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A THEOREM ON THE OPTIMAL
ALLOCATION OF EFFORT*

by

Bernard GROFMAN and Guillermo OWEN

Abstract. A limited time budget is to be allocated to sev-
eral tasks, so as to maximize the probability that a majority
of these tasks will be performed correctly. It is shown that
in the symmetric linear case, it is optimal to allocate time
equally among k of the tasks, where k is at least a majority,
but may be more, depending on the actual time available. In
particular, time is allocated to all tasks if there is lit-
tle time available, but to only a majority of the tasks if the
available amount of time is reasonably large:

§l. Introduction. We consider here the following problem: a
student, with a limited time budget, must study for an ex-
amination will consist of several questions, one from each
of several fields. The student will ~e successful (pass the
exam) if he answers a majority of the questions correctly.
The problem is to decide how much time to spend on each of
the several fields. (1)

* This research was supported by the National Science Foundation,
Grant 85-03676.

(1) The problem we consider here is mathematically analogous to problem
considered by the early French mathematician, Condorcet. For histo-
rical background and parallels, see Grofman, Owen and Feld, 1982,
1983.



Mathematically, we assume the subject is divided into
n fields. For i = 1,... ,n we assume a function

p. = f.(x.)
III

gives the probability that the question on the ithfield will
be correctly answered if the student spends x· units of time

1
on that field. For obvious reasons, we shall assume each fi
is monotone non-decreasing and continuous, and bounded below
by 0 and above by 1.

Let N = {1,2, ... .n } be the set of all questions. If
the student has probability Pi of answering question i cor-
rectly, and if all these probabilities are independet, then,
for gieven SeN,

Ps (p1 ' ••• , Pn) = IT p. IT (1 - P .) (1 )iES 1 itS 1

is the probability that the student answer all the questions
in fields i ~ S, and none of the others, correctly.

Let m, now, be the required number of correct answers.
If so, then the student's probability of passing the test
is

I n Pi IT (l-p.)
S iES i¢S 1

s am

(2)

where the summation is taken over all sets S with at least
m elements.

The student's problem, is, then, to maximize expres-
sion (2) subject to (1) and the budget constraint

Ix. ~ a
1

(3 )

x . ~ 0,
1

i 1 , .•. ,n (4)

where a is the student's available time. The first order
conditions for this problem are
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ClF dPi
A if > 0 ( 5)~~ X.

1
1 1

ClF dPi
A if O. (6)ap:- dx. ~ X.

1
1 1

In the general case, of course, this presents a com-
plicated computation. We will consider the special case
where

o ~ x ~
( 7)

This is not an unreasonable probability function: it
represents the case where the student requires unit time
(the time can of course be suitable normalized) to read each
section of the textbook. In less than unit time, he can only
read a proportional fraction of the section, and the prob-
ability of a correct answer is in turn proportional to that.
In this case, the first-order conditions take the form

if
if
if

o < p. < 1
1

Pi 1
p. = 0
1

Now, it can be seen that

L
S

iES
s=m

IT PJ' IT (1 - P . )
jE:S j¢S J
jh

(8)

where the sum is taken over all sets S, containing i and
exactly m-l other elements. We shall use F. to denote this

1
partial derivative.

We prove, now, that we need only consider points
(pl,.·. ,Pn) in which each Pi has one of the three values 0,
1, and some other p.

LEMMA 1. The. ma:cimum 06 the. 6unc.tion F, -6ubje.c..t to .the.
con~.t!ta.<.nL~ (3)- (4), '<'6 ot.t.a cn e.d at a po.int (p, •... ,Pn)



who~e eomponent~ have only one value othe~ than 0 o~ 1;

Proof. Let us consider the expression (8) for F .. Let-
1.

ting 1 # i, we can write this as

F. I TI p. TI (l-Pj) + L IT p. II (l-p.)
1 S jes ] jes S jE:S ] jiS ]

JLE"S j#i liS j;li

where the first sum is taken over all S with 1 e: S, i ¢ S,

s = m-1, and the second over all S with i,l e;: S, s m -1.
I'lerewrite as

F. = P n [I IT p. IT ( ,. P .)] + (1 - P ) [I II p. IT ( 1 - p]' ) ]
1. x. S jE:S J jcS J 1 S jE:S J j¢5

j#l jii jh,l

or equivalently,

F.
1.

(9)

where the first sum is taken over all S with i,l ¢ S, s =
m-2, and the second over all S with i,l ~ 5, s = m-l. In
each case the first product is over all j ~ S, the second
over all j e: N-S-{i,l}.

