
 

DYNAMIC RELIABILITY USING ENTRY-TIME APPROACH 

FOR MAINTENANCE OF NUCLEAR POWER PLANTS 

 

 
 

A Dissertation 

by 

SHUWEN WANG 
 
 
 
 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 
 
 
 
 
 
 
 

May 2008 
 
 
 
 
 
 

Major Subject:  Nuclear Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/4276917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

DYNAMIC RELIABILITY USING ENTRY-TIME APPROACH 

FOR MAINTENANCE OF NUCLEAR POWER PLANTS 

 

 
 

A Dissertation 

by 

SHUWEN WANG 
 
 
 
 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 
 
 
 

Approved by: 
 
Chair of Committee,    Paul Nelson 
Committee Members,  Marvin L. Adams 
                                     Martin A. Wortman 
                                     Guergana P. Petrova 
Head of Department,    Raymond Juzaitis 

 
 
 

May 2008 
 
 

Major Subject: Nuclear Engineering



  iii 

ABSTRACT 

Dynamic Reliability Using Entry-time Approach for  

Maintenance of Nuclear Power Plants. (May 2008) 

Shuwen Wang, B.S., Shanghai Jiao Tong University; 

M.E., Texas A&M University 

Chair of Advisory Committee: Dr. Paul Nelson 

 

Entry-time processes are finite-state continuous-time jump processes with transition 

rates depending only on the two states involved in transition, the calendar time, and the 

most recent arrival time, which is termed as entry-time.  

The entry-time processes have the potential to provide a significantly greater range 

of applicability and flexibility than traditional reliability tools for case studies related to 

equipment and components in nuclear power plants. 

In this dissertation, the finite difference approximation of the integrodifferential 

Chapman-Kolmogorov equations for the entry-time processes was developed, and then it 

was verified by application to some hypothetical examples that are solved by alternative 

means, either (semi-)analytically or via simulation.  

To demonstrate the ability of entry-time model to applications in nuclear power 

plants for a RIAM based scenario, the entry-time approach is applied to the maintenance 

of main generators in nuclear power using the data from INPO-EPIX database. In this 

application, both reliability and financial performances acquired using the entry-time 
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approaches corresponding to different maintenance policies are presented and discussed 

to help make maintenance decisions for the plant management. 

The ability of the EPIX database to provide time-dependent failure rates is 

demonstrated and the techniques for extraction of failure rates from the database for 

main generators are also discussed.  
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CHAPTER I 

INTRODUCTION 

  The objective of the research underlying this dissertation was to develop, assess 

and demonstrate applicability of a novel reliability methodology, centered about what 

we term as “entry-time processes,” that has the potential to provide a significantly 

greater range of applicability and flexibility than traditional reliability tools for case 

studies related to equipment and components in nuclear power plants. 

The essential idea of the entry-time methodology is to expand traditional finite-state 

Markov models, whose application to equipment reliability and maintenance issues for 

nuclear power plants is well known [1], by appending “entry time” (the time at which 

the system entered its present finite state) as an additional continuous state variable. This 

extension permits reliability issues for equipment having time-dependent failure rates, or 

more generally time-dependent transition rates between arbitrarily defined finite states, 

to be treated via Markov models.  See Chapter II below for further details. 

The inclusion of entry time as a state variable leads to Chapman-Kolmogorov 

equations that have an integrodifferential form (cf. also Chapter II below), in contrast to 

the linear system of ordinary differential equations that constitute the Chapman-

Kolmogorov equations for a finite-state Markov model.  It is well known (e.g., [2]) that 

the neutron transport equation is also an instance of such an integrodifferential 

Chapman-Kolmogorov equation.  In recognition of this analogy, we propose here to 
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solve the Chapman-Kolmogorov equations in the reliability application by adapting 

discrete algorithms of the type widely employed in neutron transport theory (cf. Chapter 

III below).  By contrast, DeVooght and Smidts [3] employed Monte Carlo methods for 

the solution of their prototypical state-transition equations when modeling safety-related 

considerations in nuclear power plants. The entry-time process is flexible in definition of 

states, i.e. the definition of states can be changed according to different modeling 

requirements. Last, but not least, the capability of allowing tracking of probabilities of 

“intermediate” events (e.g. states of a given system other than “failure” and “running”) 

can help to make management decisions on preventive and corrective maintenance, and 

to develop systematic policies related to enhancement of system or component reliability. 

The entry-time methodology has particular potential for incorporation into case 

studies supporting plant planning, and related case studies, including such matters as the 

effects of component aging and the scheduling of inspections, tests and planned 

preventive maintenance activities. This potential is demonstrated in Chapter V below, in 

application to an economically significant reactor subsystem, here selected as the main 

generator system.  The potential for this sort of application can only be further enhanced 

by obtaining improved estimates of equipment failure rates through first-principles 

consideration of the underlying causes of failure.  Nonetheless, extraction of failure rates 

from limited amounts of data, for specific systems, structures and components (SSCs), 

appears likely, for the foreseeable future, to be one of the more difficult aspects of 

applying any methodology for quantitatively analyzing equipment reliability issues.  In 

this dissertation these issues are treated in Chapter IV. 
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In a speech given by Nuclear Regulatory Commission (NRC) Chairman Dale E. 

Klein, it mentions that “…In fact, I think it can be safely said that the Nuclear 

Renaissance has officially begun …[4]”. With the fast growing nuclear business and 

developing nuclear technology, nuclear energy has been more competitive comparing to 

coal and gas energy. While many factors have contributed to this competitive resurgence 

of nuclear energy, two of the central causes are a remarkable improvement in unit 

capacity factors and a significant trend toward power upratings [5]. Many changes in the 

overall economic/regulatory setting have provided the motivation for these industry-

wide changes, and many improvements in industry practice have contributed to their 

enablement. The general philosophy underlying these improvements is a proactive 

approach to simultaneous and objective consideration of both financial and engineering 

factors so as to support management decisions directed toward increasing overall energy 

output while ensuring plant safety. This philosophical approach has become symbolized 

by the term “asset management.” As such it is embodied in the RIAM (Risk-informed 

Asset Management) concept [6] that has been aggressively pursued by STPNOC (South 

Texas Plant Nuclear Operating Company), the complementary NAM (Nuclear 

Asset/Risk Management) program [7] of EPRI, and the Nuclear Asset Management task 

force of the Nuclear Electric Institute (NEI). As one of the important parts of the RIAM 

programs, Life Cycle Management (LCM) is becoming the standard to measure plant 

excellence [8]. In the report prepared by Gregor and Chockie (also see [8]), different 

aging management programs including LCM are summarized. Among all the programs, 

EPRI developed Aging Management Tools for mechanical and structural equipment to 
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provide guidance to the plant licensees; also EPRI initiated the Preventive Maintenance 

(PM) project to develop an industry consensus of best practices for maintenance and 

aging management. The Institute of Nuclear Power Operations (INPO) led the 

development of an equipment reliability guide (AP-913) that incorporated the PM basis, 

LCM and Reliability Centered Maintenance (RCM) programs. Other similar research 

has been done in US Department of Energy (DOE) and NRC. In particular, NRC has 

done some License Renewal (LR) research to investigate the aging degradation of 

safety-related equipments and later the safety requirements for LR were made mandatory 

requirements as part of the regulations. The relationship of various industry and NRC 

programs is shown in Figure 1 [8].   

Asset management has been identified, in the context of nuclear power, as the 

practice of resource allocation and risk management at all levels of an electricity-

generating company to create maximum value and profitability to stakeholders. Liming 

and Grantom (see also [6]) define risk-informed asset management as follows: “RIAM is 

a process by which analysts review historical performance and develop logic models and 

data analyses to predict critical decision support figures-of-merit (or metrics) for 

generating station managers and electric utility company objectives. These metrics 

include, but are not limited to: profitability, projected revenue, projected costs, asset 

value, safety, power production availability, efficiency and others. These authors 

continue to clarify that RIAM “complements and integrates existing activities like PRA, 

preventive maintenance optimization (PMO), life cycle management (LCM), and nuclear 

asset management (NAM) methodologies.” The importance of proactively managing 
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plant assets can only be increased by the current NRC movement away from traditional 

prescriptive regulations, in favor of performance-based implementation of risk-based 

regulations [9]. 

 

 

Figure 1. The relationship of aging management programs [8] 

 

In the current nuclear industry, a lot of effort (as summarized in [10]) has been put 

into the development of applicable models that can be used to enhance power-plant 

performance, such as increasing power output, or decreasing cost while still meeting the 
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required safety objective. EPRI and its user group are building new Generation Risk 

Assessment (GRA) [11] models based on the existing PRA models.  GRA models 

provide a systematic approach to estimating how equipment reliability relates to the risk 

of future lost generation from trips and derates and to prioritizing components and 

systems based on their importance to productivity. Others such as the reliability group at 

Comanche Peak nuclear power plant are doing some SPV (Single Point Vulnerability) 

analysis to all the key components in nuclear systems so that they can focus on 

increasing the reliability performance of those key components in order to optimize 

nuclear-power-plant safety/economic performance. No matter what methods or models 

are used, they have the same goal, which is simultaneous and objective consideration of 

both financial and engineering factors so as to support management decisions directed 

toward increasing overall energy output while ensuring plant safety. 

The above applications tend generically to fall within the area of reliability and 

maintenance. Within the general area of reliability and maintenance, such practices as 

proactive in-service inspection, testing and preventive maintenance of plant components 

and subsystems, of course with due regard for safety-based regulatory constraints, have 

played a major role in the industry-wide performance improvements cited in the 

preceding section. The importance of in-service inspection, testing and preventive 

maintenance can only be increased by the current Nuclear Regulatory Commission 

(NRC) movement away from traditional prescriptive regulations, in favor of 

performance-based implementation of risk-based regulations. 
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Many of the generic applications have motivated some of the developments of asset 

management techniques and tools for nuclear applications, and in turn have been the 

subject of applications of these techniques and tools. However, almost all the current 

applications are based on constant failure rate assumptions, which arises problems when 

dealing with aging and degradation phenomena in safety-significant nuclear power plant 

equipments [12]. Therefore, it’s important to find new approaches in Nuclear Asset 

Management (NAM) and Risk-informed Asset Management (RIAM) which can not only 

meet the risk-based requirement but also solve the aging and degradation phenomena 

which normally bring time-dependent failure rates or transition rates. The proposed 

methodology “entry-time process” will give a new approach in the application of risk-

based nuclear asset management.  On the one hand, the entry-time process solves the 

time-dependent transition rates related problems in the current Nuclear Asset 

Management (NAM) and Risk-informed Asset Management (RIAM) applications. On 

the other hand, this process can support management decisions directed toward 

increasing overall reliability while still meeting the economic demands in order to 

maximize the plant output and minimizing costs related to maintenance and plant 

enhancement. Also it may provide a new methodology for applications in PRA and GRA 

in nuclear power plants to include time-dependent features based on the existing models. 

In the past two decades, a number of methods such as Probabilistic Risk Assessment 

(PRA), Markov models (cf. [1]), simulation [13] and other methods for risk assessment 

of dynamic systems [14] have been used to evaluate SSC (System, Structure and 

Component) reliability in NPP (Nuclear Power Plants) to ensure NPP safety. Among all 
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these models, PRA model is one of the most popular models that are being used in 

nuclear industry. However, the assumption of constant failure rates in the PRA model 

has restricted the application of this model at a certain level [15]. It has been proved that 

aging is an important factor in NPP component failure such as piping system rapture 

[16]. It is clear that failure due to aging is not constant; rather, by definition aging is the 

phenomena of a failure rate that increases with time, at least until further actions such as 

repair or replacement are taken. To solve this problem, we need to find a new 

methodology that incorporates aging effects and maintenance policies into the existing 

PRA model and further with the new GRA model, which are on the current forefront of 

developments in the nuclear industry, to achieve better results for system reliability/risk 

assessment and to support management decisions directed toward increasing overall 

energy output while ensuring plant safety objectives continue to be met. There are some 

jobs done (such as [17]) to incorporate aging effects into PRA, similarly, the dynamic 

reliability parameters generated by the entry-time approach at the system level can be 

used as input to the static PRA and GRA models to incorporate preventive maintenance 

policies and aging affects. 

In this dissertation, the objective of developing, verifying and applying the entry-

time approach is accomplished as follows: In Chapter II the entry-time model is defined, 

the corresponding integrodifferential Chapman-Kolmogorov equations are developed, 

and a discrete algorithm for their solution is developed. In Chapter III the discrete 

algorithm is verified by application to some hypothetical examples that are solved by 

alternative means, either (semi-)analytically or via simulation. After that, the entry-time 
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approach is applied to a real filed NPP application in a RIAM based scenario using the 

data from INPO-EPIX database followed by possible applications of the entry-time 

approach to PRA and GRA model in NPP in Chapter V. Also the applicability of the 

EPIX database is proved in Chapter IV. More specifically, in Chapter IV the time-

dependent failure rates, i.e. aging effects are extracted from the EPIX database for some 

general components such as rotors and circuit breakers to show the applicability of the 

database in aging analysis, then the time-dependent failure rates for the main generator 

system are extracted using different schemes for the application in Chapter V. Chapter V 

mainly focuses on the application of the entry-time model to maintenance of the main 

generator system in nuclear power plants. In this chapter, both the reliability 

performance and the financial performance of the system are analyzed based on different 

preventive maintenance policies. Also possible applications of the entry-time approach 

to PRA and GRA model in NPP is given at the end of this chapter. 
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CHAPTER II 

ENTRY-TIME PROCESSES 

The primary objective of this chapter is to establish the basics of entry-time 

processes, and of one approach to their computational use in modeling reliability issues.  

In Section 2.1 we outline the fundamentals of entry-time processes, as a particular type 

of stochastic process. This culminates in the generalized state-transition equations 

(Equations (8) and (9) below), whose computational solution is the essence of the novel 

methodology proposed and developed in this dissertation.  A particular discrete 

algorithm for the computational solution of the generalized state-transition equations is 

outlined in Section 2.2.  This algorithm will provide the basis for much of the subsequent 

usage of entry-time models to study reliability issues in nuclear power plants.  

2.1 Fundamentals 

The treatment of this section is intended to follow the traditions of stochastic 

processes, as viewed within the field of applied probability.  See [18] and [19] for 

examples of the fundamentals of stochastic processes, as so viewed. 

Given a simple marked point process [20], the entry time associated to calendar time 

t is defined as the most recent arrival time; symbolically ( )( ) N ttτ τ= , where N is the 

associated counting process. The mark values will commonly be referred to as “states”, 

and denoted by “k”. 
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Definition:  An entry-time process is a random marked point process : ,Ψ Ω → M  

where Ω is the underlying probability space, M is the space of all simple marked point 

processes having some fixed finite mark space, say K=1:I, and the rates ( , )ij tλ τ  of 

transition from mark j to mark i are specified as a function of calendar time t and entry 

time τ :=τ(t) ≤ t.  Here the entry time is the time at which the process attained mark j, 

given that it has that mark at calendar time t.  

In the application to reliability the value of the associated mark, at calendar time t, is 

some characterization of the state of the equipment of interest, in terms of its 

functionality at that time.  Henceforth we will therefore use the term “state” rather than 

“mark.”   

An entry-time process is not a finite-state Markov process, because of the 

dependence of the transition rates on the entry time (generically denoted here asτ ), 

which is no later than the calendar time (t).  If one augments the state space by the entry 

time, there results a Semi-Markov process, with associated Chapman-Kolmogorov 

equations [21 ], termed here as generalized state-transition equations.  We now wish to 

develop those equations, in some detail. 

