introduction

In this chapter an innovative J2K-based virtual microscope was designed, de-
veloped and evaluated. Virtual microscopy was here three-fold approached by
developing registration, store and navigation modules. Firstly, mega-images
are automatically constructed with a standard registration method, using
similarity measures such as the normalized cross correlation, phase registra-
tion and mutual information. These mega-images are then compressed and
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stored, using the J2K standard with an appropriate setting of spatial, reso-
lution and quality parameterizations. For navigation, the structure of the
J2K codestream is conveniently accessed for obtaining specific regions of the
image. Besides, a cache strategy is designed and implemented for improving
navigation velocity. The entire system is a user friendly interface which al-
lows the pathologist to navigate through mega-images as he would by using
a microscope. Main contribution of this work is an exhaustive analysis of the
virtual microscopy relevant aspects so that multiple recommendations are
herein presented on using each of the virtual microscopy modules, based on
a detailed study from different perspectives by exploiting up-to-date tools.
This chapter is organized as follows. In Section 3.2 we describe the problem
which is approached from the standpoint of these three issues: registration,
storage and navigation. Section 3.3 describes a general methodology for
constructing a mega-image, as well as a complete study of all the compres-
sion, storage, displaying and navigation issues, focusing on the capabilities
of the J2K standard. Section 3.4 presents the results and finally Section 3.5
is dedicated to discussion and conclusions.

3.2 The Problem

A virtual microscopy system comprises four components: registration, sto-
ring, displaying and navigation. A mega-image construction implies a reg-
istration problem since digitized images are not perfectly aligned [15]. In
addition, this virtual representation demands huge amounts of information,
which must be navigated at different resolutions, displayed for different WoIs,
efficiently stored and easily accessed. Finally, navigation and visualization
should manage adaptable, scalable and friendly interfaces.

3.2.1 Registration

Under the assumption that the capturing process introduces only transla-
tional shifts, the problem is to find the optimal spatial transformation so
that images match with a minimal registration error. For so doing, a small
window of one image is used for feature matching into the other, using simila-
rity measures between spatial regions. Amongst the most common similarity
measurements for registration are normalized cross correlation [120], phase
correlation [14] or mutual information [144]. In normalized cross correlation
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Figure 3.1: Some properties of the J2K.

one small image T ⊆ I2, called the template is matched to a larger image I1.
The cross correlation is then defined as:

C(u, v) =

∑

x

∑

y T (x, y)I1(x− u, y − v)
√
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x

∑

y I1(x− u, y − v)2

Phase correlation is based on the Fourier Theorem Shift, computes the cross-
power spectrum of I1 and I2 and find the peak of its inverse.

Q(u, v) =
F(I1)(u, v)F(I2)(u, v)

∗

|F(I1)(u, v)F(I2)(u, v)∗|
= e2πi(uδx+vδy)

�

�

�

�3.1

where ∗ is the complex conjugate and F(I) is the Fourier transform of I.
Mutual information, coming from information theory, is likely the more fre-
quently similarity measure used in multimodality problems. The mutual
information between two random variables X and Y is given by

MI(X, Y ) = H(X) +H(Y )−H(X, Y )

where H is the entropy of the intensity distributions [144].

3.2.2 Compression and Storage

J2K [2, 111] is a compression standard developed by the Joint Photographic
Expert Group and is based on the DWT and the EBCOT [130].

This standard supports lossy and lossless compression, progressive reco-
very by quality and resolution as well as random access to specific regions
of any size, as illustrated in Figure 3.1. It is then reasonable to exploit
such versatility for storage and navigation of large images, in particular of
histological images.
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Figure 3.2: Structure of J2K, L and H are the low and high pass filters,
respectively.

Previous to compression there is a pre-processing phase, which prepares
the image for transformation. Firstly, the image is split into rectangular
tiles or image regions, particularly useful for memory management. The
sample values are then level shifted to make its value symmetric around
zero and simplify implementation issues. After a level-shifting on the image
values, each tile - usually in RGB format - is decorrelated into luminance and
chrominance components (YUV) by means of a reversible or irreversible color
transform. This phase allows an independent access to each component of
the image. Afterwards, a DWT decomposes the input signal into frequency
bands called subbands (see Figure 3.2), providing a multi-resolution image
representation. The bank of filters L and H splits the signals into two levels
of resolutions, each with low and high frequencies. Two filters can be chosen
for transformation: either the Daubechies 9-7 which is adopted for lossy
compression or the reversible Daubechies 5-3 for lossless compression. After
an optional quantization, the next step is the entropy coding of each tile
with the EBCOT. The DWT coefficients of each subband are subdivided into
small blocks called code-blocks (codeblocks). Each codeblock is composed of
bit-planes ordered by significance levels, obtained from the coefficient binary
representation, as illustrated in Figure 3.3.

These bit-planes are encoded in significance, magnitude and clean up co-
ding passes, with an arithmetic encoder which provides the final compression
the so-called MQ coder [131]. The coding passes provide several truncation
points of the bit-stream. The encoded codeblocks of each tile-component
are then assigned to different quality layers by using a Post-Compression
Rate-Distortion Optimisation (PSRD-opt [130]).

Briefly, each bit-plane is encoded in three passes introducing independent
bit-streams. A convex hull analysis [131] permits to obtain the Ni optimal
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MSB

LSB

Bit-plane i

DWT

Figure 3.3: Codeblock structure by layers of bits.

truncation points for each block βi, each entailed with a slope
∆D

(t)
i

∆L
(t)
i

, where

∆D
(t)
i defines the distortion gain when coding a particular bitstream associa-

ted to one truncation point t and ∆L
(t)
i is the subsequent increase in bytes.

Distortion is here proportional to the cumulated Mean Square Error (MSE),
calculated from the coefficients of the original wavelet and those obtained
when decoding until a particular truncation point. The monotonically de-
creasing organization of the overall truncation points in the image defines an
optimal bit-stream partition for threshold rates or quality increments: the
layers of quality. Each of the quality layers q is formed by including incre-
mental contributions of coded bytes from different codeblocks and is defined
by distortion-length slope thresholds Tq. This layering strategy has the pro-
perty that truncating the code-stream to any whole layer boundary results
in a compressed representation, which is optimal in the rate-distortion sense.

Once EBCOT is applied, each block-stream stands for a spatial region in
a particular subband and is represented in several quality layers. In order
to obtain a codestream with embedded information about resolution, region
and quality layer (see Figure 3.1), the algorithm introduces the precinct
and packet concepts. A precinct can be defined as a block grouping from
different sub-bands (subbands) with the same resolution that is mapped to a
specific region of the image (see Figure 3.2). A precinct from a specific tile,
component, quality layer and resolution that appears in codestream units,
is called a packet, which is the basic unit of the J2K codestream. The J2K
structure is shown in Figure 3.2.

Finally, the reconstruction problem can be defined in terms of packets.
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Respecting the constraints imposed by the standard, these packets are puzzle
pieces that are dynamically used to attend navigation requests.

3.2.3 Displaying and Navigation

Navigation can be considered as a dynamic interaction between three com-
plementary variables: quality1, WoI (Windows of Interest) displacements and
zooms (resolution changes). When a particular WoI is requested, the navi-
gator starts to sequentially uploading quality layers for the pathologist sees
how the image is progressively improving. This uploading is stopped when
the expert decides to change the WoI. Unlike the quality progression, both
resolution changes and space displacements are triggered by specific requests.
Navigations in virtual microscopy are characterized by either examinations
at different magnifications or by spatial explorations, issues provided by the
J2K characteristics concerning flexibility and granular decoding. A natural
navigation should permit a dynamic selection of image regions by panning,
i.e., a selection of adjacent regions, while the system should also allow flexible
resolution changes (zoom-in and zoom-out). In terms of J2K it is equivalent
to progressively decode J2K packets for upgrading resolutions. In general,
when pathologists start a navigation, they select a WoI at a low resolution
and then they move onto this region at higher resolutions [18]. Very rarely,
they have a random access to regions in the image but rather they use their
expertise in order to have an oriented search of information. Resolution in
navigation is introduced by the frequency decomposition given by the DWT.

3.3 Methodology

3.3.1 Image Acquisition

Three histological specimen were digitized for evaluation. The first speci-
men was a normal mouse pancreas which was fixed, embedded into paraffin
and inmunostained as described in [124]. Microscopical fields were digitized
through a Zeiss microscope coupled with a JVC KY-F58 color digital camera
(Victor Company of Japan, Japan Ltd). Microscope overlap was set to a
5% of the image dimensions. A captured grid of 64× 64 microscopical fields

1Recall that quality is herein understood as a measurement of how similar are the
displayed and the original images.
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(752×560 pixels) represented an effective area of 13.114×9.641mm. A grid
of 160 × 159 microscopical fields was captured from a second specimen of a
neuroendocrine tumor of thyroid stained with Hematoxylin-Eosin, but over-
lay was to a 10%. Finally, a grid of 91×123 microscopical fields was captured
from a third specimen, an atypical thyroidian adenoma marked with thyroid
peroxidase, were digitized using the same microscopical settings.

3.3.2 Registration

Yet microscope overlapping is a pre-defined parameter in any capturing
system, it is very likely that mechanical backlashes or motorization non-
linearities result in inaccurate microscopical movements so that this overlap-
ping is usually spilled over. Three registration algorithms were implemented
in C++: cross normalized correlation, phase correlation and mutual infor-
mation. A predefined region of the image, near to the border is used as a
template for registration with cross correlation and mutual information. In
the present work, a 5 % of the image size in either dimension was used to
define overlap. Phase correlation was calculated by previously transform-
ing the two images with a standard fast Fourier transform (FFT) algorithm
and finding the maximum spectrum displacement, as defined in 3.1. After
registration any pair of images, a Gaussian filter is applied on the two neigh-
boring rows of pixels to smooth them out, and a new image is constructed
by combining them.

A set of 270 digitized images (752×560 image size in pixels) were chosen
in each mega-image for evaluation. This set of images corresponded to a
8.33 mm2 area. The three registration methods herein implemented were
twofold assessed: time performance and accuracy, using as Gold Standard
the pre-defined microscope overlapping set to 10% of the image size in either
dimension. Time performance was defined as the time needed to find the
Gold Standard displacement with an error less than 1 % of the image size
in either dimension. Accuracy was estimated on the same set of images
by calculating the absolute difference between the obtained registration and
the Gold Standard microscope overlapping. The registration algorithm was
allowed to run until convergence. Accuracy and time performance were also
statistically evaluated: the null hypothesis was that the three registration
approaches produced no difference among the means. This assertion was
assessed with a two-way Analysis of Variance (ANOVA) test, using image as
a random factor and the method as a fixed factor. In all tests, differences
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were considered to be significant when p < 0.05.

3.3.3 Compression and Storage

The Jasper Library [5], an implementation of the J2K handling standard, was
adapted to the virtual microscope navigation problem. Jasper is a general
use library for the J2K standard and it is neither provided with particular
modules for codification of mega-images nor the needed tools for continuously
extracting pieces of information with different sizes (windows of interest),
qualities or resolutions. Some new functionalities were in consequence added:

• Compression of mega-images: A driver module for coding a mega-
image file was implemented. This file contains references to any image
which is part of the set of digitized images as well as the capturing
method used, i.e., serpentine, rows, columns, etc.. The module uploads
the desired WoI for displaying and also registers the entire set of images
for generating the mega-image. Finally this module also codes the
mega-image.

• Specific packet localization: For a rapid extraction of a specific
image region a J2K index construction is useful. This index contains
information about image dimensions, number of components and tile
size. These three values are drawn from the size image marker, which
is a specific marker defined in the J2K standard [2]. This index also
stores coding parameters such as the number of decomposition levels,
the number of layers and the progression order, information located
at the coding style default marker which is also defined in the J2K
standard [2]. Finally, the packet size used for faster packet localization,
is extracted from the packet header information coding [54].

• Soft cache for inverse wavelet transform: An additional modifi-
cation was introduced to manage different resolutions by storing the
wavelet coefficients of lower resolutions into the cache memory. When
a particular pixel is required, if visited before at any lower resolution,
it is not needed to fully decode this pixel but the stored coefficients at
lower resolution are used to reconstruct it.

Compression efficiency was evaluated for different tile sizes, resolution le-
vels and different precincts and codeblock sizes. For so doing, the compressed
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file size is calculated as 8× width× length× number of components, where
width and length are the image dimensions, the number of components stand
for the number of represented channels (RGB) and 8 is the number of bits
per channel. The efficiency is defined as the ratio between the compressed
and non compressed file. Data are shown by calculating the number of bits
which represent a pixel, that is to say, in bits per pixel (bpp). Three different
mega-images were built up and used for this evaluation.

3.3.4 Displaying

Graphical User Interface GUI

The graphical user interface is written in C++ using the wxwindow open
source library [1].

Figure 3.4: Virtual microscope prototype. This illustration reproduces a
small microscope magnification (4×) in the coarse image while the high en-
largement displays a 20× microscope magnification.

The GUI is devised for facilitating expert visualization and follows, as
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close as possible, a routine expert examination [53]. This design exploits the
importance of low magnification for exploration and high enlargements for
diagnosis. Likewise, this interface pays attention to navigation into areas of
the specimen with different magnifications at the same time. The interface
consists of three windows: a coarse mega-image version in which a re-sizable
window is displaced and used to define the particular window of interest. This
WoI is shown in a second re-sizable window with intermediate resolution and
quality, actually an operation which models the type of navigation performed
by a pathologist. Finally, the third window shows the higher resolution and
quality, i.e., the enlarged version. The WoI window is parameterizable for
size, resolution and quality (see Figure 3.4). The expert can then request
a rectangular WoI at any resolution, with any quality and can displace the
window on the coarse image to explore the whole specimen. All algorithms
were written in C++ and run under windows in a Intel Centrino processor
of 1.7 GHz with 1 GB in RAM with a 80 GB hard disk.

3.3.5 Navigation Methods

Given the particular navigation characteristics and provided that there exists
a high probability that a packet is required by different WoIs, we propose
in this chapter a cache strategy capable to optimize the decoding phase by
minimizing the data to process for a specific WoI.

The Cache Strategy

Virtual seamless navigations are nearly impossible because of both the huge
image sizes and the limited machine resources. This combination unavoidably
leads to annoying delays and hindering of normal operation of the computing
system. Delay problems depend on several factors: image characteristics,
physical resources, the used codec and the GUI. In this work, we propose a
method to improve the decoding process performance by applying a cache
strategy.

A cache strategy is a temporal store of data in the faster memory for
future retrieval [29]. A cache mechanism is useful since this reduces direct
hard disk access, bandwidth consumption, computational cost and the time
for accessing relevant information. A spatial cache is used for reducing the
amount of data to decode each time a new request involves adjacent WoIs,
given that it is likely that adjacent WoIs overlap. On the other hand, a soft
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cache [73] improves navigation through several resolutions by storing coeffi-
cients into the allocated space. The principle of this technique is based on a
separate delay analysis for J2K coding and transformation algorithms. These
implementation issues are not included in the decoding processes defined in
the J2K standard, yet they are herein fully justified since the purpose of this
technique is an efficient information handling during navigation.

Spatial Cache

Algorithms used for optimizing information exploit the fact that pathological
images are redundant and that once a query is performed on a particular
spatial location, there exists a high probability of querying spatially adjacent
data in the next future. Adjacency is herein defined in terms of logical
proximity between image pixels. Spatial cache is a part of memory which
is set to store visited WoI pixels within a spatial exploration at a particular
resolution. When a WoI is requested, the algorithm makes the difference
between what is stored in the cache and what the WoI is demanding so that
it assesses if some information is missing. Should it be the case, the algorithm
extracts what is needed from the bitstream, otherwise information is directly
drawn from the cache. Finally, the substitution strategy, the Last Recently
Used (LRU), replaces the oldest data that has not been reused. In other
words, the decoder decompresses only those precincts which are not included
in the intersection between both WoIs.

Soft Cache

A common slide microscopical exploration demands navigation through diffe-
rent resolutions, which is a difficult issue to mimic in any virtual microscopy
design. Provided that the DWT is by nature a multi-resolution decompo-
sition, it turns out reasonable to devise a cache strategy based on storing
the wavelet coefficients of lower resolutions. This strategy is a soft cache
[73], which maintains image wavelets coefficients of low resolution versions
in memory for reusing them to make up a high resolution version [73]. The
soft cache herein designed is located between the arithmetic decoder phase
and the Inverse Wavelet Transform. From the J2K perspective this makes
sense since the major complexity and time consumption are focused on the
EBCOT because of the bitplane and coding pass strategy [134]. Many re-
solution levels can reduce the potential benefits of soft caching since a WoI
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can remain in memory for a long time. In contrast, few resolution levels
would get rid of the unneeded WoI quicker but it reduces the quality of the
useful WoI. Therefore, the number of resolution cache levels should coincide
with the number of resolution levels to which the image is compressed [130],
this results in a good compromise between compression rate and quality (see
some data in Section 3.4.3). Finally, the replacement strategy, as for spatial
cache, is the LRU.

Quality Maximization of the Retrieved Image

Yet the cache strategy is a central issue toward fluent navigation, there exist
several visual factors which may be improved for the pathologist to quickly
interact with the displayed information. In other words, the objective is to
uploading information scheduled by quality optimization, so that pathologists
will have more elements to make faster decisions as for instance, a change
of the WoI location or the WoI current resolution. Quality may be obtained
either by objective - such as peak signal-to-noise ratio (PSNR) or mean
square error (MSE) - or perceptual measurements, which could include a-
priori information concerning this kind of images. In this chapter we address
the problem by analysis based on objective measurements.

As explained in Section 3.2.2, the J2K codestream layers are defined by
the ordering of the slopes of truncation points. This particular ordering is
carried out on the whole image, so that when a particular WoI is requested,
the implicit WoI sequencing of the codestream is not optimal any more.
This may be overcome giving priority to packets by using a rate-distortion
optimization approach (RD) to maximize the quality of the rendered WoI,
as Taubman and Rosenbaum propose [134]. On the other hand, the Post-
Compression Rate-distortion Optimization (see Section 3.2.2) serves to deter-
mine the distribution of the bit-streams in the quality layers. This is obtained
by organizing the slopes of truncation points for the whole image in decreas-
ing order. This distribution reflects the fact that some layers may contain
several associated truncation points. A selection of packets for maximizing
a WoI quality would require to keep the slopes at each truncation point af-
ter compression. This is herein solved by coding the image in several layers
in such a way that it can be stated that all layers have approximately one
truncation point per block. In this way, the re-ordering of packets could be
performed with the layer available information, as Taubman proposes [134].

These strategies finally attempt that the pathologist feels comfortable
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during navigation, but also that he/she may rapidly focus on the relevant
parts. In this case, a compression scheme based on layers is useful since qua-
lity is progressively increased in function of needs. In any case, regions with
larger contents of information can be fully and lossless reconstructed, offering
the specialist the possibility of a diagnosis based on reliable information.

Navigation Assessment

A natural measure for efficiency assessment of the navigator is the time that
spends the GUI for decoding and displaying a WoI. In this work we are not
evaluating the efficiency of the GUI, but the gain in time obtained by intro-
ducing some techniques - cache and WoI’s quality optimization - embedded
in the navigator. Some authors prefer a measurement on the number of de-
coding bytes for making the results independent of the platform. However,
in the case of the soft cache, the number of decoding bytes is not propor-
tional to the spent time since the decoding time is different due to the cache
contents. On the other hand, it is supposed that when a pathologist changes
from a current WoI, it is because the image has reached enough quality as
to decide a navigation move. The underlying fundamental hypothesis is that
the attained WoI quality is the one required by the expert, QWoI .

Three different pathologists used the three constructed mega-images for
evaluation. In general, pathologists are not quite used to computer, so for
avoiding any navigation bias because of an inappropriate use of the GUI, be-
fore the first navigation each pathologist was instructed on this interface with
a test image. Each of the navigation operations were then previously assessed
by them, the different zooms, the re-sizing operations as well as the spatial
jumps. For each pathologist’s navigation, we store the WoI parameters of
location, resolution and quality along with the span in time until the next
WoI request. This quality was measured and defined as the quality threshold
for the WoI (QWoI). Thus, three pathologists evaluated the system using the
three built mega-images and the whole navigation sequence was recorded for
further analysis. The reference for comparisons was the raw navigation, i.e.,
navigation without the cache and quality maximization strategies. Results
are shown as the calculated difference between the reference and the improved
navigation with any strategy together with the percentage improvement for
any situation.
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Evaluation of the Quality Maximization of the Retrieved Image

As seen in Section 3.3.5, the navigation time delays can be shortened by
using an RD strategy. As suggested by Taubman and Rosenbaum [134], a
re-sequencing of packets of a particular WoI can improve the quality for the
same quantity of bytes, when comparing with a progressive sequencing of
layers. On the other way around, setting a required quality to the navigation
requested quality QWoI (as defined in Section 3.4.3), allows to measure the
gain in number of bytes and thereby to reduce the navigation time. For
so doing, the PSNR was calculated for both the strategy of re-sequencing
packets (RD) as well as for re-sequencing of layers. The experiment was
performed for a random selected WoI and for a continuous navigation. Once a
quality threshold was set2, the quality gain can be calculated as the difference
in the number of bytes between these two strategies.

3.4 Results

3.4.1 Registration

A classical registration method is basically composed of a type of trans-
formation, a similarity measurement and an optimization strategy. In the
present work, affine transformations were used along with a descent gradi-
ent method for setting the best match between a template and a floating
image. Descent gradient algorithm stops when it finds a displacement er-
ror compared with the Gold Standard displacement of less than 1 % of the
image size. When automatically capturing, only simple displacements are
expected. However, these displacements frequently result in a change of the
focus plane so that the scale may change. The template was a small strip of
pixels (image width/heigth 10 pixels) extracted from the border of one image
which was utilized for searching its better match on a second image, i.e., the
microscope overlay between a particular pair of images. In addition, three
different similarity measurements were evaluated regarding their time perfor-
mance and accuracy: mutual information, phase correlation and normalized
cross correlation.

Figure 3.5 shows the accumulated time results when constructing one
mega-image with 270 images, using a serpentine scanning pattern, which

2the quality requested from the actual navigation
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correspond to 8.13 mm2. As observed, computation time was higher when
using mutual information compared with the two other similarity measure-
ments. Overall, these results seem to be independent for each image so that
differences are linear and become larger with the number of processed images.
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Figure 3.5: Cumulated times in registration for the three different similarity
measurements. Provided that main hypothesis was that microscope produced
only space displacement, affine transformations were used for transformation
together with a conventional gradient method for optimization. The set of
evaluation consisted in 270 images.

The observed difference in time for the three techniques may be attribu-
ted to the different calculation methods, since cross correlation and phase
correlation are implemented using the FFT algorithm, which results in a
smaller processing time. In general the time for processing one image was
about 30ms for the registration techniques using phase correlation or normal-
ized cross correlation as similarity measures, while the method with mutual
information took about 200ms.

On the other hand accuracy was assessed on the same set of images as
the absolute difference between the obtained displacement with any of the
three techniques and the Gold Standard overlapping displacements. Figures
in Table 3.1 show no major difference, error mean is less than 1 % while
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Method Mean± SD(%)
Normalized Cross Correlation 0.13 ± 0.037

Phase Correlation 0.12 ± 0.028
Mutual Information 0.22 ± 0.052

Table 3.1: Accuracy was measured as the difference between the set micro-
scope overlay and the obtained with any of the three methods over a set of
270 images

standard deviation is below 0.25 %.
Usual image dimensions herein used were 752× 560 and for this size the

described error mean amounts to 2 ± 1 pixels. An observation that was
confirmed through the ANOVA evaluation since differences were found to be
not significant (p > 0.05).

3.4.2 Lossless Compression

J2K compression assessment was performed on the three different mega-
images. The reversible color transform (RCT) and the Daubechies 5-3 wavelet
transform were adopted to allow lossless compression. The influence of main
parameters was investigated on the compression rate, i.e., the tile size, the
resolution level and the size of different precincts and codeblocks. From the
original three mega-images, three sets of 20× 20 digitized images were used
for constructing three 14288 × 11200 mega-images, which were used in this
Section.

Compression by Tile Size

A first phase in the sequence of J2K steps prepares the image for further
processing. The division of the image in rectangular tiles is useful not only
for memory management but also for gaining access to different regions of
interest in the image.

Table 3.2 compares the performance of the J2K algorithm for different
tile sizes while resolution was set to 3, codeblock and precinct sizes to 64,
respectively. Latter values correspond to default Jasper parameters.

Data show that each image follows a different compression pattern. How-
ever, these figures indicate that there is a decreasing of the compression rate
when increasing the tile size, which is different for the three images, i.e., while
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tile size Image 1 Image 2 Image 3
64 × 64 13.35 ± 0.31 14.57 ± 1.26 14 ± 1.08
128 × 128 13.21 ± 0.26 14.28 ± 1 13.72 ± 0.9
256 × 256 13.19 ± 0.24 14.1 ± 0.96 13.54 ± 0.74
512 × 512 13.16 ± 0.13 14.09 ± 1.1 13.52 ± 0.8

Table 3.2: Evaluation of the tile size in the compression rate. Data show the
mean and standard deviation in (Mean ± SD(bpp) ) for the three different
mega-images (The original pixel size was 24 bpp)

for the first image a better compression gain is observed at the maximum tile
size, for the other two images very little is gained after a 256× 256 tile size.

Compression by Resolution Level

Compression was performed for six different resolution levels (see Table 3.3),
the tile size was set to 512× 512 and the above described parameters to the
default Jasper values.

Parameter Image 1 Image 2 Image 3
Level 0 14.1 ± 0.41 15.84 ± 0.84 14.49 ± 0.44
Level 1 13.4 ± 0.25 14.6 ± 0.85 13.97 ± 0.68
Level 2 13.19 ± 0.12 14.51 ± 0.97 13.94 ± 0.85
Level 3 13.16 ± 0.13 14.57 ± 1.04 14 ± 0.94
Level 4 13.17 ± 0.13 14.54 ± 1.06 13.98 ± 0.98
Level 5 13.17 ± 0.17 14.66 ± 1.13 14.1 ± 1.04

Table 3.3: Influence of the number of resolution levels on the compression
rate. Figures correspond to the mean and standard deviation of the three
images in (bpp).

Table 3.3 summarizes results. Data show that after two or three passes of
the filter bank, the image is sufficiently decorrelated and very little is gained
with new passes.

Compression by Precinct and Codeblock

A precinct, as shown in Figure 3.2, is the combined information of the diffe-
rent frequency subbands for a particular resolution. Data in Table 3.4 suggest

63



CHAPTER 3. STRATEGIES FOR EFFICIENT VIRTUAL

MICROSCOPY USING JPEG2000

Pc Cds Image 1 Image 2 Image 3
32 × 32 16 × 16 13.17 ± 0.13 14.59 ± 1.06 14.02 ± 0.96
32 × 32 32 × 32 13.16 ± 0.13 14.57 ± 1.04 14 ± 0.94
64 × 64 16 × 16 13.11 ± 0.13 14.5 ± 1.03 13.92 ± 0.91
64 × 64 32 × 32 12.57 ± 0.14 13.79 ± 0.86 13.21 ± 0.74
64 × 64 64 × 64 12.56 ± 0.14 13.8 ± 0.87 13.23 ± 0.75
128 × 128 32 × 32 12.44 ± 0.07 13.77 ± 0.86 13.19 ± 0.73
128 × 128 64 × 64 12.38 ± 0.14 13.42 ± 0.7 12.83 ± 0.55

Table 3.4: Precincts and codeblocks represent the least information units
in the standard. Table shows the influence of these parameters by varying
their size and calculating the effect on the compression rate for the three
mega-images. Mean ± SD(bpp) for different precincts (Pc) and codeblocks
(Cd). Other parameters were set to the default Jasper values, i.e., tile size
to 512× 512 and resolution to 3.

a general trend: increasing the precinct size results in a continuous decre-
ment in the compression rate. This statement turns out to be independent
of the image contents and can be regarded from different points of view:

1. A large codeblock is obtained from a large pixel neighboring and the
compression rate improves, however with too larger codeblocks the
codestream loss granularity and the rate-distortion optimization is lost.

2. A precinct which is larger than the codeblock, slightly improves the
compression rate because less information can be included in the packet
header.

3.4.3 Navigation

Although J2K has many advantages regarding the mega-image handling, the
time for accessing information is a cost issue which can be improved by
using a store of objects in memory. Our basic strategy is to make relevant
information available before the expert requests it.

Figure 3.6 illustrates a common navigation upon the pancreas mega-image
with and without a cache strategy. The x-axis shows the sequence of con-
secutive WoIs and the y-axis the time needed for displaying each. Overall,
the time required for extracting, building and displaying a WoI is lower than
600 ms, which in most applications can be considered as adequate for a
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Figure 3.6: A typical navigation, plotted with and without a cache strategy
in dotted and thick lines, respectively. x − axis shows the sequence of the
different WoIs requested in this navigation, which corresponds to a total of
222 s, while the y − axis shows in ms the required time for displaying the
WoI. The default exploration window was set to a 200 × 200 pixels, but it
was changed once in this navigation by re-sizing (WoI 27).

continuous navigation. However, when a pathology expert changes rapidly
the navigation focus, a slight delay appears and depending on the resolution,
this can be a quite annoying effect. In this navigation the pathologist rapidly
found an object of interest, the islets of Langerhans, and focused the naviga-
tion onto this region by zooming-in. In the graph this is observed as a rapid
slope increase for the first four WoIs, which corresponds to a change from
109ms to 469ms, from the lower to the intermediate resolution. Afterward,
the pathologist run over the image at this resolution: a spatial examination.
This spatial navigation presents little variations, as observed in the plot from
WoI 5 to WoI 25, with a base line on about 430ms and a standard deviation
on 40 ms. In one occasion, pathologist re-sized the WoI from the default
200 × 200 to 350 × 350 since the field of view was very small, this is also
seen in this graph as the slight increase of time reconstruction for the WoI
variation (WoIs 27 and 28). Likewise, the cache benefit can be observed in
the superimposed dashed curve. The plot shows a combined strategy, in-
cluding the spatial design for examination at the same resolution together
with the soft cache when zooming in. Overall, for the whole set of naviga-
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Figure 3.7: The cache gain has been divided into the corresponding spatial
and soft contributions for a separate analysis.

tions, the cache strategy is always below the raw navigation curve in about a
15%, except on those points in which the expert changed abruptly the focus
on navigation and re-initialize the entire memory cache space. For the case
shown in Figure 3.6 the gain is about 23 %.

A separate analysis on the two complementary cache strategies is here-
after presented, starting by the spatial cache. This graphic displays in two
panels the gain time in percentage for uploading information of a particular
WoI quality requirement, QWoI , when using the spatial cache to the left and
soft cache to the right.

