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On the well-posedness for the Chen-Lee

equation in periodic Sobolev spaces

Sobre el buen planteamiento de la ecuación de Chen-Lee en
espacios de Sobolev periódicos
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Abstract. We prove that the initial value problem associated to a perturba-
tion of the Benjamin-Ono equation or Chen-Lee equation ut +uux +βHuxx +
η(Hux−uxx) = 0, where x ∈ T, t > 0, η > 0 and H denotes the usual Hilbert
transform, is locally and globally well-posed in the Sobolev spaces Hs(T) for
any s > − 1

2
. We also prove some ill-posedness issues when s < −1.
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Resumen. Probamos que el problema de valor inicial asociado a una pertur-
bación de la ecuación de Benjamı́n-Ono o ecuación de Chen-Lee ut + uux +
βHuxx + η(Hux − uxx) = 0, donde x ∈ T, t > 0, η > 0 y H denota la
transformada de Hilbert usual, es localmente y globalmente bien planteado
en espacios de Sobolev Hs(T) para cualquier s > − 1

2
. También probamos un

tipo de mal planteamiento cuando s < −1.

Palabras y frases clave. Problema de Cauchy, buen planteamiento local y global,
ecuación de Benjamı́n-Ono.

1. Introducción

The goal in this paper is to establish well-posedness results on the Cauchy
problem

CL

{
ut + uux + βHuxx + η(Hux − uxx) = 0 t > 0, x ∈ T,

u(x, 0) = φ(x),
(1)
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56 RICARDO PASTRÁN & OSCAR RIAÑO

where β, η > 0 are constants. In the equation, H denotes the usual Hilbert
transform given by

Hf(x) =
1

2π
p.v.

∫ π

−π
cot
(x− y

2

)
f(y) dy =

i

2
(sgn(k)f̂(k))∨(x); k ∈ Z, f ∈ P.

This equation was first introduced by H. H. Chen and Y. C. Lee in [3] to
describe fluid and plasma turbulence. It deserves to remark that the fourth
and the fifth terms represent, respectively, instability and dissipation. Several
authors have studied this equation from a numerical standpoint. For example,
H. H. Chen, Y. C. Lee and S. Qian in [4, 5], and B. -F. Feng and T. Kawahara,
in [10], who investigated the initial value problem as well as stationary solitary
and periodic waves of the equation. Also, R. Pastrán in [13] proved using the
Fourier restriction norm method that the initial value problem CL is locally
well-posed in the Sobolev spaces Hs(R) for any s > −1/2, globally well-posed
in Hs(R) when s ≥ 0 and that one cannot solve the Cauchy problem by a
Picard iterative method implemented on the integral formulation of CL for
initial data in the Sobolev space Hs(R), s < −1.

We say that the Cauchy problem or initial value problem (1) is locally
well-posed in Hs(T) if for any φ∗ ∈ Hs(T) there exists a time T > 0 and an
open ball B in Hs(T) containing φ∗, and a subset XT of C([0, T ];Hs(T)), such
that for each φ ∈ B there exists a unique solution u ∈ XT to the integral
equation associated to the Cauchy problem and furthermore the map φ 7→ u
is continuous from B to XT . If we can take T arbitrarily large we say that the
initial value problem is globally well-posed.

We show that the initial value problem CL is locally and globally well-
posed in the Sobolev spaces Hs(T) for any s > −1/2. Since the dissipation of
the Chen-Lee equation is in some sense “stronger” than the dispersion, we will
use the purely dissipative methods of Dix for the KdV-B equation [7], see also
Duque [8], Esfahani [9] and Pilod [14], which consist in applying a fixed point
theorem to the integral equation associated on CL in an adequate XT space (see
(4) for the exact definition). We also prove that one cannot solve the Cauchy
problem by a Picard iterative method implemented on the integral formulation
of CL for initial data in the Sobolev space Hs(T), s < −1. In particular, the
methods introduced by Bourgain [2] and Kenig, Ponce and Vega [11] for the
KdV equation cannot be used for CL with initial data in the Sobolev space
Hs(T) for s < −1. This kind of ill-posedness result is weaker than the loss of
uniqueness proved by Dix in the case of Burgers equation.

1.1. Definitions and Notations

Given a, b positive numbers, a . b means that there exists a positive constant
C such that a ≤ Cb. And we denote a ∼ b when, a . b and b . a. We will also
denote a .λ b or b .λ a, if the constant involved depends on some parameter λ.
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Given a Banach space X, we denote by ‖·‖X the norm in X. We will understand
〈·〉 = (1 + | · |2)1/2.

P = C∞(T) denotes the space of all infinitely differentiable 2π-periodic
functions and P ′ will denote the space of periodic distributions, i.e., the topo-
logical dual of P. For f ∈ P ′ we denote by f̂ or F(f) the Fourier transform of

f , f̂ =
(
f̂(k)

)
k∈Z

, where f̂(k) = 1
2π

∫ π
−π e

−ik·zf(z) dz, for all integer z. We will

use the Sobolev spaces Hs(T) equipped with the norm

‖φ‖Hs = (2π)
1
2

∥∥∥(1 + k2)s/2φ̂(k)
∥∥∥
l2(Z)

.

