

Interferometría sísmica a partir de registros de un fracturamiento hidráulico orientada a establecer condiciones locales de esfuerzos para la generación de imágenes tomográficas basadas en datos microsísmicos y ruido ambiental

Omar Alfredo Mercado Díaz

Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Geociencias Bogotá D.C, Colombia 2015

Interferometría sísmica a partir de registros de un fracturamiento hidráulico orientada a establecer condiciones locales de esfuerzos para la generación de imágenes tomográficas basadas en datos microsísmicos y ruido ambiental

Omar Alfredo Mercado Díaz

Tesis presentada como requisito parcial para optar al título de: Magister en Ciencias-Geofísica

> Director: Ph.D. Carlos Alberto Vargas Jiménez

> > Línea de Investigación: Sísmica Pasiva

Universidad Nacional de Colombia Facultad de Ciencias, Departamento de Geociencias Bogotá D.C, Colombia 2015

Porque la sabiduría entrará en tu corazón y la ciencia será la delicia de tu alma Proverbios 2:10

> A mi Madre Rosi. A Dios, mi familia y amigos por su apoyo incondicional.

Agradecimientos

Quiero extender mis agradecimientos a todas las personas del departamento de Geociencias en especial al profesor Carlos Alberto Vargas Jiménez por su constante motivación e interés para que fuese posible la realización del proyecto en el cual se ejecutó esta tesis, a todos los profesores que siempre con su paciencia atendieron todas mis inquietudes y necesidades, a mis compañeros de la maestría Miguel Lizarazo y Mauricio Delgado por sus grandes aportes, al Instituto Colombiano del Petróleo quien en convenio con la Universidad Nacional de Colombia apoyaron económicamente la realización del proyecto de monitoreo microsísmico en el campo Chichimene, y finalmente agradecer a todos aquellos que hacen posible que el Alma Máter siga construyendo País.

Resumen

Para la realización de este trabajo se desplegó un arreglo sísmico lineal de 17 acelerómetros triaxiales separados aproximadamente cada 70 m, alineados con la boca de un pozo productor del Campo Chichimene, cuenca Llanos Orientales de Colombia. En este experimento se adquirió información por 80 horas continuas a una frecuencia de muestreo de 500 mps, que involucró el tiempo previo y posterior a una actividad de fracturamiento hidráulico realizada en Noviembre de 2012. Un preprocesamiento orientado a la eliminación de datos espurios, saltos por submuestreo electrónico y la respectiva filtración en bandas deseadas, permitió consolidar registros continuos para la aplicación sistemática de correlaciones cruzadas entre todas las estaciones y su respectivo apilado, obteniendo CDPs que permitieron ensamblar una imagen interferométrica. La aplicación de la interferometría sísmica con modelos de velocidad 1D del área, llevaron a identificar reflectores consistentes con la estratigrafía. Además de las condiciones locales de esfuerzo a partir de la función temporal de la fuente sísmica. Comparaciones entre las imágenes estimadas en este trabajo, con las construidas con un modelo sintético y otras adquiridas por la industria petrolera en la zona, permiten identificar importantes contrastes acústicos de las principales unidades.

Palabras claves: Interferometría Sísmica, Fracturamiento Hidráulico, Ruido Sísmico Ambiental, Sísmica Pasiva, Funciones de Green, Función temporal de la fuente.

Abstract

To carry out this work was deployed a linear seismic array of 17 triaxial accelerometers spaced approximately every 70 m, aligned with the mouth of a producing well of Chichimene Field, Llanos Orientales basin of Colombia. In this experiment, data were acquired for 80 continuous hours at a sampling frequency of 500 mps, which involved the time before and after hydraulic fracturing activity held in November 2012. A preprocessing oriented towards the elimination of spurious data, jumps for electronic subsampling and the respective filtration desired bands, allowed consolidating continuous records, for the systematic application of cross-correlations between all stations and their respective stack, which obtained CDPs for assemble an interferometric image. The application of seismic interferometry with 1D velocity models of the area, allowed to identify reflectors consistent with the stratigraphy. As well as local stress conditions from the seismic source time function. Comparisons between the estimated images in this work, in addition to those built with a synthetic model and skills gained by the oil industry in the area, to identify important acoustic contrasts of the main units.

Keywords: Seismic interferometry, Hydraulic fracturing, Ambient noise, Passive seismic, Green's functions Source time function.

Contenido

Pág.

Re	sumen	IX			
Lis	ta de figuras	XIII			
Lis	ta de tablas	XVI			
Inti	roducción	19			
1.	Generalidades	21			
	1.1 Geometría y esquema de adquisición de información	21			
	1.2 Instrumentación y equipos	22			
	1.3 Fracturamiento hidráulico	24			
	1.4 Contexto geográfico, geológico y geofísico del área de estudio	25			
	1.4.1 Área de estudio	25			
	1.4.2 Contexto geológico y geofísico	26			
	1.5 Estado actual del tema	29			
2.	Marco conceptual				
	2.1 Interferometría sísmica	31			
	2.2 Funciones de Green	32			
	2.2.1 Funciones Causal y Anticausal de Green	33			
	2.3 Ecuaciones recíprocas de tipo convolutivo y correlativo	34			
	2.4 Elastodinámica y campo de esfuerzos	35			
	2.4.1 El tensor de Deformación	35			
	2.4.2 El tensor de Esfuerzo	37			
	2.4.3 Relación entre el tensor de esfuerzos y el tensor de deformación	38			
	2.5 Modelo de un par de fuerzas	40			
	2.5.1 Tensor de momento sísmico	41			
	2.5.2 Función temporal de la fuente sísmica	42			
	2.5.3 Dinámica de la de la fuente sísmica	44			
3.	Metodología Empleada	47			
	3.1 Interferometría sísmica	47			
	3.1.1 Análisis espectral y selección de frecuencias	48			
	3.1.2 Correlaciones cruzadas	50			
	3.1.3 Apilado e imagen	53			
	3.2 Modelo sintético para la generación de una imagen sísmica del área				
	estudiada	55			
	3.3 Campo de esfuerzo local del área	57			

		3.3.1	Detección de eventos microsísmicos	.58
		3.3.2	Función temporal de la fuente	.61
		3.3.3	Régimen del campo esfuerzos	.63
٨	Pos	ultados	y Discusión	67
4.	4 1	Interf	erometría Sísmica	.07 67
		4.1.1	Comparación entre la imagen sintética v la imagen interferométrica	.69
		4.1.2	Comparación entre imagen interferométrica e imágenes sísmicas	
		cercana	as	.69
		4.1.3	Interpretación estratigráfica de los reflectores estimados a partir de la	1
		interfere	ometría sísmica	.73
	4.2	Régir	men de esfuerzos locales	.73
5.	Cor	nclusion	es v recomendaciones	.77
-	5.1	Conc	lusiones	.77
	5.2	Reco	mendaciones	.79
٨	۸nc		scrinción do códigos on Matlab para corrolacionos cruzadas y	
A. apil	ado	de la in	formación	.80
ч р				
В.	Ane	exo: Cóc	digo Imagen sísmica migrada a partir del modelo de velocidad de ι	IN
terr	eno	•••••		.84
C.	Ane	exo: Cóc	digo elipsoides de régimen de esfuerzos	.91
P	A		eule de les funciones temperates de la fuente	•
υ.	ANE	exo: Cal	culo de las funciones temporales de la fuente	.94
Bib	liogı	rafía		103

Lista de figuras

Figura 1.1: Geometría de las estaciones de adquisición de información	21
Figura 1.2: Geometría y esquema de adquisición de la información. Modificado de	
Schuster 2009.	22
Figura 1.3: Equipo de registro de información	23
Figura 1.4: Esquema de fracturamiento hidráulico	24
Figura 1.5: Localización del área de estudio	25
Figura 1.6: Registro y línea sísmica de la zona del campo Chichimene	28
Figura 2.1: Detalles de la interferometría sísmica. Modificado de Schuster 2009	32
Figura 2.2: Configuración del par de fuerzas.	41
Figura 2.3: Metodología para cálculo de las funciones empíricas de Green	43
Figura 2.4: Modelo mecánico general de una fuente sísmica.	45
Figura 2.5: Propiedades generales del frente de ruptura	46
Figura 3.1: Procedimiento para realizar la interferometría sísmica	47
Figura 3.2: Análisis espectral de la componente vertical para una hora de registro en la	ł
estación Est 1(1687), durante el fracturamiento	48
Figura 3.3: Análisis espectral de la componente vertical para una hora de registro en la	ŧ
estación Est 3(1882), durante el fracturamiento	49
Figura 3.4: Análisis espectral de la componente vertical para una ventana de 5 segund	0
del registro en la estación Est 3, durante el fracturamiento	50
Figura 3.5: Cálculo de la correlación cruzada entre dos estaciones filtradas entre 2-6 H	z.
	51
Figura 3.6: Cálculo de la correlación cruzada entre dos estaciones filtradas entre 10-16	3
Hz	51
Figura 3.7: Cálculo de la correlación cruzada entre dos estaciones filtradas entre 20-60)
Hz	52
Figura 3.8: Imagen en tiempo de una matriz de correlaciones cruzadas para una venta	na
de 5 segundos	52
Figura 3.9: Evolución de una señal a medida que se apila información para una ventan	а
de 1 hora	53
Figura 3.10: Imagen en tiempo de una matriz de correlaciones cruzadas para una	
ventana de 5s, apilada en tiempo para un lapso de 5 minutos	54
Figura 3.11: Imagen en tiempo de una matriz de correlaciones cruzadas para una	
ventana de 5s, apilada en tiempo para un lapso de 20 minutos	54
Figura 3.12: Imagen en tiempo de una matriz de correlaciones cruzadas para una	
ventana de 5s, apilada en tiempo para una hora	55
Figura 3.13: Modelo de velocidad inicial para generar sintético	56

Figura 3.14: Imagen apilada generada a partir de un sintético	56
Figura 3.15: Procedimiento para determinar la función temporal de la fuente	57
Figura 3.16: Detección de evento o eventos microsísmicos mediante el análisis STA/LT	A.
	58
Figura 3.17: Detección de un posible evento o eventos microsísmicos en los registros d	е
ruido ambiental a partir de un análisis STA/LTA	59
Figura 3.18: Espectros de amplitud para las ventanas de las componentes NO de las	
estaciones EST 7(1688) y EST 10(1887)	59
Figura 3.19: Ventanas filtradas entre 2 Hz y 10 Hz de las componentes NO de las	
estaciones EST 7(1688) y EST 10(1887)	60
Figura 3.20: Cálculo de los coeficientes de correlación para las tres componentes por p	ar
de estaciones	60
Figura 3.21: Espectros de las señalas analizas para el cálculo de la función temporal de	Э
la fuente	61
Figura 3.22: Función temporal de la fuente calculada entre dos eventos para las tres	
componentes.	62
Figura 3.23: Función temporal de la fuente calculada entre dos eventos, donde es difíci	I
identificar el tiempo de la función	63
Figura 3.24: Representación de los elipsoides de esfuerzos según su factor de forma R	
comparado con el modelo de fracturación de Anderson, (1951)	65
Figura 4.1: Trazas obtenidas por interferometría sísmica para 1 hora	67
Figura 4.2: Trazas obtenidas por interferometría sísmica para 24 horas	68
Figura 4.3: Trazas obtenidas por interferometría sísmica para 80 horas	68
Figura 4.4: Imagen apilada generada a partir de un sintético, b) Imagen interferométrica	1.
	71
Figura 4.5: Comparación entre imágenes sísmica cercanas al área de estudio y una	
imagen interferométrica	72
Figura 4.6: Cálculo de los diferentes regímenes de esfuerzos	74
Figura 4.7: Comparación entre una imagen cronoestratigráfica y una imagen	
interferométrica	75
Figura 4.8: Evolución del régimen de esfuerzos, antes y después del fracturamiento	
hidráulico. Representación según su forma R	76

Lista de tablas

Tabla 1.1: Códigos y números de	estaciones con sus r	respectivas coordena	adas23
Tabla 4.1: Régimen de esfuerzos	para el área de estud	dio según su forma I	R74

Introducción

Aprovechar la información microsísmica de ruido ambiental que se genera y que puede ser medida en un campo productor de petróleo, además de la registrada durante una operación de fracturamiento hidráulico, permitirá aplicar la interferometría sísmica como herramienta para crear imágenes interferométricas y determinar los esfuerzos locales del área, esto podría constituirse en una tecnología alterna o complementaria a la sísmica convencional.

El trabajo desarrollado pretende presentar la aplicabilidad de la interferometría sísmica como método para el análisis de registros sísmicos durante una operación de fracturamiento hidráulico, además de los registros de ruido ambiental en un campo productor de petróleo. El ejercicio permite inferir las posibles condiciones de esfuerzos en el área y generar imágenes interferométricas que puedan ser correlacionables con la geología de la zona explotada. Igualmente establecer posibles ventajas y/o desventajas del método, comparando los resultados obtenidos con la información conocida del área a través de los métodos geofísicos convencionales y simulación de algunas propiedades elásticas. La información analizada corresponde a los registros de 17 estaciones durante una hora de fracturamiento hidráulico, y 80 horas de ruido sísmico ambiental.

En el capítulo 1 se contextualizan todos los aspectos de cómo y dónde se adquirió la información, la geometría, los esquemas de adquisición y los equipos utilizados. También se muestran los aspectos más importantes de la geología y la geofísica del área de estudio. En el capítulo 2 se discriminan los aspectos teóricos que tienen una gran relevancia en la determinación y cálculos de los parámetros más importantes de la interferometría sísmica y el régimen de esfuerzos. En el capítulo 3 se muestra la metodología empleada paso a paso para el procesamiento de la información y posteriores cálculos de los parámetros deseados, los análisis espectrales de las señales y el filtrado de estas señales en bandas de frecuencias de interés. Un análisis de tipo estadístico como control de calidad de los datos utilizados con el fin de observar la

20 Interferometría sísmica a partir de registros de un fracturamiento hidráulico orientada a establecer condiciones locales de esfuerzos para la generación de imágenes tomográficas basadas en datos microsísmicos y ruido ambiental

tendencia y el calcular el volumen de información que presentaba las condiciones ideales para ser tratada, paso que determinó las estaciones que serían utilizadas para el cálculo de la función temporal sísmica. La interferometría sísmica consistió en aplicar la correlación cruzada entre las trazas registradas, son en total 136 combinaciones para las 17 estaciones en ventanas de 5 segundos, de donde se pretenden capturar características del medio. Para el procesamiento de las funciones de correlación recuperadas se realiza una deconvolución utilizando una forma de onda conocida a una frecuencia escogida a conveniencia que facilitará el análisis de la información y la generación de la imagen interferométrica, esta imagen será el producto de la sumatoria de las trazas en un proceso de apilado para todas las ventanas generadas. Adquirir información en las tres componentes permitió obtener imágenes interferométricas para cada una de ellas, para su posterior comparación y análisis. La gran cantidad de información adquirida y su continuidad en tiempo permitió hacer un análisis de la evolución temporal de las condiciones locales de esfuerzo previas y posteriores al fracturamiento hidráulico; además también muestra la evolución de las imágenes interferométricas a medida que se adiciona información mediante el apilado en tiempo. En el capítulo 4 se muestran los principales resultados de la interferometría sísmica y el régimen de esfuerzos, y se realiza una comparación entre estos resultados y la información preexistente de las características geológicas y geofísicas del área. El capítulo 5, contienen una serie de conclusiones y recomendaciones deducidas de los resultados y otras que son producto de la verificación de los fundamentos teóricos con los resultados de la investigación. Por ultimo este trabajo recoge en sus anexos algunos resultados con más detalle así como códigos desarrollados e implementado para realizar los diferentes cálculos y el procesamiento de las señales con el fin de realizar la interferometría y determinar el régimen de esfuerzos locales.

1.Generalidades

1.1 Geometría y esquema de adquisición de información

Las figuras 1.1 y 1.2 muestran la geometría y esquema utilizado en la adquisición de la información utilizada para la interferometría sísmica, mientras que en la tabla 1 se resume las coordenadas donde se ubicaron cada una de las estaciones; fueron 17 estaciones las utilizadas colocadas en una disposición lineal, alineados a la boca de un pozo en producción. La longitud total del arreglo es de 1214 metros aproximadamente, y cada estación se encuentra a una distancia de 70 metros de la otra.

Figura 1.1: Geometría de las estaciones de adquisición de información.

1049400 1049500 1049600 1049700 1049800 1049900 1050000 1050100 1050200 1050300 1050400 1050500 1050600

22 Interferometría sísmica a partir de registros de un fracturamiento hidráulico orientada a establecer condiciones locales de esfuerzos para la generación de imágenes tomográficas basadas en datos microsísmicos y ruido ambiental

Figura 1.2: Geometría y esquema de adquisición de la información. Modificado de Schuster 2009.

En la figura 1.1 se resalta en superficie con una línea en azul la desviación que presenta el pozo en profundidad, son aproximadamente unos 600 metros en dirección SW, que se esquematiza en la figura 1.2.

1.2 Instrumentación y equipos

El despliegue y ubicación de las estaciones en el terreno se resume en la tabla 1. El arreglo sismológico en superficie se basó en la instalación de 17 acelerógrafos marca GURALP con sensores triaxiales digitales CMG-5, con rango dinámico >120 dB, y sensibilidades entre 0.1 a 4.0 G en el rango de frecuencias DC - >100 Hz. El sistema de registro fue configurado para adquirir a 500 mps y alimentado por baterías secas durante el experimento. Su instalación en campo se hizo acoplando una varilla de acero entre el sensor y el suelo para garantizar movimiento solidario entre el terreno y el sensor (Figura 1.3). Tanto el sensor como el equipo de registro y el sistema de alimentación fueron ubicados en una caja que los protegió de la intemperie. Solo la antena de GPS salió de la

caja para garantizar el rastreo satelital y la sincronización del UT. Cada día los datos fueron descargados para su respectivo pre-procesamiento.

Figura 1.3: Equipo de registro de información.

Tabla 1.1: Códigos y números de estaciones con sus respectivas coordenadas.