Figure 3.7 presents the obtained percentage gain when using a cache
strategy, either a spatial or a soft method. This gain was calculated as
the time difference between the raw and the cache navigations related to
the raw navigation and expressed in percentage. The left panel shows the
spatial cache gain, in which figures present a high variability, between 4 %
and 42 %. This pattern overall reflects the fact that this spatial cache is
important when the degree of overlay between consecutive requested WoIs
is large. In cases where overlay amounts to 85 %, a gain close to a 50 % is
seen, while gain falls down to 5 % when this intersection is barely a 10 %.
In addition, the plot shows occasionally negative peaks or null gains, which
stand for explorations in which the expert changed completely the WoI, there
was no intersection at all, and so an extra time was needed for filling again
the cache memory space within the new context. These results show how a
spatial cache can effectively improve navigation by reducing latency times,
but clearly this is more effective when the pathologist is moving in a region
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of high interest or is close to the target information, i.e., once the resolution
navigation level is set. On the other hand, graph in right panel shows the
relative gain of the soft cache. In general, results evidence lower levels of
gain when comparing with the spatial cache, although the soft cache strategy
maintains a positive gain through the entire navigation. In the best scenario,
benefits reach up to a 17% time performance improvement, related to the
conventional navigator performance. Again, null gains are observed when
the expert rapidly displaces the navigation focus. Yet this gain presents
small variations, no systematic trend is observed, an observation which is
consistent with the fact that navigation is essentially a random phenomenon.
These figures also show that the soft cache effect is lower than the spatial,
but the fact that this strategy looks steadier makes that in zones in which the
spatial cache shows no gain at all, the soft cache provides a quite constant
level of gain. It should be pointed out that all these evaluations are limited
by the fact that the expert leaps out the field of view with certain frequency
for exploring new image zones, but in general these experiments demonstrate
the benefit when using a cache strategy.

The above navigation experiment was repeated by the three pathologists
on the three constructed mega-images and data gain is expressed in percent-
age. Results in Table 3.5, calculated as a mean and standard deviation of
the time gain percentage by using a cache strategy, show an average of the
benefits of the spatial and soft caches.

Overall, these figures show a great gain variability for each navigation,
a result which comes from the pathologist multiple navigation patterns as
well as for the variable image information contents. Figures in Table 3.5
confirms what was illustrated in the particular navigation before, that is to
say, gains are overall higher for the spatial than for the soft cache. In despite
of the different navigation approaches and the particular preferences of each
pathologist, results show no major differences concerning the cache gain per-
centages. Average, figures are also alike and are around a gain percentage of
15 % for the spatial cache while the soft cache reaches about an additional
gain percentage of 5 %. This can be attributed to the particular methodol-
ogy a pathologist follows for searching information in a virtual slide, i.e., a
pathologist explores a slide on an actual microscope by a spatial search of in-
formation while they usually require one or two resolution changes. Besides,
most navigation patterns suggest that a combination of these two strategies is
a good alternative for reducing latency times. More specifically, these results
also show that for some WoIs, these caching procedures reach a 32 % gain
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E - N Spacial
Cache Im-
provement
(TGP %)

Soft
caching
improve-
ment (TGP
%)

E1 −N1 17 ± 15 4± 3

E1 −N2 15 ± 13 4± 3

E1 −N3 16 ± 13 4± 3

E2 −N1 13 ± 10 4± 3

E2 −N2 14 ± 9 2± 1

E2 −N3 14 ± 12 4± 2

E3 −N1 15 ± 12 4± 3

E3 −N2 14 ± 12 3± 2

E3 −N3 12 ± 10 3± 2

Table 3.5: Each expert carried out three navigations on the three built mega-
images. First column stands for the particular expert along with any of the
corresponding navigations, i.e., each expert makes three navigation and this is
notes as E for expert and N for navigation. Second and third column present
the mean and standard deviation, respectively, of the time gain percentage
(TGP %) by using a cache strategy for the three different navigations using
the spatial and the soft cache versions.
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for a pure spatial cache and up to 37 % when the strategy is combined. Yet
in very few occasions figures show negative gains because of the uploading
charge time of the cache when the expert abruptly changes the image focus,
in average these negative or null gains are more than compensated thanks to
the cache in every navigation.

Finally, last part of evaluation corresponded to the quality maximization
of the retrieved image. Provided that quality is essentially a subjective pro-
cess, it is quite hard to have an approximated estimation of quality. In other
words, the weight of every packet is not the same in terms of quality and
then it makes sense that the order in which they are stored is important
in terms of availability and therefore of navigation velocity. For doing so,
evaluation was twofold performed: on the one hand, as illustrated in the
left panel of Figure 3.8, the PSNR was calculated for one randomly selected
WoI for the two sequencing strategies. Then, a desired quality was fixed as
the last one constructed before the expert changed the navigation WoI. The
quality performance for the two sequencing strategies can thus be calculated
as the difference in number of bytes, needed to attain the same quality. The
effect of the quality maximization was also evaluated on a whole navigation
sequence of 157 s on the pancreas image, which corresponded to a set of 37
different WoIs, on which the analysis was performed.

Figure 3.8 shows the obtained gain when using the RD strategy. This is
firstly illustrated in the left panel for a particular WoI. In this plot a level of
quality is fixed by the expert3 and permits to compare both strategies simply
by the number of bytes needed to reach such desired level of quality. Using
the difference in the number of bytes for both strategies, the right panel
shows the pattern for the entire navigation. These results demonstrate that
the number of bytes for RD is generally smaller. This represents a significant
save of time in terms of navigation since less bytes are needed for reaching
the desired quality. However, RD strategy is not always optimal in actual
navigations, for instance observe that in the left panel the RD line slope is
not always concave as it should be since this ordering is optimal. This can
be attributed to the fact that the WoI is not aligned with every precinct for
every case so that these WoIs are generally constructed by combining different
packets from different precincts, i.e., it is needed to search information in
different branches of the structure of the former defined compression tree with

3This level corresponds to the quality WoI reached in the navigation before the user
makes a new request
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Figure 3.8: Left panel plots the PSNR in dB against the number of processed
bytes for a selected WoI. The thick line stands for the number of bytes of the
re-sequenced packets over the specific WoI, which are progressively uploaded
by means of an RD strategy. The dotted line corresponds to the number
of bytes calculated from the default distribution of layers in the codestream.
Right panel shows the same measurements in a continuous navigation.

a resulting sub-optimal pattern. However, the RD strategy for re-sequencing
the needed packets for a particular request over the WoI shows higher gains,
which means that it needs a smaller number of bytes for reaching a desired
level of quality. The right panel (b) corresponds to the same kind of analysis
but extended to an entire navigation. Overall, the pattern is consistent with
what was observed in one WoI, that is to say, the RD strategy requires
a smaller number of bytes, except in cases in which the expert requires a
full quality for visualization. In these cases, no strategy can be devised
for improving navigation velocities and the expert merely decompresses the
whole bitstream in order to obtain the original image.

3.5 Discussion

This study describes an entire system for virtual microscopy of large micros-
copical images. The microscopic navigation scheme herein presented starts
with a correction of the acquisition overlap for generating one single mega-
image. Adequate compression hints are then determined for this kind of
images together with an efficient navigation strategy, using the J2K stan-
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dard. The system is divided into three components: a registration module,
which automatically constructs a mega-image for a given set of microscope
parameters. This mega-image is generated by using known registration tech-
niques for a set of digitized images from a particular specimen and determines
the best overlapping between any two sequentially acquired images. A se-
cond module tackles with an efficient implementation of the J2K standard
and allows adequate file compression rates along with a versatile information
handling. Finally, an adapted navigation design permits a pathologist to eas-
ily use this virtual microscope for routine examinations or teaching activities.
The entire system allows navigation through WoIs, resolution and qualities
with a friendly interface.

Some previous works have focused on specific steps of the virtual mi-
croscopy process, either at the mosaicking [9, 25], the compression [22] phases
or both [15], but they have missed microscopic image particularities as an
important part of the problem. A basic concept in understanding histology
is that there are four basic types of tissue: epithelial tissue, connective tissue,
muscle tissue, and nerve tissue [72]. With very few exceptions, all organs con-
tain a different proportion of these four basic tissues. In general, histological
techniques highlight these tissues with few colors since dyes are designed to
specifically arise a particular tissue feature. Color variability stems mainly
from a large intensity range as well as dye deterioration. In terms of image
processing, histological images are distinguished by having more or less ho-
mogeneous textures or repeated patterns, which may be used to characterize
the image and to decide a particular strategy for compression.

An extensive use of registration techniques is on the base of histopatho-
logy slide assembling and stitching [9, 25]. In this kind of methods, windows
of a predefined size are used for feature matching using similarity measures
between spatial regions. A displaced overlay between two digitized images
is used as an estimation of the superposition between the two images [158].
Overall, simpler similarity measurements are functions of the intensity dif-
ferences between the corresponding pixels of the two images. This kind of
measures, such as the sum of squared differences, is optimal when differences
between images are exclusively caused by a Gaussian noise [144]. However,
virtual microscopy is the result of automated capturing mechanisms, which
introduce variable errors that alter image intensities (among 10 and 50 pi-
xels) [9] so that this kind of measures may result inappropriate for a general
stitching strategy. When this change is linear, similarity measures based on
the correlation are more indicated [115]. A more robust approach is phase
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correlation [80], in which the correlation is based only on phase informa-
tion that is insensitive to intensity changes. Likewise, the mutual informa-
tion, which has been successfully used in multimodality registration problems
[87, 144], assumes a statistical relationship between the images to register.
This measure is robust, but intensities are uniquely processed in a qualitative
manner, with no consideration at all of the spatial information which may
exist between near intensity values [114]. It is important to recall that dif-
ferences in intensities between neighboring Fields of View are approximately
linear, for this reason the more appropriated measurements are those based
on correlation. In addition, these intensity differences are not too high. In
consequence, it is not necessary to use time consuming measurements, such
as mutual information. Yet the main focus of the present work was not
on the mosaicking problem, we did explore this topic by evaluating an au-
tomated strategy for generation of mega-images. A simple image stitching
algorithm was implemented for determining a set of optimal image trans-
lations, using a greedy optimization scheme as in [15]. In addition, several
similarity measurements were assessed, finding that their performance are
comparable in terms of accuracy and different in terms of time. Time perfor-
mance becomes an irrelevant factor in actual applications because mosaicking
and stitching are off-line operations. In contrast, the mega-image assembling
depends on the proper overlay approximation. Accuracy was equivalent for
the three evaluated measures since it is very likely intensity changes were
herein linear. However, a more general perspective indicate a use of more
robust measures, case in which non linear measures may result more ap-
propriate. Finally, through visual evaluation the three experts assessed the
quality of the images in large computer screens (5 megapixels Kodak Direct
View Monochrome Display) as adequate for diagnosis, indicating that such
simple greedy strategy is sufficient for this kind of applications and that more
complex methods such as dynamic programming [9] are not needed.

In microscopical applications, recent advances in capturing devices and
improvement in computer capacities have facilitated microscopic acquisition.
It has been nowadays envisaged to make 3D acquisition in some morphomet-
rical applications [110]. Yet larger computer resources are presently available,
they still remain limited for handling such volume of data. Data must thus be
reduced with the demand to deliver image information [53]. Done with JPEG
compression, a 1cm2 microscopical sample, even to a high compression factor,
would still result in several gigabytes. However, a pathologist will never need
all of the data at the same time. Besides, main current trend goes toward
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the use of distributed systems in which Doctors may access microscopical
images from any place and appropriately navigate on them without a com-
plete downloading. All these issues may be approached using J2K standard,
which allows scalability, error resilience and progressive access in quality and
resolution. This progressive access to image in J2K is based on the con-
cept of packet. An image is represented as an ordered set of these packets.
Each contains a piece of image in its spatial, resolution and quality compo-
nents. When a specific region of the image is requested, a subset of these
packets is obtained and decompressed. A usual slide examination requires
a small set of packets so that a specific extraction of them highly improves
navigation times. Once the requested packets are located, decoding time is
divided between the decoding phase and the inverse wavelet transform. In
the present work we designed and developed a combined strategy for each
phase and concluded that a simple cache strategy such as the Last Recently
used, produces a considerable improvement in the navigation velocity only
because of reusing the wavelet previously coefficients. Additionally, an RD
optimized resequencing of packets was explored over a WoI and a complete
navigation. This strategy clearly reduces the time required to reach a fixed
quality with the consequent save of time since a smaller number of bytes is
needed to upload.

As already said, it is very likely that computational techniques in the
near future may improve so that the decoding time becomes negligible. In
this scenario, the spatial and soft caches may become mainly a buffering of
J2K packets, preselected to be decoded for avoiding disk access. However,
the medical devices are also changing and access to Medical Information
Systems is more and more achieved through devices with little capacities
such as mobile phones or pocket devices that Doctors can easily bring to any
medical situation in hospitals. On the other hand, yet the storage capacity in
modern machines is highly growing and codification techniques are also more
powerful, it is also true that the amount of data is exponentially increasing
in any modern hospital and also the requirements for current applications.
For instance, the Radiology Department of the University Hospital of Geneva
(2000 beds, 40000 in-patients and 400000 out-patients) produced more than
12000 images by day in 2002, and the total amount of cardiologic image data
produced in the same hospital for the same year was around 1 TB [97], a
figure that is difficult to handle for a conventional desk machine. It is worthy
to strengthen out that this number of images does not include potential
applications as virtual microscopy. As a conclusion, it is reasonable to assert
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that these cache strategies will be at the stake in actual medical applications
for the next decade.

Finally, yet this work is addressed to virtual microscopy, it can be easily
adapted to any type of application for navigation on large images. Within
the J2K context the present work points out on the utility of including, inside
the decoder, several techniques which permit random access to the images
and take advantage of its scalability. In despite of J2K being by nature a very
useful technique for scalability during navigation, there exist few works in
the literature that have explored this issue. On the other hand, our results in
terms of navigation are encouraging and can improve as long as optimized im-
plementations are available and include perceptive measurements of quality
and a priori informations regarding the type of images. Our results suggest
that the technique can be improved to the point of a seamless navigation
and an actual tool on the routines pathologist work. Future works should
include faster methods for registration as well as use of optimal replacement
and store strategies of the soft cache.
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An study of pathologists navigation

patterns in virtual microscopy

Roa-Peña L., Gómez F., Romero E., Submitted to Human Pathology.

Abstract The aim of this chapter was to establish main pathologists navi-
gation patterns when exploring virtual microscopy slides, using a GUI adapted
to the pathologist’s workflow. Four pathologists with a similar level of ex-
perience, graduated from the same pathology program, navigated six virtual
slides. Different issues were evaluated, namely, the percentage of common
visited image regions, the time spent at each and its coincidence level, that is
to say, the region of interest location. In addition, navigation patterns were
also assessed, i.e., mouse movement velocities and linearity of the diagnostic
paths. Results suggest that RoIs are determined by a complex combination
of the region visited, the time spent at each visit and the coincidence level
among pathologists. Additionally, linear trajectories and particular velocity
patterns were found for the registered diagnostic paths.

4.1 Introduction

As we discussed previously, the bottle neck for extending the use of this
technology is very likely the large volume of data, which must be stored in
dedicated machines and the limitation to transmit through fixed bandwidth
channels. Caching and prefetching may speed up these processes, when asso-
ciated to a proper knowledge of the pathologist navigation patterns, which
surely are very variable. A complete automated navigation would eliminate
that variability, whereby it is required a deep knowledge of the two main
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issues of this problem: how to find the relevant information or Regions of
Interest (RoIs) in virtual slides and then, how an expert interacts with these
regions. Regarding the first issue, a RoI has been traditionally considered as
a particular image area in which the level of information from a user stand
point is higher [79]. However, this is still an incomplete definition since re-
levant information can also depends on the time spent in these regions and
then this time should also be considered to define RoIs.

4.1.1 Pathologist Navigation Patterns

At a first naive glance, a pathologist navigation turns out to be an intri-
cate (and intriguing) series of back and forth changes, sideway movements,
all at different speeds and tempos. However, such pattern is not at all a
random movement since complex mechanisms, guided by a long training pe-
riod, are triggered by the content of the slide and the spatial organization
of the information therein [79]. Overall, every pathologist follows a stan-
dard training addressed to strength out both the diagnosis precision and
time [105]. Coarsely, diagnosis in pathology can be considered as a pro-
cess composed of four sequential steps: look, see, recognize and understand
[16]. A definitive diagnosis is achieved by following a standard methodol-
ogy with two coarse phases: first examination is carried out at the lower
magnification (panoramic) in order to locate relevant information in terms
of a spatial organization of the histological sample (scanning), while the se-
cond and further examination is conducted for analysis of the slide contents
which implies changing magnification (zoom) [16, 28, 140]. This analysis
is performed through navigation of the zoomed areas [28], on which gentle
movements are generally required. This learned strategy has been observed
in multiple studies in which it has been possible to determine the existence
of these two phases. Tsuchihashi et. al. studied one pathologist explor-
ing twenty different slides in telepathology. This investigation identified two
patterns: exploration at low magnification and analysis at higher magnifica-
tions [140]. Crowley et. al. recorded on videotape diagnoses performed on
four histological slides by fifteen pathologists, distributed into three different
categories: novices, intermediates and experts [28]. Results showed that in-
termediates and experts exhibited patterns very similar to the two described
before, i.e., to apply a general search strategy first, such as examining the
entire slide at low power, and to select areas to revisit them at higher power.

Tiersma et. al. investigated visual exploration patterns in pathology
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using an eye tracker mechanism. Results showed two patterns: scanning
(saccadic eye movements) and selective (eye fixation over specific points for
further exploration) [137]. Finally, Krupinski et. al., using an eye tracker
system, demonstrated that visual pathologist exploration is characterized by
a rapid determination of RoIs, which likely contain diagnostic information
[79]. It is worthy to strengthen out that the experimental setup of that study
allowed only scanning patterns, i.e., magnification changes were not available.
Furthermore, a recent study [151] has shown that a pathologist exploration
is composed of one or two magnification changes, at most, and two or three
movements through the slide which are linear. Moreover, other works [151]
have shown that these movements are linear. This evidence points out to a
twofold underlying mechanism of pathologists’ navigation which should be
integrated into a navigation system.

Overall, the experience with images in virtual microscopy should be very
similar to an actual optical examination. Design of friendly and useful graph-
ical user interfaces is a fundamental issue, i.e., with a conventional mouse,
pathologists navigate to any region within a slide as well as they change to
any desired magnification (zooming in and out). Indeed, navigation patterns
arise from two intermixed processes: the motor control associated to some
movement automations and a refined search information process, which re-
flects the level of expertise. Yet patterns may be different, the more expert
is the group of pathologist the more similar are the locations they visit when
exploring a histological slide [79]. It is important to keep in mind that the
virtual microscopy tool does not imitate exactly a conventional light micro-
scope, but rather it has the purpose to allow a pathologist to navigate at any
resolution, while the VS is always available at the lowest resolution so the
expert always conserves a thorough panorama of the histological image.

This study aims to determine main factors involved in the genesis of the
navigation patterns from a particular diagnostic path. These patterns are
the result of the interaction between the image contents and the expert expe-
rience. Other studies have focused before on studying either the attentional
mechanisms which guide trajectories in this type of images or the general
mechanisms at the very base of the interaction of an expert with an image.
On the contrary, our study integrates these two visions and also introduces
new elements as the magnification changes, which minimize the navigation
times dedicated to search information. Finally, as far as we know, this is the
first study which actually evaluates how a pathologist “moves the stage”, in
other words, we dedicated our endeavours to figure out the influence of both
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the image contents and the pathologist methodology in an actual interaction
context.

The rest of the chapter is organized as follows: Section Materials and
Methods the experimental assesment proposed, Section Results presents evi-
dence about new Pathologist Navigation Patterns in virtual microscopy. Fi-
nally, the last Section concludes with a discussion.

4.2 Materials and Methods

4.2.1 Virtual Slides

A total of four randomly selected histological specimen were digitized and
six VS were assembled using an acquisition system consisted of a Sony high
resolution digital video camera Handycam DCR-HC85 (640 × 480 pixels)
coupled to a Carl Zeiss Axiostar Plus microscope, provided with Carl Zeiss
426126 and 456006 adapters (Carl Zeiss, Light Microscopy, Gottingen, Ger-
many). Hematoxylin-eosin tissue samples from endomyometrium, gallblad-
der, prostate and a uterus leiomyoma were used for this study. Histopatho-
logical slides were selected from a set of representative routine cases from the
Pathology Department at the National University of Colombia, a pathology
laboratory of medium complexity. These samples were selected by an expert
pathologist. The endometrium sample was obtained by a legrade so that
the biological specimen was composed of irregular hemorrhagic fragments,
corresponding to epithelial tissue. The gallbladder specimen, characterized
by homogeneous distributions of transitional epithelium, came from a cis-
tocopy. The prostate sample was obtained by transrectal resection, case in
which the tissue is usually characterized by the presence of glands supported
by stroma. Finally, the uterus leyomioma, obtained from a myomectomy,
is basically composed of muscular tissue whose distribution is quite homo-
geneous. They were digitized and six different images were assembled from
these acquisitions whose sizes in pixels were 53280 × 39360, 42480 × 15840,
33840×21600, 53280×39360, 42480×15840 and 49680×28320 which stand
for an effective area of 11.97 × 8.84, 9.54 × 3.56, 11.16 × 6.36, 11.97 × 8.84,
9.54 × 3.56, 11.16 × 6.36 mm2 respectively (pixel size of 1.98 µm2). Mega-
images were stitched using automatic registration with cross correlation as
the similarity measure and were stored in JPEG2000 format for latter access
and navigation [68].
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4.2.2 Virtual microscopy GUI

Pathologist navigation patterns were recorded using a virtual microscope
prototype and a GUI adapted to virtual microscopy in pathology [68]. This
design exploits the importance of low magnifications for exploration and anal-
ysis at high resolutions for diagnosis. The GUI is composed of a thumbnail
and an auxiliary window. The former displays the lowest resolution thumb-
nail image, in which a rectangular re-sizable window allows a required se-
lection. The thumbnail window is set to a particular selection size at the
beginning, while the auxiliary window is constantly varying with the level of
magnification of the selected RoI in the thumbnail window. Displacements of
a particular RoI were only allowed in the thumbnail window through drag and
drop operations. Finally, for each requested RoI, its position, size, resolution
and time were recorded for later analysis. Figure 4.1 shows the virtual mi-
croscope GUI. Navigation in the developed prototype is carried out through
a conventional mouse and consists of two processes: first, a window picking
at low resolution image, followed by a displacement of this window to an
interest point, proportional to the mouse movement. This prototype was
aimed at achieving integration of this kind of tools with a routine patholo-
gist’s work, whose main advantage is a design that permits a simultaneous
display of different magnifications.

4.2.3 Observers and tasks

The aim of the present study was to compare navigation patterns when
expert pathologists are exploring virtual slides. Four expert pathologists
participated in this study, all of them had similar years of experience (about
five years), and were graduated from the same pathology school program.
Each pathologist was previously trained on virtual microscopy using two
test virtual slides. Average, the spent time for training was 20 minutes so
that at the end of this time they were free to navigate the slides at will,
until they could reach a probable diagnosis and organ identification. Six
virtual slides were chosen, as parts of full histological slides, with a relative
size which varied between 10 % to a 30 % of the whole histological sample.
An experienced pathologist, with at least five years of experience, selected
the digitized area. For the sake of the experiment, images shown to the
pathologist belonged to areas in which it was difficult to determine both the
organ and the pathological entity so they were forced to spend more time,
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Figure 4.1: GUI of the virtual microscopy prototype: the Figure shows the whole
Virtual slide at the right panel (small magnification) while a large resolution of
the black square in the VS enlargement is displayed in the auxiliary window at the
left panel. Panning was onely allowed in the VS window.

exploiting the navigation tool [17]. The six VS were randomly displayed for
each of the pathologists so that the examination order was always different.
Each pathologist was asked to run over the virtual slide, up to a diagnosis
was set, using the same screen monitor they use in their routine computer
work (CCFL (220 nits) WXGA (1280×800 of 13, 3”)). During examinations,
every pathologist action was recorded for later analysis, namely, we recorded
the RoI location, the RoI size related to the thumbnail image, the time any
action (drop or drag) was carried out and the level of magnification.

4.2.4 Evaluation Issues

We claim that from a navigation point of view an image can be thought
of as an ordered partition of spatial locations with different levels of rele-
vance associated to each. Therefore, an image is composed of regions with
different levels of interest and pathologists shall visit a minimum number of
regions, whereby they would gain a maximal amount of information spend-
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ing a minimal time. Evaluation was then addressed to verify these two main
issues: images are composed by pieces of information with different levels of
relevance (RoIs) and pathologists will use a minimum time exploring them
(Navigation Patterns). The first item was assessed as follows:

• The percentage of visited image area was calculated for the group of
pathologists.

• The percentage of coincidence among the different visited areas, i.e.,
at least two pathologists examined the same image region within the
navigation.

• For each pathologist, the spent time for region was also computed.

• Coincidence between RoIs, defined by visited areas, and RoIs defined
by time.

The second item was assessed as follows:

• Mouse movement velocities were registered and analyzed.

• Trajectories among RoIs might be linear so that their Euclidian dis-
tance was computed and compared against the actual distance, i.e., a
ratio between the two distances was calculated.

4.3 Results

4.3.1 Regions of Interests

As previously discussed, we suppose that RoIs are defined following a com-
bination of the three criteria presented hereafter:

Percentage of visited image area

The percentage of visited area by at least one pathologist was computed for
each of the virtual slides (Table 4.1). These values varied between 44 % and
91 % with an average of 66 %, indicating that the amount of tissue explored
is highly dependent on the image contents, that is to say, some virtual slides
were little-explored because relevant information was easily available.
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Image Percentage of visited area per image
image 1 91%
image 2 48%
image 3 67%
image 4 86%
image 5 44%
image 6 60%

Table 4.1: Percentage of visited total area by at least one pathologist per
image.

Pathologists were forced to further explore the image as to obtain a max-
imum level of information, but in general this was hardly established since
information was not enough as to consolidate a diagnosis. Results support
this statement since the percentage of explored image was larger than a 50%.

Percentage of coincidence

The percentage of coincidence of the visited areas among pathologists of
each VS was computed (Table 4.2). These values varied between 41 % and
97 % with an average of 69 %, indicating that the explored areas were quite
similar, though the virtual slide content is entirely different. The coincidence
level turns out to be dependent on the kind of information present in the
virtual slide and located in specific regions. For example, Table 4.1 shows
the pathologists visited a 48 % of the 2th VS, while its level of coincidence
was 97 %. In this virtual slide it is observed that there is no tissue in about
a 30 % of the entire VS. Interestingly, the histological sample corresponds
to an endomyometrium, in which the glands are the fundamental part of
any diagnosis and in the virtual slide they are located in specific areas. The
diagnostic path, in this case, searched for these structures all over the virtual
slide and overall, the four pathologists run over the same parts of the VS.

As expected, samples where information is located show higher levels of
coincidence. The first virtual slide corresponds to prostatic tissue in which
there is a large number of glands and pathologists dedicated most of the navi-
gation exploring them so the coincidence level is high (larger than 50%). The
second virtual slide corresponds to an endomyometrial sample, its epithelial
component is quite located and constitutes a very small area of the sample so
the coincidence level is shown to be high. The third virtual slide corresponds
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Image Percentage of coincidence in visited areas
image 1 63%
image 2 97%
image 3 95%
image 4 69%
image 5 41%
image 6 58%

Table 4.2: Influence of the image contents in the navigation pattern observed
from our experiments was assessed by measuring the coincidence level in the
visited regions, namely, the area percentage which was visited by more of
one pathologist. Coincidence average was 70.5 %, which demonstrates that
there are relevant information areas.

to a fragment of a leiomyoma with a predominat stromal component. The
areas visited by the pathologists corresponded to structures with a luminal
space, seen at the low magnification. Interestingly, as it was not clear if they
corresponded to glands or vessels, the resultant coincidence level was high.
The fourth virtual slide was clearly a leiomyoma and yet the visited area was
large (86 %), the coincidence level was only 69%. The fifth virtual slide was
a gallbladder, the epithelial component is minimum but scattered and then
the area to explore large, the coincidence level was not as higher as in the
other images. Finally, the sixth virtual slide corresponded to a prostate, in
which the epithelial component was sparse and hence also the coincidence
level and the area to explore.

Spent time

A potential RoI could arise either when every pathologist stops in particular
image locations and therefore information therein is relevant, or when one
pathologist spans a longer period in a precise area so that even if the interest
in the region is not shared among the group of experts, there exists a poten-
tial source of knowledge. In consequence, we also evaluated the time every
pathologist required for examining regions as the total time of visit for each
pixel in the thumbnail window, which was estimated by accumulating the set
of visit times and compute their average. A RoI (in the time sense) was then
defined as the region composed of those pixels for which this quantity was
larger than the mean. Once these regions were set for every pathologist, the
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time at each of these regions was calculated and regions where pathologists
spent times larger than the average were highlighted.

Figure 4.2: Left panel a whole diagnostic path, composed of multiples jumps
among different image locations. This diagnostic path shows not only scanning
patterns at the beginning, but also magnification changes, highlighted in the Figure
as the green and blue squares. Once the magnification changes are established,
navigation keeps under scanning patterns and the observation window is smaller
since resolution is higher. At the right panel it is displayed the image locations with
higher time rates. The white squares correspond to longer times while grey ones
stand for smaller. Note that longer times are spent in the part of the diagnostic
path which was conducted at the higher magnifications.

The analysis in this Section was pointed out to determine whether or not
there exists any pattern regarding the time used for analysis. Therefore, a
diagnostic path could be set not only in terms of the image contents, but
also according to the time a pathologist needs to explore the VS. Figure 4.2
illustrates a thorough diagnostic path in a VS, a scanning pattern with two
different magnifications. The magnification changes are highlighted in the
image as the green and blue squares. There are two scanning patterns, each
at a different resolution. Interestingly, the scanning pattern at higher mag-
nification required also higher time rates, indicating that once the search has
been established, these experts devote their efforts to analysis and diagnosis
on regions in the image that contain relevant information. This analysis was
extended to the entire set of pathologists upon the available VS.

Figure 4.3 shows the percentage time every pathologist spent over the
RoIs previously established at any of the six images. Overall, pathologists
spent at least a 50 % of the average of the navigation time on these RoIs,
most of them detected at the larger magnification. The plot shows that
two and five VSs were less explored regarding these regions. Overall, in
despite of the different contents in these images, these results indicate that
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Figure 4.3: It is displayed the average time percentage spent among the different
RoIs for each of the pathologists and through the set of six images. Total times
were normalized by the maximum visited time for comparing navigations with
different durations. The x axis corresponds to the set of available images while
the y axis stands for the average of percentage of time spent in the previously
determined RoIs. Note that in general pathologists spend more than a 50% of the
navigation time exploring these regions.

pathologists spend most of the navigation in regions where information is
more relevant and the scanning process turns out to be dedicated to search
such information.

Coincidence in RoIs

One important question we addressed consisted in determining, whether or
not the RoIs are defined, by spatial preferences or spent time, would coincide.
For measuring so, a standard measure of the degree of intersection between
regions was used: the Jaccard coefficient, a measurement of the similarity
between sample sets, defined as the intersection divided by the union of the
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sample sets. This coefficient has a maximum value of 1 when there is total
agreement and zero when there is none.

Figure 4.4: Jaccard coefficient is shown in the y-axis against the particular VS in
the x-axis. This coefficient measures the level of coincidence between the two sort
of RoIs, namely, the ones determined by the number of visits and those established
when a pathologist spent a significant time exploring them. In general, there is
not a systematic trend and pathologists use different navigation patterns regarding
times and preferred locations. These results indicate that RoIs may be defined,
depending on the application, by two different sets of features.