Given an entry-time process, we take as our immediate objective to find a 

determined system of equations whose solution would provide the time-dependent state 

probabilities, 

 { }( )( ) : Pr ,  for all 1:  and 0,i N tP t k i i I t= = ∈ >  (1) 

from the known transition rates, and a known initial distribution of states, say 
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 { } (0)
0(0) : Pr , 1: .i iP k i P i I= = = ∈  (2) 

Our approach does not (immediately) lead to a set of determined equations in which 

the state probabilities appear per se as the unknown dependent variable.  Rather that role 

is played by the entry-time state probabilities, 

 { } { }(1)
( )( ) : Pr ( ) ( )i N tP t N t N k iτ τ� �, = = ∩ =� �  (3)  

However, note that (1) (1)( ) ( , )i iP t P t t=  so that (approximations to) the entry-time state 

probabilities entail approximations to the state probabilities. 

In the following we first obtain the integrodifferential state-transition equations on 

the basis of the assumption that the transition rates are known.  Then we observe that 

these integrodifferential equations can be reinterpreted to permit the concept of more 

general (e.g., time-certain) transitions. 

Let 0≤τ ≤ t. Then (1) ( , )iP tτ  is the probability that at (calendar) time t the system had 

entry time occurring on or before τ, with associated state i. This happens if and only if at 

time t the entry time is either 0 or some τ’, 0<τ’≤τ.  The probability of the former is 

(1) (0, ).iP t  The latter happens if and only if the system transitions into state i at or prior to τ, 

and does not subsequently transition out at or prior to time t.  If 0<τ’’<τ’, then the 

probability that at time τ’ the system has entry time in dτ’’ at τ’’, with associated mark j, 

is (1)
1 ( '', ') '' ( '').jD P d o dτ τ τ τ+  (Here, and throughout, iD denotes the partial derivative with 

respect to the ith argument, while “o” and “O” respectively denote quantities that 

approach zero fast than or no slower than their arguments.)  Given this, the probability 

that a transition to state i occurs during dτ’ at τ’ is λij(τ’’, τ’) dτ’ + o(dτ’).  Thus the 
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probability of a transition from state j with entry time in dτ’’ at τ’’ to state i with entry 

time in dτ’ at τ’ is 

(1)
1 ( '', ') ( '', ') ' '' ( '') ( ') ( ') ( '').j ijD P d d o d O d o d O dτ τ λ τ τ τ τ τ τ τ τ+ +  

If we now sum over all states j, and pass to the limiting integral in the usual fashion, 

then we find 

 
'

(1) (1)
1

1 10 0 0

( , ) ( '', ') ( '', ') '' ' (0, ') (0, ') '
I I

i ij j ij j
j j

N t D P d d P d
τ τ τ

τ λ τ τ τ τ τ τ λ τ τ τ+

= =

= +� ��� �  (4) 

as the relative frequency of transitions into state i with associated entry times τ ≤ t.  Here 

the last term is the contribution due to transitions from systems in their initial state, and 

therefore not included in the transitions counted within the double integral. 

To obtain the net contribution of such transitions to (1) ( , )iP tτ  it is necessary to 

subtract the relative frequency of transitions into state i that occur after time 0 and at or 

prior to time τ and that are followed by subsequent transitions that occur at or prior to 

time t.  Considerations similar to the above lead to the computation of that frequency as 

 
min{ ' }

(1) (1)
1 1

1 10 '' 0 0

( , ) ( '', ') ( '', ') ' '' ( '', ') ( '', ') '' '.
t tI I

i ji i ji i
j j

N t D P d d D P d d
τ ,ττ

τ

τ λ τ τ τ τ τ τ λ τ τ τ τ τ τ−

= =

= =� �� � � � (5) 

If we combine all of these results, we then obtain 

 (1) (1)( , ) (0, ) ( , ) ( , ),i i i iP t P t N t N tτ τ τ+ −= + −  (6) 

or  

 

'
(1) (1) (1) (1)

1
1 10 0 0

min{ ' }
(1) (1)

1
1 0 0

( , ) (0, ) ( '', ') ( '', ') '' ' (0, ') (0, ') '

( '', ') ( '', ') '' ' (0, ).

I I

i i ij j ij j
j j

tI

ji i i
j

P t P t D P d d P d

D P d d P t

τ τ τ

τ ,τ

τ λ τ τ τ τ τ τ λ τ τ τ

λ τ τ τ τ τ τ

= =

=

= + + −

+

� �� � �

�� �
(7) 
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The (initial form of) the integrodifferential equations we are seeking are obtained by 

differentiating Equation(7).  If Equation (7) is differentiated with respect to t, the result 

is 

 
(1)

(1) (1) (1)
2 1

1 10

( , ) ( , ) ( ', ) ( ', ) ' (0, ) (0, ),
I I

i
i ji i ji i

j j

P
D P t t t D P t d t P t

t

τ

τ τ λ τ τ τ λ
= =

� �∂
= = − − 	 
∂ � �

� ��  (8) 

where we have used 
(1)

(1)

1

( , ) (0, ) (0, ).
I

i
ji i

j

P
t t P t

t
τ λ

=

� �∂
= −	 
∂ � �

�  Similarly, if in Equation (7) we 

set τ=t, and differentiate the result with respect to t, then we obtain 

 

(1) (1)
(1) (1) (1)

1 2 1
1 0

(1) (1) (1)
1

1 1 10

( , ) ( , ) ( , ) ( , ) ( ', ) ( ', ) '

(0, ) (0, ) ( ', ) ( ', ) ' (0, ) (0, ).

tI
i i

i i ij j
j

tI I I

ij j ji i ji i
j j j

P P
D P t t D P t t t t t t t D P t d

t

t P t t D P t d t P t

λ τ τ τ
τ

λ λ τ τ τ λ

=

= = =

∂ ∂
+ = + = +

∂ ∂

� �
− − 	 


� �

��

� � ��
(9) 

Equations (8) and (9) are the desired initial form of the integrodifferential equation.  

Now we generalize these by noting that the integrals on the right-hand side can be 

written as Riemann-Stieltjes integrals [22].  The corresponding equations are 

 
(1)

(1) (1) (1)
2 1 '

1 10

( , ) ( , ) ( ', ) ( ', ) (0, ) (0, ),
I I

i
i i ji ji i

j j

P
D P t t D P t d t t P t

t

τ

ττ τ τ τ λ
= =

� �∂
= = Λ − 	 
∂ � �

� ��  (10) 

and 

 

(1) (1)
(1) (1)

1 2

(1) (1)
1 '

1 10

(1) (1)
1 '

1 10

( , ) ( , ) ( , ) ( , )

( ', ) ( ', ) (0, ) (0, )

( ', ) ( ', ) (0, ) (0, ),

i i
i i

tI I

j ij ij j
j j

tI I

i ji ji i
j j

P P
D P t t D P t t t t t t

t

D P t d t t P t

D P t d t t P t

τ

τ

τ

τ τ λ

τ τ λ

= =

= =

∂ ∂
+ = +

∂ ∂

= − Λ +

� �
+ Λ − 	 


� �

� ��

� ��

 (11) 
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where the integrators are the (nonnegative and nonincreasing in τ) cumulative transition 

functions 

( , ) ( ', ) '.
t

ij ijt t d
τ

τ λ τ τΛ = �
 

Interpretation of these integrators is discussed below, but now we focus on the use 

of them to incorporate delta functions in the transition rates, through (positive) jump 

discontinuities in the integrators.  However, then the integrals on the right-hand sides of 

these equations need not exist, in the Riemann-Stieltjes sense.  We finesse this issue as 

follows.  First, we assume that for any fixed t, each integrator has at most finitely many 

discontinuities inτ, say { } { }( ) ,k k tτ τ=  for each fixed t.  Then we compute a typical 

integral in  (10) or (11) by summing over the intervals of continuity; e.g., 

 (1) (1)
1 ' 1 '

0

( ', ) ( ', ) ( ', ) ( ', ).
k

k

i ji i ji
k

D P t d t D P t d t
+1ττ

τ τ
τ

τ τ τ τΛ = Λ�� �  (12) 

We then assume that for each fixed t the derivatives are piecewise continuous in τ, 

with only simple jump discontinuities, and interpret the values of these derivatives at the 

endpoints of each of the integrals on the right as the limits from the interior of the 

interval.  Finally, we normalize the integrators by the assumption that they are 

continuous from the right in τ.  With these conventions the integrands and integrators on 

the right-hand side of Equation (12) never have a simultaneous discontinuity, so each of 

these constituent integrals is well-defined in the Riemann-Stieltjes sense.  As the net 

effect of all of these conventions is to evaluate delta-function (i.e., atomic) contributions 
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to the transition rates as the left limit of the integrand, we shall term them collectively as 

the left-atomic convention. 

 This convention permits incorporation of policies that can be represented as time-

certain events in the entry or sojourn times.  (For example, systems incorporated before 

the year 2000 will be immediately replaced, or systems will be replaced once they reach 

five years of age.)   Time-certain events in calendar time or that affect the initial 

distribution of states can similarly be incorporated on an ad hoc basis.  It would be of 

some interest to develop an even further generalized version of Equations (10) or (11) 

that formally incorporates all of these possibilities; however, that is outside the scope of 

the present work. 

 Note that if the transition rates depend only on the sojourn time, then they are 

given by 

'1

( ) ( )
( , ) ,  

( )1 ( )

ij ij
ij I

j
ij

i

f t f t
t t

S tF t

τ τ
λ τ τ

ττ
=

− −
= = ≥ ,

−− −�
 

where ( )ijf s  is the probability density function for transitions from state j to state i at 

sojourn time s, and 

'
'10

( ) : ( ') ',  ( ) : 1 ( ).
s I

ij ij j i j
i

F s f s ds S s F s
=

= = −��  

are respectively the cumulative transition probability from state j to state i after sojourn 

time s, and the survival probability in state j after sojourn time s.  In this case, the 

cumulative transition functions satisfy 
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'1

( ')
( , )  ',  .

1 ( ')

t
ij

ij I

ij
i

f t
t d t

F tτ

τ
Λ τ τ τ

τ
=

−
= ≥

− −
�

�
 

In the case that only one fij is nonzero, with say i and j respectively representing 

failed and operating states, the preceding integral can be evaluated as 

[ ]( , ) ln 1 ( ) ( ),ij t F t H tΛ τ τ τ= − − − = −  

where ( ) ( )ijF s F s= is the cumulative probability of failure prior to sojourn time s, and  

( ) : - ln  ( ) - ln  ( )ijH s S s S s= =  

is often termed as the cumulative hazard function.  In this context the survival function 

S(s) is commonly termed reliability function, and denoted R(s). 

 The cumulative transition functions Λij are thus a generalization, to multistate 

competing-process stochastic models, of the common hazard function.  While the 

cumulative transition functions are nonnegative, they are not probabilities, hence need 

not be bounded above by one.  They share this property with the transition rates and 

probability density functions, in contrast to the cumulative transition probabilities, 

survival probabilities and reliabilities.   

2.2 Discrete Algorithm 

In this section we develop a finite-difference methodology for approximate solution 

of the generalized state transition Equations (10) and (11) of the preceding section. 

Figure 2 depicts the first quadrant of the (τ, t,)-plane. The Pi(τ, t) are sought in the 

relevant region t >τ , overlaid by a mesh of square cells of dimension ∆t × ∆t, for some 

positive value of ∆t.   We use m and n respectively as discrete surrogates for τ and t, τm 
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=m∆t and tn=n∆t.  The objective is to obtain computational approximations 

( , ) ( , ).m n
i iP P m t n t≈ ∆ ∆   We use the notations 

{ }1 1( , ) : , ,mn m m n nC t t t tτ τ τ τ + += ≤ ≤ ≤ ≤  

 for m≤n, and { }( , ) : .n nnT C t tτ τ= ≥�  

 

Figure 2. The computational grid for entry-time process 

 

We begin by evaluating Equation (10) at τm=m∆t, and then integrating the resulting 

equation on t, from t=tn to t=tn+1, for some n>m.  The result is 

Cmn 

← ∆t → 

τ1 

tn+1 

↑ 
∆t 
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1

'

1
(1) (1) (1) (1)

1 1 '
1 '0

( , ) ( , ) ( ', ) ( ', ) (0, ) (0, ) .
n

m n n

tI m

i m n i m n i ji ji i
j m C t

P t P t D P t d t dt t P t dtττ τ τ τ λ
+−

+
= =

� �
 
− = Λ −	 


 
� �

� � �� �  (13) 

If we similarly integrate Equation (11) from t=tn  to t=tn+1, the result is 

 

'

1

'

1
(1) (1) (1) (1)

1 1 1 ' 1 '
1 '0

1
(1) (1)

1 '
'0

( , ) ( , ) ( ', ) ( ', ) ( ', ) ( ', ) 

(0, ) (0, ) ( ', ) ( ', ) 

m n n

n

n m n

I m

i n n i n n j ij j ij
j m C T

t m

ij j i ji
mt C

P t t P t t D P t d t dt D P t d t dt

t P t dt D P t d t dt

τ τ

τ

τ τ τ τ

λ τ τ
+

−

+ +
= =

−

=

�
− = − Λ + Λ −	

�

� �
 
+ Λ
 	

� �

� � �� ��

�� ��

1

(1)
1 '

1

(1)

( ', ) ( ', ) 

(0, ) (0, ) .

n

n

n

I

i ji
j T

t

ji i
t

D P t d t dt

t P t dt

ττ τ

λ
+

=

+ Λ −



�




�

� ��

�

 (14) 

Equations (13) and (14) are exact, but not directly useful. We seek computational 

approximations to these, in terms of the ( , )m n
iP , so that the latter are determined from 

these approximating equations.  The choices made in this pursuit are dictated by 

simplicity, as consistent with the goal of initial tests of the computational entry-time 

approach to dynamic reliability.  If utility of this approach is established, then more 

sophisticated and efficient approximations can be subsequently pursued.  

In Equation (13) we obtain a finite-difference approximation, by introducing the 

following approximations: 

1) Throughout t is replaced by tn, except that in the argument of the integrators Λij and 

the transition rates λij it is replaced by tn+1.  Note that these replacements remove the t 

dependence in the integrands and integrators, so that the integrals over t effectively 

become multiplication by ∆t.  (The resulting computational method is explicit, because 

of the replacement of t by tn in the unknown entry-time probabilities.) 
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2) Within the integral over the partial derivative is replaced by the corresponding 

difference quotient, 

(1) (1)
(1) '1 '

1

( , ) ( , )
( ', ) .i m n i m n

i n

P t P t
D P t

t
τ ττ + −

→
∆  

3) Values of the entry-time state probabilities at an arbitrary grid point, say 

( , ) ( , ),m nt tτ τ=   are replaced by the corresponding computational approximation, 

4) The remaining integral over τ’ is explicitly evaluated, 

'1

'

' 1 '1 1 ' 1( ', ) ( , ) ( , ).
m

m

ji n ji m n ji m nd t t t
τ

τ
τ

τ τ τ
+

+ + + +Λ = Λ − Λ�  

The result of these manipulations is 

 

1
( , 1) ( , ) (0, ) ( '1, ) ( ', )

' 1 '1 1
1 '0 1

(0, ) ( , ) ( , ) ,

1: , 0: 1, 0: 1.