We will denote û(k, t), k ∈ Z, as the Fourier coefficient of u(t) respect to
the variable x. Let U be the unitary group in Hs(T), s ∈ R, generated by
the skew-symmetric operator −βH∂2

x, which defines the free evolution of the
Benjamin-Ono equation, that is,

U(t) = exp(itq(Dx)), U(t)f =
(
eitq(ξ)f̂

)∨
with f ∈ Hs(T), t ∈ R, (2)

where q(Dx) is the Fourier multiplier with symbol q(k) = β k |k|, for all k ∈ Z.
Since the linear symbol of equation in (1) is iq(k)+p(k), where p(k) = η (k2−|k|)
for all k ∈ Z, we also denote by S(t) = e−(βH∂2

x+η(H∂x−∂2
x))t, for all t ≥ 0, the

semigroup in Hs(T) generated by the operator −(βH∂2
x + η(H∂x − ∂2

x)), i.e.,

S(t)f =
(
ei q(ξ) t−p(ξ) tf̂

)∨
for f ∈ Hs(T), t ≥ 0. (3)

We define the next Banach spaces which are inspired by an adaptation made
by Esfahani, in [9], of the spaces originally presented by Dix in [7].

Definition 1.1. Let 0 ≤ T ≤ 1 and s < 0. We consider Xs
T as the class of all

the functions u ∈ C ([0, T ];Hs(T)) such that

‖u‖XsT := sup
t∈(0,T ]

(
‖u(t)‖Hs + t|s|/2 ‖u(t)‖L2

)
<∞. (4)

1.2. Main Results

We will mainly work on the integral formulation of the CL equation,

u(t) = S(t)φ−
∫ t

0

S(t− t′)[u(t′)ux(t′)] dt′, t ≥ 0. (5)

Theorem 1.2 (Local well-posedness). Let β ≥ 0, η > 0 and s > −1/2. Then
for any φ ∈ Hs(T) there exists T = T (‖φ‖Hs) > 0 and a unique solution u of
the integral equation (5) satisfying

u ∈ C([0, T ], Hs(T)) ∩ C((0, T ), H∞(T)).

Moreover, the flow map φ 7→ u(t) is smooth from Hs(T) to C([0, T ], Hs(T)) ∩
C((0, T ], H∞(T)) ∩ XsT .

Revista Colombiana de Matemáticas



58 RICARDO PASTRÁN & OSCAR RIAÑO

Theorem 1.3 (Global well-posedness). Let s > −1/2 and φ ∈ Hs(T). Then
the supremum of all T > 0 for which all the assertions of Theorem 1.2 hold is
infinity.

It is known that the Banach’s Fixed Point Theorem cannot be applied to
the Benjamin-Ono equation [12]. Here, it is proved that there does not exist
a T > 0 such that (1) admits a unique local solution defined on the interval
[0, T ] and such that the flow-map data-solution φ 7→ u(t), t ∈ [0, T ], is C2

differentiable at the origin from Hs(T) to Hs(T). As a consequence, we cannot
solve the Cauchy problem for the CL equation by a Picard iterative method
implemented on the integral formulation (5), at least in the Sobolev spaces
Hs(T), with s < −1.

Theorem 1.4. Fix s < −1. Then there does not exist a T > 0 such that (1)
admits a unique local solution defined on the interval [0, T ] and such that the
flow-map data-solution

φ 7−→ u(t), t ∈ [0, T ], (6)

for (1) is C2 differentiable at zero from Hs(T) to Hs(T).

A direct corollary of Theorem 1.4 is the next statement.

Theorem 1.5. The flow map data-solution for the Chen-Lee equation is not
C2 from Hs(T) to Hs(T), if s < −1.

The layout of this paper is organized as follows: Section 2 presents some
linear estimates. Section 3 is devoted to establishing a bilinear estimate in the
space Xs

T . Theorems 1.2 and 1.3 will be proved in Section 4, and finally, the
proof of the Theorem 1.4 will be done in Section 5.

2. Linear Estimates

We start giving the following estimates.

Lemma 2.1. Let λ > 0, η > 0 and t > 0 be given. Then∥∥∥|tk2|λeη(|k|−k
2)t
∥∥∥
l∞(Z)

.λ
(
tλ + η−λ

)
e
η
8

(
t+t

1
2

√
t+ 16λ

η

)
.

Proof. We have the following inequality

|tk2|λeη(|k|−k
2)t ≤ sup

x∈R
|x|2λeη(|x|t

1/2−x2), ∀k ∈ Z.

Let wt(x) = x2λeη(xt
1/2−x2), for all x ≥ 0. Note that wt(x) tends to 0 as

x→∞, and

w′t(x1) = 0 ⇐⇒ x1 =
1

4

(
t
1
2 +

√
t+

16λ

η

)
.
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Therefore, the maximum of wt is attained in x1. So, we can obtain

wt(x1) .λ
(
tλ + η−λ

)
e
η
8

(
t+t

1
2

√
t+ 16λ

η

)
.

This inequality completes the proof. �X

Lemma 2.2. Let λ ≥ 0, η > 0 and t > 0 be given. Then∥∥∥|k|λeη(|k|−k2)t∥∥∥
l2(Z)

.λ Υλ
η(t),

where

Υλ
η(t) := 1 +

1

(ηt)
λ
2

+
1

(ηt)
1+2λ

4

.

Proof. From the fact that η
(
|k| − k2

)
t ≤ −ηk

2t
2 , for all k ∈ Z with |k| ≥ 2,

we deduce∥∥∥|k|λeη(|k|−k2)t∥∥∥2

l2(Z)
=

∞∑
k=−∞

|k|2λe2η(|k|−k2)t . 1 +

∞∑
k=2

k2λe−ηk
2t. (7)

Let h (x) := x2λe−ηx
2t for all x > 0. We observe that

h′ (x) = 2
(
λ− ηtx2

)
x2λ−1e−ηx

2t. (8)

Thus, h(x) reaches its maximum value when xmax =
√

λ
ηt . If xmax ≤ 1, (8)

implies that h is a nonincreasing function on the interval [1,∞). Hence, with
the change of variable u = ηx2t, we obtain