CODIGO	# DE ESTACION	COORDENADAS				
EQUIPO		LATITUD	LONGITUD	Y	X	Z
1687	1	3° 53' 58,027" N	73° 37' 24,339" W	922966,888	1050432,297	0,000
1654	2	3° 53' 59,584" N	73° 37' 26,058" W	923014,677	1050379,222	0,000
1882	3	3° 54' 1,141" N	73° 37' 27,778" W	923062,466	1050326,147	0,000
1896	4	3° 54' 4,259" N	73° 37' 31,222" W	923158,206	1050219,817	0,000
1881	5	3° 54' 5,816" N	73° 37' 32,942" W	923205,995	1050166,742	0,000
1883	6	3° 54' 7,373" N	73° 37' 34,661" W	923253,784	1050113,667	0,000
1688	7	3° 54' 8,929" N	73° 37' 36,381" W	923301,574	1050060,591	0,000
1885	8	3° 54' 10,486" N	73° 37' 38,100" W	923349,363	1050007,516	0,000
1645	9	3° 54' 12,043" N	73° 37' 39,820" W	923397,152	1049954,440	0,000
1887	10	3° 54' 13,599" N	73° 37' 41,539" W	923444,941	1049901,365	0,000
1884	11	3° 54' 15,156" N	73° 37' 43,259" W	923492,731	1049848,290	0,000
1893	12	3° 54' 16,713" N	73° 37' 44,978" W	923540,520	1049795,214	0,000
1880	13	3° 54' 18,270" N	73° 37' 46,698" W	923588,309	1049742,139	0,000
1898	14	3° 54' 19,826" N	73° 37' 48,417" W	923636,099	1049689,063	0,000
1894	15	3° 54' 21,383" N	73° 37' 50,137" W	923683,888	1049635,988	0,000
1889	16	3° 54' 22,940" N	73° 37' 51,856" W	923731,677	1049582,913	0,000
1888	17	3° 54' 24,496" N	73° 37' 53,576" W	923779,467	1049529,837	0,000

24 Interferometría sísmica a partir de registros de un fracturamiento hidráulico orientada a establecer condiciones locales de esfuerzos para la generación de imágenes tomográficas basadas en datos microsísmicos y ruido ambiental

1.3 Fracturamiento hidráulico

La técnica de fracturar la formación productora, se conoce en la Industria Petrolera como Fracturamiento Hidráulico (Figura 1.4), y tiene por objetivo, a nivel de yacimiento, sobrepasar la zona dañada en las vecindades del pozo e incrementar el área de flujo de los fluidos hacia el pozo, dando como resultado el incremento de producción. La operación de fracturamiento hidráulico se realiza en un pozo por muchas razones, por ejemplo desviar el flujo para evitar el daño en las vecindades del pozo y retornar a su productividad normal, extender una ruta de conducto en la formación y así incrementar la productividad a sus máximos niveles, y alterar el flujo de fluidos en la formación. (Pazmiño, 2004).

a) Fracturamiento hidráulico en un pozo vertical b) Fracturamiento hidráulico en un pozo desviado. Imágenes tomadas de www.google.com.

Los trabajos de fracturamiento hidráulico llevados a cabo durante las operaciones de explotación de hidrocarburos son una fuente de información que está alimentando las investigaciones en microsísmica aplicada, las señales registradas durante el fracturamiento de la formación productora permiten extraer información sobre las condiciones del yacimiento y del medio que lo rodea. Los registros obtenidos durante el fracturamiento presentan un rango de frecuencias muy variable, que van desde rangos de 1-10 Hz para el ruido microsísmico hasta frecuencias que superan los 100Hz. Aprovechar la energía liberada durante estos procedimientos es la ruta que han seguido importantes investigaciones en sísmica pasiva (Rickett y Claerbout 1999; Yu y Schuster 2006).

1.4 Contexto geográfico, geológico y geofísico del área de estudio

1.4.1 Área de estudio

El área de estudio de la presente investigación corresponde al campo Chichimene, este campo se encuentra localizado en la cuenca de los llanos, a unos 50 km al sur de Villavicencio (figura 1.5), fue descubierto por Chevron en 1969 y revertido a Ecopetrol en el 2000. Su producción hasta la fecha está alrededor de los 33 millones de barriles principalmente de las formaciones Une y Gacheta.

Figura 1.5: Localización del área de estudio.

La Cuenca de los Llanos es una cuenca asimétrica, limitada al Norte por la Cuenca Apure(Venezuela) por el arco de Arauca, al Oeste por el piedemonte de la cordillera Oriental, al Este por el Escudo de Guayana y al sur está separada de la Cuenca del Putumayo por los arcos de la Macarena y Vaupés.

26 Interferometría sísmica a partir de registros de un fracturamiento hidráulico orientada a establecer condiciones locales de esfuerzos para la generación de imágenes tomográficas basadas en datos microsísmicos y ruido ambiental

1.4.2 Contexto geológico y geofísico

En la zona de estudio se encuentran varias nomenclaturas estratigráficas. Ecopetrol introdujo una nomenclatura estratigráfica en los campos de producción Castilla, Chichimene y Chichimene SW, etc., otra nomenclatura es la introducida por compañías operadoras en el área del Casanare y que suele ser correlacionada para el área del Meta, y otra nomenclatura ampliamente difundida es la que presenta el antiguo Ingeominas hoy Servicio Geológico Colombiano. En el desarrollo de este trabajo se adoptó la nomenclatura del área del Meta introducida por Ecopetrol.

Las unidades operacionales del campo Chichimene son K2 y K1 con unos 20 grados API, pertenecientes a la Formación Guadalupe de edad Cretácica Superior según la nomenclatura de Ecopetrol, donde K2 se correlaciona con la Formación Une según la nomenclatura empleada por el Ingeominas en el piedemonte y la unidad K1 puede correlacionarse con la Formación Gacheta según la nomenclatura empleada en el Casanare. Secundariamente otra unidad operacional es la Formación San Fernando también conocida como unidad T2 con 9.6 grados API, de edad Cenozoica.

Estas unidades operacionales del campo Chichimene se encuentran muy bien descritas litológicamente en el trabajo de Rojas et. al., (1999), y se resumen a continuación:

Formación Guadalupe (Unidad K2)

Esta unidad corresponde a una secuencia arenosa de apariencia masiva pobremente seleccionada, grano decreciente con espesores menores de 10 ft, compuestos por areniscas de grano grueso a medio, cuarzosa, cementadas por sílice. En su parte superior aparecen ocasionalmente láminas ferruginosas y algunos niveles de lutitas carbonosas con materia orgánica. Cuando los ciclos se encuentran completos terminan en un paquete de pocos pies de espesor de areniscas de grano fino fuertemente cementada por cuarzo y abundantes estilolitos, o en un nivel arcilloso silíceo, compacto, como minerales accesorios de encuentran piritas. Estas características sugieren que la unidad K2 se depositó en un ambiente sedimentario fluvial de canales entrelazados de baja sinuosidad con dominio de carga de lecho. (Rojas et. al., 1999).

Formación Guadalupe (Unidad K1)

Se le denomina así la sección de intercalaciones de areniscas y shales que cubren concordantemente las areniscas de la unidad K2 e infrayacen discordantemente a la unidad T2. Está constituida por paquetes entre 5 a 20 pies de areniscas de grano medio a muy fino, cuarzosa, cemento silíceo, ocasionalmente calcáreo, con laminación cruzada tangencial, y ripples; intercalados con shale negro, silíceo, duro, con laminación fina plana a ligeramente ondulosa, lenticular y ocasionalmente con lentes y nódulos de siderita. Su espesor varía entre 500 y 550 pies. Hacia la base se presentan los mayores espesores y propiedades como roca almacenadora y una sección progradacional que se interpreta como resultado de la depositación en un ambiente deltaico con influencia de mareas. Hacia la parte media de la unidad K1 el ambiente es estuarino de dominio mareal, en donde se identifica un nivel arcilloso correspondiente a depósitos de bahía restringida y planicies de marea, donde se puede correlacionar con la superficie de máxima inundación (MFS) propuesta en la subcuenca Apiay. El carácter regional de esta sección confirma su interpretación como la superficie de máxima inundación alcanzada por el mar Cretáceo en la subcuenca. La parte superior de la unidad K1, está por encima de la superficie de máxima inundación, en esta parte de la unidad la depositación vuelve a ser predominantemente progradacional, incrementándose ligeramente el contenido de areniscas y terminando en la discordancia de edad Eoceno sobre la cual se depositan las areniscas de la unidad T2, como respuesta a una caída relativa del nivel del mar. (Rojas et. al., 1999).

Formación San Fernando (Unidad T2)

Esta unidad de edad Eoceno Superior corresponde a una secuencia masiva de areniscas cuarzosas de grano fino a grueso moderadamente seleccionadas, localmente conglomeráticas a la base, intercaladas con delgadas capas de shale, estas areniscas posiblemente son de origen fluvial tipo canales entrelazados con intervalos de lodolitas, el espesor promedio es de unos 340 pies en el campo se pueden visualizar tres intervalos arenosos mas o menos separados por intervalos arcillosos, que no son totalmente continuos. Peros sin son frecuentes. Al tope de la unidad T2 se encuentra la Lutita E4, en contacto concordante generalmente bien definido entre shale y arenisca y solo algunas veces un poco transicional entre shale, limolita y arenisca. (Rojas et. al., 1999).

28 Interferometría sísmica a partir de registros de un fracturamiento hidráulico orientada a establecer condiciones locales de esfuerzos para la generación de imágenes tomográficas basadas en datos microsísmicos y ruido ambiental

La estratigrafía del campo puede completarse con las unidades de edad Eoceno Superior de la Formación Carbonera (unidad Lutita E4, unidad T1, unidad Lutita E3), las unidades de edad Oligoceno de la Formación Carbonera (unidad C2, unidad Areniscas De Carbonera, unidad C1, unidad Lutita E, unidad Areniscas Superiores), y por las Formaciones Leon de edad Mioceno y la Formación Guayabo de edad Mioceno-Plioceno.

El campo Chichimene está formado por una estructura de anticlinal fallado en su flanco Oriental, este campo corresponde a un sistema transpresional que dio lugar a pliegues y fallas tanto inversas como normales y son los responsables de los entrampamientos. Los registros ubican las unidades productoras a unos 7500 pies de profundidad correspondientes a Une y Gacheta del Cretáceo y San Fernando del Terciario. La parte a) de la figura 1.6 muestra claramente los límites entre las unidades, mientras que la parte b) es una imagen sísmica que permite fácilmente identificar grandes reflectores.

Figura 1.6: Registro y línea sísmica de la zona del campo Chichimene.

a) Registro tipo y unidades productoras en el Campo Chichimene, b) línea sísmica del sector sur del campo Chichimene. Tomado de Rojas N. et al, ECOPETROL

1.5 Estado actual del tema

Entre los trabajos más representativos y recientes sobre el tema de Interferometría sísmica y funciones de Green empíricas se encuentran:

Interferometría sísmica:

- Schuster and Rickett (2000): Demuestran que las correlaciones en puntos no estacionarios no representan un aporte determinante a las integrales de migración para Daylight Imaging utilizando una fase estacionaria.
- Schuster (2001): Denomina la Daylight Imaging como Interferometría Sísmica para una fase estacionaria.
- Snieder, Douma y Scales (2002): Realizan un ejercicio práctico para determinar velocidades de propagación utilizando la interferométrica sísmica usando ondas coda.
- Wapenaar y Fokkema (2006): Describen las expresiones más importantes para la recuperación de funciones de Green en interferometría sísmica.
- Draganov, Wapenaar y Mulder, y otros (2007): Presentan los resultados para una interferometría sísmica con sísmica pasiva 2D.
- Schuster (2009): Recopila varias de las aplicaciones interferométricas en un tratado del fenómeno.

Funciones de Green empíricas:

- Gilbert (1973): Describe la linealidad existente entre el Tensor Momento Sísmico (TMS) y la derivada de la función de Green.
- Hartzell (1978): introduce el uso de eventos menores como funciones de Green empíricas de un evento mayor.
- Kanamori (1979): Extendió el método propuesto por Hartzell con el propósito de calcular el momento sísmico de un evento objetivo.
- Madariaga e Irikura (1982): Desarrollaron métodos usando el concepto de función de Green empírica, para describir las relaciones de escala de los parámetros de la fuente propuesta por Kanamori y Anderson (1975).

- 30 Interferometría sísmica a partir de registros de un fracturamiento hidráulico orientada a establecer condiciones locales de esfuerzos para la generación de imágenes tomográficas basadas en datos microsísmicos y ruido ambiental
 - Kennett (1983): Calcula las funciones de Green usando una técnica espectral para el tensor momento y una fuente puntual en un medio estratificado.
 - Iriku y pitarka (1998): Desarrolla una técnica hibrida entre las funciones de Green empíricas y la función de Green para estudiar el comportamiento de la ruptura en la fuente.
 - Miyake, Iwata e Irikura (2003): Realizan formulaciones más manejables con el fin de lograr estudiar la rupturas dinámicas sobre el plano de falla a partir de funciones de Green empíricas.

Basados en esta última metodología existen muchas publicaciones donde se analiza el comportamiento y se calcula los parámetros de muchos eventos sísmicos de relevancia histórica en el mundo.

2. Marco conceptual

En este capítulo se describen los aspectos teóricos y se realiza de manera general el desarrollo matemático necesario para la determinación y cálculos de los parámetros más importantes de la interferometría sísmica y el régimen de esfuerzos, si el lector está interesado en profundizar en el desarrollo matemático de todas las ecuaciones que se presentan en este trabajo, puede consultar el libro sobre interferometría de Schuster (2009), y el de análisis tensorial de Sokolnikoff (1951).

2.1 Interferometría sísmica

Una de las principales aplicaciones de la interferometría sísmica es la recuperación de la respuesta sísmica de reflexión del ruido ambiental y la posterior formación de imágenes de los reflectores en el subsuelo. Un aspecto común de la interferometría de onda directa y reflejada es que las fuentes virtuales se crean en las posiciones donde sólo hay receptores, sin requerir conocimiento de los parámetros del medio ni de las posiciones de las fuentes reales. (Wapenaar et al, 2010). El término "interferometría sísmica" se refiere al principio de generar nuevas respuestas sísmicas de fuentes virtuales gracias a correlaciones cruzadas entre dos receptores. (Schuster, 2001). Aparte de la correlación cruzada de fuente controlada, la interferometría también implica la suma de las correlaciones en diferentes posiciones de la fuente. En la figura 2.1 se ilustra de una manera sencilla como funciona la correlación cruzada entre un par de estaciones receptoras, en la figura se observan dos estaciones A y B, las cuales han registrado un evento en una posición cualquiera; al momento de hacer la correlación cruzada entre A y B, la fuente es trasladada al receptor A obteniendo la respuesta en B como en una sísmica convencional.

32 Interferometría sísmica a partir de registros de un fracturamiento hidráulico orientada a establecer condiciones locales de esfuerzos para la generación de imágenes tomográficas basadas en datos microsísmicos y ruido ambiental

Figura 2.1: Detalles de la interferometría sísmica. Modificado de Schuster 2009.

Para una distribución estocástica de fuentes, la ecuación interferométrica para sísmica pasiva y ruido ambiental sísmico en el dominio del tiempo es:

$$\left[g(B,A,t)+g(B,A,-t)\right] \odot a(t) = < p(A,t) \otimes p(B,t) >$$

Ecuación 2.1. Ecuación interferométrica en el dominio del tiempo. Los operadores © y \otimes , representan convolución y correlación cruzada.

En la ecuación 2.1 p(A,t) y p(B,t) son registros pasivos tomados en A y B, a(t) es la ondícula de auto-correlación de la función temporal de las fuentes de ruido, g(B,A,t) y g(B,A,-t) son las funciones de Green casual y anti casual para una fuente en A y un geófono en B. (Wapenaar 2004).

2.2 Funciones de Green

En un medo tridimensional la función acústica de Green es la respuesta de una fuente impulsiva en un medio acústico lineal arbitrario y con densidad constante, en el cual satisface la ecuación de Helmholtz en el dominio de la frecuencia (Morse & Feshbach, 1953), y puede definirse como:

$$(\nabla^2 + k^2)G(g \setminus s) = -\delta(s-g)$$

Ecuación 2.2. Función acústica de Green para un medio tridimensional.

Esta ecuación cumple con el principio de reciprocidad ya que la fuente y el receptor pueden intercambiarse de manera que G(g|s) = G(s|g). De esta manera una señal registrada en un punto receptor **A** que proviene de una fuente ubicada en un punto **B**, será lo mismo que registrar la señal en **B** mientras la fuente se encuentre ubicada en el punto **A**.

Existen dos soluciones independientes a la ecuación diferencial parcial de segundo orden, la función causal y la función anti-causal de Green, $G(g\s)$ y $G(g\s)^{*}$ respectivamente.

Para un medio homogéneo con velocidad v la función causal de Green se define como:

$$G(g \setminus s) = \frac{1}{4\pi} \frac{e^{ikr}}{r}$$

Ecuación 2.3. Función causal de Green para un medio homogéneo. Donde k es el número de onda, r=|g-s| y 1/r, son la divergencia geométrica y representan un factor de dispersión.

2.2.1 Funciones Causal y Anticausal de Green

Si tenemos un campo de ondas que ha sido excitado por una fuente impulsiva en **B** con un tiempo inicial t_s y un receptor en un punto **A** describe la función de Green g(A,t|B,t_s). Entonces si existen N fuentes con profundidad Z_A la función de correlación será:

$$\Phi(B \setminus A) = \sum_{Z_A} D(B \setminus A) D(B \setminus A)^*$$

Ecuación 2.4. Función de correlación Donde A=(x_A, y_A, z_A) es la ubicación de la fuente, mientras que B=($x_A, y_A, 0$) es la ubicación del receptor.

Al aplicar la transformada inversa de Fourier a la función de correlación se obtiene:

$$\phi(B,t \setminus A) = N \Big[2\pi \delta(t + \tau_{yzy}) + 4\pi \delta(t) + 2\pi \delta(t - \tau_{yzy}) \Big]$$

Ecuación 2.5. Función de correlación en el dominio del tiempo. Esta ecuación describe tanto la parte causal como la anticausal de la función de Green.

Si aplicamos la transformada de Fourier a la ecuación de la función de Green para un medio homogéneo obtenemos la función causal, de la siguiente manera:

34 Interferometría sísmica a partir de registros de un fracturamiento hidráulico orientada a establecer condiciones locales de esfuerzos para la generación de imágenes tomográficas basadas en datos microsísmicos y ruido ambiental

$$g_c = (g, t \setminus s, t_s) = F^{-1}(G(g \setminus s))$$

$$g_{c} = \int_{-\infty}^{\infty} \frac{e^{iw(r/v - (t-t_{s}))}}{4\pi r} dw = \frac{1}{2} \delta(t - t_{s} - r/v)/r$$

Ecuación 2.6. Función Causal de Green.

Donde:
$$\delta(t - t_s - r/v) = \begin{cases} \infty, si, t - t_s = r/v \\ 0, si, t - t_s \neq r/v \end{cases}$$

La función anticausal de Green se obtiene de manera similar, sólo que ahora tomamos la transformada inversa de Fourier a G(g\s)^{*}, obteniéndose:

$$g_a = (g, t \setminus s, t_s) = 0.5\delta(t - t_s + r/v)/r$$

Ecuación 2.7. Función Anticausal de Green.

La función anticausal de Green es usada para migración comparada con la función causal de Green, la cual es empleada para modelado.

2.3 Ecuaciones recíprocas de tipo convolutivo y correlativo

La ecuación gobernante de la interferometría sísmica es la ecuación recíproca de tipo correlativo (Bojarki, 1983; Wapenaar, 2004). Se trata de una ecuación integral basada en el teorema de Green, que relaciona las respuestas tanto de trasmisión como de reflexión (figura 2.1), y permite reconstruir la reflectividad del medio. La ecuación reciproca de tipo correlativo en el dominio espectral es:

$$G(B \setminus A) - G(A \setminus B)^* = \int_{S} \left[G(x \setminus B)^* \frac{\partial G(x \setminus A)}{\partial n_x} - G(x \setminus A) \frac{\partial G(x \setminus B)^*}{\partial n_x} \right] d^2x$$

Ecuación 2.8 Ecuación recíproca de tipo correlativo. Donde los integrados están compuestos por la multiplicación de funciones por sus conjugados.