The coefficient was thus calculated for the six VS, showing different de-
gree of overlapping, from a 0.9 of the third pathologist for the second image
to a zero overlap coefficient for at least one of the pathologists along the
whole sets of images. Overall, Figure 4.4 show coincidence levels under a 0.5
in most images, indicating that effectively it turns out there exist different
RoIs, defined by the spent time or by the number of visits along the group of
pathologists, that is to say the level of coincidence is low. There is no a spe-
cific pattern, for instance the fourth pathologist (triangle) has no coincidence

88



4.3. RESULTS

level in images three, four and five, while in images one, two the Jaccard co-
efficient is between 0.3 and 0.4 and 0.6 for images six. This statement can
be also extended to the other pathologists, each using different preferences
when searching further information, either by time or preferred location.

4.3.2 Navigation patterns

Mouse Movements

By default, all navigations start at the upper-left corner using a standard
15 × 15 µm microscopical field of view, which corresponded to a 100 × 100
pixel window, within the thumbnail virtual slide. In the first part of the navi-
gation, the WoI is displaced through the virtual slide under a drop-drag-drop
paradigm, constituted as the basic operation so that differences are mainly
observed in the velocity profiles with which these navigations are carried out.
In addition, pathologists could change magnification during exploration, ei-
ther zooming in or out. An intermediate operation is an adjustment of the
field of view when changing magnifications, i.e., a window re-sizing which
allows covering the same area when resolution changed. Overall, once this
new size was set, the pathologist continued the spatial exploration using the
same magnification, as observed in Figure 4.5. So far our observations indi-
cate what has been described in the literature, that is to say, navigation is
composed of two complementary strategies: scanning and magnification.

When comparing the navigations available over the same image, a main
conclusion is that every pathologist always uses both scanning and zooming
operations. Interestingly, the coincidence level in the image in Figure 4.6
was 63 %, a fact that definitely suggests that the image contents steers the
resultant navigation profile. The virtual slide corresponds to a prostate sam-
ple, with different cuts and RoIs defined by the loci with high gland density.
Figure 4.6 shows the four different navigation profiles, with very different
diagnostic paths and observation strategies. Overall, pathologists explored a
variable virtual slide surface, with different levels of interest with two main
navigation patterns: in the former case, three of the pathologists used the
default window and run over the virtual slide with occasional magnification
changes while in the latter case, pathologist enlarged the initial window to
cover the maximum surface while running over the slide. The second strategy
wastes much more computational and network resources because when using
bigger areas the system has to load more information and in consequence it

89



CHAPTER 4. AN STUDY OF PATHOLOGISTS NAVIGATION

PATTERNS

Figure 4.5: Complete navigation, split into four sequential panels (a, b, c and d)
for the sake of understanding. Panel (a) shows the whole picture, which obviously
looks very jammed by the number of windows and window movements. Hence
navigation was split into a sequence shown in the next three panels: panel b starts
by depicting a classical scanning pattern, composed of multiple jumps between
RoIs. Panel (c) shows the magnification change from the dotted window to the
thick one. Finally, the expert uses this magnification for exploring the rest of
virtual slide in panel (d).

takes more time and nothing can ensure that the level of interactivity may
lead to diagnosis in minimal time.

Figure 4.6 shows different navigations of each pathologist over the same
virtual slide. In all of them the navigation pattern consists in both scanning
and zooming in different RoIs. Interestingly, three pathologists used the
default window (a, b, c) while one of them enlarged the window to cover a
maximum area. Finally, the velocity profiles corresponding to the navigation
displacements of all the pathologists were observed showing that although
every pathologist has different navigation patterns, exists a common velocity
profile, i.e., velocity rapidly increases up to a certain level and then it decays
with lower slopes. This profile is likely a complex mix of associated factors
such as the microscopical magnification, the neuromuscular mechanics and
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Figure 4.6: Different navigations of each pathology over the same virtual slide.
In all of them the navigation pattern consists in both scanning and zooming in
different RoIs. Interestingly, that 3 of the pathologists used the default window
(a, b, c) while one of them enlarged the window to cover a maximum surface.

the type of restriction demanded by the developed GUI, i.e., a drop-drag-drop
sequence (screen and mouse). As shown in Figure 4.7, explorations show high
velocity profiles when experts are moving between RoIs, and lower velocity
when approaching them. The GUI design allows to easily jumping from
one information zone to a next in the smaller resolution windows, an effect
observed in terms of velocity as the increasing part of the peak while a new
zone is reached and a decreasing velocity profile since this zone deserves a
certain amount of time for examination.

Path linearity among RoIs

The average coefficient of linearity is herein defined as the distance between
two RoIs divided by the actual run distance. This coefficient has a maximum
value of 1 when there is a linear trajectory and lower when is not linear.
This coefficient was calculated for any trajectory between the previously
determined RoIs and for every available navigation. Results are depicted in
Figure 4.8, in which the percentage of the entire set of trajectories (157) is
drawn in y-axis and the different linear intervals in x-axis. The coefficient
average is about 0.8 and its standard deviation of ±18%, thereby one can
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Figure 4.7: Example of a characteristic velocity pattern generated by a left to
right movement.

conclude that movement between RoIs are basically linear.

4.4 Discussion

The present investigation was addressed to determine main pathologists nav-
igation patterns when using virtual microscopy slides, using a GUI, adapted
to the pathologist’s workflow. Four pathologists with a similar level of ex-
perience, graduated from the same pathology program, navigated six virtual
slides. Provided that a microscopical navigation is an interactive process,
this study was devised to establish the relative importance of both image
contents and navigation patterns of pathologists with high degree of exper-
tise. A contribution of this study is that our GUI allowed to study not only
scanning patterns, as described in the literature [79], but also magnification
changes, a scenario really close to what pathologists are doing in their daily
routine. Likewise, we explored the concept of RoI from different perspec-
tives, either by analyzing the number of visits to a particular VS location
as described in other previous investigations [79], or more importantly, by
taking into account two new issues, i.e., the time a pathologist dedicates to
explore this particular location and the coincidence level among pathologists,
determinant factors which have not been evaluated so far. In addition, we
also assessed the different paths described during these navigations, namely,
mouse movement velocities and linearity of the diagnostic paths.

In previous studies, RoIs have been defined as areas to which the exami-
ner is rapidly attracted to look and that may contain diagnostic information
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Figure 4.8: y-axis shows the percentage of occurrence for each coefficient of lin-
earity in all the pathologist navigating the same image. The x-axis represents the
different ranges of linearity, as observed in the Figure, most of the movements are
done in a linear pattern.

[79], where visual stimulus is analyzed in detail [17] or by regions that are
prioritized by the image content (first criterion) [4]. However, such defini-
tions are still incomplete since a particular examiner can be rapidly drawn
to regions which require a further exploration for classifying the type of in-
formation. Such pattern can be easily observed in difficult cases in which
relevant information is hidden or information associated to the case is not
enough as to establish an objective judgment. This leads us to acknowledge
that the first path approximation is insufficient and that other criteria should
be included. Classical psychophysical theory claims that the time spent in
any particular task is directly related to the degree an examiner is familiar
with a particular pattern [43]. We decided then to include the time spent at
examining, as an evaluation criterion (second criterion) of what a RoI means
in pathology, because the common workflow consists in developing technical
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skills as to search abnormalities, a very harsh picture in many pathologies. In
the present investigation, this factor resulted crucial since our GUI permit-
ted to zoom in at any of the available preparations and so we could evaluate
the importance of a particular image locus, not only because the examiner
stopped there, but basically because information was valuable and required
actual analysis. This fact could be established because we could compare
the time spent at any of these image loci. Finally, another analysis direction
(third criterion) could be the coincidence area visited during navigations,
a factor which can be much more objectively included as a criterion, even
though its inclusion in clinical routine is very difficult because the number of
pathologists examining the same slide is very rarely larger than two. Over-
all, our results have supported the importance of simultaneously taking into
account the three issues, mentioned before, as the base of an actual RoI defi-
nition because: (a) Pathologists are effectively attracted by some regions, as
inferred from Table 4.1, with percentages of visited areas from 44% to 91%,
a variable Figure which directly depends on diagnostic difficulty. Recall that
the present study was devised for studying navigation patterns and therefore
information related to the case was not available, this factor did increase the
navigation time but even in these hard conditions, pathologists do not need
to visit the entire virtual slide. Images associated to larger visited areas are
consistent with the ones in which it was more difficult to determine the or-
gan and/or the pathologic entity. (b) The interest for particular image loci
is shared by most of the pathologists, a claim inferred from a coincidence
level nearby to 70.5 %, as observed in Table 4.2. Finally, we found that the
time spent at examining each of these regions was at least a 50 % of their
navigation time, on specific regions previously defined, whereby some of the
original regions were ruled out when considering the time factor. This evi-
dence suggests that none of these factors could be considered as the base for
defining the RoI and probably complex combinations of them are required
for specific applications.

Classically, exploration patterns in medical imaging have been studied by
both tracking the visual system or analyzing the diagnostic path complexity
[123]. However, due to the restrictions of visual systems for acquiring and
interpreting high resolution images and the limited display capabilities of the
computational resources [153], new alternatives for exploring virtual slides
have been recently proposed [68]. In actual virtual microscopy scenarios,
any diagnostic task requires the use of a device (a kind of joystick), mainly
mouse devices, to point out relevant information over a low resolution version
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of the VS. The kind of patterns generated by the interaction of an expert and
a virtual slide is obviously related to the type of interface. Overall, navigation
patterns in virtual microscopy have been recently studied [151], and the few
reported studies use very complicated interfaces such as eye trackers, which
may bias the observed patterns. As far as we know, there exists only another
study that has recorded diagnostic paths during actual navigations [151] but
its analysis is totally different since therein, authors do not analyze velocities
and time is not included as a criterion at defining what a RoI is. Such study
is focused on exploring prefetching and caching as possibilities to reduce
navigation and transfer times. This study reported partial image covering,
as observed in the present investigation, and an average linearity coefficient
of 0.41 for the complete diagnostic path. Interestingly, they also found a 0.85
linearity coefficient when the analysis was carried out on three consecutive
steps of the diagnostic path. On the contrary, we assessed linearity for every
single step which composes the diagnostic path, when using virtual slides
in a conventional laptop and mostly under the scanning phase. Our results
showed a 0.8 linearity coefficient, a quite coherent figure when comparing
with the study mentioned before. In addition, we identified velocity patterns
in scanning tasks, consisting in a rapid increase of velocity when pathologists
leave the RoI and a decreasing profile velocity when the expert is nearby to
a new RoI.

So far an optimal GUI design in virtual microscopy is still an open pro-
blem. Many virtual microscopes try to emulate the experience of navigating
a real microscope, that is to say, to move a microscopical stage while zooming
in and out. The simpler exploration strategy consists in using a unique win-
dow, which stands for the microscopical objective and provides interactions
with a virtual stage by means of mouse panning while the zoom operations
are simulated by clicking. This strategy is of course closely related to a real
microscope exploration, however if an expert might leap between two high
magnification regions, that expert must zoom out from the first region, dis-
places the field of view to the second region and then zoom in. This pattern
constitutes a natural movement with any actual microscope, but for a virtual
device, it ignores main display capacities of a virtual interface. This complex
set of operations can be drastically reduced by taking advantage of both digi-
tal storage and display potentialities. The GUI herein presented approached
this problem by “focus & context” [78], a set of techniques that combines a
“focus view” (the auxiliary window), i.e., the GUI part charged of displaying
the high degree of detail, and a “context view” (thumbnail window), charged
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of presenting the VS at low resolution.
A fundamental hypothesis in the present work for the presented design

is that an expert filters information out using the “context view” and then
switches to the “focus view”, on which the process of information refinement
and diagnostic, is achieved. Therefore, this focus view occupies most of
the available area, while the smaller part for the context provides orientation
during interaction. For the sake of interaction, this focus view is placed within
the context view, allowing a scanning-like display as well as an additional
view of the whole contents. This design compensates many disadvantages of
ordinary scanning because every interaction can then be executed using only
the content view so that leaps between high magnification regions become
simple displacements of this focus view within the context view.
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5
Soft-cache Strategy for Pathologist’s

Navigation in Virtual Microscopy

Gómez F., Maŕın D., Romero E.. A Soft-cache Strategy for Pathologist’s
Navigation in Virtual Microscopy. Accepted for publication in Microscopy
Research and Technique.

Abstract This chapter presents an optimal soft-cache strategy, which im-
proves the navigation times in virtual microscopy. The entire method in-
cludes an optimal soft-cache strategy and a dynamical probabilistic model of
a pathologist’s navigation. This strategy was implemented as a Client-Server
application, using the JPEG2000-JPIP standard and evaluated using diffe-
rent navigation patterns, namely, four different pathologists exploring ten VS,
stained with different dyes. The present approach was compared with a con-
ventional soft-cache method and the cache performance improved, in average,
in about a 10%.

5.1 Introduction

A virtual microscopy is a system which allows efficient storage of large mi-
croscopical images while displays different Windows of Interest (WoIs) at any
resolution and desired quality [48]. Such microscopical emulator should be
adaptable, scalable and friendly so that it effectively makes possible to ex-
plore actual histological slides. Overall, the size of these microscopical images
introduces considerable delays, which results in difficult interactive and fluid
navigations [85]. Strategies such as caching or prefetching aim to decrease the
latency times and therefore to allow seamless navigations. Cache is a rapid
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access to a space of memory in which it is stored the portions of the VS that
shall be visited in the future [29], while prefetching consists in anticipating
user requirements. These techniques have shown to highly improve naviga-
tion times [68, 135], but their performance depends on the prediction capacity
of the system [35, 113]. Recent investigations [35] have demonstrated that
seamless navigations can be reached using cache and prefetching [68]. Fur-
thermore, processing times have improved up to a 30 % using a naive cache
strategy [68]. Nevertheless, the success of these strategies is highly depen-
dent on the computational architecture used for exploration [102, 151, 68]
and on the degree of knowledgement one may have about how a user runs
over the virtual slide [35]. This chapter presents a prediction strategy which
is adapted to navigating pathological images, permitting to prefetch pieces
of images while also stores blocks which very likely will be used in the fu-
ture. The main contribution of the present work has been the design of a
task oriented model which takes advantage from the JPEG2000 (J2K) [24]
scalability by working at the minimal J2K information unit: the packet. The
model uses a soft-cache, adapted from [101], for which the access probabilities
are generated by a navigation model of the pathologist diagnostic pathways.
This strategy was assessed with a very variable set of navigation patterns,
generated by different pathologists and several test specimens, stained with
two dyes. Results show a systematic gain when comparing this strategy with
a traditional soft-cache method.

This chapter adapts a modern communication architecture, specifically
designed to support the efficient access to high resolution images, for virtual
microscopy applications. The soft-cache strategy herein presented was de-
signed for the client-server architecture (See Section 2.4), similar to JPIP-W
[102] which is illustrated in figure 5.1 .

At the beginning, the client requests a Window of Interest to the JPIP
server, which then figures out the list of packets that belong to that WoI.
This list is then sent to the proxy cache which checks the required packets
out in the cache and sends them to the decoder. Missing packets, in the
proxy cache, are requested to the JPIP server. The cache is updated using
a Cache Model that privileges packets with high probability to be used in
the future. Finally, the complete set of packets is sent to the decoder and
the image is displayed at the client side. As illustrated in figure 5.1, this
architecture can save network resources because only packets not available
in the proxy cache are required. This time gain highly depends on how the
cache model is devised.
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Figure 5.1: The soft cache architecture: when a WoI is requested, the server sends
to the client the list of packets that belong to that WoI, the client then checks out
which packets in the list are in the proxy cache, and queries the missing ones from
the server.

The chapter is organized as follows: this Section presents the cache pro-
blem and a brief discussion about how related problems have been appro-
ached, Section Materials and Methods introduces our cache policy and the
proposed navigation model, Section Results demonstrates the effectiveness
of the cache method. Finally the last Section concludes with a discussion.

5.1.1 Cache Strategies in Virtual Microscopy

The cache problem in virtual microscopy can be twofold addressed: by data
granularity, i.e., the level flexibility of data representation in the cache, and
the cache replacement policy, which should specify how data must be replaced
when a new image portion arrives. In terms of granularity, the simpler stra-
tegy may be to store the lower image resolution levels [8, 68] so that a fast
access to WoIs at specific zoom levels is reached, but at a high memory cost.
Besides, the size of the cache information units to be stored is important
for devising a preference model. If these units are small, a large image WoI
can be more probable than another with less elements of higher size [151].
Furthermore, cache elements with larger size, associated to relevant informa-
tion [134], can yield smaller distortion results when they are queried [134].
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Another factor, which influences the weight given to this basic cache unit,
is its associated cost [8], expressed in terms of processing or transmission
time. Therefore, a proper balance for a particular application should be
maintained. An alternative to this choice may be to store complete portions
of the coded image, whereby the granularity level is determined by the com-
pression format. Overall, JPEG is the broadly used format in many virtual
microscopy applications [18, 151, 41]. Nevertheless, this format does not pro-
vide access by resolution and introduces quality losses in the final result, an
unacceptable issue in most diagnostic tasks [106]. In contrast, J2K is a more
flexible alternative [68, 102], provided with random spatial access at different
levels of resolution, quality, and lossless codification.

The cache replacement policies should be based on the user preferences,
that is to say, elements with lower preference levels should be firstly removed,
but only when the cache is full. The most popular cache replacement policy
in virtual microscopy has been the Last Recently Used (LRU) [8, 68], for
which the user preference is modeled as a function that decreases with the
element age. The underlying hypothesis in this model is that the pathol-
ogist will revisit, with higher probability, the image zones that she/he just
visited, a navigation pattern that very rarely is observed in actual navi-
gations [79], above all when the pathologist reaches a particular degree of
expertise. Another broadly used strategy is the Last Frequently Used (LFU)
[102, 151, 8, 68], whose fundamental assumption is that higher probabilities
are given to those regions with larger number of visits. These two strategies
turn out to be quite general for a very oriented domain as virtual microscopy,
for which times associated to navigations are straightforwardly related to ex-
pertise. In the context of the present investigation, both strategies can be
considerate as comparable since experimental evidence in multiclient envi-
ronments reports similar performances with LRU and LFU, for queries from
multiple applications and variable input/output requirements [64].

5.1.2 Pathologist Navigation Patterns

The success of a virtual microscopy system depends totally on the system
ability to fulfill the user expectations so that the system must be devised
to easily meet different expert needs. An obvious question is then how to
adapt this kind of systems to processes which turn out to be stochastic by
nature, at least at a first sight. In fact, pathologist navigation appears to be
a complicated series of back and forth changes, sideway movements, all at
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different speeds and tempos. However, experimental evidence [79, 28, 137]
obtained during the last decade, indicates that such patterns are not ran-
dom at all but rather complex movements, guided by a long training period
which minimizes the interaction time between the expert and the slide con-
tents in terms of the spatial information organization [79]. Section 4.1.1
disccused evidence about how pathologists develop particular skills for ex-
ploring slides, following two complementary patterns: scanning (panning)
and interpretation [16, 140, 28]. In general, at the scanning phase, examina-
tion is carried out at the lower magnification because pathologists attempt
to locate relevant information as some particular spatial arrangements of the
histological sample. This phase spans most of the navigation time, while
a second examination phase (interpretation), is conducted when a further
information analysis is required. In this case, navigation patterns consist
in spatial exploration of small zones [28] of the VS, upon which only gentle
movements are required. During this phase pathologists change magnifica-
tions, interpret information and identify structures for diagnosis [28, 137, 79].
All this evidence contradicts then the hypothesis that exploration patterns
are unpredictable.

5.2 Materials and Methods

The pathologists navigations used in the present investigation were described
in Sections 3.3 and 4.2.

5.2.1 The Fundamental Cache Unit

A microscopical exploration of an actual slide is composed of a complex
sequence of different events, basically of two types: magnification changes
(zoom in and out) and spatial displacements at different velocities, times
and directions. A virtual microscope should be able to emulate such hetero-
geneous sequence on a VS. Actually, depending on both the image contents
and its size, this process can result so variable that information has to be
constantly reconstructed from basic units, in terms of different magnifica-
tions, qualities and random accesses to the image. This makes that flexible
image data representations such as the J2K standard [2] results adequate to
meet such requirements. The advantage with this standard is that it allows
data representation with high granularity and loose coupling, using basic in-
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formation units, namely the packets. A packet corresponds to a flexible J2K
unit, which contains data from a resolution level (magnification), precinct (a
particular image region at different resolutions or magnifications) and qua-
lity1, all of them independently stored. Hence, several VS versions with diffe-
rent zoom levels or image regions can be constructed when decoding packets
of a specific image region with a particular setting of magnification and qua-
lity. An actual clinical scenario requires not only such data representation
(J2K) but also adaptable communication protocols [131, 2].

5.2.2 The Soft-cache Strategy

A J2K image corresponds to a set D = {k1, k2, k3, . . . , kn} of n packets.
Each packet ki contains a portion of image data, indexed by precinct pr,
resolution r and quality l, i.e., each packet is associated to a (pr, r, l) vector
quantity. Two types of access can be implemented over the J2K packets
[73]: hard and soft. In the former case, the user always requires the entire
set of packets, that is to say, the maximum resolution and quality levels.
In the latter case, intermediate resolutions and qualities are demanded by
the user and therefore a variable subset of packets is required. The strategy
herein proposed is then adapted to having a soft access because it is the
natural request in virtual microscopy. For doing so, let us be Bs and Bc

the server-client and Proxy cache-client bandwidth connections, respectively
(see Figure 5.1). A navigation is composed of a sequence of WoIs so that at
each time t, a WoI can be considered as a set of packets, i.e., this WoI is also
a vector quantity with a spatial associated region pr, a given resolution r
and a quality level l. Optimal navigations are reached when a set of packets
At, At ⊆ D associated to the current WoI, is retrieved in minimum time.
According to [73], the delay δ(At, X(pr,r,l)) associated to this WoI can be
expressed as:

δ(At, X(pr,r,l)) =
∑

k(pr,r,l)∈At

(X(pr,r,l)S(pr,r,l))B
−1
c + ((1−X(pr,r,l))S(pr,r,l))B

−1
s

�

�

�

�5.1

1The abstraction in the standard allows to navigate along different quality levels which
amount to splitting quality information by independent layers that incrementally con-
tribute to the observed image quality.
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where S(pr,r,l) corresponds to the size of each packet k(pr, r, l) and X(pr,r,l) is
a binary variable that indicates whether or not a packet is in the cache, that
is to say:

X(pr,r,l) =

{

1, if k(pr, r, l) ∈ Qt

0, in otherwise

with Qt the set of packets stored in cache at the time t. The first term in
Equation 5.1 corresponds to the delay associated to uploading packets from
the proxy cache while the second term amounts to the delay when uploading
packets from the server.

An optimal bandwidth use is then reached when the expected total up-
loading time over every possible user request is minimized, that is to say:

min
X

∑

At∈C

PAtδ(At, X(pr,r,l))
�

�

�

�5.2

subject to
∑

k(pr,r,l)∈D

X(pr,r,l)S(pr,r,l) ≤ SQ

where PAt is the probability of requesting At, C is the set of every possible
request and the restriction is related to the maximum cache size SQ. Note
that if this problem were solved in the C space, which corresponds to every
possible WoI, the problem would result in a very difficult combinatorial pro-
blem. Hence, this formulation was simplified as the problem of estimating
the expected values associated to the delays produced by a WoI, and refor-
mulated as the problem of finding the set of packets, in terms of a query,
which maximally save time. Equation 5.2 is then re-written as the following
knapsack problem [92]:

max
X

∑

k(pr,r,l)∈D

X(pr,r,l)



S(pr,r,l)B
−1
a

∑

At∈Ω(pr,r,l)

PAt





�

�

�

�5.3

subject to
∑

k(pr,r,l)∈D

X(pr,r,l)S(pr,r,l) ≤ SQ

where Ω(pr,r,l) = {Ai | Ai ∈ C, k(pr, r, l) ∈ Ai} is the set of requests which
contains the packet k(pr, r, l) and B−1

a = B−1
s −B−1

c is an acceleration factor
given by the cache use. The term in parenthesis stands for the relevance
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level of a packet, which in terms of a knapsack problem is a consequence of a
proper balance among the probability of accessing a packet, its size and the
bandwidth gain. In this expression we have to estimate

∑

At∈Ω(pr,r,l)
PAt , a

quantity that corresponds to the sum over every possible WoI containing the
packet k(pr, r, l), and which is approximated by the probability of the packets
belonging to the intersection (see Figure 5.2), namely the packet probability
itself P(pr,r,l).

Figure 5.2: The probability of the intersection of different overlapping WoIs
(Ai) is approximated by the packet probability located in this intersection.

Finally, the soft-cache problem for J2K packets in the JPIP-W architec-
ture reads as:

max
X

∑

k(pr,r,l)∈D

X(pr,r,l)S(pr,r,l)P(pr,r,l)B
−1
a

�

�

�

�5.4

subject to
∑

k(pr,r,l)∈D

X(pr,r,l) · S(pr,r,l) ≤ SQ

In this expression the term to be calculated is P(pr,r,l) since the other terms,
S(pr,r,l) and B−1

a , are already known. In the next subsection we introduce a
novel probability model for P(pr,r,l), adapted to the process of navigating VS.
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5.2.3 The Pathologist’s Navigation Model

Overall, a diagnostic path is defined by a process of information search within
a VS. In Figure 5.3 an actual navigation, spanning 113s, illustrates the whole
process: the pathologist scans the VS looking for some specific patterns
which, once located, are further explored using a higher magnification. The
whole sequence has been split into the four panels as (a), (b), (c) and (d).
Panel (a) shows the beginning, the pathologist is forced to start at the upper
left corner and displaces the WoI looking for a region of interest. Once this
one is located, panel (b) shows the magnification change from the thick to
the dotted window. Panel (c) displays a re-sizing operation of the auxiliary
window. Finally, in panel (d), the pathologist scans the rest of the VS, using
the same magnification.

Provided that a diagnosis is set when certain histopathological patterns
are well established, and that these patterns are usually located in specific
places of the VS, a pathologist’s navigation can be though of as a sequence
of jumps between WoIs [28]. A GUI of any virtual microscope should then
be devised as to easily allow jumps from one WoI to any other location,
dragging a desired WoI within the thumbnail window. Once this one is
reached, a decreasing velocity profile is observed since this new WoI deserves
a certain amount of time for examination [79]. When this level of detail is
not enough for taking a diagnostic decision, the pathologist will go into a
further information level by increasing magnification. In consequence, the
navigation process can be seen as a search of information through two basic
operations: scanning and zooming.

In general, every pathologist follows a standard methodology with two
coarse phases: first examination is carried out at the lower magnification in
order to locate relevant information, while the second and further examina-
tion is conducted for analysis of the slide contents [79]. This last task is
typically carried out by zooming-in, as in the VM case, as well as by in-
creasing the quality level. This experimental evidence leads us to consider
that magnification changes and quality levels may be both handled together.
Based on this, our fundamental hypothesis is that a navigation is a process
composed of two complementary strategies: a spatial scanning for classi-
fying information and a further exploration for image interpretation, i.e.,
higher magnifications and quality levels (Figure 5.4). In consequence, the
probability of requesting a particular packet should depend on the particular
navigation phase: information classification or image interpretation. In these
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terms, we propose to model a quantifiable interest on the packet P(t,pr,r,l) at
time t as the weighted average among three sources of preference: spatial
Pt,pr, resolution Pt,r and quality Pt,l, as follows:

P(t,pr,r,l) ∝ αtPt,pr + (1− αt)(Pt,r + Pt,l)

the (αt ∈ [0, 1]) factor changes during the navigation and determines the
importance of each of the exploration phases, in other words, this parameter
switches between either scanning the slide or looking for further informa-
tion. This interaction is then modeled by supposing that the last recorded
user event is used for approximating the near future as a first order, i.e.,
the αt weight takes its value from what happened in the very recent naviga-
tion history. When a transition between the navigation states is registered
(scanning to interpretation or viceversa), the αt+1 value changes to 1−αt for
the current operation is privileged. An estimated value for this parameter
was obtained by a sensitivity test using the whole set of navigations, a result
which is presented in Section 7.3.

By simplicity, we are going to consider that each preference source can be
then modeled as a first order discrete stochastic process, under the assump-
tion that a navigation decision is made in terms of the current navigation
state, plus a short history. Yet a higher order model could be used, its order
selection is not a trivial issue, while a high computational cost should surely
have to be paid. The initial conditions for the model are set as follows:

• Spatial preference, at the beginning, there is no reason to privilege
a specific spatial region and therefore every spatial region is equally
probable. In this phase (scanning), specific image WoI information
obtained from segmentation algorithms [99, 59] or visiting logs [123]
can be used for initializing the probability distribution.

• Resolution preference, the choice of a resolution r is independent of the
sequential selection of previous resolutions 0, . . . , r−1. This statement
is consistent with the fact that pathologists know at which particular
level of detail they have to look for information. Hence, the 0, . . . , r−1
sequence can be considered as failures while the r resolution selection as
a success. If each resolution selection is independent and the probability
of success is λ, then the probability of a resolution r can be modeled
by a Bernoulli distribution (1− λ)rλ.
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• Quality preference, the initial probability state for the quality dimen-
sion was calculated as the rate-distortion ratio, defined in the J2K
standard and associated to each packet [134]. This value provides
an approximation to an optimal compromise between the packet size
and its inherent visual quality, as previously demonstrated in previous
works [35].

Once these initial conditions are set, probabilities are updated after the
pathologist carries out a particular action. Probabilities are then updated as
follows:

• Spatial preference, when a pathologist is spatially moving or scanning
the VS, its current position defines a neighborhood of influence in which
the probability should be higher, that is:

Pt,pr = Pt−1,pr +
∑

pr
′∈N(pr)

Pt−1,pr′

where pr is a precinct and N(pr) corresponds to its neighborhood (8-
SED). This probability update is carried out for every precinct within
the current navigated area.

• Resolution preference, is updated by taking into account the sequence
of previously used resolutions:

Pt,r =











Pt−1,r, if there are no zoom changes

Pt−1,r +
∑

r≤R(t) Pt−1,r, in zoom-in operations

max{0, Pt−1,r −
∑

r>R(t) Pt−1,r}, in zoom-out operations

where R(t) is the zoom-level at time t, the zoom-in operation corre-
sponds to R(t) > R(t− 1) and zoom-out to R(t) < R(t− 1).

• Quality preference, the probability associated to a quality should in-
crease when the pathologist stops at any VS location, looking for fur-
ther information:

Pt,l = Pt−1,l +
∑

l≤L

Pt−1,l

with L the current level of quality, note that only increasing probability
levels are possible.
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Once each preference source is updated, each of these values are normal-
ized and the probability packet Pt,pr,r,l is computed.

5.2.4 Evaluation

Assessment of the proposed strategy was carried out using recorded naviga-
tions, performed by the group of pathologists on the set of available Virtual
Slides [57]. The recorded queries -different spatial regions, magnifications
and quality levels- were then expressed in terms of the required packets. The
performance of the presented strategy was measured as the percentage of
packets, in bytes, which were within the cache when they were required. For
so doing, the percentage of hits and misses in bytes was determined for diffe-
rent cache sizes and compared with a baseline strategy, i.e., a LRU cache2.
LRU was selected as the baseline because this is a well known replacement
strategy which is independent of the architecture. The cache size was calcu-
lated as a variable percentage of the image at the lower resolution, that is to
say, the sum over the size of all packets at lower resolution

∑

S(pr,0,l). Sev-
eral cache sizes were then evaluated, the 50%, 100%, 105%, 110%, 120% and
200% of the lower resolution size. The soft-cache problem (equation 5.4) was
solved through a greedy solution [92], the cache space was filled with packets
k(pr, r, l) for which the product P(pr,r,l)S(pr,r,l)B

−1
a /S(pr,r,l) = P(pr,r,l)B

−1
a is the

highest, until the available space was completely full. Some basic system
characteristics were fixed as constants, such as Bc and Bs, as to simplify the
analysis. The exact value of these parameters is not really critical because
the client cache system applies over a wide range of the system parameters.
Additionally, the model parameters α and λ were tuned, searching at the
best model performance, by varying both values in the interval [0, 1].

