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ABSTRACT

Boussinesq-Equation and RANS

Hybrid Wave Model. (May 2008)

Khairil Irfan Sitanggang, B.S., Institut Teknologi Bandung;

M.S., Institut Teknologi Bandung;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Patrick J. Lynett

This dissertation presents the development of a novel hybrid wave model, comprised

of the irrotational, 1-D horizontal Boussinesq and 2-D vertical turbulence-closed

Reynolds Averaged Navier-Stokes (RANS) wave models. The two constituents are

two-way coupled with the interface placed at a location where turbulence is relatively

small. Boundary conditions on the interfacing side of each model is provided by its

counterpart model through data exchange, requiring certain transformation due to

the difference in physical variables employed in both models. The model is intended

for large-scale wave simulation, accurate in both the nonbreaking and breaking zones

with relatively coarser grid in the former and finer in latter, and yet efficient.

Hybrid model tests against idealized solitary and standing wave motions and

wave-overtopping on structure exhibit satisfactory to very good agreement. Com-

pared with pure RANS simulations, the hybrid model saves computational time by

a factor proportional to the reduction in the size of the RANS domain. Also, a

large-scale tsunami simulation is provided for a numerical setup that is practically

unapproachable using RANS alone; not only does the hybrid model offer more rapid

simulation of relatively small-scale problems, it provides an opportunity to examine

very large total domains with the fine resolution typical of RANS simulations.

To allow for implementation on even larger domain with affordable CPU time,
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the hybrid model is parallelized to run on distributed memory machine. This is done

by parallelizing the RANS model while leaving the Boussinesq model serial. One

of the processors is responsible for both the sub-RANS and Boussinesq calculations.

ICCG(0) for solving the pressure equation is parallelized using the nonoverlapping-

decomposition technique, requiring more iterations than the serial one. Standing

wave and hypothetical tsunami simulations with 960×66 and 1000×100 grids, and

using 8 processors confirm model validity and computational efficiency of 82% and

65%.

Finally, the 2-D Boussinesq model is parallelized using domain decomposition

technique. The solution to the tridiagonal system arising in the model is calculated

as the sum of the homogeneous and particular solutions. Parallel model tests using

up to 32 processors exhibit model accuracy and efficiency of 80% for simulation with

500×500–2000×2000 grids.
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CHAPTER I

INTRODUCTION

Problem Statement

Most of the currently available numerical ocean wave models were developed based

on a single set of governing equations applied on the entire computational domain.

While model tests have shown agreement with various target scenarios, the applica-

bility of such models for more general purpose applications such as the simulation

of offshore-to-shoreline wave propagation, which includes both the nonbreaking and

breaking wave processes, is still limited due to the physical assumptions in the models.

For instance, depth integrated equations using potential flow assumptions are one of

the more commonly employed equations/assumptions in existing wave models. The

implementation of such models on a certain domain is valid only if the flow regime is

far from the high intensity turbulence area such as the nearshore breaking zone.

Although the application of such models with the help of the artificial turbulence,

Kennedy et al. (2000) and Chen et al. (2000), may be pushed further nearshore to

include the wave-breaking processes, only the mean flow is calculable with this type

of model, leaving the more detail, small scale flow unpredictable.

Another set of the governing equations which nowadays are widely used for devel-

oping wave models is the turbulence-closed Reynolds Averaged Navier-Stokes (RANS)

equations. The models which were developed based on these equations are well suited

for breaking wave simulation, Lin and Liu (1998). The implementation of this model,

however, is usually confined to the nearshore zone where a relatively large number

of grids and fine mesh are needed to accurately capture the turbulence. This incurs

The journal model is Journal of Waterway, Port, Coastal, and Ocean Engineering.



2

expensive computational effort. Hence, extending the implementation of the model

to larger domain is often not practically feasible.

In summary, neither one of the two types of wave models is suitable for employ-

ment in the simulation of large scale wave propagation in the ocean which includes

both the nonbreaking and breaking processes. A wave model should meet two impor-

tant criteria for such a simulation: first, both the nonbreaking and breaking processes

must be adequately simulated, and second, the simulation must be efficiently done.

The aforementioned models fulfill only one of the two criteria.

For such large scale simulation, either a new model which has both capabili-

ties should be developed or a method should be developed to couple the two types

of wave models so that they can be applied simultaneously for the large scale non-

breaking/breaking simulation. The last option seems more reasonable since both

constituents are already available. The big challenge for coupling the models is that

both models are different in physics: i.e. nonviscous and viscous, and nonturbulence

and turbulence, and additionally, in numerical solution. Coupling two such different

models may not always work since, due to the said differences, the variables from the

two models may, in some cases, disagree on the interface of the two models, leading

to numerical instability.

Objective

The main objective of this research is to develop a hybrid model which couples two

types of wave models which consist of nonviscous, potential Boussinesq-equation type

and viscous, turbulence-closed RANS-equation based wave models. In this study, the

scope is limited to coupling the 1-D Boussinesq and 2-D RANS wave models. To allow

for the application on a wider range of wave nonlinearity, we use the fully nonlinear
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Boussinesq-equation model, Wei et al. (1995) and Lynett and Liu (2002). For the

second model, we use the turbulence-closed RANS-based Cornell Breaking Wave and

Structure (COBRAS) model, Lin and Liu (1998).

The two models are two-way coupled, and so act as if they are a single model

working on a continuous domain. In the coupling implementation, the Boussinesq

is applied on the nonbreaking zone and the RANS on the breaking/high-turbulence

zone. The two models share a common domain interface for exchanging data, used as

boundary conditions in the models. By coupling the two models, accurate large scale

wave simulation using a coarse grid and “simple” physics in the deep-to-intermediate

water and fine grid and detailed physics in the nearshore area is computationally

feasible. In summary, the coupled hybrid model bridges the two widely used wave

models.

Large scale simulation using huge number of computational grids on both the

Boussinesq and RANS models requires extensive CPU time. In certain simulation

with a huge number of grids involved, the computation cannot be done on a sin-

gle machine with limited resources. For extensive simulation, people usually have

recourse to distributed computation, i.e. the problem is divided into several smaller

subproblems and run in parallel in several computers with certain communication hap-

pening among the computers. In so doing, not only can the originally huge problem

now be calculated, the computation itself becomes faster. The secondary objective

of this research is to parallelize 2-D RANS/hybrid and the 2-D Boussinesq models.

The former supports the main objective in that it increases the speed of the hybrid

computation. The latter is independent from the main objective of this research.

This is particularly useful for large scale 2-D Boussinesq simulation and future 2-D

Boussinesq and 3-D RANS coupling, where both constituent models should ideally be

parallelized. Since the computational time of the Boussinesq model is in general not
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significant, i.e. 2 or 3 orders in magnitude less than the RANS model, in parallelizing

the hybrid wave model, it is sufficient to parallelize the RANS model only and leave

the Boussinesq model serial.

Overview of the Boussinesq, RANS, and Hybrid Model Development

The Boussinesq-type equation wave model has been successfully used in the past

decade for simulating wave propagation in the ocean of relatively great depth to break-

ing zone. The pioneering work on the Boussinesq wave model is that of Peregrine

(1967) who introduced the weakly nonlinear Boussinesq equation model over variable

bathymetry; its implementation was limited to the shallow water regime, kh ≈ 0.3.

Enhancement of the model which pushed its accuracy further off-shore and improved

the dispersive properties followed thereafter. Madsen and Sørensen (1992), for in-

stance, through manipulation of the dispersive term of the depth-averaged Boussinesq

equation, managed to push the model accuracy to intermediate depth. Nwogu (1993)

used the velocity at arbitrary depth, instead of the depth-averaged velocity, in his

derivation to get an excellent linear dispersive properties and good accuracy up to

kh ≈ 3.

In deriving the weakly nonlinear Boussinesq equation, higher order nonlinear

terms had been truncated. Hence its implementation to simulate highly nonlinear

wave, i.e. ratio of wave height to depth is large, is not accurate. To better capture

the high nonlinearity properties in the model, Wei et al. (1995) retained higher order

derivative terms and derived a more accurate highly nonlinear Boussinesq equation

model with excellent dispersive properties up to kh ≈ 3. Similar attempts were made

by a number of researchers, e.g. Gobbi et al. (2000), Agnon et al. (1999), and Lynett

and Liu (2004b). As a result, the current version of the Boussinesq model can be
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implemented to an extremely deep water with a very good accuracy.

Attempts were made to extend the model applicability to the nearshore zone.

Kennedy et al. (2001) and Chen et al. (2000), using the artificial turbulence, were able

to calculate the breaking wave with very good agreement with the laboratory data.

Chen et al. (2003) introduced the vertical vorticity into the irrotational Boussinesq

equations to model the surface waves and longshore currents under the laboratory and

field conditions. The simulation agreed very well with measurements. Veeramony

and Svendsen (2000) described the breaking wave by accounting for the effect of

vorticity generated by the breaking process. The vorticity was obtained by solving

the vorticity transport, which is based on the Reynold equations. Model test showed

that calculated wave height, set-up, and velocity profiles were in good agreement

with laboratory data. Although the results look promising, such depth-integrated

models with artificial turbulence are only accurate for mean flow calculation. With

this type of model, small scale velocity prediction might not be accurate or even not

doable. To achieve this purpose, people usually have recourse to more sophisticated

turbulence-closed RANS-equation based model.

The RANS wave model with the VOF (volume of fluid) technique for tracking the

fluid particle has been widely used to simulate breaking wave in the nearshore zone

and wave breaking due to wave interaction with structure. Lin and Liu (1998), for

instance, employing the nonlinear eddy viscosity model, performed a numerical study

of breaking wave in the surf zone. Comparison with the experimental data showed

that the numerical calculation of the breaking wave was in good agreement with the

data. The model was also tested for nonbreaking wave simulation. Perfect match with

the analytic solution was found. Employing Lin and Liu’s model, Lara et al. (2006)

studied the wave interaction with breakwater. This study showed that the model

could correctly calculate the wave reflection, shoaling, and breaking near the structure
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and hence could be used as a tool for design purposes. Using the same type of model,

Liu and Cheng (2001) investigated the behavior of a solitary wave propagating over a

step. Both the nonbreaking and breaking cases were considered. Here the authors also

found that the model was able to compute the turbulence generated by the breaking

and flow separation at the corner of the step. The application of the model extended

to the study of waves generated by nearshore submarine mass-movement, Yuk et al.

(2006). The numerical simulation result was compared with laboratory experiment

and analytic solution. Very good agreement was obtained for the submarine and

aerial mass movements. Other researchers, Zhao et al. (2004), also found success in

studying the breaking wave using RANS model with a multi-scale turbulence model.

Typical simulation of wave breaking using RANS model is usually computation-

ally expensive. This is due in part to the iterative solver employed in the model to

solve the pressure equation. This expensive computation hinders users from perform-

ing large scale simulation. Hence, the implementation of the RANS model is limited

to a small domain size with relatively small number of computational grids.

As to the coupling of wave models, we found very few references on this topic.

Here, we presented two such references. First, Fujima et al. (2002) developed the

2-D/3-D hybrid model intended for numerical tsunami simulation around structures.

The constituent models were the 2-D depth-averaged model and 3-D turbulence-

closed model. The two models were two-way coupled. In its implementation, the

3-D domain should be sufficiently large so that the velocity distribution is vertically

uniform. In cases where vertical velocity distribution is not uniform, the zero velocity

gradient is imposed on the interface, which has no rational justification in the physics.

Comparison with the laboratory experiment showed that the hybrid model was able

to reproduce the 3-D characteristics of flow around structure, and comparison with

similar simulation using full 3-D model proved that the hybrid model could reduce the
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computational time significantly. Second, a series of papers, Lachaume et al. (2003),

Grilli et al. (2004), and Biausser et al. (2004), discussed the coupling of the fully

nonlinear potential flow model based on a Boundary Element Method (BEM) and

VOF/N-S (Navier Stokes) model. Two methods of coupling were proposed: weak

and strong coupling. In the first method, the solution of the BEM model is used

as an initialization of the VOF/N-S solver, with no feedback from the second to

the first. In the second method, both models are exchanging information. Up to the

publication date of these papers, only the first method was well developed, leaving the

second for future development. Although the constituents of the two hybrid models

are different from what we employ in this research, the ideas are still useful for the

hybrid development herein.

Organization of the Dissertation

In Chapter II, the governing equation and numerical solution techniques of the Boussi-

nesq and RANS models are explained. In the first model, the higher order Adams-

Bashforth predictor and corrector method is used to solve the Boussinesq governing

equation, and in the second model, the two-step projection method is used to solve

the turbulence-closed RANS equation.

In Chapter III, the coupling method of the two models is explained. The conver-

sion of the variables from one model to the other to be used as boundary conditions

is explained in detail. Also described is the numerical filter to remove two-grid wave

component occurring on the interface due to the velocity discrepancy.

In Chapter IV, a series of model tests are presented. These include the solitary

wave simulation, standing wave simulation, flux and free surface of wave overtop-

ping on hard, impermeable structure, wave propagation over porous structure, and
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hypothetical tsunami wave generation and propagation.

In Chapter V, the parallelization of the hybrid model is described. In parallelizing

this model, only the RANS model is parallelized. The Boussinesq model is still in

its sequential form and running in one of the processors involved in the calculation.

This is a preliminary work which still needs various model tests and optimization.

In Chapter VI, the domain decomposition method to parallelize the 2-D Boussi-

nesq model is described. The domain is decomposed into several equal-area sub-

domains and distributed into several computers to run in parallel. The tridiagonal

system of linear equations is parallelized by decomposing it into the homogeneous

and particular solutions, resembling the solution of the inhomogeneous differential

equation.

In Chapter VII, the works in this dissertation are summarized. The summary

consists of the three parts: the hybrid model, the parallel hybrid model, and the

parallel 2-D Boussinesq model. Also included are suggestions for future study and

development.
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CHAPTER II

GOVERNING EQUATION AND NUMERICAL SOLUTION

Boussinesq Wave Model

Different approaches have been used to derive the Boussinesq equations. Nwogu

(1993) and Wei et al. (1995), for instance, employed the perturbation method in

their derivation and chose the velocity at a reference level (zα = −0.531h) instead

of the depth-averaged velocity for the velocity variable. Lynett and Liu (2002) also

followed the same procedure to derive the Boussinesq equation with the inclusion of

the time dependent bathymetric-change to study the submarine-landslide-generated

wave. Of significant relevance to this study is the fact that the Boussinesq model is

fundamentally inviscid and does not permit any rotationality. While these restrictions

do permit the creation of an extremely efficient wave propagation model, they govern

the limits of application of the model and thus will play an important role in the

development of the coupled system.

Following Lynett and Liu (2002), the Boussinesq equations consist of the depth-

integrated continuity and momentum equations:

∂H

∂t
+

∂ (Huα)

∂x
−

∂

∂x

{

H

[(

1

6

(

η2 − ηh + h2
)

−
1

2
z2

α

)

∂2S

∂x2
+

(

1

2
(η − h) − zα

∂T

∂x

)]}

= 0

(2.1)

∂uα

∂t
+

1

2

∂2uα

∂x2
+ g

∂η

∂x
+

∂

∂t

{

1

2
z2

α

∂S

∂x
+ zα

∂T

∂x
−

∂

∂x

(

1

2
η2S + ηT

)}

+

∂

∂x

{

∂η

∂t
(T + ηS) + (zα − η)

(

uα

∂T

∂x

)

+

1

2

(

z2
α − η2

)

(

uα

∂S

∂x

)

+
1

2
(T + ηS)2

}

= 0, (2.2)
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where x, t, g, η, zα, uα, and h are the horizontal axis, time, gravity, free surface

elevation, reference level, velocity at the reference level, and depth, respectively. The

other parameters are defined as H = h+η, S = ∂uα/∂x, and T = ∂ (huα)/∂x+∂h/∂t.

Equations (2.1) and (2.2) are solved using the higher-order Adams-Bashforth

predictor-corrector finite difference method. This scheme consists of the explicit pre-

dictor:

ηn+1
i = ηn

i + 1
12

∆t
(

23En
i − 16En−1

i + 5En−2
i

)

(2.3)

Un+1
i = Un

i + 1
12

∆t
(

23F n
i − 16F n−1

i + 5F n−2
i

)

(2.4)

and implicit corrector:

ηn+1
i = ηn

i + 1
24

∆t
(

9En+1
i + 19En

i − 5En−1
i + En−2

i

)

(2.5)

Un+1
i = Un

i + 1
24

∆t
(

9F n+1
i + 19F n

i − 5F n−1
i + F n−2

i

)

. (2.6)

The terms E, F , and U are:

E = −ht − [(η + h)uα]x +

{

(η + h)
[(

1
6

(

η2 − ηh + h2
)

− 1
2
z2

α

)

Sx +
(

1
2
(η − h) − zα

)

Tx

]}

x
,

(2.7)

F = −1
2

(

u2
α

)

x
− gηx − zαhxtt − zαthxt + (ηhtt)x − [E (ηS + T )]x −

[

1
2

(

z2
α − η2

)

uαSx

]

x
− [(zα − η)uαTx]x −

1
2

[

(T + ηS)2]

x
,

(2.8)

U = uα + 1
2

(

z2
α − η2

)

uα,xx + (zα − η) (huα)xx − ηx [ηuα,x + (huα)x] . (2.9)

The solution procedure starts with the calculation of ηn+1
i and Un+1

i in (2.3) and

(2.4) and then (2.9) is solved for un+1
αi . The explicitly calculated free surface elevation

and velocity are not highly accurate, in general, due to the explicit scheme used in

the predictor. To improve the solutions, the implicit corrector (2.5) and (2.6) are

employed. Since both sides of the nonlinear equations contain the variables at the
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current time level, (n+1), the computations are iterated until the variables converge

with the convergence criteria:

∣

∣

∣

∣

wn+1 − wn+1
∗

wn+1

∣

∣

∣

∣

< 10−4, (2.10)

where w represents u and η and w∗ is the values from the previous iteration.

bc bc bc bc bc bc bc bc bc bcb

i
−

5

i
−

4

i
−

3

i
−

2

i
−

1

i

i
+

1

i
+

2

i
+

3

i
+

4

i
+

5

Figure 1. Finite difference stencil of the Boussinesq model.