Por otra parte, la ecuación recíproca de tipo Convolutivo es una ecuación integral donde el kernel está formado por productos de funciones causales de Green y esta dada de la siguiente manera:

$$G(B \setminus A) - G_o(A \setminus B) = \int_{S} \left[G_o(x \setminus B) \frac{\partial G(x \setminus A)}{\partial n_x} - G(x \setminus A) \frac{\partial G(x \setminus B)}{\partial n_x} \right] d^2x$$

Ecuación 2.9 Ecuación recíproca de tipo convolutivo en el dominio de la frecuencia.

2.4 Elastodinámica y campo de esfuerzos

El concepto de esfuerzos se relaciona al estudio de la interacción que existe entre las partes que componen a un medio, y es la principal herramienta para describir las principales propiedades de elastodinámicas de un medio. Para un buen estudio de las propiedades elastodinámicas es necesario describir ciertas cantidades fundamentales profundamente ligadas y que en esta investigación serán la base para obtener una aproximación del régimen dominante del área de estudio. Estas cantidades son el vector desplazamiento infinitesimal, el tensor de deformación y el tensor de esfuerzos. A continuación se realiza una descripción muy general de la forma en que se obtienen las expresiones matemáticas de estas cantidades así como sus relaciones.

2.4.1 El tensor de Deformación

El concepto de deformación describe el cambio de las posiciones relativas de las partículas que componen un sólido en la aproximación de medios continuos. La deformación puede ser elástica cuando las partículas recuperan sus posiciones al retirarse el agente deformante, puede ser plástica cuando las partículas quedan en nuevas posiciones o puede presentarse fractura cuando el sólido pierde unidad estructural. Si analizamos un comportamiento para un sólido elástico es necesario describir cuantitativamente la deformación local en cada punto dentro del sólido. Para esto se asigna un conjunto de seis números a cada punto, estos números son las componentes de un tensor simétrico que se llama tensor de deformación (Murnaghan,F., 1937).

36 Interferometría sísmica a partir de registros de un fracturamiento hidráulico orientada a establecer condiciones locales de esfuerzos para la generación de imágenes tomográficas basadas en datos microsísmicos y ruido ambiental

$$\frac{u_x}{x} = \frac{\Delta L}{L}$$

Ecuación 2.10. Deformación homogénea de un sólido a lo largo de una sola dirección del sistema de referencia.

Donde:
$$u_x = e_{xx}x$$

Y cuando la deformación presentada es no homogénea, las otras dimensiones participan, con lo que $e_{xx} = e_{xx}(x, y, z)$, pero e_{xx} sigue describiendo localmente la deformación en la dirección x, por lo que generalizamos, este análisis es válido para las otras dos direcciones (y,z), entonces:

$$e_{xx} = \frac{\partial u_x}{\partial x} \dots e_{yy} = \frac{\partial u_y}{\partial y} \dots e_{zz} = \frac{\partial u_z}{\partial z}$$

Ecuación 2.11. Ecuaciones que describen deformaciones compresionales que van a lo largo de uno o más ejes del sistema de referencia.

Para deformaciones tipo cizalla en las que los cambios de posición son diagonales, la deformación en x es proporcional a la posición en y, y viceversa, las ecuaciones que describen este tipo de deformaciones serán:

$$e_{xy} = \frac{\partial u_x}{\partial y} \dots \dots e_{yx} = \frac{\partial u_y}{\partial x}$$

Ecuación 2.12. Ecuaciones que describen deformaciones tipo cizalla que van a lo largo de uno o más ejes del sistema de referencia.

Esta descripción se cumple para el resto de las componentes, e_{xz} , e_{zx} , e_{yz} , etc. Entonces el tensor de deformación tiene nueve componentes:

$$\begin{pmatrix} e_{xx} & e_{xy} & e_{xz} \\ e_{yx} & e_{yy} & e_{yz} \\ e_{zx} & e_{zy} & e_{zz} \end{pmatrix} \rightarrow e_{ij} = \frac{1}{2} \left(\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \right)$$

Ecuación 2.13. Tensor de deformación.

Las condiciones de equilibrio hace que el tensor sea simétrico, por lo se reduce a seis elementos.
2.4.2 El tensor de Esfuerzo

Los esfuerzos internos de un sólido 3D sometido a deformación pueden ser descritos por medio de un tensor de rango 2, denominado tensor de esfuerzo. Los esfuerzos actúan localmente entre las partículas, sobre elementos de superficie y no de volumen, por lo que pueden ser descritos como fuerzas de superficie internas. En un sólido toda fuerza interna tiene componentes compresionales y de cizalla, por lo que hay que considerar sus componentes a lo largo de todos los ejes.

A un elemento de superficie $\Delta y \Delta z$ perpendicular al eje x, se le aplica una fuerza ΔF que se descompone en sus tres componentes ΔFx , ΔFy , ΔFz , entonces:

$$\sigma_{xx} = \frac{\Delta F_x}{\Delta y \Delta z} \dots \sigma_{yx} = \frac{\Delta F_y}{\Delta y \Delta z} \dots \sigma_{zx} = \frac{\Delta F_z}{\Delta y \Delta z}$$

Ecuación 2.14. Ecuaciones de esfuerzo en las tres componentes ejercidas por las fuerzas de superficie internas sobre un sólido.

Es fácil deducir que para cada elemento de superficie perpendicular a uno de los ejes se tendrá:

$$\sigma_{xz} = \frac{\Delta F_x}{\Delta x \Delta y} \quad \sigma_{yz} = \frac{\Delta F_y}{\Delta x \Delta y} \quad \sigma_{zz} = \frac{\Delta F_z}{\Delta x \Delta y}$$
$$\sigma_{xy} = \frac{\Delta F_x}{\Delta x \Delta z} \quad \sigma_{yy} = \frac{\Delta F_y}{\Delta x \Delta z} \quad \sigma_{zz} = \frac{\Delta F_z}{\Delta x \Delta z}$$

Ecuación 2.15. Ecuaciones de esfuerzo en las tres componentes ejercidas por las fuerzas de superficie internas sobre un sólido.

Con estas cantidades determinamos el tensor de esfuerzos, definido como:

$$\sigma_{ij} = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix}$$

Ecuación 2.16. Tensor de Esfuerzos.

2.4.3 Relación entre el tensor de esfuerzos y el tensor de deformación

Ya conocidas las formas de los tensores de esfuerzos y deformación es preciso describir la forma en que se relacionan estas dos cantidades fundamentales para la descripción del régimen de esfuerzos en una zona determinada.

Existe una relación lineal entre el tensor de esfuerzos y el vector de desplazamiento infinitesimal u(r) y sus derivadas, esta relación se logra gracias a la utilización de relaciones constitutivas que permiten condiciones de integrabilidad de las ecuaciones de Navier, esta relación tiene la forma general:

$$\sigma = \sigma \left(\vec{u}, \vec{\partial u}, \vec{u}, \dots \right)$$

Ecuación 2.17. Ecuación general que muestra la relación lineal entre el tensor de esfuerzos y el vector desplazamiento.

Las relaciones constitutivas más sencillas corresponden a una linealización donde solo aparezcan las derivadas espaciales de u, de tal manera que:

$$\sigma_{ij} = \sigma_{ij}^{(0)} + \frac{\partial \sigma_{ij}}{\partial \partial_p u_l} \Big| \vec{u}^0 \partial_p u_l + ...$$

$$\sigma_{ij} \approx \sigma_{ij}^{(0)} + \frac{\partial \sigma_{ij}}{\partial \partial_p u_l} \Big| \vec{u}^0 \partial_p u_l$$

Como se muestra en la ecuación 2.14 el tensor de deformación e tiene la forma:

$$e_{ij} \equiv \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), i, j = 1, 3;$$

Sustituyendo la expresión del tensor de deformación en las relaciones constitutivas linealizadas se puede determinar la relación esfuerzo-deformación en la forma:

$$\sigma_{ij} \approx \frac{\partial \sigma_{ij}}{\partial \partial_{p} u_{l}} \Big|_{u}^{=0} \partial_{p} u_{l} = C_{ijkl} e_{kl}$$

Ecuación 2.19. Relación del Esfuerzo y la Deformación.

Esta relación describe la forma en que los esfuerzos asociados a las deformaciones son proporcionales a estas mismas deformaciones, de modo que tenemos una relación línea entre los tensores:

$$\begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix} \leftarrow lineal \rightarrow \begin{pmatrix} e_{xx} & e_{xy} & e_{xz} \\ e_{yx} & e_{yy} & e_{yz} \\ e_{zx} & e_{zy} & e_{zz} \end{pmatrix}$$

Que podemos expresar como:

$$\sigma = Ce$$

Ecuación 2.20. Ecuación general de la relación Esfuerzo-Deformación. Donde C son los coeficientes del tensor de elasticidad.

Esta relación nos dice que en cada punto las deformaciones locales son proporcionales a los esfuerzos locales, o sea que cada componente σ_{ij} del tensor de esfuerzos está relacionada linealmente con cada uno de los componentes del tensor de deformación. Si estamos trabajando en un medio isotrópico solo son necesarios dos coeficientes independientes del tensor de elasticidad para caracterizarlo, esta conclusión fue descrita por Navier en 1821 y Cauchy en 1823, los cuales simplificaron la ecuación 2.20, a la siguiente forma para sólidos isótropos en donde sólo aparecen dos constantes, estas dos constantes son los parámetros de Lamé.

$$\sigma_{ij} = \lambda e_{kk} \delta_{ij} + 2\mu e_{ij}$$

Ecuación 2.21. Ecuación de la relación Esfuerzo-Deformación, para un medio isotrópico.

2.5 Modelo de un par de fuerzas

Un sistema formado por un par de fuerzas es el modelo más sencillo para representar el campo de desplazamientos generados por un evento sísmico. Si consideramos un par de fuerzas de módulo F_3 en la dirección x_3 , una fuerza en sentido positivo y la otra en el negativo, separadas una distancia **d** a lo largo del eje x_2 como se muestra en la figura 2.2), el campo de desplazamientos es:

$$u_{i}(x,t) = dF_{3} * \left[\frac{G_{i3}\left(x,t;\xi + \frac{1}{2}d,0\right) - G_{i3}\left(x,t;\xi - \frac{1}{2}d,0\right)}{d} \right]$$

Ecuación 2.22. Ecuación del campo de desplazamiento.

Al multiplicar y dividir por el brazo **d** se obtiene que el segundo factor sea la derivada de la Función de Green como diferencia de los valores de la función en cada extremo del par, si consideramos el límite cuando F_3 y **d** tienden a cero de tal forma que el producto (**d** F_3) permanezca finito, y la ecuación se reduce a:

$$u_i(x,t) = M_{32} * \frac{\partial}{\partial \xi_2} G_{i3}(x,t;\xi,0)$$

Ecuación 2.23. Ecuación del campo desplazamiento simplificada.

Al término (**d** F_3) se le denomina Momento del Par de Fuerzas M_{32} y es una medida de la fuerza del evento sísmico.

Esta forma de desarrollo es aplicable para un par de fuerzas en cualquier dirección, y la ecuación 2.23., puede generalizarse de la forma:

$$u_i(x,t) = M_{mn} * G_{im,n}$$

Ecuación 2.24. Ecuación general del campo de desplazamiento. Donde se reconoce el tensor de momento sísmico y la Función de Green.

Figura 2.2: Configuración del par de fuerzas.

(Modificado de Aki y Richards, 1980).

2.5.1 Tensor de momento sísmico

Lo que se define comúnmente como el de tensor momento sísmico no es más que el primer término del momento sísmico (Julian et. al, 1998) y sólo es válido en el caso de la aproximación de una fuente puntual (Udías, 1985).

siendo M_0 el momento sísmico escalar, introducido por Aki (1966), y definido por el producto de la dislocación Δu , el área de ruptura S y el módulo de rigidez μ , según el modelo de dislocación M_0 sera igual a:

$$M_0 = \mu \Delta u S$$

Ecuación 2.25. Ecuación del momento sísmico escalar.

Por lo general, se usa el momento sísmico como un factor de escala, quedando:

$$M(t) = M_0 F(t)$$

Ecuación 2.26. Función rata del momento sísmico.

Donde M(t) es la función rata del momento sísmico o el tiempo de ruptura y F(t) es la función temporal de la fuente. Siendo el tiempo de ruptura proporcional a la longitud de la falla.

2.5.2 Función temporal de la fuente sísmica

Este método ha sido ampliamente utilizado en el estudio de terremotos a distancias regionales, ya que permite separar los efectos de la fuente y trayectoria, lo que no siempre es posible con el método de modelización de formas de onda. Además también permite detectar efectos de directividad, lo que se traduce en formas de la fuente sísmica diferentes para varias estaciones (Buforn, 1994). La directividad de la ruptura se estima por la variación de la duración y amplitud de la función temporal de la fuente (FTF), calculada en una red de estaciones que cubran acimutalmente el epicentro (Rueda et al, 2012). Analizando la información de acelerogramas de campo cercano, se puede realizar una inversión lineal mediante la utilización de ventanas de tiempo que permitan obtener la distribución del deslizamiento, en el plano de falla, y una estimación de la función temporal de la función de deslizamiento, en el plano de falla, y una estimación de la función temporal de la fuente (Courboulex et al, 1997). Para determinar la función temporal de la fuente se utiliza el método de las funciones empíricas de Green.

En el caso de eventos microsísmicos caso de fallas pequeñas con deslizamiento instantáneo la función de momento sísmico es una función escalón cuya derivada es una función delta de Dirac.

Funciones de Green empíricas

Ante la gran dificultad que representa la localización exacta de los arribos de las ondas P y S en una perturbación sísmica envuelta en una traza de información de ruido ambiental, lo que permite la posterior generación de mecanismos focales. Se plantea una metodología que aprovecha la cercanía que existe entre las estaciones y el alto grado de correlación entre la información registrada por cada una de ellas. En esta hipótesis se asume que dos o mas estaciones han medido dos eventos, muy cercanos en los registros de tiempo y en la distancia hipocentral de sus orígenes, para que no existan grandes diferencias en el medio y el tiempo de propagación, y que luego de observar sus sismogramas estos sean prácticamente iguales, para que al final la única diferencia entre los dos sismogramas sea la función temporal.

Si tenemos dos sismogramas de manera muy general: $W_1(t) y W_2(t)$.

 $W_1(t) = I(t) * Q(t) * U_1(t)$ $W_2(t) = I(t) * Q(t) * U_2(t)$ Donde se observa que la principal diferencia es la función temporal de la fuente sísmica.

Efectuando el cociente de los sismogramas en el dominio de la frecuencia, el resultado es la función sísmica F(w).

$$[W_1(w)/W_2(w)] = [U_1(w)/U_2(w)] = F(w)$$

Ecuación 2.27. Ecuación de la función sísmica en el dominio de la frecuencia.

Aplicando la transformada inversa de Fourier a F(w) obtenemos F(t) que es la función temporal (Figura 2.3). Si Asumimos que la anisotropía del campo de velocidades es linealmente al deslizamiento y que este a su vez es proporcional al campo de esfuerzos, entonces la función temporal de cada componente, en las dos estaciones, permite calcular una aproximación sobre el régimen de esfuerzos dominante en el área.

Con esta metodología, el tamaño de la fuente puede estimarse a partir del tiempo de duración del proceso de ruptura (T_s), medido como el tiempo en el cual la mitad del momento sísmico total es liberado Pacheco y Nabelek, (1988). Para una fuente circular en donde el frente de ruptura se propaga a una velocidad V_r, y cuyo tiempo de ruptura es aproximadamente igual al tiempo en el cual el 50% del momento sísmico total es liberado (el resto se libera durante la estabilidad del proceso), el radio de fractura de la fuente viene dado por Pacheco y Nabelek, (1988):

$r = V_r T_s$

Ecuación 2.28. Ecuación del radio de fractura de la fuente.

Donde $V_r = 0.75\beta$, es una relación empírica entre la velocidad de la ruptura (V_r) y la velocidad de las ondas S (β).

2.5.3 Dinámica de la de la fuente sísmica

Toda la información sobre el proceso de ruptura en la fuente, esta contenida en M(t) y se describió en la ecuación 2.26. Para dar solución al problema de la fractura como una función temporal, se hace necesario enfrentarlo como un problema dinámico bajo ciertas condiciones de la fuente y de los esfuerzos. Entre las condiciones más importantes que se plantean se encuentran: 1) El frente de la fractura se propaga con una velocidad constante. 2) Conforme se avanza, el material se fractura. 3) En el frente de fractura los esfuerzos se hacen cero para una caída total en el esfuerzo, o tienen un valor residual que depende de la fricción.

El primer modelo de fractura de la fuente sísmica fue propuesto por Keilis-Borok (1959), quién estudió un modelo de falla circular muy simple y estableció la primera relación entre la caída de tracción en el interior de la falla y la dislocación media en la misma. Aki (1967), observó que el espectro de los sismogramas en el campo lejano tiene en general una forma muy simple, lo que se llama actualmente el modelo ω^2 . El demostró además que al menos para terremotos de magnitud inferior a 8, estos espectros dependen de un solo parámetro de escala, que es la dimensión característica o longitud de la ruptura. Brune (1970), propuso un modelo de falla circular para explicar el modelo ω^2 . Aunque el modelo de Brune es una aproximación semi-empírica, Madariaga (1976) demostró que este espectro se podía explicar con un modelo muy simple de una falla circular que crece a partir de su punto de nucleación a velocidad constante. La dificultad principal con los modelos de ruptura es que la ruptura es controlada numéricamente de modo que no es posible estudiar el problema fundamental de una falla por varios eventos sísmicos sucesivos. Para este caso en particular se adoptó el modelo llamado del terremoto característico propuesto por Schwartz y Coppersmith (1984), que permitió estudiar eventos individualmente.

El modelo de la ruptura dinámica de una falla puede describirse mediante un cuerpo elástico homogéneo de densidad ρ y constantes elásticas λ y μ . El cuerpo es infinito y contiene como lo muestra la figura 2.4, una sola falla plana que coincide con el plano de coordenadas perpendicular al eje z.

Figura 2.4: Modelo mecánico general de una fuente sísmica.

Modificado de Madariaga, (1994)

La Falla Circular: Modelo simple de ruptura

El modelo considerado será una ruptura sísmica muy simple en forma circular. La ruptura comienza en un punto y se propaga radialmente, y se detendrá en una zona comúnmente conocida como barrera sísmica, así al final de la propagación lo que comenzó como una ruptura circular terminara descrita idealmente por una forma elipsoidal. La duración del proceso de ruptura (T_s) tiene un valor proporcional a la dimensión de la falla y es inversamente proporcional a la velocidad de ruptura (V_r).