I m I
m n m n n m n m n

i i ji n i i i ji m n ji m n
j m j

P P t t P P P t t

i I m n n N

∆ λ τ τ
−

+ +
+ + +

= = =

� � � �= − − − Λ −Λ� �� �

= = − = −

� ��
  

  (15) 

where T=N∆t is some terminal time.  In Equation (14) we make similar replacements, 

and further neglect the integrals over the triangular regions Tn.  The result is 

 {
}

( 1, 1) ( , ) (0, ) (0, )

1

1
( '1, ) ( ', )

' 1 '1 1
'0 1

( '1, ) ( ', )
' 1 '1 1

(0, ) (0, )

( , ) ( , )

( , ) ( , ) ,

I
n n n n n n

i i ij n j ji n i
j

n I
m n m n

j j ij m n ij m n
m j

m n m n
i i ji m n ji m n

P P t t P t P

P P t t

P P t t i

∆ λ λ

τ τ

τ τ

+ +

=

−
+

+ + +
= =

+
+ + +

� �
� �= + − +	 
� �

� �

� � � �− Λ − Λ −� �� �

� � � �− Λ − Λ =� �� �

�

��

1: , 0 : 1.I n N= −

 (16) 

Equations (15) and (16) are used, along with the initial conditions, to obtain 

( , )m n
iP and ( , )m m

iP . ( , )m m
iP  is the state probability that we are after at time t=m∆t. The 
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detailed procedure is as follows. The (0,0)
iP  are given by (0,0) (0)(0,0)i i iP P P= = (the initial 

conditions). For 0m = and 0n =  the only unknowns in the I Equation (15) are the I 

unknowns (0,1)
iP . These unknowns appear linearly, and each is only one of these 

equations, so that the solution is explicit. With the (0,1)
iP  known, Equations (16) for 

1m =  and 1n =  are a system of I linear equations in the I unknowns (1,1)
iP , and can be 

solved accordingly. This pattern repeats for a sequentially increasing values of 

2,3,...,n N= . First Equations (15) are solved, as a diagonal linear system of I equations 

in as many unknowns (the ( , 1)m n
iP + ) for each value of n, in order of 

increasing 0,1, 2,...m n= . Then Equations (16) give the I unknowns ( 1, 1)n n
iP + + . 

Experience with particle transport suggests that conservation and nonnegativity of 

probability are two desirable properties of computational approximations. It is seen from 

Equation (16) that the above method delineated above satisfies 

( 1, 1) ( , )

1 1

I I
n n n n

i i
i i

P P+ +

= =

≡� �  

so that probability is conserved (up to roundoff error in the computations). The example 

in Chapter III shows this scheme need not produce nonnegative probabilities, but also 

suggests the manner in which this fails is relatively harmless. 

Explicit methods typically have first-order accuracy, so that  

( , ) (1) ( , ) ( )m n
i iP P t O tτ− = ∆  

Where m and n vary with the time step so that m t∆ and n t∆ remain fixed, at τ  and t , 

respectively. We verify this in details in Chapter III. 
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In the approximations made above, there is some arbitrariness in the discretization 

choices, especially in the first step (see above label (1) in the assumption part). By using 

a backward time approximation for calendar time in the probabilities and a forward 

approximation in the transition rates and integrators, it removes the t dependence in the 

integrands and integrators, so that the integrals over t effectively become multiplication 

by ∆t. 

This deterministic computational solution method for the computational solution of 

the generalized state-transition equations will be used, in the following chapter, to apply 

the entry-time processes to some test examples. First, the entry-time approach is applied 

to a semianalytically solvable example and compare to the semianalytic solutions of the 

example. Following that, the entry-time approach is compared to simulation. Once the 

computational algorithm is thus verified, it will then be employed in subsequent chapters 

for purposes of exploring the application of entry-time processes to asset management 

for nuclear power plants. 
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CHAPTER III 

VERIFICATION OF THE DISCRETE ALGORITHM 

The purpose of this chapter is to verify the computational method developed in 

Chapter II, by some hypothetical examples. In Section 3.1, a semianalytically solvable 

four-state example is given, and the discrete algorithm is compared to its semianalytic 

solutions. The discrete methodology is compared to simulation for a three-state example 

in Section 3.2. In the last section of this chapter, an RIAM base application of this 

methodology is given to show the potential application of entry-time processes to asset 

management for nuclear power plants. 

The work described in this chapter is closely based on work co-written by the 

author and P Nelson (see [23] for details). More detailed analysis is given in this 

dissertation than in the journal paper. 

3.1 A Semianalytically Solvable Example 

The purpose of this section is to verify the computational method developed in 

the preceding section, by comparing its performance to the (nearly) analytic solution of a 

simple three-state problem contrived to lend itself to such a solution.  The example and 

its semianalytic solution are formulated in Section 3.1.1.  Computational results via the 

finite-difference method developed in the preceding Chapter II are described in Section 

3.1.2. 
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3.1.1 Formulation and Semianalytic Solution 

Consider a component that can be in four states: 

State 1:  In service, as received from the manufacturer; 

State 2:  Out of service for repair; 

State 3:  In service, as a refurbished unit; 

State 4:  Out of service, for salvage. 

Failures of manufacturer equipment are assumed to be distributed cumulatively as 

the Weibull distribution, 

1
1 1 1( ; , ) : 1 exp( ( / ) ),W βτ α β = − − τ α  

 
for appropriate values of  1α  and 1β .  Once a manufacturer component fails it enters 

state 2, where it is refurbished in 0.1 years.  It then returns to service as a refurbished 

component.  Failures of refurbished components are distributed as 2 2( ; , ),W τ α β  where 

presumably 1 2α α≤  and 1 2β β≤ .  Once a refurbished component fails no further repairs 

are attempted, so it is sent to salvage. 

It is well known that Weibull distribution is commonly used in reliability field 

because it is convenient as a model for various physics phenomena and it has a clear 

physical sense as a distribution of external values [24]. However, the traditional Weibull 

distribution widely used in reliability analysis can only model monotone increasing or 

decreasing failure rate functions. For many complex systems, the failure rate function 

exhibits a bathtub shape. The bathtub shape of equipment failure rate changes with time 

is given in Figure 3. At the early stage of operation, also known as the burn-in period, 

failure rate decreases rapidly as manufacturing and construction defects are repaired (this 
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phenomena is also called “infant mortality”). As the system stabilizes the failure rate 

levels off. This second stage is called the useful life period and during this stage failure 

rate increases slowly. As equipment wears out, the degradation becomes dominant, and 

the failure rate increases. This third stage is called the wear-out period. If all three stages 

of FR vs. time are plotted, the curve resembles a bath-tub. This bathtub curve of Figure 3 

summarizes the life-time aging of equipment or component [25]. 

 

 

Figure 3. Bathtub curve failure rate 

 
A modified three-parameter Weibull model is introduced in [26] to capture the 

bathtub shape failure rate for some components. Another way to capture the bathtub 

shape failure rate by Weibull distribution is to use a “weighted sum of Weibull 

distributions”,  

1 1 2 2( ) ( , , ) (1 ) ( , , )F t w W t w W tα β α β= × + − ×  
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where w  is a weighted parameter and ( ; , ) : 1 exp( ( / ) )W t βα β = − − τ α . Here we have 1 1β <  so 

that the first term captures the infant mortality and 2 1β >  so that the second term 

captures the aging effects. 

Hence the corresponding failure rate is: 

1 2( ) (1 ) ( )
( )

1 ( )
wf t w f t

t
F t

λ + −=
−

 

where 1 1
1

( , , )
( )

dW t
f t

dt
α β=  and 2 2

2

( , , )
( )

dW t
f t

dt
α β= . 

For example, here we take 1 2 1 220.0, 0.5, 6.0α α β β= = = = and 0.5w =  so that the 

failure distribution is equally weighted between the two distributions. Figure 4 shows the 

bathtub failure rate plot using the above parameters. 

For this example equipment, the appropriate initial conditions are 

( )(0) 1 0 0 0 .P = We know from the statement of the problem that the only way the 

equipment transits out of State 1 is when it is out of service for repair (State 2) and the 

failures of equipment are defined by the Weibull distribution 

1
1 1 1( ; , ) : 1 exp( ( / ) )W βτ α β = − − τ α . Therefore, for 0 0t t≥ ≥ , the probability that the 

equipment is in State 1 is given by: 

1
1 0 1 1 1( , ) 1 ( ; , ) exp( ( / ) ),P t t W t t β= − α β = − α  

Similarly, the probability that the equipment is in State 2 is given as follows: 

2 0 0 1 1 0 1 1( , ) ( ; , ) (( .1 ) 0; , )P t t W t W t t= α β − − ∧ ∨ α β , (∧ = “min”, ∨ = “max”), 
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where 0 1 1( ; , )W t α β  is the probability system transits into State 2 and 

0 1 1(( .1 ) 0; , )W t t− ∧ ∨ α β  gives the probability system transits out State 2.  
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Figure 4. Bathtub failure rate plot using “weighted sum of Weibull distributions” 

 
It is a little bit complex for the calculation of probabilities system is in States 3 and 

4.  It is clear from the definition of states that 3 0 4 0( , ) 0 and ( , ) 0P t t P t t= = when 0.1t <  

because there is no transition from State 3 and hence no transition from State 3 to State 4. 

When 0.1t ≥ , both 3P  and 4P  involve quadratures (definite integrals) of analytic 

functions as shown below: 
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[ ]
{ }0min , .1

3 0 1 1 2 2
.1

( , ) '( .1; , ) 1 ( ; , )  ,
t t

P t t W s W t s ds
+

= − α β − − α β�  

{ }0

4 0

min , .1

1 1 2 2
.1

( , ) '( .1; , ) ( ; , ) 
t t

P t t W s W t s ds
+

= − α β − α β�  

Hence, the corresponding solutions are (∧ = “min”, ∨ = “max”), for 0 0t t≥ ≥ , 

1
1 0 1 1 1( , ) 1 ( ; , ) exp( ( / ) ),P t t W t t β= − α β = − α  

( )( )( ) ( )( )1 1

2 0 0 1 1 0 1 1

0 1 1

0 1 1 1 1 0

0

0 1 0 1

( , ) ( ; , ) (( .1 ) 0; , )

( ; , ),  .1,

( ; , ) ( .1; , ),  0 .1 ,

0,  .1,

exp ( .1 ) 0 / exp / ,

P t t W t W t t

W t t

W t W t t t

t t

t t t
β β

= α β − − ∧ ∨ α β =
α β ≤�


 α β − − α β < − ≤	

 < −�

= − − ∧ ∨ α − − α
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The solutions for P1 and P2 are analytic.  Those for 3P  and 4P  involve quadratures of 

analytic functions.  Those quadratures are easily carried out computationally (see 
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Section 3.1.2 for details).  In that sense the entire solution is known semianalytically.  

The finite-difference method of the preceding section will now be tested against this 

semianalytic benchmark. 

3.1.2 Computational Results 

As discussed in the preceding section that the solutions for 3P  and 4P  involve 

quadratures of analytic functions.  Here in this section those quadratures are carried out 

computationally via MatLab implementation (see Appendix F for details). For each t, 

when evaluating the quadratures, 0.0001s∆ =  is applied in the MatLab code. To check 

the accuracy of the evaluated quadratures using 0.0001s∆ = , 0.0005,0.001s∆ =  are also 

applied to the code for comparison. Table 1 shows the different values for 3P  and 4P  

evaluated at some time points. 

 

Table 1  

Comparison of P3(t) and P4(t) for different � s 

T P3(t) � s=0.0001 
P3(t) � s=0.0005 

P3(t) � s=0.001 
P4(t) � s=0.0001 

P4(t) � s=0.0005 
P4(t) � s=0.001 

0.5 0.14844     0.14859 0.14878 0.032866    0.032899 0.032940      
1 0.23108     0.23118 0.23132  0.13133     0.13138 0.13146     
2 0.23719     0.23724 0.23731        0.37610     0.37619 0.37629       
3 0.17955     0.17958 0.17962        0.58591     0.58600 0.58612      
4 0.12204     0.12205 0.12207        0.73572     0.73582 0.73594     
5 0.07884     0.07885 0.07887      0.83488     0.83983 0.83511        
6 0.049601    0.049607 0.049614      0.89808     0.89818 0.89831       
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From the above table we can see that the computational results of the semianalytic 

solution are believed to be accurate to (at least) three digits as presented.  

For this section the parameters of the preceding section were taken 

as 1 2 1 20.5,  1.0,  1.0 and 1.25α α β β= = = = . From the definition of transition rates and 

cumulative transition rates from Section 2.1, we can easily get the corresponding 

nonzero transition rates and cumulative transition rates for the above system. The 

transition rates and cumulative transition functions are 
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Figure 5. Comparison of computed probabilities to the semianalytic solution 

 

The first six years of the corresponding solutions are shown in Figure 5, with the 

semianalytic solution of the preceding section plotted as the discrete points (x’s), and the 

computational results, with 0.1t∆ = , plotted as the solid lines in the same figure. The 

computational approximation is practically identical to the semianalytic solution, 

although some discrepancy is graphically distinguishable, especially in the state 

probabilities 3P  and 4P , at the later (calendar) times. These results are for a relatively 

small time step, but results for larger time steps are totally unviable, because they fail to 

capture any transfers from state 2 to state 3. This is because at these larger time steps all 
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such transfers are contained mathematically in the terms corresponding to the integrals 

over the triangular regions that were neglected in the computational method of the 

preceding section. Methods presumably could be produced that are not subject to this 

failing, but the objective of the present chapter is to verify and understand the specific 

method of Chapter II. 

The computational errors in the state probabilities, as compared to the semianalytic 

solution (believed to be accurate to the magnitude of 10-3) are plotted in Figure 6. To 

see the trends of error changes with decreasing time step, three groups of error data are 

shown in that figure, with t
�

=0.1, 0.02 and 0.025 (plotted as blue lines, discrete points 

and red lines respectively).  It can be seen clearly from Figure 6 that, the error decreases 

with decreasing time step. The errors are in the order of 10-3 ~ 10-4 for P1, P3 and P4. 

Because of the sudden jump in P2, from 0 to around 0.05 at time t=0, the errors in P2 at 

the first few time points are relatively larger.  Therefore, it is not easy to see the order of 

accuracy from the plot for P
�

2, however, a detailed study of the error data (as shown in 

Table 2. Please note here that only P
�

2(t) and P
�

4(t) are given due to limited space of 

the table, and the results for P
�

1(t) and P
�

3(t) are similar) for P
�

2 shows that the 

order of the errors is around 10-4 ~ 10-5. This means that the finite-difference 

methodology of Chapter II has very good accuracy, compared to the results from 

semianalytic results.  This provides the desired verification of the finite-difference 

methodology of Chapter II. 
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Figure 6. Plots of error for each state, as compared to the semianalytic solution 

 

Table 2  

Comparison of � P2(t) and � P4(t) for different � t 

t � P2(t) � P4(t) 
 �����
	���
 ���  =0.05 ���  =0.025 �����
	���
 ���  =0.05 ���  =0.025 
1 0.1745e-4       0.0409e-4 0.0099e-4 0.0022        0.0020 0.0014 
2 0.0117e-4     0.0020e-4 0.0004e-4 0.0094        0.0055 0.0030 
3 0.0493e-4        0.0125e-4 0.0032e-4 0.0096        0.0054 0.0029 
4 0.0637e-4       0.0159e-4 0.0040e-4 0.0069        0.0038 0.0020 
5 0.0588e-4      0.0146e-4 0.0036e-4 0.0043        0.0024 0.0012 
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Results relevant to detailed computational accuracy appear in Figure 7.  Here ( )iPε  

is the computational error in the state probability iP , as compared to the semianalytic 

solution (believed to be accurate to three digits represented in the error as discussed 

early in this section), and for the time step indicated in the plots.  The corresponding 

order of accuracy ( )in P  is defined as 

ln ( ) / ( )
( ) : ,

ln 2
p i i

i

P P
n P

ε ε� �� �=
 

where pε  is the corresponding error at the preceding time step. It is shown from the plots 

that the values for 1P∆  and 2P∆  clearly cluster toward two and the values for 3P∆  and 

4P∆  go toward one (also shown in Table 3). This confirms the order one accuracy 

anticipated in Section 2.2. The sudden changes in 2P∆  is most likely due to the error 

accumulation/ cancellation during the calculation, further study of the reason is not 

addressed here. 
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Figure 7. Plots of order of accuracy for each state 

 

Table 3  

Order of accuracy for the discrete algorithm in this example 

t n(P1(t)) n(P2(t)) n(P3(t)) n(P4(t)) 
 ���  =0.05 ���  

=0.025 
���  

=0.05 
���  

=0.025 
���  

=0.05 
���  

=0.025 
���  

=0.05 
���  

=0.025 
1 1.9579     1.9801 2.0940    2.0473 0.2122    0.4793 0.1419    0.5673 
2 1.9937     1.9969 2.5501    2.3649 0.7672    0.7980 0.7746    0.8535 
3 2.0018     2.0008 1.9759    1.9885 0.8306    0.8529 0.8400    0.9092 
4 2.0034     2.0016 2.0029    2.0014 0.8399    0.8660 0.8569    0.9436 
5 2.0025     2.0011 2.0080    2.0039 0.8370    0.8677 0.8720    0.9934 
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We take these results, as regards both accuracy and order of accuracy, as 

providing confirmation of the correctness of the finite-difference method of Chapter II, 

and of its MatLab implementation that is the fundamental source of the computational 

results presented throughout this dissertation. 