The finite difference stencil of the scheme is depicted in Figure 1. To perform the

computation at grid i, five neighboring variables from the left and right sides of the

grid are required. The large stencil is required due to the high-order derivatives in

the model equations and the associated necessity of a high-order numerical solution.

Note that in this finite different solution, the nonstaggered grid, i.e. both the free

surface elevation and the velocity are evaluated at the same grids, is employed.

RANS Wave Model

The derivation of the RANS equations starts with splitting the variables into the time-

mean and turbulent fluctuation components. Introducing the split-variables into the

N-S equations and taking the necessary algebraic manipulations result in the following

equations:

∂ 〈ui〉

∂xi

= 0 (2.11)

∂ 〈ui〉

∂t
+ 〈uj〉

∂ 〈ui〉

∂xj

= −
1

〈ρ〉

∂ 〈p〉

∂xi

+ gi +
1

〈ρ〉

∂ 〈τij〉

∂xj

−
∂

〈

u′
iu

′
j

〉

∂xj

, (2.12)
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where ui and gi are the velocity and gravity in the xi direction, p is the pressure, ρ is

the density, and τij is the stress tensor in the ij direction. The bracket 〈 〉 is the mean

value sign. To close these equations, Lin and Liu (1998) employed the nonlinear eddy

viscosity model which expresses the correlation of the velocity fluctuations, the last

term of (2.12), in terms of a nonlinear function of the mean variables:

〈

u′
iu

′
j

〉

=
2

3
kδij − Cd

k2

ǫ

(

∂ 〈ui〉

∂xj

+
∂ 〈uj〉

∂xi

)

−

k3

ǫ2

{

C1

(

∂ 〈ui〉

∂xl

∂ 〈ul〉

∂xj

+
∂ 〈uj〉

∂xl

∂ 〈ul〉

∂xi

−
2

3

∂ 〈ul〉

∂xk

∂ 〈uk〉

∂xl

δij

)

+ C2

(

∂ 〈ui〉

∂xk

∂ 〈uj〉

∂xk

−

1

3

∂ 〈ul〉

∂xk

∂ 〈ul〉

∂xk

δij

)

+ C3

(

∂ 〈uk〉

∂xi

∂ 〈uk〉

∂xj

−
1

3

∂ 〈ul〉

∂xk

∂ 〈ul〉

∂xk

δij

)}

, (2.13)

where the turbulence kinetic energy k and the turbulence energy dissipation rate ǫ

are obtained by solving the k–ǫ equation:

∂k

∂t
+ 〈uj〉

∂k

∂xj

=
∂

∂xj

{(

υt

σk

+ ν

)

∂k

∂xj

}

−
〈

u′
iu

′
j

〉 ∂ 〈ui〉

∂xj

− ǫ (2.14)

∂ǫ

∂t
+ 〈uj〉

∂ǫ

∂xj

=
∂

∂xj

{(

υt

σk

+ ν

)

∂ǫ

∂xj

}

+

C1ǫ

ǫ

k
νt

(

∂ 〈ui〉

∂xj

+
∂ 〈uj〉

∂xi

)

∂ 〈ui〉

∂xj

− C2ǫ

ǫ2

k
. (2.15)

The coefficients in (2.13) are Cd = 1
3

(

1
3.7+Smax

)

, C1 = 1
185.2+γD2

max
, C2 = − 1

58.5+γD2
max

,

and C3 = 1
370.4+γD2

max
. In (2.14) and (2.15), νt = Cdk

2/ǫ, C1ǫ = 1.44, C2ǫ = 1.92,

σk = 1.3, and γ = 3.0.

To model the flow in the porous structure, Lin and Liu (1998) employed the

spatially-averaged N-S equations:

∂Ui

∂xi

= 0 (2.16)

1 + cA

n

∂Ui

∂t
+

1

n2
Uj

∂Ui

∂xj

= −
1

ρ

∂p0

∂xi

+
ν

n

∂2Ui

∂xj∂xj

−
1

n2

∂U ′′
i U ′′

j

∂xj

. (2.17)
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The spatial correlation in (2.17) is modeled as a combination of linear and nonlinear

friction:

−
1

n2

∂U ′′
i U ′′

j

∂xj

= −gaUi − gbV Ui, (2.18)

where Ui is the i-th component of the mean velocity and V is the magnitude of the

local velocity. The coefficients in (2.17) and (2.18) are

cA = γp

1 − n

n
(2.19)

a = α
(1 − n)2

n3

ν

gD2
50

(2.20)

b = β

(

1 +
7.5

KC

)

1 − n

n3

1

gD50

(2.21)

where γp = 0.34, KC = V T
nD50

, and α and β are the calibration coefficients, Garcia

et al. (2004).

The two-step projection method, Kothe et al. (1994), is used to solve (2.11) and

(2.12). In this procedure, the explicit finite difference solution to (2.12):

un+1
i − un

i

δt
+ un

j

∂un
i

δxj

= −
1

ρn

∂pn+1

∂xi

+ gi +
∂τn

ij

∂xj

(2.22)

is split into step 1:

ũn+1
i − un

i

δt
= −un

j

∂un
i

∂xj

+ gi +
∂τn

ij

∂xj

(2.23)

and step 2:

un+1
i − ũn+1

i

δt
= −

1

ρn

∂pn+1

∂xi

. (2.24)

Here the 〈 〉 sign is dropped for convenience. In (2.23), the provisional velocity ũn+1
i

is first calculated without taking the pressure pn+1 into account. The provisional

velocity is then used in (2.24) to determine the true velocity un+1
i which satisfies both

(2.11) and (2.12). The pressure pn+1 in (2.24) is obtained from the solution of the
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pressure Poisson equation (PPE):

∂

∂xi

(

1

ρn

∂pn+1

∂xi

)

=
1

δt

∂ũn+1
i

∂xi

, (2.25)

which is a combination of (2.11) and (2.24). The spatial derivatives appearing in the

equations are evaluated using second order centered finite difference. After gettting

the correct velocities, the k–ǫ equations are solved. The volume of fluid, F , is then

advected using the equation:

∂F

∂t
+ ui

∂Fi

∂xi

= 0. (2.26)

In the RANS mesh, both the pressure and the volume of fluid are located at the

center of the mesh and the horizontal and vertical velocities are located on the right

and top faces of the mesh. Hence, unlike the Boussinesq grid system, in the RANS

model the staggered grid system is employed.

Note that in solving (2.25) for pn+1, we encounter a positive definite penta-

diagonal system of linear equations. This system is solved using the iterative conju-

gate gradient solver, which is usually the heaviest computational load in all of the

solution procedure. An additional note of significance regarding the PPE solver is

that when increasing the matrix size (grid dimensions), the number of iterations re-

quired to reach convergence also increases. For example, while a 100 by 100 grid may

take 10 iterations to converge, a larger domain using the same grid resolution, with

a mesh of say 800 by 100 points, can take upwards of 50 iterations to converge.
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CHAPTER III

BOUSSINESQ-RANS MODEL COUPLING

Coupling Method

Consider a typical problem of simulating the wave propagation from offshore to the

shoreline as depicted in Figure 2. Depending on the wave condition along the do-

main, the offshore-shoreline domain is divided into two subdomains for the coupled-

simulation purpose. The subdomain where the wave does not break is termed the

prebreaking zone and the one where the wave breaks is termed the breaking/turbu-

lence zone. In the first zone, we employ the Boussinesq-equation model and in the

second zone we employ the RANS wave model.

To accommodate the data exchange between the two models, the computational

grids of both models must overlap properly. Since the two models use different grid

systems, not all the computational points in the RANS mesh are aligned with the

Boussinesq grids on the interface. In our implementation, we align the Boussinesq

velocity and free surface elevation grids with the RANS horizontal velocity grid.

Hence, the RANS vertical velocity is centered between two consecutive Boussinesq

grids (Figure 2). For physical consistency, the interface of the two models should be

located seaward of the breaking point where the turbulence intensity is small.

In the Boussinesq model, the boundary conditions are imposed on the left and

right sides of the domain. Of particular interest for the model coupling is the right

boundary condition which imposes the free surface elevation and velocity on the

Boussinesq ghost grids N + 1, N + 2, N + 3, N + 4, and N + 5 on the interface area.

These variables are obtained from the RANS grids 2, 3, 4, 5, and 6 which overlap

with the aforementioned five Boussinesq ghost points. Here five points are involved
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Figure 2. Boussinesq-RANS hybrid grid system.
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because the calculation at a point in the Boussinesq model requires five neighboring

points as shown in the stencil in Figure 1.

In the RANS model, the left boundary condition is associated with the coupling.

This boundary condition imposes the velocity, volume of fluid, pressure, and the

turbulence on the first column of the RANS mesh. The first two variables are obtained

from the Boussinesq grid N . Pressure is determined from a single time level with the

provisional velocity, and thus the pressure boundary condition is implicitly specified

along with velocity. Turbulence intensity and dissipation are set to zero along the

first column, consistent with the fact that the Boussinesq model is inviscid. This,

of course, requires that the interface is located in an area of very low turbulence

intensity.

Having explained the concept of coupling the two models and the correspond-

ing interface area, we propose the following algorithm for coupling the Boussinesq-

equation and RANS wave models. Let us assume that at the start of the algorithm we

have all the dependent variables (i.e. un, vn, etc.) at time level tn.

1: while tn < tend do

2: Calculate the RANS provisional velocities, ũn+1 and ṽn+1, from (2.23), using

Boussinesq boundary values from time level n.

3: Calculate, iteratively, the RANS fluid pressure, pn+1, from (2.25).

4: Calculate the RANS final velocities, un+1 and vn+1, from (2.24).

5: Calculate the RANS turbulence intensity and dissipation, kn+1 and ǫn+1, using

Boussinesq boundary values from time level n.

6: Calculate the RANS VOF function, F n+1, using Boussinesq boundary values

from time level n.

7: Calculate ηn+1 and un+1
α from the Boussinesq predictor (2.3) and (2.4), using

RANS boundary values from time level n.
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8: Calculate, iteratively, ηn+1 and un+1
α from the Boussinesq corrector (2.5) and

(2.6), using RANS boundary values at time level n+1. At this point, all fluid

variables in both models have completed calculations for time level n+1.

9: Change δt if flow in RANS exceeds Courant stability constraints; dynamic

time-stepping.

10: if δtnew 6= δtold then

11: Interpolate the new ηn−1, ηn−2, un−1
α , and un−2

α at all nodes on the Boussinesq

grid.

12: end if

13: tn+1 = tn + δtnew

14: n = n + 1

15: end while

The algorithm consists of two main parts. The first part is the RANS model cal-

culation in lines 2 through 6 and the second part is the Boussinesq model calculation

in lines 7 and 8.

After completing its calculation, the RANS model requires the variables from

time level (n + 1) to update the boundary conditions and proceed to the next time

level. For the left boundary condition, these variables are still not available from

the Boussinesq model since the corresponding calculation has not started yet. How-

ever, since the RANS numerical solution scheme is explicit, the imposition of the left

boundary condition can be delayed until the Boussinesq model calculation is finished.

Depending on the advection of the fluid in each grid of the RANS mesh, the time

step, δt, may be adjusted to allow for stable and accurate calculation. In consequence,

variables in the Boussinesq model should be calculated at the new time levels tn−2
new

and tn−1
new which should be equally spaced in the Boussinesq model in order to use

the high-order time integrators (2.3)–(2.6). Therefore, the new time levels in the
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Boussinesq models, after the adjustment, are tn−2
new = tn − 2δtnew, tn−1

new = tn − δtnew,

tn, and tn+1
new = tn + δtnew. The new variable at tn−2

new and tn−1
new are determined by

interpolation or extrapolation (whichever is appropriate) based on the values of the

corresponding variable at t = tn−2, tn−1, and tn. Here, the second order polynomial

is employed to do the calculation:

ηnew =
(tnew − tn−1) (tnew − tn−2)

(tn − tn−1) (tn − tn−2)
ηn +

(tnew − tn−2) (tnew − tn−3)

(tn−1 − tn−2) (tn−1 − tn−3)
ηn−1+

(tnew − tn) (tnew − tn−1)

(tn−2 − tn) (tn−2 − tn−1)
ηn−2. (3.1)

For updating the boundary condition on the interface, all the necessary variables

at the time level (n + 1) are available from the RANS model. The whole procedure

from line 2 to 11 is repeated until the end of the simulation, t = tend, is attained.

RANS Boundary Condition

As mentioned earlier, the vertical profiles of the velocities and volume of fluid on

the first column of the RANS mesh are obtained from the Boussinesq model. These

variables, however, are not immediately available from the Boussinesq. To get these

variables from the Boussinesq model, certain transformation should be done on η and

uα. Figure 3 depicts the hybrid grids on the interface. Shown in the figure are the

first column of the RANS mesh with 18 computational cells1 and the grids N − 2,

N − 1, N , and N + 1 of the Boussinesq model (compare Figure 2). Note that grid

N of the Boussinesq model is aligned with the right face of the first column in the

RANS mesh.

To find the fluid distribution, F , in this column, we first determine the free

1In a typical simulation, the columns of the RANS mesh may have tens or hundreds
of computational cells.
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surface elevation, ηN−1/2, in the middle of the column by quadratically interpolating

ηN−2, ηN−1, and ηN . Then we search for the cell at which ηN−1/2 is located in the

column. In the exemplified figure this interpolated free surface elevation is located at

cell 14. All the cells below the cell are full cells with F = 1 and the cells above it are

empty cells with F = 0. For the free surface cell itself, F is calculated as the ratio of

the height of the interpolated free surface elevation, δ, in the cell to the cell height,

δy14:

F14 =
δ

δy14
. (3.2)

The vertical structures of the horizontal and vertical velocities in the Boussinesq

model are given as in Nwogu (1993):

u = uα − 1
2

(

z2 − z2
α

)

(uα)xx − (z − zα) (huα)xx (3.3)

and

v = −z (uα)x − (huα)x . (3.4)

Equations (3.3) and (3.4) are employed to calculate the vertical structures of u along

the right face and v along the center of the first column of the RANS mesh. Employing

the second order centered finite difference formula on (3.3) at xN gives:

uN (z) = uαN − 1
2

(

z2 − z2
α

)

N

uαN+1 − 2uαN + uαN−1

∆x2
−

(z − zα)N

(huα)N+1 − 2 (huα)N + (huα)N−1

∆x2
. (3.5)

Similar scheme is also employed to discretize (3.4). Since the reference velocity grid is

not aligned with the center of the RANS mesh where the vertical velocity is located,

prior to the calculation, we first determine uα at xN−3/2, xN−1/2, and xN+1/2 by

quadratic interpolation. Then the vertical structure of the velocity is calculated at
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xN−1/2:

vN−1/2 (z) = −z
uα N+1/2 − uαN−3/2

2∆x
−

(huα)N+1/2 − (huα)N−1/2

2∆x
. (3.6)
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Figure 4. Calculation of the Boussinesq free surface elevation and reference velocity

based on the RANS velocity and fluid distribution.

Boussinesq Boundary Condition

The specification of the Boussinesq boundary condition is the inverse procedure of

the previous section. In this procedure the reference velocity and the free surface
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elevation are calculated based on the velocity, u, and the fluid distribution, F , in the

RANS model. This calculation is conducted on the five ghost grids N +1 to N +5. In

this section we describe the calculation of the boundary condition on the grid N + 1.

Similar procedure applies to the rest of the ghost grids.

Figure 4, a slight modification of Figure 3, depicts the RANS-Boussinesq grid

system on the interface area. Shown in the Figure are columns 2 and 3 of the RANS

model and the grid N + 1 of the Boussinesq model. Since the Boussinesq free surface

elevation grid is not aligned with the center of the RANS column (where F is located),

the Boussinesq free surface elevation is calculated as the average (linear interpolation)

of two consecutive RANS free surface elevations. In Figure 4, for instance, the free

surface elevation at grid N + 1 is

ηN+1 = 1
2
(η2 + η3) , (3.7)

where η2 = d2−d and η3 = d3−d. The calculation of the other free surface elevations

follows the same procedure.

