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ABSTRACT: This paper develops a new scheme of four points for interpolating curve subdivision based on the discrete fi rst 
derivative (DFDS), which reduces the apparition of undesirable oscillations that can be formed on the limit curve when the 
control points do not follow a uniform parameterization. We used a set of 3000 curves whose control points were randomly 
generated. Smooth curves were obtained after seven steps of subdivision using fi ve schemes DFDS, Four-Point (4P), New 
four-point (N4P), Tight four-point (T4P) and the geometrically controlled scheme (GC4P). The tortuosity property was 
evaluated on every smooth curve. An analysis for the frequency distributions of this property using the Kruskal-Wallis test 
reveals that DFDS scheme has the lowest values  in a close range.

KEYWORDS: Curve subdivision, curve interpolation, four-point subdivision scheme. 

RESUMEN: En este artículo se desarrolla un nuevo esquema de cuatro puntos para la subdivisión interpolante de curvas 
basado en la primera derivada discreta (DFDS), el cual, reduce la formación de oscilaciones indeseables que pueden surgir 
en la curva límite cuando los puntos de control no obedecen a una parametrización uniforme.  Se empleó un conjunto de 
3000 curvas cuyos puntos de control fueron generados aleatoriamente. Curvas suaves fueron obtenidas tras siete pasos de 
subdivisión empleando los esquemas DFDS, Cuatro-puntos (4P),  Nuevo de cuatro-puntos (N4P), Cuatro-puntos ajustado 
(T4P) y el Esquema interpolante geométricamente controlado (GC4P). Sobre cada curva suave se evaluó la propiedad de 
tortuosidad.  Un análisis de las distribuciones de frecuencia obtenidas para esta propiedad, empleando la prueba de Kruskal-
Wallis, revela que el esquema DFDS posee los menores valores de tortuosidad  en un rango más estrecho.  

PALABRAS CLAVE: Subdivisión de curvas, interpolación de curvas, esquema de subdivisión de cuatro puntos.

1. INTRODUCTION 

Curves are a powerful tool used in engineering to 
interpolate or approximate a set of points, with the aim 
to provide pleasant shapes [1]. Splines, NURBS and 
Subdivision are the most common techniques.

Subdivision has become a popular technique in 
computer graphics to create smooth curves and 
surfaces. Currently, it is the industry standard for 
character animation. It dates back to the work of 
Chaikin [2], where the corners of a control polygon 

are iteratively trimmed until a smooth curve is obtained 
in the limit. This an approximating scheme with 퐶1   
continuity.

Four point schemes for interpolating curve subdivision 
have two fundamental challenges: fi rst, obtain 퐶2  
continuity on the whole curve, and the second is to 
prevent the apparition of undesirable oscillations. 
Several schemes have been proposed to date from 
Dubuc’s work [3], which are characterized by having 
at most 퐶1   continuity interpolating the given points. 
Recent techniques have achieved curves with 퐶2   
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continuity, but do not interpolate the original data 
properly.

This paper focuses on the undesirable oscillations which 
may appear in the limit curve after an interpolating 
subdivision process. This problem has received little 
attention. Recently Hernandez et al. [4] proposed a new 
interpolatory subdivision scheme based on incenter 
subdivision which avoids undesirable oscillations.

2.  PREVIOUS WORKS

For interpolating subdivisions it is common to use 
geometrical local schemes, such as four-point or six-
point schemes. Earlier works such as Dubuc’s [3] 
and Deslauriers and Dubuc’s [5] propose four-point 
interpolating schemes, which insert a new point by 
fi tting a cubic polynomial to neighboring points over 
uniformly spaced parameter values. The idea behind 
this scheme is that if the original control points fall on a 
defi ned polynomial, then the next level’s control points 
must also lie on the same polynomial. This four-point 
scheme is exact for cubic polynomials. Equations 1 
and 2 describe the new control points as a function of 
the old control points.