Otro aspecto del modelo de falla circular que parece ser genérico, es decir independiente de los detalles del modelo, es la concentración de esfuerzos y de velocidad de deslizamiento cerca del frente de ruptura. La forma general del deslizamiento, la velocidad de deslizamiento y de los esfuerzos cerca del frente de ruptura de la falla circular tienen la forma que se muestra en la figura 6. Introduciendo la coordenada local x, distancia al frente de ruptura.

Figura 2.5: Propiedades generales del frente de ruptura.

La situación en el frente de ruptura para una fractura dinámica: a) Desplazamiento; b) Velocidad del desplazamiento; c) Esfuerzo. Modificado de Madariaga, (1994).

El campo de esfuerzos y el de velocidad presentan singularidades de tipo raíz cuadrada inversa. El desplazamiento es continuo en el frente de ruptura y tiene una forma parabólica. Es obvio que estas formas de los campos de esfuerzos no pueden ser correctas hasta el frente de ruptura mismo, porque ningún sólido puede resistir esfuerzos de cizalla infinitos. La solución de este problema es simple y conocida. La distribución de esfuerzo y velocidad de deslizamiento mostrado en la figura 2.5 es válida fuera de una pequeña zona llamada de aliviamiento de esfuerzos en la cual los esfuerzos disminuyen desde un valor máximo finito que representa el umbral de fricción, hasta un valor inferior constante llamado fricción cinemática.

3. Metodología Empleada

3.1 Interferometría sísmica

El procedimiento para la implementación de la interferometría se resume en el siguiente esquema:

Figura 3.1: Procedimiento para realizar la interferometría sísmica

3.1.1 Análisis espectral y selección de frecuencias

La información con la cual se dispone fue registrada en forma de señales y son el resultado de un proceso que tiene lugar en el dominio del tiempo. Realizar un análisis espectral de estas señales permitirá identificar cuáles son las frecuencias dominantes para filtrar las que son del interés particular del estudio. Como se mencionó anteriormente en una operación de fracturamiento las frecuencias pueden variar en una banda muy amplia y particularmente tiende a ser bastante altas, incluso superiores a los 100Hz. La información analizada proviene de 17 estaciones las cuales contienen una hora de señal continua a una frecuencia de muestreo de 2 milisegundos, esta hora corresponde a la hora durante la cual se llevó a cabo el fracturamiento hidráulico.

Un primer análisis de frecuencia se realiza para la hora completa de información en cada una de las 17 estaciones, ejemplos de ello son la figura 3.2 y figura 3.3, en estas se observan la gran cantidad de frecuencias que fueron registradas, el ancho de banda está limitado a 100 Hz.

Figura 3.2: Análisis espectral de la componente vertical para una hora de registro en la estación Est 1(1687), durante el fracturamiento.

Figura 3.3: Análisis espectral de la componente vertical para una hora de registro en la estación Est 3(1882), durante el fracturamiento.

Un rango bastante fácil de identificar es el de 80 a 90 Hz por su distribución continua a lo largo de cada una de las estaciones, lo que indica una fuente bastante puntal y externa, esto permite fácilmente rechazarlo para el estudio.

Estudiar toda esta gran cantidad de información en una sola ventana es bastante limitante y no permite ser precisos en la escogencia de las frecuencias de interés, es por eso que se analizó la información para ventanas de 5 segundos, sería en total 720 nuevas ventanas para cada una de las estaciones, o sea un total de 12240, un trabajo bastante dispendioso, es por eso que se escogió de manera aleatoria una muestra del 2% para cada una de las estaciones y se analizó su contenido frecuencial, fueron en total 238 ventanas de 5 segundos las analizadas, 14 ventanas por cada estación. Ejemplo de estas ventanas se observa en la figura 3.4. El análisis de estas ventanas arrojó información útil para escoger los rangos de frecuencia a estudiar y realizar un filtrado que permita analizar la mayor cantidad de información.

Los rangos identificados y con mayor tendencia dentro de las señales fueron entre 2 a 6 Hz, 10 a 16 Hz y 20 a 60 Hz, este último concentra aproximadamente un 45% de la señal en cada una de las estaciones, estos tres fueron los escogidos para ser analizados.

En la parte superior de la figura 3.4 se muestra la porción de señal analizada filtrada para frecuencias menores a 60 Hz, en la parte inferior de la figura 3.4 se observa el blanqueamiento de las zonas con frecuencias mayores a los 60Hz.

3.1.2 Correlaciones cruzadas

Determinar la correlación cruzada es el procesamiento básico de la técnica de interferometría sísmica. Luego de la selección de las frecuencias y la validación de los datos, la correlación cruzada es el paso a seguir. Se realizan las correlaciones cruzadas de las 17 estaciones en ventanas de 5 segundos, trasladando la fuente virtual desde la primera estación hasta la penúltima, bajo esta configuración se realizaron 136 correlaciones cruzadas por cada 5 segundos, para un total 97920. Para este procesamiento se realizó un código en Matlab, en el anexo A se explica el funcionamiento del mismo. Las figuras 3.5, 3.6 y 3.7, muestran ejemplos de las correlaciones cruzadas de dos señales, las dos señales fueron filtradas en bandas de

frecuencia deseada, y la traza obtenida después de su deconvolución con una ondícula de Ricker para una frecuencia dada.

Figura 3.5: Cálculo de la correlación cruzada entre dos estaciones filtradas entre 2-6 Hz.

Las figuras 3.5, 3.6 y 3.7, muestran la correlación cruzada entre las dos mismas estaciones filtradas a diferentes frecuencias, y se trabajó con una ondícula de Ricker a 40 Hz, para recuperar partes de la señal que se degeneran durante la correlación cruzada.

Figura 3.6: Cálculo de la correlación cruzada entre dos estaciones filtradas entre 10-16 Hz.

Con los cálculos de las correlaciones se generan unas matrices de información con las cuales intentaremos aproximarnos a la imagen deseada.

Un ejemplo de una primera imagen es la que se muestra en la figura 3.8, se observa lo incipiente de posibles interfaces, y los contrastes se ven como pequeñas y delgadas líneas horizontales.

3.1.3 Apilado e imagen

Durante el procesamiento de la información para la realización de la interferometría sísmica un importante paso es el proceso de apilado de información, se observó que a medida que se apilaban más horas de información se elimina ruido inútil y mejora la calidad de la señal, esto se puede observar en la figura 3.9.

Figura 3.9: Evolución de una señal a medida que se apila información para una ventana de 1 hora.

Obtener imágenes individuales no generan ninguna clase de información, como se observa en la figura 3.8 parecen no mostrar nada, entonces el siguiente paso dentro de la interferometría es apilar todas las imágenes obtenidas para obtener una única imagen en una ventana de 5 segundos, con el apilado se intenta remarcar los rasgos más sobresalientes y eliminar aquellos que no lo son tanto.

La figura 3.10 muestra una imagen de una matriz de correlaciones con datos en el rango de frecuencias entre 20 y 60 Hz, la cual ha sido apilada en tiempo para 5 minutos.

Figura 3.10: Imagen en tiempo de una matriz de correlaciones cruzadas para una ventana de 5s, apilada en tiempo para un lapso de 5 minutos.

Las figuras 3.10, 3.11 y 3.12 muestran los cambios que presenta la imagen a medida que se realiza el apilado en tiempo. En la figura 3.10 se observan claramente las señales todavía crudas, pero a medida que se va realizando el apilado la imagen parece hacerse más clara eliminado muchos de esos falsos reflectores y reafirmando otros.

La figura 3.12 muestra el apilado para una hora, en esta figura se hace más clara la imagen y se han ido eliminando muchos más falsos reflectores que estaban presentes en la figura 3.11, y aunque la imagen no permite mayor interpretación, sin lugar a dudas demuestra que apilando mucha más información se mejora la imagen.

Figura 3.12: Imagen en tiempo de una matriz de correlaciones cruzadas para una ventana de 5s, apilada en tiempo para una hora.

3.2 Modelo sintético para la generación de una imagen sísmica del área estudiada.

Partiendo de modelos de velocidad 1D de pozos, se construyó un modelo 2D del área estudiada, esto asumiendo que para una longitud aproximada de 1.2 km los cambios laterales para este terreno son mínimos, luego generando disparos sintéticos que simulan un levantamiento sísmico convencional se calcula el comportamiento de las ondas junto con sus tiempos de viajes, obteniendo una imagen sísmica apilada del terreno. Para tal fin se construyó una rutina en MATLAB que puede verse completamente en el anexo B.

La figura 3.13 muestra el modelo de velocidades del cual se partió para generar los sintéticos, este se construyó a partir de los datos de velocidad registrados en pozos, como se puede observar la velocidad de las capas son plano paralelas.

Figura 3.13: Modelo de velocidad inicial para generar sintético.

Con el modelo de velocidad se crean los disparos virtuales para simular un levantamiento sísmico. La ecuación de onda se resuelve mediante diferencias finitas para un campo de ondas inicial definido, para esto se deben calcular ciertos parámetros. Se genera el trazado de rayos y se calculan los tiempos de viaje.

Figura 3.14: Imagen apilada generada a partir de un sintético.

En la figura 3.14 se observa la imagen sísmica apilada generada a partir de un sintético, partiendo de un modelo de velocidad del terreno, esta imagen será comparada con las

imágenes obtenidas mediante la interferometría sísmica para discutir si la técnica de interferometría logra reconstruir la estratigrafía del área.

3.3 Campo de esfuerzo local del área

Inferir el campo de esfuerzo local del área estudiada a partir de registros de ruido ambiental requiere asumir una serie de condiciones que simplifiquen el análisis y disminuya los cálculos. Para la presente investigación se asumió que existe un patrón regional de esfuerzos que rige la zona estudiada, y que los eventos que se registren están muy próximos en tiempo y espacio. Este patrón regional controlara el campo de esfuerzos los días previos al fracturamiento hidráulico, mientras que durante y posterior al fracturamiento, los eventos microsísmicos registrados dependerán exclusivamente del aumento o disminución de la presión por la inyección del fluido en el pozo. El modelo mas sencillo para representar la fuente sísmica de nuestros eventos es el de un foco puntual, el cual ocasionara una deformación de carácter lineal en tres direcciones perpendiculares. Como los eventos analizados son de carácter microsísmico, serán eventos de pequeña magnitud que pueden ser estudiados como funciones empíricas de Green que incluyen los efectos de propagación en el medio.

Figura 3.15: Procedimiento para determinar la función temporal de la fuente.

3.3.1 Detección de eventos microsísmicos

Detectar un evento microsísmico dentro de la información de ruido ambiental registrada en cada una de las estaciones, constituye un gran reto dada la dificultad de observar los arribos de la onda P y S, es por esto que para la investigación la metodología empleada para definir un posible evento microsísmico es un análisis STA/LTA de las señales registradas en cada una de las tres componentes (NO, EO y ZO), este tipo de análisis tiene la ventaja que se puede realizar en el dominio del tiempo, permitiendo observar directamente el segmento de la señal analizada en una ventana deseada. En la figura 3.16 se muestra la detección de un posible evento o eventos microsísmicos a través del análisis STA/LTA realizado a las tres componentes de la señal registrada en diferentes estaciones.

Como se observa en la figura 3.16, muchos picos convergen hacia puntos en común y otros no, pero todos se agrupan en una ventana muy pequeña de tiempo. En la figura 3.17 se observa la ventana analizada para las tres componentes en tres diferentes estaciones con la detección de los posibles eventos.

Figura 3.17: Detección de un posible evento o eventos microsísmicos en los registros de ruido ambiental a partir de un análisis STA/LTA.

Reduciendo el tamaño del intervalo de tiempo analizado y aplicando una ventana de Hamming para un número de muestras de 1024 con el objetivo de disminuir el efecto de Gibs y garantizar la estabilidad del coeficiente de correlación (Lizarazo, 2013), se determina el espectro de amplitudes de las ventanas, las cuales muestran los principales picos de energía en el intervalo de 5 a 10 Hz, con otros picos en 18 Hz, 23 Hz y 25 Hz como se observa en la figura 3.18, por lo que se aplica un filtro *Butterworth* entre 2 Hz y 10Hz a las ventanas. Gracias a la aplicación de este filtro se observa con claridad la similitud entre los sismogramas (figura 3.19).

Figura 3.18: Espectros de amplitud para las ventanas de las componentes NO de las estaciones EST 7(1688) y EST 10(1887).

Figura 3.19: Ventanas filtradas entre 2 Hz y 10 Hz de las componentes NO de las estaciones EST 7(1688) y EST 10(1887).

Estas ventanas de los sismogramas son los empleados para hacer los correspondientes cálculos de la función temporal de la fuente sísmica a través del cálculo de las funciones de Green empíricas, para esto primero se verifica que el coeficiente de correlación entre cada para de estaciones para cada una de las componentes sea mayor a 0.85, con lo que se comprueba que los sismogramas son muy similares y que la diferencia entre ellos solo es la función temporal. La figura 3.20 es una tabla donde se muestran los coeficientes de correlación cruzada para la ventana ejemplo y se observa que solo diez pares de estaciones cumplen con el criterio de coeficiente de correlación mayor a 0.85 en sus tres componentes.