∞∑
k=2

k2λe−ηk
2t ≤

∫ ∞
1

x2λe−ηx
2tdx =

1

2

(
1

ηt

) 1+2λ
2
∫ ∞
ηt

u
2λ−1

2 e−udx

≤ 1

2

(
1

ηt

) 1+2λ
2

Γ

(
1 + 2λ

2

)
. (9)

On the other hand, if xmax > 1, we have from (8) that h(x) is a nondecreasing
function on the interval [1, xmax) and nonincreasing on the interval (xmax,∞),
but this implies arguing as above that

∞∑
k=2

k2λe−ηk
2t ≤

(
λ

ηt

)λ
e−λ +

∫ ∞
2

x2λe−ηx
2tdx

≤
(
λ

ηt

)λ
e−sλ +

(
1

ηt

) 1+2λ
2

Γ

(
1 + 2λ

2

)
. (10)

Combining (9) and (10), and taking square root of the resulting expression, we
can conclude the lemma. �X
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We have the next linear estimates

Proposition 2.3. Let 0 < T ≤ 1, η > 0, s ∈ R and φ ∈ Hs(T). Then

sup
t∈[0,T ]

‖S(t)φ‖Hs ≤ ‖φ‖Hs . (11)

Moreover, if s < 0,

sup
t∈[0,T ]

t
|s|
2 ‖S(t)φ‖L2 .s fs,η(T ) ‖φ‖Hs , (12)

where

fs,η(t) = 1 +
(
t
|s|
2 + η−

|s|
2

)
e
η
8

(
t+t

1
2

√
t+

8|s|
η

)
,

is a nondecreasing function on [0, 1].

Proof. Since η
(
|k| − k2

)
t ≤ 0 for every k ∈ Z and t ≥ 0, we see that

‖S(t)φ‖Hs = (2π)
1
2

∥∥∥〈k〉seη(|k|−k2)tφ̂(k)
∥∥∥
l2(Z)

≤ ‖φ‖Hs . (13)

(13) implies inequality (11). To prove (12), we assume that s < 0. Since 0 ≤
T ≤ 1, we have

t ≤ (1 + k2t)

(1 + k2)
, for all k ∈ Z, t ∈ [0, T ].

So, it follows that

t|s|/2 ‖S(t)φ‖L2 ≤
∥∥∥∥〈t1/2k〉|s| eη(|k|−k2)t∥∥∥∥

l∞(Z)

‖φ‖Hs . (14)

Using Lemma 2.1 we obtain〈
t1/2k

〉|s|
eη(|k|−k

2)t .s 1 + (tk2)
|s|
2 eη(|k|−k

2)t (15)

.s 1 +
(
t
|s|
2 + η−

|s|
2

)
e
η
8

(
t+t

1
2

√
t+

8|s|
η

)
. (16)

Therefore, we conclude (12) from (14) and (15). �X

3. Bilinear estimate

In this section, we establish the crucial bilinear estimates.

Proposition 3.1. Let 0 ≤ T ≤ 1 and − 1
2 < s < 0, then∥∥∥∥∫ t

0

S(t− t′)∂x(uv)(t′) dt′
∥∥∥∥
XsT

.s,η T
1+2s

4 ‖u‖XsT ‖v‖XsT , (17)

for all u, v ∈ Xs
T
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Proof. Since s < 0, it follows that (1 + k2)
s
2 ≤ |k|s, for all integer k different

from zero. So, we deduce that∥∥∥∥∫ t

0

S(t− t′)∂x(uv)(t′) dt′
∥∥∥∥
Hs

≤ (2π)1/2

∫ t

0

∥∥∥〈k〉s eη(|k|−k2)(t−t′) (∂x(uv)(t′))
∧

(k)
∥∥∥
l2(Z)

dt′

≤ (2π)1/2

∫ t

0

∥∥∥|k|1+seη(|k|−k
2)(t−t′)

∥∥∥
l2(Z)

∥∥∥û(t′) ∗ v̂(t′)(k)
∥∥∥
l∞(Z)

dt′.

(18)
The Young inequality implies that

∥∥∥û(t′) ∗ v̂(t′)(k)
∥∥∥
l∞(Z)

≤ 1

2π

(
‖u‖XsT ‖v‖XsT
|t′||s|

)
, (19)

hence, we obtain∥∥∥∥∫ t

0

S(t− t′)∂x(uv)(t′) dt′
∥∥∥∥
Hs

.
∫ t

0

∥∥∥|k|1+seη(|k|−k
2)(t−t′)

∥∥∥
l2(Z)

|t′||s|
dt′ ‖u‖XsT ‖v‖XsT .

(20)

To estimate the integral on the right-hand side of (20), we have from Lemma
2.2 that

∥∥∥|k|s+1eη(|k|−k
2)t
∥∥∥
l2(Z)

.s

(
1 +

1

(ηt)
s+1
2

+
1

(ηt)
2s+3

4

)
,∀t > 0. (21)

So, from (19), (20) and taking z = t′/t we get that∥∥∥∥∫ t

0

S(t− t′)∂x(uv)(t′) dt′
∥∥∥∥
Hs

.s

(
t1+s

1 + s
+
t
1+s
2

η
1+s
2

∫ 1

0

zs|1− z|−( 1+s
2 )dz +

t
1+2s

4

η
3+2s

4

∫ 1

0

zs|1− z|−( 3+2s
4 )dz

)
· ‖u‖XsT ‖v‖XsT

.s

(
1 +

1

η
1+s
2

+
1

η
3+2s

4

)
T

1+2s
4 ‖u‖XsT ‖v‖XsT .