5.3 Results

The four pathologists navigated through the ten VS so that a total of 40
navigations were available either for training or assessing. Overall, the rela-
tive size of these VS varied between 10% to a 30% of the whole histological
sample so information was limited or partial. This strategy pursuited to ac-
complish a maximal navigation time since pathologists tried to exhaustively

2Our LRU replacement policy consisted in replacing the packets with no use which
longer had lasted within the cache
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search the needed information as to reach a diagnosis. The patterns ge-
nerated by this type of navigation resulted then ideal to assess this cache
strategy. Each pathologist was previously trained on virtual microscopy
using two test images, which were natural mega-images with similar sizes
to the ones previously described. Finally, the time used for navigating var-
ied between 35 s and 398 s, depending on the image contents. In general,
navigations took shorter intervals of time for images stained with immunoflu-
orescent techniques, for which the islets of Langerhans constitute the main
information source. On the contrary, inflammatory pathologies stained with
Hematoxylin-Eosin spanned larger exploration intervals and very rarely they
were able to accomplish a correct organ diagnosis, but they could repair the
most important histological structures, achieving a maximum and compara-
ble level of description.

5.3.1 The Cache Strategy

The Figure 5.5 shows, through the four panels, the cache performance of
the same navigation illustrated in Figure 5.3. For so doing, the navigation
operations have been superimposed to the percentage of hits that were within
a cache of a 110 % of the lower VS resolution size. In this case both α and
λ model parameters were set to 0.8.

Each of these plots depicts the percentage of hits in the cache space
in kbytes, the y-axis represents the percentage of packets within the cache
space, while the x-axis stands for the WoI number. The two different cache
assessed policies are drawn at each of the four plots, the thick line corresponds
to the cache strategy herein presented while the dotted one stands for the
LRU cache procedure. The first panel (left upper panel) shows the very
first part of this navigation, corresponding to a exclusively scanning pattern.
This navigation part spans the interval between the first WoI and the WoI
defined by the number one, also superimposed to this graph. Within this
interval, the percentage of hits is quite high for both strategies, above a
60 %. However, our method outperforms always the LRU in this phase,
between 10 % to 20 %. Once the expert located the desired WoI defined in
panel a, a higher magnification level was set in panel b. This navigation part
corresponds to the interval between numbers one and two. The number of hits
decreases dramatically for both strategies, from a 90 % to a 30 %, but again
the proposed method is slightly better, with a performance which is higher in
a 5% to 10%. The change shown in panel (c) corresponds to an enlargement
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of the window size, increasing the available field of view, that is to say, the
pathologist remains at the same resolution but searching further information.
The interval defined by this operation is between numbers two and three. The
performance decreases even more during this interval, yet the reduction in
the number of packets within the cache is nearly constant. This pattern
indicates that both strategies adapts very poorly to this type of change since
their values are alike, even though ours is slightly better. Finally, in panel
(d), the expert continues to scan the VS, an interval defined by numbers three
and four. The performance improves for both cache strategies, up to reach
the initial level, but our strategy reaches much more rapidly these levels,
indicating a better adaptation capacity to these discontinuous jumps, and
again outperforms the LRU cache.

5.3.2 Adjustment of the Parameters α and λ

The α parameter maps what is happening within an actual navigation to
a particular pattern, i.e., it controls the balance between scanning the slide
or looking for further information. An optimal value for this α parameter
was selected by a sensibility analysis using the whole set of navigations.
Table 5.1 shows the percentage of hits when α and λ were set to five and
three different values, respectively. Figures indicate that an α selection of 0
(interpretation pattern) results in a performance of 36 %, and of about 42%
when this value is set to 1 (scanning pattern). Intermediate α values result
in higher performance percentages, with a peak when α = 0.8. These results
suggest that navigations are actually a complex mix of the two exploration
patterns and that the α parameter allows to follow their importance. A
higher importance of the scanning pattern was herein observed, probably
because the scanning phase spanned larger times at interacting during a
navigation.

α λ % Hits α λ % Hits α λ % Hits
1 0.8 42.59 ± 21.31 1 0.6 42.53 ± 21.38 1 0.3 42.49 ± 22.14
0.8 0.8 44.18 ± 19.83 0.8 0.6 44.15 ± 20.30 0.8 0.3 43.98 ± 19.93
0.5 0.8 41.22 ± 24.17 0.5 0.6 41.16 ± 23.32 0.5 0.3 40.94 ± 24.38
0.2 0.8 38.83 ± 21.15 0.2 0.6 38.29 ± 20.50 0.2 0.3 38.07 ± 20.36
0 0.8 36.56 ± 24.10 0 0.6 36.22 ± 24.22 0 0.3 36.01 ± 24.73

Table 5.1: Percentage of cache hits for different α and λ values.

Likewise, λ is related to the probability of making zoom operations.
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Higher values correspond to larger probabilities of zooming into high re-
solutions and viceversa. A λ selection of 0.8 privileges zoom-in operations,
resulting in improvements of nearly a 1%, a gain which is non significant
(t-student test, p < 0.05). These results indicate a low sensibility to the λ
parameter for fixed α values (see figures per rows), a fact that may be attri-
buted to the low number of zoom operations compared to the total number
of user interactions.

5.3.3 Proposed Cache Strategy vs LRU

Figure 5.6 shows the averaged percentage of hits in the cache, calculated
for the whole set of navigations, for different cache sizes. The baseline size
or the basic cache size was set as the size occupied by the packets needed
to reconstruct the lower resolution VS, because these packets are the ones
with the minimal information at the reconstruction time and then any cache
system should start from this store capacity [85], at least.

For small cache sizes, near to a 50% of the basic cache size, the difference
between policies is neglible and their performace reaches approximately a
20%. Once the cache capacity is enlarged to 100%, the proposed strategy
outperforms in about a 10% the LRU, a gain which is maintained nearly
constant up to a size of 200 %. Interestingly, both strategies improve the
cache performance which, in the current experiment, is between 30% and
45%, a result which illustrates the importance of using cache strategies for
improving the level of interaction during a navigation.

On the other hand, as the gain introduced by the proposed cache is de-
pendent on the particular temporal patterns, which are completely hidden
when one computes means and standard deviations, it is more suitable as
a global performance evaluation, a difference of temporal series. This was
herein computed as a point-to-point difference between the two strategies
during the entire set of navigations. For doing so, we calculated the differ-
ences between both hit ratios at each time of each of the navigations. This
set of differences were then expressed as a mean and a standard deviation so
that a benefit is stable if this difference is positive and its standard deviation
is small, i.e., our method outperforms LRU. The benefit obtained was evalu-
ated by subtracting both performances, i.e., the proposed strategy and LRU
policy, with an α value set to 0.8. Computations were carried out for the
complete set of navigations under different cache sizes, namely 50%, 100%,
105%, 110%, 120% and 200%.
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Pth 1 Pth 2 Pth 3 Pth 4

Cache Size Gain Gain Gain Gain
100% 5.34 ± 2.77 9.02 ± 7.56 8.37 ± 3.37 2.02 ± 1.10
105% 5.48 ± 2.86 9.36 ± 7.58 8.62 ± 3.62 2.04 ± 0.98
110% 5.54 ± 2.88 9.41 ± 7.51 8.78 ± 3.78 2.06 ± 1.05
120% 6.31 ± 3.02 10.71 ± 7.64 9.27 ± 4.46 2.11 ± 1.01

Table 5.2: Benefit of the proposed method over LRU, expressed in mean and
variance of the difference between cache hits for different cache sizes.

Given that different experts cope with different patterns, this analysis
was carried out individually for each of the four pathologists, as observed in
table 5.2. It should be strengthen out that all figures in the table are positive
so that it can be globally inferred that our method always outperforms the
LRU, disregarding the particular pathologist and the different cache sizes
used in this evaluation. Table 5.2 shows that this gain is systematically
higher for the first three pathologists and smaller for the last one. This par-
ticular case corresponded to a pathologist who simply enlarged the auxiliary
window as to cover a maximum slide surface, and then displaced it all over
the image. Yet this pattern is valid and this is why we decided to include it
in this study, it does not use most of the flexibility and potentialities that the
GUI offers and then our model could not capture the observed pattern. At
any case, there exists a gain using the proposed strategy on the total cache
performance.

Finally, as the navigation is composed of two basic patterns, namely
scanning and interpretation, a part of the analysis was dedicated to figure out
in which phase the cache policy is more important. It should be strengthen
out that from the entire set of navigations, the scanning pattern stands for
a 92 % of the total number of interactions with the GUI.

Pth 1 Pth 2 Pth 3 Pth 4

Patterns Gain Gain Gain Gain
Scanning 5.53 ± 2.96 10.04 ± 6.84 8.33 ± 4.33 2.07 ± 1.14

Interpretation 11.70 ± 4.40 7.18 ± 2.29 7.21 ± 2.07 1.83 ± 0.59

Table 5.3: Benefit of the proposed method over LRU for different navigation
phases, expressed in mean and variance of the difference between cache hits
for a cache size of 120% of the size of the packets in the lower resolution for
the complete set of navigations.
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Table 5.3 shows the benefit obtained for each of the navigation phases:
scanning and interpretation, when the cache corresponds to a 110% of the
basic cache size. As we can see our method provides a better performance
for the scanning phase in the three last pathologists. Note that in the case of
the first pathologist, much of the gain comes from the interpretation phase,
an 11% compared with the 5% of the scanning phase. This pathologist used
during navigations a larger number of zoom changes, when compared to the
others. This pattern allowed that the model could better follow the interpre-
tation phase when the pathologist was actually switching from zooming-in
to zooming-out. The pattern obtained from the fourth pathologist produced
a smaller performance, an issue already discussed.

In this section we have demonstrated that the presented cache policy
provides a robust strategy to accelerate the navigation through various ex-
periments. The results show better cache hit performance for the proposed
method, when compared with the LRU replacement policy. A consistent
benefit associated to the strategy was observed in three of the four subjects,
as well as a marginal gain for the four pathologist. This benefit was also ob-
served in both navigation phases: scanning and interpretation. The results
also indicate that the main limitation of our strategy is the poor adaptation
to resize WoIs without scanning.

5.4 Discussion

The present investigation has introduced a new cache strategy for accelera-
ting actual pathologist navigations in virtual microscopy. The whole method
is based on both, an optimal allocation strategy of J2K packets in the cache
space and a new dynamical probabilistic navigation model of the slide exami-
nation. The allocation strategy results in a minimization of the pathologist
navigation times upon server-client cache architectures. The pathologist nav-
igation model is supported on two prior factors: the pathologist moves lo-
cally when spatially exploring the VS and the only magnification changes are
given towards having larger information versions, i.e., the expert uses mostly
zoom-in patterns during the exploration. Finally, a simple and fast updating
strategy of the exploration probabilities, allows the strategy to adapt to both
global and non-stationary navigation patterns, such as the observed in VM
navigations.

A virtual microscopical exploration, performed by an expert pathologist,
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is generally carried out in client-server architectures [151, 95, 6]. Such net-
work structures allow remote access to large images, stored using several
image formats [21, 151, 135, 102]. The proposal herein implemented was
J2K [68] because of its large flexibility and adaptability to different navi-
gation conditions, i.e., granularity. Unlike text or conventional images, for
which computational resources, bandwidth and storage capacities are suffi-
cient, in VM any of these factors will always be very limited because of the
huge image requirements [118]. Moreover, it results fundamental for such
an application, the development of strategies to handle the image data ac-
cording to the specific exploration architecture. The classical approach to
deal with this problem is the design of a cache policy, which in its classical
version is very limited since it requires the storage of the complete image
in memory (hard access) [73]. In the present work, the cache was designed,
keeping in mind two fundamental issues: the image is stored in a granular
format and exploration in virtual microscopy is soft by nature. The access to
the image is then thought of as a soft one since the basic operations, zooming
and scanning, have been already identified as local accesses [16, 140, 28].

Different soft-cache strategies have been already proposed in the litera-
ture, for exploring natural images [73], under the hypothesis of an underlying
static navigation model, i.e., the user always visits the same regions in the
image. Later, Li and Zheng [85] proposed an extended version of the pre-
vious work at including non-stationary patterns through a LRU replacement
policy when locally navigating. In this work, an optimal cache strategy was
used upon a time dependent probability distribution. The model could then
directly code both the stationary and non-stationary components. Given
that the cache solution is directly related to the probability values, it results
of paramount importance to have a good model that captures the dynamics
of the specific task, which corresponds in this case to navigation of patholo-
gical images. In the specific case of virtual microscopy, these strategies could
hardly afford the complex requirements of an expert exploring a pathological
image. In particular, it is nearly impossible to determine beforehand which
regions the expert would visit in the case of the static cache, and for do-
ing so it should be needed to construct a probability distribution function
using either previous navigations -which obviously leads us to thousands and
thousands of navigations- or explicit image information. In the case of the
non-stationary cache policy, the drawback comes from the LRU foundation
itself since this strategy supposes that the more important object within the
cache is the one more recently visited, that is to say, that the underlying
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hypothesis is that any user will revisit certain image regions, a statement
which is hardly tenable in virtual microscopy since experts use a minimal
number of regions with maximal information [151, 79]. On the contrary, our
model is totally adapted to the specific task of exploring this VS and thereby
is adaptable to different navigation circumstances.

In general, every pathologist follows a standard methodology with two
coarse phases: first examination is carried out at the lower magnification in
order to locate relevant information in terms of a spatial organization of the
histological sample while the second and further examination is conducted
for analysis of the slide contents [103]. Several studies have identified two
complementary patterns for microscopical exploration: zoom-in and scanning
(panning) operations [16, 140, 28]. Krupinsky has demonstrated [79], using
an eye tracking system, that pathologists highly coincide on the regions they
visit when navigating virtual slides. Although this information could be used
for constructing a probability map associated to the VS, by storing the his-
tory of visits, this strategy results limited in clinical environments in which
microscopical slides are explored by a reduced number of pathologists. In
the present work this frequentist approach is rather substituted by a dyna-
mical probabilistic model that captures most of the navigation patterns an
expert follows. The proposed model is based on two intermingled phases of
the navigation: scanning and interpretation. Both phases are closely related
to the Information-processing theory which provides elements for current in-
terpretations of visual search data in pathology [28, 79]. This theory establi-
shes two main processes: firstly, a global impression of image content -such
as symmetry, color, and gray scale content- is constructed by exploration.
Then, the collected information is compared with information contained in
the long-term memory that forms the viewer’s cognitive schema (or expec-
tations) about what information actually is, in the pathologic image. In low
resolution medical images, such as radiology, the global impression is cons-
tructed by the Human Visual System (HVS) through saccadic and fixation
movements [79]. These mechanisms are nevertheless insufficient to construct
a general view of the VS because of the limitation for displaying such VS
in conventional devices, and moreover, limitations of the HVS for capturing
information in high resolution images [153]. In these terms, additional inte-
ractions are essential in order to locate relevant areas and construct the global
impression. The model herein developed copes with these issues through a
simplification of the navigation task, an expert is either scanning or looking
for information of some interest or interpreting, which in terms of the naviga-
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tion corresponds to the periods in which the expert has located information
and is zooming-in or demanding a better quality representation.

Navigation patterns arise when a pathologist interacts with a particular
VS, a complex relationship which is somehow regulated by articulating the
two types of prior knowledge: the Pathologist’s expertise and the information
available on the particular clinical case. In the former case novices tend to
wander around the slide while experts’ observation paths are better located
and shorter. In the latter case, additional information influences the kind of
objects the expert is searching so that patterns change and again, experts’
performance is neatly superior. In both scenarios, the model nicely adapts
to the interaction rather than to a particular generated pattern, influence by
any of these two situations.

Our results illustrate many of these issues. It can be inferred from Fi-
gure 5.3 that effectively the use of a LRU policy results in acceleration of
the pathologists navigations up to 30%. Also, from the same figure, our
task oriented model provides a better perfomance, resulting in additional
acceleration values of about a 10%. These results confirm the previously
formuled hypothesis about the utility of a task oriented model and recall
the importance of a proper undestanding of the exploration process in vir-
tual microscopy [151, 57]. Likewise, as observed in table 5.3, the method
gain remains systematically higher when comparing with the LRU, in de-
spite of the fact that for certain navigation patterns, highly deviated of our
priors, the obtained gain is not so high. It should be strengthen out that
these patterns were observed in one pathologist who did not exploit ade-
quately the GUI potentialities. These results lead us to conclude that this
oriented task model may speed up actual navigations in virtual microscopy
[151]. On the other hand, the sensibility analysis table 5.3 of the α parameter
shows that both phases, scanning and interpretation, are the basic patterns
of an actual exploration. An optimal cache hit performance is reached in
the present investigation when α is set to 0.8, indicating the importance of
simultaneously taking into account both navigation phases. As expected,
the proposed method provides different levels of performance for different
subjects and navigation phases see table 5.3, however, its benefit remains
higher at any test. This model was evaluated by tracking different patterns
in very different experimental conditions, namely four pathologists perform-
ing fourty navigations in ten Virtual slides, stained with two different dyes.
Yet it is frequent in psycophysic studies the use of virtual slides stained by
a single method, we used VS with two different colorations, demonstrating
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comparable results for each and indicating that the entire strategy is highly
adaptable to the particular pathologist’s navigation and therefore it results
to be much more general.

Some recent works have found that it is possible to automatically deter-
mine RoIs [99, 57] so that a probabilistic map can be associated to the image.
This kind of maps could be included as a prior knowledge in the probabilis-
tic strategy herein presented and the initial conditions for the model could
be drawn from these maps. This would accelerate the performance of the
complete strategy, but then it would be necessary a preprocessing phase. In
addition, observation paths should follow optimal sampling strategies [77]
which improve the diagnosis times, that is to say, a minimal number of RoIs
would drive the navigation. In that scenario, a pathologist would achieve
a diagnosis spending a minimal time, so the pathologist workflow could be
highly improved, basically because it would be possible to prefetch the whole
examination path at the very navigation beginning and little additional in-
formation would be needed. However, observation paths are dependent on
the image contents, on the pathologist’s experience and the image quality,
and therefore highly variable. These probability maps should then change
along the navigation, depending on the expert needs. The advantage with
the model proposed here is that it relatively independent of these variable
factors and constructs a future diagnostic path using basic information of the
mouse velocity and history of the navigation. It is worthy to point out here
that our model was designed to cope with both phases, showing a consistent
improvement during the entire navigation, when comparing with a baseline
cache strategy. These predictions could be included into the whole strategy
by using smart sampling procedures [77].

The main concern of this study was not the computational complexity
so that the model was formulated basically searching to gain cache impor-
tance. However, the whole strategy can be considered as O(n(log(n)), with
n the number of image packets, corresponding to the probability updating
step (Section 5.2.3) with O(n) whilst the packet schedule procedure takes
O(n(log(n)). This last complexity is associated to the solution of the opti-
mization problem that consists in sorting out packets by interest (see Sec-
tion 5.2.4). In our simulations, for the image sizes described in Section 4.2.1,
the proposed method takes less than 2s for each navigation step, when run-
ning on a Intel Xeon X5460 Quad-Core 3.16 GHz with 8 GB in RAM. In prin-
ciple, these delays can of course impact negatively the possibility of seamless
navigation. Nonetheless, again the model allows to deal with this problem
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by updating the probability only on those packets which are susceptible to
be changed, a strategy very similar to that used for the particle filter when
estimating a pdf . This idea consists in representing a pdf with particles [10],
which basically are subsets of a set of events Ω. In this context, a subset of
events stands for the packets associated to a particular query, that is to say,
a particular location, resolution and quality. Each particle is composed of
a large set of packets and is entailed with an associated weight, calculated
as the sum of probabilities of the packets within it [10]. This representation
allows the probability updating step to be implemented as a simple change
of the particle weights, while the optimization scheme consists in resampling
these pdf weights, which means in terms of our simulations that the time
falls from a couple of seconds to about 20ms with 1000 particles (data not
shown).

There are several avenues for future research in this direction, namely,
integration of more complex interaction patterns using Machine learning,
characterization of navigation patterns with larger sets of experts and fi-
nally, acceleration of the image navigation by prefetching the useful image
information during periods in which the expert is analyzing information [35].
Another research direction is the integration of automatically generated pro-
bability maps [59, 99] that would help to find, at any navigation time, the
relevant information to be displayed so that maximum interaction can be
reached with a minimal time.
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(a) Scanning pattern (b) Zoom in

(c) Window enlargement (d) Multiple scanning patterns

Figure 5.3: This Figure illustrates a whole navigation, superimposed upon
the thumbnail window. For the sake of the comprehension, this navigation
has been split into the four panels and the sequence follows the order (a), (b),
(c) and (d). Panel (a) shows the beginning of a navigation, the pathologist
starts at the upper left corner and displaces the WoI. In panel (b) there is
a change of magnification and therefore the WoI size changes from the thick
WoI to the dotted one. Panel (c) displays the adaptation the pathologist
performs for having the same visual field at the new resolution level, a re-
size of the auxiliary window. Finally, in panel (d) multiple displacements are
shown (a scanning profile) that are carried out at the new magnification and
WoI size. Note that panels (a) and (d) corresponds to scanning phase and
(b), (c) to the interpretation step.
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Figure 5.4: Navigation patterns in VM. A pathologist navigation is composed
of two main tasks: information search and interpretation information. The for-
mer corresponds to spatial displacements, case in which the current navigation
neighborhoods are relevant. The latter stands for every operation conducted for
improving the information resolution, either zooming in or increasing the quality
level. Note that the two operation are modeled by decreasing functions.
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(d) Multiple scanning patterns

Figure 5.5: The four panels correspond to the same navigation illustrated in Figure 5.3,
in the same consecutive order. Each panel displays the percentage of hits (y-axis) in a
cache space of a 110 % for both strategies (ours and LRU), against the navigation time
(WoI number in the x-axis). The selected parameters for our strategy were α = 0.8 and
λ = 0.8. The thumbnail has been superimposed upon each of these plots so that each
part of the navigation can then be located as a percentage of hits in the cache. Panel (a)
corresponds to the initial scanning task, from the beginning up to the arrow marked with
one. Note that the proposed method outperforms the LRU in about a 20 %. Afterwards,
the zoom-in operation displayed in panel (b) is observed in the graph a a rapid performance
decrease for both methods, a period which corresponds to the points between arrows one
and two. Interestingly, the proposed strategy always remains outperforming LRU. Panel
(c), the time interval between arrows two and three, shows a WoI resizing operation. Note
that both strategies hardly follow these changes but again, ours outperforms LRU (about
5 %). Finally, a series of scanning operations (panel (d)), at the same magnification, are
observed in the performance graph as a rapid increasing which stabilizes around the same
values of the navigation beginning.
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Figure 5.6: Cache performance measured in cache hits ratios for different
cache sizes, corresponding to different percentages of the size of the packets
in the lower resolution.
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6
Predicting Pathologist’s Velocity

Profiles

Gómez F., Romero E. A Model for Predicting Pathologist’s Velocity Pro-
files When Navigating Virtual Slides. Accepted for publication in Microscopy
Research and Technique.

Abstract This chapter presents a soft computing model which permits to
anticipate the pathologist trajectories in diagnosis tasks when exploring vir-
tual slides. The Bayesian strategy combines an offline model of a baseline
pathologist knowledge (the prior) and a prediction online module (the likeli-
hood) which captures a particular pathologist navigation pattern. While opti-
mal parameters for the biologically inspired offline model, are calculated using
an Expectation-Maximization strategy, prediction is carried out by a particle
filter. Parameters are estimated from several series of actual navigations
performed by several pathologists in different virtual slides. The present ap-
proach is compared with other conventional prediction methods and decreases
the calculated MSE in about a 50 % for the entire group of pathologists.

6.1 Introduction

Because of the size of these microscopical images, some image operation
unavoidably introduces considerable response delays which result in difficult
interactive and fluid navigations [85]. Strategies such as the cache or the
prefetching have been developed for aiming at decreasing the latency times
and therefore to permit fluid navigations. Cache is a rapid access to a space
of memory in which it is stored the portions of the mega-image that shall be
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visited in the future [29]. Prefetching is the anticipated uploading of those
parts of the mega-image to which the navigation will be addressed in the
future [34]. These techniques have shown to highly improve navigation times
[34, 135], but their performance depends on the prediction capacity of the
system [35, 113]. Available VMV software, such as ImageScope [39] or the
John Hopkins’ VMV [18], improves the navigation velocity using prefetching
and cache strategies. In general, the used strategies are linear or second
order approximations to the navigation velocity using considerations such as
either the navigation velocity is constant [26] or the velocity is an Exponential
Weighted Moving Average (EWMA) of the past velocities [23] or an auto
regressive velocity model [12]. Even though these models improve navigation
times, their performance has been lower compared with a specific prediction
model oriented to the task [19]. The present work is focused on developing
such a strategy when navigation is carried out by an expert pathologist.

Several studies have identified two complementary patterns for microscopy
exploration when pathologists are examining a particular sample: zoom-in
and scanning (panning) operations [16, 140, 28]. The scanning patterns span
the largest interval of time in a pathologist navigation since a magnification
change is more related to the level of visual detail rather than a search of
information, i.e., pathologists identify structures very easily with little level
of detail [103]. Indeed, navigation patterns arise from two inter-related pro-
cesses: the motor control of the virtual microscope associated to some move-
ment automations and a refined search information process, which reflects a
level of expertise [28].

Yet patterns may be different, the more expert is the group of patholo-
gist the more similar are the locations they visit when exploring a histologi-
cal slide [28]. The present chapter formulates and validates a mathematical
model which predicts the exploration velocity patterns of a group of four
pathologists with similar expertise. The approach herein proposed takes into
account the very basic influence of motor movements through a neuromuscu-
lar inspired model, coupled to a Bayesian learning strategy which attempts to
capture the navigation pattern of a pathologist. The presented method ap-
proaches both processes through a hierarchical strategy, articulated in three
phases: firstly a biologically inspired model [109] emulates non linear and
linear velocity changes of actual microscopic navigations so that this model
resulted suitable for tracking low and rapid velocity patterns. Second, a
Bayesian learning strategy generates a navigation probability distribution
function (pdf) from the actual pathologist navigation samples. Finally, the
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navigation patterns are predicted by a Bayesian filter which weights the pdf
values using real velocity samples. Two main contributions of this chapter
are: identification of the isotonic velocity patterns in actual scanning move-
ments of a computer mouse using a GUI designed for exploring virtual slides
and a probabilistic model which accurately predicts such patterns.

The rest of this chapter is organized as follows: next section presents the
velocity profiles of a group of four certified pathologists navigating ten mega-
images, an analysis of these patterns and a brief discussion about how similar
problems have been approached, section Materials and methods introduces
our prediction method, section Results demonstrates the effectiveness of the
predicting method. Finally the last section concludes with a discussion.

6.1.1 Modeling slow and fast human movements

Human movements have been studied under two different conditions: isotonic
or isometric. A movement is known as isotonic if a muscular contraction re-
sults in a joint movement and the muscle force is maintained constant in
despite of the change of the muscle length. Likewise, isometric conditions
are present when the muscle is contracted in equilibrium with other forces,
whereby the muscular attachments are always at the same distance. Most
of the natural human movements are basically isotonic with some isometric
components. The point is that these complex movements follow a precise
sequence of patterns which are susceptible of modeling and have been used
for prediction [107, 108, 109]. Experimentally, Gielen [50] demonstrated that
velocity and acceleration patterns of aimed flexion arm movements, with
equal duration but different amplitude, were basically equal - apart from
a scaling factor, i.e., ratio between movement amplitudes -. Gottlieb [62]
compared two subjects performing elbow flexions in a horizontal plane over
different distances, from a stationary initial position to a visually defined
stationary target. Joint angles and accelerations were measured from two
agonist and antagonist muscles, finding that the initial rises of the accele-
ration (and therefore of the inertial torque) were all invariant over changes
in the target distance. Likewise, several authors [11, 49, 96, 98, 127] have
reported that the velocity profiles of rapid-aimed movements have a global
“asymmetric bell-shape” which is invariant over a wide range of movement
sizes and speeds. Plamondon [109] compared 23 different models that can be
used to describe the asymmetric bell-shaped velocity profiles of rapid-aimed
movements and found a clear superiority of the support-bounded lognormal
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model to globally describe them. The very basic idea is that specific tasks
involving repetitive isotonic movements can be completely described in the
velocity domain, as a response to the synergistic action of a combination of
an agonist and an antagonist neuromuscular network [107, 109]. Each net-
work of this synergy is represented as a set of complex subsystems, which
reacts to an input command with a lognormal impulse response.

The VMV developed within the present investigation uses a conventional
computer mouse, whereby navigation consists of two processes: selection or
drop of a WoI over the lower resolution image, followed by a window drag
towards an interest point and a drop operation once the target is reached.
In the particular case of a virtual navigation, an expert displaces a mouse
whose resistance to the arm forces is zero or constant and is so defined as
isotonic [154]. The important issue with a conventional mouse is that its
relative movement is mapped to the cursor position, its control is intuitive
and facilitates the use of ordinary motor skills. This conventional mouse
allows small and large fine movements, yet a user must lift and reposition
the device to move over large distances. In the present investigation, the GUI
design forced the pathologist to move within the thumbnail image, for which
small and large movements demanded fine control strategies. In the case of
small movements, the pathologist is forced to maintain around a previously
chosen RoI, while for large movements, the pathologist applies a foraging
strategy which requires fine control in order to fit the Fitts’s law [47]. We
therefore claim that this movement can be considered as isotonic and can be
modeled using the kinematic theory [109].

6.1.2 Navigation models

The problem of predicting navigation patterns has been already approached
in other domains. Lui [86] proposed a method for predicting navigation pat-
terns of user when browsing multiresolution images, the strategy is based
on the hypothesis that a navigation is a sequence of multiple jumps among
various spatial positions in the image. The image is divided into blocks at
different resolutions, each with an associated fidelity information measure,
defined as a measure of visual attention [69] weighted by the resolution. A
navigation is so defined as a collection of jumps, each described by its be-
ginning and end blocks, together with the navigation delay. This model
supposes that navigations use a maximum benefit at a minimum cost policy,
i.e., a foraging pattern. In similar problems, such as the prediction problem
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of the mouse position in distributed virtual environments [19], it has been
proposed the use of a polynomial predictor, under the hypothesis that the
mouse movement is a constant. This method is appropriate for slow velocity
profiles but its delay is considerable in case of rapid movements [19]. Chan
finds that navigation is composed of a series of velocity peaks and when stu-
died in the phase space (velocity-acceleration), data may be approximated
by a second order differential equation. Nonetheless, low velocity profiles
can not be predicted by this model. For the problem of predicting naviga-
tion patterns of pathologists performing diagnosis tasks, as far as we know,
there are no proposed models in the literature. In conclusion, the velocity
profile of a user handing a conventional device as a computer mouse has been
modeled using two different approaches, one for slow and another for rapid
profiles. Unfortunately, integration of these two models into real applications
is very difficult since it is nearly impossible to decide which should be used
for complicated velocity profiles.