Please note here that in the above example the system does not allow “state 

reentry”, which means that once the system leaves a state, it never comes back to the 

same state. However, in some scenario, it is often required to have a state reentry. For 

example, when a system is replaced after it gets into the “failure state” from the “normal 

running state”, it can come back to “normal running state” and this procedure can be 

repeated. In the next section, an example that permits state reentry is constructed and the 

computational results from the entry-time approach are compared to simulations. 

3.2 A Simplified Computational Example, with Comparison to Simulation 

This section is devoted to a hypothetical three-state example that permits state 

reentry. Computational results from the above methodology are compared to simulations. 

The three-state example is formulated in Section 3.2.1. In Section 3.2.2 we apply to 

the three-state example the MatLab finite-difference code used to obtain the results 

described in the preceding section, and we verify this application by comparison against 

(differential and integral) results obtained from simulation. 

3.2.1 Formulation 

The characteristics of the three-state example are: 
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• The three states are “in-service (1),” “out of service for preventive maintenance 

(PM) (state 2),” and “out-of-service for corrective maintenance (CM) (state 3).” 

• The transition rate from 1 to 3 is defined by an annual failure rate of .05 + 0.2s, 

where s is “time in service” (sojourn time in state 1).  (This simulates aging 

effects, but not infant mortality.) 

• The transition rate from state 1 to state 2 is defined by a policy of completely 

replacing systems after they have been in service for a “replacement period” Tr.  

The value of this parameter is not specified, because we take the issue associated 

with this example as determination of the preferred choice of the replacement 

period.  This is similar to issues that arise in both life-cycle management [27] and 

optimization of preventive maintenance [28] in NPPs. 

• The transition rate from 2 to 1 is defined by the fact that systems can be 

completely replaced within 0.2pt =  years, provided the outage is planned so that 

replacement equipment can be ordered and on hand when the outage occurs. 

• The transition rate from state 3 to state 1 is defined by the fact that it 

requires 0.4ct =  years to replace the system, if the outage is not planned, so that 

replacement equipment must be specially ordered. 

• There are no transitions, in either direction, between states 2 and 3. 

The graphical relationships among the three states can be seen in Figure 8 where PM 

Period 0.2pt =  years and CM Period 0.4ct =  years. 
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Figure 8. Relationships of states for the example of Section 3.2.1 

 

3.2.2 Verification 

Similar to the solutions of transition rates in the Section 3.1.2, from the definition of 

transition rates and cumulative transition rates from Section 2.1, for this three-state 

example the nonzero values of ijλ  and ijΛ are: 

21 31

12 13

( , ) ( ),  ( , ) .05 0.2( ),

( , ) ( .2),  ( , ) ( .4)
rt t T t t

t t t t

λ τ δ τ λ τ τ
λ τ δ τ λ τ δ τ

= − − = + −
= − − = − −  

and 

2
21 31

12 13

( , ) ( ),  ( , ) .05( ) 0.1( ) ,  

( , ) ( .2),  ( , ) ( .4).
rt H t T t t t

t H t t H t

Λ τ τ Λ τ τ τ
Λ τ τ Λ τ τ

+

+ +

= − − = − + −
= − − = − −  

Here H− is the Heaviside step function with (0) 0H− = , as consistent with the left-

atomic convention (see Section 2.1).  



 

  

39 

0 2 4 6 8 10 12 14 16 18 20

0.6

0.8

1
State probabilities plot using simulations

Time(Year)

P
1

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

Time(Year)

P
2

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

Time(Year)

P
3

Sample Path No.=5000
Sample Path No.=10000

 

Figure 9. State probabilities plot from simulations 

 

In Figure 9 we plot, over an operating period of 20 years, the time-dependent state 

probabilities, for a replacement period of 3rT =  years, as obtained from 10,000 sample 

paths (green solid line) and 5,000 sample paths (blue dashed line) respectively, and 

0.1t∆ =  years.  It is clear to see from the plots that results obtained from simulations 

using different number of sample paths agree with each other with only small differences.  

In Table 4, the yearly averaged probability differences for two simulations 

( )10,000 5,000
0 0

1 1
( ) ( ) - ( ) ,    1, 2,3

T T

i i iP t dt P t P t dt i
T T

∆ = =� �  
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are given. As we can see from the table that the integral quantities of the probability 

difference of results obtained from simulation using different number of sample paths 

are at a magnitude of 10-4, and this gives us a sense of accuracy of the simulation 

methods using 10,000 sample paths. Therefore, the results obtained from simulation 

using 10,000 sample paths will be used as a standard in comparison with the results 

obtained from the entry-time process calculations. 

 

Table 4  

Mean annual probability differences for two simulations 

t 2 4 6 8 10 16 20 

1
0

1
( ) 

T

P t dt
T

∆�  5.49e-4 9.09e-4 6.99e-4 3.79e-4 8.80e-4 7.10e-4 2.90e-4 

2
0

1
( ) 

T

P t dt
T

∆�  0 1.38e-3 1.60e-4 1.10e-4 2.39e-4 5.00e-4 1.89e-4 

3
0

1
( ) 

T

P t dt
T

∆�  5.50e-4 4.69e-4 5.40e-4 2.70e-4 6.40e-4 2.09e-4 4.79e-4 

 

 

In Figure 10 we plot, over an operating period of 20 years, the computed time-

dependent state probabilities, for a replacement period of 3rT =  years.  The solid blue 

lines represent simulation results, as obtained from 10,000 sample paths, and 0.1t∆ =  

years.  In the following we treat this as a standard for assessing the above finite-

difference method.  However, these simulation results contain some high-frequency 

small-amplitude variations that presumably represent stochastic effects (noise), even 

with this number of sample paths.  (These effects are most visible in Figure 10 as the 
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high-frequency oscillations in P3.)  Significantly smaller numbers of sample paths lead 

to similar effects, with larger amplitudes in the oscillations (see the plots in Figure 9 for 

example of this phenomenon).   
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Figure 10. Comparison of state probabilities using same time step 

 

The finite-difference results from step size 0.1t∆ =  years appear in Figure 10 as 

discontinuous green lines.  These are grossly similar to the corresponding simulation 

(blue line), but there are noteworthy differences:  
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1) The finite-difference results for 1P  (operating) and 2P  (PM) agree well (to 

graphical accuracy) with the simulations, away from the PM spikes that 

occur, with decreasing amplitude, approximately at multiples of three years.  

However, at or near these PM  spikes there are two significant differences: 

(a) The expected spikes (downward jump in 1P  and upward jump in 2P ) are, 

except for the first, somewhat larger for the finite-difference solution than 

for the simulation. 

(b) In the finite-difference solution the expected jumps approximately at 

multiples of three years are preceded by unexpected precursors consisting 

of smaller jumps in the opposite direction.  There is no indication of these 

precursors in the simulation.  In the case of 1P  ( 2P ) this “false” spike is 

even greater than one (respectively, less than zero). 

2) The finite-difference results for 3P  (corrective maintenance) are consistently 

slightly lower and later than the corresponding simulation results. 

We now explore the sources of these differences. 

If the simulation results are a reliable standard, then it is a reasonable hypothesis 

that these effects are due to discretization error. Figure 11 displays results intended to 

test this hypothesis.  The solid blue lines in this figure represents the results of the same 

simulation as described in conjunction with Figure 10, except now with a sampling 

period of  0.05t∆ =  years.  The data points themselves are not plotted, in order to 

minimize the graphical clutter.  This, along with the higher sampling frequency, makes 

even more apparent the low-amplitude high-frequency noise mentioned above.  The 
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dashed green lines and solid red lines in Figure 11 represent the corresponding finite-

difference results, with time steps of respectively 0.10t∆ =  and 0.05t∆ =  years. 
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Figure 11. Comparison of state probabilities using different time steps 

 

The general agreement between the finite-difference and simulation results becomes 

better as the time step is reduced in the finite-difference method; in particular, the finite-

difference results for state 3P  (corrective maintenance) are becoming larger as the time 

step decreases, and therefore in better general agreement with the simulation results, to 

the extent that can be judged by the apparent persistent noise in the corresponding 
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simulation results.  This provides some confirmation that effect 2) above stems from 

discretization error in the finite-difference results. 

However, the effects labeled (1) above do not seem to disappear, or even moderate, 

as the time step is decreased.  If one studies individual data points in the finite-difference 

results, the following structure emerges.  The excessive magnitude in the expected PM 

spikes (past the first) occurs as a single data point, regardless of the size of the time step, 

and that point is located at the earliest time within the expected spike. 

The remaining data in the expected PM spike take values in about the expected 

range.  Likewise the false precursor occurs as a single data point, which invariably is 

located at a time of 0.2pt =  years prior to the initial time of the expected PM spike. 

We believe these two phenomena are related, and stem from the following 

considerations.  One can consider the finite-difference approximations (15) and (16) as a 

discrete time Markov model, provided the “discrete transition coefficients,” 

1 1 1(0, ) and ( , ) ( , ) ij n ij m n ij m nt t tλ τ τ+ + +Λ − Λ  

satisfy  

   

 1 1 1
1 1

(0, ) 1 and ( , ) ( , ) 1,
I I

ij n ij m n ij m n
i i

t t tλ τ τ+ + +
= =

� �≤ Λ − Λ ≤� �� �  (17) 

 
identically in i, m and n so that these coefficients can be interpreted as bona fide 

probabilities.  For the example of this section the constraining inequality (17) fails for 

1j = (operating state) and  1 1 0.2n m pt tτ+ +− = =  years, because then 

2 1 2 1 1 3 1 3 1 1( , ) ( , ) 1,  and ( , ) ( , ) 0,j m n j m n j m n j m nt t t tτ τ τ τ+ + + + + +Λ − Λ = Λ − Λ >  
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the latter because there is some probability a system entering the operating state between 

times mτ  and 1mτ + , and further remaining in that state until time nt , will require 

corrective maintenance some time between nt and 1nt + .  The pathological consequences 

of this phenomenon are particularly amplified when a preceding discontinuity occurred 

between the two entry times (i.e., between mτ  and 1mτ + ), which corresponds to time rT  

following both beginning and end of the preceding PM spikes.  These correspond 

respectively to the times of the false precursors and of the points of excessive magnitude 

in the expected PM spikes. 

We choose here to accept these clearly incorrect results (probabilities less than zero 

and greater than one), because in the limit 0t∆ →  the effect of these false values 

becomes negligible in computing the integral quantities that are ultimately of real 

interest in applications1 . (See the following section.)  Further, we do not attempt to 

develop ad hoc “fix ups” to deal with these phenomena, notwithstanding that they are 

cosmetic liabilities, because they tend to cancel each other in computation of integral 

quantities (see the results in Table 5).  It would be of some interest to develop a fix based 

on renormalization of the discrete transition coefficients described above, but we shall 

not pursue that here.  

Some comparative instances, finite differences versus simulation, of integral 

quantities (mean annual residence time in each of the three states, over a 20 year 

operating period (terminal time)) are shown in Table 5. For the finite-difference 

                                                 
1 In this respect these phenomena bear some resemblance to the well-known Gibbs’ phenomenon. 
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approximation the integral providing the mean annual residence time was evaluated by 

means of the trapezoidal rule, with the probabilities as determined from the finite-

difference approximation, and with a time step of 0.1 years.  For the (10,000 sample path) 

simulation the integral was similarly evaluated, except the probabilities of a given state 

at time t were computed as the fraction of the selected sample paths in that state at that 

time. 

The baseline (topmost) entries under the finite-difference columns in Table 5 are the 

residence times as obtained with a time step of 0.10t∆ =  years.  These agree with the 

simulation results to more-or-less two digits of accuracy. The parenthetical results 

underneath were obtained by extrapolating to zero time step, under the assumption of 

first-order accuracy, these baseline results along with the corresponding results with a 

time step of 0.2 years.  This extrapolation adds at least an additional digit of accuracy, in 

comparison to the simulation results.  This adds further confidence that the finite-

difference method of Chapter II is both correct, and has been correctly implemented in 

the MatLab code of Appendix F.   
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Table 5  

Mean annual residence times, as a function of the replacement period 

 
Replacement  

period 
1

0

1
( ) ,

T

P t dt
T �

 

FD: 
.1( 0)t t∆ = ∆ →   

1
0

1
( ) ,

T

P t dt
T �

  

simulation 

2
0

1
( ) ,

T

P t dt
T �

 

FD: 
.1( 0)t t∆ = ∆ →  

2
0

1
( ) ,

T

P t dt
T �

 

simulation 

3
0

1
( ) ,

T

P t dt
T �

 

FD: 
.1( 0)t t∆ = ∆ →   

3
0

1
( ) 

T

P t dt
T �

  

simulation 

one (1) year .8042 
(.8103) 

.8101 .1477 
(.1422) 

.1428 .0481 
(.0475) 

.0471 

two (2) 
years 

.8585 
(.8626) 

.8620 .0600 
(.0585) 

.0583 .0815 
(.0789) 

.0797 

three (3) 
years 

.8689 
(.8725) 

.8719 .0259 
(.0257) 

.0255 .1052 
(.1018) 

.1026 

five (5) 
years 

.8691 
(.8725) 

.8722 .00346 
(.00367) 

.00361 .1274 
(.1238) 

.1242 

ten (10) 
years 

.8683 
(.8715) 

.8711 .54(-6) 
(.85(-6)) 

.30(-5) .1317 
(.1285) 

.1289 

 

 

A detailed comparison of the relative efficiency and accuracy of the finite-difference 

and simulation methods is beyond the intended scope of the present work, which is 

intended merely to verify feasibility of finite-difference methods in general, and to verify 

the specific finite-difference method of Chapter II.  However, some preliminary 

comments on these important issues are appropriate.  As coded to obtain the results 

presented here, the computational effort for the finite-difference method scales inversely 

as the cube of the time step.  Thus a decrease of a factor of two in step size occasions 

eight times as much computational time.  What is gained by that eightfold increased cost, 

at least for sufficiently small time steps, is an increase of a factor of two in time 

resolution (sampling frequency) and a reduction by a factor of two in the discretization 

error.  If one wishes to obtain the same gains from the simulation, then there also will be 
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a factor of eight increase in the computational time, from a factor of two increase in the 

time for the “post-processing” sampling in time, and a factor of four increase in the 

required number of sample paths; the latter stems from the presumed inverse square root 

of number of sample paths dependence of error for the simulation.   

Thus the computational requirements for the two approaches scale similarly, with 

time resolution and accuracy.  For a time step of 0.2 years for the finite-difference 

method, and the same sampling period with 10,000 sample paths for the simulation, the 

two methods require roughly the same times (approximately 4 mins 15 secs and 3 mins 

15 secs, respectively, on a Pentium 4 single processor PC).  Exactly what one obtains in 

accuracy for these comparable efforts seems to depend sensitively on exactly what is 

computed.  A detailed study of this important issue is not done here, but one can make 

some inference for differential quantities (e.g., the ( )iP t ) from Figure 10. (especially the 

graph for the corrective maintenance state), and from Table 5 for integral quantities.  