The reference velocity calculation starts with identifying the cell in the column

of the RANS mesh where the reference level is located. In Figure 4 the reference level

is located at cell 8. To determine the reference velocity, a quadratic polynomial of

the form:

u = β + θ (z − zα) + γ
(

z2 − z2
α

)

(3.8)

is fitted to the three neighboring velocities u7, u8, and u9. Comparing (3.8) and

(3.3), it is apparent that the reference velocity is the zeroth-order coefficient of the

polynomial uα = β.
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Two-Grid, Near-Interface Wave Smoothing

The difference in physics and numerical scheme between the Boussinesq and RANS

models gives rise to the discrepancy in velocity profiles along the interface. To demon-

strate it, consider a one-way coupling of a Boussinesq and RANS models to simulate

a 0.1 m solitary wave propagation in a 0.5 m deep channel, as depicted in Figure 5.

Note that in this one-way coupling, only the Boussinesq model passes the informa-

tion to the RANS model. Figure 5 shows that u and v along the indicated vertical

line are different in the Boussinesq and RANS model calculations. Since in two-

way coupling both models exchange variables, this discrepancy, although small, gives

rise to spurious high-frequency, two-grid wave component, particularly noticeable in

the Boussinesq model surface elevation. For longer simulation, this high frequency

component will grow and cause instability in the simulation.

Smoothing a signal with such noise may be done by chopping off the unwanted

higher components from certain cut-off frequency as done in Phillips (1956). This

method is effective but computationally expensive because the spectrum should be

first calculated. Another approach is to filter the signal in the spatial domain. This

method is straightforward and cheap. To remove this spurious two-grid wave compo-

nent, we employ the nine-point spatial filter suggested in Shapiro (1970):

ηi = 1
256

{186ηi + 56 (ηi−1 + ηi+1) − 28 (ηi−2 + ηi+2)+

8 (ηi−3 + ηi+3) − (ηi−4 + ηi+4)} . (3.9)

Filter (3.9) completely removes the spurious two-grid component, attenuates the

three- and four-grid components by 32% and 6% respectively, and does not influ-

ence components with lower frequencies. Figure 6 shows an example of smoothing

the free surface elevation using the nine-point filter. The free surface elevation is
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produced from a hybrid simulation without filtering, and due to the aforementioned

velocity discrepancy, contaminated with two-grid components. Applying the filter

once on the data results in the smooth elevation. Most importantly, the higher har-

monics are not affected by the application of the filter. Application of 10,000 times

successive (equivalent to 100 s simulation with δt = 0.01 s) smoothing also preserves

all the higher harmonics, with little change on the boundary. In the hybrid model,

however, the filter is applied only once every, say 100 time steps. This, as suggested

by the one-time filter application, will not affect the surface elevation near the bound-

ary. Therefore, the implementation of such filter for the whole simulation is, in our

opinion, justifiable.
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CHAPTER IV

HYBRID MODEL TEST

To test the model for both the validity and relative speedup, we used the hybrid

model to simulate the following target scenarios:

1. Solitary wave propagation.

2. Standing wave motion.

3. Sinusoidal wave overtopping of a seawall.

4. Solitary wave overtopping of a levee.

5. Wave propagation over porous structure.

6. Hypothetical large-scale tsunami simulation.

In the first scenario, we simulate the propagation of a solitary wave along a

channel of constant depth. In this simulation, we want to observe how the soliton is

transported from the RANS to the Boussinesq domains. An important property of

a solitary wave propagating in a channel of constant depth is that the wave height

is constant. This simulation will be an ideal test for observing this property. In the

second test, the hybrid model was used to generate a standing wave in a channel of

constant depth. The wave was driven from one end of the channel toward a vertical,

reflecting wall. This wave was reflected back toward the origin and thus two waves

opposite in directions met on the interface to create a standing wave. In the third

simulation, the model was run to simulate the wave overtopping of a seawall. The

numerical data collected in this simulation is the mass flux of the wave overtopping

across the top of the structure. In the fourth simulation, we also conducted the



29

simulation of the wave overtopping of a coastal structure. The free surface elevation

of solitary wave, before and after interaction with a levee, is recorded and compared

with the experimental data. And in the last simulation a hypothetical tsunami in

the deep water is generated and the hybrid model predicts its evolution on the coast,

including interaction with a detached breakwater.

To measure the relative speedup of the hybrid computation, the first five scenarios

were also run using the RANS model in the whole domain, a “pure RANS” simulation.

The CPU times used by the pure RANS to compute those scenarios are compared

with the CPU times used in the hybrid model. This comparison gives the relative

speedup of the hybrid model.

Solitary Wave Propagation

The first test simulates the propagation of a solitary wave in a 0.5 m deep and 100 m

long channel. The domain was divided into two subdomains of equal lengths. The

first 50-m subdomain, xB, was occupied by the Boussinesq model and the second

50 m, xR, by the RANS model. The wave is generated in the Boussinesq domain

and propagates to the RANS domain (Figure 7). To observe the behavior of the

model with respect to the wave height variations, two waves of different nonlinearities,

ǫ = H/h, and dispersiveness, δ = h/L, are considered in the test. While a solitary

wave is uniquely defined with only ǫ, the dispersive parameter is included here to both

provide additional characterization of the wave and for use as a length scale. The

solitary wave length, L, appearing in δ, is defined as the length of the symmetrical-

region in the solitary wave (gray-colored area in part (b) of Figure 7) which contains

95% of the total volume of water, Dean and Dalrymple (1991).

The initial free surface elevation and velocity of the solitary wave which was used
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to drive the model has form:

η = A1sech
2 [B (x − Ct)] + A2sech

4 [B (x − Ct)] (4.1)

and

u = Asech2 [B (x − Ct)] . (4.2)

The two equations are the analytic solution to the weakly nonlinear Boussinesq equa-

tion, Nwogu (1993). The derivation of the the analytic solutions and the determina-

tion of the coefficients A, A1, A2, B, and C may be found in Wei and Kirby (1995).

In all the solitary wave simulations the dissipation in both the Boussinesq and

RANS models were zero and the fluid viscosity and the turbulence in the RANS model

were also set to zero. Hence both models were running an inviscid flow condition,

with no means in the RANS model to generate vorticity.

In the first solitary wave simulation, a small amplitude wave of 0.05 m high and

initially centered at x = 10 m was used. The length of this wave in the 0.5 m deep

channel was 6.64 m. The corresponding nonlinearity and dispersiveness were ǫ = 0.1

and δ = 0.075 respectively. Both the Boussinesq and RANS models used uniform

spatial grids. The Boussinesq grid size was ∆x = 0.125 m and the RANS grid sizes

were δx = 0.0625 m and δz = 0.0175 m. In this simulation the constant time step,

δt = 0.01 s, which corresponded to the Courant number Cr = 0.18 in the Boussinesq

domain and Cr = 0.35 in the RANS domain was employed. Here, the characteristic

velocity used in the Courant number is the constant, linear long wave speed. To

save some computational time, the RANS model starts its calculation when the free

surface elevation of the Boussinesq model (which acted as the boundary condition in

RANS model) on the interface area exceeds a threshold, ηthreshold = 10−5 m. For this

particular simulation, there are no calculations in the RANS domain for the first 13 s
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Figure 8. Solitary wave (ǫ = 0.1, δ = 0.075) propagation in a 0.5 m deep channel

simulated using the hybrid wave model. Black line is Boussinesq model,
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of physical time, or about 44% of the total time. In a huge computational domain,

particularly for transient wave studies, this procedure can save a significant amount

of computational time. This procedure was implemented for all the simulations in

this study.

To see the evolution of the soliton as it propagates along the channel, several

snapshots of the free surface elevation, η, at different times were captured at 6 s

interval (Figure 8). The distance between two consecutive solitons was 13.9 m. The

soliton moved at 13.9/6 = 2.32 m/s. As the wave traveled from the initial location

to x = 80 m, the wave height was invariant. The wave was correctly transmitted

from the Boussinesq to the RANS domain. For comparison the simulation was also

conducted using the Boussinesq model for the full domain 0 ≤ x ≤ 100 m. The wave

profiles of this simulation were shown in red dots in Figure 8. Both the hybrid and

full-Boussinesq wave profiles agree very well. Note the small, oscillatory tail following

the soliton at later times in both the hybrid and full-Boussinesq results; this is a

common occurrence when using the weakly nonlinear solitary wave solution in the

fully nonlinear model, Wei et al. (1995).

In the second simulation, wave height is increased to 0.15 m. The wavelength was

4.3 m, shorter than the previous wave, and thus the wave steepness is considerably

larger here. The nonlinearity was ǫ = 0.3 and the dispersiveness was δ = 0.12. For

this simulation the spatial and temporal grids are similar to the previous solitary

wave simulation.

The snapshots of the soliton at 6 s temporal interval was presented in Figure 9.

Here, the wave moves at a constant speed 2.51 m/s, faster than the previous smaller

wave. The t = 18 s soliton indicates that there was a smooth transition as the wave

enters the RANS domain from the Boussinesq domain. As the wave travels in the

RANS domain, however, the wave height decays slowly as indicated by snapshots at
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t = 24 s and t = 30 s. At these two instants, the reduction of the wave height is

4.5% and 7.4% respectively. Thus, from t = 24 s to t = 30 s, there was a 2.9% wave

height reduction. Another simulation using the pure RANS model and employing the

same wave and temporal/spatial grids confirmed this decay (Figure 10). This figure

obviously shows that the wave underwent damping as it propagated from its initial

position to t = 15 s position. The wave at t = 9 s, for instance, decayed from 0.1366

to 0.1318 m at t = 15 s, a 3.2% wave height reduction. As in the previous case, we

also performed the full-Boussinesq simulation and the result was also presented in

red-dots in Figure 10. The figure shows that the wave height of the full-Boussinesq

run was invariant in the course of the simulation. In the last three snapshots, the

soliton in the hybrid model, besides being smaller, lagged slightly behind the one in

the full-Boussinesq model. This is due to smaller wave has smaller celerity. The wave

height decay is due to numerical dissipation in the RANS model.

Similar simulations using the RANS model on the whole domain were conducted

to measure the relative speedups of the hybrid simulations. The temporal and spatial

grids for the pure RANS simulations are similar to RANS grids in the hybrid simula-

tions. Hence, the total number of the RANS horizontal computational grids in these

simulations is twice as many as in the hybrid model, while the number of vertical

grids remained unchanged. For the hybrid model, the computational clock time for

the 0.05 m wave was 312 s and for the 0.15 m wave was 317 s. The same simulations

using the RANS model took 1,260 s and 1,328 s for the 0.05 m and 0.15 m waves

respectively. These computational clock times corresponded to 30.4 s simulation and

were run in a 3-GHz Pentium PC. The speedups gained in the hybrid model were 4

for the first wave and 4.2 for the second. In both the hybrid simulations the threshold

was reached at 13.4 s, 44% of the total) simulation time, and took 25 s (8% of the

total) computational clock time. This comparison demonstrates that the threshold
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Figure 9. Solitary wave (ǫ = 0.3, δ = 0.12) propagation in a 0.5 m deep channel

simulated using the hybrid wave model. Black line is Boussinesq model,

blue line is RANS model, and red dots are full Boussinesq model.
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procedure can save, for these particular cases, 44% the effort to run RANS in the

hybrid model from the beginning.

Standing Wave Motion

In the following test, the hybrid wave model is used to simulate standing wave motion.

The standing wave is created by superimposing two sinusoidal waves of the same

height, H , moving in the opposite directions in a channel of constant depth, h, as

shown in Figure 11. Here, the numerical channel is 72 m long, 0.5 m deep, divided

into two subdomains of equal lengths. The left subdomain, xB, is occupied by the

Boussinesq model and the right one, xR, by the RANS model. Both ends of the

channel are impermeable walls and thus act as reflecting boundaries. Adjacent to the

left boundary, a sponge layer was installed to damp out all the waves that entered

the sponge layer area. For wave generation, we employed the internal source method,

Hsiao et al. (2005). Identical sinusoidal waves with height, H , propagated from the

source to both the left and right directions. The wave that propagated to the left

was damped out by the sponge layer and the one to the right would propagate along

the Boussinesq and the RANS domains. As the wave reached the right boundary, it

was reflected and propagated back toward the wave source and superimposed with

the incoming wave to create the standing wave.

In the first test of this simulation, a relatively small wave, 0.01 m high and

4 s period, was generated 5 m to the right of the left boundary. A 3 m sponge

layer was located adjacent to the left boundary as the damping mechanism. From

the dispersion relationship, the 4 s wave, in the 0.5 m deep channel, had an 8.7 m

wavelength. The nonlinearity and the dispersiveness of this wave are then ǫ = 0.02

and δ = 0.06 respectively. The Boussinesq domain was discretized into uniform
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Figure 11. Hybrid model setup for standing wave simulation.

grids, ∆x = 0.08 m. Similarly, the RANS domain was uniformly discretized both

horizontally, δx = 0.04 m, and vertically, δy= 0.001 m. The simulation was run for

100 s with the constant time step ∆t = 0.009 s and zero viscosity and turbulence.

Figure 12 depicts the instantaneous wave profiles at six different instants. The

first three profiles show the wave propagating to the right and reaching the wall at

t = 31 s. Within this period the wave in the channel was not contaminated by the

reflected wave from the right boundary and the height was still 0.01 m. Afterwards,

the reflected wave starts propagating in the channel and is superimposed with the

wave from the source. Since the two waves are identical and 180 degrees out of phase,

this superposition results in a standing wave in the channel with height 0.02 m, i.e.

twice the original wave height. In all the snapshots the wave profile on the interface

is smooth. Also, for comparison, the full-Boussinesq simulation was conducted and

the corresponding instantaneous profiles are plotted in the figure in red dots. The

two simulations are in good agreement.

Although the wave source input is linear (single harmonic), the wave undergoes
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some nonlinear evolution due to the nonlinear governing equations employed in both

the Boussinesq and RANS models. The higher the nonlinearity, ǫ, the stronger the

interaction. In the first case the nonlinearity is relativity small and its effect might

not be so obvious in the wave profiles in Figure 12. Looking at the profile from a

different perspective, for instance in the frequency domain, the nonlinearity effect

becomes apparent. Figure 13 gives the amplitude spectrum of the time series of the

free surface elevation at x = 38 m. This particular time series was recorded before

the reflected wave reached the recording location. This spectrum clearly shows that

the initially monochromatic wave, in the course of the propagation, transforms into

a polychromatic wave. In the spectrum, there are two distinct spikes corresponding

to f1 = 0.25 Hz and f2 = 0.5 Hz. Note that the frequency of the original signal was

f = 0.25 Hz. Here, the first harmonic, f1, interacts with itself resulting in the second

harmonic, f2 = f1 + f1. The interaction of the two harmonics, f1 and f2, is not too

strong in this case as there is no other distinct spike occurring in the spectrum. In the

next test, as the wave height becomes higher, the effect of nonlinearity is stronger.

In the second test, the wave height is increased to 0.05 m, with a nonlinearity

of ǫ = 0.1. The model setup remains the same as in the previous test. Figure 14

shows snapshots of the wave profiles as the wave propagates in the channel. Here,

a smooth transition is again observed on the interface of the two models. Although

there is very slight discrepancy between the hybrid and full-Boussinesq profiles, in

general the two simulations show good agreement. This slight discrepancy is probably

due to the numerical dissipation in the RANS model. The wave profile differs from

the profile in the previous test in two ways: a wider trough and an occurrence of a

secondary crest on the trough which are due to the nonlinearity effect. The amplitude

spectrum shown in Figure 15 has three distinct harmonics f1, f2, and f3. The first two

harmonics are at the same frequency as in the previous case. The interaction between
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Figure 12. Standing wave (ǫ = 0.02, δ = 0.06) motion in a 0.5 m deep channel simu-

lated using the hybrid model. Black line is Boussinesq model, blue line is

RANS model, and red dots are full-Boussinesq model.
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Figure 14. Standing wave (ǫ = 0.1, δ = 0.06) propagation in a 0.5 m deep channel

simulated using the hybrid model. Black line is Boussinesq model, blue

line is RANS model, and red dots are full-Boussinesq model.
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Figure 15. Amplitude spectrum of the free surface elevation time series of the ǫ = 0.1

standing wave simulation. The time series was recorded at x = 38 m and

before the reflected wave reached this location.
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the first and second harmonics resulted in the third harmonic whose frequency was

f3 = f1 + f2 = 0.75 Hz.

In addition to the hybrid and full-Boussinesq simulations, we also simulated both

cases of the standing wave motion using the RANS model for speedup comparison.

The RANS model was applied on the whole domain with the same grid size as in the

hybrid-RANS model. In the horizontal direction the number of computational grids

was twice as many as the grids in the hybrid-RANS, and in the vertical direction

both setups employed the same number of grids. Therefore, in total, the number of

grids in the pure-RANS model was twice the number of grids in the hybrid-RANS.