COMPONENTE ZO								COMPONENTE EO								COMPONENTE NO					
Name +	Value	Name +	Value	Name +	Value	Name +	Value	Nome -	Value	Name 4	Value	Name +	Value	Name +	Value	Name +	Value	Name -	Value	Name -	Value
E10x11	0.9474	ELd7	0.3991	Bd	-0.3809	E67	0.9385	E10x11	-0.9386	Fld	-0.8130	E6r17	-0.1482	III (5.7	0.0067	E10/11	0.9777	E EM4	-0.1683	F5/14	0.4251
E10c12	0.9442	ELc2	0.0376	Bd	0.3362	E5d8	-0.8291	E10<12	0.9424	Ele7	-0.8954	FLAS	-0.1522	100	0.3002	F10-12	0 5188	E2-15	0.2382	F5-15	.0.6421
E10x13	0.0461	ELG	-0.1706	B9	0.2909	53	-0.7163	El0d3	-0.4452	FIR	0.6897	146	.0.1518	CC-0	A 6670	F10/13	0.0018	F2/16	0.2448	F5-16	.0.6796
El0c14	-0.9506	Elci	-0.0027	E4c10	-0.0306	E5c10	-0.9102	F10-14	6,8129	100	0.0057	EL-7	.01577	ECG TE AD	40,00/3	C10-14	0.71.45	11 [1-2]	11615	15.4	.0 51 22
E10x15	-0.9590	Bd	0.4036	E4c11	-0.0079	E6c11	-0.9483	El0d5	-0.9055	F2-10	1 9365	F4-8	01245	EDC.10	0.0436	E10/15	0.063/	E Flot	0.2011	F5-7	.0.6568
- E10x16	-0.9238	Elcó	-0.3973	E4c12	-0.0072	E6c12	-0.9450	E10c16	-0.9401	F2/11	.0 0165	FLAD	0.0883	E 66.13	0.0677	610-15	0.0685	EL CAS	.01715	E	.0.1684
E10c17	0.9355	Elc7	0.4209	E4c13	-4.6257e-04	E6c13	-0.0637	E10c17	0.8917	E2:12	0.0422	ES-10	0.0317	E0012	0.9027	E11/12	0.6100	104	0.1008	F5-0	1 50%
El1c12	0.9861	Elc8	-0.3561	E4c14	0.0076	E6c14	0.9486	F11-12	-0.9612	E2/12	-0 S15R	F5-11	00500	EDCL3	10/4300	C11.47	0.0212	E2-7	0.2248	EL-10	0.3027
El1d3	0.0694	EL:9	-0.2968	E4c15	0.0085	E5c15	0.9544	FILCIS	0.4464	ED-14	0.9415	ES-12	0.0812	EDC14	0.0310	611-14	0.6271	104	0.0779	66-11	0.7225
El1c14	-0.9906	E2c10	0.0449	E4c16	0.0085	E5c16	0.9420	F11/14	-0.8296	E2/15	.0 00.00	ES-12	.0 5897	EDCL5	-1/3/45	C11.45	0.0527	100	0.1036	E6-13	0.0223
Elld5	-0.9915	E2c11	0.0302	E4c17	-0.0085	E5c17	-0.9490	- F11/15	0.9257	E2-16	-0.0045	E5-14	0.9917	EDC10	40.9001	511,16	0.0210	H D-10	0.0000	C6-13	0.7065
El1c16	-0.9788	E2c12	0.0326	Hó	-0.0083	E6c7	-0.9246	- F11/16	8.9619	E247	0.0135	545	A 8217	EDCL/	0.0000	S1142	0.5050	Duv Duv	0.0716	CLUB CC.14	0.000
El1d7	0.9905	E2c13	-0.0102	E4c6	0.0083	E6d8	0.8166	F11-17	.0.0025	E2(2)	0.3120	E 545	.0.0623	EDC/	0.2550	C12415	0.0002	Dui Dui	0.0720	CE-15	0.6960
E12c13	0.0676	E2c14	-0.0332	E4c7	-0.0190	H E6-9	0.7044	F12/13	-0.5282	120	0.1/82	CS-17	0.0682	EDC8	-9.7055	C12L14	-0.29VL	Duz Duz	0.0710	COLD CLAS	0.0339
E12c14	-0.9848	E2d5	-0.0336	E4d8	0.0065	E7d0	0.9373	F12-14	0.9944	E104	0.0210	E CLE	0.0024	EDCS	-0.3363	C12-35	0.0447	E Dub	10.0537	COLLO TE-2	0.7200
E12c15	-0.9876	E2c16	-0.0281	E4-9	0.0081	- Eld1	0.9595	F12/15	J1 0513	-	0.0100	ESCO ESCO	0.0063	Ercto	0.8000	C12130	0.2047	DU4	0.0004	CDC/	0.2520
E12c16	-0.9739	E2c17	0.0191	E5c10	0.9234	ETd2	0.9565	F12-16	.0.9917	E210	0.9192	ESU/	0.3002	Elcii	-9,5500	012-16	-0.001	000	-0.0004	CDCD CDCD	0.2008
E12c17	0.9845	E2d3	-0.0121	H Edl	0.9653	Eld3	0.0509	F12/17	10563	17.6	0.0741	L CO	0.5520	Elaz	0.9206	ELISCID F12-46	0.0740	E E C O	-910003	EDC9	0.0007
E13c14	-0.0629	E2c4	-2.1458e-04	ESc12	0.9609	Elcl4	-0.9623	E12-14	.0.5574	1200	-0.7.320	EDC3	-0.30/3	E D d3	-0.4904	CLUCID CLUCID	0.000	Die Cont	-101013	000	0.0367
E13c15	-0.0613	- 85	0.0269	E5c13	0.0650	ETd5	-0.9708	E12/15	0.007	0.40	4 3380	COCLU TC-11	0.0130	E/cl4	0./948	ELIACIO CILLAR	-0.5005	80	0.0077	E/CII	0.0000
E13c16	-0.0626	E2:6	-0.0277	E5c14	-0.9653	ETc16	-0.9470	512-16	0.4900	E E CU	0.2789	EDC11	409420	E/05	-0.8696	E14C10	CPU0.0-	00	-10037	000	0.3530
F13-17	0.0776	E7c7	0.0405	F5:15	-0.9687	FIel7	0.9514	E12-17	0.6179	001	-0.2902	COCL2	0.9027	E/clb	-0.9088	ELDCED	0.000	BO	-0.0045	0/03	0.9092
E14c15	0.9921	E2c8	-0.0197	E5c16	-0.9591	HEId.	-0.8247	11445	0.0120	EGG2	0.3159	EDCLS	-0.4990	Edi	0.8834	ELCIU	-0.4533	100	-0.0198	E/04	-0.0005
F14-16	0.9828	104	-0.0178	F5-17	0.9647	ELA	-0 7080	E CLACE	10000	Bas	-0.1888	Ebc14	0.8511	Eld	-0.7248	Eldi	-0.4529	E BG	-0.0/64	E/d5	0,9361
F14c17	-0.9885	Bel0	-0.3743	F5-6	-0.9283	FR-10	-0.8107	E14(10	1 9022	ESCI4	0.2854	EDCLD	-0.3289	E7(9	-0.5333	Eldz	-0.2570	E4CIU	0.849/	E/CIO	0.9294
E15-16	0.5708	ER41	-0.3004	F5-7	2850 0	ER-11	.0.9497	EHCL/	0.0522	Bdb	-0.3041	Ebclo	-0.9561	EBc10	-0.7148	Elds	-0.4360	Hdl Hdl	0.8190	E/d8	0.2496
F15-17	.0.0880	Ed12	.0.3894	FF-F5-F	.0.8201	FR/12	-0.8449	ELD(10	0.0120	ESCID	1202.0-	Ebcl/	0.9242	EB<11	0.7499	Elcl4	0.2947	E4CLZ	0.3903	El Cl	0.7339
FI6/17	-0.0288	E-FA-13	-0.0251	F5-9	-0.7163	ER-13	-0.0578	EDCI/	-9/3139	ERU/	0.3090	EDC/	0.8950	EBc12	-0.7894	ELCO	-0.4249	E MOS	0.8440	EBC10	0.1156
Fle10	0.4272	E-M	0.3030	F6-10	.0.0107	FR-14	0.8470	CIOC1/	0.2000	204	-0.0400	EDCB	-0./055	EBc13	0.4887	Elcio	-0.4362	E4c14	-0.6403	EBCII	0.2925
Fl/11	0.4170	H Rds	0.3977	E5-11	.0.0492	H BAS	0.8520	ELCIO	-0.7900	BO	0.3142	Ebc9	CBCC.8-	EBc14	-0.7458	Eld	-0.2085	Hels	0.3050	EBC12	0.3092
F1/12	0.4144	Brin	0.3820	F6-17	.00450	H FR-16	0.8420	Enter	0.0377	Elle	0.3046	11 E/d0	0.8506	E8c15	0.7642	Elci	0.0304	E4c16	0.8027	EBc13	0.3062
51/13	0.0045	E-17	.0.2000	E5-12	.0.0677	ER-17	1.8425	ELC12	-1/03///	Bel	0.30/3	E/dl	0.8900	EBc16	0.7753	Elc4	-0.3779	EAC	-0.5173	EBc14	-0.2791
Della	.0.4154	H Dd	.0.0124	E6-14	0.0007	1000	0.6302	ELCIS TT. 44	2.440/	Ba	-0.2052	Eldz	0.9206	EBc17	-0.7872	Eld	0.3082	EActo	0.5876	EBc15	0.2790
EL/15	.0.4150	ER-5	.0.2818	E6-15	0.0400	H 52-10	.0.6010	21014	-0./4/9	EG	-0.1855	E/cl3	-0.4914	EBc9	0.4476	Eld	-0.3211	E4d	0.7424	EBc16	0.2744
E1-15	0.2060	E Dé	0.2362	E6-16	0.000	H 61-11	0.7211	ELCD I	0.8050	E4c10	-0.1379	E7d4	0.7948	E9<10	-0.5616	Eld	-0.4114	E4d8	0.2821	EBc9	0.3043
EL 47	0.3001	D.7	0.3703	EL-17	0.3420	En.42	.0.7321	Eiclo	0.82/1	Ekd1	0.1516	E/d5	-0.8696	E9c11	0.5603	E148	-0.1293	E4c9	0.7385	E9c10	0.8449
ELc2	0.0226	H DA	0.3363	H 66-7	.003450	- B-13	.0.0521	End	-0.3084	E4cl2	-0.1584	E7c16	-0.9088	E9c12	-0.5752	ELO	-0.3569	Escl0	-0.6357	E9c11	0.8096
E1+2	0.03/0	00	0.3302	LL EUC/	-1028.00	003	-04031 0.7227	ELC2	-0.7958	E4d3	0.0749	E/d7	0.8834	E9:43	0.3037	E2c10	0.2393	Ed1	-0.6776	E9c12	0.3677
10	0.0027	E Clato	0.2309	LL COOD	0.025.0	Duy mat	0.7225	E HG	-0.2655	E4c14	-0.1438	E748	-0.7248	E9c14	-0.5029	E2c11	0.2450	Ed2	-0.5001	E9c13	0.8349
CLON	-100021 0.4006	E4C10	-9.0500	CDC9	0.094	E Dut	0.7266	Ele	0.1026	E4c15	0.1515	E19	-0.5333	EBc15	0.5595	E2c12	0.1527	Ed3	-0.6454	E9c14	-0.6646
10	0.4030	E 6401	-0.0079		0.0575	000	0.1230	HO	-0.8268	E4c16	0.1551	E8c10	-0.7148	E9c16	0.5697	E2d3	0.2409	E5d4	0.4251	E9:45	0.7902
E100	-47.281.2	TT FACTS	-0.0012	E/CIT	0.9090	11 B(1)	-411333	Elcó	-0.8130	E4c17	-0.1482	EBc11	0.7400	F9/17	A \$525 A	E2d4	-0.1683	E5c15	-0.6431	F9c16	0.7848

Figura 3.20: Cálculo de los coeficientes de correlación para las tres componentes por par de estaciones.

En el ejemplo analizado se obtuvieron diez pares de estaciones que cumplieron con el criterio de un coeficiente de correlación mayor a 0.85, estas estaciones son las utilizadas para realizar el cálculo de la función temporal de la fuente sísmica a partir de funciones de Green empíricas, en total se obtendrán por cada par de estación tres funciones temporales de la fuente sísmica, una por cada componente, paso esencial para determinar el tensor de esfuerzos.

3.3.2 Función temporal de la fuente

Para determinar la función temporal se implementara la metodología propuesta por Buforn (1994), para calcular las funciones empíricas de Green, y como ejemplo se utilizaran los sismogramas que se observan en la figura 3.19, que corresponden a las componentes NO de las estaciones 1688(EST 7) y 1887(EST 10), cuyo coeficiente de correlación es de 0.8997 como se muestra en la figura 3.20.

Se calcularon los espectros de amplitud mediante la transformada de Fourier para las dos señales, cada una con 1024 muestras y una frecuencia de muestreo de 0.002. Luego se calculó el cociente entre los dos espectros obteniéndose un tercer espectro al cual se le realizó la transformada inversa de Fourier para tener nuestro resultado de la función temporal en el dominio del tiempo. La figura 3.21 muestra los espectros de amplitud de las dos señales analizadas y el cociente entre ambas.

Figura 3.21: Espectros de las señalas analizas para el cálculo de la función temporal de la fuente.

Figura 3.22: Función temporal de la fuente calculada entre dos eventos para las tres componentes.

La señal obtenida como función temporal de la fuente fue filtrada para frecuencias menores a 10 Hz, lo que permitió identificar el pulso y su duración en segundos, este tiempo define la historia del deslizamiento y es la cantidad fundamental que permite lograr una aproximación al régimen de esfuerzos del área estudiada. En la figura 3.22 se muestran las funciones temporales para las tres componentes, en este ejemplo se identifican fácilmente los pulsos y la duración de los mismos en segundos, pero no siempre es así, en muchas de las funciones temporales calculadas es difícil identificar el pulso asociado al evento microsísmico, o determinar cuál es el tiempo real de duración de este pulso. En la figura 3.23 se observa que es difícil decidir sobre cuál es el tiempo de duración del pulso, para esta investigación el criterio utilizado fue el pico de máxima amplitud, ya que este pico adicionalmente no muestra el sentido del movimiento y una posible dirección en la propagación de la señal.

Figura 3.23: Función temporal de la fuente calculada entre dos eventos, donde es difícil identificar el tiempo de la función.

En la función temporal se evidencia un pulso principal compuesto por varios picos, se resaltan en dos recuadros los posibles tiempos de duración del pulso, pero al final se tomó como valor el encerrado en el recuadro rojo.

3.3.3 Régimen del campo esfuerzos

La representación con el tensor de momento que genera un evento puede ser sustituido por una representación equivalente a través de unas magnitudes escalares relativas y unas direcciones a modo de descripción geométrica, caso del tensor de esfuerzo, que permitan llegar a una aproximación del régimen de esfuerzos

Asumiendo que el vector de deslizamiento tiene el mismo sentido y orientación del esfuerzo de cizalla presente en un tensor de esfuerzos común, y que todas las deformaciones son consistentes con la influencia de un mismo evento, entonces se puede acoger tres restricciones solidarias a la situación: 1) el estado de esfuerzos es homogéneo a la escala estudiada; 2) el tensor de esfuerzos tiene influencia sobre un elevado número de planos preexistentes, y 3) en cada plano el deslizamiento es paralelo a la dirección del máximo esfuerzo de cizalla. Calculando la función temporal y utilizando las relaciones existentes entre esta cantidad y, el desplazamiento, el tiempo de ruptura, la deformación y los esfuerzos, mostradas en el capítulo 2 determinamos las orientaciones y las magnitudes relativas de los ejes principales del tensor de esfuerzos ($\sigma_1, \sigma_2 \sigma_3$), y se puede calcular el régimen de esfuerzos dominante, definido por R (stress ratio) utilizando la representación de los elipsoides de esfuerzos según su factor de forma R, planteado por Reches et al. (1992).

Entonces:

$$\mathbf{R} = \frac{(\sigma_2 - \sigma_3)}{(\sigma_1 - \sigma_3)}$$

Este R es diferente del parámetro R' de la ecuación de Bott, siendo la equivalencia entre ambos, y donde:

$$\sigma_{I,}$$
 Vertical R' = 1 / R R' > 1

- σ_2 Vertical R' = R 0 < R' < 1
- $\sigma_{3.}$ Vertical R' = 1 / (R 1) R' < 0

Donde R' es igual a:

$$\mathbf{R}' = \frac{(\sigma_z - \sigma_x)}{(\sigma_y - \sigma_x)}$$

Con σ_x es el esfuerzo horizontal mínimo, σ_y el esfuerzo horizontal máximo y σ_z el esfuerzo vertical.

Los diferentes valores de R representan los tipos de elipsoides de esfuerzo, desde el tipo prolato, para R = 0 en régimen normal, hasta el tipo oblato, para R = 1 en régimen inverso (Figura 3.24).

Se calculó la función temporal para las tres componentes a 6 diferentes horas del día, mínimo para 3 pares de estaciones para cada día. las horas escogidas para analizar fueron: 3 am, 6 am, 11 am, 3 pm, 6 pm, y 11 pm, para los días 12, 13, 14, 15, 16, 17 y 18 de noviembre de 2012.

Figura 3.24: Representación de los elipsoides de esfuerzos según su factor de forma R. comparado con el modelo de fracturación de Anderson, (1951).

Modificado de Reches et al. (1992) y Anderson, (1951).

Cuando $\sigma_{1,}$ y $\sigma_{2,}$ son horizontales y σ_{3} es vertical, se trata de un régimen de comprensión que puede contener fallas inversas con un strike paralelo a $\sigma_{2,}$; si $\sigma_{1,}$ es vertical y $\sigma_{3,}$ es horizontal, se trata de un régimen que puede contener fallas normales.

4. Resultados y Discusión

4.1 Interferometría Sísmica

La implementación de la interferometría sísmica a datos de ruido ambiental y microsísmica inducida arrojó significativos resultados, en los que se destacan la obtención de trazas mucho más limpias producto de la correlación cruzada entre cada par de estaciones, que permitieron construir imágenes que muestran importantes contrastes acústicos y posibles reflectores del subsuelo.

La figura 4.1 muestra las trazas obtenidas mediante la interferometría sísmica aplicada a registros de información de 1 hora de duración para una ventana de 5 segundos, se evidencia la gran cantidad de ruido que aun contienen las trazas inclusive después de ser apiladas para la ventana de 5 segundos. Las tres componentes son muy parecidas en cantidad de ruido y se encuentran sin ninguna clase de edición o filtrado.

Figura 4.1: Trazas obtenidas por interferometría sísmica para 1 hora.

La figura 4.2 muestra nuevamente las trazas obtenidas, pero esta vez los registros fueron apilados en tiempo con 24 horas de información antes de la aplicación de la

interferometría, se observa una leve mejora en la calidad de las trazas para las componentes E y N, donde aparecen con cierta continuidad lo que puede interpretarse como algunos reflectores, mientras que la componente Z aun continua con un gran cantidad de ruido.

Figura 4.2: Trazas obtenidas por interferometría sísmica para 24 horas.

La trazas de la figura 4.3 son el resultado de un apilado de 80 horas de información en una ventana de 1 hora previo a la aplicación de la interferometría, la calidad de las trazas para las tres componentes mejoro considerablemente, aunque en la componente Z persiste el ruido, pero claramente se observan reflectores muy continuos a lo largo de las trazas.

Figura 4.3: Trazas obtenidas por interferometría sísmica para 80 horas.

Como se esperaba las trazas para cada una de las tres componentes aún conservan una gran cantidad de ruido, siendo más evidente en la componente Z, esto no es casualidad ya que se encuentra abiertamente demostrado que la componente Z presenta un contenido frecuencial distinto a las otras componentes, la razón es que la componente vertical contiene principalmente ondas P, SV y modos superiores de las ondas Rayleigh.

Una de las principales limitaciones que presento este trabajo fue la geometría con que se adquirió la información, el arreglo lineal de los acelerómetros condicionó mucho la implementación de las metodologías propuestas para alcanzar los objetivos, quizás un arreglo con un cubrimiento azimutal más amplio hubiese permitido construir imágenes interferométricas en diferentes direcciones, para construir una posible imagen en volumen del área.

4.1.1 Comparación entre la imagen sintética y la imagen interferométrica

Partiendo de modelos de velocidad 1D se construyó un modelo de velocidad 2D del área, para luego a partir de la simulación de una sísmica convencional generar una imagen sísmica sintética apilada de la zona. Esta imagen se utilizó como una primera herramienta para compararla con la imagen obtenida por la interferometría sísmica y así realizar una calibración y los primeros ajustes con el fin de establecer los principales reflectores y diferenciarlos de posibles múltiples.

En la Figura 4.4 se resaltan los principales reflectores tanto en la imagen sintética como en la interferométrica; aunque el ruido aún persiste en la imagen interferométrica este no impide una interpretación de la misma, para los objetivos de esta investigación parece ser una buena aproximación. Las dos imágenes se encuentran a la misma escala horizontal y vertical, siendo la escala vertical el tiempo correspondiente a ida y vuelta.

4.1.2 Comparación entre imagen interferométrica e imágenes sísmicas cercanas

En la Figura 4.5 se presenta una comparación entre la imagen interferométrica con otras imágenes sísmicas adquiridas en la zona de estudio y suministradas por el ICP. En general en la imagen interferométrica se observan reflectores consistentes y fácilmente identificables en las imágenes adquiridas por sísmica convencional, la imagen

interferométrica presenta las 31 trazas obtenidas mediante esta técnica y fueron pasadas por un filtro pasabanda entre 2Hz y 10 Hz, este fue el único tratamiento realizado a las trazas, a las que no se les realizó ningún otro tipo de edición. Las escalas horizontales son diferentes en las tres imágenes. La imagen b) representa una pequeña porción de las otras imágenes. La escala vertical es igual y corresponde a tiempo de ida y vuelta.

Figura 4.4: Imagen apilada generada a partir de un sintético, b) Imagen interferométrica.

4.1.3 Interpretación estratigráfica de los reflectores estimados a partir de la interferometría sísmica

Una posible interpretación estratigráfica se presenta en la Figura 4.7, en esta figura se trazaron equivalencias entre los reflectores más evidentes en la parte c) y las unidades cronoestratigráficas en la parte a) de la figura. Nuevamente los reflectores identificados en la imagen interferométrica coinciden bastante bien con los límites entre las principales unidades. Como en las imágenes previas donde se comparan las imágenes interferométricas con otras imágenes del área, la escala horizontal es muy distinta pero la vertical es igual y corresponde a tiempo de ida y vuelta.

4.2 Régimen de esfuerzos locales

La tabla 4.1 resume el comportamiento del régimen de esfuerzos durante los días previos y posteriores al fracturamiento hidráulico. En esta tabla se muestran ejemplos de los regímenes que dominaron el área durante los días estudiados, tomándose la mayoría de estos ejemplos de los cálculos realizados para la hora entre las 3:00 am y 4:00 am, y escogidos por ser la hora con menos actividades de trabajo humano y maquinaria dentro del campo. En la figura 4.6 se muestran los diferentes tipos de regímenes calculado para cada día, además se observa que en las barras correspondientes al total no existe un régimen de esfuerzos locales dominante, esto se puede explicar gracias a que el área estudiada es un campo en producción y se encuentra expuesto al constante estimulo por la extracción, además de la ya mencionada operación de fracturamiento hidráulico llevada a cabo. Si se quiere más detalles sobre los regímenes de esfuerzo locales calculados se pueden ver las tablas del anexo D, en ellas se evidencia no solo lo cambiante de los regímenes día tras día, si no también lo variante en un mismo día e inclusive en una misma hora analizada. La Figura 4.8 muestra la variación del régimen de esfuerzos durante los días previos y posteriores al fracturamiento hidráulico, utilizando una representación en forma de elipsoides, cuyos ejes son las magnitudes escalares relativas de los esfuerzos que actúan en dirección de esos mismos ejes, y teniendo en cuenta el criterio de la forma R propuesto por Reches. Se observa que antes del fracturamiento los esfuerzos que dominaron el área fueron de tipo compresivo preferencialmente, y con algo de cizalla; mientras que después del fracturamiento el régimen cambió preferencialmente a distensivo, pero también presentaba componentes

de cizalla acercándose a condiciones compresivas. Luego de un par de días después del fracturamiento ser observan condiciones compresivas.

Figura 4.6: Cálculo de los diferentes regímenes de esfuerzos.

Tabla 4.1: Régimen de esfuerzos para el área de estudio según su forma R.