The relative accuracy of the two approaches for rare events (e.g., occurrence of the 

preventive maintenance state, for a replacement period of ten years; cf.  Table 5) is an 

especially intriguing issue that perhaps warrants subsequent detailed study.  This is 

particularly important to considerations related to the relative merits of the two 

methodologies for application to the very difficult issue of prediction of low-probability 

high-consequence events. 
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3.3 An Example Application in RIAM 

As discussed in Chapter I, as part of the RIAM process, PM Basis program gained 

its popularity in recent years because it is beneficial to the plant management to make 

maintenance decisions (for example, for people of risk averse, the lease risky policy 

might be taken), especially when the system or component is critical (risk related), either 

for safety or for generation.  In this chapter, we in with the example of Section 3.2, but 

add hypothetical financial information, for purposes of illustrating how entry-time 

approaches can be applied to a LCM/PM based application.  

In addition to the states and transition rates defined in the preceding section, the 

costs related to each state are defined as follows: 

While the (generation-critical) component of interest is operating the plant net revenue at 

an annual rate of $50,000,000, conceived as revenue of $150M per year, less fixed 

expenses of $50M per year and variable operating expenses of $50M per year. Each 

planned outage costs $2,000,000 for repairs, or $10M per year, plus the fixed expenses, 

for a net annualized revenue of -$60M per year during planned outages for preventive 

maintenance.  Each unplanned outage costs $10,000,000 ($25M per year), in addition to 

the $100M per year for fixed and variable expenses, for a revenue stream of -$125M per 

year during forced outages. 

Hence the cost and revenue related to each state can be found in Table 6. 
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Table 6  

Revenue and cost data related to each state 

State No. Net Revenue/Cost Revenue/Cost Details 

Revenue $150M 

Fixed Expense $50M 

 

1 

 

$50M 

Operating Expense $50M 

Repair Expense $10M  

2 

 

-$60M Fixed Expense $50M 

Repair Expense $25M 

Fixed Expense $50M 

 

3 

 

-$125M 

Operating Expense $50M 

 

 

In Figure 12 we plot, over an operating period of 20 years, the time-dependent state 

probabilities acquired by using the MatLab code for entry-time applications (see 

Appendix F for details), for replacement periods of 0.8,1.8 and 3.8rT =  years 

respectively with 0.1t∆ =  years.  The solid blue lines represent probabilities of states 

with a replacement period of 0.8rT =  years, while the solid green line corresponds to  

1.8rT =  years, and the red solid line to 3.8rT =  years. 
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Figure 12.  State probability plots, with replacement period as a parameter 

 
The first overall observation is that the PM greatly improves the reliability of the 

system and hence decreases the risk of system failure (in state 3) over a 20 year time 

period comparing to the reliability performance with no maintenance. The probability 

plots for state in Figure 12 show that the probability that the system is in the failed state 

decreases as the corresponding replacement period rT  decreases, consequent to different 

PM policies. 

Comparing the three different maintenance policies, there is not much improvement 

(numerically) when doing preventive maintenance more frequently. For example, with a 

more frequent preventive maintenance (e.g. 0.8rT = ), the averaged  failure probability is 
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about 0.06 less than the averaged failure probability of a less frequent preventive 

maintenance (e.g. 3.8rT = ). 

But from the viewpoint of a NPP life time, this can make a huge difference in 

reliability calculations. This is extremely important for current NPPs, which have been 

in operation for decades. It is also important for PRA/GRA models, as will be discussed 

in Chapter V. 

Figure 13 consists of graphs of annual revenue, variance and skewness, for a plant 

lifetime of 20 years, and various representative values of rT . Briefly, these were 

computed as follows: 

When doing simulation, information from different sample paths is collected and 

used for final calculations. Here we use similar sample path idea that is used in 

simulation, the net revenue in year n , along a sample pathω , is 

( )
n3

( )

1 n-1

( ) ( )  ,n
i i

i

R R I S t dtωω
=

=� �
 

where:  

iR  is the annualized net revenue in state i , as indicated in the system description of 

the preceding section (i.e., 1  $50R M=  per year, 2  $60R M= −  per year and 

3  $125R M= −  per year); 

iI  is the indicator function for state i ; and 

( )S tω  is the  system state at time t , along sample path ω . 

The expected value of that annualized net revenue is then 
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3( ) ( )

1 1

( ) ( ) ,
n

n n
i i

i n

R R d R P t dtω ω
= −

= =�� �  (18) 

where 

( )( ) ( )  i iP t I S t dω ω= �  

is the probability the system is in state i at time t. 

The Entry-time approach produces precisely discrete approximations to the 

probabilities ( )iP t .  The expected net revenues in Figure 13 were produced by using the 

finite-difference methodology, with time step 0.1 years, and then evaluating the 

rightmost integrals in Equation (18) by means of the trapezoidal rule.  Refinement to a 

step size of 0.05 years produced relatively minor changes in the computed values. 

The annualized standard deviations and skewnesses were similarly computed, as 

respectively 

3 2( )( )

1 1

( ) ,
n

nn
i i

i n

R R P t dtσ
= −

� �= −� �� �� �
 

and 

3 3( )

1( ) 1
3( )

( ) 
.

n
n

i i
in n

n

R R P t dt
γ

σ
= −

� �−� �� �
=

� �� �

� �
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Figure 13. Annualized values of various measures of economic performance 

 
The first overall observation is that the hypothetical plant under consideration has a 

high degree of inherent uncertainty in financial performance, as the standard deviation in 

annualized net revenue tends to be close to twice the expected net revenues.  Further, the 

large negative values of skewness indicate that much of the variance is located along a 

long left tail of the underlying distribution; i.e., the business is subject to a substantial 

downside risk. 

The most aggressive of the three preventive maintenance policies described, a 

replacement period of 0.8 years (PM cycle of 1 year), substantially reduces this 

downside risk, as indicated by: 
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i. a standard deviation that tends to be substantially smaller than that for the 

most passive PM policy (replacement period of 3.8 years), and slightly 

smaller than that for the intermediate policy (replacement period of 1.8 

years); 

ii. a variance that is substantially larger algebraically (i.e., less negative) than 

that of either of the two alternative policies. 

This shortest of the three replacement periods considered is therefore likely to be 

adopted by concerns that are strongly risk averse.  However, the graph of expected net 

revenue shows that this decrease in downside risk is purchased at a cost of some 10-15% 

reduction in expected net revenue, depending upon the year.  Management more inclined 

to accept a higher degree of generation risk might be inclined to adopt the intermediate 

replacement period of 1.8 years. 

As compared to this intermediate replacement period, the most passive replacement 

policy of a 3.8 year replacement period apparently provides no advantage in either 

expected net revenue or reduction in downside risk.  For the assumed parameters the vast 

majority of instances will require corrective maintenance over a period of 3.8 years, so 

that this longest replacement period is essentially tantamount to a policy of running to 

failure.  

As we can see from the above example that the comparison of PM policies is based 

on “maximize the revenue” strategy. However, its counterpart, “minimizing the cost” is 

often used in industry when doing such analysis. In Chapter V, such implementation (i.e. 

minimizing the cost) will be carried out in the analysis for PM policies of a main 
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generator system to accord with the way that is familiar to industry people who are doing 

similar analysis. 

As demonstrated by the example above, the computational entry-time approach is 

capable of providing guidance as to PM policies that are most consistent with 

management objectives. Hence the entry-time approach can be applied to a LCM/PM 

based scenario in nuclear power plants where time-dependent feature is important. 

However, this methodology does require availability of suitable time-dependent failure 

rates.  There are limited sources of such information that are available. Issues related to 

data and databases will be addressed in detail in the next chapter. 
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CHAPTER IV 

DATA AND DATABASE FOR APPLICATIONS 

We have demonstrated, in Chapter III, both the computational accuracy and the 

applicability of the entry-time processes. Also in Section 3.3, an example is given to 

show how the entry-time processes can be applied to a LCM/PM based scenario. Our 

next step is to focus on the application of this methodology to realistic NPP applications, 

especially in the arenas of LCM/PM based applications. 

The first challenge to apply entry-time process to such applications is the 

availability of suitable time-dependent failure rates.  As mentioned in the preceding 

chapters, that accurate values of the “transition rates” are crucial to the application of 

entry-time methodology. As we know, there are two types of transition rates: policy 

driven (e.g., PM policies) and stochastic (e.g., failures). The basic objective of this 

chapter is to ascertain the possibility of obtaining failure rates, for real-world SSCs in 

NPPs, via application of standard statistical techniques to existing databases for 

reliability of such SSCs. In this chapter, the issues of data and database for the 

application of entry-time processes to the application of NPP applications are discussed. 

The EPIX database is introduced in Section 4.1. In Section 4.2, the EPIX database is 

shown to be capable of providing time-dependent failure rates.  Following that, the target 

system (main generator) for further analysis is selected in Section 4.2. Then different 

failure data for main generators was selected and tested using different data 

interpretation schemes in Section 4.4. In Section 4.5 the various results are compared, 
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and a “best data fit” distribution is selected as a basis for further work.  Further detailed 

analysis is carried out in Section 4.6, to generate time-dependent failure rates and the 

corresponding distribution(s).  These will then be employed in Chapter V, to generate 

various predictions via the entry-time model of the preceding chapters. 

4.1 Introduction to the EPIX Database 

The EPIX database [29]  was employed as a source of the data used to obtain the 

transition rates used in this dissertation, in the context of the entry-time approach 

developed in Chapters II and III.  The objective of this section is to review the history of 

this database, and its structure, especially as these are needed to justify its selection for 

use in this dissertation.  These descriptions closely follow that in [29] and the USNRC 

websites [30]. 

The EPIX failure database for nuclear power plants components has experienced 

several stages from the early 1970s.  

The first stage is set up of the initial data collection system. In the early 1970s, the 

industry and some research institutes recognized the need for failure data on nuclear 

plant components. As a result, a data collection system was developed whose objective 

was to make available reliability statistics (e.g., failure rates, mean-time-between-

failures, mean-time-to-restore) for safety related systems and components. This system, 

the Nuclear Plant Reliability Data System (NPRDS), was developed by Southwest 

Research Institute (SwRI). Plants began reporting data on a voluntary basis in 1974, and 

continued reporting to SwRI until 1982.  
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In the second stage, failures of both safety and non-safety related components are 

reported. In January 1982, the Institute of Nuclear Power Operations (INPO) assumed 

management responsibility for the system. Originally the NPRDS only covered safety-

related systems and components. However, later the scope was expanded to cover any 

system important to safety and any system for which a loss of function can initiate 

significant plant transients. By the end of 1984, 86 nuclear power plant units were 

supplying detailed design data and failure reports on some 4,000 to 5,000 plant 

components from 30 systems. Data reported to NPRDS consisted of two kinds of reports: 

engineering reports and failure reports. The engineering reports provided detailed design 

and operating characteristics for each reportable component. The failure reports provided 

information on each reportable component whenever the component was unable to 

perform its intended function.  

In the third stage, EPIX replaces NPRDS. The NPRDS failure reports provided to 

INPO were generally generated by plant licensees utilizing maintenance records such as 

maintenance work orders. These reports utilized a standard set of component boundaries 

and failure mode definitions. The Equipment Performance and Information Exchange 

(EPIX) system replaced NPRDS since 1987. 

EPIX consists of: 

• a site-specific database controlled by each INPO member site with web-based 

data entry and retrieval, 

• an industry database on the INPO web site where selected parts of the site-

specific database are shared among plants, 
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• a retrieval tool that provides access to the vast historical equipment performance 

information available in the NPRDS. 

Events reported to EPIX include both complete failures of components and 

degraded component operation. The number of demands and operating hours (i.e., 

reliability data) and the unavailability are required to be collected for components in 

safety-related systems, for each plant. In addition, contributors to EPIX are also to 

include one-time estimates of the number of demands and run hours for other risk-

significant components. 

In comparison to other database used in current nuclear industry, such as WASH-

1400 [31] and the PLG2 Database [32], the INPO-EPIX database is the best database 

available to us, for the following reasons: 

• The EPIX database includes 400,000 failure reports on more than 900,000 

components since 1973 while the WASH-1400 only contains data from early 

1960 to 1973. 

• The EPIX database includes both complete failures of components and degraded 

component operation, while the PLG Database focuses mainly on complete 

failure of components. 

• It is feasible to generate time-dependent failure rate from the database due to the 

completeness of the data records. 

                                                 
2 PLG was the former company name for current ABS Consulting Inc. 
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Information is extractable from the EPIX database by means of SQL3 queries. In the 

following section, we will employ this capability to test the ability of the INPO-EPIX 

database to provide, in conjunction with standard statistical tools, adequate estimates of 

time-dependent failure rates to be used in the application of entry-time processes. 

4.2 Applicability of the EPIX Database  

As mentioned in Chapter I, aging is becoming more and more important in NPPs, 

many of which have been in operation for decades, some now longer than their 

originally planned lifetimes. A consistent treatment of the dynamics of the evolution of 

aging and maintenance is critical to the quantitative study of system reliability. In order 

to show the importance of aging and the applicability of entry-time approach, we 

reviewed the EPIX database to identify a system that has the following features: 

• The system shows significant time-dependent (aging) features, i.e. it has time-

dependent failure (transition) rates. 

• The system is either safety related (for PRA model) or generation-risk related 

(for GRA model). That is, failure of the system will increase system risk or 

generation risk. 

There are 21 tables in the INPO Database named “nrcRadsView” in which we can 

find almost all the failure records from different sources (NPPs) for different type of 

components. The database is in Microsoft Access format and it is feasible to acquire 

records from it by using SQL queries. Starting from the table “tblAlternateDevice,” 

                                                 
3 Commonly expanded as Structured Query Language, is a computer language designed for the retrieval 
and management of data in relational database management systems. 
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where we see a list of all components, we can find the all types of components that have 

more than 1000 records in the database using an SQL query such as: 

SELECT tblAlternateDevice.ComponentTypeCode,    

Count(tblAlternateDevice.ComponentTypeCode) AS Number_of_Records 

FROM tblAlternateDevice 

GROUP BY tblAlternateDevice.ComponentTypeCode 

HAVING (((Count(tblAlternateDevice.ComponentTypeCode))>1000)) 

ORDER BY Count(tblAlternateDevice.ComponentTypeCode) DESC; 

 
Please note that in the above SQL query, the condition is set as: “HAVING 

(((Count(tblAlternateDevice.ComponentTypeCode))>1000)”. The reason for that is a 

large number of failure records for a type of component is necessary in order to obtain 

good statistics.  

As can be seen from Table 7 below, which was created using the above query, there 

are around 30 types of components that have more than 1000 records in this table. We 

are seeking types of components that have significant time-dependent features. 

Therefore, according to the Weibull parameters from Barringer (see footnote 4), we 

choose “CKRBRK” (Circuit Breaker) and “MOTOR” from the list.  These have 103399 

and 15723 records respectively.  They will be used to test the ability of the INPO-EPIX 

database to provide, in conjunction with standard statistical tools, adequate estimates of 

time-dependent failure rates. The Weibull shape and scale parameters from the Barringer 

website are given in Table 8 and the parameters listed here will be compared to the 

parameters obtained from the data fit plots for Weibull distributions. 
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Table 7  

List of components that have more than 1000 records in the EPIX database 
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Table 8 

Weibull parameters as suggested by the Barringer website4  

Weibull Shape Weibull Scale (days) Component 
Name Low Typical High Low Typical High 

Circuit Breakers 0.5 1.5 3.0 2792 4167 58333 
Motors 0.5 1.2 3.0 46 6250 12500 

 
 

Each general type of component tends to come in several different models.  For 

example, Circuit Breaker Model DS 206 has two models: Model K and Model S. In 

order to determine the best estimate of failure rate for a certain component, we need to 

focus on components of the same model. The analysis done here is so focused. 