Both the pure-RANS and hybrid simulations were conducted in a Pentium 4 PC

3.4-GHz for 400 s simulation time. In the first standing wave test the hybrid model

spent an average of 321 s for one wave period simulation while the pure-RANS model

took about 592 s. Hence, in the first test we gained a 1.8 factor of speedup. In the

second test, for one wave period the hybrid and full-RANS models spent 248 and

592 s respectively and the gained speedup was 2.4.

Sinusoidal Wave Overtopping of a Seawall

As reported in Saville (1955) the Beach Erosion Board (BEB) conducted a laboratory

experiment in the Waterways Experiment Station of the Corps Engineers, at Vicks-

burg, Mississippi, to study wave run-up and overtopping of shore structures. The

experiment was conducted in a concrete wave flume 36.6 m long, 1.52 m wide, and

1.52 m deep. The model was an undistorted scale model with 1 : 17 length scale and

1 : 4.1 time and velocity scales. A wavemaker was used on the upstream side of the

flume for wave generation. Downstream the flume, shore structures of various shapes

(smooth slope, curve-faced wall, recurved wall, etc.) were built. Behind the structure
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a calibrated measuring tank was installed for collecting the overtopping water. The

water from the first three or four waves was wasted to allow for the wave to attain a

stable condition, after which the water from six or seven waves was collected in the

tank for an overtopping flux measurement.
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Figure 16. Beach Erosion Board experimental setup of the sinusoidal wave overtop-

ping; figure is not scaled.

In this study, numerical simulations are undertaken of the BEB flux overtopping

experiment using the hybrid model whose setup is given in Figure 16. For the simu-

lation comparisons, the smooth structure data, as used by the previous researchers,

Kobayashi and Wurjanto (1989) and Dodd (1999), in their overtopping studies, is

employed here. In the numerical simulations the wave is generated using the sinu-

soidal wave source combined with the sponge layer on the left boundary for damping.

This approach is different from those of Kobayashi and Wurjanto (1989) and Dodd
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δy

δx

xR

yR

Figure 17. RANS computational mesh for hybrid simulation of BEB sinusoidal wave

overtopping.

(1999) where, depending on the Ursell number, Ur, at the model boundary, ht, Stokes

or Cnoidal waves are used to drive the simulations, although the wavemaker in the

physical experiments created single harmonic waves only. In all the experiments, the

structure with slope 1 : s was fronted by a fixed 1 : 10 inclined floor. The domain is

divided into the Boussinesq subdomain, xB, and RANS subdomain, xR. The model

interface is located near the toe of the 1 : 10 floor where turbulence was small and the

wave did not yet break. In all the simulations, this interface divides the domain into

the two subdomains with ratio xB/xR ≈ 7. The height of the RANS domain, yR, is

large enough to prevent the overtopping wave from reaching the RANS top boundary.

For this simulation, the Boussinesq domain is discretized into a uniform grid, ∆x, and

the RANS domain is discretized, for efficiency, into nonuniform horizontal grid, δx,

and uniform vertical grid, δy, as depicted in Figure 17. As shown in the figure, the
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mesh is relatively coarse near the left boundary and finer around the crest to allow

for an accurate flux measurement. Also for efficiency, a dynamic time step, δt, is

employed. Similar to Kobayashi and Wurjanto (1989), the flux is computed at the

the back edge of the structure and given by:

q =

nt2
∑

n=nt1

ny
∑

j=1

Fjiujiδyjδtn. (4.3)

The indices i and j correspond to a cell in the column along which the flux is com-

puted. Since some cells might be not full, equation (4.3) includes the corresponding

value of the volume of fluid, Fji. nt1 and nt2 are the time indices which correspond to

the starting/ending times of the water collecting. ny is the number of vertical grids

in the RANS mesh.

As in the BEB experiment, the simulation is run under various geometrical setups

with different combinations of variables including the offshore depth, h, the depth at

the toe of the structure, hs, free board height, hc, slope of the structure, s, wave

height, and period. These variables, the experimental data, the computed hybrid

model fluxes, and the published results from Kobayashi and Wurjanto (1989) and

Dodd (1999) are presented in Table 1. In general the computed fluxes are in good

agreement with the experimental data and consistent with the results of the previous

two researchers. These data also demonstrate the relatively wide variability that can

be found in published overtopping predictions, particularly for low overtopping rates.

As previously explained, the interface of the model should be located such that

the turbulence intensity on the interface is small. To provide insight into this, in

Figure 18 the instantaneous intensity of the turbulent kinetic energy, k, for run 1, is

given. This figure shows that the intensity of the turbulent kinetic energy is high near

the structure compared with other location. The kinetic energy near the structure

is roughly 10−2 m2 in contrast to a value less than 10−2 m2 on the interface. As the
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wave approaches the structure, the wave height to depth ratio becomes so large that

the wave brakes while impinging on the structure and hence releases kinetic energy.

Figure 18 also indicates that in the course of the simulation the location of the hot

spot remains close to the crest of the structure while the interface area is always low

in kinetic energy. This satisfies the requirement that the turbulence intensity be low

on the interface.

To benchmark the simulation time, five of the previous simulations are rerun

using the RANS model in the whole domain. Table 2 presents the run times per

wave period for both the hybrid and pure-RANS wave models for the five runs. In

discretizing the pure-RANS model, the part of the hybrid domain that used the RANS

model, the breaking zone, uses an identical mesh as in the hybrid model. Offshore

of this point, where the Boussinesq is used in the hybrid, the pure-RANS domain is

uniformly discretized with a grid size equal to the grid size at the hybrid interface

location.

The computation times of both the hybrid and pure-RANS simulations are sum-

marized in Table 2. From this table it is clear that the speedup due to use of the

hybrid model is significant, ranging from a factor of near 10 to over 17. This large

speedup is of course due to the smaller RANS mesh used in the hybrid. However this

difference is two fold; a single iteration of the Poisson pressure solver requires less

time with a smaller matrix, and a smaller matrix will converge in fewer iterations of

the PPE solver. Note also the overtopping flux predictions presented in the Table 1.

The slight discrepancies in these results are attributed to the small differences in the

modeled physics and numerical accuracy in the nonbreaking part of the domain.
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Figure 18. Turbulence kinetic energy distribution of the BEB sinusoidal wave overtop-

ping, run 1.
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Table 1. Experimental and simulated fluxes of the BEB sinusoidal wave overtopping.

Run† h

(m)

hs

(m)

hc

(m)

H

(m)

T

(s)

qdata
‡

(m2

s
)

qKW

(m2

s
)

qOTT

(m2

s
)

qhyb

(m2

s
)

1 0.529 0.081 0.054 0.107 1.549 0.0073 0.0030 0.0039 0.0032

2 0.529 0.081 0.107 0.107 1.549 0.0004 0.0003 0.0007 0.0003

3 0.609 0.161 0.054 0.107 1.549 0.0071 0.0058 0.0066 0.0075

4 0.609 0.161 0.107 0.107 1.549 0.0040 0.0015 0.0019 0.0055

5 0.609 0.161 0.054 0.081 1.858 0.0065 0.0058 0.0062 0.0062

6 0.529 0.081 0.054 0.107 2.616 0.0066 0.0060 0.0074 0.0071

7 0.529 0.081 0.107 0.107 2.616 0.0019 0.0018 0.0025 0.0030

8 0.529 0.081 0.161 0.107 2.616 0.0044 0.0002 0.0007 0.0012

9 0.609 0.161 0.054 0.107 2.616 0.0104 0.0100 0.0118 0.0128

10 0.609 0.161 0.107 0.107 2.616 0.0044 0.0050 0.0064 0.0069

11 0.609 0.161 0.161 0.107 2.616 0.0009 0.0018 0.0028 0.0024

12 0.529 0.081 0.054 0.081 3.634 0.0065 0.0070 0.0076 0.0063

13 0.609 0.161 0.054 0.081 3.634 0.0093 0.0081 0.0086 0.0086

14 0.609 0.161 0.107 0.081 3.634 0.0055 0.0037 0.0044 0.0026

15 0.609 0.161 0.161 0.081 3.634 0.0018 0.0011 0.0016 0.0015

16 0.609 0.161 0.215 0.081 3.634 0.0008 0.0011 0.0002 0.0004

17 0.529 0.081 0.054 0.107 2.616 0.0054 0.0073 0.0069 0.0064

18 0.529 0.081 0.161 0.107 2.616 0.0014 0.0009 0.0008 0.0016

19 0.448 0.000 0.054 0.107 2.616 0.0043 0.0044 0.0041 0.0030

20 0.448 0.000 0.107 0.107 2.616 0.0022 0.0008 0.0009 0.0004

† Run 1–16 used s = 3 and run 17–20 used s = 1.5.

‡ Here, flux is presented in dimensional instead of dimensionless form as in

Kobayashi and Wurjanto (1989).
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Table 2. Computation time per wave period of the BEB sinusoidal wave overtopping,

run 3, 5, 9, 18, and 19.

Hybrid RANS

RUN
nx × ny

(AH)

t

(sec)

Flux
(

m2

sec

)

nx × ny

(AH)

t

(sec)

Flux
(

m2

sec

)

AR

AH

tR
tH

3 118 × 72 16.7 0.0075 798 × 86 269.8 0.0075 8.1 16.2

5 118 × 82 26.2 0.0062 798 × 98 454.7 0.0061 8.1 17.4

9 262 × 76 85.6 0.0128 826 × 122 1259.2 0.0122 5.1 14.7

18 149 × 72 25.5 0.0016 845 × 72 242.6 0.0010 5.7 9.5

19 115 × 52 10.5 0.0030 811 × 56 120.8 0.0032 7.6 11.5

Solitary Wave Overtopping of a Levee

In 1996, Hydraulic Research (HR) Wallingford in the United Kingdom performed an

experiment on solitary wave overtopping of a breakwater. The experimental setup

is given in Dodd (1999) and depicted here in Figure 19. The wave flume used in

this experiment was 40 m long and 0.5 m wide and filled with water to h1 = 0.7 or

0.6 m seaward of the breakwater and h2 = 0.3 or 0.2 m behind the breakwater. A

breakwater with 1 : 4 or 1 : 2 slope was built at the right end of the flume. This

breakwater, which was 0.5 m high and 0.16 m wide on the top, was fronted by a 1 : 50

inclined floor. To measure the free surface elevation of the overtopping water, a series

of wave gages was installed on top of and behind the breakwater. The first gage,

WG-13, was located 0.015 m behind the leading edge (A), the second, WG-14, and

third, WG-15, gages were installed 0.055 and 0.11 m from the first gage respectively.

Depending on whether the first or second depth was used, the fourth gage, WG-16,
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was located 0.72 or 1.1 m behind the back edge (B) of the breakwater. The last gage

was fixed 0.44 m behind the back toe (C) of the breakwater. The experiment was

conducted for several solitary wave heights and water depths as given in Table 3.

The simulation setup is very similar to the one used in the BEB simulation where

the uniform Boussinesq grid was coupled with the RANS nonuniform x- and uniform

y-grids. The interface divides the domain into two segments, xB and xR, with ratio

xB/xR ≈ 9. A dynamic time step is also employed in the simulation. In all tests the

initial location of the solitary wave was 10 m from the left boundary of the Boussinesq

domain.

The time series of the free surface elevation of the hybrid simulations and the ex-

perimental data are presented in Figure 20 to 26. For comparison the same data from

Dodd (1999) (called OTT) are also given in the same figures. In all the simulations,

the hybrid wave model shows a clear bias towards overpredicting the water elevation

on top of the structure. This is consistent with the OTT simulations, which show an

even larger bias. On the lee side of the breakwater, the hybrid simulations in general

agree quite well with the data, with a remarked improvement over the shallow water

equation-based OTT.

The relative speedup is also measured for this case. The discretization of the

pure-RANS domain was almost the same as in the previous BEB discretization. The

only difference is that to save computational time in the pure-RANS, the domain

offshore of the interface location of the hybrid model is discretized nonuniformly,

with an increasingly coarse grid in the deeper water. The computation times of both

the hybrid and pure-RANS simulations are summarized in Table 4. As with the

speedups in the BEB tests, the reduction in CPU time shows a factor greater than

the decrease in RANS domain size. This, again, is due to the Poisson solver requiring

fewer iterations to converge with a smaller matrix size.
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Table 3. Wave height and water depth of the HR solitary wave overtopping.

Test
H

(m)

h1

(m)

h2

(m)

WG-16†

(m)

4c7a 0.07 0.7 0.3 0.72

4c7b 0.10 0.7 0.3 0.72

4c7c 0.12 0.7 0.3 0.72

4c6a 0.07 0.6 0.2 1.10

4c6b 0.10 0.6 0.2 1.10

4c6c 0.12 0.6 0.2 1.10

4c6d 0.15 0.6 0.2 1.10

† Distance from the back edge B in Fig-

ure 3.
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Figure 19. Experimental setup of the HR solitary wave overtopping.
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Table 4. Computation time of HR solitary wave overtopping.

Hybrid RANS

Test
nx × ny

(AH)

t

(sec)

nx × ny

(AH)

t

(sec)

AR

AH

tR
tH

4c7a 303 × 122 746 610 × 202 3605 3.3 4.8

4c7b 419 × 122 1613 765 × 202 7580 3.0 4.7

4c7c 461 × 122 2494 862 × 202 9930 3.1 4.0

4c6a 395 × 142 2236 746 × 202 9134 2.7 4.1

4c6b 435 × 122 2367 821 × 202 12303 3.1 5.2

4c6c 435 × 122 2518 821 × 202 15126 3.1 6.0

4c6d 435 × 122 2573 821 × 202 10951 3.1 4.3

Wave Propagation Over Porous Structure

In this section, we present the employment of the hybrid model to simulate the wave

propagation over a porous structure. The setup of this simulation is based on the data

from a laboratory experiment conducted in the wave and current flume of the Coastal

Laboratory of the University of Cantabaria as a part of the research conducted for the

European Project DELOS “Environtmental DEsign of LOw Crested Coastal Defence

Structures.”

The flume is 24 m long, 0.6 m wide, and 0.8 m high. The wave is generated using

a piston type wavemaker, integrated in the Active Wave Absorption System (AWACS)

which allows the absorption of the reflected wave in the model. The experiment setup

is shown in Figure 27. Although the length of the flume is 24 m, the domain length for

the simulation was 17.4 m only. The rest of the domain is occupied by the absorbing
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beach and false bottom that can partially or totally removed to set off a current in

the flume. Built in the simulation domain was a porous breakwater with dimension

given in the figure. The breakwater was composed of the 1 : 2 slope outer armor and

core layers whose characteristics are given in Table 5. From Figure 28, the thickness

of the outer armor layer is visually justified to be 0.083 m.

The breakwater was sitting on a 3.8 m horizontal floor connected with the front

and rear 1 : 20 slopes. A total of 11 wave gages, numbered 1, 2, . . ., 11 in the figure,

were installed in the breakwater vicinity to measure the free surface elevations. These

gages were horizontally located 1.13, 1.28, 1.5, 2.0, 2.25, 3.137, 3.602, 4.545, 4.985,

5.135, 5.335 m from bottom corner A. Along the bottom of the breakwater are three

pressure gages, numbered 16, 17, and 18 and located horizontally 2.5, 3.0, 3.5 m from

corner A, for pressure measurement. For this experiment, the flume was filled with

water to a depth of 0.4 m, and the sinusoidal wave, H = 0.035 m and T = 0.6 s, was

generated using the piston type wavemaker.

Table 5. Characteristics of the armor and core layers of the porous breakwater.

Layer W50

(gr)

D50

(cm)
Porosity γ

(kg/m3)

Armor 153 3.94 0.53 2,647

Core 4.31 1.18 0.49 2,607

For the numerical simulation, the domain was divided into the Boussinesq and

RANS domains. The Boussinesq domain stretched from the wavemaker (x = 0 m) to

near corner A, and was discretized into uniform ∆x = 0.03 m grids. The RANS do-

main occupied the rest of the domain, and was discretized into 430 uniform horizontal

δx = 0.03 m grids and 112 uniform vertical δy = 0.005 m grids. The simulation was
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65

0.083m
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Figure 28. Porous breakwater layers. Adapted from Vidal and Losada (2007).

run for 100 s using the dynamic time step. Referring to Garcia et al. (2004), we used

α = 1000 for both the armor and core layers, β = 0.8 for the armor and 1.2 for the

core layer.

For time benchmark, we also simulate this scenario using the RANS model alone.

The domain size for the pure-RANS simulation was 17.4 m long and 0.56 m high.

The domain was discretized as in the hybrid RANS model, resulting in 580 horizontal

grids and 112 vertical grids. The scenario was run for 100 s, and took 88 s wall clock

time per wave period to complete the simulation cycles. The hybrid model spends 50 s

clock time for this simulation. Hence, we gain 1.76 time speedup over 1.34 HYBRID
RANS

grid ratio, a 131% efficiency, in employing the hybrid model.