6.2 Materials and methods

The pathologists navigations used in the present investigation were described
in Sections 3.3 and 4.2.

6.2.1 The velocity profile

A portion of an actual navigation is also shown in Figure 6.1, where the upper
panel shows the path defined by the pathologist. These mouse coordinates
are better observed in the left-bottom panel, recall that the number of points
depends on the velocity and the sampling frequency. Finally, the velocity
modulus has been calculated from the plot shown in the left-bottom panel
and displayed in the right-bottom panel. Note that the velocity agrees well
with what has been described in the literature for isotonic movements, i.e.,
an asymmetric bell shaped curve which can be approximated by a log normal
law.
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(a)

(b) (c)

Figure 6.1: Figure shows a drop-drag-drop operation superimposed upon
the thumbnail image in the upper panel (panel a). The trajectory in the
thumbnail image coordinates is plotted in the left bottom panel (panel b)
while its velocity modulus is depicted in the right bottom panel (panel c)
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Figure 6.2: The four panels show uni-dimensional navigation segments of
the four pathologists (x-axis). Explorations show high velocity profiles when
experts are looking for information, In these four plots, the y-axis stands for
the WoI velocity while the x-axis represents the sequence of requested WoIs,
during the navigation. The GUI design allows to easily jump from one RoI
to any location, dragging a desired WoI within the thumbnail windows, an
effect observed in terms of velocity as the increasing part of the peak. When
a new RoI is reached, a decreasing velocity profile is observed since this new
RoI deserves a certain amount of time for examination.

Figure 6.2 shows typical velocity profiles corresponding to some naviga-
tion displacement of the four pathologists. Yet every pathologist presents
different navigation patterns, the four panels evidence that there exists a
common velocity profile, i.e., velocity rapidly increases up to a certain level
and then it decays with lower slopes. This profile is likely a complex mix of
associated factors such as the microscopical magnification, the neuromuscu-
lar mechanics and the type of restriction demanded by the developed GUI,
i.e., a drop-drag-drop sequence (screen and mouse).
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6.2.2 A machine learning approach for user modeling

The prediction problem is posed in terms of how to anticipate scanning pat-
terns for a particular navigation. This problem has been here addressed as
to forecasting velocities so that next positions can be predicted by a simple
integration of these found velocities. For so doing, it is needed an analytical
expression which approaches the observed scanning profiles in their peaks
and valleys. This expression should be dependent on a set of parameters
and the time so that it can be evaluated in the future. A convenient expres-
sion is a ∆-lognormal law, result of the competitive interaction between two
log-Gaussians [109], each representing the fundamental parts of the neuro-
muscular system, i.e., the agonist and antagonist components.

v(t) = D1∆(t; t0, µ1, σ
2
1)−D2∆(t; t0, µ2, σ

2
2)

�

�

�

�6.1

where D1 and D2 are Gaussian weights, which are the two input commands
of the neuromuscular system, t0 is a trigger time of the whole process and
the the log-Gaussian is

∆(t; t0, µi, σ
2
i ) =

1

σi

√
2π(t− t0)

e
−

{

[ln(t−t0)−µi]
2

2σ2
i

}

�

�

�
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here µi estimates the delay time of the two log-Gaussian and is associated
with the overall reaction velocity of the neuromuscular system, while σi is
related to how large and asymmetric the entire movement is. Plamondon
demonstrated [109] that different velocity profiles under various experimen-
tal conditions are described by a ∆-lognormal law, whereby he was able
to determine the adequate parameters when one individual was performing
specific motor tasks. Kinematic theory is here applicable because the mouse
movement is considered as isotonic with constant resistance [154], i.e., there
exists a linear relationship between the mouse movement and the WoI dis-
placements, using the developed GUI.

This formulation allows a great variety of scanning velocity profiles with
different durations, slopes and heights. The associated parameters can be
modeled as random variables of a unique pdf which can be evaluated in
future times. The user model herein proposed is based on a machine learning
strategy, an approach presently known as Machine Learning for user modeling
ML4UM [56] and is divided in two phases:

1. An offline learning phase in which a general pdf is generated using a
competitive ∆-lognormal law and a set of navigation examples
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Figure 6.3: A segment of a typical navigation is shown (thick line) super-
imposed with the result obtained by adjusting a ∆-lognormal law (dotted
line).

2. Tracking online phase in which the initial general pdf is modified esti-
mating the best set of parameters for a current navigation of a deter-
mined specialist, using the collected data during this navigation. This
function is thus adjusted for achieving prediction.

Offline learning

In this phase the algorithm estimates the optimal parameters that maximize
the likelihood for a set of actual navigations using the available training set
of mega-images. Parameters associated with each of the scanning profiles
are determined by approximating the ∆-lognormal law (Equation 6.1) to the
actual data using a simple non linear least square method [91]. The obtained
set of parameters is then used as the input to an Expectation-Maximization
algorithm, which solves the maximum likelihood problem (ML). Actual ve-
locity profiles are shown in Figure 6.3, superimposed to the velocity peaks
obtained using the ∆-lognormal law. The main objective of this part was
to obtain a valid parametric expression for adjusting the shape of all these
velocity profiles and use it for inferring a pathologist pattern from a training
set of samples.

Figure 6.3 shows a typical velocity curve for a navigation performed by
one of the pathologists. The thick line displays the navigation adjusted by
a ∆-lognormal model. Among several advantages, this model allows in a
natural way to include a proper response to rapid changes of acceleration
while it is also capable to approach linear patterns. A ∆-lognormal was
successfully used for modeling rapid responses to motor tasks [109], such
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as it is the case when a pathologist uses a mouse to emulate microscopical
routines. This parametric representation allows to introduce very powerful
soft computing methods into this problem since these parameters are random
variables with a specific pdf [109].

On the other hand, a ∆-lognormal constitutes a convenient description
of navigation velocities but it is incapable in any case to capture the particu-
larities corresponding to navigations of different experts. This makes neces-
sary to find the set of ∆-lognormal parameters which better fits a particular
pathologist navigation. Although the ∆-lognormal properly represents ve-
locity profiles, parameter tuning is a difficult problem to deal with, provided
the high parameter space dimensionality and their strong coupling [109]. The
approach herein used is based on Bayesian learning, using navigation sam-
ples from the actual trajectories of real navigations. Each navigation peak is
thus associated to an assembly of parameters γ = (t0, D1, D2, µ0, µ1, σ1, σ2),
inferred from each velocity peak as follows: the agonist parameters are com-
puted through a non-linear minimal square adjustment [91] of the velocity
peak (Equation 6.1), v(t) ≈ D1∆(t; t0, µ1, σ

2
1). The antagonist component is

approximated by subtracting the observed peak velocity from the adjusted
agonist component, i.e., D2 ≈ D1∆(t; t0, µ1, σ

2
1) − v(t) using non-linear mi-

nimal squares and the t0 is calculated from the agonist component [63]. We
assume that each single velocity peak is one instance of a true model, en-
tailed with the parameter characteristics of an ideal navigation and which we
wish to estimate. Given an observed set of parameters extracted from the
pathologist navigation, the objective is to find the pdf for these data.

Let γj a random variable associated to the jth peak-parameter (parame-
ters defined in Equation 6.1) of the pathologist navigation, i.e:

(γ1, γ2, . . . , γ7) = (t0, D1, D2, µ1, µ2, σ1, σ2)

Suppose that each parameter of the peak (Plamondon parameter) comes
from a Mixture of Gaussians (MoG):

f(γj) =

Mj
∑

m=1

λm,j G(γj |µm,j, σ
2
m,j)

�

�

�

�6.3

where G(γj |µm,j, σ
2
m,j) is a Gaussian distribution with mean µm,j and co-

variance σ2
m,j and λm,j is the weight of the m

th Gaussian of the parameter j,
Mj is the number of components of the MoG for the parameter j, Mj = 2
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for j = 2, 3, i.e., for the D1 and D2 parameters. Recall that these parame-
ters stand for the weights of the agonist and antagonist components of the
movement that are herein modeled as a pair of log-Gaussians. Moreover,
depending on the navigation direction a positive or negative sign is set to
each of these D parameters. This adaptation of the Plamondon model allows
to naturally deal with forward or backward movements and different velocity
profiles.

The EM algorithm calculates a ML estimator of an incomplete set of
data. For so doing, a new complete set is made up with the incomplete
and hidden data so that calculation of the ML on this new set is trivial.
In this case, the incomplete data are the set of parameters of the collected
navigations Γj = {γj

i , i = 1, 2 . . . , n}. These data are incomplete since it
is impossible to determine from which Gaussian of the MoG observations
come from, otherwise calculation would be trivial since estimation would
be focused on this unique Gaussian. For this reason, observations Γj are
completed using a variable mj

i and mj
i ∈ {1, 2 . . . ,Mj} indicates which term

of the mix of Gaussians generates the parameter γj
i .

Starting from the initial values of the ML estimator parameters, the EM
algorithm iterates on two steps:

• The Expectation step (E-step [32]) calculates an estimator of the indi-
cating variables mj

i given the observations and parameters of the ML
estimator. These estimators are used to complete the data set and the
ML estimator parameters are calculated.

P (mj
i = m|γj

i , θ
j

(t)) =
P (mj

i = m|θj(t))G(γj
i |mj

i = m, θj(t))

G(γj
i |θj(t))

where

P (mj
i = m|θj(t)) =

1

n

n
∑

l=1

P (mj
l = m|γj

l , θ
j

(t−1))

here θj = {λm,j , µm,j, σ
2
m,j}

Mj

m=1, is the set of parameters of each MoG.

• In the Maximization step (M-step) the new parameters of the ML es-
timator are used for calculating a new value of the indicating variables
(E-step). The new parameters of the ML estimator (M-step) are ob-
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tained then from this new complete set
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6.2.3 Tracking online learning via particle filtering

The offline phase provides a pdf to generate the entire set of pathologist’s
navigations, even though during navigation the belief must be adjusted to a
particular pathologist’s navigation. Adaptation of the found pdf to the cur-
rent navigation is achieved through online learning by continuously adjusting
the parameters to observations while predictions are performed. In this case
the process is xt = (x1

t , x
2
t , . . . , x

7
t ) = (t0,t, D1,t, D2,t, µ1,t, µ2,t, σ1,t, σ2,t), so

that parameters of a velocity peak for a time t and observations correspond
to the velocity profile for this time zt = (vt).

The online adaptation problem consists in estimating the parameters of
the velocity profile given a set of observed velocities, i.e., p(xt|z1, z2, . . . , zt).
This estimation can be recursively found using a Bayesian filter [10] so that
it is needed to define an estimation of the system states at the beginning of
the whole process. The whole adaptation is governed by two equations: a
dynamic equation which indicates how the system states are evolving and a
equation of observations which relates the system states and observations.
The recursive estimation requires two phases: a prediction step which uses
the dynamic equation for estimating every possible state of the system in
time t and an updating step which modifies those possible states for matching
them to observations.

The parameters of the initial pdf come from the offline learning phase. In
the dynamic Equation 6.4, let us assume that before the pathologist moves
the mouse, he/she has a pre-programmed desired path. The previous hypoth-
esis is valid only between separated WoIs and indeed this has been already
proved in eye tracking studies [79, 137]. Small adjustments to the system are
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given by the visual feedback and are herein modeled by independent Brow-
nian motions of each of the Plamondon parameters. Therefore, the hidden
parameters defined in Equation 6.1 should be modified so that the predicted
velocity can vary and properly approach the sequence of observations. For
doing so, in the prediction phase, the hidden navigation parameters are mod-
ified by a Gaussian perturbation. The noise produced by the variability of
the sensed mouse positions is assumed to be additive, as well as independent
of the positions of the mouse neighbors, whereby it can be modeled as a
Gaussian. The initial pdf parameters come from the offline learning phase
(Equation 6.3). The dynamic system equation indicates how the parame-
ters change within a velocity peak, a phenomenon modeled as a Gaussian
perturbation of the hidden parameters

p(xj
t |xj

t−1) = G(xj
t | xj

t−1, σ̂j
2)

�

�

�

�6.4

The updating equation is able to generate velocities using parameters of
the velocity peak, this is modeled as the sum of the parametric expression
(∆-lognormal) and a Gaussian noise:

p(zt|xt) = N(zt −D1∆(t; t0, µ1, σ
2
1) +D2∆(t; t0, µ2, σ

2
2),Σ

2)

where, xt are the parameters for a navigation time t and σ̂j
2, Σ2 are prede-

fined parameters whose values were calculated by minimizing the error when
predicting the velocity from observed velocities. The used loss function was:

f(xt,Σ, σ̂1, σ̂2, . . . , σ̂7) =
∑K

i=1

(zit−D1,t∆(t;t0,t,µ1,t,σ
2
1,t)+D2,t∆(t;t0,t,µ2,t,σ

2
2,t))

2

2Σ2

+
∑7

j=1

∑K
i=1

(xj,i
t−1−xi

t)
2

2σ̂j
2

where, K is the number of training samples, zit and xj,i
t−1 are the velocity

samples and the navigation parameters used for training. In the loss function,
the first term accounts for the error introduced by the mouse, while the
second stands for the user adjustements during navigation. Minimization of
equation was achiveve using the Levenberg−Marquardt method [91], with
K = 10 training samples corresponding to velocity peaks randomly selected
in the time t, while xj,i

t−1 parameters were non-linear least square estimated,
as mentioned before.

Because of the non linear nature of the model of observations, there is no
analytical solution for the proposed Bayesian filter so that the estimation of
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the state is achieved using a sequential importance resampling (SIR) filter
[10]. This technique approximates a pdf with a random set of samples, each
with an associated importance weight. Using this discretization, the predic-
tion step applies the dynamic equation to each sample while the importance
weights are modified in the updating step for the sequence of samples match
observations. Resampling aims to concentrate the samples around the areas
with a high importance ratio so that some samples will disappear. How-
ever, provided this a dynamic and stochastic process, importance can change
within the navigation and some of the disappeared samples can become im-
portant but they result completely unretrievable. Therefore, the sequential
importance resampling uses an additional resampling process which avoids
the weight of some particles early vanishes.

6.2.4 Evaluation

To study the performance and the accuracy of the proposed prediction method,
we have implemented two classical methods for forecasting: an expected
weighted moving average (EWMA) and an elliptical predictor based on the
Kalman filter (elliptical model) [19]. The algorithms were written in C++
and run under windows with an Intel Centrino processor of 1.7 GHz and 1
GB in RAM. Time performance was assessed by calculating the mean run-
ning time for each algorithm. We also studied the prediction error of the
three methods as follows: firstly, the prediction error for each method was
computed by comparing with the recorded navigations. Secondly, we study
the degree of dependence between the results provided by the proposed pre-
diction method and the pathologist, i.e., whether or not the predicted results
are independent of the pathologist. Statistical significance was determined
using the Barlett’s test [126]. The error for each navigation step was mea-
sured in pixels as the root mean squared error (RMSE) between the recorded
position and the predicted position provided by each strategy. The predicted
displacement vector was calculated as the velocity times the mouse sampling
time (0.1 s).

Parameter values were tuned for each of the three predictors using four
different navigations, corresponding to two pathologists navigating on two
different mega-images. The EWMA’s time window size and the vector of
weights were set as the least error found in the test images using an extensive
numerical search, namely the time window size varied between 1 to 10, using
a step increment of 1 while weights were varied between 0 and 1, with step
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increments of 0.01. The parameters of the elliptical model were obtained
from a non-linear optimization process, as previously described in [19].

6.3 Results

A total of 40 navigations were used either for training or assessing. Patholo-
gists were instructed to navigate until they could achieve a diagnosis about
the organ or the particular pathology. Overall, these mega-images were parts
of full histological slides, a relative size which varied between 10% to a 30%
of the whole histological sample. This means that pathologists never had
the entire information as to have comparable levels of coincidence on the
diagnosis and many times they just gave up. It is worthy to strength out
that the main objective of this study was to determine the coincidence on
the velocity patterns rather than the sequence of events for diagnosis or even
the diagnosis. Finally, the time used for navigating varied between 20 s
and 2 min, depending on the image contents. In general, navigations were
shorter for images stained with inmunofluorescent techniques, for which the
islets of Langerhans constitute the main information on which diagnosis lies.
On the contrary, inflammatory pathologies stained with Hematoxylin-Eosin
took larger exploration intervals and very rarely they were able to achieve a
correct diagnosis.

6.3.1 Computational times

The prediction times for the three models are shown in Figure 6.4, the pro-
posed method presents the highest computational load, near to 6 ms using
1000 particles. This is the result of the number of parameters of the dyna-
mical model, which is 7, compared to the elliptical and EWMA models: 2
and 1 parameters, respectively.

These computational times are very low and, in any case, much smaller
that the retrieval time of a WoI which is about 500 ms [68]. In addition,
the time performance for the three methods is lower than 100ms, which is
the mouse time sampling. These results indicate that this method may be
perfectly utilized for the prediction task in real time applications.
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Figure 6.4: Comparison of the computational cost for the three predicting
methods. Our model has a higher cost, but its time performance is in any
case much lower than the sampling mouse period, i.e., the method can be
used for virtual microscopy.

6.3.2 Prediction errors

Figure 6.5 shows a segment of an actual navigation (thick line), along with
the predictions computed by two different strategies: an elliptical model [19]
(dashed line) and the approach herein presented (dotted line).

The elliptical model shows a high variability which induces a series of
peaks, quite far from the actual navigation. Very likely, this is due to the
method itself since the switch from low to high velocities is controlled by a
threshold which introduces a lot of noise in the prediction. In contrast, the
presented method is steadier, more robust to the noise and shows a better
approximation to the estimator in the sense of minimal squares. From a
practical point of view, the mouse introduces a lot of noise so that having a
robust-to-noise estimator improves precision.

Pathologist navigation error

The success of a preloading strategy, for the case of actual virtual microscopy
applications, depends on the capacity of the navigation prediction for future
times [35]. Therefore, the prediction in thumbnail coordinates was calculated
up to 20 steps ahead with interval increments of 5. For this experiment, one
step corresponds to the next time the mouse captures a new location. The
whole set of navigations was split into each of the four pathologists. Only two
navigations were used as training and the rest of individual navigations were
used as a test set. Results for each pathologist were harvested independently
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Figure 6.5: Thick line corresponds to a representative navigation segment.
Observe the toothed saw-like pattern, mostly produced by the electrical noise
from the mouse capture process. A good prediction strategy should approxi-
mate average values. Dashed line corresponds to the prediction obtained with
the elliptical predictor while the dotted line depicts predictions obtained with
our method.

and averaged for estimating means and variances.
Table 6.1 shows the RMSE of the prediction for the three methods for

five different future steps. Overall, the error in pixel coordinates is very low
for the five different intervals. However, the best approximation is achieved
with our method, reaching high error reductions as the future step increases.
As expected, the larger the prediction step the higher the prediction error,
for the three methods. Interestingly, our method shows lower error rates, a
pattern which results much more important as long as the step increases.

Prediction errors with different pathologists

The method was also assessed when different pathologists navigate one mi-
croscopical mega-image so that inter-pathologist prediction accuracy could be
evaluated. For so doing, one image was randomly selected and predictions
were estimated using the available navigations on this image. The RMSE
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Future Steps EWMA Elliptical Model Our method
1 1.3 ± 0.13 1.1 ± 0.1 0.9 ± 0.17
5 3.4 ± 0.14 2.1 ± 0.2 1.2 ± 0.19
10 7.9 ± 1.08 3.1 ± 0.3 1.8 ± 0.40
15 9.4 ± 1.4 4.4 ± 1.1 2.4 ± 0.80
20 11.4 ± 2.3 6.5 ± 1.5 3.2 ± 0.97

Table 6.1: RMSE for five different prediction steps, expressed as means and
variances in pixels, for the three prediction methods, namely: EWMA, El-
liptical model and the presented method.

variances were compared among the group of four pathologists for the next
prediction step and results are shown in table 6.2.

pathologist Mean ± SD Total Samples
1 1.18 ± 0.09 180
2 1.36 ± 0.13 262
3 1.24 ± 0.14 283
4 1.46 ± 0.15 229

Table 6.2: RMSE means and variances in pixels for the next prediction step,
calculated from the available navigations of the four pathologists

Table 6.2 shows the results as means ± the standard deviations. Pre-
diction results were similar and differences were not significant under the
Bartllet’s test [126] (significance level set to α = 0.010, Barlett’s statistics
to 51.7 and χ2

α,k−1 = 50.8), which suggests that prediction is independent of
the particular set of training samples. This experiment was also carried out
using the four next steps and results are alike.

In this section, we have demonstrated that the presented method is
accurate and robust for predicting the mouse motion in virtual microscopy
through various experiments. Our results show that the proposed method
has lower prediction error compared with other popular prediction methods.
Our results indicate that the prediction capacity is also independent of the
pathologist. In contrast, a limitation of our method is their computational
cost when comparing with other prediction methods, however this cost is
sufficiently low as to use it in preloading strategies for virtual microscopy.
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6.4 Discussion

The present investigation has demonstrated a common pattern in the velocity
profiles obtained from actual pathologist navigations in virtual microscopy.
In addition, a biologically inspired model served as prior knowledge of a ma-
chine learning strategy which could then be properly used for tracking and
predicting these profiles. This velocity profile is the result of two different
factors: firstly, the distribution of RoIs all over the virtual slide, and sec-
ondly, the movement restriction compelled by a particular device such as an
ordinary computer mouse. Overall, the proposed model is based on a prior
which takes into account main human movement restrictions when perform-
ing subtle tasks and learn the exploration patterns from a set of training
navigations. The tracking and prediction strategies are both based on a non-
linear dynamic model which naturally adapts to any velocity profile, namely,
to the slow and rapid movement at any desired direction.

Construction of a virtual slide can be thought of as three complementary
processes: stitching, storage and efficient access [118]. The stitching aims
to reconstruct a virtual slide (a digital high resolution image of the physical
glass slide) as similar as possible to the real glass slide so that exploration
may be carried out using conventional digital devices as a personal computer
[6]. The storage process should improve main problems generated by the
high resolution acquisition, namely large disk space and display limitation
upon conventional visualization devices [6], using representation data which
allow efficient access to the virtual slide at different magnifications or scales,
at different RoIs and with any desired quality level [68]. Finally, the last
objective, the efficient access, is the adaptive displaying of the virtual slide
data or a seamless navigation which meets the pathologist requirements [68].
Recent investigations [35] have demonstrated that a seamless navigation can
be reached using adaptive strategies such as cache and prefetching [68]. Pro-
cessing times have improved up to a 30 % using the naviest cache strategies
[68]. In any case, the success of these strategies is highly dependent on the
degree of knowledge one has about how a user runs over the virtual slide,
i.e., the prediction accuracy [35]. However, construction of any prediction
method will depend on the identification of navigation profiles, if they exist.
It is nearly impossible to determine such patterns for the general case, but
oriented task application such as the virtual microscopy could take advantage
that these patterns do exist.
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A virtual microscopical exploration, performed by an expert pathologist,
is composed of multiples jumps of spatial scanning or magnification changes
so that information should be constantly reconstructed from minimal units.
In general, every pathologist follows a standard methodology with two coarse
phases: first examination is carried out at the lower magnification in order
to locate relevant information in terms of a spatial organization of the his-
tological sample while the second and further examination is conducted for
analysis of the slide contents [103]. This analysis is performed through a spa-
tial navigation of small zones of the whole slide [79, 137], upon which gentle
movements are required. Several studies have identified two complementary
patterns for microscopical exploration: zoom-in and scanning (panning) ope-
rations. Krupinsky has demonstrated [79], using an eye tracking system, that
pathologists highly coincide on the regions they visit when navigating vir-
tual slides. This fact could be used for constructing a probability map of the
virtual slide by storing the history of visits and calculating the number of
times a region is visited. This probability map would be then used for pre-
diction after recording a significant number of navigations, i.e., a frequentists
approach. However, this strategy results limited in clinical environments in
which microscopical slides are explored by a reduced number of pathologists.

From the point of view of the image contents, it would be reasonable to
characterize the image, to determine where the RoIs are located and use this
information as a road map in the navigation process. A basic concept in
understanding histology is that there are four basic types of tissue: epithe-
lial tissue, connective tissue, muscle tissue, and nerve tissue [72]. With very
few exceptions, all organs contain a different proportion of these four basic
tissues. In general, histological techniques highlight these tissues with few
colours since dyes are designed to specifically arise a particular tissue feature.
Colour variability stems mainly from a large intensity range as well as dye
deterioration. In terms of image processing, histological images are distin-
guished by having more or less homogeneous textures or repeated patterns,
which may be used to characterize the image and to decide a particular stra-
tegy for compression. Nevertheless, very little information could be drawn
from such representations because for the particular case of pathological im-
ages, these textures are highly complex stochastic systems, organized in a
manner which is very badly understood. As far as we know, RoIs have
been determined for specific types of images [71, 125] with some particular
pathologies so that they could be hardly used for actual virtual microscopy
applications.
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The velocity profiles observed through this investigation follow what has
been described in the literature [109] for gentle movements, that is to say,
an asymmetric Gaussian [109] which is the result of the interaction between
the agonist and antagonist mechanisms. Overall, once the expert leaves a
particular RoI, the velocity modulus increases until the expert focuses on a
new region. After the maximum is reached, an exponential decay is observed
which follows the Fitts’s law. This law formulates a model of human move-
ment which predicts the time required to rapidly move to a target area, as
a function of the distance to the target and the size of the target [47]. The
maximal velocities and the time spanned for the whole phenomenon depend
on the dimensions of the thumbnail image and the navigation device, i.e.,
the computer mouse, typically this peak magnitude varied between 0 and
60 pixels/s while its duration varied 900ms and 3 s. This work focuses on
characterizing the trajectories between RoIs, using these velocity profiles.
These profiles have been previously used in virtual navigation environments
[19] and movement prediction in virtual reality [20]. This characterization
is independent of the image contents, avoiding the variability problems and
computational burden. Besides, thanks to the restrictions set by the explo-
ration device (mouse in this case), it is possible to identify the velocity inter-
val values. Finally, as the velocity is a two-dimensional variable, its tracking
and prediction require low complexity calculation, such as it is shown in
table 6.1. The work dedicated to these profiles lies on the hypothesis that
exploration velocities are actually dynamical processes. In this sense, Chan
initially pointed out that a linear model for velocity prediction was adequate.
Later, he realized how high velocities followed Gaussian asymmetric patterns.
Mixing up these two ideas, he formulated a strategy for prediction which has
been successfully used in many scenarios [19, 20]. Nevertheless, adjustment
of this model has not been carried out experimentally and besides requires
heuristic parameters, such as the threshold level to which the model switches
from low to high velocity profiles. The Plamondon approach [109], herein
used, has many additional advantages and none of these defaults. Among
the advantages, it is simple, based on physiological experimental knowledge
and is adaptable to any velocity profile.

This chapter presents a novel method for predicting a pathologist’s nav-
igation path as well as its velocity profile in virtual microscopy, using a very
simple soft computing strategy. Pathologist navigation profiles are found
from the predicted velocities by a simple over-relaxation integration scheme.
The method presents considerable reductions in the error rate, when com-
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pared with previous approaches, and is also more robust and steadier for
longer future prediction intervals. Future work includes integration of this
method with a cache or prefetching strategy.
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7
An Attentional Model for Finding

Regions of Interest

Gómez F., Gutiérrez R., Romero E.. A Supervised Attentional Model for
Finding Regions of Interest in Basal Cell Carcionoma Images. Submitted to
Journal of Visual Communication and Image Representation.

Abstract This chapter introduces a novel “bottomp-up” and “top-down”
visual attetion model for finding diagnostic regions of interest in histopatho-
logical images. The method is based on the cognitive process of visual se-
lective attention that arises during a pathologist’s image examination. The
selected bottom-up information includes local low level features such as in-
tensity, color, orientation and texture information. Top-down information is
related to the anatomical and pathological structures known by the expert. A
coarse approximation to these structures is achieved by a still segmentation
algorithm. The algorithm parameters are learned from an expert pathologist’s
segmentation. Top-down and bottom-up integration is achieved by calculating
a unique index for each of the low level characteristics, inside the region.
Relevancy is then estimated as a simple average of these low level indexes.
Finally, a binary decision rule defines whether or not a region is interest-
ing. The method was evaluated on a set of 55 images, using a perceptually-
weighted evaluation criterion, finding a quality gain of 3dB when comparing
to a classical attention bottom-up model.
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7.1 Introduction

A reliable determination of clinically meaningful RoIs in medical images is
at the very base of strategies for adaptive delivering of image data and clever
selective compression, which in turn have multiple applications in medical
education, medical training and virtual microscopy [7]. The typical stra-
tegy so far has been to draw these regions by manual selection [28], but this
method is time consuming and presents high inter-observer variability, in
some studies of about 20% [40]. The automatic RoI extraction in histopatho-
logical images is a very challenging task because of their very complex color,
shape and architectural variabilities [138]. This picture is even worst if one
thinks that histological samples are randomly taken from a lesion and that
the anatomical biopsy is cut at different orientations and locations [93]. The
naive use of current low level-RoI-extraction methods for medical images [75]
would probably fail since they disregard main histopathological issues such
as particular tissue architecture and relations between different structures
[157]. An expert nevertheless is capable to weight each of them and figure
out a very precise diagnosis. Overall, a pathologist examination starts with
a first search and identification of relevant areas at a low power, which will
be later revisited at a higher power [28]. Attention processes are triggered in
this phase to visualize, focus and identify these regions. Attention is herein
thought of as the system capacity to select relevant information in function
of a particular task. Some computational attention models rely on low-level
image features to locate the relevant or conspicuous information within an
image. One of these “bottom-up” models of attention, is the one proposed by
Itti et al. [70]. Other theoretical and computational models of attention rely
on “top-down” information, i.e., memory (semantic, episodic, declarative)
and specific behavioral tasks [37].

The main contribution of this work is to model attention by bringing
together bottom-up and top-down information. Specifically, this model emu-
lates the pathologist’s first examination step where she/he defines and sepa-
rates high informative diagnostic regions [105]. Thus, the idea is to capture
groupings, not necessarily neighbors, endowed with similar histopathological
meaning. The method combines the advantages of a low level image charac-
terization with a high discriminant power in terms of tissular properties and
spatial grouping, information learned from the pathologists. This novel stra-
tegy was assessed in basal cell carcinoma images stained with Hematoxylin-

148



7.1. INTRODUCTION

Eosin, but is extensible to other histopathological images since the metho-
dological analysis is alike in many other medical entities. This carcinoma is
a representative tumorous pathology constituted of abnormal epithelial and
connective tissue arrangements, which are also found in many other patholo-
gies [93]. Our results demonstrated more coherent RoI selections than those
obtained with a classic strategy of visual attention.

This chapter is organized as follows: the problem and some previous works
are introduced in this section, Section Materials and Methods is devoted
to describe the proposed method for finding relevant information regions,
evaluation and experimental results are presented in Section Results and
some conclusions and perspectives are discussed in the last Section.