We have, then,

(Pl-Pi) [sL TIp],TI(l-p.) - L TIp. TI(l-p.)]
] S] ]

where the two sums are as in (9), or equivalently,

(10)

where

= I
S

s=m-2
TI p. TI (l-p.)-

jE5 ] jts ]
j ;ii,JL

I II p. II (l-p.)
5 jES J j ts J

s=m-1 j#i, 1

(11 )

where the sums in (11) are over all subsets 5 c N-{i,l} with
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m-2 and m·l elements respectively. \ve note, inter a l ia , that
on p., j"F i,£-, but does not depend on p. or Po'J 1 ~
be the set of all p = (p. ,... ,p ) which maximize

1 n
F subject to (3)-(4). By continuity of F, X will be compact
and non-empty. Then C(X), the convex hull of X, is compact
and convex; moreover, the extreme points of C(X) are all
points of X (though not all points of X are necessarily ex-
treme in C(X)). We claim, n ow , that if p* = (p"'"... ,p"') is

'" nextreme in C(X), the components p. will have at most one
J

value other than 0 or 1.

H.o depends
1"-

Let X

In fact, suppose there is some pair of indices i,£-,
such that

'"Since P E: X, then by (7 ..ii), we have

Now, b r (10)

'" *However, p. < P., and so we must have H .• = O.1 ~ l~
As was pointed out above, however, Hi£- is independent

of both Pi and Px. thus, for any t , the point p' (l), gi ven
by

p: (t) *p. + t
1 1

P~ (t) '"p£- t
I '"Pjet) p. for all other j

J

wi Ll also have Hi£-(p') = O. For sufficiently s~all t (both
positive and negative) p' (l) will satisfy the constraints
(3)-(4). Moreover, the directional derivative in the direc-
tion of increasing t is Fi-Ft, and this will be a for all
values of t. Thus, for sufficiently small t,



F(p'(t)) = F(p' (-t)) = F(p*).

*Since p maximizes F, so do p' (t) and p' (-t). But this means
both p' (t) and p' (-t) belong to X, and, sine

* 1P Z(p'(t) + p'(-t))

*we conclude that p is not extreme in Cf X) . This contradic-
tion proves the lemma.

We see, then, that the maximum of F will always be
found at a point of the form

t j e:: M,
p. j e:: M2 (12)

J
j e:: M3

wher~ M" MZ' M3 are disjoint sets whose union is N, with
cardinalities ffi1, mZ' and m3, while 0 < p < 1. We have then

n. ( 13)

m, + mZp = Ci. (i4 )

,
It is easy to see tha t, in this case, we will have

mZ mrsF L (~z ) pS (l-p) - (15)
s=m-ml

In fact, all members of M, are always co reet, and all mem-
bers of M3 are always wrong. Thus the student will pass the
exam if and only if at least m-m1 of the members of MZ are
answered correctly.

LEMMA 2. 16 Ci ~ m , the.n F -i.~ l71ax-i.m-i.ze.d by ,~e.Lt-i.l'lg

m, ~ m , 16 Ci < m , the.n F -i.~ l71ax-i.l71-i.ze.d by .6 e.tLcl'lg m, = 0,

i., e.. , M, = 0.

Proof. If c ~ m , it is easy to see that F can be made
equal to 1 simply by letting m, ~ m. This is clearly a maxi-
mum.
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Suppose, in fact, that a < m, but M, I 0. Then m, ~
a < m, so mZ > 0 as otherwise we would have F = O. Let
~ ~ M1, ~ E MZ: then Pi = , and 0 < Pt < " so assuming p
is optimal, we must have

F. F1 ~ Q.'

Now, however,

F.
I

(since as we saw before, F is simply the probability thot
Jexactly m- I answers other than : be correct). Thus we have

(
m'" ) m-m, mj+m.,-I'l (mz - 1) m m, -, ffil+ITIZ-m., p ('-p) z, P (l-p)

m-ml ~ m-m,-',

which reduces to

mzp ~ ,mom,

or

By (14), however, this gives us a ~ m which ~ a contradic-
tion. Thus,i.f a < m, then at the optinnsn, tvl, = 0 as claim-
ed. Q.E.D.

From Lemma 2 hie see, then, that .i.nthe "difficult"
c a e, a < m, l'iehave m, = O. Denote 1\112 by K, then tvl3 = N-K,

and so the optium will be obtained at a point •.p if j e:: K
p.