For circuit breakers, we choose the models that have more than 100 records in the 

database, while for motors we choose the models that have more than 20 records.  The 

difference is because there are substantially fewer records for motors than for circuit 

breakers. 

After appropriate SQL queries, we find there are four models of circuit breakers 

(two different models, but each has type “K” and type “S”) and 3 models for motors that 

meet the criteria of queries (i.e., have respectively more than 100 or 20 failure records in 

the database). 

For circuit breakers the respective numbers of failure records (please refer to 

Appendix A for sample of the failure records) are as shown in Table 9. The 

corresponding results for motors are as in Table 10. 

                                                 
4 http://www.barringer1.com/wdbase.htm 
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Table 9  

Circuit breakers model and failure records in the EPIX database 

Circuit Breaker Model 
Number 

Type of the Model Number of Failure Records 

K 30 DS 206 
S 81 
K 17 HFB3 
S 106 

 

 

Table 10  

Motors model and failure records in the EPIX database 

Motor Model Number Type of the Model Number of Failure 
Records 

CS VSS S 23 
TBDP S 28 

FTYPE AN S 38 
 

 

Once the components were identified, we employed the standard statistical software 

MiniTAB [33] to obtain the failure rate for each of the different types of components 

(model numbers), as will now be described.  As a standard to judge which type of 

distribution we should choose, we use the A-D numbers (Anderson-Darling statistic5) as 

                                                 
5 The Anderson-Darling statistic is a measure of how far the plot points fall from the fitted line in a 
probability plot. Minitab uses an adjusted Anderson�Darling statistic, because the statistic changes when a 
different plot point method is used. A smaller Anderson�Darling statistic indicates that the distribution fits 
the data better. 



 

  

66 

a measure of how well each of the three different distributions (Weibull, Exponential 

and Normal), as provided by MiniTAB, fits the observed distribution of failure times. 

The results will be shown below, for the various model number and model types. 

Here we choose not to show all the plots for each model type; rather, we plot here only 

the Weibull, Exponential and Normal distribution fits for circuit breakers with model 

number DS 206 and type K.  For the remaining plots, please refer to Appendix B. 
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Figure 14. Weibull distribution plots for circuit breakers (DS 206 and type K) 6 

 

                                                 
6 Throughout the dissertation, the units for all X axels in the MiniTab plots are days, if not specified 
otherwise. 
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A typical Weibull distribution can be found in the example given in Section 3.1. 

From the plotted MiniTAB results in the upper right of Figure 14 we can see that the 

Weibull distribution fits circuit breakers with model number DS 206 and type K failure 

records very well. This “percent plot 7” shows that almost all the failure “points” fall 

closely around the percentage plot line, which means that the distribution plot agrees 

with the failure record data very well. Also the “Rate plot”8 (lower right of Figure 14) 

shows that there are significant aging effects for this type of circuit breakers, as the 

hazard rate (failure rate) increases significantly as the system ages. 

A typical form of the exponential distribution pdf function is: 

, 0
( , )

0       , 0

xe x
f x

x

λλλ
−� ≥

= 	
<�

 

where λ  is a constant failure rate for the distribution. 

From the exponential distribution plots (Figure 15), we can see that the constant 

failure rate does not apply for the failure distribution of this particular type of circuit 

breakers. The “percent plot” (upper right plot) shows that almost all the failure “points” 

fall far away from the percentage plot (see also footnote 7) line, which means that the 

distribution plot does not agree with the failure record data at all. These graphically 

intuitive observations correspond more quantitatively to a much larger value of the A-D 

                                                 
7 Fitted line of percent plot, which is a graphical representation of the percentiles. To make the fitted line, 
Minitab first calculates the percentiles for the various percents, based on the chosen distribution. The 
associated probabilities are then transformed and used as the y-variables. The percentiles may be 
transformed, depending on the distribution, and are used as the x-variables. The transformed scales, 
chosen to linearize the fitted line, differ depending on the distribution used. 
8 Also known as hazard rate, or failure rate,  which is identical to the failure rate that was used in the entry-
time models. 
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statistic for the exponential distribution than was observed previously for the best-fit 

Weibull distribution.  The inability of a constant failure rate to fit the data presumably is 

a consequence of aging effects in the DS 206 Type K circuit breakers. 
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Figure 15. Exponential distribution plots for circuit breakers (DS 206 and type K). (The 

horizontal axes are time, in days) 

 
The typical form of the probability density function for a normal distribution is: 

2

2

1 ( )
( ) exp( )

22
x

f x
µ

σσ π
−= −  

where µ  is the mean and σ  is the standard deviation of the distribution. 
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Figure 16. Normal distribution plots for circuit breakers (DS 206 and type K) 

 
As clearly shown from the plots in Figure 16, same as the Weibull distribution plots 

in Figure 14, the normal distribution fits the failure records very well and the A-D 

statistic number is very small (the A-D number for normal distribution is 0.617, as 

compared to 0.767 for the Weibull distribution). The “percent plot” (upper right) shows 

that almost all the failure “points” fall closely around the percentage plot (see also 

footnote 7) line, which means that the distribution plot agrees with the failure record data 

very well. Also the “Rate plot” shows that there are significant aging effects for this type 

of circuit breakers; that is, the hazard rate (failure rate) increases significantly as the 

system ages. The differences between the two distributions (Weibull and normal) lie not 
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only in the way the failure rates increase, but also in the shape of the associated pdf 

(probability density function) plots.   

One thing in common between the two acceptable “best fits” (Weibull distribution 

and normal distribution) is that, no matter how the failure rate is distributed, the failure 

rates increase as the component ages. This is exactly one of the important features that 

we are seeking, for an application of the entry-time approach in a RIAM based scenario 

for NPPs.  

 

Table 11 

A detailed comparison of A-D numbers and Weibull parameters 

Component Model Type A-D-
Weibull 

A-D-
Exponential 

A-D-
Normal 

Weibull 
Shape 

Weibull 
Scale(Days) 

K 0.767 16.452 0.617 4.6 7273 
DS 206 

S 2.789 8.659 0.969 0.99 5536 
K 1.421 5.033 1.293 2.6 5848 

CKTBRK 
HFB3 

S 3.467 43.466 0.74 2.3 7151 
CS 

VSS S 1.515 3.75 0.872 1.18 6078 

TBDP S 0.749 4.448 0.674 1.56 6238 MOTOR 
FTYPE 

AN S 3.099 11.722 0.835 1.42 8051 

 

 

Without considering other factors (as will be discussed in detail in Sections 4.3 and 

4.4 below, using the A-D numbers and plot observations), we can see clearly that the 
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failure rate is not constant for DS 206 Type K circuit breakers . On the contrary, the 

component failure shows some considerable time-dependent features. Similar results 

hold for the other components (cf. Appendix B).  The A-D-statistics for the fits to the 

various distributions are shown in Table 11. 

As we can see from Table 11 that the A-D number using exponential distribution is 

the largest for each type of model; this means that none of the failure distribution for any 

of the models follow an the exponential distribution. However, both the Weibull and 

normal distributions give a good fit, with the normal distribution seeming slightly 

preferable.  Also, a comparison of the Weibull parameters given in Table 11 with those 

in Table 8 shows that the parameters acquired by fitting the failure with Weibull 

distributions agree with the “typical” Weibull parameters as suggested by the Barringer 

website (see also footnote 4) for both circuit breaker and motor. 

Therefore, we can draw the conclusion that the INPO-EPIX database is capable of 

providing appropriate failure rates for use within the entry-time model developed in the 

preceding Chapters II and III, and that circuit breakers and motors provide instances of 

the behavior of interest (time-dependent failure rates).  In the following sections we 

therefore pursue more detailed parameter measures and comparisons, to choose both 

which distribution to use in the entry-time applications, and an appropriate “target 

system” for application of the entry-time methodology.   

4.3 Selection of Target System (Main Generator) 

The applicability of the EPIX database has been demonstrated in the preceding 

section. The next step is to identify a system suitable for entry-time applications, and for 
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which adequate data exist.  Identification of such a “target system” is the objective of 

this section. 

As stated in Chapter I, one of the requirements of the RIAM application is that the 

failure of the system will increase system risk or generation risk, which means that the 

system is either safety related or generation-risk related. We choose the main generators 

as an application in this dissertation to demonstrate the applicability of the entry-time 

approach to any RIAM based applications in NPPs.  Their failure constitutes a 

generation risk. An introduction to the main generator and its auxiliary systems is found 

in Section 5.1 below. 

This choice is partially motivated by availability of detailed information about main 

generators from STP (South Texas Project Nuclear Power Plant), where there have been 

some recent issues with the main generators.  A further reason is existence, in the EPIX 

database, of extensive failure data for main generators, including those at STP.   

As mentioned in the preceding section the hazard rate extracted from the failure data 

is identical to the failure rate needed for use in the entry-time model.  Further study of 

the failure data from the EPIX database for the main generator shows that the hazard 

function obtained from the data analysis do display aging (time-dependent, cf. Sections 

4.4, 4.5 and 4.6), which is an important factor for a demonstration of the utility of the 

entry-time model. 

Because of the generation-risk related property of the main generators, it is almost 

certain that any failure will be discovered immediately by plant personnel, once it occurs. 

Therefore, the failure data queried from the EPIX database (e.g. Failure discovery data, 
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estimated age at failure etc.) is expected to very closely reflect the actual time when a 

failure occurred.  

In the following sections, the failure data for main generators acquired from the 

EPIX database is analyzed using Minitab software to extract failure distribution and 

further failure rates to be used in the entry-time application. Due to the generation risk 

related properties of generator failures, in the analysis, only the failures that resulted in 

significant power generation loss are queried from the EPIX database. Because those 

failures can, and in fact normally do, lead to 100% power loss, which is equivalent to 

reactor trip, we name those failures as “trip-equivalent failures”. Just as in the preceding 

section, we use the MiniTab software to fit the failure data into different distributions to 

see which best fits the failure data; this “best fit” distribution will be subsequently used 

in the entry-time model.  

This analysis is performed in the following way: First, we choose three different 

datasets of main generator failure records (all Westinghouse-manufactured, all 

Westinghouse-manufactured serial numbers similar to STP, STP only). Then for each 

dataset, we use two different data interpretation methods to fit the failure dataset to each 

of the Weibull and lognormal distributions. The methodological issues for extraction of 

failure rates from EPIX database using MiniTab software will be discussed in the 

following Section 4.4 and the results will be presented in the subsequent Section 4.5. 

4.4 Techniques for Extraction of Failure Rates: Methodological Issues  

In this section the hazard function from a “best fit” distribution will be used to 

extract failure rates needed for application of the entry-time methodology. Those are the 
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primary results needed from empirical data for application of entry-time technique. 

When we fit the different datasets extracted from the EPIX database with different 

distributions, to find the best fit for the failure data, the following assumptions are 

applied: a) All subsequent failures are independent of the prior failures; b) When a 

system is repaired (not a full system replacement) from a failure, the system is “as-good-

as-old” so that any aging effects persist and the failure rates are still dominated by aging 

effects, if any. 

In this section, three different datasets of main generator failure records (all 

Westinghouse-manufactured, all Westinghouse-manufactured serial numbers similar to 

STP, STP only) are extracted from the EPIX database; the corresponding query criteria 

are discussed in Subsection 4.4.1. In Subsection 4.4.2, the data acquired from the 

database are interpreted according with different plant procedures. Also the different 

“censoring schemes” used in MiniTab are discussed in Subsection 4.4.2. 

4.4.1 Data Selection 

As discussed in Section 4.3, the choice of main generator is partially motivated by 

availability of detailed information about main generators from STP (South Texas 

Project Nuclear Power Plant), where there have been some recent issues with the main 

generators. We therefore wish, in the application of entry-time model, to include the 

failure data for STP main generators. When extracting data from the database, analyzing 

the fit of the data to different distributions, we have presumed that the failure of 

components/systems with same or similar model numbers tend to follow same type of 

distributions. The STP main generators are manufactured by Westinghouse, whose main 
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generators are also used in some other utilities; however, the specific model used at STP 

is rarely used elsewhere. In an effort to obtain good statistical results, we therefore have 

three options in terms of the nature of the failure data to e extracted from the EPIX 

database. We describe the options in order of largest amount of data (least restrictive) to 

smallest amount of data (most restrictive) in the following paragraphs.  

The first option is to query all the failure records from the EPIX database for main 

generators manufactured by Westinghouse (including STP main generators), and we 

name this dataset as “Westinghouse Dataset” (Dataset 1). Among the three options or 

search criteria, this option is the least restrictive and hence gives the largest amount of 

data. However, due to the “mixture” of data (different model numbers) from different 

sources (different nuclear power plants and different units), the failure data may not fit 

any type of distribution well; this effect will be seen in the results presented in Section 

4.5. 

The second option is to query all the failure records for main generators 

manufactured by Westinghouse that have model numbers similar to those of the STP 

main generators (i.e. only the last few digits of the model numbers are different, which 

implies similar design with only slightly differences),  and we name this dataset as 

“Model Specified Dataset” (Dataset 2).  As mentioned earlier in this section, we presume 

that the failures of components/systems with same or similar model numbers tend to 

follow the same distribution. Therefore, “Model Specified Dataset” is able to give 

adequate amount of “samples” (failure records) and it is feasible to generate a failure 

distribution that all the failure data tend to follow using the data in this dataset. The 
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advantage of using “Model Specified Dataset” is that selecting more data has the 

advantage of giving better statistics by including systems that are dissimilar, in some 

respect, to those at STP. However, the disadvantage of it is that the distribution acquired 

from the dataset might tend to deviate from the distribution for the failure of STP main 

generators. 

Comparing to the two options above, the last option is to query the failure records 

for main generator with STP model number without considering failures at other plants, 

and we name this dataset as “STP-only Dataset” (Dataset 3) Apparently the failure 

records from a single nuclear power plant (2 individual units) may not provide sufficient 

sample size to show good statistical results, and hence give a failure distribution that fits 

well the failure data in this dataset, as shown in the following section of this chapter. 

However, this is only a hypothesis not a demonstration and there is future work that 

ultimately is needed in this regard, but that is outside the scope of this dissertation. 

In the following Subsection 4.4.2, the datasets specified in this section will be 

interpreted in accord with different assumed operational procedures, e.g. discovery by 

inspection and discovery by alarm. The corresponding MiniTab treatment of each of 

these interpretations is also given in the following subsection. 

4.4.2 Data Interpretation 

In this subsection, the data from the acquired from the EPIX database using SQL 

queries are interpreted in two different ways in accordance with two different 

operational procedures at nuclear power plants and the way the failures were discovered. 
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Data in “Model Specified Dataset” as queried from the EPIX database can be found 

in Table 12 and the data in the “Westinghouse Dataset” can be found in Appendix C. 

Table 12 gives the estimated age at failure for all main generators that have similar 

model number to those at STP.  

When querying the EPIX database to obtain the data in Table 12, first the main 

generator model number for STP main generators was acquired by querying the “Device 

Table”, and then the main generators with same or similar model numbers as that at STP 

were queried from the same table. After that, the detailed failure information including 

“estimated age at failure”, “failure discovery data” and other information were extracted 

from the database through a series of queries involving several tables and using the 

inner-join technique for SQL.  

In general, and absent further detailed information, there are two possible 

interpretations of an observation of a single failure event (e.g. the failure event 

corresponding to any single datum in Table 12). Such an event can be discovered some 

time after the failure, or it can be discovered immediately after the incident. Those two 

types of observation correspond to two different operational procedures, which we 

indicate respectively as “discovery by inspection” and “discovery by alarm.” More 

generally, the failures from any dataset discussed in the previous subsection are a 

mixture of the two different types of observations, i.e., they can be discovered by 

inspection (only know the failure occurred before this inspection and after the previous 

one) or they can be discovered by alarm (exact failure time). However, from the 

information in the EPIX database per se, it is not feasible to ascertain which type of 
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observation a single failure corresponds to. In order to better understand a particular 

failure, individuals, documents or reports associated with that failure must be consulted.  