Figure 29 depicts the data and the calculated free surface elevation time series

at wave gages 1–11. The calculation agrees very well with the data for gages l–5, in

front of the structure. Due to the wave-structure interaction, the higher harmonics
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are created when the wave passes the structure. Both the hybrid and pure-RANS

simulation underpredict the higher harmonics. As the wave moves farther, the higher

harmonics dissipates. Similar observation was also reported in Garcia et al. (2004) in

their numerical simulation of the near-field flow employing RANS model and the same

setup with higher wave height of 0.07 m. Comparison is also made for the pressure

along the bottom of the structure at gages 16, 17, and 18 as shown in Figure 30.

Both the hybrid and pure-RANS simulations agree quite well with the data. Due to

the data unavailability, similar comparison cannot be made for the velocity; however,

model-to-model comparison, shown in Figure 31, is made, and shows that both the

hybrid and pure-RANS simulations are in very good agreement.

Hypothetical Tsunami Simulation

In many tsunami events, such as the devastating tsunami which struck the West

Sumatera Coast in 2004, the wave is generated by a sudden uplift or subsidence of

the seafloor following a massive tectonic earthquake. The vertical displacement of the

seafloor disturbs the equilibrium of the water column above it and in consequence the

the water mass spreads as a long wave to attain a new gravitational equilibrium.

In this, the last model application, the hybrid wave model is used to simulate the

propagation of a tsunami-type wave from the open ocean to the coast. The simulation

setup is given in Figure 32. The domain consists of a 1 km deep ocean connected

with a 1 : 50 seafloor. A 4 m elevation breakwater was placed along the coast in a

shallow water depth of approximately 3 m. For the hybrid simulation, the Boussinesq

model occupied 93% of the total horizontal domain length; the RANS model occupies

only 7%, which was located in the nearshore region. Both the Boussinesq and the

RANS domains were uniformly discretized into ∆x = 15 m grids for the Boussinesq
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and δx = 4 m and δy = 0.5 m grids for the RANS. The simulation was run with a

dynamic time step for 1,500 s of simulation time. The wave was generated 100 km

offshore by uplifting the sea surface to form a gaussian-shape wave with zero initial

velocity. The generated wave had an offshore wavelength of roughly 10 km, and thus

might represent the leading wave of a leading elevation tsunami.

Figure 33 shows snapshots of the wave at three different times. At t = 1, 070 s

the wave has just reached the detached breakwater with a turbulent wave front that

appears as an 18 m high wall of water moving at a speed of nearly 10 m/s. The

second snapshot in Figure 34 gives the wave at t = 1, 140 s. Just 70 s after the wave

reaches the breakwater, the coast is flooded up to 1.6 km inland. The average flow

depth in the flooded area is 13 m, with a 16 m/s average speed. The bottom part

of the figure shows the detail of the flow around the breakwater. At the upstream

side the flow moves 6 m/s and due to the breakwater acting as a sill, the velocity

increases nearly three times to 17 m/s at the leeward side of the breakwater. Also

note the regions of separation at the breakwater corners, indicated by a relatively low

fluid speed. Figure 35 shows the tsunami at maximum run up. At this stage, about

4 minutes after the wave front first reaches the breakwater, the water has inundated

2.3 km of the coastal area.

For this model test, a time benchmark is not done as in the previous model

tests. With current computing limitations, it is not practically possible to run the

whole simulation with the RANS model without some type of parallel implementation

of the model. Thus, this example demonstrates the potential of the hybrid model

to routinely tackle multi-scale problems which would otherwise require extensive,

expensive, and sophisticated computational capacity.
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CHAPTER V

PARALLEL HYBRID WAVE MODEL

Introduction

The hybrid wave model developed herein is intended for wave simulation which em-

ploys relatively coarse grid system for offshore domain and fine grid system nearshore.

For breaking wave simulation, very fine grids of a few centimeters in size must be used

to discretize the nearshore domain. Depending on the problem at hand, the nearshore

domain may stretch an area from the shoreline to a point a few hundred meters off-

shore, beyond the breaking point. With such a fine grid resolution, hundreds or

thousands of grids should be employed in both the x- and z-directions, and in con-

sequence a large system of linear equations which arises from the finite difference

formulation of the PPE equation must be solved at each time step. In such a case,

the hybrid wave model computation is expensive and not feasible to carry out in one

computer.

To allow for the large scale wave simulation, we parallelize the current hybrid

wave model to run on a cluster with distributed memory system. In this chapter,

we explain the parallelization of the current hybrid wave model. In parallelizing the

model, the whole job is distributed into several computers connected with a network

system. In distributing the job, each computer carries the same amount of com-

putational load. All the computers are running simultaneously and communicating

pertinent data with other computers. Depending on the number of computers used,

the parallel algorithm, and the architecture of the system, the computational time can

be reduced to smaller time. Since the load is distributed into several computers, the

memory used in each computer is approximately 1/P (P is the number of computers
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used) of the memory requirement in the serial run. Therefore, the problem with the

huge memory requirement hampering the serial hybrid simulation can be resolved by

parallelizing the hybrid model.

Parallelization Strategy

In a typical hybrid wave simulation, the Boussinesq model uses only a fraction of the

total computational time. Most of the computational time is used by the RANS model

for solving the linear system of equations arising from the finite difference solution

of the pressure Poisson equation. Therefore, in parallelizing the hybrid wave model,

only the RANS model is parallelized, while the Boussinesq model remains serial, as

shown shown in Figure 36. This figure shows that the system consists of P processors.

Here, the RANS domain is distributed evenly to all the processors involved in the

calculation, while the Boussinesq domain is assigned to processor-1 only.

1 2 3 4 ... P − 1 P

RANS+BOUS

Figure 36. Load distribution in parallel hybrid wave computation. P is the number of

processors involved in the calculation.

In such an implementation as shown in Figure 36, processor-1 carries more load

than the other processors. In general, for each time step, processors 2 to P complete

the calculation earlier than processor-1. Therefore, these processors must wait for

processor-1 to complete its calculation before the computation can proceed to the
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next time level.

Different from the serial hybrid model, in the parallel hybrid model the inter-

face is located in the processor where the Boussinesq model is assigned to. In the

case exemplified in the figure, this interface is located in processor-1. Accordingly,

the Boussinesq model exchange the data with the RANS subdomain residing in the

processor-1 only.

The algorithm to parallelize the hybrid wave model is very similar to the serial

hybrid algorithm. Here, we assume that there are P processors available for the

parallel computation.

1: while tn < tend do

2: Calculate in parallel the RANS provisional velocities, ũn+1 and ṽn+1, from

(2.23), using Boussinesq boundary values from time level n.

3: Calculate, iteratively, the RANS fluid pressure, pn+1, from the parallel version

of (2.25).

4: Calculate in parallel the RANS final velocities, un+1 and vn+1, from (2.24).

5: In processor-1, calculate the RANS turbulence intensity and dissipation, kn+1

and ǫn+1, using Boussinesq boundary values from time level n.

6: In processor-1, calculate the RANS VOF function, F n+1, using Boussinesq

boundary values from time level n. This happens in processor-1 only.

7: In processor-1, calculate ηn+1 and un+1
α from the Boussinesq predictor (2.3) and

(2.4), using RANS boundary values from time level n.

8: In processor-1, calculate, iteratively, ηn+1 and un+1
α from the Boussinesq cor-

rector (2.5) and (2.6), using RANS boundary values at time level n+1. At this

point, all fluid variables in both models have completed calculations for time

level n+1.

9: In parallel, change δt if flow in RANS exceeds Courant stability constraints;
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dynamic time-stepping.

10: if δtnew 6= δtold then

11: In processor-1, interpolate the new ηn−1, ηn−2, un
α, un−1

α , un−2
α at all nodes

on the Boussinesq grid.

12: end if

13: tn+1 = tn + δtnew

14: n = n + 1

15: end while

Prior to the calculation, the RANS domain is decomposed and distributed evenly

to all the processors. The decomposition is done in the x-direction only (see Fig-

ure 37). For instance, if the original domain consists of 1000 grids in the x-direction

and 100 grids in the z-direction, with P = 4, each subdomain will have 1000/4+ 2 =

252 and 100 grids in the x and z directions respectively. The 2 additional (ghost)

grids are added for receiving the data from the neighboring processors. Note that, we

do not decompose the domain in the z-direction. Hence, the data exchange between

the processors occurs in the x-direction only.

In step 2–4 and 9, the computations are in parallel, where all the processors

perform the same operations. After the completion of the parallel operations, the

pertinent variables are exchanged between the neighboring processors.

In the next sections, three important aspects of the parallel hybrid algorithm

will be discussed. The three aspects are:

1. Parallelization of the loop of arithmetic computation.

2. Communication.

3. Parallelization of the preconditioned Conjugate Gradient solver.
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Parallelization of the Loop of Arithmetic Computation

Although the RANS model is 2-D, all the major arrays in the model such as velocity,

pressure, volume of fluid, etc. are stored in one dimensional arrays. The array is

indexed row-wise, with the indices increasing from the left to the right in each row.

This indexing is shown in Figure 37. This figure shows that the original domain

consisting of 4 rows and 20 columns, a total of 80 cells, is divided into 3 subdomains,

each consists of 4 rows and 8 columns, a total of 32 cells. Here, for instance, the

pressure array is indexed as p (1), p (2), . . ., p (80) in the original domain, and p (1),

p (2), . . ., p (32) in each subdomain. Note that the array elements p(2), p(10), p(18),

p(26) in processors 2 and 3 contain the same values as the elements p(8), p(16),

p(24), p(32) in the processors 1 and 2 respectively. Similarly, the elements p(1), p(9),

p(17), p(25) in processors 2 and 3 are identical to elements p(7), p(15), p(23), p(31)

in processor-1 and 2 respectively.

With such a decomposition and array indices in the original code, a typical serial

loop in the code:

i j =1

do j =1,4

do i =1 ,20

p( i j )= f ( a , b , c , . . . )

q ( i j )=g (a , b , c , . . . )

.

.

.

i j=i j +1

enddo

enddo

is decomposed into several parallel loops in all the computers:

i j =1

do j =1,4

do i =1,8
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(b)

Figure 37. 1-D array indices in the (a) serial RANS model (b) parallel RANS model.

Gray area is ghost cells.
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p( i j )= f ( a , b , c , . . . )

q ( i j )=g (a , b , c , . . . )

.

.

.

i j=i j +1

enddo

enddo

Once the loop is completed, the arrays to which the new values are assigned must

exchange their pertinent elements with other arrays from the neighboring processors.

This will be explained in the next section.

Communication

Due to the distributed memory used in the cluster, each processor must communicate

the data with other processors during the simulation run. In the current parallel

RANS model, there are two types of communication:

1. Communication with adjacent processors.

2. Communication with all processors.

3. Communication with distant processors.

The first communication is done after any operation which affects the variables

in the left/right boundary cells. The communication copies the data from these cells

into the right/left ghost cells in the adjacent processors. In processor-1, 2, and 3

of Figure 37, for example, the right boundary cells are cells 7, 15, 23, and 31 and

the left boundary cells are cells 2, 10, 18, and 26. The affected variables in the

right boundary cells of processor-1 and 2 are copied into the left ghost cells 1, 9,

17, and 25 in processor-2 and 3. The communication is done using the nonblocking
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communication, with a receiving-process is posted first, followed by the sending-

process. The left-to-right communication, for example, executes the following code

snippet, to pass the variable p from the left to right processors:

i f ( idproc > 0) then

ca l l mpi i r ecv (p (1 ) , 4 , mpi doub leprec i s ion ,

& l e f t , 1 0 , mpi comm world , r equest , e r r o r )

ca l l mpi wait ( request , status , err )

endif

i f ( idproc < 2) then

ca l l mpi send (p (1 ) , 4 , mpi doub leprec i s ion ,

& r igh t , 10 , mpi comm world , err )

endif

and the following to pass the variable from the right to left processors:

i f ( idproc < 2) then

ca l l mpi i r ecv (p (1 ) , 4 , mpi doub leprec i s ion ,

& r igh t , 10 , mpi comm world , r equest , e r r o r )

ca l l mpi wait ( request , status , err )

endif

i f ( idproc > 0) then

ca l l mpi send (p (1 ) , 4 , mpi doub leprec i s ion ,

& l e f t , 1 0 , mpi comm world , err )

endif

where idproc is the processor’s ID (0 for processor-1, 1 for processor-2, and 2 for

processor-3). Most of the loops in the RANS model contain more than one array

to be processed and passed to adjacent processors. To avoid the unnecessary huge

latency time with multiple posts of mpi send, these arrays are first concatenated into

a single array which is then passed to adjacent processors. This way, only one latency

time is required to pass all the arrays. After completing the send-receive process,

each processor distributes the content of the array into the original arrays.

The second communication occurs when each processor requires some variable

from all the processors. For instance, in calculating the inner product of two arrays
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(vectors), the sum of the element-wise products of the array elements is calculated.

Since each processor has only some portion of those products, it must get the rest from

the other processors. This process, which is done through the call to mpi allreduce,

requires the communication with all the processors.

The third communication passes the data from one processor to others which

are not the adjacent processors. For instance, if there are 5 processors involved in

the parallel calculation, processor-1 may need to pass the data to processor-3, 4, or

5. This type of communication is specifically invoked in the the parallel conjugate

gradient solver, which is used to solve the PPE equation. This will be discussed in

detail in the next section.

Parallelization of the Preconditioned Conjugate Gradient Solver

The discretization of the PPE equation, Kothe et al. (1994), results in a system of

linear equations of the form:

Mpn+1 = S, (5.1)

where

pn+1 =













pn+1
1

...

pn+1
k













, Sn+1 =













S1

...

Sk













, (5.2)
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M =










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
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


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















A1 Bu1 · · · Du1

Bl2 A2 Bu2 Du2

... Bl3
. . .

. . .
. . .

DlIBAR
. . . DuIBAR

. . .
...

BuN−1

DlN · · · BlN AN







































. (5.3)

pn+1 is the pressure at time level (n + 1) and S is the source term which depends

on the provisional velocity at time level n + 1. The matrix M is a pentadiagonal

symmetric positive definite matrix, where IBAR is the number of real cells in the

x-direction and subscripts u and l denote the upper and lower diagonals respectively.

The size of the system N is the product of the numbers of the real cells in the x- and

y-directions. The diagonal Bl/Bu are located next to the main diagonal A and the

diagonal Dl/Du are offset IBAR from the diagonal A. For the serial model, where

the row-wise indexing is used, pn+1
1 corresponds to cell (2, 2), pn+1

1 to (2, 3), pn+1
IBAR+1

to (3, 2), · · · , and pn+1
N to (IBAR + 1, JBAR + 1). In the parallel RANS model,

however, to have a monotonically-increasing indices across the processors, we used

column-wise indices for numbering the unknowns. In such a column-wise indexing,

the first lower/upper diagonal of the serial (5.1) becomes the second lower/upper

diagonal and vice versa. The offset of the second lower/upper diagonal in the parallel

system is JBAR from the main diagonal. The unknowns pn+1
1 corresponds to cell

(2, 2), pn+1
2 to (3, 2), pn+1

JBAR+1 to (2, 3), · · · , and pn+1
N to (IBAR + 1, JBAR + 1), and

similarly for the source Sn+1. After (5.1) is solved, the unknowns are mapped into

the row-wise indexed pressure array.

In the serial RANS code, the system (5.1) is solved using the CG (Conjugate
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Gradient) method, combined with the Incomplete Cholesky decomposition, Kershaw

(1978), to accelerate the convergence. This decomposition transforms the matrix M

into LDLT +E, where L is the lower triangular matrix, D is an approximate identity

diagonal matrix, and E is the error matrix. In decomposing M, the entries of L are

forced to have the sparsity pattern as matrix M. The CG method combined with

this type of decomposition is referred to as the ICCG(0) method in Meijerink and

Vorst (1977). Using this decomposition, the original system is transformed into an

equivalent one:
[

L−1M
(

LT
)−1

]

(

L−1p
)

=
(

L−1
)

S (5.4)

which is then solved using the iterative conjugate gradient as follows (Kershaw (1978)

and Saad (2003)):

1: Compute r0 = S− Mp0, q0 =
(

LLT
)−1

r0, and q0 = z0

2: for j = 0, 1, . . . until convergence do

3: αj = (rj, zj)
/(

Mqj ,qj

)

4: pj+1 = pj + αjqj

5: rj+1 = rj − αjMqj

6: zj+1 =
(

LLT
)−1

rj+1

7: βj = (rj+1, zj+1)/(rj , zj)

8: qj+1 = zj+1 + βjqj

9: end for

As long as the
(

LLT
)−1

serves as a good approximate inverse of M, the ICCG(0)

method converges quickly.

While the pure CG solver is readily parallelizable (although not so easy proce-

dure) in the distributed memory machine, it is not the case with the ICCG above.

Prior to the iteration in the above algorithm, the decomposition LLT must be cal-
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culated. This procedure is inherently sequential. di Brozolo and Robert (1989) split

the factorization into blocks that can overlap and solve in parallel one subsystem for

each block. Boehm et al. (1991) also employed this technique for solving the linear

system arising from the neutron diffusion equation.