DÍA ANALIZADO	x (Componente N)	y (Componente E)	z (Componente Z)	R	REGIMEN DOMINANTE PROMEDIO
12/11/2012	0,4946	0,0235	0,0511	0,059	DESGARRE ACERCANDOSE A INVERSO
13/11/2012	-0,0796	0,0099	0,0097	0,002	COMPRESIONAL
14/11/2012	-0,0964	-0,0263	0,0161	0,185	COMPRESIONAL
15/11/2012	-0,6538	-0,0192	-0,0096	0,015	COMPRESIONAL
15/11/2012	0,3341	0,0214	-0,0099	0,036	EXTENSIONAL
16/11/2012	0,0571	0,0360	-0,0093	0,560	EXTENSIONAL
16/11/2012	-0,2695	0,0113	0,0098	0,006	DESGARRE ACERCANDOSE A INVERSO
17/11/2012	0,7447	0,0185	-0,0097	0,012	EXTENSIONAL
18/11/2012	0,0512	-0,0746	0,0097	0,622	COMPRESIONAL

Figura 4.8: Evolución del régimen de esfuerzos, antes y después del fracturamiento hidráulico. Representación según su forma R.

5. Conclusiones y recomendaciones

5.1 Conclusiones

Los análisis realizados en este trabajo permiten destacar la importancia de los datos de ruido sísmico ambiental adquiridos antes, durante y posterior a las operaciones de fracturamiento hidráulico en un campo productor. Los datos de ruido ambiental adquiridos en este experimento permitieron la aplicación de técnicas de sísmica pasiva como la interferometría, además de lograr una aproximación a las condiciones de esfuerzos locales a partir de las funciones de Green empíricas.

En primera instancia se distinguieron los rangos de frecuencia que pueden suministrar la mejor información sobre el medio, demostrando que existen relaciones de causalidad entre un medio que responde a un estímulo y los registros de información, esto no solo se evidenció durante la implementación de la interferometría, sino también en los cálculos para determinar la función temporal de la fuente, se observó que al utilizar altas frecuencias se obtuvieron valores sobrestimados, mientras que al usarse las bajas frecuencias los valores eran más acertados y dentro de la lógica para las posibles deformaciones causadas por eventos microsísmicos.

Las imágenes estimadas presentan consistencia a las obtenidas por medio de la sísmica convencional adquirida en la zona de estudio, y se ajustan muy bien a las interpretaciones estratigráficas y cronoestratigráficas regionalmente conocidas. Seguramente una geometría complementaria además de la lineal utilizada en este experimento, con más densidad de estaciones, brindara una mejor resolución de las imágenes. Los resultados obtenidos con estas imágenes refuerzan la idea de que la interferometría sísmica es una técnica viable para el estudio del subsuelo, y puede ser una gran herramienta primaria o complementaria a las técnicas de sísmica convencional, ya que estas imágenes son fácilmente correlacionables con la geología.

Mediante un enfoque semiempirico se usó la función temporal de la fuente para relacionarla con el tiempo de ruptura y el vector de desplazamiento, logrando estimar direcciones y magnitudes relativas del tensor de esfuerzos de una manera indirecta, esto bajo ciertas restricciones de comportamiento lineal y elástico del medio, obviamente esta metodología no se empleó durante el fracturamiento hidráulico, ya que bajo esta operación el comportamiento del medio es de total ruptura.

La forma de la función temporal de la fuente sísmica para el caso de eventos microsísmicos o de pequeña escala fue muy parecida a una función delta de Dirac, aunque no siempre era fácil de identificarla inclusive después de ser filtrada por la cantidad de ruido que conserva la señal.

En cuanto a la estimación del campo de esfuerzos local, se evidenció un cambio en el régimen a lo largo de los diferentes días en que se tomó la información. Los resultados muestran que la aproximación mediante el cálculo de la función temporal es una muy buena herramienta para estos casos donde se trabaja con información de ruido y microsísmica inducida, y donde calcular los mecanismos focales por medio de los tiempos de los arribos de las ondas P y S es de una gran dificultad.

5.2 Recomendaciones

Continuar con la investigación e implementación de diferentes técnicas como la interferometría en el área de la sísmica pasiva es un camino que sin lugar a dudas llevaran al desarrollo de tecnologías alternativas y complementarias en la industria del petróleo, es por esto y aprovechando la experiencia que dejo el experimento desarrollado en este trabajo, que existen múltiples recomendaciones que pueden ser útiles para las futuras investigaciones. La geometría de adquisición, el número de sensores, el tiempo de adquisición son algunos de los parámetros que pueden ser mejorados con un impacto notable en la calidad de los resultados.

Definitivamente no es conveniente que el diseño en la adquisición sea solo lineal, una buena cobertura azimutal con una buena cantidad de sensores que permita realizar la interferometría en todas las direcciones, y si es posible apoyado con algún o algunos sensores en profundidad si se encuentra en zonas con pozos aledaños, será clave si se quiere analizar información proveniente del momento exacto en que se realiza algún tipo de operación de fracturamiento hidráulico.

Otro importante beneficio de contar con una buena cobertura azimutal seria al momento de realizar cálculos de la función temporal de la fuente ya que se podrían obtener resultados de directividad de las fallas, mostrando no solo la dirección de las fracturas sino también sus dimensiones.

En cuanto al tiempo de registros necesarios para realizar la interferometría es importante saber que será mucho mejor entre más tiempo se registre, pero en casos de zonas como un campo productor, el cual se encuentra constantemente estimulado por la extracción de crudo, con 24 horas podría obtenerse buenos resultados, e inclusive se podría intentar obtener resultados en tiempo real y casi inmediato si previamente se conocen muchas propiedades del medio.

A. Anexo: Descripción de códigos en Matlab para correlaciones cruzadas y apilado de la información.

Se crean 12 superceldas con 60 celdas de 16x17 cada una. A su vez cada celda posee las correlaciones de cada intervalo trabajado (5s, 2500 muestras). La primera supercelda entonces, se refiere a la muestra 1 a 150000, la segunda entre la muestra 150001 a 300000 y así sucesivamente (figura A1). Estas superceldas quedan guardadas con la misma notación, frente de cada celda, dentro de la supercelda aparece el intervalo de muestras temporal para el cual fue ejecutada la correlación. Cada celda, dentro de cada supercelda se debe leer así:

El elemento 1,2 es el vector correlación entre la señal 1 y 2, el elemento 1,17 corresponde a la correlación entre la señal 1 y la 17. El elemento 5,1 no existe, ya que corresponde a la correlación entre la señal 1 y 5 que ya está en la fila 1. De esta manera, la última correlación es la de la señal 16 y 17, que se encuentra en (16,17).

rtir con 🔻 Imprimir Correo electrónico Grabar Nueva carpeta			
Biblioteca Documentos correlaciones omar			
Nombre	Fecha de modifica	Тіро	Tamaño
sismog_aleatori.asv	23/02/2014 08:52 a	Archivo ASV	1 KB
🖭 info omar - 2	23/02/2014 10:42 a	Documento de Mi	154 KB
🖳 info omar	23/02/2014 10:42 a	Documento de Mi	154 KB
📄 sismogrms	23/02/2014 08:52 a	Documento de tex	358 KB
🖺 borrar	03/03/2014 06:41	MATLAB M-file	1 KB
🖺 correlac	03/03/2014 08:38	MATLAB M-file	3 KB
🖺 graficas	02/03/2014 08:52	MATLAB M-file	1 KB
🖺 lee_celdas	02/03/2014 08:52	MATLAB M-file	1 KB
🖺 sismog_aleatori	23/02/2014 08:52 a	MATLAB M-file	1 KB
🖺 unifica_data	02/03/2014 08:21	MATLAB M-file	1 KB
ata data	02/03/2014 08:03	Microsoft Access	62.015 KB
Sup_Celd_corr_1_150000	03/03/2014 08:39	Microsoft Access	249.754 KB
E Sup_Celd_corr_150001_300000	03/03/2014 08:39	Microsoft Access	250.152 KB
E Sup_Celd_corr_300001_450000	03/03/2014 08:40	Microsoft Access	250.117 KB
E Sup_Celd_corr_450001_600000	03/03/2014 08:40	Microsoft Access	250.023 KB
E Sup_Celd_corr_600001_750000	03/03/2014 08:41	Microsoft Access	249.861 KB
E Sup_Celd_corr_750001_900000	03/03/2014 08:41	Microsoft Access	249.810 KB
E Sup_Celd_corr_900001_1050000	03/03/2014 08:42	Microsoft Access	249.632 KB
E Sup_Celd_corr_1050001_1200000	03/03/2014 08:42	Microsoft Access	249.443 KB
Bup_Celd_corr_1200001_1350000	03/03/2014 08:43	Microsoft Access	249.216 KB
Bup_Celd_corr_1350001_1500000	03/03/2014 08:43	Microsoft Access	248.799 KB
Bup_Celd_corr_1500001_1650000	03/03/2014 08:44	Microsoft Access	247.932 KB
E Sup_Celd_corr_1650001_1800000	03/03/2014 08:44	Microsoft Access	247.026 KB

Figura A1. Ventana donde se observa como se construyen las superceldas de correlaciones.

Supercelda: en la columna 1 se encuentra la celda con las correlaciones de cierto intervalo, en la columna 2, el intervalo de muestras trabajado, y en la columna 3 el intervalo de tiempo trabajado (en segundos).

Figura A2. Ventana donde se observan las celdas de correlación creadas después del apilado.

File	e Edit Vie	ew Graphics	Debug	Parallel	Deskt
ť	3 😂 🔏 🕻	ちゅうで	3. 20		Cun
s	hortcuts 🖪 H	How to Add	What's N	ew	
Cor	mmand Wind	ow C Variable	Editor - s	uper celd	COTT
-	V DA HO		0) » r	
-14	00 ME 10	1 (29 1000 - 1	8		
\mathbf{O}	super_celd_c	orr <60x3 cell>			
	1	2	1.1	3	
22	<16x17 cella	1730001 173250	0 346	0 3465'	
24	clox17 cells	1722501 17250	0 346	5 3470'	
35	<16x17 cell>	1735001 173750	0 340	0 3475	
36	<16x17 cell>	1737501 174000	0' 347	5 3480'	-
37	<16x17 cell>	1740001 174250	0' '348	0 3485'	
38	<16x17 cell>	1742501 174500	0' '348	5 3490'	
30	<16x17 cell>	1745001 174750	0' '349	0 3495	
40	<16x17 cell>	1747501 175000	0' '349	\$ 3500'	
41	<16x17 cell>	1750001 175250	0' '350	0 3505'	
42	<16x17 cell>	1752501 175500	0' '350	5 3510'	-
43	<16x17 cell>	1755001 175750	0' '351	0 3515	
44	<16x17 cell>	1757501 176000	0' '351	5 3520'	
45	<16x17 cell>	1760001 176250	0' '352	0 3525'	
46	<16x17 cell>	1762501 176500	0' '352	5 3530'	
47	<16x17 cell>	1765001 176750	0' '353	0 3535	
48	<16x17 cell>	1767501 177000	0' '353	5_3540'	
49	<16x17 cell>	1770001 177250	0' '354	0 3545	
50	<16x17 cell>	1772501_177500	0' '354	5_3550'	
51	<16x17 cell>	1775001_177750	0' '355	0_3555'	
52	<16×17 cell>	1777501_178000	0' '355	5_3560'	
53	<16x17 cell>	1780001_178250	0' '356	0_3565'	
54	<16x17 cell>	1782501_178500	0' '356	5_3570"	
55	<16x17 cell>	1785001_178750	0' '357	0_3575'	
56	<16x17 cell>	1787501_179000	0' '357	5_3580'	
57	<16x17 cell>	1790001_179250	0' '358	0_3585"	
5.0	<16x17 calls	1702501 170500	10" "758	5 2590	
59	c16v17 calls	1705001 170750	10. 1320	3595	
60	<16x17 cell>	1797501_180000	0' '359	5_3600"	
61	/	Contraction of the Contraction of the	· · · · · · · · · · · · · · · · · · ·		

Shortcub 2	How to Add	Z Whit's Ne	. /													
Command We	dow.		/			The View	ible Editor - ce	ld_com				0 * X	Bea	× ×	Workspace	
0 4 6	0 0 0	·K	1 Reck	Base -		6				E	8088			* x	80999	- Sac
celd_corr <	1617 <u>cel</u> > 4	/											18	30	Name +	Value
6	7	1	9	10	11	12	13	14	15	16	17	11	74		H 2	1797501
1 4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do.	<4999x1 do		13	100	Ba min	1650001
2 4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	c4999x1 do	<4999x1 do.	<4999x1 do		19		archivo	'/Sup_Ce
3 4999x1 do	<4999x1.do.	<4999x1.do	<4999x1.60	<4999x1.do.	<4999x1.do	<4999x1.60	<4999x1.do	<4999x1.do	<4999x1.60	<4999x1 do.	<4999x1do		75		H b	1800000
4 4999x1 do	<4999x1 do	<4999x1 do.	<4999x1 do_	<4999x1 do	<499x1 do	<4999x1 do_	<約9x1.do	<4999x1 do	<4999x1 do	<4999x1.do.	<4999x1 do		76 -	1	ama di	1800000
5 4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do.	<4999x1 do		77		celd_corr	did7 o
6	<4999x1.do	<4999x1.do.	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1.do	<4999x1 do	<4999x1 do	<4999x1 da.	<4999x1 do		78		teorr .	<4999x1
1	0	<4999x1 do	<4999x1 do	<49991.do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1.do	<4999x1 do.	<4999x1.do		79		H +	17
8	U.	0	<4999x1.60_	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do_	<4999x1 do	<4999x1 do.	<4999x2 do	1.1	60		intervalo_cel	1797501
9	0	0	0	<4999x1 do	<4999x1 do	<4999x1.do	<4999x1.do	<4999x1 do_	<4999x1.do	<4999x1.do.	<4999x1 do	E	81		intervalo_super_cel	1650001
Ð	0	0	0	0	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do	<4999x1 do.	<4999x1 do		82		⊞j	16
11	11	0	0	U	11	<4999x1 do	<4999x1.do.	<4999x1 do	<49991.1 do	<4999x1 do.	<4999x1 do		83		H nm	2500
12	0	0	Ð	0	0	Ð	<转输1do	c4999x1 do	<49991.40-	<4999x1 do.	<899x1.60		84		an rutaCarpet	(C/)Useri
13	0	0	0	U.	0	0	0	<4999x1 do	<4999x1.do	<4999x1 do	<4999x1 do		85		14	12
14	0	0	1	0	0	0	11	0	<4999x1 do	c4999x1 do.	<4999x1 do		66		tis 🔛	<180000
15	0	0	0	0	0	0	0	0	0	<4999x1 da.	<4999x1 do		87		H sis_interv	<2500-17
16	0	0	0	U	0	0	0	0	0	0	<4999x1 do		88		uper_celd_com	c60x3 cel
17	1	22		12	122		120	199	-	12		1	80		tempo	3600
18													90	E	⊞.	60

Códigos en Matlab

Correlación Cruzada

```
clc
clear all
data_org;
for no=1:1:17
 est_norm=data_org(:,no)/max(data_org(:,no));
 sis(:,no)=est norm;
end
rutaCarpet=pwd;
nm=5*(size(sis,1)/3600);
for sc=1:1:12
a=[];
b=[];
super_celd_corr={};
for u=1:1:60
a=1+(nm^{*}(u-1))+(60^{*}nm^{*}(sc-1));
b=nm*u+(60*nm*(sc-1));
  if u==1
  a_min=a;
  end
  if u==60
  b_max=b;
  end
sis_interv=sis(a:b,:);
celd_corr={};
for j=1:1:16
  for i=j+1:1:17
     corr=xcorr(sis_interv(:,j),sis_interv(:,i));
     celd_corr{j,i}=corr;
  end
end
super celd corr{u,1}=celd corr;
tiempo=5^{u}+(300^{s}(sc-1));
super celd corr{u,3}=strcat(int2str(tiempo-5),' ',int2str(tiempo));
end %end u celd
intervalo_super_cel=strcat(int2str(a_min),'_',int2str(b_max));
archivo=strcat('/Sup_Celd_corr_',intervalo_super_cel,'.mat');
```

end %end superceld

Código apilado:

```
clc
clear all
%elegir celda a tratar
rutaCarpet=pwd;
v=0:150000:1950000;
for cc=1:1:12 %
  inte=strcat(int2str(v(cc)+1),'_',int2str(v(cc+1)),'.mat');
  id_celda=strcat('Sup_Celd_corr_',inte);
Sup_celd_corr=importdata(id_celda);
l=length(Sup\_celd\_corr{1,1}{1,2});
for j=1:1:16
 for i=j+1:1:17
     apilado=zeros(I,1);
     for u=1:1:60
     apilado=apilado+Sup_celd_corr{u,1}{j,i};
     end
     sup_apilados{j,i}=apilado;
 end
end
     intervalo=id_celda(15:length(id_celda)-4);
     save([rutaCarpet archivo], 'sup_apilados');
end
clear all
clc
rutaCarpet=pwd;
v=0:150000:1950000;
Matriz apilado final={};
for i=1:1:12
  inte=strcat(int2str(v(i)+1),'_',int2str(v(i+1)),'.mat');
  Matriz apilado final{i,1}=importdata(id celda);
end
l=length(Matriz_apilado_final{1,1}{1,2});
for j=1:1:16
  for i=j+1:1:17
     apilado=zeros(l,1);
     for u=1:1:12
     apilado=apilado+Matriz_apilado_final{u,1}{j,i};
     end
     apilado_final{j,i}=apilado;
  end
end
archivo=strcat('/Apilado_final','.mat');
```

B.Anexo: Código Imagen sísmica migrada a partir del modelo de velocidad de un terreno

Partiendo del modelo de velocidad de un terreno y generando disparos sintéticos que simulan un levantamiento sísmico convencional se calcula el comportamiento de las ondas junto con sus tiempos de viajes para obtener imágenes apiladas y migradas preapiladas del terreno, que permiten reconstruir de una forma muy cercana el modelo inicial del que se partió. Este código fue modificado de los ejercicios propuestos por Schuster (2009).

El objetivo es realizar imágenes pre-apiladas migradas con un código en MATLAB.

Gráficos obtenidos:

Fig.a) modelo de velocidad.

- Fig.b) generación de disparos.
- Fig.c) grabación de los disparos
- Fig.d) propagación de ondas.
- Fig.e) tiempo de viaje para cada disparo.
- Fig.f) registros de disparos.
- Fig.g) imagen apilada.
- Fig.h) imagen pre-apilada migrada.

Modelo Propuesto: Capas Horizontales Paralelas

Este modelo representa un caso bastante sencillo para ser analizado, el modelo de velocidad es una matriz cuadrada de 1km x 1km. A partir del modelo de velocidad se genera un sintético simulando una sísmica convencional en un arreglo lineal con 100 disparo distanciados cada 10 metros para un longitud total de 1 km.