(22)
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Arguing in a similar way as above, we have for all 0 ≤ t ≤ T that

t|s|/2
∫ t

0

‖S(t− t′)∂x(uv)(t′)‖L2(T) dt
′

. T |s|/2
∫ t

0

∥∥∥|k|eη(|k|−k2)(t−t′)
∥∥∥
l2(Z)

|t′||s|
dt′ ‖u‖XsT ‖v‖XsT

.s T
|s|/2

∫ t

0

(
1

|t′||s|
+

1

(η(t− t′))1/2|t′||s|
+

1

(η(t− t′))3/4|t′||s|

)
dt′

· ‖u‖XsT ‖v‖XsT

.s

(
1 +

1

η1/2
+

1

η3/4

)
T

1+2s
4 ‖u‖XsT ‖v‖XsT .

(23)

This completes the proof. �X

Remark 3.2. If we consider s′ > s > − 1
2 . Then modifying the space Xs′

T by

X̃s′

T =
{
u ∈ Xs′

T : ‖u‖X̃s′T <∞
}
,

where

‖u‖X̃s′T = ‖u‖Xs′T + t|s|/2
∥∥∥(1− ∂2

x)
s′−s

2 u
∥∥∥
L2

and using that

(1 + k2)s/2 . (1 + k2)s/2(1 + j2)(s′−s)/2 + (1 + k2)s/2
(
1 + (k − j)2

)(s′−s)/2
,

for all k, j ∈ Z, we deduce arguing as in Proposition 3.1 that∥∥∥∥∫ t

0

S(t− t′)∂x(uv)(t′) dt′
∥∥∥∥
X̃s
′
T

.s,η T
1+2s

4

(
‖u‖X̃s′T ‖v‖XsT + ‖u‖XsT ‖v‖X̃s′T

)
.

Proposition 3.3. Let 0 ≤ T ≤ 1, s ∈ (− 1
2 , 0) and δ ∈ [0, s + 1

2 ), then the
application

t→
∫ t

0

S(t− t′)∂x(u2)(t′) dt′,

is in C
(
[0, T ];Hs+δ(T)

)
, for every u ∈ Xs

T .

Proof. Let t, τ ∈ [0, T ] be fixed with t < τ . Then, by Minkowski inequality,
we see that∥∥∥∥∫ τ

0

S(τ − t′)∂x(u2)(t′)dt′ −
∫ t

0

S(t− t′)∂x(u2)(t′)dt′
∥∥∥∥
Hs+δ

≤ I(t, τ) + II(t, τ),

(24)
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where

I(t, τ) :=

∫ t

0

∥∥(S(τ − t′)− S(t− t′)) ∂x(u2)(t′)
∥∥
Hs+δ

dt′

and

II(t, τ) :=

∫ τ

t

∥∥S(τ − t′)∂x(u2)(t′)
∥∥
Hs+δ

dt′.

Following the same ideas of the proof of Proposition 3.1 we obtain

II(t, τ) .
∫ τ

t

∥∥∥〈k〉s+δ eη(|k|−k2)(τ−t′) (∂xu2(t′)
)∧

(k)
∥∥∥
l2(Z)

dt′

.s,δ,η

∫ τ

t

(
(t′)s + (t′)s|τ − t′|−

1+s+δ
2 + (t′)s|τ − t′|−

3+2(s+δ)
4

)
dt′ ‖u‖2XsT

.s,δ,η

(
(τ − t)1+s

1 + s
+

∫ τ

t

(
|t′ − t|s|τ − t′|−

1+s+δ
2 + |t′ − t|s|τ − t′|−

3+2(s+δ)
4

)
dt′
)

· ‖u‖2XsT . (25)

But with the change of variable z = t′−t
τ−t , we have that∫ τ

t

|t′ − t|s|τ − t′|−
1+s+δ

2 dt′ = (τ − t)
1+s−δ

2

∫ 1

0

zs|1− z|−
1+s+δ

2 dz,∫ τ

t

|t′ − t|s|τ − t′|−
3+2(s+δ)

4 dt′ = (τ − t)
1+2(s−δ)

4

∫ 1

0

zs|1− z|−
3+2(s+δ)

4 dz.

(26)

Therefore, combining (25), (26) and the hypothesis, we deduce that
limτ→t II(t, τ) = 0. To estimate I(t, τ), we observe that

I(t, τ) .
∫ t

0

∥∥∥|k|1+s+δ
(
e(iq(k)−p(k))(τ−t′) − e(iq(k)−p(k))(t−t′)

)∥∥∥
l2(Z)

|t′||s|
dt′ ‖u‖2XsT .

(27)
Applying Lemma 2.2, for all t′ ∈ [0, t), we have that∥∥∥|k|1+s+δ

(
e(iq(k)−p(k))(τ−t′) − e(iq(k)−p(k))(t−t′)

)∥∥∥
l2(Z)

.
∥∥∥|k|1+s+δeη(|k|−k

2)(t−t′)
∥∥∥
l2(Z)

.s,δ Υ1+s+δ
η (t− t′), (28)

where

Υ1+s+δ
η (t) = 1 +

1

(ηt)
1+s+δ

2

+
1

(ηt)
3+2(s+δ)

4

, ∀t > 0.
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64 RICARDO PASTRÁN & OSCAR RIAÑO

Then, it follows from (28) and Weierstrass M-test that

lim
τ→t

∥∥∥|k|1+s+δ
(
e(iq(k)−p(k))(τ−t′) − e(iq(k)−p(k))(t−t′)

)∥∥∥
l2(Z)

= 0, (29)

for all t′ ∈ [0, t). Moreover, since (t′)sΥ1+s+δ
η (t − t′) is in L1

t′(0, t), we deduce
from (29) and Lebesgue dominated convergence theorem that limτ→t I(t, τ) =
0. This completes the proof. �X

The next lemma is an adaptation of Lemma 2.3.1 in [6] to the periodic case.
This result allows us to adapt the above propositions to C ([0, T ];Hs(T)), when
s ≥ 0 and 0 < T ≤ 1. For the sake of completeness, we will sketch a proof.