푄2푖
푘+1 = 푄푖푘          (1)

푄2푖+1
푘+1 = −

1
16푄푖−1

푘 +
9

16푄푖
푘 +

9
16푄푖+1

푘 −
1

16푄푖+2
푘              (2)

One generalization is presented by Dyn et al. in [6], 
who uses a four-point based scheme with a tension 
parameter 	푤 ; the limit curve presents 퐶1  continuity 
when 	0 < 푤 <

1
8 . Hechler et al. [7] showed that the 	푤  

tension parameter generates       limit curves, if and 
only if, 	0 < 푤 < 푤, where 	푤 ∗≈ 0.19273 . One improvement is 
presented by Nira Dyn et al. in [8], where one new four-
point scheme is developed with the tension parameter 
	푤 , where the limit curve presents 퐶2  continuity, and 
the resulting curve is near to be interpolating.

The characteristic of previous works has been that 
the tension parameter is always constant. Marinov et 
al. [9] presents a new scheme with a variable tension 
parameter, which is locally adapted according to the 
geometry of the control polygon. Beccari et al. [10] 
proposes a subdivision scheme which provides 퐶1  
continuity with a single tension parameter that can be 
either arbitrarily increased or appropriately chosen. 

퐶1  

In the same way Floater [11] derives an algorithm for 
expressing the n - th order divided differences of the 
scheme at level 푗+ 1  as an affi ne combination of n - 
th order divided differences at level j. This algorithm 
could be a useful tool for analyzing the smoothness 
of the scheme, especially when the grid points are 
irregularly spaced.

In Dubuc’s work [3], uniform parameter values were 
assumed. Nira Dyn et al. [12] replaced those values by 
chordal and centripetal values since parameterization 
is updated at each refi nement level. Related to this, 
Floater [13] derived an approximation property of 
four-point interpolating curve subdivision, based on 
local cubic polynomial fi tting.

A step of subdivision can be considered as a sequence 
of simple, highly local stages. Dodgson et al. [14] 
proposes to create families of schemes by manipulating 
the stages of a subdivision step. Applications in the 
fi eld of fi nite elements or construction of functions are 
provided by Zhijie [15] and Floater [16].

There are some works on four-point subdivision for 
binary and ternary schemes. This is shown in Siddiqui 
[17-18] and Hassan et al., Hed, Beccari et al. and Ko 
et al. [19-22].

3. CURVE SUBDIVISION

A Subdivision is an iterative process to get a smooth 
curve or surface from a coarse mesh. A simple defi nition 
is given by Augsdorfer: “Given a sequence of vertices, 
subdivision is a process by which, in each refi nement 
step, new vertices are inserted as linear combinations 
of old vertices. Repeating the process leads eventually 
to a smooth limit curve” [14].

A Subdivision can be interpolating or approximating, 
depending on whether the limit curve passes through 
the control points. The spirit of subdivision was 
presented by Chaikin in [2].

3.1. Four-point interpol atory subdivision

It is an interpolating scheme presented by Nira Dyn et 
al. in [6] which inserts a new vertex (푘 + 1) − 푡ℎ  in 
every subdivision step, given a tension parameter 	푤  
without deleting old vertexes. The topological rules 
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are simple; for each edge on a control polygon, a new 
vertex preserving old vertexes is inserted, as shown 
in Figure 1.

Figure 1. Topological r ules for a Four-point subdivision 
scheme.

Let the control points be specifi ed by 푄푖=−2
푛+2 	 where 

푄 ∈ ℝ푑  . The geometrical rules are specified by 
Equations 3 and 4.

푄2푖
푘+1 = 푄푖푘 ;	−1 ≤ 푖 ≤ 2푘 	푛+ 1       (3)

Q2i+1
k+1 =

1
2 + w Q i

k + Qi+1
k + w Qi−1

k + Q i+2
k ;	      (4)

This scheme produces a 퐶1   continuity curve.