7.1.1 Related Work

The problem of selecting RoIs has been approached in several medical image
modalities. For instance Karras et al. [75], using gray scale pictures from ab-
dominal cancer, assumed that regions with high density of repetitive patterns
were more relevant than others. A robust description was obtained by using
a vector of texture characteristics like energy, correlation, inverse difference
moments and entropy. These features were the input to a fuzzy c-means
clustering algorithm that classified regions as important or non-important.
Gokturk et al. [121] claimed that relevant information in CT colon images
was mainly due to the boundaries, when they are separated by air from other
tissues and are recognized as variations on the gray scale levels. This kind
of strategies could not be straightforwardly applied to histopathology images
because these techniques ignore information such as color, intensity or spatial
correlation [152, 157], crucial in these images since they are basically charac-
terized by a repetitive complex mix of these patterns. A classical approach,
in natural images, has consisted in finding RoIs with high spatial edge den-
sity [146]. Again, this concept could hardly be applied to histopathological
images because they contain regions with high edge concentration without
clinical meaning [82] so that this approach would surely fail.

In the histopathological domain, a similar problem has been previously
approached in automatic cancer diagnosis, case for which the aim was to au-
tomatically decide on the existence of cancer by examining the tissue proper-
ties [31]. These properties were characterized at two levels: cellular, focusing
on cell abnormalities, [45, 38] and tissular, by description of changes in cell
distributions [74]. The analysis in both cases was performed by low level
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image characterization and a statistical analysis to discriminate normal from
cancerous tissues. A large variety of low level image features have been used
in histopathology: morphological, textural, fractal, topological and intensity
based features [31]. These features are always computed at the pixel level,
regardless the fundamental fact that histopahtological images are constituted
by objects [105]. A recent work in this direction was proposed by Tosun et.
al. [138]. In colon biopsy images, they approached the histopathological
objects by circular primitives, upon which they computed an homogeneity
measure. A growing and merging algorithm was used to segment cancer-
ous tissues by minimizing these measures. Unfortunately, these algorithms
highly depend on many non-intuitive parameters [74, 138], which must be
manually tuned.

A pathologic diagnosis is the results of a complex series of activities mas-
tered by the pathologist. Classical psychophysical theories suggest that com-
plex visual tasks, such as histopathology examination, involve high degrees
of visual attention [105]. There exists evidence showing that focal attention,
displayed serially to different locations, integrates the constituting low level
features of an object [139]. These findings have inspired several computa-
tional algorithms that somehow search to structure the low level features
[69]. One of the most influential is the one proposed by Itti et al. [70], a pure
bottom-up attention model that locates relevant foci, based on a conjoint
map of three low level characteristics, i.e., color, intensity and orientation.
Although this method has been successfully tested in natural images, pri-
mary results on histopathological ones were not (as it would be described
later). The relevant semantic information of these images is mainly consti-
tuted by repetitive patterns, which cannot be linearly reconstructed from the
three basic features used in Itti’s model. These computational models have
been used to characterize RoIs in natural images [42], however, their use in
medical images is very limited.

7.2 Materials and Methods

7.2.1 Images and Ground Truth

A total of 55 histological microscopic fields of view of basal cell carcinoma,
sampled from 25 randomly chosen patients, were chosen in this evaluation.
Each biopsy was stained with the Hematoxylin-Eosin technique. Micros-
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copical fields were digitized with a system Nikon eclipse E600 through a
coupled to a Nikon DXM1200 camera at different magnifications (objective
set to 20×) and stored in JPEG format at a 1280 × 1024 resolution. An
experienced pathologist, with at least five years of experience, selected the
digitized fields of view and manually segmented relevant regions. A manual
segmentation, made by an expert pathologist, is shown in figure 7.1.

Figure 7.1: Illustration of a ground truth, drawn by the expert pathologist.

Note how difficult is to define a border, the tissue inside an islet is more
cluttered than the outside, and the carcinoma is highlighted by Haematoxylin-
Eosin. It should be strengthen out that in this kind of images, the color is
very alike so that this characteristic has a low discriminative value.

7.2.2 Method Overview

A routine pathologist’s visual examination is carried out in two sequential
phases, when exploring a microscopic slide. An initial search for coarse tissue
structures at a “low zoom” [28, 105] to separate the image into large regions,
and a subsequent finer feature characterization at a “higher zoom” within
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these regions to identify cellular structures [103]. The approach proposed
herein attempts to emulate the pathologist’s initial examination step where
she/he defines the different regions of the image according to the inherent
properties of each tissue type, such as level of visual attention, texture and
homogeneity. Our approach tries to identify which of these regions are of
diagnostic interest in a similar way as a pathologist decides where to look
for finer details. The idea is to capture groupings, not necessarily neighbors,
endowed with histopathological diagnostic meaning. These groups are de-
termined by similarity relationships between the objects inside them. The
groups compete at supposing that relevant regions will contain more relevant
visual attention level.

The proposed strategy (figure 7.2) is composed of two parallel processes:
one coarse and adjustable still-segmentation procedure 1 whose parameters
are automatically extracted from a set of manually segmented images, and
a modified version of Itti’s attention model that runs over each. The goal of
the still-segmentation process is to split the histopathological image into its
constitutive objects, which are later characterized by their level of attention.

7.2.3 Splitting Histopathology Images in Regions

Visual attention is the ability of a biological or artificial system to find rele-
vant region in an scene [69]. In the particular case of humans, they can not
only find relevant regions, but also recognize complex structures in a scene.
The Gestalt laws for proximity and resembling, illustrated in figure 7.3 have
motivated the fundamental hypothesis of our model, i.e., a histological tis-
sue is a grouping of objects which resemble in their very basic structural
properties.

Visual systems reach grouping by clustering, proximity and resembling.
Any strategy should at least look for any of these basic properties, just like
carcinoma stained images have cluttered regions composed of simple struc-
tures with similar average intensity. The grouping characteristics defined
before are herein used to segment, based on a comparison of the intraclass
and interclass variances regarding the intensity value of each pixel. This stra-
tegy was implemented using the Felzenszwalb algorithm [44], for which firstly
pixels are sorted out by similar intensity value and then neighborhoods are
organized by grouping pixels with intensity values, which are previously de-

1A still-segmentation corresponds to an image partition in non-overlapping regions
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Figure 7.2: The proposed method: two independent processes run in parallel
aiming at finding relevant regions. The first process utilizes low level infor-
mation for determining a level of interest for each pixel, while the second
process segments basic structures present in the image. Finally, the level of
interest at each of the segmented regions is calculated from the average level
of interest of the pixels inside the region.
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Without Clustering

Clustering by Proximity

Clustering by resembling

Figure 7.3: Gestalt laws for proximity and resembling.

fined under a variance threshold. This method provides an still-segmentation
strategy which is inspired from psychological grouping theories [149]. The
main idea is that two regions are perceived as different if differences between
them are larger than differences within them, according to a learned rule.
The problem is defined in terms of a graph, where a non-linear decision func-
tion specifies if two elements c1, c2 in a graph partition should merge or not.
The decision function reads as:

M(c1, c2) =

{

1, if DiffbR(c1, c2) < min{DiffwR(c1) + τ(c1),DiffwR(c2) + τ(c2)}
0, otherwise

The two regions c1 and c2 are merged together when M(c1, c2) is one,
τ(c) = k

|c|
depends on the size of c (|c|) and establishes an evidence for a

boundary between two components, k is a scaling factor and sets preferences
for specific component sizes, DiffwR(c) corresponds to a within-region dif-
ference which stands for the largest difference inside the component, while
DiffbR(c1, c2) is a between-region difference that looks for evidence of a boundary
between both components [44].
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7.2.4 Automatic Still-Segmentation of Histopathology

Images

The previous algorithm can be used to split the histopathology image into
its constitutive tissue parts. As observed in figure 7.4, the quality partition
is highly dependent on the segmentation parameters.

(a) Histopathological sample image. (b) RoI manually segmented.

(c) Over-segmentation. (d) Under-segmentation.

Figure 7.4: Results of a wrong selection of the segmentation parameters.

A manual selection of these parameters is always possible, but this is by
no means an intuitive task for the expert. Therefore, we proposed an energy-
based learning method for selecting an optimal set of segmentation parame-
ters, based on manually segmented images. Let I a histopathological image,
W a parameter vector and C the still-segmentation, resulting of running a
segmentation algorithm over the image I with parameters W . Provided that
it is possible to define an energy function E(W,G, I) that quantifies the si-
milarity between the still-segmentation C and a ground truth partition G,
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then a set of training samples S = {(I i, Gi), i = 1, 2, . . . p} corresponding to
manually segmented images, will be used for finding the W ∗ optimal vector
which solves the following optimization problem:

W ∗ = min
W∈Ω

1

p

p
∑

i=1

E(W,Gi, I i)
�

�

�

�7.1

with Ω the set containing any possible parameter vector. For this problem
to be solved it is necessary to define the structure of the energy function
E(W,G, I).

Energy Function

The proposed energy function must quantify the similarity between two
image partitions: the generated by the pathologist’s selection and the pro-
duced by the segmentation method. This measure should cope with two
different conditions: the perceptual relevance of the region center should be
large and the measure should penalize miss-segmentations, i.e, classification
is mainly addressed to regions rather than to pixels. We used the Mezaris
metrics [94], an extension of another perceptual measure [143] which weights
the visual relevance of any foreground-background segmentation:

q(g, c) = qMF (g, c) + qAB(g, c)
�

�

�

�7.2

where qMF (g, c) amounts to the missing foreground pixels (MF) and qAB(g, c)
to the false background pixels (AB), weighted by their distances to the closest
region borders, as follows:

qMF (g, c) =

DMF max
∑

i=1

wMF (i) · |ci ∩ gc|
�

�

�

�7.3

qAB(g, c) =

DAB max
∑

i=1

wAB(i) · |cci ∩ g|
�

�

�

�7.4

here c is the segmented RoI, g the ground truth, {·}c denotes complement,
ci = {x|x ∈ c, d(x, cc) = i} corresponds to the set of pixels inside the RoI
at the same distance from its border, d(x, c) is the distance between the
pixel x and the region c (in this case the Euclidean distance), cci = {x|x ∈
cc, d(x, c) = i} stands for the set of pixels outside the RoI at the same distance
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from its closest border, wMF (i) and wAB(i) are the weighting functions for
the missing foreground pixels and the false background pixels, both growing
linearly, while DMF max and DABmax are the maximum permitted distance for
the missing foreground pixels and the false background pixels, respectively.

Measure 7.2 was originally proposed for evaluating the segmentation qua-
lity in background-foreground segmentations, an approach which will fail in
segmentations with multiple components. A multicomponent measurement
was proposed by Mezaris et al. [94], exploring three error sources: inaccuracy
of the region boundary location, under-segmentation and over-segmentation
effects. For so doing, let C = {c1, c2, . . . , cK} a still-segmentation composed
of regions ck and G = {g1, g2, . . . , gQ} the ground truth partition. The in-
accuracy is quantified by comparing the ground truth and the segmented
images as corresponding region pairs. This correspondence is obtained by
associating each ground truth region gq to the still-segmentation region ck
with which the overlapped area is maximum. Once this association is estab-
lished, the relationship is unique and unalterable. The inaccuracy ebl for any
pair of regions is computed as follows:

ebl(A) =
∑

(ck,gq)∈A

q(ck, gq)

where A is a set that contains the pairs of corresponding regions. Given that
ck and gq constitute a unique couple and none of them can have a new link
to another region, it is possible to obtain non coupled regions in C and G.
A particular segmentation may result in a partition in which some regions
have not a corresponding pair in two different situations: over and under
segmentations, see Figure 7.4. When the actual region in the ground truth
image corresponds to many regions in the segmented image, we are over-
segmenting, case in which the measure penalize it by adding a term that
takes into account the area defined by all these regions, as follows:

eov(Ac) =
∑

ci∈Ac

qMF (B, ci)

where eov is the over-segmentation error, Ac is the set of the ci non coupled
regions and B is a black image. Similarly, when there is a non coupled
region in G and multiple regions in the still-segmentation image C, the under-
segmentation error is calculated as follows:

eun(Ag) =
∑

gi∈Ag

qMF (B, gi)
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where eun is the under-segmentation error and Ag is the set of the gi non
coupled regions. These error sources can be combined in a single quality
segmentation measure, that can be used as energy function for the learning
optimization problem 7.1:

E(W,G, I) = ebl(A) + eov(Ac) + eun(Ag)
�

�

�

�7.5

The optimal segmentation parameters were found by a pattern search
method [83], since that the energy function is not derivable.

7.2.5 Assigning Interest to Regions

A modified version of the Itti’s algorithm was applied to the images. This
model initially calculates multiscale “conspicuity” maps for three low level
characteristics, i.e., intensity, color and orientation. These conspicuity maps
are normalized and summed into the augmented conspicuity or “saliency”
map, whose maximum defines the most relevant location. This normaliza-
tion preserves information which is localized while other types of noise are
ruled out. As mentioned, these low level features are not enough to conform
the attention foci in the histopathological domain. Normal tissues appear
as homogeneous architectures. Tumors and other pathologies introduce he-
terogeneous areas within this architecture, due to the presence of infiltrat-
ing, inflammatory and tumor cells, and the loss of marked boundaries [93].
Then, determining a measure of heterogeneity would be useful for locating
the abnormal structures in the images. Heterogeneity might be understood
as texture disorder that can be measured by entropy. Our approach adds the
calculation of an additional conspicuity map for the intensity entropy.

Accordingly, the augmented saliency map is calculated by including in-
tensity, color, orientation and entropy. The computed conspicuity maps, for
the low level features and entropy, are considered as the bottom-up infor-
mation. The segmentation, provided by the aforementioned algorithm, is
considered as the top-down information. Top-down and bottom-up informa-
tion are combined by firstly calculating an index for each low level feature
from each region. This index is a pixel value average, inside the region cons-
picuity maps for intensity, color, orientation and entropy. Finally, the total
region saliency is estimated by averaging its conspicuity map index.
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7.3 Results

7.3.1 Evaluation Issues

In this chapter two main issues were assessed, namely the accuracy of the
proposed RoI extraction method and its generalization ability (Section 7.2.4),
using a total of 55 manually segmented images (Section 7.2.1). Comparisons
were performed among the three segmentations: manual, Itti’s and ours.
Itti’s RoIs were computed by thresholding the resultant visual attention maps
[155]. Likewise, the robustness of the automatic segmentation algorithm was
evaluated by an 11-folding strategy, understanding this robustness as the
method performance when the algorithm runs over a different set of data. A
quality measurement was computed for each folding, namely the background-
foreground quality measure q(g, c) = qMF (g, c) + qAB(g, c), computed with
the ground truth region and the extracted RoI, which was then normalized
using q(c, g)dB = 10 log 1

1+q(c,g)
. This measurement is a normalized accuracy

measurement expressed in decibels (dB). The more negative these values
are, the worse the RoI selection accuracy results.

7.3.2 RoI extraction

Figure 7.5 shows a visual illustration of the differences between the ground
truth segmentation and the RoI obtained using the proposed method. Coin-
cidences between RoIs are shown in white, method misses in gray and back-
ground coincidences in black.

As observed, the proposed method is able to capture different structures
of interest, in spite of the complicated patterns present in the sample. The
RoI computed by our method looks perceptually more similar to the ground
truth, when compared to the RoI calculated using the Itti’s model. While the
Itti’s RoI looks quite scattered, our method finds a more homogeneous region,
clearly much more similar to the ground truth. Most misses are located near
to the border, where we are supposing visual information is less important.

Figure 7.6 shows the original image in the first column, the ground truth
in the second, Itti’s RoI in the third and the RoI found by our method in
the fourth. The four rows show different structures, as observed in the first
column. Overall, these four original images show different configurations,
with the carcinoma tissue in a darker violet color, which correspond to the
zones highlighted in white since the expert considered them as the interest.
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(a) Original image (b) Coincidence level bet-
ween the ground truth and
and Itti’s model

(c) Coincidence level bet-
ween the ground truth and
our approach

Figure 7.5: In panels (b) and (c) white and black stand for a perfect match
while gray levels represent disagreement. Note a much smaller scattering
level in (b).

Note that the level of structural organization is quite different so that it
results impossible to determine RoIs by simply setting a set of parameters,
i.e., structures present different sizes, shapes, colors and levels of hierarchy.
As illustrated in the third column of figure 7.6, Itti’s model misses important
histological objects and instead highlights many small scattered regions. This
can be attributed to the fact that this model performs a pixel-based analysis
and therefore it finds interesting points rather than complete defined regions.
From a semantic point of view, this is a great limitation because regions with
some interest are distributed all over the image, following a complex mix of
rules which are in general very variable. A clear advantage of the proposed
strategy is that nearly every spatially coherent structure was found with
different levels of noise. Interestingly, most relevant objects, within these
RoIs, highly coincide with what the pathologist determined as important.

7.3.3 Automatic Segmentation

In this section we evaluated the robustness of the proposed algorithm, that
is to say, how well this strategy performs when samples change. For doing
so, the set of available images was split into 11 subsets of 5 images and a
folding cross validation was applied, i.e., training with 10 subsets and test
with the remaining one. Figure 7.7 shows the performance algorithm for the
whole set of available image since each image has belonged at least once to a
test subset. The graph plots at the x axis the available images and at the y
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Figure 7.6: Column (a) shows examples of basal cell carcinoma images. Col-
umn (b) shows the corresponding RoIs selected by the pathologist. Column
(c) shows results obtained by the Itti’s model. Finally, column (d) shows re-
sults obtained by the proposed method. In the binarized images (b, c, d) the
white color stands for the relevant diagnostic RoIs. The proposed method
provides less scattered regions than those selected by the Itti’s model. Note
that our RoIs (column (c)) are more visually consistent with the expert se-
lection (column (b)), than those computed by the Itti’s model (column (d)).

axis the respective quality measurement for both strategies, namely Itti’s and
ours. As expected, the RoI quality measurements are different for each image
and their values vary between -40dB and -63dB. Performance in general is
quite acceptable around -50dB and only in two images, this performance
decreased to -60dB. It is worthy to recall here that the more negative is this
measurement the larger the number of both missing foreground and false
background. The graph shows a systematic gain of our method performance:
in most images, the proposed method provides better quality results and
only in images 14,15 and 16 the Itti’s model outperforms ours. These images
correspond to samples in which there the objects are very small, they are
not grouped and very scattered. Obviously, our strategy was devised for the
opposite scenario.

The previous analysis was extended to find an estimation of the obtained
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Figure 7.7: The x-axis represents the set of available images and the y-axis
the quality measure in decibels (dB).

perceptual RoI quality. For doing so, a similar strategy to the 10-folding
evaluation, commonly used in machine learning, was applied as follows: the
complete data set was firstly partitioned into 11 subsets upon which one of the
subsets was set aside for testing and the other ten were used for training. A
total of 11 trainings were then carried out2 and, for each training, averages
of two perceptual quality measures were computed: one with the training
images and the other with the test data. These calculations resulted therefore
in an estimation of the segmentation quality in a particular subgroup and
so, 11 quality measures correspond to the training sets, while the remaining
11 to the test sets. Values reported in table 7.1 are the averages and the
standard deviations of these 11 quality measures for the missing foreground
pixels, the false background pixels and the normalized estimation with the
two last measures (total quality).

As observed in Table 7.1, RoI perceptual quality estimations (total qua-
lity) vary between -44dB and -50dB while its standard deviation is low,
1.3dB at most, indicating that the our strategy is stable in the sense that
the strategy rarely selects regions with poor quality indexes. Overall, the
proposed method outperforms the Itti’s one when applied to the test set, in
about 3dB, a figure which can be considered as a quite large difference. A

2each training implied a switch of the test set amongst the eleven possibilities
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Itti’s Method Proposed Method

Test (dB) Train (dB) Test (dB) Train (dB)
False foreground −48.2± 1.1 −44.2 ± 1.3 −46.6± 1.3 −42.8± 1.3
Added background −47.3± 3.9 −43.3 ± 1.2 −41.1± 2.9 −37.7± 1.2

Total −52.0± 1.2 −47.7 ± 1.4 −49.0± 1.2 −44.9± 1.3

Table 7.1: Average ± standard deviation of the perceptual quality in false
foreground, added background and total quality for proposed and Itti’s visual
attention models obtained on the training and test sets.

Wilcoxon test (p > 0.05), applied on the two sets of eleven measurements
from the Itti’s method and ours, confirms that the perceptual quality im-
provements are statistically significant. As illustrated in figure 7.1, this level
of difference is visually important, an issue considered in most image pro-
cessing evaluations when comparing images with general measurements such
as the SNR [143]. As expected, the perceptual quality performance for the
training set is higher than for the test set. The quality measure, for this
last set, is still high, about 49dB, indicating that the strategy finds very
similar regions to what the expert set. Importantly, the perceptual quality
performance of our algorithm, for missed foreground and false background
pixels, outperforms the Itti’s method, very likely because interest is located
in regions rather than in pixels.

7.4 Discussion

The present chapter has introduced a novel strategy, a complex mix of
“bottomp-up” and “top-down” mechanisms, for setting RoIs in histopatho-
logical images. The model is inspired in the first phase of a pathological
examination [16, 140, 28, 105], a process largely studied which starts by a
scanning the slide at a low magnification zoom. This overview or first phase
allows the expert a spatial pre-classification of areas of interest, upon which
a further analysis shall be carried out. This first step is herein emulated as a
two-fold strategy: a still-segmentation algorithm, which splits the image into
several regions with potential interest, followed by a characterization step
of the relevancy inside each region, using a linear combination of low level
features (intensity, color opposition, orientation and entropy), weighed by
parameters learned from the pathologist with a machine learning strategy.
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So far the underlying mechanism that controls a RoI selection in histopatho-
logical samples has been poorly studied [13]. Recent studies suggest that
some visual mechanisms, such as the one that allows to highlight an object
from the background (figure-ground segmentation), and the visual atten-
tional process, are connected [13]. The figure-ground segmentation models
the process that occurs when an individual is exposed to a two-dimensional
surface with some gentle structural differences, an she/he separates it into
parts, one of which is consciously recognized as having a distinctive form
whereas the region around is not [149]. This visual segmentation mecha-
nism follows certain invariable rules that have been shown to be relevant in
diagnosis of tissue sections [13]. These rules include convexity of contours,
proximity of lines around it, closed contours, simple shapes, proximity and
resembling of their components. The visual attention mechanism is related to
the cognitive process of selectively concentrating on one aspect of the scene
while ignoring others [69]. This fact suggests that the visual system is able
to selectively focus on specific areas of the image, which besides are entailed
with a high relevant meaning. Yet these ideas are far from being fully ex-
ploited, our approach has been able to capture the basic facts, that is to say,
that relevancy is a global property somehow constructed by integrating local
features.

Many endeavours have been dedicated to emulate these relationships for
segmenting areas with cancer in histopathological images. the coarse struc-
tural recognition has been already implemented as an still-segmentation algo-
rithm, using KKN and spectral clustering [138, 99], but these strategies only
cope with local spatial relationships, and no perceptual meaning has to be
assigned to each. One of the most challenging issues in histopathological im-
ages regarded the fact that semantic interest is related to similarity, no matter
whether these regions are neighbors or not. This drawback was herein dealt
with a graph-based image segmentation algorithm [44], which in contrast to
previous approaches, is capable of capturing perceptually important regions
such as tissue distribution. As illustrated in figure 7.6, regions obtained with
the proposed strategy are perceptually more consistent and coherent with
what the expert set. They are surrounded by closed contours and follow the
proximity and resembling relationships, i.e., these regions satisfy the figure-
ground segmentation rules. Interestingly, the ground truth also follows these
figure-ground segmentation rules, as illustrated in figure 7.1, a finding that
supports the choice of still-segmentation methods in this type of problems.
The results herein presented support this selection, the perceptual quality
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obtained with the proposed algorithm is around -49dB, an acceptable value
for natural images. Likewise, table 7.1 shows the importance of the figure-
ground segmentation mechanisms since a RoI selection strategy, focused on
areas, shows a better performance, in near 3db of the quality measure herein
used, when compared to a pixel based method, as reported in previous pub-
lications [155]. It is worthy to point out here, that the used figure-ground
segmentation mechanishm may fail in some pathological entities, because it
is strongly based on simple perceptual grouping rules that can not capture
some ill-defined configurations, for example, concave-shaped structures, stro-
mal changes in neoplasms, interstitial infiltrates and deposits. Importantly,
these limitations also occur in humans, i.e., some cases are really hard to
recognize [13].

Our method is based in two complementary strategies: the still segmen-
tation that groups things and the relevance assignation by the attentional
model. In general, the still-segmentation performance depends on many
non-intuitive parameters. Figure 7.4 illustrates how incorrect the method
performs for a wrong selection of parameters. In previous approaches these
parameters must be exhaustively because of the intrinsec variability of these
problems, for instance several type of tissues, different dyes or multiple ac-
quisition magnifications [31]. In computer vision, this lack of flexibility has
been aboarded via the use of meta-algorithms that look for the optimal set of
parameters, i.e., the most similar segmentation to the manually segmented
image, whereby a similarity measure is required. Previous approaches have
used different quatifications of the overlapping area as similarity measure-
ments, ignoring the perceptual coherence required for the segmented regions
[27]. It should be strengthen out that perceptual meaning passes by a simi-
larity measure which finds regions, but these regions are made up of pixels
that share complex relationships so that we need a measurement that rewards
strategies that find regions with perceptual meaning rather than pixels. In
the present work, we proposed a novel meta-algorithm, based on a machine
learning strategy which is trained using the regions set by an expert. The
proposed measure is based on a functional that privileges the center region
pixels and penalizes over and under segmentations, resulting in more coher-
ent regions that should follow what the pathologist selected. The fact that
this measurement uses a distance map allows to define an object from its to
center to the bounday of interest. We recall that this work focused on the
figure-ground segmentation process emulation, as discussed previously, this
is a complex process influenced by the image content and the pathologist
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experience. The proposed machine learning algorithm was developed for ex-
tracting in some way some the semantic of the selection task. The training
samples used in this work were marked by an expert pathologist so that our
machine learning method constrainted the segmentation parameter search to
these ground truths. The results herein presented have demonstrated that
the algorithm is very robust, that no signifcant change is observed when test-
ing with completely new images, obtaining for them high perceptual qualities,
near to -49dB.

Overall, previous works have used the typical approach of computer vi-
sion: image characterization followed by a statistical description. This stra-
tegy is limited by the fact that any algorithm should be re-trained with these
two sequential steps for any new type of image i.e. this approach would easily
fail with histopathological images. In contrast, we have proposed the use of
attentional, much more robust to the image variability, introducing certain
modifications for achieving saliency maps with semantic meaning. Yet the
saliency elements in these images are very likely the same that are present
in natural images, the way they are analyzed is totally different. While
in any natural image there is practically no further analysis, pathologists
must gather together areas which are highlighted by the classical mecha-
nisms, but in many cases, areas which are hidden by these mechanisms.
The present study has demonstrated that semantic searches require flexible
methods that easily can include perceptual or prior knowledge, a statement
supported herein by the difference between the quality of our segmentations
and the scattered poorly defined regions found by the Itti’s approach.
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8
Conclusions and Perspectives of this

Work

8.1 Conclusions

This thesis has addressed the problem of navigation on medical mega-images
from different perspectives. We mainly focused on the virtual microscopy
domain for pathology (Chapter 2). The main contribution is the improve-
ment in navigation velocities by combining several techniques such as highly
scalable storage, caching, prefetching and user modeling.

In Chapter 3 we introduced a virtual microscopy framework which imple-
ments some techniques to make faster display of image portions by using soft
cache and spatial cache to avoid redundancy when decoding J2K image pack-
ets. Additionally, a dynamically quality optimization strategy (prefetching)
was designed to permit faster analysis of the images. Initially, both strate-
gies were based on simple image exploration model: last recently used or last
frequently used. Results were published and demonstrate the usefulness of
the highly scalable storage and its associated clever strategies in the problem
of navigation of medical mega-images.

In Chapter 4 an experimental study was carried out in order to establish
main pathologists navigation patterns when exploring virtual microscopy
slides. This study addressed two main issues: the RoI definition as primary
concept of the navigation, and the existence of some navigation patterns ge-
nerated by the interaction between expert, slide and graphical user interface.
Results suggest that ROIs are determined by a complex combination of the
region visited, the time spent at each visit and the coincidence level among
pathologists. We found also evidence of the existence of linear trajectories
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and particular velocity patterns in registered diagnostic paths. This lead
us to conclude about the existence of a stochastic navigation process which
probably is controlled by an underlying navigation model. We hypothesize
that these patterns can be explained in terms of a complex interaction bet-
ween the neuromuscular and visual systems, the navigation device and the
image content.

In Chapter 5 an optimal soft-cache strategy for client-server architectures
was proposed. The whole strategy is based on the natural concept of naviga-
tion by WoI, a complete mathematical derivation of the navigation problem
in this scenario was developed. As result, a simple optimization problem was
found; it includes as special cases the previous soft-cache and prefetching
formulations. The strategy is strongly based on a navigation model on a
dynamical probabilistic model of a pathologist’s navigation. Results demon-
strate an improvement in performance of the proposed method conventional
approaches, as well as, the importance of a good selection of the navigation
model. We also explore the possibility of determining a navigation model
which permits to obtain benefits of the prefetching and cache in a optimal
way.

In Chapter 6 an online Bayesian model which permits to anticipate the
pathologist trajectories when exploring virtual slides was developed. The
strategy was based on the intuition that when the exploration is carried out
by mouse, the navigation velocity between two consecutive WoIs is related
to an isotonic movement. The Bayesian strategy combines an offline learn-
ing model of velocity patterns described by a set of training pathologist’s
navigations and a prediction online module which predicts the velocity pa-
ttern for a particular pathologist. The proposed approach was evaluated,
obtaining as result an increasing of the capacity prediction compared with
state-of-the-art approaches used in similar problems. Finally, in Chapter 7
we introduced a supervised learning method for finding diagnostic RoIs in
histopathological images. The method emulates the first examination phase,
which consists in a coarse search for tissue structures at a “low zoom” to
separate the image into relevant regions. In order to implement this ap-
proach we propose a novel visual attention model integrates bottom-up and
top-down information. The first one, corresponds to local low level features
such as intensity, color, orientation and texture information, and the se-
cond one, is related to the anatomical and pathological structures known by
the expert, coarsely approached by an still-segmentation algorithm, inspired
by psychological grouping theories. The method was evaluated on a set of
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histopahtological images, using a perceptually-weighted evaluation criterion,
finding a consistent quality gains when comparing to a classical attention
models.

8.2 Perpectives

A virtual microscope accesses a Slide Image, upon which a pathologist nav-
igates by locating RoIs which are then displayed at higher resolutions in
auxiliary windows. A virtual navigation is thus composed of multiple spatial
jumps and magnification changes. Actually, depending on both the image
contents and its size, this process can result so variable that information has
to be constantly reconstructed from basic units, in terms of different resolu-
tions, qualities and random accesses to the image. This makes that flexible
image data representations such as JPEG2000 result adequate to meet such
requirements.

Overall, virtual slide images are usually of the order of thousands ×
thousands pixels, which must be stored in dedicated machines with large
storage capacities. In actual applications, seamless navigation is dependent
on a bandwidth which in general results insufficient for the huge volume of
data to transfer. Caching and prefetching strategies may speed up image
loading, but yet associated to pathologist navigation patterns, which are
expected to be highly variable. A complete automated navigation would
eliminate that variability, but in that case it is mandatory to establish a
structured observation path for every WSI.