Lemma 3.4. Suppose a > 0, r ≥ 0 are real numbers and φ, ψ ∈ Hr(T). Then

‖〈ak〉r (φψ)∧(k)‖l∞(Z) ≤ 2
r
2

∥∥∥〈ak〉r φ̂(k)
∥∥∥
l2(Z)

∥∥∥〈ak〉r ψ̂(k)
∥∥∥
l2(Z)

. (30)

Proof. Since r ≥ 0, Hr(T) ↪→ L2(T). Therefore, φ, ψ ∈ L2(T) and the ex-
change formula holds,

(φψ)∧(k) = φ̂ ∗ ψ̂(k) =

∞∑
j=−∞

φ̂(j)ψ̂(k − j), ∀k ∈ Z.

To prove this lemma we will use Peetre’s inequality which says that(
1 + |x|2

)ρ ≤ 2|ρ|
(
1 + |x− y|2

)|ρ| (
1 + |y|2

)ρ
, ∀x, y, ρ ∈ R.

Thus,
〈ak〉r ≤ 2

r
2 〈a(k − j)〉r 〈aj〉r , ∀k ∈ Z.

So, we have by Young’s convolutions inequality that

|〈ak〉r (φψ)∧(k)| ≤ 2
r
2

∞∑
j=∞

∣∣∣〈aj〉r φ̂(j) 〈a(k − j)〉r ψ̂(k − j)
∣∣∣

≤ 2
r
2

∥∥∥〈ak〉r φ̂(k)
∥∥∥
l2(Z)

∥∥∥〈ak〉r ψ̂(k)
∥∥∥
l2(Z)

.

�X

Remark 3.5. Assuming that s ≥ 0 and 0 < T ≤ 1, we have a similar result
as the one obtained in Proposition 3.1 for the space C ([0, T ];Hs(T)). In fact,
we have that∥∥∥∥∫ t

0

S(t− t′)∂x(uv)(t′) dt′
∥∥∥∥
L∞t H

s
x

.s,η T
1
4 ‖u‖L∞t Hsx ‖v‖L∞t Hsx ,
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for all u, v ∈ C ([0, T ];Hs(T)) . To see this, we can use Lemma 3.4 with a = 1
and Lemma 2.2.∫ t

0

‖S(t− t′)∂x(uv)(t′)‖Hs dt
′

.
∫ t

0

∥∥∥|k|eη(|k|−k2)(t−t′)
∥∥∥
l2(Z)

∥∥∥〈k〉s (uv(t′))
∧

(k)
∥∥∥
l∞(Z)

dt′

.s

∫ t

0

∥∥∥|k|eη(|k|−k2)(t−t′)
∥∥∥
l2(Z)
‖u(t′)‖Hsx ‖v(t′)‖Hsx dt′

.s,η

∫ t

0

(
1 +

1

(t− t′)1/2
+

1

(t− t′)3/4

)
dt′ ‖u‖L∞t Hsx ‖v‖L∞t Hsx

.s,η T
1
4 ‖u‖L∞t Hsx ‖v‖L∞t Hsx . (31)

Remark 3.6. Let s ≥ 0 and 0 < T ≤ 1. We have the same result given in
Proposition 3.3, changing Xs

T by C ([0, T ];Hs(T)) and taking δ ∈ [0, 1
2 ). In fact,

considering t, τ ∈ [0, T ] fixed with t < τ , we define the terms I(t, τ) and II(t, τ)
as in Proposition 3.3. Then Lemma 2.2 implies that

II(t, τ) .
∫ τ

t

∥∥∥|k| 〈k〉δ eη(|k|−k2)(τ−t′)
∥∥∥
l2(Z)

∥∥〈k〉s [u2(t′)]∧(k)
∥∥
l∞(Z)

dt′

.s,η

∫ τ

t

∥∥∥|k|1+δeη(|k|−k2)(τ−t′)
∥∥∥
l2(Z)
‖u(t′)‖2Hsx dt′

.s,η,δ

∫ τ

t

(
1 +

1

(τ − t′) 1+δ
2

+
1

(τ − t′) 3+2δ
4

)
dt′ ‖u‖2L∞t Hsx

.s,η,δ
(

(τ − t) + (τ − t)
1−δ
2 + (τ − t) 1

4 (1−2δ)
)
‖u‖2L∞t Hsx , (32)

then is clear that limτ→t II(t, τ) = 0. Also, we observe that,

I(t, τ) .s,δ

∫ t

0

∥∥∥|k|1+δ
(
e(iq(k)−p(k))(τ−t′) − e(iq(k)−p(k))(t−t′)

)∥∥∥
l2(Z)

dt′‖u‖2L∞t Hsx ,

(33)
and again Lemma 2.2 implies that∥∥∥|k|1+δ

(
e(iq(k)−p(k))(τ−t′) − e(iq(k)−p(k))(t−t′)

)∥∥∥
l2(Z)

.s,δ

(
1 +

1

(η(t− t′))
1+δ
2

+
1

(η(t− t′))
3+2δ

4

)
, ∀t > 0.

Therefore, using the above inequalities, we can argue as in the proof of Propo-
sition 3.3 and conclude that limτ→t I(t, τ) = 0.
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4. Well-Posedness

In this section we show that the Cauchy problem (1) is locally and globally
well-posed in Hs(T) for s > − 1

2 . In fact, to prove the local existence result,
we will construct a contraction with the integral formulation (5). The princi-
pal argument to obtain our desired results is to use the bilinear estimates in
Proposition 3.1 and Remark 3.5 for the nonlinear part ∂x(u2) in the convenient
XsT spaces. We begin this section giving a proof of Theorem 1.2

Proof of Theorem 1.2. For T ∈ (0, 1], we consider the space XsT = Xs
T , if − 1

2 <
s < 0, and if s ≥ 0, we take XsT = C ([0, T ];Hs(T)). We divide the proof in
four steps.