This is not feasible for the current research. 

Therefore, we choose to assume each of the two types of observations for each 

dataset.  That is, the failure data from each dataset are treated by each of the “discovered 

by inspection” procedure or the “discovered by alarm” procedures.   The way in which 

each of these procedures is embodied in the MiniTab software will now be discussed. 

In MiniTab software, there are three different types of censoring schemes. (For a 

detailed explanation of “censoring,” and examples of these censoring schemes, please 

see Appendix D.).  These three schemes are “Right Censored”, “Left Censored” and 

“Interval Censored”. Those three types of censoring schemes correspond to three 

different types of observations: When we only know that the failure occurred after a 

particular time, the “Right Censored” scheme is applied; when it is only known that the 

failure occurred before a particular time, the datum is identified as “Left Censored” 

scheme is used; when we know that the failure occurred between two particular times, 

the “Interval Censored” scheme is applied. And when the failures are exact, no censoring 

scheme is needed in the analysis.  

 

 

 

 



 

  

79 

Table 12  

Failure date for main generators of similar models as STP 

EstAgeAtFailure 
2715 
3367 
3385 
3494 
3940 
3975 
4006 
4011 
4030 
4372 
4377 
4453 
4465 
4619 
4725 
4742 
4762 
5051 
5157 
5200 
5781 
5883 
5986 
5996 

 

 

Corresponding to the interpretation of plant procedure, “Interval Censored” data will 

be used in the MiniTab when the failure is assumed to be discovered by inspection 

because we know the failure occurred between two individual inspections; 

“noncensored” data (exact failure data) will be used when the failure is assumed to be 

discovered by alarm. 
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As mentioned in the preceding subsection, because of the generation-risk related 

property of the main generators, it is almost certain that any failure will be discovered 

immediately by plant personnel, once it occurs. This presumably is why, as shown in the 

Section 4.5, the “exact failure data” consistently provides the best fit for the failure data.  

Thus we will ultimately choose to use failure data represented as noncensored. 

To summarize:  We have three different datasets (Westinghouse, Model Specified 

and STP-only), two interpretations (discovery by inspection and discovery by alarm) and 

three different parametric distributions (exponential, lognormal and Weibull).  

Collectively this corresponds to 3×2×3=18 different combinations of choices.  From the 

analysis in Section 4.2, we have drawn the conclusion that failure rate for components 

are not ell represented by constant failure rates, which correspond to exponential 

distributions. A detailed analysis (not shown here) of the main generator failure data 

confirms that conclusion for our target system (main generators). Therefore, in the 

following section only distribution plots using the Weibull and lognormal distributions 

are displayed, which reduces the number of combinations to 12. Further, in the analysis 

of the following section, lognormal instead of normal distributions are used, because 

sometimes the normal distribution can predict failures at negative times, which are not 

possible in practice.  

4.5 Techniques for Extraction of Failure Rates: Comparison of Results  

In the preceding section, the methodological issues of extracting failure rates from 

EPIX for the application of entry-time model were discussed. In this section we will 

compare results for the three datasets acquired from the database using different query 
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criteria, with censored or non-censored data as needed for different observations. The 

results are presented in the order of dataset; for each dataset, it is ordered by type of 

observation; and for each observation we present and discuss the fit to first the Weibull, 

then the lognormal distribution. 

4.5.1 Results for Westinghouse-manufactured Main Generators 

The data in this dataset were queried from the EPIX database using the following 

search criteria: Search the failure records for Main Generators manufactured by 

Westinghouse. A report consisting of 100 records in total is generated by this query (see 

Appendix C for the complete report). 

In the following, we first (subsubsection 1) treat the data by “discovery by 

inspection” scheme, defined as follows:  Within the MiniTab formatting, the first failure 

is labeled “Left censored,” and the last failure is labeled “Right censored.”   These 

choices are based on the assumption that the first failure happened before the first 

inspection and the failures following the last one will occur some time after it.   All 

others failures are labeled as, “Interval censored” which corresponds to the assumption 

that failure occurred some time before discovery and after the preceding discovery of a 

failure at the same plant. Second (subsubsection 2), the data will be treated as “discovery 

by alarm” observations, where all failures are recorded as exact within their MiniTab 

representation, so that no censored data are used.  
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4.5.1.1 Results for Westinghouse-manufactured Main Generators Using “Discovery by 

Inspection” Scheme 

In Figure 17, a two-parameter Weibull distribution is used to fit the failure data in 

the Westinghouse dataset, assuming discovery by inspection, with left censoring  prior to 

first discovery, right censoring subsequent to last and all others interval censored.   The 

plot at upper right shows that, although most of the data points fall around the 

percentage plot (see also footnote 7) line, there are some points, especially at earlier 

times and at later times, that depart significantly from the percentage plot.  This is 

presumably reflected in the relatively large A-D number (4.269). 
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Figure 17. Two-parameter Weibull distribution overview plot using “discovery by 

inspection” scheme for Dataset 1  
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The corresponding results for the lognormal fit to the failure data in this group, 

using “discovery by inspection” is shown in Figure 18. As in the Weibull distribution 

plot in Figure 17, we can see that although most of the data points fall around the 

percentage plot (see also footnote 7) line, there are some points, especially at early time 

and later time, that depart from the percentage plot; however, now the A-D number is 

much smaller (1.262) than that for the Weibull distribution. 
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Figure 18. Two-parameter lognormal distribution overview plot using “discovery by 

inspection” scheme for Dataset 1 
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It can be seen from the lower right plot hazard plot in Figure 18 that the failure rate 

increases first and then decrease eventually after some peak point, which rarely happens 

for component degradation. This phenomenon is known as the “Fountain of Youth” (or 

“Ponce de Leon”) effect, which is a well-know deficiency of lognormal distributions. 

However, the discussion in Section 5.3 shows that the choice of lognormal or Weibull 

distribution does not change the results much. The explanation of this phenomenon 

should be further explored in future research, but here the discussion of the reason is out 

of the scope of the topic in this section.  

4.5.1.2 Results for Westinghouse-manufactured Main Generators Using “Discovery by 

Alarm, with No Censoring” Scheme 

In this section, instead of using the “discovery by inspection” scheme, the same 

failure data from “Westinghouse Dataset” are tested using the “discovery by alarm, no 

censoring” scheme, which assumes all failures were discovered by alarm and hence the 

plant personnel were notified immediately.  
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Figure 19. Two-parameter Weibull distribution overview plot using “discovery by alarm, 

with no censoring” scheme for Dataset 1 

The results for the Weibull distribution are shown in Figure 19.  The A-D number 

greater than 4.5 suggests the Weibull distribution does not provide a good fit.  As 

compared to the Weibull distribution with “discovery by inspection” scheme in Figure 

17, the A-D number is even larger using the discovery by alarm scheme than under the 

discovery by inspection approach. 
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Figure 20. Two-parameter lognormal distribution overview plot using “discovery by 

alarm, with no censoring” scheme for Dataset 1 

 
The lognormal distribution plot using “discovery by alarm, with no censoring” 

scheme is shown in Figure 20. As for the discovery by inspection scheme, the lognormal 

distribution fits the failure data better than the Weibull distribution; as judged by A-D 

numbers and probability plots.  Also as for the discovery by inspection scheme, the 

lognormal failure rate ultimately decreases.  As previously mentioned, explanation of 

this phenomenon should be further explored in future research, but here the discussion of 

the reason is out of the scope of the topic in this section.  
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In Figures 21 and 22 the 95% probability plots with discovery by alarm are given in 

both Weibull and lognormal distributions, to give an alternative view of the failure data. 
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Figure 21. 95% probability plot using Weibull distribution with exact failures for 

 Dataset 1 

Comparing the probability plot using Weibull distribution (Figure 21) and the one 

using lognormal distribution (Figure 22), it is easy to see the obvious difference, by 

inspection. More points fall outside the 95% region in the Weibull distribution then in 

the lognormal distribution. Also, a comparison of A-D numbers for 95% probability 
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plots confirms that the lognormal distribution is a better fit than the Weibull distribution 

(1.057 vs. 2.645). 
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Figure 22.  95% probability plot using lognormal distribution with exact failures for 

Dataset 1 

4.5.2 Results for Westinghouse-manufactured Main Generators Similar to Those 

Models Used at STP 

Similarly, we can plot different distributions using the two data interpretation 

schemes for data in “Model Specified Dataset”. In this data-selection method only 
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failure records for main generators manufactured by Westinghouse and with similar 

model number as those for STP were extracted from the database.  The hope is that this 

will yield a tighter and more coherent distribution of the failure data than was found in 

the preceding data-selection approach.  

The search criterion for this dataset is: Search the failure records for main generators 

manufactured by Westinghouse and with similar model number as that of STP. The 24 

resulting records are shown in Table 12. 

As for the data in “Westinghouse Dataset”, in the following section we first 

(subsubsection 1) treat these data by “discovery by inspection” observation, and then 

(subsubsection 2) following the “discovery by alarm” assumption, wherein all failures 

are exact and no censored data is used.  

4.5.2.1 Results for Westinghouse-manufactured Main Generators Similar to Those at 

STP Using “Discovery by Inspection” Scheme 

Similarly, the failure data is first fit to a (two-parameter) Weibull distribution 

(Figure 23). The first overall observation of the plots is that with fewer data points and 

similar model numbers, the data fit into Weibull distribution very well comparing to 

those in the “Westinghouse Dataset” (mixed data from the same manufacturer). Also a 

smaller A-D number (1.429, vs. 4.269) suggests that the failure data agree fit a Weibull 

distribution well. 
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Figure 23. Two-parameter Weibull distribution overview plot using “discovery by 

inspection” scheme for Dataset 2 

 
Figure 24 is the lognormal distribution using the data in this group. Just as the 

Weibull distribution above (Figure 23), almost all the points fall near the probability plot 

line, which means that the (best-fit) distribution agrees with the actual failure data 

distribution. A comparison of A-D numbers shows that the lognormal distribution is a 

better fit than Weibull because the A-D number is smaller (1.179, vs. 1.429). 
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Figure 24. Two-parameter lognormal distribution overview plot using “discovery by 

inspection” scheme for Dataset 2 

 
A small A-D number (1.179) in the lognormal distribution plot (Figure 24) shows 

the accuracy of the data fit to this distribution. The Pearson Correlation Coefficient9 of 

0.981, which is close to one (1), tends to confirm this conclusion. 

                                                 
9 The Pearson correlation measures the strength of the linear relationship between the X and Y variables 
on a probability plot. The correlation will range between 0 and 1, with higher values indicating a better 
fitting distribution. 
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4.5.2.2 Results for Westinghouse-manufactured Main Generators Similar to Those at 

STP Using “Discovery by Alarm, with No Censoring” Scheme 

In this section, instead of using the “discovery by inspection” scheme, the same 

failure data from “Model Specified Dataset” are tested using the “discovery by alarm” 

scheme, which assumes plant personnel were notified immediately upon failure.  
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Figure 25. Two-parameter Weibull distribution overview plot using “discovery by alarm, 

with no censoring” scheme for Dataset 2 
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Figure 25 and Figure 26 are plots using the two-parameter Weibull distribution and 

the lognormal distribution, respectively. The Pearson Correlation Coefficients for the 

two distributions are both 0.981. The A-D number of the latter (0.784) is smaller than 

that of the former (1.125), which means that the lognormal distribution is a better fit than 

the Weibull distribution. 
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Figure 26. Two-parameter lognormal distribution overview plot using “discovery by 

alarm, with no censoring” scheme for Dataset 2 
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In Figures 27 and Figure 28, the 95% probability plots with exact failure data are 

given respectively for the Weibull and lognormal distributions, to give an alternative 

view of the failure data in “Model Specified Dataset”. 
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Figure 27. 95% probability plot using Weibull distribution with exact failures for 

 Dataset 2 

 
Similarly to the probability plot in the “overview” plots, the 95% probability plot 

gives the 95% confidence region and the corresponding A-D number is a measure of 

how closely the data points fall into this region rather than on a single line as the 

probability plot in the “overview” plots. Hence by inspection of Figure 27 and Figure 28, 



 

  

95 

one can easily find that all the points fall into this 95% probability region for both of the 

plots. Meanwhile, the A-D numbers in both distributions are much smaller than all 

others in the plots for the all-Westinghouse dataset, which suggests that the failure data 

in “Model Specified Dataset” can fit into both Weibull and lognormal distributions very 

well and hence can be used for the entry-time applications. 
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Figure 28. 95% probability plot using lognormal distribution with exact failures for 

Dataset 2 
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4.5.3 Results for STP Main Generators 

In the following, we plot different distributions using the two data interpretation 

schemes for data in “STP-only Dataset”. In this data-selection method only failure 

records for main generators at STP were extracted from the database.   

As for the other two datasets, in this subsection, we first (Subsubsection 4.5.3.1) 

treat the data as representing “discovery by inspection” observations.  Following that, 

the data will be treated following the “discovery by alarm” scheme, in which all failures 

are exact and no censored data is used.  

The results for this dataset “STP-only Dataset” are given in Table 13. 

 

Table 13  

Failure date for main generators with STP model numbers 

Age 
3494 
3975 
4006 
4011 
4244 
4372 
4377 
4453 
4520 
5051 
5883 
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Table 13 shows the estimated age at failure for main generator failures at STP. A 

close look at the data highlighted in the table (also in red color) reveals that there were 

some failures occurred in a very short time period. A detailed study of the STP 

documents for those failures shows that the third failure (day 4011) in the highlighted 

region results from incorrect maintenance of the previous failure (day 4006).  Therefore 

the two failures are not independent, so that the “bad as old” assumption is invalid.  The 

“good as new” assumption might be true, but would need to allow for infant mortality in 

the failure mode that was attempted to repair.  An entry time model could accommodate 

that, but would need to allow for multiple entry times, for each failure mode. This 

possibility will be further discussed in the concluding Chapter VI. 

4.5.3.1 Results for STP Main Generators Using “Discovery by Inspection” Scheme 

Using the failure with STP main generator model, the Weibull distribution plots, 

with "discovery by inspection” scheme, are given in Figure 29.  
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Figure 29. Two-parameter Weibull distribution overview plot using “discovery by 

inspection” scheme for Dataset 3 

 
Comparing to its “counterpart” plot in Figure 23 which plots all the failure data with 

similar model number, the A-D number in this plot is much larger (3.310 vs. 1.429). The 

reason for that probably lies in the fact the limited sample space (amount of failure data) 

is not sufficient to provide good statistics. 
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Figure 30. Two-parameter lognormal distribution overview plot using “discovery by 

inspection” scheme for Dataset 3 

 
With comparison to Figure 29, the lognormal distribution plots in Figure 30 shows a 

slight decrease in A-D numbers (2.279 vs. 3.310) and increase in Pearson Correlation 

number (0.938 vs. 0.901). However, the distribution fit is not as good as in “Model 

Specified Dataset” (i.e., all Westinghouse-manufactured generators with similar or same 

model number to those at STP; cf. Figure 24). 



 

  

100 

4.5.3.2 Results for STP Main Generators Using “Discovery by Alarm, with No 

Censoring” Scheme 

In this subsubsection, instead of using the “discovery by inspection” scheme, the 

same failure data from “STP-only Dataset” are tested using the “discovery by alarm, no 

censoring” scheme. 
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Figure 31. Two-parameter Weibull distribution overview plot using “discovery by alarm, 

with no censoring” scheme for Dataset 3 
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With comparison to Figure 29, where the “discovery by inspection” scheme is 

applied, the Weibull distribution plot in Figure 31 which uses “discovery by alarm, with 

no censoring” scheme has a larger A-D number and a smaller Pearson Correlation 

Coefficient, and this means that the “discovery by inspection” scheme provides a better 

fit for data in “STP-only Dataset”. Further comparison of the data is given in Subsection 

4.5.4. 
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Figure 32. Two-parameter lognormal distribution overview plot using “discovery by 

alarm, with no censoring” scheme for Dataset 3 
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Just as the Weibull distribution plot in Figure 31, with comparison to Figure 30 

where the “discovery by inspection” scheme is applied, the lognormal distribution plot in 

Figure 32, which uses “discovery by alarm, with no censoring” scheme has a smaller A-

D number and a larger Pearson correlation coefficient. 