Some recent works have shown that it is possible to automatically de-
termine RoIs [99, 59] so that a probabilistic map could be associated to the
image. In addition, such observation path should follow optimal sampling
strategies [77] which improve the diagnosis times, that is to say, a minimal
number of RoIs would drive the navigation. In that scenario, a pathologist
would achieve a diagnosis using this technology and spending a minimal time,
so the pathologist workflow could be highly accelerated basically because it
would be possible to prefetch the whole examination path at the very navi-
gation beginning and little additional information would be needed in order
to accomplish such diagnosis. However, observation paths are dependent on
the image contents, on the pathologist’s experience and the image quality,
and therefore highly variable. These probability maps should then change
along the navigation, depending on the expert needs. This model would need
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then much more flexibility as to adapt the prior, defined by the observation
paths, to the observations, such as the present investigation did at a local
level. The work here presented was based on a local velocity model which
was able to capture the expert velocity patterns within short time intervals
and which adapted to the variability of the navigation. This local strategy
could be used for defining observation paths, but predictions should be con-
strained by the probability map. It is worthy to point out here that our
model was focused on the scanning phase of the microscopical exploration
since the magnification changes take much less time in terms of navigation
[79]. Moreover, these predictions could be included into the whole strategy
by using smart sampling procedures [77].

On the other hand, the quality of the examined image is directly associa-
ted with the quality of the histological sample and the acquisition conditions,
i.e., the standardization at different levels, namely, tissue fixation, embed-
ding, cutting, dye preparation, stainning technique, microscope adjustment
and acquisition procedures. The biological image contents and RoI selection
strategies should also influence the design of protocols aimed at assuring the
image quality [76]. Such protocols are embedded within the microscopy labo-
ratory workflow [52, 61], but minor attention is paid to the factor user-image
content interaction, i.e., the image expected contents should define the man-
ner that many of these procedures are implemented. Development of new
virtual navigation applications depends on the definition of image quality,
a traditional concept which can be fed back by some evidence about how
experts interact with images. This knowledge could be used for instance
in compression applications, since the more knowledge of the exploration
process is available the better is the compression, i.e., selective compression
strategies [7]. Also, these observations or exploration paths may lead to new
storage strategies in computational grids [52], as for example to improve the
distribution algorithms by using more realistic exploration models.

Finally, modern diagnosis in pathology is a multimedia process in which
the image findings are dictated and stored. In consequence, the only source of
information is not visual but semantic knowledge associated to images [151].
This textual annotation should be integrated into all strategies previously
discussed since they constitute a bridge between the low level image infor-
mation and the semantic concept [123]. Nowadays, ontologies can be easily
constructed from text documents and in virtual microscopy they could guide
definition of RoIs, paths and velocities and obtain automatic navigations
which maintain the diagnosis quality using a minimal time.
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Université catholique de Louvain, 2008.

197



[34] A. Descampe, J. Ou, P. Chevalier, and B. Macq. Data Prefetching
for Smooth Navigation of Large Scale JPEG 2000 images. In IEEE
Conference on Multimedia and Exposition, 2005.

[35] A. Descampe, C. De Vleeschouwer, M. Iregui, B. Macq, and F. Mar-
ques. Prefetching and caching strategies for remote and interactive
browsing of JPEG2000 images. IEEE transactions on Image process-
ing, 16:1339–1354, May 2007.

[36] S. Deshpande and W. Zeng. Http streaming of JPEG2000 images. In
ITCC, pages 15–23, 2001.

[37] R. Desimone and J. Duncan. Neural mechanisms of selective visual
attention. Annual Review of Neuroscience, 18(1):193–222, 1995.
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The gait pattern of a particular patient can be altered in a large set of pathologies. Tracking
the body center-of-mass (CoM) during the gait, allows a quantitative evaluation of these
diseases at comparing the gait with normal patterns. A correct estimation of this variable is
still an open question because of its non-linearity and inaccurate location. This paper presents
a novel strategy for tracking the CoM, using a biomechanical gait model whose parameters
are determined by a Bayesian strategy. A particle filter is herein implemented for predicting
the model parameters from a set of markers located at the sacral zone. The present approach
is compared with other conventional tracking methods and decreases the calculated RMSE in
about a 56% in the x-axis and 59% in the y-axis.
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1. Introduction

The gait pattern can be altered in a large set of pathologies, such as diabetes, brain
palsy, cerebral vascular accidents, and neuromuscular dystrophies or from any kind
of accident. The study of the human body movement or visual gait analysis is a
modern tool that allows to objectively assess any of these pathologies. Examination
is based on the follow-up of dynamic variables, whereby the disease severity can be
quantified, and the gait compared with normal patterns(Gace 2001, 2004; Manal
and Buchanan 2004).

The musculoskeletal dynamics, obtained from a gait analysis, is evaluated from
the kinetic and kinematic perspectives. The kinematic analysis describes patient
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displacements in terms of the system components and its fundamental relation-
ships, using variables such as the trajectory of the CoM, some specific angle joint
variations or the step length, among others (Deluzio et al. 1997). The kinetic analy-
sis quantifies the needed energy for the human movement to be produced, measur-
ing electro-physiological states during displacement (Carson et al. 2001). A correct
extraction and quantification of these variables is an open question since they are
highly non-linear.

The CoM constitutes a fundamental descriptor for the clinical gait analysis be-
cause through its movements it is possible to describe both central nervous sys-
tem and musculoskeletal disorders (Detrembleur et al. 2000; Gutierrez et al. 2003;
Tucker et al. 1998). The more accurate CoM is usually estimated using a force
plate, where a double integral of the ground reaction force in the time define the
CoM displacement(Eames et al. 1999; Gard et al. 2004). This relationship is a
simple dynamic equilibrium equation:

dCoM =
∫ ∫

FGR −mg
m

dt2 + v0t+ d0 (1)

with FGR= ground reaction force, m= body mass, g= gravity, t= time, v0 and d0

the integration constants of the initial velocity and position. This method is the gold
standard for the CoM calculation. However, this method requires a patient steps
upon the force plate, a difficult task in many musculo-skeletal disorders. Moreover,
conventional gait laboratories have only two force plates, which results insufficient
when gait analysis demands data from the whole gait cycle. This method is only
used for validation of others techniques and its accuracy depends on the integration
constants so that its utility is still limited in real clinical scenarios (Gard et al. 2004;
Eames et al. 1999).

In the clinical routine, it is common to use the optic kinematic methods for
estimation of the CoM because of its versatility and control. However, accurate
location of the CoM is impossible because of the high inter-patient anatomical
variability and its within-the-body location (Detrembleur et al. 2000). Usually,
the CoM is tracked the closest marker in the video (Duff-Raffaele et al. 1996).
This CoM can also be estimated from the body segments (Eames et al. 1999),
but its extraction is a complicated task that requires many markers and changes
the natural motion expression. These methods do not accurately estimate the CoM
trajectory(Eames et al. 1999; Gard et al. 2004), since this is the result of a complex
interaction of forces, neuromotor commands and joint movements of the lower
limbs, and therefore it shows a high non-linear dynamics (McGeer 1990).

This article presents a precise and efficient strategy for estimating the tempo-
ral CoM location using a non-linear gait biomechanical model whose parameters
are recursively adjusted by a Bayesian strategy, herein implemented as a particle
filtering. The Main contribution of this work is to use a very simple methodol-
ogy to follow an actual non linear dynamic. The whole strategy allows a natural
and accurate tracking of the non-linear gait patterns with a high degree of noise
robustness. The rest of this paper is organized as follows: Section Materials and
Methods introduces the biomechanical model and our prediction method, Section
Results demonstrates the effectiveness of the method. The last section presents a
discussion and possible future works.
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2. Materials and Methods

The strategy for tracking the CoM requires that the set of video frames, within two
alternating heel strikes (gait cycle), are segmented. Tracking is carried out under a
Bayesian framework that defines the trajectory of the CoM as a sequence of hidden
states. At each step of the gait, the more probable parameters are calculated from
a set of observations and the previous step parameters.

The Bayesian approach for tracking aims to estimate the hidden states of a sys-
tem from a set of observations, or at least to extract useful information under the
fundamental hypothesis that the observation process do not completely destroy
the link between the true and the observed variables, or that the observed and
true data are somehow close together under a particular metric. A Bayesian strat-
egy starts at defining the system state as a random variable xt and its associated
probability density function (pdf), i.e., the uncertainty level of the occurrence of
the state xt. Bayesian filters estimate such pdfs upon a state space following the
sequence of observations. The belief Bel(xt) is defined as a posterior probability
density function of xt, conditioned to all the observed available data z1, z2, . . . , zt
at time t. This pdf addresses the question: what is the probability that the sys-
tem state is in xt if the history provided by the measurements of the process are
z1, z2, . . . , zt? Since the number of observations increases through the time, the
complexity of such posterior density grows exponentially. This estimation becomes
computationally tractable by assuming a Markovian hypothesis: the current state
of the system contains all the relevant information. Under this assumption, Bel(xt)
may be computed efficiently without information losses. In practice, it is a required
a system model p(xt|xt−1), that represents how the system states change in a time
step and a likelihood model p(zt|xt) , which describes the probability of making
the observation zt if the system state is in the xt state. Finally, the initial system
state Bel(x0) = p(x0) is also needed. Once this information is available, the belief
Bel(xt) is calculated in two recursive steps:

• Prediction. The belief in the state xt is computed by updating the previous belief
Bel(xt−1) , according to the prediction given by the system model p(xt|xt−1),
through the Chapman-Kolmogorov equation:

B̂el(xt) =
∫
p(xt|xt−1)Bel(xt−1)dxt−1 (2)

• Update. The predicted belief Bel(xt) is adjusted after the system observations:

Bel(xt) =
B̂el(xt)p(zt|xt)∫
B̂el(x∗t )p(zt|x∗t )dx∗t

(3)

Bayesian filters provide a probabilistic framework for recursive and sequential
estimations of the system state. This representation is important for obtaining
good estimators in non-linear/non-Gaussian dynamics as it is the case of the CoM
trajectory, herein tracked through a particle filtering which approached the belief
function by discrete sampling.
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2.1 Modeling the CoM movement

The human gait is a locomotion process which involves both lower limbs to help
the body to keep the balance while it gains support and propulsion (Whittle 1996).
This process comprises a cyclic set of movements, where one foot acts as a fixed
point which supports the body swings, whereas the free foot moves forward until
it reaches the floor and becomes the new fixed point.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
INCLUDE FIGURE 1 ABOUT HERE
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Schematically, the upper part of the body is represented by a mass which moves
forwards with respect to each fixed point, describing a harmonic oscillating tra-
jectory, similar to the inverted pendulum (Buczek et al. 2006). At the same time,
the free foot swings with respect to this mass, such as a simple pendulum. Given
that these processes are coupled together, the human gait is modeled by a double-
articulated pendulum (see Figure 1). This model properly represents the gait tra-
jectory and it has been widely used (Kuo 2007; Dong et al. 2008; Komura et
al. 2005). Based on the double articulated pendulum model, MacGeer (McGeer
1990) formulated the theory of passive dynamic motion, which describes the move-
ment without a complex control mechanism, i.e., it is more important the body’s
structure for understanding the gait rather than its control or muscular activity.
Afterward, based on this theory, Garcia et. al. (Garcia et al. 1998) formulated a
simplified gait model. Accordingly, the feet are relatively small with respect to the
trunk and the heelstrike is subjected to a restriction rule. This model has been used
for tracking other body’s structures (J. et al. 2004; Goswami et al. 1998; Zajac et
al. 2003). The model corresponds to two coupled non-linear differential equations:

θ̈(t)− sin θ(t) = 0
θ̈(t)− φ̈(t) + θ̇(t)2 sinφ(t)− cos θ(t) sinφ(t) = 0

(4)

where θ is the angle of the stance leg at particular time t with respect to the slope
and φ is the angle between the stance leg. The model also defines a transition
rule that simulates the swing foot when it hits the ground at the heelstrike, this
moment corresponds to φ(t)− 2θ(t) = 0.

2.2 Online Adaptation with a Bayesian Filter

The biomechanical model computes the trajectories for the CoM from temporal
functions (θt, φt), which are hidden, and the set of markers, which are the only
direct measurements. We shall focus on the markers located within the sacral zone,
more specifically the zt = (M1

t ,M
2
t ,M

3
t ,M

4
t ) located around the hip (two at the

back and two at the front), as illustrated in Figure 2. Provided that locations of
these markers are indirect measurements of the CoM movement, their location in
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time t corresponds to the two hidden parameters xt = (θt, φt) which better match
the observed marker locations z1, z2, . . . , zt at time t. The most probable state xt
can be recursively found using a Bayesian filter. For doing so, we need to set an
initial estimation of the CoM location, a prior of CoM evolution during the gait and
the likelihood function which associates states and observations (marker locations).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
INCLUDE FIGURE 2 ABOUT HERE
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

An estimation of the initial CoM location is herein calculated from a Gaussian
distribution whose mean and covariance are computed from the set of four positions
located closest to the actual CoM. These positions are marked by an expert in the
first frame of the video gait recording.

The dynamic model of the CoM movements indicates how the angular functions
(θt, φt) change during a gait cycle. Let us suppose that the gait satisfies Garcia’s
model (equation 4) including the heel strike rule. This model can be modified for
including the gait variability so that gait dynamic reads as

P (xt|xt−1) = G(xt−1,Σ2
1) (5)

where G corresponds to a multivariate Gaussian distribution, whose mean was
experimentally set (Garcia et al. 1998) and σ describes an inherent gait variability.
The covariance matrix Σ2

1 was calculated using a maximum likelihood estimation
(Kay 1993) from a data set given by the difference between the ideal CoM signal
(drawn from (Eames et al. 1999)) and the signal obtained from the prior model
(Garcia et al. 1998). On the other hand, the likelihood function should yield a
maximal probability when the states closely follow the observations, i.e:

P (zt|xt) = G

(
1
4

[z̄x,t, z̄y,t]− Le[sin(xθt,t), cos(xθt,t)],Σ
2
2

)
(6)

where z̄x,t = 1
4

∑4
i=1M

i
x,t, z̄y,t = 1

4

∑4
i=1M

i
y,t, M

i
x,t and M i

y,t are the marker
coordinates in the x and y directions. The CoM coordinates defined by
(Le[sin(xθt,t), cos(xθt,t)]) are directly computed from the geometric representation
of Garcia’s model, where Le is the leg length and xθt,t is the angle of the stance leg
with respect to the slope, at a particular time t. Adittionally, Σ2

2 is a predefined
covariance matrix calculated as a maximum likelihood estimation from a data set,
given by the difference between the ideal CoM signal and observations. The mean of
the Gaussian distribution stands for a measure of how well the hidden angles meet
the observed marked positions. The use of this Gaussian is fully justified since the
noise associated to the captured positions is independent of the anatomical details.
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3. Particle Filter Implementation

A different approach to represent the Belief is a discrete approximation of the pdf
using Monte Carlo techniques. These methods approximate the probability density
function p(x) using a large number of samples,

p(x) ≈
n∑
i=1

w(i)δ(x− x(i)) (7)

where x(1), x(2), . . . , x(n) are a set of n discrete independent and identically dis-
tributed variables (i.i.d), w(i) are the weights which stand for the probability of
occurrence of the sample xi, and δ(x) is the Dirac function. Clearly, the larger the
number of samples, the closer the description is to the pdf . This approximation
allows useful quantities, such as the discrete expected value of any function f(x):

∫
f(x)p(x)dx = lim

n→∞

n∑
i=1

w(i)f
(
x(i)
)

(8)

and the samples are generated using methods such as the rejection or importance
sampling (Arulampalam et al. 2002), better known as Particle Filters.

A particle filter is the discrete version of the Bayesian filter obtained when the be-
lief is approximated using a Monte Carlo (MC) method. The belief is estimated with
the point mass distribution defined in equation 7, when replacing the Chapman-
Kolmogorov equation by the approximation defined in equation 8, and discretizing
the update equation with the belief previously calculated. Since each particle cor-
responds to an independent state of the system, with a number of particles which is
function of the desired precision, the method allows to simulate the evolution of the
complete system with no restrictions regarding linearity or noise. Additionally, the
belief can be modified for each of the simulated system states as to adapt to real
observations. Finally, classic estimators such as the expected value of the state or
the maximum a posteriori can be calculated from the simulation while the system
is evolving for predicting future states.

The Particle filter is constructed as follows. First, the Belief is approximated by
an empirical point-mass function:

Bel(xt) ≈
n∑
i=1

w
(i)
t δ(xt − x

(i)
t ) (9)

where the weights w(i)
t are chosen using the principle of sequential importance

sampling (SIS) (Arulampalam et al. 2002), which states that samples can not be
directly sampled but rather found through a density importance function. Hence
a weighted aproximation is given by:

w
(i)
t ∝

P (x0 . . . xt|z1 . . . zt)
q(x0 . . . xt|z1 . . . zt)

(10)
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where P (x0 . . . xt|z1 . . . zt) is exactly the very same belief function, as defined in
section 2 and q(x0 . . . xt|z1 . . . zt) is an importance density function, chosen to meet:

q(x0 . . . xt|z1 . . . zt) = q(xt|xt−1)q(x0 . . . xt−1|z1 . . . zt−1) (11)

Now, particles evolve by dependences which are always of first order, so we can
suppose that

{
x

(i)
t−1

}
∼ q(xt|xt−1). We can then assume that q(xt|xt−1) represents

the system CoM dynamics as P (xt|xt−1), so:

q(xt|xt−1) = G(x(i)
t−1,Σ

2
1) (12)

Particles need then to be updated after the Bayes rule defined in equation (3),
which can then be approximated as follows:

P (x0 . . . xt|z1 . . . zt) ∝ P (zt|xt)P (xt|xt−1)P (x0 . . . xt−1|z1 . . . zt−1) (13)

By substituting (11) and (13) into (10), the weight updating equation reads as:

w
(i)
t ∝

P (zt|xt)P (xt|xt−1)P (x0 . . . xt−1|z1 . . . zt−1)
q(xt|xt−1)q(x0 . . . xt−1|z1 . . . zt−1)

(14)

w
(i)
t = w

(i)
t−1

P (zt|xt)P (xt|xt−1)
q(xt|xt−1)

(15)

note that the left term is just the weight in the precedent time and the rest of the
expression corresponds to the system dynamics, previously defined. Therefore, this
entire expression can be re-written as:

w
(i)
t = w

(i)
t−1G

(
1
4

[
z̄

(i)
x,t, z̄

(i)
y,t

]
− Le[sin(x(i)

θt,t
, cos(x(i)

θt,t
)],Σ2

2

)
(16)

After some iterations, all but one particle will have negligible weight, a recurrent
drawback broadly documented in the literature and known as the SIS degeneracy
phenomenon (Arulampalam et al. 2002). To cope with, we introduce a step of
resampling that generates a new set of particles at each iteraction. Finally, The
algorithm is explicitely described hereafter:
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Algorithm 1 Particle Filter implementation[{
xit, w

i
t

}N
i=1

]
∼ Bel(

{
xit, w

i
t

}N
i=1

, zk)

FOR i = 1 : N

set
{
x

(i)
t−1

}
∼ G(x(i)

t−1,Σ
2
1)

update weights according to w(i)
t = w

(i)
t−1G

(
1
4

[
z̄

(i)
x,t, z̄

(i)
y,t

]
− Le[sin(x(i)

θt,t
, cos(x(i)

θt,t
)],Σ2

2

)
END FOR
normalize weights

n∑
i=1

w
(i)
t = 1

resample
{
xit, w

i
t

}N
i=1

3.1 Gait data

Validation was carried out on a set of gait cycles segmented from the humanEva
dataset (Sigal and Black. 2006). The humanEva data consists of a set of videos,
captured from four subjects in different activities, using a calibrated marker-based-
motion-capture-system and multiple high-speed video capture systems. Every video
is provided with an associated motion data in C3D format that describe the accu-
rate 3D marker position. For evaluation purposes, we assume this capture has an
associated Gaussian noise, an statement fully justified since the marker position
is independent of the anatomical location and the capture process, as described
before in subsection 2.2. The proposed strategy was assessed on twenty gait cycles
from three different subjects ,i.e., 8400 frames which corresponded to a total of
sixty cycles. Each cycle corresponds to the set of frames within two alternating
heelstrikes. The initial and final points of each cycle were selected by an expert in
the domain, who also verified that the extracted sequences corresponded to normal
gait patterns. The locations of four hip markers were extracted for each frame, as
well as the CoM location. For doing so, the evaluated subjects have a set of at-
tached makers, following the VCM protocol (Vicon Clinical Manager), from which
4 were extracted and defined as:

• LPSI : Placed directly over the left posterior superior iliac spine
• RPSI : Placed directly over the right posterior superior iliac spine
• LASI : Placed directly over the left anterior superior iliac spine
• RASI : Placed directly over the right anterior superior iliac spine

Finally, a marker placed in the sacral region was set and defined as the CoM.

4. Evaluation and Results

Evaluation was carried out by comparing the accuracy of the presented strategy
with two standard tracking approaches: the location of the closest marker to the
CoM and an exponential weighted moving average (EWMA) (Hunter 1986; Crow-
der 1987), a typical method for tracking time series. Control data were obtained
from normal patterns, captured from force plates and reported in the literature
(Eames et al. 1999) which thereby fully describe coordinates x and y of a normal
cycle. The particle filtering algorithm was written in java (JDK 1.6.0 07) and run
under an AMD turion 64 processor of 1.59 GHz and 3 GB in RAM. The Garcia’s
model was solved using a fourth order Runge-Kutta method, also implemented in
Java.
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Figure 3 shows the gait trajectory decomposed into the y-coordinate at the left,
and the x-coordinate at the right, during a complete gait cycle (control). The y-
axis displays in both cases the CoM change, in percentage, weighted by the body
height, while the x-axis is weighted by the entire cycle duration and also expressed
in percentage. The two panels superimposed upon the same plot, the control gait
path and the predicted trajectory of three different strategies: the closest marker
to the CoM, a EWMA computed using the actual CoM observations along the
recorded gait cycle and the approach herein presented (Bayesian tracking). The
vertical movement or the y-axis spans the control pattern during 300 ms, along
which the periodic movement is smoothly increasing within the first 40 % of the
entire cycle. At this point, the height percentage decreases in a non-linear manner,
because of the heelstreak, a task quite difficult to follow by any of the methods
used. Importantly, the Bayesian tracking matches this non linearity much better
than the other two, i.e., the Bayesian presents a little oscillation in this phase but
rapidly decreases and closely follows the control pattern. On the contrary, the other
two methods are highly oscillating after this phase and remain distant from the
actual pattern until the cycle ends up. Regarding the x-axis displacements, there
appear two different trajectories, a first one formed by the control and the Bayesian
method and a second one by the other two methods, which follow nearly the same
path but are shifted away from the control trajectory. These results demonstrate
that the proposed method is more stable than the EWMA after the heel strike
and follows much better a control pattern which is quite noisy. Interestingly, the
particle filtering approximates better the non-linear plot of the control trajectory, a
result which holds our original hypothesis about the necessity of using more robust
tracking methods.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
INCLUDE TABLE 1 ABOUT HERE
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Table 1 presents the mean and the standard deviation of the Root Mean Squared
Error (RMSE) between the tracked data and the control series for the three meth-
ods during twenty gait cycles, which correspond to about 30 s of gait, distributed
among four different subjects. The higher tracking error is observed for the COM
marker, a result that may be attributed to the fact that this is not actually placed
close to the CoM as well as to the high noise levels in the acquisition process.
Indeed, the EWMA decreases these error rates at smoothing these noise levels,
but the error is still unacceptable for many applications, such as the prostheses
fabrication, in which the prostheses mean life is absolutely dependent on the accu-
racy design (Jia et al. 2008; Pinzur et al. 1995). The particle filtering presents the
lower errors, approximating better the control data since this model is not only
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capable to adapt to the marker position variability but also to the non linearities
in the trajectory. These results strongly suggest this method is steadier and more
accurate for the tracking task.

Since the whole problem consists in following temporal series which are highly
non linear and whose dynamics is therefore very difficult to determine, it is im-
portant to establish a metric on which it would be possible to measure the level
of agreement between two trajectories. Herein we have measured this concordance
level using the correlation coefficient of the temporal differences between two series.
The correlation coefficient measures the degree to which two things vary together
or to which two things draw apart together. In this case, the concordance level
was evaluated as the correlation coefficient from the temporal differences between
series.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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Table 2 shows the correlation factor of the temporal differences between the
kinematic data of the three methods and the control series during twenty gait cy-
cles, in the x and y axes. Again, while the Marker CoM and the EWMA methods
hardly follow the control data, the particle filtering tracking outperforms these
two methods and definitely correlates with the control data (Correlation factor of
about 0.9 in the two cases). A statement which is easily inferred from the corre-
lation coefficients presented in table 2. Furthermore, figures in this table show a
high correlation in the x and y axes, but importantly a better performance of the
particle filtering method in the two dimensions, for instance, from 0.7 to 0.9 in the
y-axis and from 0.5 to 0.9 in the x-axis. The results prove a natural tracking of
the control signal obtained by the particle filtering method, i.e., the predicted data
properly scale and shrink. In contrast, the CoM Marker or EWMA predicted data
are inadequate for tracking the different phases of the gait and hence inappropri-
ate to detect small changes, an issue which results crucial for identifying certain
pathologies (Thirunarayan et al. 1996).

In despite of the so far better performance of the particle filtering method, pro-
vided that changes are in any case very small, it is very difficult to follow differences
through the time and the correlation coefficient is a global measurement. In partic-
ular, it is really difficult to figure out the real gain of any method at any time, since
results are always contaminated by the particular noise in measurements at any of
the two dimensions and differences, as said before, are really small. In consequence,
the quality of the prediction was weighted by the noise, using a logarithmic scale
and measuring the difference between the expected (control data) and the predicted
values. This SNR-like or quality performance measure reads as

q((xc, xm), (yc, ym))dB = 10 log
[

1
(xc − xm)2 + (yc − ym)2

]
(17)

where (xc, yc) are the ground truth coordinates at the time t and the (xm, ym)
are the signal coordinates at the same time. The great advantage with this mea-
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sure is that it allows a temporal gain follow-up of the tracking. Overall, the most
important component is the vertical (y-axis) since most pathologies alter mainly
this vertical pattern (Gard et al. 2004; Thirunarayan et al. 1996). Therefore, this
quality measurement was modified by weighting the horizontal and vertical com-
ponents with a coefficient α, whereby we could tune the importance of the vertical
direction. Then, this quality measure can be written as:

q((xc, xm), (yc, ym))dB = 10 log
[

1
((1− α)(xc − xm)2 + (α)(yc − ym)2)

]
(18)

This evaluation was performed using the cycle for which the averaged difference
between the control and each of the temporal series was the smaller, when com-
paring with the entire sequence of differences among gait cycles. Quality was then
measured using α values of 0.9, 0.8 and 0.7 and results were plotted in figure 4.
The four graphs show in the y-axis the gain in decibels for each of the methods
and in the x-axis the cycle with smaller averaged difference. For comparing so,
each cycle was expressed as percentage since overall each cycle spans a different
time interval. The four panels are distributed as follows: Upper left panel is the
first quality measure, that is to say, there is no α, upper right panel corresponds to
the SNR-like measure with α = 0.7 and left and right bottom panels correspond
to this measure with α set to 0.8 and 0.9, respectively.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
INCLUDE FIGURE 4 ABOUT HERE
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

In the image processing community, the PSNR measure is a term for the ratio
between the maximum possible power of signal and the power of corrupting noise
that affects the fidelity to the original data. Typical values for the PSNR in lossy
image and video compression are between 30 and 50 dB, where higher is better.
In the case of our evaluation a decibel entails a large difference and this accounts
as a quality measurement of the fidelity to the control data. Overall, plots in the
four panels show the same pattern, that is to say, the particle filtering always
outperforms the other two methods. The pattern of the four panels results to be
very alike at the beginning, but rapidly after the gait has reached a 30 % of the
entire cycle, the particle filtering strategy shows a larger gain, between one and
three decibels. The larger difference appears when the cycle has spanned about a
60%, as expected since at this time the gait pattern is much more non linear because
of the heelstrike and the particle filtering is better suited to following this kind of
discontinuities. Likewise, the introduction of a particular preference for the vertical
direction in the SNR-like measurement has no influence on the results. Basically,
the difference between plots with α set for instance to 0.7 (upper right panel)
and the SNR-like measurement with no α (upper left panel) is about 0.5 decibels,
and most punctual differences are slightly amplified, indicating that the x-axis or
temporal evaluation contribute very little to the whole variability of the SNR-like
measurement. This result agrees, with what is known in the literature, in the sense
that most important evaluation must be performed upon the vertical direction
(Gard et al. 2004; Thirunarayan et al. 1996). Finally, the analysis performed setting
α to 0.8 and 0.9, shows the same trend, i.e., the vertical direction weights more and
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differences are more important, demonstrating that the particle filtering strategy
is able to closely follow these non linear patterns, and to more accurately predict
this vertical movement.

The SNR-like assessment was also performed on the twenty cycles of the three
patients and the mean with its standard deviation were calculated from this set of
data.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
INCLUDE TABLE 3 ABOUT HERE
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 3 shows the mean and standard deviation of sixty cycles from three differ-
ent patients. In general then, among the three methods, the higher quality gains
are observed for the particle filtering, as was illustrated before in Figure 4 for
the best cycle. These differences are larger when evaluation has no α value, as
expected since the particle filtering outperformed the other two methods in the
two directions. In this particular case, the trajectory generated by our model had
an approximated quality of 2.17, compared to the averaged 1.34, obtained by the
conventional methods.

When the vertical preference is introduced into the SNR-like measurement, dif-
ferences decrease but the Bayesian tracking conserves the better performance at
any of the set α values. The results with this modification show a considerable
gain (mean of 3.17 for α = 0.9 ), whereby the three methods track much better the
vertical movement but the particle filtering presents still the best performance so
that its utility in clinical application could be even better. Figures for the EWMA
and Marker CoM methods look very similar, in despite the Marker CoM estimation
is a very noisy.

The accuracy of the particle filtering method prediction is of course dependent
on the goodness of the approximation to the pdf . This is essentially an issue which
is function of the number of particles used to get this approximation. Accuracy was
herein defined as the averaged RMSE for each of different number of particles. The
Bayesian fidelity to the control data was thus assessed using a different number of
particles so that we could establish the influence of this parameter. Since the whole
performance picture includes also the computational time, the running time is also
described in table 4.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
INCLUDE TABLE 4 ABOUT HERE
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 4 shows a high gain obtained with 100 particles when comparing with
10, but a smaller one when 1000 particles are used instead. On the contrary, the
variance is comparable in the three cases, indicating a systematic error decreasing
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with the number of particles, as expected. This statement holds true for the two
dimensions (x and y) but this error reduction results very small when using 1000
particles. Computation times evidence an important increasing at using 1000 par-
ticles, when comparing with 100. It is very likely that a time of 7 s is incompatible
with real time applications while the gain in error reduction is actually small, a
trend which will be even bigger for larger numbers of particles since this exponen-
tial difference is a well known characteristic of this type of algorithm (Fox et al.
2003; Arulampalam et al. 2002).

Finally, it is worthy to point out an efficiency issue within this evaluation. Ef-
ficiency was herein conveniently defined as the precision per unit cost. For the
present evaluation, the precision of a final estimate was expressed as the reciprocal
of the data variance (σ2) and the cost as the running time t. Hence, an index of
efficiency E was computed as 1

σ2t

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
INCLUDE TABLE 5 ABOUT HERE
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Table 5 shows a larger efficiency when using 100 particles, a statement that was
difficult to figure out from data in table 4 and which illustrates the needed balance
between accuracy and the computational cost, an important demand in real time
applications.