1. Existence. Let φ ∈ Hs(T), s > − 1
2 . We define the application

Ψ(u) = S(t)φ− 1

2

∫ t

0

S(t− t′)∂x(u2(t′)) dt′, for each u ∈ XsT .

By Proposition 2.3, together with Proposition 3.1 when s < 0, or Remark 3.5
when s ≥ 0, there exists a positive constant C = C(η, s), independent of β,
such that for all u, v ∈ XsT and 0 < T ≤ 1

‖Ψ(u)‖XsT ≤ C
(
‖φ‖s + T g(s) ‖u‖2XsT

)
, (34)

‖Ψ(u)−Ψ(v)‖XsT ≤ CT
g(s) ‖u− v‖XsT ‖u+ v‖XsT , (35)

where g(s) = 1
4 (1 + 2s), for all s ∈ (− 1

2 , 0), and g(s) = 1
4 , if s ≥ 0. Then, let

ET (γ) =
{
u ∈ XsT : ‖u‖XsT ≤ γ

}
, where γ = 2C ‖φ‖s and

0 < T ≤ min
{

1, (4Cγ)
− 1
g(s)

}
. The estimates (34) and (35) imply that Ψ is a

contraction on the complete metric space ET (γ). Therefore, we deduce by the
Fixed Point Theorem that exists an unique solution u of the integral equation
(5) in ET (γ) and with initial data u(0) = φ.

2. Continuous dependence. Let φ1, φ2 ∈ Hs(T) and u1 ∈ XsT1
, u2 ∈ XsT2

be
the respective solutions of the Chen-Lee equation constructed in the subsection
of Existence above. We recall that the solutions and the times of existence
satisfy

‖ui‖XsT ≤ 2C ‖φi‖Hs ,

0 < Ti ≤ min
{

1,
(
8C2 ‖φi‖Hs

)− 1
g(s)

}
,

for i = 1, 2, and C = C(η, s). Therefore, by Proposition 2.3, together with
Proposition 3.1 when s < 0, or by Remark 3.5 when s ≥ 0, we have that for all
T ∈ (0,min {T1, T2}]
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‖u1 − u2‖XsT ≤ C ‖φ1 − φ2‖Hs + CT g(s) ‖u1 + u2‖XsT ‖u1 − u2‖XsT

≤ C ‖φ1 − φ2‖Hs +
(‖φ1‖Hs + ‖φ2‖Hs)
4 maxi=1,2 {‖φi‖Hs}

‖u1 − u2‖XsT

≤ C ‖φ1 − φ2‖Hs +
1

2
‖u1 − u2‖XsT ,

but this implies that

‖u1(t)− u2(t)‖Hs ≤ ‖u1 − u2‖XsT ≤ 2C ‖φ1 − φ2‖Hs , for all t ∈ [0, T ].

3. Uniqueness. We shall proof the uniqueness of solutions to the integral
equation (5) in the space XsT , where T is defined as in the subsection of Ex-
istence. Let u, v ∈ XsT be solutions of the integral equation (5) on the time
interval [0, T ] with the same initial data φ. Arguing as in the proof of Propo-
sition 3.1 for − 1

2 < s < 0 or as in the Remark 3.5 when s ≥ 0, there exists
C = C(η, s) such that for all 0 < T1 ≤ T

‖u− v‖XsT1
≤ CKT g(s)1 ‖u− v‖XsT1

, (36)

where K := ‖u‖XsT + ‖v‖XsT . Taking T1 ∈
(
0, (CK)−

1
g(s)
)
, we deduce from (36)

that u ≡ v on [0, T1]. Thus, iterating this argument, we extend the uniqueness
result to the whole interval [0, T ].

4. The solution u ∈ C ((0, T ], H∞(T)) . Using Lemma 2.1 and arguing as
in the proof of Proposition 2.2 in [1], we have that the map t 7→ S(t)φ is
continuous in the interval (0, T ] with respect to the topology of H∞(T). Since
our solution u is in XsT , we deduce from Proposition 3.3 or Remark 3.6, that
there exists λ > 0, such that

u ∈ C ([0, T ];Hs(T)) ∩ C
(
(0, T ];Hs+λ(T)

)
.

Therefore we can iterate this argument, using the uniqueness result and the fact
that the time of existence of solutions depends uniquely on the Hs(T)-norm of
the initial data. Thus we deduce that

u ∈ C ([0, T ];Hs(T)) ∩ C ((0, T ];H∞(T)) .

�X

Next, we will give a proof of Theorem 1.3

Proof of Theorem 1.3. We divide the proof in two steps.

Revista Colombiana de Matemáticas
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1. Let s ≥ 0 and T ∗(‖φ‖s) defined as

T ∗ = sup {T > 0 : ∃! solution of (5) in C ([0, T ];Hs(T))} .