J . 0 .if e: K
t..



where K has k elements. In this case

and we look for the value of k, m ~ k ~ n, which maximizes
this expression:

Fmax ( 16)

In general, we can obtain this number from tables of the
cumulative normal distribution. To get an idea of its be-
havior, however, we let

el7)

be the probability of exactly s correct answer, assuming
that the student divided his time among k sections. Then

( k - 1).- 1) k - s - 1
( 18)

As a -> 0, this expression approaches the limit

('9)

Now, it is easy to see that, for k > 0, and s.> 1,

and so Lk(s) > 1 for s > 1. We conclude that, for small val-
ues of a, qk(s) > Qk-1(s) for all k and s > 1, and so k
should be chosen as large as possible, i.e. k = n. On the
other hand, if a is large, i.e., sufficiently close to m,
we know it is best to choose k = m.

We conclude, then, that for small a the student should
study some of each section; for large a (i.e., near m) he
should concentrate his studying on m of the sections. What
208



is not clear is (a) whether any intermediate values of k
(i. e ., m < k < n ) are ever optimal.

To look at this problem in some detail, we consider
the case n = 13, m = 7. Figure 1 shows the result of our
calculations: k = 13 is optimal for all a < 6.16, while
k = 7 is optimal for a > 6.30. In between there seem to be
five small subintervals where k = 12, 11, 10,9,8 are suc-
cessively optimal.

6.00

54 06

5232
5 I 38

HH

6.10 6.20 6.30 6.40 6.50

T~tal Competence (n~)

figure 1. The Impact of Concentrating Competence on P
n
, for n 13.

It is not clear whether this type of behavior always
holds, though in the several cases studied by the authors
this is indeed the case. If we look at expression (18), we
note that, as a function of a, these ratios are convex, i.e.,

o.



This suggests (though it does not prove) that this type of
behavior will usually hold.

For small values of m, it is not difficult to show
that this is indeed the case. For example, in the case n ;3,
m = 2, we find k = 3 is optimal for a ~ 1.12-5, wi th k = 2 op-
timal if a ~ 1.125.

For n = 5, m = 3, we find that k = 5 is optimal if
a , 2.117; k ; 4 is optimal for 2.117 ~ a ~ 2.173; finally,
k 3 will be optimal if a ~ 2.173.

The number of correct answers--assuming all study was
concentrated on k sections of the course--is a binomial ran
dom variable with parameters k and ~; its mean is therefore
a, and its variance is a(l -~). For large values of 1Il and 11,

this can generally be approximated by using either the nor-
mal or the Poisson distribution.

If a 1S close to m, say a = m-\. Then letting k m,
we would have

,. p. = 1
J

x
m for j e: K

and so the number of incorrect answers among the m sections
studied is a binomial variable with mean \. If we use the
Poisson approximation, the probability of r incorrect an-
swers will be

In particular, the probability of passing the exam is Q(O),
.\or p

As against this, if the student studies m +' sections,
the number of incorrect answers among the sections studied
will also be approximately Poisson with mean \ + 1. To pass,
at most one can be 1ncorrect; the probability of passing is
then

- \and this will be greater than p only if \ ~ 1-2, i.e.,
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if a ~ M+2-1, or about a ~ M-0.718. Thus k
if a ~ M-0.718.

Suppose, on the other hand, a is considerably smaller
than M. In this case concentration on k sections gives us
a binomial variable which can best be approximated by a
normal variable with mean a. and variance a(l - f}' T pass
the examination, the student requires at least m corre~t
answers, i.e., the variable must have a value at least
equal to m -i (the fractional modi fication is standard in
su h cases). If a, the mean of the variable, is more than
slightly b e low m -}, this probability w i Ll be ma xi m i ed by
ma k ing the variance as l ar ge as possible. With a fixed, this
is done by setting k as large as possible, l.e., k = n. The
probability of passing the exam wlil then be given by

M is optimal

(

Ci .• m+L )P = <I) -----"--
,let (l-et/n)

'bre ~ is the cumulative stondard normal distributi n func-
tlon.

One interesting observation r mains to be made, and
it concerns t ne person who make up the exam. If, instead
of asking one question on each ection of the course, he
were to choose n questions at random (independently) from
the entiee subject matter of the course, then the student
who devotes Ci units of time (where n units would be requi-
red to kn ow the entire subject) would have probability alnon
each question. In effect, thi s is the same as if the student
had devoted aln units to each of the n sections of the
course. But we have seen that this i preci ely the opti-
mal study strategy for the student who spends a relatively
small time preparing for this exam. Thus, such a trategy
on the part of the examiner will penalize only the students
who spend a yelatively long time preparing, i .. , the con-
scientious students. In other words, the student who knoi s,
e.g., 80% of the course material will get a grade of 80% if
there is one question from each section, but might fail if
the questions Jre chosen TJndomly from the entir~ course



matter. The student who knows only 30% of the course matter
has the same probability of passing under either model of
examination.
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