Debajo se describe el código en Matlab detalladamente y se muestra imágenes de los resultados obtenidos en cada parte del código.

```
%----modelo de velocidad
% ingrese aquí modelo de velocidad%
%-----
velocityModel=[];
for i=2:1:7
a=fix((h(i)-h(i-1))/15);
vel=ones(a,100)*vp(i-1);
velocityModel=[velocityModel;vel];
end
velocityModel=velocityModel(1:100,:);
%..-----
[nz,nx] = size(velocityModel);
dx = 10:
dz = 10:
x = (1:nx)^*dx;
z = (1:nz)^* dz;
subplot(3,3,1)
imagesc(x,z,velocityModel)
xlabel('Distancia (m)'); ylabel('Profundidad (m)');
title('Fig.a) Modelo de velocidad');
hold on
hshot = plot(x(1), z(1), w^{*});
hold off
colormap(seismic)
```


La figura a) muestra el modelo de velocidades propuesto es un modelo sencillo que cumple con el objetivo de mostrar que el código funciona.

Luego de tener el modelo de velocidad el paso que sigue en el código es crea los disparos a partir del modelo de velocidad para simular un levantamiento sísmico. La ecuación de onda se resuelve mediante diferencias finitas para un campo de ondas inicial definido, para esto se deben calcular ciertos parámetros.

Se calcula dt que es el criterio de estabilidad para diferencias finitas.

dt = 0.9*min(min(dz./velocityModel/sqrt(2)));

Se deben determinar muestras de tiempo nt para cada tiempo de viaje de la onda.

vmin = min(velocityModel(:));

nt = round(sqrt((dx^*nx)^2 + (dz^*nx)^2)*2/vmin/dt + 1); t = (0:nt-1).*dt;

Se añade una región alrededor del modelo para la aplicación de la absorción de las condiciones de contorno (20 Nodos).

V = [repmat(velocityModel(:,1),1,20) velocityModel repmat(velocityModel(:,end),1,20)]; V(end+1:end+20,:) = repmat(V(end,:),20,1);

Y se define la frecuencia "f" de la ondicula de Ricker. f = 20; Se generan los disparos y se guardan en archivo y video:

```
%vidObj = VideoWriter('ModelShots.avi');
%open(vidObj);
rutaCarpet=pwd; %
data = zeros(size(nt,nx));
figure(gcf)
%ciclo de disparo.
for ixs = 21:nx+20
  % campo de onda inicial.
rw = ricker(f,nz+40,dt,dt*ixs,0);
rw = rw(1:nz+20,:);
```

```
% Grafica campo de onda inicial.
%set(hshot,'XData',x(ixs-20),'YData',z(1));
subplot(3,3,2)
imagesc(x,z,rw(1:end-20,21:end-20))
xlabel('Distancia (m)'); ylabel('Profundidad (m)');
title(['Fig.b) Disparo ',num2str(ixs-20),' a ',num2str(x(ixs-20)),' m']);
colormap(seismic)
```

Se genera la grabación de los disparos:

```
tic
[data snapshot] = fm2d(V,rw,nz,dz,nx,dx,nt,dt);
toc
%Guarda los disparos generados para el modelo.
archivo=strcat('/shotfdm',num2str(ixs-20),'.mat'); %
save([rutaCarpet archivo], 'data'); %
data = data(21:end-20,:)';
if ismember(ixs-20,[1 nx/2 nx])
start = 1;
else
start = nt;
end
```

Se muestra la continuidad de los disparos:

```
for i = start:nt

ds = zeros(nt,nx);

ds(1:i,:) = data(1:i,:);

subplot(3,3,3)

imagesc(x,t,ds)

xlabel('Distancia (m)'), ylabel('Tiempo (s)')

title('Fig.c) Grabación de Disparos')

caxis([-0.1 0.1])
```


Las figuras b) y c) muestran los disparos generados sintéticamente y la forma como se van grabando cada uno de ellos.

Se Muestra la Propagación de Onda.

```
subplot(3,3,4)
imagesc(x,z,snapshot(1:end-20,21:end-20,i))
xlabel('Distancia (m)'), ylabel('Profundidad (m)')
title(['Fig.d) Propagación de Onda t = ',num2str(t(i),'%10.3f')])
caxis([-0.14 1])
%writeVideo(vidObj,getframe(gcf));
drawnow;
end %shot loop
end
%close(vidObj);
```


Las figuras d) muestran la forma y el tiempo de propagación de las ondas, para ciertos disparos.

Se genera el trazado de rayo 2D, con su respectivo tiempo de viaje:

```
%vidObj = VideoWriter('ModelTravelTime.avi');
%open(vidObj);
travelTime = zeros(nz,nx,nx);
subplot(3,3,5)
for ixs = 1:nx
    travelTime(:,:,ixs) = ray2d(velocityModel,[1 ixs],dx);
    imagesc(x,z,travelTime(:,:,ixs))
    xlabel('Distancia (m)'), ylabel('Profundidad (m)')
    title(['Fig.e) Tiempo de Viaje Para Disparo ',num2str(ixs)])
    %set(hshot,'XData',x(ixs));
    drawnow
    %writeVideo(vidObj,getframe(gcf));
end
%close(vidObj)
```

Se guardan los resultados del tiempo de viaje para cada uno de los disparos:

archivo=strcat('/travelTime','.mat'); % save([rutaCarpet archivo], 'travelTime'); %

Las figuras e) muestra la forma como se calculan los tiempos de viaje para cada uno de los disparos.

Se realiza la Migración por Kirchhoff:

```
%vidObj = VideoWriter('ModelKirchhoff.avi');
%open(vidObj);
```

```
rutaCarpet=pwd;
load('travelTime.mat');
Stacked = zeros(nz,nx);
figure(gcf)
colormap seismic
for ixs = 1:nx
    load(['shotfdm',num2str(ixs),'.mat'])
    shot = data(21:end-20,:)';
    M = migrate(travelTime,shot,dt,nz,ixs,nx);
    Stacked = Stacked + M;
```

subplot(3,3,6)
imagesc(x,t,shot)
xlabel('Distancia (m)'); ylabel('Tiempo (s)');
title(['Fig.f) Disparo Actual ',num2str(ixs)]);
caxis([-0.1 0.1])

```
subplot(3,3,7)
imagesc(x,z,Stacked)
xlabel('Distancia (m)'); ylabel('Profundidad (m)');
title('Fig.g) Imagen Apilada');
caxis([-135 135])
```

```
subplot(3,3,8)
imagesc(x,t,M)
xlabel('Distancia (m)'); ylabel('Tiempo (s)');
title(['Fig.h) Imagen Migrada ',num2str(ixs)]);
caxis([-5 5])
```

```
%set(hshot,'XData',x(ixs));
drawnow
%writeVideo(vidObj,getframe(gcf));
end
%close(vidObj);
```


Las figuras f), g) y h) muestran como se va formando la imagen apilada y la imagen preapilada migrada a medida que se desplazan por cada uno de los disparos.

Las figuras finales g) y h) pueden compararse con el modelo inicial de velocidad. La imagen apilada parece mostrar más claramente los reflectores, mientras que la migrada parece mostrar ciertas geometrías que el modelo inicial no tiene.

C. Anexo: Código elipsoides de régimen de esfuerzos

Se crea un archivo txt con los datos de las tres componentes de los elipsoides que se desean generar. La primera columna representa la componente "x", la segunda columna representa la componente "y", y la tercera columna la componente "z".

tensor_esf: Bloc	tensor_esf: Bloc de notas									
Archivo Edición	Formato Ver Ayuda									
0.494648	0.023467	0.051149								
-0.079589	0.009881	0.0097407								
-0.09644	-0.026291	0.016055								
-0.653841	-0.0192347	-0.009613								
0.334146	0.021435	-0.0098761								
0.057142	0.0360434	-0.0093247								
-0.269517	0.0113412	0.0098413								
0.744719	0.0184974	-0.0097392								
0.0511908	-0.07459104	0.0097293								

Los signos en las componentes representan la dirección del desplazamiento, y a su vez representa el tipo de esfuerzo. En el ejemplo que se muestra a continuación representa un régimen de Desgarre Acercándose A Inverso, con σ 1> σ 2> σ 3, y donde R= (σ ₂- σ ₃)/(σ ₁- σ ₃), R es el factor de forma.

Código elipsoides:

```
clc
clear all
% elipsoide(xc,yc,zc,xr,yr,zr,n)
%con centro en (xc,yc,zc) y longitud de semi-ejes(xr,yr,zr).
tensor=importdata('tensor_esf.txt');%el tensor esta compuesto por tres componentes%
cual tensor=1;
xr=abs(tensor(cual_tensor,1));
yr=abs(tensor(cual_tensor,2));
zr=abs(tensor(cual tensor,3));
[x, y, z] = ellipsoid(0,0,0,xr,yr,zr,40);
h=surfl(x, y, z);
shading interp
colormap(bone);
set(h,'FaceAlpha',0.5,'EdgeAlpha',0.8)
hold on
line([-(xr+(xr/4)) (xr+(xr/4))],[0 0],[0 0])
line([0 0], [-(yr+(yr/4)) (yr+(yr/4))], [0 0])
line([0 0], [0 0], [-(zr+(zr/4)) (zr+(zr/4))])
[a,b]=sort([xr yr zr]);
     for i=1:1:3
             %i=1 representa la mayor deform
        %i=2 representa media
        %i=3 representa la menor deform
        if i = 1
        eje=['\sigma_','3'];
        end
             if i==2
        eje=['\sigma_','2'];
        end
        if i = 3
        eje=['\sigma_','1'];
        end
     if b(i) == 1
     text(-(xr+(xr/4)),0,0,eje)
     end
     if b(i) = 2
     text(0,-(yr+(yr/4)),0,eje)
     end
     if b(i) = 3
     text(0,0,(zr+(zr/4)),eje)
     end
     end
```

xlabel('x') xlim([-0.8 0.8]); ylabel('y') ylim([-0.8 0.8]); zlabel('z') zlim([-0.8 0.8]); axis of grid off

D.Anexo: Cálculo de las funciones temporales de la fuente.

Tabla D.1: Régimen de esfuerzos para el día 12/11/12 del área de estudio según su forma R.

dia 12	x (Componente N)	y (Componente E)	z (Componente Z)	REGIMEN DOMINANTE PROMEDIO	R
	0,5446	0,0462	0,0871	DESGARRE ACERCANDOSE A INVERSO	0,081
	0,4618	0,0315	0,0642	DESGARRE ACERCANDOSE A INVERSO	0,073
03:00 a.m.	-0,1365	-0,0495	0,0207	COMPRESIONAL	0,331
	0,4946	0,0235	0,0511	DESGARRE ACERCANDOSE A INVERSO	0,059
	-0,1226	-0,0609	0,0339	COMPRESIONAL	0,430
	0,4145	0,0372	0,0639	DESGARRE ACERCANDOSE A INVERSO	0,071
06:00 a m	0,3742	0,2250	0,2194	DESGARRE ACERCANDOSE A INVERSO	0,037
06:00 a.m.	-0,1039	-0,0705	0,0530	COMPRESIONAL	0,523
	-0,2286	0,0875	0,1832	DESGARRE	0,312
	0,3342	0,0168	0,0325	DESGARRE ACERCANDOSE A INVERSO	0,049
11:00 a.m.	0,6171	0,0464	0,0930	DESGARRE ACERCANDOSE A INVERSO	0,081
	0,6604	0,0393	0,0850	DESGARRE ACERCANDOSE A INVERSO	0,073
	0,3864	0,0724	0,0996	DESGARRE ACERCANDOSE A INVERSO	0,086
	0,7132	0,1165	-0,0976	EXTENSIONAL	0,031
03:00 p.m	0,3782	0,0412	0,0658	DESGARRE ACERCANDOSE A INVERSO	0,073
	0,6463	0,1414	-0,1092	EXTENSIONAL	0,063
	0,5439	0,1075	-0,1224	EXTENSIONAL	0,034
	0,3674	0,0313	0,0485	DESGARRE ACERCANDOSE A INVERSO	0,051
	0,3837	0,0405	0,0619	DESGARRE ACERCANDOSE A INVERSO	0,062
	0,4259	0,0386	0,0649	DESGARRE ACERCANDOSE A INVERSO	0,067
06:00 p m	0,4576	0,0277	0,0545	DESGARRE ACERCANDOSE A INVERSO	0,062
00.00 p.m.	-0,1928	-0,0522	0,0276	COMPRESIONAL	0,174
	0,3748	0,0433	0,0612	DESGARRE ACERCANDOSE A INVERSO	0,054
	0,6155	0,1259	-0,1108	EXTENSIONAL	0,031
	-0,2155	-0,0677	0,0305	COMPRESIONAL	0,251
	0,3587	0,0375	0,0599	DESGARRE ACERCANDOSE A INVERSO	0,069
11:00 p m	0,5358	0,1153	-0,0964	EXTENSIONAL	0,044
11.00 p.m.	0,4475	0,0862	0,1049	DESGARRE ACERCANDOSE A INVERSO	0,051
	0,3883	0,0673	0,0812	DESGARRE ACERCANDOSE A INVERSO	0,043
	0,5567	0,0243	0,0428	DESGARRE ACERCANDOSE A INVERSO	0,034

Como se observa en cada una de las tablas de este anexo se resaltan un serie de celdas en color amarillo, estas celdas resaltadas corresponden a los ejemplos utilizados en la construcción de la tabla 4.1 y la figura 4.4.

Tabla	D.2:	Régimen	de	esfuerzos	para	el	día	13/11/12	del	área	de	estudio	según	su
forma	R.													

Dia 13	x (Componete N)	y (Componente E)	z (Componente Z)	REGIMEN DOMINANTE PROMEDIO	R
	-0,0820	0,0095	0,0093	COMPRESIONAL	0,003
	-0,0892	0,0084	0,0082	COMPRESIONAL	0,002
	-0,0796	0,0099	0,0097	COMPRESIONAL	0,002
03:00 a.m.	0,2446	0,0184	0,0234	DESGARRE ACERCANDOSE A INVERSO	0,022
	-0,1371	0,0119	0,0110	COMPRESIONAL	0,006
	-0,0923	0,0066	0,0063	COMPRESIONAL	0,003
06:00 a.m. 11:00 a.m.	-0,0350	0,0250	0,0222	DESGARRE ACERCANDOSE A INVERSO	0,047
06·00 a m	-0,1997	-0,0442	0,0092	COMPRESIONAL	0,023
00.00 a.m.	0,3163	0,0885	0,1032	DESGARRE ACERCANDOSE A INVERSO	0,064
	-0,1995	-0,0117	-0,0098	COMPRESIONAL	0,087
11:00 a.m	0,3675	0,0834	0,0702	EXTENSIONAL	0,046
	-0,0972	0,0075	0,0068	COMPRESIONAL	0,006
	-0,1838	0,0126	0,0107	COMPRESIONAL	0,009
	0,1935	-0,0154	0,0130	COMPRESIONAL	0,011
	-0,0993	0,0075	0,0069	COMPRESIONAL	0,006
11:00 a.m	0,3257	0,0874	0,0948	DESGARRE ACERCANDOSE A INVERSO	0,031
02.00 = ==	0,2375	-0,0495	0,0389	COMPRESIONAL	0,056
03:00 p.m.	0,6339	0,0350	-0,0116	EXTENSIONAL	0,039
	0,5416	0,0437	0,0716	DESGARRE ACERCANDOSE A INVERSO	0,057
	0,1566	0,0148	0,0254	DESGARRE ACERCANDOSE A INVERSO	0,074
	0,5941	0,0218	-0,0136	EXTENSIONAL	0,014
00.00 = =	0,1038	-0,0195	0,0123	COMPRESIONAL	0,085
06.00 p.m.	0,1894	-0,0131	0,0119	COMPRESIONAL	0,007
	0,3376	0,0775	0,1097	DESGARRE ACERCANDOSE A INVERSO	0,124
	-0,3474	0,0158	0,0135	COMPRESIONAL	0,007
11:00 p.m.	-0,2037	0,0141	0,0132	COMPRESIONAL	0,005
	-0,4109	0,0241	0,0209	COMPRESIONAL	0,008

dia 14	x (Componete N)	y (Componente E)	z (Componente Z)	REGIMEN DOMINANTE PROMEDIO	R
	-0,0964	-0,0263	0,0161	COMPRESIONAL	0,185
02:00 c m	-0,0795	-0,0443	0,0385	COMPRESIONAL	0,166
03.00 a.m.	-0,1676	-0,0832	0,0648	COMPRESIONAL	0,217
	-0,1369	-0,0576	0,0446	COMPRESIONAL	0,162
	-0,1811	-0,0279	-0,0210	COMPRESIONAL	0,044
	-0,0931	-0,0363	0,0265	COMPRESIONAL	0,172
06:00 a m	0,0688	0,0349	0,0307	COMPRESIONAL	0,122
06.00 a.m.	0,6974	0,0442	-0,0131	EXTENSIONAL	0,048
	-0,1537	-0,0486	-0,0410	COMPRESIONAL	0,073
	0,3958	0,0166	0,0483	DESGARRE ACERCANDOSE A INVERSO	0,084
	-0,0734	-0,0541	0,0491	COMPRESIONAL	0,264
	0,2748	0,0637	-0,0582	EXTENSIONAL	0,026
11:00 a.m.	-0,1073	-0,0827	0,0772	COMPRESIONAL	0,224
	0,5697	0,0814	-0,0497	EXTENSIONAL	0,064
	-0,0813	-0,0351	0,0297	COMPRESIONAL	0,118
	0,1389	0,0611	0,0430	COMPRESIONAL	0,233
	0,6276	0,0145	0,0586	DESGARRE ACERCANDOSE A INVERSO	0,072
	-0,0864	-0,0407	0,0316	COMPRESIONAL	0,198
	0,5915	0,0336	-0,0113	EXTENSIONAL	0,040
03:00 p.m.	-0,4358	-0,0473	-0,0154	COMPRESIONAL	0,082
	-0,2449	-0,0312	-0,0213	COMPRESIONAL	0,046
	-0,1233	-0,0449	-0,0382	COMPRESIONAL	0,085
	0,3193	0,0813	0,0619	COMPRESIONAL	0,081
06:00 p m	0,1683	0,0123	-0,0097	EXTENSIONAL	0,016
00.00 p.m.	0,2435	0,0763	0,0857	DESGARRE ACERCANDOSE A INVERSO	0,056
	0,2037	0,0141	0,0132	COMPRESIONAL	0,067
	0,4109	0,0241	0,0209	EXTENSIONAL	0,082
	0,2501	0,0599	0,0429	COMPRESIONAL	0,089
44.00	0,2998	0,0185	-0,0114	EXTENSIONAL	0,025
11:00 p.m.	-0,3796	-0,0387	-0,0295	COMPRESIONAL	0,027
	-0,2981	-0,0893	0,0479	COMPRESIONAL	0,198
	-0,1680	-0,0819	0,0549	COMPRESIONAL	0,313

Tabla D.3: Régimen de esfuerzos para el día 14 del área de estudio según su forma R.

dia 15- prefracturamiento	x (Componete N)	y (Componente E)	z (Componente Z)	REGIMEN DOMINANTE PROMEDIO	R
	-0,4611	-0,0195	-0,0102	COMPRESIONAL	0,021
	-0,5897	0,0140	0,0091	DESGARRE ACERCANDOSE A INVERSO	0,008
	-0,6395	-0,0211	-0,0108	COMPRESIONAL	0,017
	-0,6538	-0,0192	-0,0096	COMPRESIONAL	0,015
03:00 a.m.	-0,7358	-0,0242	-0,0165	COMPRESIONAL	0,011
	-0,4974	-0,0449	-0,0362	COMPRESIONAL	0,019
	-0,2672	-0,0194	-0,0128	COMPRESIONAL	0,027
	0,0912	-0,1084	0,0082	COMPRESIONAL	0,581
	0,4570	0,0385	0,0707	DESGARRE ACERCANDOSE A INVERSO	0,077
	-0,0736	0,0097	0,0081	COMPRESIONAL	0,024
	0,0968	0,0142	-0,0099	EXTENSIONAL	0,052
	0,0873	0,0169	-0,0102	COMPRESIONAL	0,096
06:00 a m	0,5173	0,0239	0,0426	DESGARRE ACERCANDOSE A INVERSO	0,038
00.00 a.m.	0,0926	0,0262	-0,0218	COMPRESIONAL	0,067
	-0,3793	0,0198	0,0139	DESGARRE ACERCANDOSE A INVERSO	0,016
	-0,1439	0,0270	0,0184	COMPRESIONAL	0,074
	0,1118	0,0242	-0,0206	EXTENSIONAL	0,041
	-0,1348	-0,0185	-0,0108	COMPRESIONAL	0,066
	0,3184	0,0782	-0,0669	EXTENSIONAL	0,047
11:00 a.m.	0,2027	0,0661	-0,0619	COMPRESIONAL	0,030
	0,1079	0,0527	-0,0480	COMPRESIONAL	0,086
	0,0870	0,0328	-0,0290	COMPRESIONAL	0,069

Tabla D.4: Régimen de esfuerzos para el día 15/11/12 previo al fracturamiento del áreade estudio según su forma R.