In the parallel RANS model, we employ the nonoverlapping split technique to

parallelize the ICCG(0). With 3 processors, for instance, this method split the ma-

trices as in Figure 38. Note that the diagonal elements of M, i.e. A, B, D, pressure

p, and source S are stored in column matrices. Hence, for instance, if the size of

the original system is 12,000, A (1 : 4000) of p1, p2, and p3 in the nonoverlapping

partitions will store the elements A (1 : 4000), A (4001 : 8000), and A (8001 : 12000)

of the serial sytem, respectively, and similarly for the other column matrices.

The preconditioner in each subsystem is evaluated based on the elements of the

submatrix (M1, M2, M3) residing in the rectangle drawn in Figure 38. Note that

the further the second subdiagonals are from the main one, the worse is the local

preconditioner. For such a matrix, the overlapping-splitting may be used to get a

better preconditioner. Depending on the distribution of the fluid in RANS cells,

the pattern (values and locations of nonzero elements) of M changes in each time

level. Therefore, in our implementation, at each new time level the preconditioner is

calculated.

The arithmetic operations involved in the ICCG algorithm may be grouped into

3 kernels:

1. Vector-vector inner product.

2. Matrix inversion.

3. Matrix-vector multiplication.

This will be discussed in the next sections.



86

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

(M) {p} {S}

p1

p2

p3

M1

M2

M3

p1

p2

p3

S1

S2

S3

Figure 38. Partitioning of the PPE equation into 3 blocks.
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Vector-Vector Inner Product

Since the scalar product of two vectors is simply the sum of all the element-wise

multiplications of all elements, and moreover, since each processor has all the elements

necessary to perform the local products, this kernel is relatively straightforward to

parallelize as follows:

dotp=dot product{ r , z}
ca l l mpi a l l r educe ( dotp , dot , 1 , mp i doub l e p r ec i s i on ,

& mpi sum , mpi comm world , err )

In the code snippet, r and z are vectors, dotp is local inner products, and dot is the

sum of all dotp’s, and is broadcast to all processors.

Although there are 3 different such products in the ICCG algorithm, i.e. (rj, zj)

in lines 3 and 7,
(

Mqj ,qj

)

in line 3, and (rj+1, zj+1) in line 7, only 2 of them are

calculated per iteration. Notice that the product (rj+1, zj+1) in line 7 can be used for

the same product in line 2 in the next iteration.

Matrix Inversion

In the ICCG method, a matrix inversion
(

LLT
)−1

should be calculated per ICCG

iteration to solve for q0 in line 1 and zj+1 in line 6 of the ICCG algorithm. The

solution to this system can be easily calculated using the Gaussian elimination.

Matrix-Vector Multiplication

Consider a simple example of multiplying a 20×20 matrix M and a 20×1 vector r

distributed into 5 processors as depicted in Figure 39. From the figure, elements 1–4
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of (M) {r} in p3, for instance, are calculated as:

1 → e9r2 + c9r8 + a9r9 + b9r10 + d9r16

2 → e10r3 + c10r9 + a11r10 + b10r11 + d10r17

3 → e11r4 + c11r10 + a12r11 + b11r12 + d11r18

4 → e12r5 + c12r11 + a13r12 + b12r13 + d12r19.

(5.5)

Note that elements r2, r3, r4, r5, r8, r13, r17, r18, and r19 are not available in p3. To get

these variables, communication with other processors that have these elements should

be done. Through this communication, p3 receives r2, r3, and r4 from p1, r5 and r8

from p2, r13 from p4, and r17 and r18 from p5. On the other hand, when p1, p2, p4,

and p5 perform similar computation, these processors receive certain elements from

p5 and other processors. To efficiently perform all these communications, prior to the

computation, each processor should have a list of processors, from where the data is

received and to where the data is sent. The processors in the list could be located

adjacent or away from and above or below the processor. Based on the location of

the processors in the list, the communication can systematically be done as follows:

! r e c e i v e data from the top , ad jacen t proce s sor s

i f ( topadj >=0)then

ca l l mpi i r ecv ( recvtopad j ( 1 ) , n , mpi doub leprec i s ion ,

& topadj , 10 , mpi comm world , r equest , e r r o r )

ca l l mpi wait ( request , status , err )

endif

! send data to bottom , ad jacen t proce s sor s

i f ( botadj<=nprocs ) then

ca l l mpi send ( sendbotadj ( 1 ) , n , mpi doub leprec i s ion ,

& botadj , 10 , mpi comm world , err )

endif

! r e c e i v e data from the bottom , ad jacen t proce s sor s

i f ( botadj<=nprocs ) then

ca l l mpi i r ecv ( recvbotad j ( 1 ) , n , mpi doub leprec i s ion ,

& botadj , 10 , mpi comm world , r equest , e r r o r )
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ca l l mpi wait ( request , status , err )

endif

! send data to top , ad jacen t proce s sor s

i f ( topadj >=0)then

ca l l mpi send ( sendtopadj ( 1 ) , n , mpi doub leprec i s ion ,

& topadj , 10 , mpi comm world , err )

endif

where topadj and botadj are the adjacent processors from the list, nprocs is the

number of processors, and n is the number of data to be sent/received. The commu-

nication with distant processors is done similarly. If there are two distant processors

in the list, as in the given example, the above send-receive is done twice. In the

RANS mesh, all the subdiagonal elements associated with empty cells are zero and

associated with the filled cells are nonzero. For efficiency, only the nonzero elements

are communicated between the processors. Since the empty and filled-cells change

with time, the number of elements n in the send-receive command changes from

one time level to the other.

After all the communications with the adjacent and distant processors are com-

pleted, all the necessary data for the matrix-vector multiplication are available in

all the processors. Then local matrix-vector multiplication for each processor can be

evaluated.

In the parallel ICCG algorithm, there is only one matrix-vector multiplication

needs to be calculated per iteration, i.e. Mqj in line 3. This result can be used later

in line 5 for the same matrix-vector multiplication.

Parallel Hybrid Model Test

To test the accuracy and performance of the parallel hybrid model, we reran the

standing wave and hypothetical tsunami simulations given in Chapter V using the
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parallel model. For this purpose, we use the Texas A&M University super computing

facility, “hydra,” an IBM HPC cluster which consists of 40 p5-575 nodes, each having

16 Power5+processors running at 1.9 GHz and 32 GB of DDR2 DRAM.

Parallel Standing Wave Simulation

The setup of this parallel model test is similar to the serial standing wave simulation

in Chapter V. The wave height and period were H = 0.05 m and T = 4 s and the

channel was 0.5 m deep and 72 m long. The channel was divided into the Boussinesq

and RANS domains, each 36 m long. The vertical side of the RANS rectangular

domain was 0.64 m high. The Boussinesq domain was discretized into 451 grids

∆xB = 0.08 m. The RANS domain was discretized into 960, δxR = 0.0375 m,

uniform horizontal grids and 64, δyR = 0.01 m, uniform vertical grids. Associated

with this setup is a system of 960×64=61,440 simultaneous linear equations, solved

at each time level of the run.

The simulation was run for 100 s using 1, 2, 4, and 8 processors. The snapshots

of the wave at different times are shown in Figure 40. The figure shows that the wave

profiles calculated using different numbers of processors are in agreement, indicating

that the information is properly exchanged between/among processors. In the per-

formance test, the model was run using two different configurations of processors. In

the first run, all the processors were located in the same node which has 16 processors

sharing 32 GB of memory. In the second test, the processors were evenly distributed

between two different nodes. For instance, in the 4-processor run, the first 2 pro-

cessors were located in, say node-1, and the second 2 processors in node-2. Table 6

presents the performance of the parallel hybrid model in simulating the standing wave

motion. In general, the model performs well in both the one-node and two-node runs.

As expected, the one-node run outperforms the two-node runs because the communi-
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cation between the processors in different nodes requires more time than that in the

same node.

The iterations in the PPE equation for all parallel runs are twice as many as the

the iterations in the serial run, which is due to less information is exchanged in the

nonoverlapping blocks, di Brozolo and Robert (1989). The iteration number in pICCG

solver is dependent on the number of grids used in the vertical direction as shown in

the simple sensitivity analysis in Table 7. This table shows that as the number of

grids in y-direction increases, the number of pICCG iteration also increases. Note that

in the nonoverlapping block method, the number of points in the gap between two

consecutive blocks is equal to the number of grids in the y-direction. Accordingly,

the more grids in the y-directions the more information is not exchanged between

processors, and expectedly the more iterations are required to reach convergence,

as confirmed in the table. The number of iterations is relatively constant as the

number of grids increases in the x-direction. Using the overlapping blocks reduces the

number of iterations, as more information is exchanged between processors, di Brozolo

and Robert (1989). For distributed memory machine, this method will require two

extra communications for averaging the solution in the overlapped area between the

blocks. Since the cases in the reference were tested on a vector multiprocessor, which

presumably used shared memory system, such communication may not be an issue.

In summary, the implementation of the overlapping blocks reduces the number of

iterations, but adds two extra communications per iteration.

Parallel Hypothetical Tsunami Simulation

In this parallel model test, hypothetical tsunami simulation as presented in the (serial)

hybrid model test was employed. The domain size was 101.5 km and divided into

95 km Boussinesq subdomain and 2 km RANS subdomain. The first subdomain
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Figure 40. Snapshots of standing wave motion simulated using the parallel hybrid wave

model.
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Table 6. Performance of parallel hybrid model in standing wave simulation.

1 Node† 2 Nodes‡

Procs time(s) Speedup Eff(%) time(s) Speedup Eff(%) Iter§

1 4,974 1.0 100 4,947 1.0 100 31

2 2,626 1.9 95 2,995 1.7 83 59

4 1,319 3.8 94 1,714 2.9 72 61

8 703 7.1 88 1,087 4.6 57 62

† All processors are in the same node with shared-memory.

‡ Processors are distributed into 2 nodes with distributed-memory.

§ Average number of iterations per time step in the pICCG solver.

Table 7. Average number of pICCG iterations per time step in the standing wave sim-

ulation for various combinations of number of grids in the x- and y-directions

(nx, ny).

Procs (480, 32)† (480, 64)‡ (480, 128)§ (960, 64)‡

1 24 23 22 22

2 31 40 50 40

4 32 41 50 40

8 33 43 51 40

† δx = 0.0375m, δy = 0.02m.

‡ δx = 0.0375m, δy = 0.01m.

§ δx = 0.0375m, δy = 0.005m.
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was discretized uniformly into 7,000 grids, each 14.2 m long, and the second was

also discretized uniformly into 1,000 horizontal and 100 vertical grids, each 2 m and

0.5 m long respectively. The simulation was initiated by 10 m high gaussian elevation

offshore and was run for 1,350 s using 1, 2, 4, and 8 processors. As in the previous

test, the subdomains were distributed into 1 node and evenly into 2 different nodes.

In all the simulations, the turbulence was active.

Figure 41 shows the snapshots of the wave as it is approaching the breakwater.

The snapshots are plotted based on the 8-CPU run. This figure clearly indicates that

the information is properly passed between/among processors as the wave profiles are

continuous across the subdomains. The clock times for the 4 runs are presented in

Table 8.

Table 8. Performance of parallel hybrid model in hypothetical tsunami simulation.

1 Node† 2 Nodes‡

Procs time(s) Speedup Eff(%) time(s) Speedup Eff(%) Iter§

1 8,123 1.0 100 8,123 1.0 100 20

2 5,427 1.5 74.8 5,819 1.4 69.8 38

4 2,903 2.8 70.0 3,312 2.5 61.3 38

8 1,637 5.0 62.0 2,066 3.9 49.1 38

† All processors are in the same node with shared-memory.

‡ Processors are distributed into 2 nodes with distributed-memory.

§ Average number of iterations per time step in the pICCG solver.
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Figure 41. Snapshots of 8-CPU parallel simulation of hypothetical tsunami propaga-

tion.
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CHAPTER VI

PARALLEL COMPUTATION OF A HIGHLY NONLINEAR

BOUSSINESQ EQUATION MODEL

THROUGH DOMAIN DECOMPOSITION∗

Synopsis

Implementations of the Boussinesq wave model to calculate free surface wave evolu-

tion in large basins are, in general, computationally very expensive, requiring huge

amounts of CPU time and memory. For large scale problems, it is either not affordable

or practical to run on a single PC. To facilitate such extensive computations, a paral-

lel Boussinesq wave model is developed using the domain decomposition technique in

conjunction with the message passing interface (MPI). The published and well-tested

numerical scheme used by the serial model, a high-order finite difference method, is

identical to that employed in the parallel model. Parallelization of the tridiagonal

matrix systems included in the serial scheme is the most challenging aspect of the

work and was accomplished using a parallel matrix solver combined with an efficient

data transfer scheme. Numerical tests on a distributed-memory supercomputer show

that the performance of the current parallel model in simulating wave evolution was

very satisfactory. A linear speedup is gained as the number of processors increased.

These tests showed that the CPU time efficiency of the model was about 75−90%.

∗Reprinted with permission from “Parallel Computation of a Highly Nonlinear
Boussinesq Equation Model Through Domain Decomposition” by Khairil Irfan I.
Sitanggang and Patrick J. Lynett, 2005. International Journal for Numerical Methods
in Fluids, 49, 57–74. Copyright©2005 by John Wiley & Sons, Ltd.
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Introduction

The calculation of wave propagation from deep to shallow water has long been a chal-

lenging problem among the ocean/coastal engineers and scientists. As wave prop-

agates from deep to shallow water, the wave field is transformed due to physical

processes such as shoaling, refraction, and diffraction. The ability to accurately eval-

uate wave transformation depends not only on the computational method used to

solve the equations governing the wave propagation, but also on the chosen governing

equations themselves.

The Boussinesq equation model has been used for decades to simulate wave

propagation from relatively deep to shallow water. Peregrine (1967) derived the

“conventional,” depth-averaged, Boussinesq equation which can be applied on variable

bathymetry. This equation can be used for simulating nonlinear, multidirectional

waves with kh values less than roughly 0.3, where k is the wave number and h the

water depth. The application of this equation for larger kh does not produce accurate

prediction of wave transformation due to a poor description of frequency dispersion.

In the last decade, the accuracy limitations of the Boussinesq-type model have been

pushed into deeper water, led by the works of Madsen and Sørensen (1992) and Nwogu

(1993). By modifying the depth-averaged Boussinesq model through manipulations of

the dispersive terms Madsen and Sørensen (1992) created a model with good accuracy

through the intermediate water regime. Nwogu (1993) expressed the Boussinesq

equations in terms of the velocity at some arbitrary elevation, and with the proper

choice of this elevation developed a model with linear accuracy to kh ≈ 3. While these

works increased dispersive accuracy, they are still limited by the weakly nonlinear

assumption. Wei et al. (1995) derived a highly nonlinear Boussinesq equation model

by keeping nonlinear dispersive terms in the model, which were truncated by Nwogu
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(1993). This model of Wei et al., exhibits excellent linear dispersive properties to

kh ≈ 3, while shoaling, wave kinematics, and nonlinear interactions are generally

well captured to kh ≈ 1. A number of researchers have made modifications and

enhancements to this model, including Kennedy et al. (2001) to optimize the model

nonlinearity and Lynett and Liu (2002) who included additional terms associated with

the time dependency of the bathymetry, in order to examine the waves generated by

submarine landslides. In solving the highly nonlinear equations, Lynett and Liu

(2002) used the high order finite difference method given by Wei and Kirby (1995),

however, with slight differences in how some of the nonlinear dispersive terms were

treated.

Further increasing the deep-water accuracy of the Boussinesq-type model are a

number of “high-order” derivations. Gobbi et al. (2000) extended the model of Wei

et al. (1995) to the next order in (kh)2, doubling the linear dispersion accuracy to

kh ≈ 6. Madsen et al. (2002), building off the derivation of Agnon et al. (1999), used

multiple expansions at various elevations leading to a model with linear and nonlinear

accuracy to kh ≈ 40. Lynett and Liu (2004a) and Lynett and Liu (2004b) created a

“multi-layer” concept, wherein the water column was divided into arbitrarily spaced

layers. Accuracy of this model is dependent on the number of layers used, and can

be extended into extremely deep water.

Application of the Boussinesq equations covers a broad spectrum of ocean and

coastal problems of interest, from wind wave propagation in intermediate and shal-

low water depths to the study of tsunami wave propagation across large ocean basins.

In many cases of practical interest, large physical domains
(

O
(

10 km2
))

, which re-

quire a huge number of finite difference computational grids, are inevitable. In such

circumstances, not only can the PC memory size be too small to carry out the compu-

tations, but also a very large CPU time is required. To facilitate such computational
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demand, computational tasks can be distributed into several processors so that each

processor is responsible for a smaller computational subtask only. This idea underlies

the present work of parallelizing a serial Boussinesq model. The parallel Boussinesq

model to be developed will use the algorithm of the serial model, employing domain

decomposition to create an efficient parallel model, capable of simulating wind waves

in coastal basins
(

O
(

10 km2
))

on modest-sized clusters. The implementation of the

proposed parallel algorithm on the distributed system is done by employing the com-

monly used message passing interface (MPI) library, Snir et al. (1996).