3.2. New four-point subdivision

 In search for a subdivision with 퐶2  continuity, Nira 
Dyn et al. presents in [8] several schemes close to be 
interpolating. In this paper, only those subdivision 
schemes with four-points will be referenced. One of 
these is the new four-point subdivision scheme, which 
is based on data interpolation by a cubic polynomial 
(Eq. 5) evaluated on 푡 =

1
4  and 푡 =

3
4

 .

푄(푡) = 퐿푗(푡)푄푗

2

푗=−1

        (5)

Where 퐿푗 (푡) =
푡 − 푘
푗 − 푘

2

푘=−1,푘≠푗

 

Topological rules express that for every edge, two 
new vertexes are created, and the old ones do not exist 
anymore in the next subdivision step. This is shown 
in Figure 2.

Figure 2. Topological rules for ne w Four-point 
subdivision scheme.

The Geometrical rules are expressed by:

푄2푖
푘+1 1
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5
128푄2

푘        (6)
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푘+1 3
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푘 +

35
128
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128

푄1
푘 −

7
128
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3.3 Tight four-point subdivision

Nira D yn et al. [8] considering the new four-point 
subdivision as a perturbation of Chaikin’s scheme 
introduces a tension parameter 	푤 , producing an 
extended scheme. For 푤 ≈ 0.013723 this new scheme 
is named tight four-point subdivision, which is 퐶2  
continuous. The topological rules are the same of the 
New Four-Point Subdivision. The Geometrical rules 
are expressed by Equation 8 and 9.

푄2푖
푘+1 = −7푤푄−1

푘 +
3
4 + 9푤 푄0

푘 +
1
4 + 3푤 푄1

푘 − 5푤푄2
푘      (8)

푄2푖
푘+1 = −5푤푄−1

푘 +
1
4 + 3푤 푄0

푘 +
3
4 + 9푤 푄1

푘 − 7푤푄2
푘       (9)

3.4  Geometrically controlled four point int erpolatory 
scheme

Marinov et al. [9] proposes several four-point 
subdivision schemes based on the classical four-point 
scheme using Equation 10 and 11, with variable tension 
parameters 푤푖푘 	  defi ned on Eq. 12, which is adjusted 
according to the geometry of the control polygon.

푄2푖
푘+1 = 푄푖푘          (10)

푄2푖+1
푘+1 = 푄푖푘 + 푄푖+1

푘 푤푖
푘 −

1
2

− 푤푖
푘 푄푖−1

푘 + 푄푖+2
푘       (11)

Where

푤푖
푘 = 푓(푔(푖, 푘))        (12)
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Experimentally, Marinov found that the four-point 
scheme produces visually pleasing curves when the 
insertion rule includes equidistant edges. The proposed 
functions are:

푔(푖,푘) =
3 푒푖푘

푒푖−1
푘 + 푒푖푘 + 푒푖+1

푘        (13)

푓(푥) =
푊푥 												0 ≤ 푥 ≤ 1
푤(3 − 푥)

2 0 < 푥 ≤ 3
       (14)

Another variant is:

푔(푖, 푘) =
3 푒푖푘

푒푖−1
푘 + 푒푖푘 + 푒푖+1

푘        (15)

푓(푥) = 푊푥 	0 ≤ 푥 ≤ 1
푊 		0 < 푥 ≤ 3  (16)

Where 푔(푖, 푘) = 0  if 푒푖−1
푘 + 푒푖푘 + 푒푖+1

푘 = 0 

4. DFDS SCHEME

A cubic Spline 퐶(푢)  is a parametric cur ve from a 
control point set {푃푖}  with 퐶2  continuity, described 
by Eq. 17. A good description of how this formula is 
obtained is shown in [23]. Figure 3 shows a typical 
Spline.