5. Discussion

This article has introduced a novel strategy for the CoM to be closely followed dur-
ing actual body gait cycles, which is based upon some probabilistic considerations,
namely, there exists an extensive domain knowledge about the gait physiology and
the whole process can be modeled as a Markovian process so that the future sys-
tem states are stochastic functions of the past system states. The particle filtering
framework used in the present investigation nicely dealt with this highly non lin-
ear gait dynamics, based on the calculation of two complementary terms: a prior
adapted from a well known mathematical gait model, whose aim is to predict the
gait cycle (Garcia et al. 1998), and which is constantly tuned by a function that
expresses the link between observations and system states (the likelihood). This
approach is simple, easy to implement when the pdf is approximated by a particle
filter and efficient in terms of computational running time and accuracy on the
obtained measurements.

As extensively discussed before, the CoM has been a quantity difficult to estab-
lish due to its highly non linear dynamics. Previous works (Eames et al. 1999; Gard
et al. 2004) have presented significant differences between optical methods and the
CoM estimated from the double integration of the reaction force, measured in or-
dinary force plates. Many authors consider that the CoM trajectory, determined
from the reaction force, is the gold standard in the CoM examination (Whittle 1996,
1998; Eames et al. 1999; Gard et al. 2004). Biomechanical literature is highly rich
in methods whose aim is to estimate the CoM position. Nevertheless, their clinical
use remain limited because most commercial laboratories are provided with one or

Page 13 of 27

URL: http://mc.manuscriptcentral.com/gcmb

Computer Methods in Biomechanics and Biomedical Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

January 13, 2010 14:13 Computer Methods in Biomechanics and Biomedical Engineering Jour-
nalCoM

14 Taylor & Francis and I.T. Consultant

two force plates, a set up that hardly adapts to the step length variability since, at
the best scenario, one entire gait cycle is assessed. Besides, repeatability of the gait
analysis is poorer with these force plates and so the analysis becomes inconsistent.
Overall, there have existed two main approaches: the first has been a very practi-
cal solution at associating the CoM temporal pattern to a marker located within
the sacral zone, defined by an expert. Yet its accuracy is enough in many clinical
studies, as it was shown in the present investigation, this estimation hardly follows
the non linear CoM patterns, very likely because the marker dynamics is by itself
non linear and not necessarily of the same type. This picture would be worst in
those disorders in which the gait is so altered that it is really difficult to define
even a cycle pattern. In practice, this approximation has consisted in setting a
point where the CoM is supposed to be, namely, a 60% of the body height, a point
from which there exists considerable clinical evidence for being the candidate as
the more probable CoM location (W.Zijlstra and A.L.Hof 1997; Gard et al. 2004).
However, this method is particularly inaccurate in pathological situations in which
the relative movements of the body segments are very distorted. On the other hand,
a second strategy borrowed from optical methods consists in combining the CoM
optical estimation for each of the body segments into a resultant CoM (Eames et
al. 1999). The main drawback with this method is that the CoM location for each
body segment is by itself a high non linear problem and therefore very inaccurate.
Moreover, the error will be propagated systematically from each of these segment
estimations because of the anatomical segment variability, as well as because the
variable marker placement (Gard et al. 2004). Setting a convenient marker location
may be particularly difficult in patients with high anatomical variability and unfea-
sible in patients using ortheses. In addition, movements of the body segments lead
to relative displacements of the original marker locations, an intrinsic error which
is almost impossible to avoid. Even worst, many pathologies are characterized by
accentuated or attenuated movements and hence most marker placement protocols
fail under these extreme conditions. This performance is improved by increasing
the number of markers and so the CoM estimation, nonetheless a large number of
markers alters the natural gait gesture. In despite that these optical methods are
the more used in clinics because of their easy implementation and control, they
are still very inaccurate in calculating with sufficient precision the CoM location
(Gard et al. 2004) and therefore inadequate for many diagnosis and follow-up. The
strategy herein proposed, although is also based on the marker measurements, it
depends initially on the location of four markers, but above all upon the underlying
gait dynamics which drives the movement. Moreover, the method introduces effi-
cient mechanisms for tracking the gait trajectory involving non linear descriptions
of the human movements. Among other advantages, this strategy requires a small
number of markers (four for the present investigation) and can even be used in
patients with ortheses since the sacral region is not invaded with any device, in
these cases.

The trajectory described by the CoM during a gait cycle is a global indicator that
correlates with the gait efficiency but that also can be used as a dynamical variable
which complements the standard gait analysis (Detrembleur et al. 2000). The CoM
temporal path is distorted in different movement abnormalities and associated with
a degree of illness (Detrembleur et al. 2000). The CoM is considered as an efficient
indicator for assessment of pathologies such as hemiplegia, paraplegia or distonia.
The optimal walking, in terms of the energy, can be defined as the movement of
the CoM from a place to another with minimum energy expenditure. Therefore, a
pathological gait can be analyzed in terms of energy using the CoM change as the
transfer of potential to kinetic energy (recovery) ,i.e., normal gait patterns loss a
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40 % of this energy in this transfer, a higher lost is pathological (Detrembleur et
al. 2000). Indeed a proper gait analysis should be based on an accurate estimation
of the CoM positions and for doing so, the analytical description of the CoM
movement pattern is required. The inverted pendulum system is an appropriate
mechanism to representing the CoM movement in energy terms, describing the
exchange between kinetic and potential energies within the different gait cycles
(Buczek et al. 2006; Detrembleur et al. 2000; Cavagna and Kaneko 1977). Garcia’s
model has succeeded about representing the whole system in these terms (Garcia
et al. 1998) and is able to describe normal patterns. The strategy presented here
takes this model as a prior, adapts it to the observations and demonstrates its
effectivity for tracking such patterns with no major concern on the anatomical
variabilities, i.e. this hypothesis allows to assume a fixed leg length. Importantly,
the strategy herein described could be easily used to follow pathological patterns
by simply replacing this prior (see (Komura et al. 2005) for models that describe
pathological patterns), or changing the weight given to the likelihood function so
that even with this prior, the mapping of the observations to the states could follow
the actual pattern. We claim that this is possible since a mixture of Gaussians has
been already used in other problems (Pennec and Joshi 2008) for tracking non
linear dynamics with comparable accuracy rates. The prior here is needed because
it gives physical meaning and more importantly, clinical meaning, to the possible
altered patterns and so quantification makes sense.

An important part of the routine clinical examination is the CoM estimation per
cycle, a basic descriptor of many neuromuscular and musculoskeletal disorders. So
far the common point, among the different approximations, has been a heuristic
detection of the CoM location. Yet these approaches have coped with many clinical
needs, no endeavours have been dedicated, up to now to developing tracking meth-
ods (Thirunarayan et al. 1996; Eames et al. 1999). The point is that any strategy,
devised to uniquely achieve detection, is inefficient because it is based on noisy
position mesurements and highly dependent on their inital marker location (Duff-
Raffaele et al. 1996; Detrembleur et al. 2000). In the present work, we propose an
efficient strategy for tracking CoM locations, using a non-linear gait biomechanical
model whose parameters are recursively adjusted by a Bayesian filter, implemented
as a particle filtering. Implementation of any Probabilistic function distribution
(pdf) can be achieved using several techniques, namely, extended Kalman filtering,
multihypothesis tracking, grid-based or topology-based representations and particle
filtering (Fox et al. 2003; Arulampalam et al. 2002). The Extended Kalman Filter
approaches the system dynamic by a first order Taylor series expansion. This filter
is useful if the state uncertainty is not too high, i.e., measures come from accurate
sensors, which is obviously not the case for CoM tracking. The multihypothesis
tracking represents the belief as a mixture of Gaussians and tracks each with a
Kalman filter. This technique is computationally expensive and requires compli-
cated heuristics to determine when to add or delete Gaussians. Additionally, the
heelstrike rule, herein used for the dynamic model, introduces angular discontinu-
ities that would require many Gaussians whose number would be impossible to
establish beforehand. Grid-based approaches stand for a piecewise constant repre-
sentations of the belief. This approach approximates discontinuities by refining the
resolution grid cells, and therefore expensive computational methods are required
when discontinuities are present. This grid complexity could be approached by
topological representations, corresponding to a graph where each node is related
to a state and each edge to the environments connectivity, but the computational
cost is even higher. In contrast, each particle of a particle filtering can easily fol-
low any discontinuity, with a low number of particles and minimum computational
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cost. Moreover, the particle filter does not require accurate measurements because
the particle weights are modified proportionally to their likelihood.

The whole strategy allows a natural tracking of the non-linear gait patterns with
a high degree of noise robustness, under a non-linear minimal square criterion. Ac-
curacy and efficiency were herein assessed under several different metrics. Firstly,
under RMSE metric the particle filtering is a 56% smaller in the x-axis and 59% in
the y-axis, when comparing with other two conventional tracking strategies. Also,
correlation was assessed using the correlation coefficient and again the particle fil-
tering outperformed the other two from 0.9 to 0.7 in the x-axis and from 0.9 to 0.6
in the y-axis. Finally, the SNR-like measurement permitted to measure the qual-
ity of the tracked signal among the different strategies under the Gaussian noise
conditions, introduced from different independent sources. On average, measure-
ments showed that the trajectory generated by our model was 0.86db higher, when
comparing with conventional methods, indicating a large gain in accuracy. Impor-
tantly, the largest gain difference was observed in the heelstreak phase (1.5 db),
demonstrating the capacity of the proposed method to follow the non linear gait
patterns. Finally, the method was computationally implemented through a parti-
cle filter because of the great advantages of this implementation when comparing
with others (Fox et al. 2003), among others: accuracy, robustness, efficiency and
easy implementation. The particle filter is herein used to estimate the gait Bayesian
model. The Sequential Importance Resampling implementation of the particle filter
approximates the pdf by a weighted set of particles whose importance is constantly
evolving with the dynamics we introduced and then updated after system obser-
vations are available. This implementation, as shown by our results, is efficient in
terms of the computational time and enough accurate as to follow the gait non lin-
ear patterns so that on-line data analysis is possible along with the routine capture
of the other variables which compose an entire gait analysis.

6. Conclusions and Perspectives

This work presented a general framework for tracking complex human movements.
The whole strategy consists in simulating the dynamics of the system, using some
priori information of the particular problem. Simulation requires a discrete system
model and an observation process. The model approximates the truth hidden sys-
tem states, while the observation process adapts to non-linear dynamics using the
Bayes rule, implemented as a particle filter. The method was successfully assessed.
The presented procedure could be extended to other type of medical imaging prob-
lems, under the restriction that there exists a proper knowledge of the problem so
that analytical or parametric expressions may be found.
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Figure Captions

Figure 1:Sequence of events of a complete gait cycle extracted from the hu-
manEva database (Sigal and Black., 2006).
Figure 2:Marker locations in the sacral region.
Figure 3: The gait trajectory has been divided into its y (left) and x (right)
components for better analysis. The y pattern is characterized by a non linear
periodic path (Thicked line) which is closely tracked by the Bayesian strategy
(squared dots) and hardly matched by the other two methods (dashed lines). The
x plot complements the whole picture, the marker CoM and EWMA methods
are shifted away from the control path, which is closely followed by the Bayesian
strategy. The Bayesian method highly outperforms the two other methods,
regarding non linear adaptation.
Figure 4:The SNR-like measurements assess the fidelity to the control data along
the best cycle for each of the methods. The graph shows in four panels different
evaluations: upper right panel displays the three methods when no specific
weight is given to the vertical component i.e. there is no α while the other three
panels show different α values, set to 0.7, 0.8 and 0.9 for upper-right, bottom-
left and bottom-right panels, respectively. Notice that the Bayesian tracking
outperforms the other two methods in about 1 to 3 decibels for the four dif-
ferent comparisons, indicating a higher quality of the prediction of the control data.
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1

Table 1. Root Mean Squared Error and its tracking de-

viation for the three evaluated methods. These averages

have been calculated from the differences between the

control and any of the predicted data, expressed as per-

centage height.

Tracking Method x-axis y-axis

Marker CoM 0.414 ±0.05 0.4 ±0.081
EWMA 0.38 ± 0.05 0.41 ± 0.079

Bayesian tracking 0.232 ± 0.021 0.236 ± 0.028
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1

Table 2. correlation factor of the differences between

the control and the three assessed methods

Tracking Method x-axis y-axis

Marker CoM 0.54 ±0.05 0.7849 ±0.081
EWMA 0.56± 0.05 0.7584 ± 0.079

Bayesian tracking 0.9 ± 0.021 0.91± 0.028
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1

Table 3. The mean and standard deviation of the SNR-like mesurement for a total

of sixty cycles available in the present investigation

Tracking Method without α α = 0.9 α = 0.8 α = 0.7

Marker CoM 1.35 ± 0.35 2.34 ± 0.39 2.04 ± 0.39 1.86± 0.36
EWMA 1.33 ± 0.46 2.32 ± 0.46 2.03 ± 0.46 1.85± 0.47

Tracking Bayes 2.17 ± 0.5 3.17 ± 0.5 2.86 ± 0.5 2.7± 0.5
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1

Table 4. Accuracy index or the averaged RMSE with its standard

deviation for different numbers of particles from the data of ver-

tical and horizontal directions. The running time is included for

illustrating the computational cost of any of them.

Particle x-axis y-axis Duration ms

10 0.451 ± 0.022 0.423 ± 0.039 170
100 0.281 ± 0.023 0.29 ± 0.028 810
1000 0.253 ± 0.025 0.252 ± 0.031 7100
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1

Table 5. Efficiency index for both

dimensions and running time for a

number different of particles.

Particle x-axis y-axis

10 0.02673 0.15082
100 0.05367 0.044091
1000 0.0056 0.00454
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Rotation Invariant Texture Characterization using a Curvelet Based
Descriptor

F.A. Gómeza, E. Romeroa,∗
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Abstract

This paper introduces a highly discriminative, precise and simple descriptor of natural textures based on
the curvelet transform. The proposed descriptor captures edge information from the statistical pattern of
the curvelet coefficients. The image is mapped to the curvelet space and a statistical parametric model
is calculated from each of the sub-bands, aiming to approach the subband marginal distribution. Once
these parameters are estimated, they are subband energy sorted out, achieving so the invariance to planar
rotations. Finally, the Kullback−Leibler divergence between the statistical parameters is used to estimate
a distance between images. We demonstrated the effectiveness of the proposed descriptor for classification
and retrieval tasks, obtaining significant improvements.

Keywords: texture characterization, rotation invariance, curvelet transform, generalized Gaussian
distribution, Kullback-Leibler divergence

1. Introduction

The capacity of a mapping to generate features
with highly discriminant textural characteristics,
results of paramount importance for the problem of
classification and/or retrieval. Typical applications
include microscopical or satellite images [1]. For-
mally, the feature extraction process is thought of as
a mapping of an image collection to a characteristic
space, which provides a representation where simi-
lar images are close and different images are far, i.e.,
this property is known as the discriminating space
power. Images projected onto this space are charac-
terized by features which capture some image pro-
perties, typically statistical data properties. In the
particular case of textures, the most popular char-
acteristic spaces are currently the discrete cosine,
wavelets, Gabor transforms [2, 3]. Unfortunately,
these spaces are sub-optimal for this problem be-
cause textures are naturally entailed with geome-
trical, scale and directional properties which are
poorly described with these transforms [4]. Some

∗Corresponding author
Email address: edromero@unal.edu.co (E. Romero)

of the features, already used in this problem, cap-
ture information of the energy coefficient distribu-
tion and include the total energy, the mean and
the variance [2]. These features result insufficient
to capture the statistical properties of natural ima-
ges [5]. In addition, the success of any comparison
between images depends on the metrics one selects
for the specific problem. The usual metrics is ei-
ther Euclidian or an estimation of statistical depen-
dence such as the Kullback−Leibler divergence [6].
In these terms, the problem of texture characteri-
zation consists in constructing a feature with high
discriminative power that takes into account the
statistical image contents.

The problem of texture characterization with
curvelets was already addressed by Semler [7], who
studied the performance of several features, namely:
the energy, entropy, mean and standard deviation of
the curvelet subbands. Results showed significant
improvement when comparing with wavelets, but
this characterization did not take into account the
particular statistical patterns of the curvelet coe-
fficients [8]. Sumana [9] also proposed the curvelet
subband mean and variance as features and the Eu-
clidian distance as similarity measurement. Results
showed again improvement, when comparing with

Preprint submitted to Pattern Recogntion Letters April 15, 2010



Gabor features. However, texture curvelet sub-
bands are not described by simple Gaussians so that
mean and variance result insufficient to describe the
observed distribution [8].

In this paper we present a new global descriptor,
entailed with the previously described properties.
The curvelet space is used to capture information
about edges, which are in fact one of the most dis-
criminating features [10]. These features are the
moments of a generalized Gaussian density (GGD),
a good approximation to the marginal curvelet sub-
band distribution [8], whilst the Kullback−Leibler
divergence estimates differences between curvelet
coefficient distributions. A main contribution of
this paper is that an entire statistical characteri-
zation of the curvelet coefficient, results in a highly
discriminative, precise and simple descriptor of na-
tural textures. The rest of this paper is organized as
follows: Section materials and methods introduces
the new feature, Section Results demonstrates the
effectiveness of this descriptor in classification and
retrieval tasks. Finally, the last Section concludes
with a discussion and future work.

2. Materials and methods

Two input images are curvelet-represented and
their frequency subbands are statistically charac-
terized, using the moments of a GGD. Invariance
to planar rotation is obtained via the circular shif-
ting process [11], based on the subband energies.
Finally, the Kullback-Leibler divergence computes
a distance estimation between the two representa-
tions. This strategy will be further explained here-
after:

2.1. The curvelet transform

The curvelet transform is a multiscale decompo-
sition, developed to naturally represent objects in
2D, improving the wavelet limitations for represen-
ting geometrical information [12]. Curvelets are re-
dundant bases which optimally represent 2D curves.
Besides the usual information about scale and loca-
tion, already available from a wavelet, each of these
frame elements is able to capture orientation infor-
mation.

A curvelet can be thought of as a radial and an-
gular window in the frequency domain, defined in a
polar coordinate system, upon which the different
scales are represented as different rings with diffe-
rent level of frequential detail from the inner (low

frequencies) to the outer (high frequencies) rings.
This representation is constructed as the product
of two windows: the angular and the radial dyadic
frequential coronas. The angular window provides
a directional analysis and the radial dyadic win-
dow is a bandpass filter, used to analyze image de-
tails at different scales (see Figure 1). Frequency
cuts in both windows are selected, following the
parabolic anisotropic scaling law width ≈ length2

(see Figure 1). The motivation behind this selec-
tion is to efficiently approximate a smooth discon-
tinuity curve by “laying on” basis elements with
elongated supports along the curve [12]. Curvelet
bases were designed to fully cover the frequency
domain, in contrast to other directional multiscale
representations such the Gabor transform, case in
which some information is always lost. Thanks to
the anisotropic scale, curvelets adapt much better
to scaled curves than Gabor transform, improving
the representation at different scales and noise ro-
bustness [13]. All these statements have been ex-
perimentally demonstrated by comparing wavelets,
curvelets and Gabor in retrieval tasks [9]. The Fi-
gure 1 shows a curvelet multiscale decomposition
example.

2.2. Statistical characterization
Psychophysical research has demonstrated that

two homogeneous textures are not discriminable if
their marginal subband distributions are alike [10],
i.e., the frequency subband distributions have a
highly descriptive capacity, at least for the texture
problem. This discriminative power was also ex-
perimentally verified for wavelet and Gabor repre-
sentations [2]. In the curvelet case, each subband
contains information about the degree of occurrence
of similar curves within the image, that is to say,
edge energy levels with similar direction and size.
Figure 2 shows a typical example of the curvelet
coefficient histogram of an image subband. The
kurtosis in this case is about 7.4 so that a Gaussian
density is not enough as to match the observed ener-
gies. Therefore, the mean and variance calculated
from a Gaussian, used in a previous works [7, 9] will
have a very poor descriptive capacity. In general,
the curvelet coefficient distribution in natural ima-
ges is characterized by a sharper peak centered at
zero with symmetrical smooth tails. This shape is
associated to the sparse property of this transfor-
mation, i.e., relatively few large coefficients capture
most of the information. This leptokurtic pattern
has been previously observed in curvelets [8, 14]

2



Figure 1: Curvelet transform. Left, continuous curvelet tilling generated by the product of angular and radial coronas, frequency
cuts are selected to satisfy the anisotropic scaling law. Rigth, illustration of a curvelet texture decomposition: from top to
bottom, increasing levels of detail, from left to right, different orientations.

(a) Texture. (b) Curvelet Subband (c) Curvelet histogram.

Figure 2: Curvelet histogram example (scale 3 and orientation 16).

as well as in wavelets [15]. This work proposes a
texture characterization via the marginal distribu-
tion of the subband curvelet coefficients, specifically
using the parameters of a generalized Gaussian den-
sity. Recent experimentation in natural images [8]
shows that the generalized Gaussian density pro-
vides a good adjustment to the marginal density
of the curvelet coefficient, within each subband.
The GGD reads as p(x;α, β) = β

2αΓ(1/β)e
−(|x|/α)β

,
where Γ(z) =

∫∞
0

e−ttz−1dt, z > 0 is the Gamma
function, α is the variance and β is related to the
decreasing rate of the GGD. The parameters α and
β are estimated from the subband data using Max-
imum Likelihood, as detailed in [15]. These para-
meters (α,β) are herein used as descriptor of the
probability density function of the energy levels in-
side each curvelet subband.

2.3. Rotation Invariance

Previous texture characterizations have failed
when the image is rotated, basically because similar
textures with different orientations have very diffe-
rent statistical subband moments. Some works [11,
16] have tried to overcome this limitation by using
the curvelet rotation shifting property, that estab-
lishes that the curvelet subbands of a rotated image
are a shifted version of the original subbands. These
approaches have independently performed a circu-
lar shifting on each scale level, assuming that the
energy of the dominant orientation usually spreads
between two neighboring subbands. Nevertheless,
our experiments on the Brodatz database rapidly
drive us to the conclusion that this statement was
true only for some patterns. Indeed, orientation in-
formation is not homogenously distributed between
the different scale levels and its calculation is not
therefore independent. We decided then to com-

3



pute as the dominant orientation, the sum over all
the subbands at the different scales, and the cir-
cular shifting is ordered using as reference the first
curvelet level.

2.4. Similarity measure

The similarity between subband curvelets is
estimated using the Kullback-Leibler divergence
(KLD) of the corresponding GGDs:

D(p(.; α1, β1)||p(.; α2; β2)) = log

„
β1α2Γ(1/β2)

β2α1Γ(1/β1)

«
+

„
α1

α2

«β2 Γ((β2 + 1)/β1)

Γ((1/β1)
−

1

β1

where (α1, β1) and (α2, β2) are the GGD parame-
ters estimated for each subband. This estimation
needs not additional normalization and shows
good performance under other multiscale do-
mains [15]. Finally, assuming independence of
different subbands, the similarity between two
images I1 and I2 is the sum of the divergences
between corresponding subbands D(I1, I2) =∑

∀s

∑
∀θ D(p(.;αs,θ

1 ;βs,θ
1 )||p(.;αs,θ

2 ;βs,θ
2 )), where

(αs,θ
1 , βs,θ

1 ) and (αs,θ
2 , βs,θ

2 ), are the GGD parame-
ters estimated for corresponding subbands, i.e.,
subbands in the same scale s and orientation θ.

3. Results

Provided that our main goal was to assess the
discriminative power of the curvelet descriptor, the
feature performance was assessed in both a mul-
ticlass classification and a retrieval problem. For
doing so, we used two databases, the KTH-TIPS 1

image texture and the Brodatz databases. The for-
mer was used to evaluate the descriptor capacity in
the multiclass classification problem. This database
provides several variations of scale, pose and illu-
mination, increasing the intra-class variability and
reducing the inter-class separability and then aug-
menting the difficulty of the classification task [17].
In this database, there are ten texture categories:
sandpaper (sn), aluminium foil (af ), styrofoam
(sf ), sponge (sp), corduroy (cd), linen (ln), cotton
(ct), brown bread (bb), orange peel (op), cracker
(cr). These real world images come from different
natural scenes and have different poses and scales.

1http://www.nada.kth.se/cvap/databases/kth-
tips/index.html

For our experiments, 45 images of each category in
nine scales were converted to gray-scale levels (com-
puted from the luminance component) and cropped
to 128×128. Figure 3 displays examples of the ori-
ginal textures. A second image collection was used
to test the planar rotation invariance property in a
retrieval experiment. It consists of sixteen 512×512
Brodatz texture images that were rotated to various
degrees before being digitized. From these images,
we constructed the rotated image set by taking nine
non-overlapping 128× 128 from the original image
at 0, 30, 60, 90 and 120 degrees. The database con-
tains 720 (9× 5) images that come from 16 texture
classes: D3 (reptile), D9 (grass), D16 (weave), D19
(wool), D21 (canvas), D24 (leather), D29 (sand),
D53 (cloth), D55 (matting), D57 (paper), D64 (rat-
tan), D68 (wood), D77 (cotton), D78 (straw), D84
(raffia) and D92 (pig skin). Figure 4 displays exam-
ples of the original textures.

A real digital curvelet transform with 4 scales and
32 orientations was used, resulting in 66 subbands.
The coarsest curvelet level was excluded in order
to obtain robustness to changes in illumination.
The algorithms were written in Matlab and run
on a Intel Xeon X5460 Quad-Core 3.16 GHz
with 8 GB in RAM. The discriminative capacity
of the proposed descriptor was assessed in a
multiclass problem using the most simple classifier,
a nearest neighbor, and compared with other
curvelet representation methods, namely: energy
of the curvelet subband plus Euclidian metric [7, 9]
(energy based feature), mean and variance plus
Euclidian metric [9] (mean-variance feature) and
the herein described proposal GGD plus KLD
metric (GGD based feature). Sumana [9] has
previously compared Gabor, wavelets and curvelets,
obtaining a better performance for the latter
so that our work was focused on characterizing
the curvelets. The three classifiers were tested
under a leave-one-out cross-validation and the
corresponding confusion matrix was calculated.
In the retrieval experiment, each image in the
database was used as a simulated query. The
relevant images for each query are defined as the
set of images which belong to the same class of the
tested image. The performance was evaluated in
terms of the percentage of relevant images from
15 retrieved images [18] and also calculated for
other curvelet features, rotation invariant, namely:
circular shifting either with independent frequency
energy [11] or mean-variance frequency [16] as
descriptors, while the Euclidian metric was used as
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similarity measurement.

Assigned Total % Agreesn af sf sp cd ln ct bb op cr

True

sn 21 0 14 7 0 0 0 2 1 0 45 47
af 0 42 1 0 0 0 0 1 1 0 45 93
sf 5 1 35 3 0 0 0 0 0 1 45 78
dp 2 0 1 38 2 0 0 1 1 0 45 84
cd 0 0 0 2 31 0 0 6 6 0 45 69
ln 0 0 0 0 1 42 0 0 1 1 45 93
ct 0 0 0 1 0 0 40 3 1 0 45 89
bb 2 0 0 1 1 0 0 36 4 1 45 80
op 0 0 1 1 2 0 0 2 27 12 45 60
cr 0 0 1 0 0 0 0 1 2 41 45 91

Total 30 43 53 53 37 42 40 52 44 56 450 78

Table 1: Confusion matrix for the energy based feature.

Assigned Total % Agreesn af sf sp cd ln ct bb op cr

True

sn 29 0 9 5 0 0 0 2 0 0 45 64
af 0 41 1 0 0 0 0 1 0 2 45 91
sf 4 0 38 2 0 0 0 0 0 1 45 84
sp 3 0 0 39 2 0 0 0 1 0 45 87
cd 0 0 0 2 31 0 0 7 5 0 45 69
ln 0 0 0 0 1 44 0 0 0 0 45 98
ct 1 0 0 0 2 0 41 1 0 0 45 91
bb 2 0 0 2 1 0 0 35 5 0 45 78
op 0 0 0 1 2 0 0 1 36 5 45 80
cr 0 0 0 0 0 0 0 0 1 44 45 98

Total 39 41 48 51 39 44 41 47 48 52 450 84

Table 2: Confusion matrix for the mean-variance based
feature.

Assigned Total % Agreesn af sf sp cd ln ct bb op cr

True

sn 31 0 4 5 0 0 0 5 0 0 45 69
af 0 45 0 0 0 0 0 0 0 0 45 100
sf 3 0 38 1 0 0 0 0 0 3 45 84
sp 2 0 0 38 2 0 0 3 0 0 45 84
cd 0 0 0 2 32 0 0 6 3 2 45 71
ln 0 0 0 0 0 44 0 0 1 0 45 98
ct 0 0 0 0 2 0 43 0 0 0 45 96
bb 4 0 0 2 0 0 0 39 0 0 45 87
op 1 0 1 1 0 0 0 0 42 0 45 93
cr 0 1 0 0 1 0 0 1 1 41 45 91

Total 41 46 43 49 37 44 43 54 47 46 450 87

Table 3: Confusion matrix for the GGD feature.

The confusion matrices for the classification ex-
periment are shown in Tables 1, 2 and 3. The cor-
rect classification varies, overall, as 78%, 84% and
87%, showing a high discriminative capacity. The
curvelet descriptor shows a better classification rate
for both the average and the individual classifica-
tion, as observed in table 3. Note that textures
linen (ln) and cotton (ct) present a high density of
lines and are correctly classified in a large number of
cases. Likewise, texture aluminium foil (af), which
presents gross edges, is correctly classified using the
curvelet descriptor. Finally, the confusion matrices
show that misclassifications occur mainly in similar
textures, for example, sandpaper (sn) and styrofoam
(sf), probably because of a similar edge distribu-
tions. Importantly, the curvelet descriptor shows
much less classification errors, showing that in tex-
tures with higher levels of variability, the proposed

method outperforms the previous approach. In the
second series of experiments, we tested the rota-
tional invariant property of the proposed curvelet
descriptor. Figure 5 shows the performance com-
parison among the three methods previously de-
scribed (see Section 2). The proposed rotational
invariant method highly outperforms the other two
methods. We see that textures as grass, wool and
sand are not significantly affected by rotation, be-
cause they have no strong directional information,
resulting in a similar performance. On the con-
trary, in textures with strong directional informa-
tion (wood, straw), the proposed method results
in a better representation. Finally, the average
retrieval for the proposed method improved in a
17%, when compared with the previous rotational
invariant methods. This improvement is consistent
with the strong directional information in these tex-
tures. Regarding the computational complexity,
the curvelet implementation runs in O(n2 log(n))
for n × n Cartesian arrays [12], less than 300 ms
for each image, while the statistical characteriza-
tion for the curvelet subbands runs in less that 1
second.

4. Conclusions and Discussion

We have introduced a new texture image descrip-
tor, based on the curvelet transform and a sta-
tistical model of the frequency distribution of the
curvelet coefficients in natural images. By apply-
ing the curvelet transform and adjusting the lev-
els of energy for each subband to a generalized
Gaussian model, we obtain a robust representa-
tion which captures the edge distribution at diffe-
rent orientation and scales. Experimental results
indicate that the new feature improves the classi-
fication performance in a multiclass classification
problem when compared with other features, also
based on curvelets. Likewise, the descriptor has
shown to improve retrieval tasks in actual texture
applications. Future works includes the feature
scale invariance and extensive experimentation in
large texture databases.
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