Let u ∈ C ([0, T ∗);Hs(T)) ∩ C ((0, T ∗);H∞(T)) be the local solution of the
integral equation (5) and defined in the maximal time interval [0, T ∗). We will
prove that T ∗ <∞ implies a contradiction. Since u is smooth by Theorem 1.2,
we have that u solves (5) in a classic sense, therefore we can take the L2(T)
inner product between u and (5) to obtain

1

2

d

dt
‖u(t)‖20 = (u, ut)0

= −(u, uux)0 − β(u,Huxx)0 − η(u,Hux)0 + η(u, uxx)0

= 2πη

∞∑
k=−∞

(
|k| − k2

)
|û(t)|2

≤ 0,

where we have used that (|k| − k2) ≤ 0 for all integer k. Thus we obtain

‖u(t)‖0 ≤ ‖φ‖0 for all t ∈ [0, T ∗). (37)

Since the time of existence T (·) is a decreasing function of the norm of the initial

data, there exists a time T̃ > 0, such that for all ψ ∈ H1(T) with ‖ψ‖0 ≤ ‖φ‖0,

there exists a function ũ ∈ C
(

[0, T̃ ];Hs(T)
)

solution of (5) with ũ(0) = ψ. Let

0 < ε < T̃ , applying the above result to ψ = u(T ∗ − ε), we define

v(t) =

{
u(t), when 0 ≤ t ≤ T ∗ − ε,
ũ(t− T ∗ + ε), when T ∗ − ε ≤ t ≤ T ∗ + T̃ − ε

(38)

Then v(t) is a solution of the integral equation (5) in [0, T ∗ + T̃ − ε], but this

contradicts the definition of T ∗, since T ∗+ T̃ − ε > T ∗. We have concluded the
global result when s ≥ 0.

2. Let s ∈ (−1/2, 0), φ ∈ Hs(T) and u ∈ Xs
T be the solution of the Cauchy

problem (1) given in Theorem 1.2. Let T ′ ∈ (0, T ) fixed, we have that

‖u‖Xs
T ′

= MT ′,s <∞.

Since u ∈ C ((0, T ];H∞(T)), it follows that u(T ′) ∈ L2(T). Thus, the part (i)
of Theorem 1.3 implies that ũ the solution of the integral equation 5 with initial
data u(T ′) is global in time. Moreover, uniqueness implies that ũ(t) = u(T ′+ t)
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for all t ∈ [0, T − T ′]. Therefore, we deduce that

‖u‖XsT ≤ ‖u‖XsT ′ + ‖u(T ′ + ·)‖Xs
T−T ′

≤MT ′,s + ‖ũ‖Xs
T−T ′

= MT ′,s + sup
t∈[0,T−T ′]

{
‖ũ(t)‖s + t|s|/2 ‖ũ(t)‖L2(T)

}
≤MT ′,s +

(
1 + (T − T ′)|s|/2

)
sup

t∈[0,T−T ′]
‖ũ(t)‖L2(T) .

The global result follows from the above estimate when s ∈ (−1/2, 0). �X

5. Ill-posedness result

From the Theorem 1.2, it is known that CL is locally well-posed for data
φ ∈ Hs(T), s > −1/2. In fact the map data-solution turns out to be smooth.
In this section we will prove that one cannot solve Cauchy problem (1) applying
Picard iterative method on the integral equation (5), at least in the Sobolev
spaces Hs(T), with s < −1. We first prove the next theorem.

Theorem 5.1. Let s < −1, β, η > 0 and T > 0. Then there does not exist a
space BsT continuously embedded in C ([0, T ], Hs(T)),i.e.

‖u‖L∞t Hs . ‖u‖BsT , ∀u ∈ B
s
T

and such that

‖S(t)φ‖BsT . ‖φ‖Hs , ∀φ ∈ Hs(T), (39)

and ∥∥∥∥∫ t

0

S(t− t′)[u(t′)ux(t′)] dt′
∥∥∥∥
BsT

. ‖u‖2BsT , ∀u ∈ B
s
T . (40)

Proof. Let s < −1, β, η > 0 and T > 0. Suppose that there exists a space
BsT , which satisfies the conditions given in the theorem. Take φ ∈ Hs(T) and
u(t) = S(t)φ, then (40) implies that∥∥∥∥∫ t

0

S(t− t′)[(S(t′)φ)(S(t′)φx)] dt′
∥∥∥∥
BsT

. ‖S(t)φ‖2BsT . (41)

Since BsT is densely embedded in C ([0, T ], Hs(T)), we obtain using (39) that
for each t ∈ [0, T ]∥∥∥∥∫ t

0

S(t− t′)[(S(t′)φ)(S(t′)φx)] dt′
∥∥∥∥
Hs
. ‖φ‖2Hs . (42)
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We will show that (42) fails for an appropriated function φ. Take φ defined by
its Fourier transform as

φ̂(k) =

{
N−s if k = N or k = 1−N,
0 otherwise

where N > 1 is a positive integer. It is easy to see that ‖φ‖2s ∼s 1. From the
definition of the group (S(t))t≥0, we have that

∫ t

0

S(t− t′)[(S(t′)φ)(S(t′)φx)] dt′

=

∫ t

0

∑
k

e(iq(k)−p(k))(t−t′)eikx(ik)
(
Ŝ(t′)φ ∗ Ŝ(t′)φ

)
(k) dt′

=

∫ t

0

∑
k

e(iq(k)−p(k))(t−t′)eikx(ik)

·
(∑

j

e(iq(j)−p(j))t′e(iq(k−j)−p(k−j))t′ φ̂(j)φ̂(k − j)
)
dt′

=
∑
k,j

e(iq(k)−p(k))t+ikx(ik)φ̂(j)φ̂(k − j)
∫ t

0

et
′[iψ(k,j)−σ(k,j)]dt′

where

ψ(k, j) = β [(k − j)|k − j| − |k|k + |j|j]

and

σ(k, j) = η
[
(k − j)2 − |k − j| − |k|2 + |k|+ |j|2 − |j|

]
.