푐(푢) =
1
6

[푢3 푢2 푢 1]
−1 			3
			3 −6

−3 1
			3 0

−3 			0
			1 			4

			3 0
			1 0

	

푝1
푝2
푝3
푝4

  (17)

for	푢 ∈ [0,1] 

a. First example for a cubic spline

b. Second example for a cubic spline

Figure 3. Cubic Spline 퐶(푢)  for   control points.

This Spl ine definition is approximate. For an 

interpolating defi nition it is necessary to redefi ne the 
Eq. 17, in terms of a point set {푄푖}  where 푄푖 ∈ 퐶(푢) . 
One selection for 푢푖   is shown in Figure 4.

Figure 4. Set of 푄푖   points over curve 퐶(푢) .
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2
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	푢3 1
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	      (18)

Equati on 17 can be expressed in a simple way in terms 
of Eq. 18 as:

퐶(푢) = [푢3 푢2 푢 1]푁

푄1
푄2
푄3
푄4

       (19)

Where  is:
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⎥
⎥
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⎤

 

It has infi nite solutions for 	0 < 푢2 < 푢3 < 1 . 

In order to developing our method, a smooth 
interpolating curve 퐶(푢)  is assumed so that:
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‖∆푄‖
∆푢 푄2

−

≈
‖∆푄‖
∆푢 푄2

+

→
‖푄12‖
푢2 − 0 =

‖푄23‖
푢3 − 푢2

    (20)

‖∆푄‖
∆푢 푄3

−

≈
‖∆푄‖
∆푢 푄3

+

→
‖푄23‖
푢3 − 푢2

=
‖푄34‖
1 − 푢3

    (21)

Solving Equations 20 and 21 simultaneously:

푢2 =
‖푄12‖

‖푄12‖+ ‖푄23‖+ ‖푄34‖
       (22)

푢3 =
‖푄12‖ + ‖푄23‖

‖푄12‖+ ‖푄23‖+ ‖푄34‖
     (23)

The   and  values are obtained. The new point is shown 
in Figure 5.

Figure 5. Topological rules for proposed scheme.

5. TORTUOSITY

Tortuosity i s an intrinsic curve property of having 
twists and t urns. 

A formal defi nition of tortuosity was not found in 
the literature reviewed, but several criteria have been 
applied to measure it, such as presented by Kalitzeos 
et al. [24], which are resumed in Table 1.

The main applications of this property are found in 
porous media and ophthalmology, as can be viewed in 
Bullit et al. and Dougherty et al. [24-26]. In the attempt 
to measure this property, several metrics have been 
developed. The Table 1 describes the most important.

The most recent tortuosity indexes are based on the 
curvature, which has shown to be more robust in the 
calculation of this property. This work presents a 
discrete form considering the existence of a distance ∆푡  
uniformly spaced between data points of the polygon, 
which is consistent with the concept of subdivision. 
Equation 24 presents the continuous version of the 
curvature defi nition. 

Table 1. Defi nitions of tortuosity index.

풳(푡) =
‖r′(푡) × r′′ (푡)‖

‖r′(푡)‖3         (24)

For the discrete case of curvature, Figure 6 shows a 
neighboring scheme of the point to be evaluated.  

Fig ure 6. Five-point polygonal curve.

Equations 25, 26 and 27 present an approximation 
to the first derivative at points 푄푖  , 푄푖−1  and 푄푖+1   
respectively.  

푄푖′ =
푄푖−푄푖−1

∆푡
+ 푄푖+1−푄푖

∆푡
2 =

푄푖+1 −푄푖−1

2∆푡      (25)

푄푖′ =
푄푖 − 푄푖−2

2∆푡
        (26)

푄푖′ =
푄푖+2 −푄푖

2∆푡
        (27)

Using these results and the same concept, it is possible 
to calculate the value of 푄푖′′  , which is expressed in 
Eq. 28.
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푄푖′′ =
푄푖−2 − 2푄푖 + 푄푖+2

4∆푡
      (28)

Taking these results into Equation 24 and simplifying 
leads to the expression presented in Equation 30.