Governing Equations

The parallel Boussinesq model developed in this paper is based on its serial coun-

terpart as can be found in Lynett and Liu (2002). The governing equations that

are used in this serial model (and also in this paper) consist of the two-dimensional

depth-integrated continuity equation:

∂H

∂t
+ ∇ · (Huα) −∇ ·

{

H

[(

1

6

(

η2 − ηh + h2
)

−
1

2
z2

α

)

∇S+

(

1

2
(η − h) − zα

)

∇T

]}

= 0 (6.1)

and the momentum equation:

∂uα

∂t
+

1

2
∇ (uα · uα) +

g∇η +
∂

∂t

{

1

2
z2

α∇S + zα∇T −∇

(

1

2
η2S + ηT

)}

+

∇

{

∂η

∂t
(T + ηS) + (zα − η) (uα · ∇) T+

1

2

(

z2
α − η2

)

(uα · ∇) S +
1

2
(T + ηS)2

}

= 0 (6.2)
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where S = ∇ · uα, T = ∇ · (huα) + ∂h/∂t, h = depth, η = free surface elevation,

H = h + η, uα = horizontal velocity at a reference level, zα , and t = time.

In both equations, it is assumed that the frequency dispersion is weak and the

nonlinearity can be large. The velocity variable, uα, is evaluated at an arbitrary eleva-

tion, zα (in the present work, zα = −0.531h), which is chosen such that the resulting

frequency dispersion characteristics of the Boussinesq model agree well with linear

theory, Nwogu (1993). Equations (6.1) and (6.2) differ from the equations given by

Wei and Kirby (1995) in the inclusion of the time derivatives of the depth (ht, htt) to

account for temporal bottom profile changes that occur during landslide/earthquake,

which is one of several possible sources of tsunami.

Finite Difference Solution

The finite difference solution of the governing equations (6.1) and (6.2) is given in

Lynett and Liu (2002), which is based on the formulation presented in Wei and

Kirby (1995). The finite difference scheme consists of the third-order in time explicit

Adams-Bashforth predictor step and fourth-order in time implicit Adams-Bashforth

corrector step, Press et al. (1992). The spatial derivatives in (6.1) and (6.2) are

evaluated to fourth-order accuracy. Details of the finite difference method can be

found in Lynett and Liu (2002). Here, for convenience, the corresponding finite

difference discretization is given. The explicit predictor equations are

ηn+1
i,j = ηn

i,j + 1
12

∆t
(

23En
i,j − 16En−1

i,j + 5En−2
i,j

)

(6.3)

Un+1
i,j = Un

i,j + 1
12

∆t
(

23F n
i,j − 16F n−1

i,j + 5F n−2
i,j

)

+2 (F1)
n
i,j −3 (F1)

n−1
i,j +(F1)

n−2
i,j (6.4)

V n+1
i,j = V n

i,j +
1
12

∆t
(

23Gn
i,j − 16Gn−1

i,j + 5Gn−2
i,j

)

+2 (G1)
n
i,j−3 (G1)

n−1
i,j +(G1)

n−2
i,j (6.5)
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and the implicit corrector equations:

ηn+1
i,j = ηn

i,j + 1
24

∆t
(

9En+1
i,j + 19En

i,j − 5En−1
i,j + En−2

i,j

)

(6.6)

Un+1
i,j = Un

i,j + 1
24

∆t
(

9F n+1
i,j + 19F n

i,j − 5F n−1
i,j + 5F n−2

i,j

)

+

2 (F1)
n
i,j + (F1)

n+1
i,j − (F1)

n
i,j (6.7)

V n+1
i,j = V n

i,j + 1
24

∆t
(

9Gn+1
i,j + 19Gn

i,j − 5Gn−1
i,j + 5Gn−2

i,j

)

+

2 (G1)
n

i,j + (G1)
n+1
i,j − (G1)

n

i,j , (6.8)

where

E = −ht − [(η + h) u]x − [(η + h) v]y +

{

(η + h)
[

1
6

(

η2 − ηh + h2
)

− 1
2
z2

α

]

Sx +
(

1
2
(η − h) − zα

)

Tx

}

x
+

{

(η + h)
[

1
6

(

η2 − ηh + h2
)

− 1
2
z2

α

]

Sy +
(

1
2
(η − h) − zα

)

Ty

}

y
(6.9)

F = −1
2

[(

u2
)

x
+

(

v2
)

x

]

− gηx − zαhxtt − zαhxt + (ηhtt)x − [E (ηS + T )]x −

−
[

1
2

(

z2
α − η2

)

(uSx + vSy)
]

x
− [(zα − η) (uTx + vTy)]x −

1
2

[

(T + ηS)2]

x
(6.10)

F1 = 1
2

(

η2 − z2
α

)

vxy − (zα − η) (hv)xy + ηx

[

ηvy + (hv)y

]

(6.11)

G = −1
2

[

(

u2
)

y
+

(

v2
)

y

]

− gηy − zαhytt − zαhyt + (ηhtt)y − [E (ηS + T )]y −

−
[

1
2

(

z2
α − η2

)

(uSx + vSy)
]

y
− [(zα − η) (uTx + vTy)]y −

1
2

[

(T + ηS)2]

y
(6.12)

G1 = 1
2

(

η2 − z2
α

)

uxy − (zα − η) (hu)xy + ηy [ηux + (hu)x] (6.13)

U = u + 1
2

(

z2
α − η2

)

uxx + (z − η) (hu)xx − ηx [ηux + (hu)x] (6.14)
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V = v + 1
2

(

z2
α − η2

)

vyy + (z − η) (hv)yy − ηy

[

ηvy + (hv)y

]

(6.15)

S = ux + vy , T = (hu)x + (hv)y + ht. (6.16)

The procedure to solve governing equations (6.1) and (6.2) is to first predict

the solution (ηn+1, un+1, and vn+1) via the explicit predictors (6.3, 6.4, 6.5), then

solving (6.14) and (6.15) to determine un+1 and vn+1 from the intermediate variables

U and V . To find un+1 and vn+1 from (6.14) and (6.15), tridiagonal systems of linear

equations must be solved. Next, the predicted values must be iterated using the

implicit correctors (6.6, 6.7, 6.8) until the solution converges. During each iteration

of the corrector step, the tridiagonal systems of (6.14) and (6.15) must also be solved.

For the iteration to halt, the maximum local relative error, which is defined as

∣

∣

∣

∣

wn+1 − wn+1
∗

wn+1

∣

∣

∣

∣

, (6.17)

where w represents η, u, and v and w∗ are the previous iterated values, must be less

than 10−4.

Parallelization Strategy

The higher order finite difference scheme, Lynett and Liu (2002), for solving the

Boussinesq equations has an identical spatial finite difference stencil for each time

level (i.e. n − 2, n − 1, n, and n + 1) and for both the predictor and corrector steps

(Figure 42). In both steps, the calculations of the free surface elevation, ηn+1, and the

velocity groupings, Un+1 and V n+1, are iterative and so are independent, and readily

parallelizable, calculations. However, this is not the case with the computations of

un+1’s and vn+1’s in (6.14) and (6.15). Here, a tridiagonal system of linear equations

must be solved for each row of the computational grids to get the corresponding un+1’s

and for each column of the computational grids to get the corresponding vn+1’s. With
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the commonly used LU-decomposition (Thomas) algorithm, Krechel et al. (1989), for

solving a tridiagonal system of linear equations, the lower and upper eliminations

of the corresponding lower and upper diagonals of the system must be conducted in

sequence, starting from the first element to the last for the lower diagonal elimina-

tion and in the reverse direction for the upper diagonal elimination. Hence, there

are strong dependencies among all processes in this algorithm, which makes it suit-

able only for sequential calculation, Hockney and Jesshope (1981), and difficult to

efficiently parallelize.

x

y

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc b bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bc bc bc

bcbcbcbc
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bcbcbcbc

bc bc bc bc

bc bc bc bc

bc bc bc bc

Figure 42. Finite difference stencil of the higher order finite difference solution of the

Boussinesq equation.

Thus, with the Boussinesq model, there is a relatively straightforward and ex-

pectedly efficient parallelization, as well as an equally difficult one. The calculations

of ηn+1, Un+1, and V n+1 in both the predictor (6.3 to 6.5) and corrector (6.6 to 6.8)

steps are highly parallelizable. The tridiagonal system of the linear equations (6.14)

and (6.15) that arises from the finite difference scheme is not easily parallelized. How-

ever, comparing the amount of the arithmetic operations involved in the evaluations

of ηn+1, Un+1, and V n+1 via the predictor/corrector equations with those of un+1 and
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vn+1 from the tridiagonal equations, it is apparent that the former far outnumbers

the latter. Hence, if an efficient parallel tridiagonal solver can be developed, the serial

solution algorithm can be used without any significant modifications to parallelize the

Boussinesq model.

In the present work, the domain decomposition method is used to parallelize

the Boussinesq model. In this method, the parallel algorithm is very similar to the

serial algorithm with some additional routines added to facilitate the communication

between processors. Using this method, all the processors involved in the parallel

calculations basically perform the same computational operations. The only difference

is in the data being processed in each processor. There are three important aspects

in our parallel algorithm: (1) domain decomposition, (2) communication, and (3)

parallel solver of the tridiagonal system of the simultaneous linear equations. The

three aspects are discussed in the following sections and the parallel algorithm is

presented as a flowchart given in Figure 43.

Domain Decomposition

The physical/computational domain which is used in Wei et al. (1995) and Lynett and

Liu (2002) and in this paper was rectangular in shape. In the domain decomposition

method, the rectangular domain is divided into several smaller rectangular subdo-

mains, where the number of subdomains is equal to the number of processors used.

With 4 processors, for example, there are three possible ways of decomposing the do-

main into equal-area parts as depicted in Figure 44. The best decomposition depends

on the architecture of the system being used and can be automatically determined in

MPI.

An important aspect in decomposing the domain is the load balancing, i.e. all

processors must have equal or almost equal amount of data to be processed. If the
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number of grid points (nodes) is divisible by the number of processors, the nodes in

each processor is simply the ratio of the number of nodes to processors. If it is not,

we distribute the remainder on the first m processors, where m is the remainder. For

instance, if there are 1, 000 nodes and three processors used along the x-direction, the

first two processors will have one node more than the last processor, which results

in a load balance in the corresponding direction. Load balancing must be created in

both x- and y-directions.

From the finite difference stencil in Figure 42, it is apparent that the computation

at an arbitrary point requires values from at most five nodes from the left, right,

bottom, and top. Nodes located within five indices from a boundary must receive

values from the processor on the opposite side of that boundary. To accommodate

these near boundary nodes, the size of each subdomain is increased by five imaginary

nodes in all directions. This is manifested in the sizes of all the related arrays.

Communication

Two types of communications occur in this parallel model. The first is the communi-

cation between two adjacent processors that occurs during the message passing, and

the second is the interprocessor communication occurring when the parallel model

solves the tridiagonal systems of linear equations. The latter will be explained in the

next section.

In passing the data from one processor to another, an efficient and safe com-

munication must be developed. To efficiently exchange the data between adjacent

processors, the data, which consist of five arrays of horizontal and/or vertical grid

points, are first stored in a contiguous memory (which can be facilitated in MPI)

prior to executing the sending processes. At the same time contiguous memories of

the same size as used in the sending processes are created to receive the data from
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start

Decompose domain into

load balanced subdomains

Read input data

Determine initial con-

dition: (u, v, η)1,2,3

Evaluate:

(E, F, F1, G, G1)1,2,3

n = 3, · · · , N

Evaluate: (η, U, V )1,2,3

Is #procs in

x-direction = 1

Solve un+1 using par-

allel tridiagonal solver

Solve un+1 using se-

rial tridiagonal solver

Is #procs in

y-direction = 1

Solve vn+1 using par-

allel tridiagonal solver

Solve vn+1 using se-

rial tridiagonal solver

Pass (u, v, η)n+1 to

neighboring processors

Repeat until

error < 10−4

Similar process

as PREDICTOR

Interchange variables:
(u, v, η, E,F, F1, G, G1)n−2 = (u, v, η, E,F, F1, G, G1)n−1

(u, v, η, E,F, F1, G, G1)n−1 = (u, v, η, E, F, F1, G, G1)
n

(u, v, η, E, F, F1, G, G1)n = (u, v, η, E, F, F1, G, G1)n+1

end

YN

YN

Figure 43. Flowchart of parallel Boussinesq model calculation.
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the sending processes. At this point, the data are ready for sending and receiving

processes.

Rectangular

physical/computational

domain

0 1 2 3

3

2

1

0
3

21

0

Figure 44. Three possible ways of decomposing a rectangular domain. The numbers

in the subdomains represent the processor id’s.

To achieve a safe communication process, we use the nonblocking communica-

tion mpi isend and mpi receive, with the latter being posted first and followed by

the former. Since the computational domain may be very large, requiring a large

number of grids and in consequence a large amount of memory, the use of nonblock-

ing communication can prevent the system from “memory starving” that may cause

deadlock. With a large number of grids, the use of nonblocking communication may

potentially improve the performance of a parallel program, Snir et al. (1996).

Since the problem at hand is two-dimensional, the communication takes place in

both the x- and y-directions (Figure 45). In this parallel model, the communication
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in the x-direction is first conducted and then followed by the communication in the

y-direction. To prevent overlapping communication at the corners of domain, the

former communication conveys only the data in the real area, which is 5 × ny points

(ny is the number of real grids in the y-direction in one processor) and the latter

is responsible for the horizontal real area and the imaginary corner areas for a total

of 5 × (nx + 5) or 5 × (nx + 10) points, depending on whether there is one or two

processors on the corresponding sides of the processor (nx is the number of real grids

in the x-direction in one processor).

Proc-2 Proc-5 Proc-8 ny

5

5

nx
5 5

Proc-1 Proc-4 Proc-7

Proc-0 Proc-3 Proc-6

Figure 45. Message passing scheme in parallel Boussinesq model. White is real area,

green/yellow is imaginary area; similar-color areas exchange data.
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Parallel Solver of Tridiagonal System

The evaluation of un+1 and vn+1 in (6.14) and (6.15) involves the process of solving

a series of independent tridiagonal systems of linear equations in both the x- and

y-directions. If the physical domain is divided into a number of subdomains in one

or both directions, the tridiagonal systems of equations, which are now distributed

over the processors, must be solved in parallel.

The parallel solution of a tridiagonal system of linear equations is much more

difficult than its serial counterpart, which can easily and efficiently be solved by, for

example, using the LU decomposition method. Much research has been done to solve

the tridiagonal system of equations in parallel, Wang (1981), Krechel et al. (1989),

Mattor et al. (1995), among others.

To solve for u and v from U and V in (6.14) and (6.15), which is the primary

challenge to parallelize this model, we used the algorithm proposed by Mattor et al.

(1995). The stability of this algorithm is similar to that of the serial LU decompo-

sition, which is a desirable feature. The idea in this algorithm is analogous to the

solution of a linear inhomogeneous ordinary differential equation, where the solution

is the sum of the particular solution and the linear combination of the homogenous

solutions:

xp = xR
p + ζUH

p xUH
p + ζLH

p xLH
p , (6.18)

where xp is the solution of the system, xR
p , xUH

p , and xLH
p are the particular, upper

homogeneous, and lower homogeneous solutions of the inhomogeneous differential

equation analogy and ζUH
p , ζLH

p are the coefficients which depend on the coupling to

the neighboring solutions. The subscript p indicates that the corresponding solution

is local to processor p. Detail of the procedure is given in Mattor et al. (1995).

Prior to evaluating the coefficients ζUH
p , ζLH

p , the first and the last elements of
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xUH
p , and xLH

p , and xR
p of all processors were concatenated to form a (2P−2)×(2P−2)

tridiagonal system with ζUH
p , ζLH

p as the unknowns and P is the number of proces-

sors. Although the algorithm to construct the tridiagonal system, which involved

intercommunication among processors, was given in the original paper, here we em-

ployed the collective communication routine mpi allgather of MPI with OutData

variable, Mattor et al. (1995), which carries the first and last elements of xUH
p , xLH

p ,

and xR
p , acting as the sending variable and another variable of size 8P as the re-

ceiving variable. Note that, after the call to mpi allgather, all processors received

an identical 8P receiving-variable which contains all OutData’s from all processors,

ordered from the smallest to the highest processor-ID. The use of collective commu-

nication simplifies the concatenation process and is more efficient on the employed

computational platform than the hand-coded communication, Pacheco (1997).

The number of the systems of linear equations is equal to the number of grids

used in the x- or y-direction. To efficiently solve those systems, the particular and

homogenous solutions of all subsystems were first evaluated, followed by the distribu-

tion of the corresponding xUH
p ’s, xLH

p ’s, and xR
p to all processors using the collective

communication, and completed through evaluation of the final solution via (6.18).

Note that since the calculation of un+1’s and vn+1’s are independent to each other,

the order of these calculations is not important, i.e. we can first calculate vn+1’s

followed by the un+1’s or vice versa.