Thus the above argument and the definition of φ imply

(∫ t

0

S(t− t′)[(S(t′)φ)(S(t′)φx)] dt′
)∧

(1)

= e(iq(1)−p(1))t(i)N−2s

∫ t

0

et
′[iψ(1,N)−σ(1,N)]dt′+

+ e(iq(1)−p(1))t(i)N−2s

∫ t

0

et
′[iψ(1,1−N)−σ(1,1−N)]dt′

= 2e(iq(1)−p(1))t(i)N−2s

∫ t

0

et
′[iψ(1,N)−σ(1,N)]dt′.
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Here we have used that ψ(1, N) = ψ(1, 1 − N) = 2β(N − 1) and σ(1, N) =
σ(1, 1−N) = 2η(N2 − 2N + 1). Hence, it follows that∥∥∥∥∫ t

0

S(t− t′)[(S(t′)φ)(S(t′)φx)] dt′
∥∥∥∥2

Hs

&s

∣∣∣∣∣
(∫ t

0

S(t− t′)[(S(t′)φ)(S(t′)φx)] dt′
)∧

(1)

∣∣∣∣∣
2

∼s
∣∣∣∣e(iq(1)−p(1))tN−2s e

t[iψ(1,N)−σ(1,N)] − 1

iψ(1, N)− σ(1, N)

∣∣∣∣2
&s

∣∣∣∣N−2s<
(
et[iψ(1,N)−σ(1,N)] − 1

iψ(1, N)− σ(1, N)

)∣∣∣∣2 . (43)

Since σ(1, N) ∼ ηN2 and σ(1, N) ∼ βN we deduce that

σ(1, N)
(

1− e−tσ(1,N) cos (tψ(1, N))
)
& ηN2

(
1− e−tηN

2
)
,

ψ(1, N)e−tσ(1,N) sin (tψ(1, N)) & −βNe−tηN
2

and
|σ(1, N)|2 + |ψ(1, N)|2 ∼ N2

(
η2N2 + β2

)
,

hence

<
(
et[iψ(1,N)−σ(1,N)] − 1

iψ(1, N)− σ(1, N)

)
&

(
η − (η + β)e−tηN

2
)

(η2 + β2)N2
(44)

Therefore, from (43) and (44)

∥∥∥∥∫ t

0

S(t− t′)[(S(t′)φ)(S(t′)φx)] dt′
∥∥∥∥
Hs
&s

(
η − (η + β)e−tηN

2
)

(η2 + β2)
N−2(s+1),

(45)

but this contradicts (42) for N large enough, since ‖φ‖2s ∼s 1 and s < −1. �X

As a consequence of Theorem 5.1 we can obtain the Theorem 1.4.

Proof of Theorem 1.4. Let s < −1, suppose that there exists T > 0 such that
the Cauchy problem (1) is locally well-posed in Hs(T) on the time interval
[0, T ] and such that the flow map Φ : Hs(T) → C ([0, T ];Hs(T)) is C2 at the
origin. When φ ∈ Hs(T), we will denote as uφ(t) = Φ(t)φ the solution of the
Cauchy problem (1) with initial data φ. This means that uφ is a solution of the
integral equation

uφ(t) = S(t)φ− 1

2

∫ t

0

S(t− t′)∂x(uφ)2(t′)dt′.
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72 RICARDO PASTRÁN & OSCAR RIAÑO

By computing the Fréchet derivative of Φ(t) at φ with direction ψ, we obtain

dφΦ(t)(ψ) = S(t)ψ −
∫ t

0

S(t− t′)∂x (uφ(t′)dφΦ(t′)(ψ)) dt′. (46)

Since the Cauchy problem (1) is supposed to be well-posed, we know using the
uniqueness that Φ(t)(0) = 0, so we deduce from (46) that

d0Φ(t)(ψ) = S(t)ψ. (47)

Using (46) and (47) we can compute the second Fréchet derivative at the origin
in the direction (φ, ψ)

d2
0Φ(t)(φ, ψ) = −

∫ t

0

S(t− t′)∂x[(S(t′)φ)(S(t′)ψ)] dt′.

Assumption of C2 regularity implies that d2
0Φ(t) ∈ B (Hs(T)×Hs(T), Hs(T)),

which would lead to the following inequality∥∥d2
0Φ(t)(φ, ψ)

∥∥
Hs
. ‖φ‖Hs ‖ψ‖Hs ,∀φ, ψ ∈ H

s(T). (48)

But inequality (48) is equivalent to (42), which has been shown to fail in the
proof of Theorem 5.1. �X
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Volumen 50, Número 1, Año 2016



ON THE WELL-POSEDNESS FOR THE CHEN-LEE EQUATION IN HS(T) 73

[6] D. B. Dix, Temporal asymptotic behavior of solutions of the Benjamin-
Ono-Burgers equation, J. Diff. Eq. 97 (1991).

[7] , Nonuniqueness and uniqueness in the initial value problem for
Burgers’ equation, SIAM J. Math. Anal. 1 (1996), no. 1, 1–17.

[8] O. Duque, Sobre una versión bidimensional de la ecuación Benjamin-Ono
generalizada, PhD Thesis, Universidad Nacional de Colombia, 2014.

[9] S. A. Esfahani, High dimensional nonlinear dispersive models, PhD Thesis,
IMPA, 2008.

[10] B. F. Feng and T. Kawahara, Temporal evolutions and stationary waves
for dissipative Benjamin-Ono equation, Phys. D 139 (2000).

[11] C. E. Kenig, G. Ponce, and L. Vega, A bilinear estimate with applications
to the KdV equation, J. Amer. Math. Soc. 9 (1996), no. 2, 573–603.

[12] L. Molinet, J. C. Saut, and N. Tzvetkov, ll-posedness issues for the
Benjamin-Ono and related equations, SIAM J. Math. Anal. 33 (2001),
no. 4, 982–988.

[13] R. Pastrán, On a perturbation of the Benjamin-Ono equation, Nonlinear
Anal. 93 (2013).

[14] D. Pilod, Sharp well-posedness results for the Kuramoto-Velarde equation,
Commun. Pure Appl. Anal. 7 (2008), no. 4, 867–881.

(Recibido en julio de 2015. Aceptado en enero de 2016)

Departamento de Matemáticas
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