Tabla D.5: Régimen de esfuerzos para el día 15/11/12 después del fracturamiento del área de estudio según su forma R.

dia 15- posfracturamiento	x (Componete N)	y (Componente E)	z (Componente Z)	REGIMEN DOMINANTE PROMEDIO	R
	0,2663	0,1390	0,1944	DESGARRE	0,430
	0,1738	0,0948	-0,0698	EXTENSIONAL	0,317
	0,1535	0,1035	0,1124	DESGARRE ACERCANDOSE A INVERSO	0,179
03:00 p.m.	-0,0936	-0,0473	0,0222	COMPRESIONAL	0,544
	0,3537	0,0328	-0,0102	EXTENSIONAL	0,070
	0,4689	0,0427	-0,0094	EXTENSIONAL	0,078
	0,3341	0,0214	-0,0099	EXTENSIONAL	0,036
06:00 p.m.	0,0966	0,0413	-0,0255	EXTENSIONAL	0,029
	0,2199	0,0592	-0,0485	EXTENSIONAL	0,066
	0,3073	0,0516	0,0698	DESGARRE ACERCANDOSE A INVERSO	0,071
	0,4968	0,0844	0,0968	DESGARRE ACERCANDOSE A INVERSO	0,030
	0,2795	0,0317	-0,0219	EXTENSIONAL	0,039
	0,1779	0,0283	-0,0184	EXTENSIONAL	0,066
	-0,1264	-0,0247	-0,0148	COMPRESIONAL	0,097
	0,2759	0,0659	0,0779	DESGARRE ACERCANDOSE A INVERSO	0,057
11:00 p m	0,3975	0,0779	-0,0698	EXTENSIONAL	0,026
06:00 p.m. 11:00 p.m.	0,4379	0,0684	-0,0608	EXTENSIONAL	0,021
	0,1785	0,0468	-0,0396	EXTENSIONAL	0,055

dia 16-am	x (Componente N)	y (Componente E)	z (Componente Z)	REGIMEN DOMINANTE PROMEDIO	R
	0,0777	0,0384	-0,0287	EXTENSIONAL	0,383
	0,1979	0,0938	-0,0779	EXTENSIONAL	0,288
	0,0571	0,0360	-0,0093	EXTENSIONAL	0,560
03:00 a.m.	0,0975	0,0475	-0,0340	EXTENSIONAL	0,221
	0,1879	0,0177	0,0310	DESGARRE ACERCANDOSE A INVERSO	0,078
	0,0947	0,0426	-0,0219	EXTENSIONAL	0,129
	-0,3788	-0,0297	-0,0103	COMPRESIONAL	0,055
dia 16-am 03:00 a.m. 06:00 a.m. 11:00 a.m.	0,0897	0,0687	-0,0098	EXTENSIONAL	0,644
	0,2015	0,0915	-0,0886 EXTENSIONAL		0,271
	-0,1174	-0,0469	-0,0219	COMPRESIONAL	0,355
	0,1568	0,0738	-0,1019	EXTENSIONAL	0,468
	0,3238	0,0377	-0,0182	EXTENSIONAL	0,068
	0,4719	0,0947	0,1276	DESGARRE ACERCANDOSE A INVERSO	0,087
	0,5697	0,0814	-0,0497	EXTENSIONAL	0,037
	-0,0813	-0,0351	0,0297	DESGARRE ACERCANDOSE A INVERSO	0,085
11:00	0,0926	0,0638	-0,0513	EXTENSIONAL	0,668
11:00 a.m.	-0,2468	-0,0647	-0,0507	COMPRESIONA	0,077
	-0,1748	-0,0558	-0,0484	COMPRESIONAL	0,062
	0,0891	0,0416	-0,0376	EXTENSIONAL	0,331
	0,1565	0,0538	-0,0299	EXTENSIONAL	0,092

Tabla D.6: Régimen de esfuerzos para la horas de la mañana del día 16/11/12 del área de estudio según su forma R.

Tabla D.7: Régimen de esfuerzos para las horas de la tarde y noche del día 16/11/12 del área de estudio según su forma R.

dia 16- pm	x (Componete N)	y (Componente E)	z (Componente Z)	REGIMEN DOMINANTE PROMEDIO	R
03:00 p.m.	-0,2285	-0,0273	-0,0165	COMPRESIONAL	0,053
	-0,2893	0,0134	0,0113	DESGARRE ACERCANDOSE A INVERSO	0,007
	-0,3915	0,0455	0,0395	DESGARRE ACERCANDOSE A INVERSO	0,017
06:00 p.m.	-0,1249	-0,0375	-0,0320	COMPRESIONAL	0,063
	-0,1973	0,0257	0,0204	DESGARRE ACERCANDOSE A INVERSO	0,030
	0,1347	0,0157	-0,0095	EXTENSIONAL	0,052
	-0,4173	0,0357	0,0325	DESGARRE ACERCANDOSE A INVERSO	0,009
	-0,2695	0,0113	0,0098	DESGARRE ACERCANDOSE A INVERSO	0,006
	-0,3284	0,0107	0,0093	DESGARRE ACERCANDOSE A INVERSO	0,005
	-0,2507	0,0258	0,0108	DESGARRE ACERCANDOSE A INVERSO	0,066
	0,3557	0,0343	-0,0185	EXTENSIONAL	0,049
11:00 p.m.	-0,4926	-0,0747	-0,0680	COMPRESIONAL	0,016
	-0,0864	0,0245	0,0195	DESGARRE ACERCANDOSE A INVERSO	0,081
	-0,0940	0,0416	0,0390	DESGARRE ACERCANDOSE A INVERSO	0,050
	0,2849	0,0493	-0,0316	EXTENSIONAL	0,074
	-0,1839	0,0098	0,0086	DESGARRE ACERCANDOSE A INVERSO	0,007
	0,1564	0,0177	-0,0117	EXTENSIONAL	0,040

dia 17	x (Componete N)	y (Componente E)	z (Componente Z)	REGIMEN DOMINANTE PROMEDIO	R
03:00 a.m.	-0,4640	0,0285	0,0158	DESGARRE ACERCANDOSE A INVERSO	0,029
	0,3586	0,0249	-0,0105	EXTENSIONAL	0,043
	-0,1988	0,0137	0,0092	DESGARRE ACERCANDOSE A INVERSO	0,025
	0,4947	0,0298	-0,0168	EXTENSIONAL	0,027
	0,6375	0,0376	-0,0176	EXTENSIONAL	0,033
	0,7447	0,0185	-0,0097	EXTENSIONAL	0,012
	0,4571	0,0227	-0,0095	EXTENSIONAL	0,030
	0,7148	0,0425	-0,0257	EXTENSIONAL	0,025
	-0,2749	-0,0242	-0,0112	COMPRESIONAL	0,051
06:00 a.m.	0,3628	0,0808	0,0948	DESGARRE ACERCANDOSE A INVERSO	0,050
	0,3473	0,0158	-0,0108	EXTENSIONAL	0,015
	0,2159	0,0258	-0,0137	EXTENSIONAL	0,063
11:00 a.m.	0,4079	0,0939	0,1184	DESGARRE ACERCANDOSE A INVERSO	0,078
	-0,1867	-0,0285	-0,0172	COMPRESIONAL	0,071
	0,5975	0,0295	-0,0094	EXTENSIONAL	0,035
	0,3557	0,0135	0,0102	DESGARRE ACERCANDOSE A INVERSO	0,009
	0,4158	0,0195	-0,0112	EXTENSIONAL	0,021
03:00 p.m.	0,0762	-0,0837	0,0114	COMPRESIONAL,	0,594
	0,5177	0,0206	-0,0128	EXTENSIONAL	0,016
	0,5158	0,0159	-0,0093	EXTENSIONAL	0,013
	0,6593	0,0197	-0,0120	EXTENSIONAL	0,012
06:00 p.m.	-0,2685	-0,0369	-0,0272	COMPRESIONAL	0,042
	0,3173	0,0196	-0,0098	EXTENSIONAL	0,032
	0,5579	0,0214	-0,0014	EXTENSIONAL	0,037
	-0,4668	-0,0287	-0,0185	COMPRESIONAL	0,023
11:00 p.m.	0,6179	0,0296	-0,0123	EXTENSIONAL	0,029
	0,0795	-0,0911	0,0094	COMPRESIONAL	0,589
	0,3498	0,0119	0,0099	EXTENSIONAL	0,057

Tabla D.8: Régimen de esfuerzos para el día 17/11/12 del área de estudio según su forma R.

Tabla D.9: Régimen de esfuerzos para el día 18/11/12 del área de estudio según su forma R.

dia 18	x (Componete N)	y (Componente E)	z (Componente Z)	REGIMEN DOMINANTE PROMEDIO	R
	0,0512	-0,0746	0,0097	COMPRESIONAL	0,622
02:00 o m	0,0594	-0,0815	0,0106	COMPRESIONAL	0,474
03:00 a.m.	0,0742	-0,1046	0,0116	COMPRESIONAL	0,392
	0,0798	-0,0997	0,0159	COMPRESIONAL	0,176
	0,5427	0,0374	-0,0094	EXTENSIONAL	0,092
	0,2991	0,0123	-0,0097	EXTENSIONAL	0,076
06:00 a.m.	0,0611	-0,0748	0,0114	COMPRESIONAL	0,128
	0,1748	0,0567	-0,0114	EXTENSIONAL	0,384
	0,0805	-0,0919	0,0438	COMPRESIONAL	0,695
	-0,4388	0,0911	0,1196	DESGARRE ACERCANDOSE A INVERSO	0,082
11:00 a.m.	0,0428	-0,0497	0,0092	COMPRESIONAL	0,098
	0,4584	0,0977	-0,0135	EXTENSIONAL	0,233
	0,0853	-0,0962	0,0099	COMPRESIONAL	0,085
03:00 p.m.	0,4218	0,0462	-0,0105	EXTENSIONAL	0,095
	-0,2948	0,0747	0,0951	DESGARRE ACERCANDOSE A INVERSO	0,093
06:00 p.m.	0,0776	-0,0875	0,0107	COMPRESIONAL	0,089
	0,2488	0,0574	-0,0129	EXTENSIONAL	0,232
	0,1197	-0,1933	0,0108	COMPRESIONAL	0,594
11:00 p.m.	-0,3410	-0,0215	-0,0108	COMPRESIONAL	0,033
	-0,0818	-0,0406	0,0335	COMPRESIONAL	0,172
	-0,0979	-0,0516	0,0396	COMPRESIONAL	0,258

Bibliografía

AKI. K., (1967): Scaling law of seismie spectrum. Ceophys. Res., 73, 5359-5376.

Aki, K. y Richards, P.G. (1980): Quantitative seismology. Freeman, San Francisco, Vol. I y II, 932 pp.

AKI, K.. (1987): Magnitude-frequency relation for small earthquakes: a clue to the origin of fmax of large eartliquakes. Geophys. Res., 92. 1349-1355.

Bouchon, M. (1981), A simple method to calculate Green's functions for elastic layered media, Bull. Seismol. Soc. Am., 71, 959–971.

Brune, J. (1970): Tectonie stress and the spectra of seismic shear waves from earthquakes. Geophys. Res., 75. 4997-5009.

Buforn (1994). Métodos para la determinación del mecanismo focal de los terremotos.

Bullen, K. E. y Bolt, B. A. (1985). An Introduction to the Theory of Seismology. Cambridge Univ. Press, New York.

Claerbout, Jon F. (1968). Synthesis of a layered medium from its acoustic transmission response.Geophysics, 264-269.

Courboulex, F., M. A. Santoyo, J. F. Pacheco, and S. K. Singh (1997). The 14 September 1995 (M = 7.3) Copala, Mexico, Earthquake: A Source Study Using Teleseismic, Regional, and Local Data, Bull. Seismol. Soc. Am. 87, 999-1010.

Courboulex, F., Singh, S.K., Pacheco, J.F. and Ammon, C.J. (1997). The 1995 Colima-Jalisco, Mexico, Earthquake (Mw 8): A study of the rupture process. Geophysical Research Letters 24: doi: 10.1029/97GL00945. issn: 0094-8276.

Deichmann, N. (1999). Empirical Green's Functions: A comparison between pulse with measurements and deconvolution by spectral division, Bull. Seimol. Soc. Am., 89, 178-186.

Draganov, Deyan, Kees Wapenaar, y Jan Thorbecke. (2004). Passive seismic imaging in the presence of white noise sources: numerical simulations. *The Leading Edge*, 889-892.

Draganov, Deyan, Xander Campman, Jan Thorbecke, Arie Verdel, y Kees Wapenaar. (2009). Reflection images from ambient seismic noise. Geophysics, 63-67.

Fischer, T. (2005). Modeling of multiple events using empirical Green's functions: method, application to swarm earthquakes and implications for their rupture propagation, Geophys. J. Int. 163, 991-1005.

Gilbert, F. (1973): Derivation of source parameters from low-frequency spectra. Philosophical Transactions of the Royal Society, 274: 369-371.

Hartzell, S.H. (1978). Earthquake aftershocks as Green's functions. Geophys. Res. Lett. 5, 1-4.

Julian, 6. R.; Miller A. D. and FoulgerG. R. (1998). Non-double-coupleearthquakes.1. Theory. Reviews of Geophysics, 36, 4, 525-549.

Keilis-Borok, V.L.,(1959): On the estimation of the displacement in an earthquake source and of source dimensions, Ann. Geophys., 12,205-214.

Madariaga, R., (1976): Dynamics of an expanding circular fault, Bull. Seism. Soc. Am., 66, 639-666.

Madariaga, R., (1994): Dinámica de la Fuente sísmica.

Maxwell, Shawn C., J. Rutledge, R. Jones, y M. Fehler. (2010). Petroleum reservoir characterization using downhole microseismic monitoring. Geophysics, 75A,129-137.

Maxwell, Shawn C.(2011). What does microseismic tell us about hydraulic fracture deformation. CSEG Recorder, 30-45.

Mori, J. y A. Frankel (1990). Source parameters for small events associated with the 1986 North Palm Springs, California, earthquake determined using empirical Green functions. Bull. seism. Soc. Am. 80, 278-295.

Murnaghan, F., (1937). Finite deformations of an elastic solid. Am. J. Math., 59. 235-260.

Li, Y., M.N. ToKoz y W. Rodi (1995). Source time functions of nuclear explosions and earthquakes in central Asia determined using empirical Greens functions. J. geophys. Res., 100 648-674.

Lizarazo, M. (2013). Relocalización de sismos volcano-tectónicos en el Volcán Galeras a partir de la correlación cruzada de formas de onda. Tesis de Maestría, UNAL.

Rickett, James , y Jon Claerbout. (1997). Passive Seismic Imaging Applied to Synthetic Data. Standford Exploration Project Report, Palo Alto: Standford University, 1997.

Roumelioti, Z., D. Dreger, A. Kiratzi y N. Theodoulidis (2003). Slip distribution of the 7 september 1999 Athens earthquake infered from an empirical Green's function study. Bull. seism. Soc. Am., 93, 775-782.

Scherbaum, F. (1987). Seismic imaging of the site response using microearthquake recordings, Part I: Method. Bull. Seismol. Soc. Am. 1905-1923.

Shomali, Z.H. (2001). Empirical Green's functions calculated from the inversion of earthquake radiation patterns, Geophys. J. Int. 144, 647-655.

Schuster, G. T. (2001). Seismic interferometric/daylight imaging: Tutorial. 63rd Annual Conference Extended Abstracts. Amsterdam: European Association of Geoscientists and Engineers.

Schuster, G. T., y M. Zhou. (2006). A theoretical overview of model based and correlation based redatuming methods. Geophysics, SI103-SI110.

Schuster, G. T. (2009). Seismic Interferometry. New York: Cambridge University Press.

Schwartz, D., y K. Coepersmith, (1984): Fault behavior and characteristic earthquakes: Examples from the Wasacht and San Andreas fault zones. Geophys. Res., 89.

Sokolnikoff, I, S. (1951). Tensor Analysis: Theory and Applications.

Wapenaar, K., D. Draganov, J. Thorbecke, y J. Fokkema. (2002). Theory of acoustic daylight imaging revisited.» 72nd Annual International Meeting Expanded Abstracts. Salt Lake City: Society of Exploration Geophysicists, 2269-2272.

Wapenaar, Kees, y Jacob Fokkema. (2003). Green's function representations for seismic interferometry. Geophysics, I33-I46.

Wapenaar, Kees. (2004). Retrieving the elastodynamic Green's function of an arbitrary inhomogeneous medium by cross correlation. Physical Review Letters, 254301 (1-4).

Wapenaar, Kees, Deyan Draganov, Roel Snieder, Xander Campman, y Arie Verdel. (2010). Tutorial on seismic interferometry: Part 1 - Basic principles and applications. Geophysics, 75-209.

Yilmaz, Ozdogan, (2001). Seismic Data Analysis; Processing, Inversion and Interpretation of Seismic Data. Tulsa: Society of Exploration Geophysicists.

Yu, Jianhua, y Gerard T. Schuster. (2006). Crosscorrelogram migration of inverse vertical seismic profile data. Geophysics,1-11.

Yilmaz, (2001). SEG, Investigations in Geophysics; Seismic Data Analysis. Vol:II