Parallel Model Testing

The present parallel model was tested for both accuracy and performance. To examine

accuracy, the linear and weakly nonlinear versions of the model were tested using two

idealized scenarios having known analytic solutions. The first idealized case was the
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linear wave evolution in a closed rectangular wave basin. The parallel model was

run under the same condition as the idealized case and the result was compared with

the analytically calculated profiles. In the second test, the propagation of a weakly

nonlinear solitary wave along a long, straight, constant-depth channel was considered.

The nonlinear mode of the parallel model was expected to produce a solitary wave

propagating along the channel with no change in wave form.

To test the performance, the parallel model was used to calculate the wave evo-

lution in a rectangular closed wave basin under three different modes: linear, weakly

nonlinear (first order nonlinear terms only), and highly nonlinear (complete equations

given by (6.1) and (6.2)). The model was run using different numbers of processors

and the run time for each run was recorded to observe scalability of the model. As a

final test of the parallel model, the experimental setup of Vincent and Briggs (1989)

for a regular wave propagating over a 3-D shoal was simulated. The experimental

setup was known to be very nonlinear (e.g. Lynett and Liu (2004a)). This practical

application of the model utilized the highly nonlinear equations and the efficiency of

the model was discussed.

The computer system used for testing the accuracy and performance of the par-

allel model was an SGI Altix 3700 supercomputer which consists of 128 1.3-GHz

Itanium-2 processors in 32 four-CPU nodes connected through gigabit ethernet, with

256 Gigabytes of total distributed memory. The MPI software used on this platform

is MPICH, and the Fortran compiler is Intel Fortran Compiler. The compiler switches

used are -O3 -tpp2. For the Vincent and Briggs (1989) comparison, an additional

small cluster was used for benchmarking. This small cluster consists of 8 2.2-GHz

Opteron processors in 4 two-CPU nodes connected through dual gigabit Ethernet.

The MPI software used on this platform is LAM and the Fortran compiler is PGI.

The compiler switches used were -fastsse -O4 -tp=amd64.
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Model Accuracy Test

Wave Evolution in a Closed Rectangular Wave Basin

In this idealized case, the wave evolution in a closed rectangular wave basin of constant

depth was considered. The physical setup of this test was similar to the one used in

Wei and Kirby (1995). The wave basin was a square 7.5×7.5 m2 basin with a constant

depth of 0.45 m. The initial wave profile was a Gaussian hump shape profile

η0 = H0e
−2[(x−3.75)2+(y−3.75)2], (6.19)

where η0 is the initial free surface elevation, H0 was the wave amplitude (0.45 m in

this test) and the initial velocity was zero. The wave basin wall was an impermeable

and reflecting wall.

For this setup, the parallel linear model was run for 50 s of model time. The

spatial and time grid sizes for the run were 0.075 m and 0.0143 s, respectively, a total of

100 grids along both x- and y-sides and 3,500 time steps. In each system, 16 processors

are used with three different decompositions: 16×1, 8×2, and 4×4. Snapshots of

the free surface evolution are shown in Figure 46. The temporal variation of the free

surface elevation at the center of the basin, x = 3.75 m, y = 3.75 m, was recorded and

compared with the one calculated by the analytic solution. This comparison is given in

Figure 47. The temporal free surface elevations calculated by the parallel model agree

very well with the one calculated by the analytical model. The parallel model worked

well with the three very different configurations of processors. The run times for these

three configurations were also recorded during the runs; the 16×1 configuration took

about 46.1 s of CPU time, the 8×2 took about 21.6 s, and the 4×4 took 17.0 s. For

comparison, similar run with 1 processor took about 62.2 s. The three parallel runs

demonstrate that the 4×4 decomposition resulted in the best performance. With such
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configurations as 16×1 and 8×2, even if the load of arithmetic operations involved in

each processor was equal to that in the 4×4 configuration, the communication load in

the previous two was heavier than in the 4×4. Comparing the 4×4 parallel and serial

run times, we gained a speedup of 3.7 or an efficiency of 23%. With a small number

of grids (nx = 100 and ny = 100), the cost of communication was more expensive

than the local arithmetic operational cost, hence resulted in small efficiency. This

efficiency, as will be shown later, will increase as the number of grids increases.

Solitary Wave Propagation Along a Straight Long Channel

Next, the weakly nonlinear mode of the parallel model is tested using an idealized

case of solitary wave propagation in a straight long channel. This idealized case can

be found in Wei and Kirby (1995). The velocity and the surface elevation of the

solitary wave are analytically given by

η = A1sech
2 [B (x − Ct)] + A2sech

4 [B (x − Ct)] (6.20)

u = Asech2 [B (x − Ct)] , (6.21)

where A, B, C, A1, and A2 are constants which depend on the physical setup of the

model, Wei and Kirby (1995). In this case, the channel depth was 0.45 m, the wave

amplitude was 0.04 m, and the length of the channel was 450 m. The domain was

discretized into 1,500 equally spaced computational grids, each was 0.3 m long. The

wave was initially located at x = 80 m.

The parallel weakly nonlinear model was run for 200 s using 16 processors. In the

course of its propagation, the waves at t = 0, 40, 80, 120, and 160 s were recorded.

These snapshots are given in Figure 48. This figure shows that the numerically-

calculated solitary wave propagated in the positive x-direction with constant speed,
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Figure 46. Linear Gaussian-wave profiles at three different times calculated using 16

processors.
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Figure 47. Temporal variation of the free surface elevation at the center of the wave

basin calculated by the analytic solution and the parallel numerical models

using 16 processors.

i.e. the distances between two consecutive wave forms were constant, and wave height

and length agree well with the analytic solution. This example also clearly shows

that information was passed correctly from subdomain to subdomain.

Performance Test

Performance of the parallel model was tested using a previous idealized case: wave

evolution in a closed rectangular wave basin. The purpose of this performance test

was to observe the scalability of the model for various domain sizes. Three different

domain sizes were considered and presented in Table 9. For all simulations, the

depth of the wave basin and the initial wave height were the same, d = 0.45 m and

H = 0.045 m, respectively.

The model was run under three different modes: linear, weakly nonlinear, and

fully nonlinear. In all parallel runs, even numbers of processors were used: 2, 4, 6,

8, 10, 12, 16, 18, 20, 24, 30, and 32 processors. Figure 49 shows the speedup and
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Figure 48. Solitary wave propagation along a long straight channel (full line is analytic

solution, dashed line is parallel model) calculated using 16 processors.
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Figure 49. Parallel computational speedup/efficiency of the parallel Boussinesq model

in computing the evolution of the Gaussian-wave in a rectangular basin.
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Table 9. Domain setup for parallel model performance.

Test lx*(m) ly†(m) nx‡ ny§

1 50 50 500 500

2 100 100 1000 1000

3 2000 2000 2000 2000

* Length of the x-side of the basin.
† Length of the y-side of the basin.
‡ Number of grids in the x-direction.
§ Number of grids in the y-direction.

efficiency of the parallel calculation for different numbers of processors used. Here, the

speedup was defined as the ratio of the parallel run-time to the run-time of the serial

version of the Boussinesq model (using a single processor and the Thomas algorithm

to solve the tridiagonal systems). Figure 49 shows that the overall performance of the

model is very good. The efficiency of the model decreases as the number of processors

increases which is apparent in the case of 500×500 and 1000×1000 domains. The

rate of the efficiency decrease is faster for smaller domain. This is due to the ratio

of arithmetic (addition/subtraction and multiplication/division) operation time to

communication time decreasing faster for domains with smaller number of nodes.

The performance of the model improves as the number of grids increases; a favorable

feature of a parallel model which is intended for simulation on ever-increasing domain

sizes. In general, it appears that the efficiency is at least 80% for subgrid sizes of

200×200 or greater.

Finally, simulation of a 3-D experimental setup is presented. One of the most

frequently studied 3-D water wave problems is that of wave interaction with a sub-
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merged shoal (e.g. Berkhoff et al. (1982)). Here, one of the experiments of Vincent

and Briggs (1989) was numerically recreated. An elliptic shoal 6.1 m long and 7.92 m

wide was placed in a wave tank which was 35 m wide and 29 m long. The shoal

had a maximum height of 30.5 cm in 45.7 cm of water. The exact mathematical

representation of the shoal can be found in Vincent and Briggs (1989). While many

different wave conditions were examined experimentally, here only a single regular

wave case was simulated with T = 1.3 s and H = 4.8 cm. The simulations used the

highly nonlinear set of the Boussinesq equations.

Table 10. Vincent and Briggs shoal, fully nonlinear, [nx, ny] = [622, 515].

Opteron cluster Itanium-2 cluster

# of CPUs Wall clock time(s)
wave period

Efficiency Wall clock time(s)
wave period

Efficiency

1 362 2,888

2 187 0.97 1,586 0.91

4 94 0.96 831 0.87

6 71 0.85 549 0.88

8 56 0.81 425 0.85

16 244 0.74

32 153 0.59

Figure 50 gives snapshots of the waves as they transformed over the shoal. The

waves narrowed and steepened as they moved over the shoal, while refraction focused

wave energy behind the shoal. The result is a complex, highly nonlinear, and multi-

directional wave field. The numerical comparisons with experimental data, for any

number of processors used, are identical to those presented in Lynett and Liu (2004a)
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Table 11. Vincent and Briggs shoal, fully nonlinear, [nx, ny] = [1242, 1029].

Opteron cluster Itanium-2 cluster

# of CPUs Wall clock time(s)
wave period

Efficiency Wall clock time(s)
wave period

Efficiency

1 3,994 20,670

2 2,034 0.98 11,351 0.91

4 1,005 0.99 5,802 0.89

6 686 0.97 44,24 0.78

8 539 0.93 3,332 0.78

16 1,715 0.75

32 858 0.75

for the one-layer model (equivalent to the equations of Wei et al. (1995)), exhibiting

very good agreement. Hence, these identical comparisons will not be included here

as well.

Tables 10 and 11 give the wall clock time per simulated wave period and efficiency

of the parallel model, on two platforms for two different grid sizes. Table 10 shows the

results using 40 grid points per incident wavelength, while the values in Table 11 used

80 grid points per incident wavelength. The total numbers of grid points are given

in the table captions. The Itanium-2 cluster shows efficiency similar to that given

in Figure 8 for the like-sized matrix dimensions. The Opteron cluster yields slightly

better efficiency, which may be attributed to the dual-gigabit Ethernet or the use of

LAM. Also of significant note are the relative CPU times for the two platforms, with

the superior floating-point capabilities of the AMD chips showing their strength.
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Figure 50. Plan view of regular wave propagation (period = 1.3 s, height = 4.8 cm)

over a submerged shoal at: (a) time = 6 s, (b) time = 10 s, (c) time =

18 s, and (d) time = 50 s. The shoal location is given by the contours.

Simulations used 8 CPUS.
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Conclusion

In the present work, the Boussinesq model of Wei et al. (1995) was parallelized us-

ing the domain decomposition method, where each processor performed the same

operations. The parallel algorithm was identical to its serial counterpart, based on

an iterative predictor/corrector scheme also requiring a tridiagonal solution for each

iteration. The model test indicated that both the validity and the performance of

the model are excellent. The performance of the model may be further improved

if a more efficient parallel tridiagonal solver is employed. Success at parallelizing

the Boussinesq model will allow for large domain simulation which is not possible

to run on a single PC due to limited memory size and large computational time.

This parallel model provides the future opportunity for large wave-resolving simula-

tions in the nearshore, with global domains of many millions of grid points, covering

O
(

10 km2
)

and greater basins. Additionally, real-time simulation with Boussinesq

equations becomes a possibility.
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CHAPTER VII

SUMMARY

In the first part of this dissertation we present the development of the Boussinesq-

RANS hybrid wave model which two-way couples numerical models based on the

1-D nonviscous Boussinesq-equations and the 2-D viscous turbulence-closed RANS-

equations. The hybrid model is intended for large scale wave simulation, which from

either the accuracy or computational point of view is not possible to carry out using

either model alone. The Boussinesq model will typically solve a large spatial por-

tion of the computational domain, from the wave generation area to the prebreaking

zone with good accuracy and minor CPU needs. Coupled with the RANS model,

turbulence and breaking waves in the nearshore can be simulated with high accuracy.

The model tests suggest that the current hybrid model is able to perform a broad

range of nonbreaking/breaking wave tasks, from small scale analytic and laboratory

experimental scenarios to large scale tsunami simulation, with good accuracy and

efficient computational time. For future studies and to further validate the model,

simulations based on field data may be conducted. The primary deficiency of the

presented model is that the location of the interface must be specified a priori. As

mentioned, this location should be situated where turbulence is very low, such that

both models are correctly describing the local physics. Ideally, the interface would

be dynamically located, and allowed to move either landward or seaward as the local

conditions dictate. The implementation of such a dynamic interface relies more on

coding flexibility than the implementation of a correct physical boundary condition,

as is the focus of this paper, and is left as a future enhancement to be incorporated

into the coupling presented here.

For future studies, the hybrid algorithm herein can be readily employed to ex-
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tend the model coupling to the 2-D Boussinesq and 3-D RANS wave models, as the

numerical algorithms of the higher dimension models remain the same.

Since the Boussinesq model in this work is based on the potential flow equa-

tion, the turbulence mechanism cannot be taken into account or approximated by the

model, and hence the interface should be located in a low turbulence area. Incorpo-

rating the turbulence mechanism in the Boussinesq model such as in Karambas and

Koutitas (1992) and Veeramony and Svendsen (2000) may push the location of the

interface nearer to the turbulence area and hence reduce the computational cost. As

suggested in Chapter II, the two-grid component on the interface is due to the small

velocity discrepancy between the Boussinesq and RANS models, which often occurs

in the simulation involving wave with higher nonlinearity. Employment of higher 4th

order Boussinesq model, Gobbi et al. (2000), may reduce the discrepancy, and there-

fore the occurrence of the two-grid component can be minimized, hence avoiding the

use of filter.

For large scale simulation with detailed turbulence computation inside the breaker

zone, the computational time is very high. This is of course due to the huge number

of computational grids employed in the finer RANS mesh. Integrating a parallelized

RANS solution scheme into the hybrid model could greatly reduce the wall clock

time, and may further facilitate the regular use of the hybrid and RANS models by

engineers and scientists. This is presented in second part of this dissertation.

In the second part of this dissertation, the parallel hybrid wave model is developed

to optimize the computational speed of the model, especially intended for detail

turbulence simulation covering large nearshore area. In parallelizing the model, the

Boussinesq model remains serial and the RANS model is parallelized. One of the

processors is responsible for doing both the Boussinesq and the RANS computations

in one of the subdomains. The parallelization of the RANS model consists of two
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main parts: first, the parallelization of all parts of the algorithm outside the PPE

solver and second, the parallelization of the PPE solver.

To solve the PPE equation, we use the Conjutagate Gradient method precon-

ditioned with the incomplete Cholesky decomposition with zero fill-in. While CG

method is quite straightforward to parallelize, it is not the case with the precondi-

tioner. In this work, we use the nonoverlapping decomposition technique where the

preconditioner is calculated based on the the local block matrix. Since the decom-

position does not overlap, there is no information exchange between two adjacent

processors, and hence more iterations are required to reach convergence. Sensitiv-

ity analysis shows that the number of iterations in the parallel solver increases if

the distance of the off-diagonal matrices from the main diagonal, which is equal to

the number of grids in the y-direction, increases, and decreases otherwise, and are

independent of the number of grids in the x-direction.

Two model tests, the standing wave simulation using 960×66 grids and the hy-

pothetical tsunami simulation using 1000×100 grids, show that the parallel hybrid

model can properly handle the data communication between/among the processors

as indicated by the results of the simulations. The speedup of the runs with up to 8

processors is reasonably good.

For future development, the overlapping decomposition of the matrices may be

used to reduce the number of iterations. This method, however, costs two addi-

tional communications per iteration to calculate the average of the solution in the

overlapping area and the arithmetic operations in the averaging process itself.

The third part of this dissertation presents the work on the parallelization of

the Boussinesq model. The parallel technique has been employed in the parallel

Cornell University Long and Intermediate Wave Modeling Package (COULWAVE)

and successfully employed for tsunami modeling, Lynett (2005), where large number



127

of computational grids are employed. In the presence of dry/wet region in the domain,

some of the processors may occupy the dry region, while others occupy the wet region,

as shown in an idealized case in Figure 51. To optimize the computational time for

serial Boussinesq model run on such domain, it is relatively an easy practice by

considering the wet region only. For parallel implementation, however, employing

similar technique is not efficient since one of the processors (processor-1) is idle,

while others are working. For future development, partitioning the domain so that

all the processors are working on equal amount of load will optimize the parallel

Boussinesq model. Figure 52 shows an implementation of the parallel simulation

of 2004 Sumatera tsunami using the parallel Coulwave model, with nonoptimized

decomposition.

1 2

34

Figure 51. Domain decomposition on dry-wet area. Gray is dry, white is wet.
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1 2

34

Figure 52. Domain decomposition in parallel simulation of the Sumatera 2004 tsunami.

Adapted from Lynett (2005).
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