풳(푡) =
(푄푖+1−푄푖−1)

2∆푡
× (푄푖−2−2푄푖+푄푖+2)

4∆푡
푄푖+1−푄푖−1

2∆푡

3      (29)

풳(푡) =
‖(푄푖+1 −푄푖−1) × (푄푖−2 − 2푄푖 +푄푖+2 )‖

‖푄푖+1 −푄푖−1‖3     (30)

6. RESULTS

In this section, we compare the proposed subdivision 
scheme (DFDS) with the classical Four-point 
subdivision scheme (4P), New four-point subdivision 
scheme (N4P), the Tight four-point subdivision scheme 
(T4P) and the Geometrically controlled subdivision 
scheme (GC4P), which were described in section 
2. Figure 7a, shows the control points for the fi rst 
example. Figures 7-b to 7.f show the resulting curves 
after seven subdivision steps.

 Figure 7. Subdivision applied to uniformly spaced control 
points.

Figure 8a shows the control points for the second 
example. Figures 8-b to 8.f show the resulting curves 
after seven subdivision steps.

Figure 8. Subdivision applied to non-uniformly spaced 
control points.

It can be seen that in the presence of non-homogeneously 
spaced control points unwanted oscillations can be 
present, as shown by Figures 8b, 8c and 8d. 

A set of 3000 curves was randomly generated, each one 
had nine control points. The curves were interpolated 
one by one with each one of the interpolation methods. 
In all cases there were seven subdivision steps. The 
discrete curvature was evaluated at all points of each 
curve, taking the measure of tortuosity as its maximum 
value.

Figures 9 to 13 show a histogram for each evaluated 
subdivision method, the median is plotted over each 
histogram. A normality analysis reveals that none of the 
distributions are normal, the analysis was performed 
using a non-parametrical test, Kruskal-Wallis.
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Figure 9. Histogram for the maximum curvature of the 
four-point scheme.

Figure 10. Histogram for maximum curvature of the new 
scheme of four points.

Figure 11. Histogram for the maximum curvature for the 
tight four point scheme

Figure 12. Histogram for the maximum curvature of 
GC4P.

Figure 13. Histogram for the maximum curvature of 
DFDS.

A comparative analysis using a box and whisker plot 
between these distributions is shown in Figure 14, 
which reveals that DFDS has a lower tortuosity median 
that the other subdivision methods. Values of medians 
are shown in Table 2, where DFDS has a lower value.

Figure 14. Box and whisker plot for subdivision schemes.
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A Kruskal-Wallis analysis shows that the tortuosity 
data using DFDS, 4-P, New 4-P, Tight 4-P and GC 
Subdivision come from populations with different 
medians. Since the P value of the F test is less than 
0.05, we can conclude that the new scheme has a lower 
tortuosity median than the others methods, as shown 
in Table 3.

Table   2. Maximum curvature median

Subdivision Method Max. Curv. Median
Four Point 1.8608
New Four Point 6.8617e+03
Tight Four point 2.3025e+03
Marinov 1.3850
DFDS 0.7930

 Table 3. Kruskal-Wallis ANOVA Table for maximum 
curvature over each interpolation method

6.  CONCLUSION AND FUTURE WORK

This work presents DFDS, a new four-point based 
interpolating curve subdivision scheme. The most 
important advantage is the low tendency to produce 
artifacts, as evidenced by the ANOVA analysis, where it 
is compared with the other methods. Another advantage 
is the absence of weights or tension parameters for 
interpolation. The shape of the limit curve is only a 
function of the neighboring geometry. It is expected 
to have 퐶1  continuity because it is based on the fi rst 
derivative.

Future work is directed to extend the new scheme to 
surfaces, reverse curve subdivision and reverse surface 
subdivision.
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