In the following, the 95% probability plots with exact failure data are given in both 

Weibull and lognormal distributions to give an alternative view of the failure data. 
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Figure 33. 95% probability plot using Weibull distribution with exact failures for  

Dataset 3 
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As can be seen from the two 95% probability plots, using Weibull (Figure 33) and 

lognormal (Figure 34) distributions, almost all the data points fall into the 95% plot 

region. However, there are only a few data that fall around the center line; most of the 

data fall close to the boundary. A detailed comparison of A-D numbers of censoring 

schemes will be discussed Subsection 4.5.4. 
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Figure 34. 95% probability plot using lognormal distribution with exact failures for 

Dataset 3 
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4.5.4 Summary of Results 

We have, in the preceding sections, tested the three datasets using two different data 

interpretation schemes with two different distributions, for a total of 12 cases. In this 

section, the results from those analyses are presented and compared to find the “best” 

distribution and the best data interpretation scheme. 

Using both A-D number and Pearson correlation coefficient as standards in selecting 

the distribution for the main generator failure data, one can summarize the preceding 

results in this section as follows: 

1) Presumably because of the “mixture feature” of failure data for different model 

numbers, even though they are from the same manufacturer, the data in the first 

Dataset (all main generators that are manufactured by Westinghouse) do not fit 

into any distribution as well as the other two groups. The reason for that 

presumably is that different models have different failure distribution (e.g. 

mixture of normal distributions and Weibull distributions), so that the mixture of 

different distributions does not fit well (large A-D number) to any single simple 

parametric statistical distribution. 

2) For failure records that contain only STP model number (there are no other NPPs 

using main generators of the exact model number as STP), due to the limited data 

points (fewer than 20 failure points), the sample space is insufficient to provide 

good statistics. Also because of the connections between some failures as 

discussed in the preceding section, the data in this dataset is not good enough for 

prediction purposes. 
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3) However, the failure data from model numbers that are similar to STP model 

show some strong statistical features to predict the time-dependent failure rate for 

main generator and do future performance analysis for the following reasons: 

a. The sample space is sufficiently large to permit meaningful statistical 

analysis 

b. Because the search criterion is set by “similar models” and “same 

manufacturer”, the components/systems in this dataset tend to have 

similar failure distributions. Hence when they are put together, they fit 

into some distributions very well. 

From this summary, we therefore draw the tentative conclusion that the data in 

“Model Specified Dataset” (i.e. the data searched by the criteria: “Similar model 

number” and “same manufacturer”) is preferable for extracting the failure rates needed 

for application of the entry-time model to main generators. 

More detailed comparison of the A-D numbers and Pearson correlation coefficient s 

can be found in the following Table 14.  (The results for the exponential distribution are 

also summarized in this table, although not shown above in detail): 
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Table 14  

A complete comparison of A-D numbers and Pearson correlations 

Dataset 
NO. 

Records 
Num. 

Data Censoring 
Type10 Distribution Type A-D Number Pearson Corr. 

Weibull 4.269 0.965 

Exponential 21.247 N/A 
discovery by 

inspection 
lognormal 1.262 0.975 

Weibull 4.544 0.965 

Exponential 22.844 N/A 

1 100 
discovery by 

alarm, with no 
censoring  lognormal 1.173 0.975 

Weibull 1.429 0.982 

Exponential 13.812 N/A 
discovery by 

inspection 
lognormal 1.179 0.981 

Weibull 1.125 0.981 
Exponential 15.151 N/A 

2 25 
discovery by 

alarm, with no 
censoring  lognormal 0.784 0.981 

Weibull 3.310 0.901 

Exponential 7.885 N/A 
discovery by 

inspection 
lognormal 2.279 0.938 

Weibull 2.278 0.900 

Exponential 8.216 N/A 

3 
 

12 
 discovery by 

alarm, with no 
censoring  lognormal 1.548 0.943 

 
 

As conclusion, data in “Model Specified Dataset” (All Westinghouse-manufactured 

main generators similar to those at STP generators) will be used for further analysis and 

the P discovery by alarm, with no censoring” scheme will be applied to the analysis. 

Further detailed analysis will be carried out in the following section, to generate time-

                                                 
10 See examples in appendix D for details of the different data censoring procedures. 
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dependent failure rates and the corresponding distribution(s). These will then be 

employed in Chapter V, to generate various predictions via the entry-time model of the 

preceding chapters. 

4.6 Further Main Generator Failure Data Analysis 

Based on the analysis done in the preceding section, data from failure of similar 

model numbers (“Model Specified Dataset”) will be used in this section.  Further, the 

detailed analysis of this section will be based on the assumption these data represent 

using “discovery by alarm, with no censoring” scheme based on the comparison of A-D 

numbers and Pearson correlation numbers. 

In this section, rather than two-parameter Weibull and two-parameter lognormal 

distributions, we use the three-parameter versions of these two distributions to fit the 

indicated data.  The hope is that this will provide further precision for the data fitting. 

Comparing to the two-parameter Weibull and two-parameter lognormal distributions, the 

three-parameter versions of these two distributions have a location parameter (also 

known as “threshold”). The threshold is a shift of the distribution away from 0. A 

negative threshold shifts the distribution to the left of 0, and a positive threshold shifts 

the distribution to the right of 0. All failure data points must correspond to a time greater 

than the threshold. The probability density functions of three-parameter lognormal 

distribution and three-parameter Weibull distribution can be seen in the following 

equations respectively (The corresponding two-parameter distributions are similar to the 

three-parameter ones, but the threshold λ  is zero): 
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[ ]2

2

ln( )1
( ) exp

22 ( )

x
f x

x

λ µ
σπσ λ

� �− −
 
= −	 

− 
 
� �

 

where µ is the location parameter, σ is the scale parameter and λ is the threshold 

parameter for the (three-parameter) lognormal distribution.  

1 ( )
( ) ( ) exp

x
f x x

β
ββ λλ

α α
−

� �−� �= − −� �� �
� �� �� �

 

where α is the scale parameter, β  is the shape parameter and λ is the threshold 

parameter for the (three-parameter) Weibull distribution. 
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Figure 35. Three-parameter Weibull distribution plot using “discovery by alarm, with no 

censoring” scheme 
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Figure 35 is a distribution overview plot of the data in “Model Specified Dataset” 

using “discovery by alarm, with no censoring” scheme for three-parameter Weibull 

distribution. With a small A-D number (0.910) and the Pearson correlation coefficient 

(0.985) close to one, the distribution plot agrees well with the actual failure data. A 

comparison with the corresponding two-parameter Weibull distribution (cf. Figure 25) 

shows that the three-parameter Weibull gives a better fit (A-D number 0.789, Pearson 

correlation 0.986) than the two-parameter Weibull distribution, which has a A-D number 

of 1.125 and a Pearson correlation coefficient of 0.982 (cf. Figure 23). 
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Figure 36. Three-parameter lognormal distribution plot using “discovery by alarm, with 

no censoring” scheme 
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Figure 36 shows the three-parameter lognormal distribution plot. As we can see 

from the parameter table that the A-D number is small and the Pearson correlation 

coefficient is close to one, which means that this distribution can be a good fit of the 

dataset. However, the threshold value in the table is negative. A negative threshold shifts 

the distribution to the left of 0, and all data must be greater than the threshold. Therefore 

the negative threshold suggests that there are some negative values in the data 

distribution, which is not practical for our application because the age at failure must be 

non-negative value. 
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Figure 37. 95% probability plot with three-parameter Weibull distribution 



 

  

111 

The 95% probability plots are given for both the three-parameter Weibull (Figure 37) 

and three-parameter lognormal distributions (Figure 38). From the plots we can see that 

all the data points fall into the 95% probability region. 

Same as the three-parameter lognormal distribution overview plot give in Figure 36, 

the 95% probability plot using three-parameter lognormal distribution in Figure 38 also 

presents negative threshold. Since the negative threshold number has some disadvantage 

for this particular application, the two-parameter three-parameter lognormal distribution 

is preferred when comparing to the three-parameter one. 
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Figure 38. 95% probability plot with three-parameter lognormal distribution 
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The comparison of all the parameters using the four different distributions is listed 

in Table 15 below. 

 

Table 15  

Comparison of different parameters for Weibull and lognormal distributions, with two 

and three parameters 

Data 
Distribution 

A-D* Number Pearson Corr. 95% Prob. Plot 
(A-D Number) 

95% Prob. 
Plot 

(P-value11) 
Weibull 1.125 0.981 0.489 0.218 

lognormal 0.784 0.981 0.301 0.553 
3-Parameter 

Weibull 
0.910 0.985 0.338 0.456 

3-Parameter 
lognormal 

0.789 0.986 0.315 N/A 

 
 

Please note here that the P-value for 3-parameter lognormal distribution is 

represented by an asterisk as seen in Figure 38. According to the manual for Minitab 

software, “An asterisk appears in place of a p-value for the 3-parameter lognormal, 3-

parameter gamma, and 3-parameter loglogistic distributions. The asterisk indicates that 

MiniTab cannot calculate a p-value for that distribution.” 

The OSL (observed significance level) probability [34] therefore is now used for 

testing the distributions listed above. If 0.05OSL <  then the distribution assumption is 

                                                 
11 Used in hypothesis tests to help decide whether to reject or fail to reject a null hypothesis. The p-value is 
the probability of obtaining a test statistic that is at least as extreme as the actual calculated value, if the 
null hypothesis is true. A commonly used cut-off value for the p-value is 0.05. For example, if the 
calculated p-value of a test statistic is less than 0.05, you reject the null hypothesis. 
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rejected and the error committed in so doing is less than 5%.The OSL formula is given 

by: 

* *1/{1 exp[ 0.1 1.24 ln( ) 4.48( )]}OSL AD AD= + − + +  
where 

* (1 0.2 / )AD n AD= +  
and n  is the sample number. 

 

Table 16  

Comparison of A-D numbers and OSL numbers 

Data 
Distribution 

A-D* 
Number 

A-D 
Number OSL 

A-D* 
Number 

(95% Prob. 
Plot) 

OSL 
(95% Prob. 

Plot) 

Weibull 1.125 1.0817 0.0078 0.5086 0.2075 
lognormal 0.784 0.7538 0.0509 0.3130 0.5345 

3-Parameter 
Weibull 0.910 0.8750 0.0252 0.3515 0.4556 

3-Parameter 
lognormal 0.789 0.7587 0.0494 0.3276 0.5040 

 
 

From Table 16, we can see that only the OSL for two-parameter lognormal 

distribution is greater than 0.05.  According to the rule quoted above, “If 0.05OSL <  

then the distribution assumption is rejected and the error committed is less than 5%”, the 

lognormal distribution is selected as the best fit for data in group 2. Also the 

corresponding OSL number for 95% probability plot is the largest comparing to other 

values. Therefore, the best fit for the data in group 2 with right censoring is two-
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parameter lognormal distribution. A further discussion of how the choice of distributions 

can affect the results is given in Subsection 5.3. 

In the application of the following Chapter V, the unit of time will be years instead 

of days.  We therefore plot the corresponding data in group two with year as unit in 

Figure 39, and provide the corresponding distribution parameters (Table 17): 
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Figure 39. Distribution plot using lognormal distribution 
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Table 17  

Parameters that will be used for further analysis 

Parameter Name Shape Scale 
Parameter Value 2.49387 0.201691 

 

In the following Chapter V, the failure distribution data (Table 17) extracted from 

the analysis of this chapter will be applied to the entry-time model, to provide a 

generation-risk assessment for main generators. 
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CHAPTER V 

APPLICATION OF ENTRY-TIME MODEL TO NPP APPLICATIONS 

In Chapter III the entry-time approach is verified by comparison to semi-analytical 

results and simulations. In Chapter IV the time-dependent data failure-rate data 

necessary to application of the entry-time methodology are extracted, for certain classes 

of main generators, from the corresponding failure data found in the INPO-EPIX 

database. In this chapter, the potential real-world application of the entry-time approach 

is illustrated by way of realistic questions related to the maintenance of main generators 

in nuclear power plants. 

In Section 5.1, the main functions and structures of the main generator system are 

introduced, followed by the state definitions and assumptions underlying the subsequent 

entry-time analysis of main generators in Section 5.2. In Sections 5.3 and 5.4, the entry-

time approach is applied to the issue of optimizing maintenance policies for main 

generators. This is done in two separate parts: reliability performance analysis (Section 

5.3) and financial analysis (Section 5.4). In the reliability analysis, the time-varying 

system-state probabilities are determined under different preventive maintenance 

policies; in the financial analysis, the net present value (NPV) of cost and other financial 

data are calculated from the entry-time probability analysis, for the various maintenance 

policies, and the cost-optimal maintenance policy is determined.  In Section 5.5, possible 

application of the entry-time model to PRA/GRA analysis is outlined as a potential 

direction for future research in this field. 
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5.1 Introduction to the Main Generator System 

The introduction of the main generator is mainly sourced from NPP system 

notebooks. The function of main generators is to produce electrical power, at rated 

voltage and frequency, to be delivered to the electrical power grid and consumers. This 

is accomplished by using electromagnetic induction to convert mechanical energy, as 

delivered to the generator rotor from the system turbine, into electrical energy.  This 

energy is delivered in MWe (megawatts electric), at the appropriate power rotor, as 

measured at the main generator terminals and allowing for the power requirements of the 

plant.  The generator voltage is normally 20-22 kilovolts. The frequency is either 50 or 

60 cycles per second, depending on the needs of the power grid and consumers. This 

frequency is determined by the rotating speed of the generator which is between 1500 

and 3600 revolutions per second. 

The generator consists of an exciter, a stator and rotor. The exciter keeps a low 

current going through the wires of the rotor. When this rotor turns, the magnetic field 

associated with this rotor current induces a voltage in the stator. The generator also has a 

voltage-regulator that maintains the voltage within acceptable limits.  

For the generators to work properly, the following auxiliary equipment is required: 

excitation system, hydrogen gas control system, seal oil system and stator cooling-water 

system. 

The function of the excitation system is to control the magnetizing current to the 

rotor winding. This control is obtained by fast-acting automatic voltage regulators, 

which serves to maintain the generator output voltage. 
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The main generator components (stator winding, stator core and rotor winding) 

require enhanced cooling in order to maintain the temperature rise of electrical insulation 

within acceptable thermal limits and prevent excessive thermal aging. The cooling is 

provided by hydrogen gas control system, seal oil system and stator cooling-water 

system. 

Hydrogen gas is used for cooling of stator core and rotor winding. In order to 

contain the hydrogen within the generator, hydrogen seals are required to prevent 

leakage along the rotating shaft. The hydrogen seals require continuous supply of clean 

degassed oil. This oil is supplied to the seals by a separate seal-oil auxiliary system, 

which includes oil pumps, filters, coolers, along with associated pressure and flow 

controllers. An oil system is used for lubricating the bearings on the generator.  

The main generators may fail due to various component failures. In summary, the 

main generator can fail because of stator, rotator or exciter failures, or it can fail because 

of the failure of one of its many supporting systems, some of which are described above. 

In our analysis, we will focus on failures that lead directly to loss of power generation. 

From perusal of the EPIX database records, we find almost all power generation loss 

(Mwh Loss in the database) comes from failure of rotors. The reason for that is it 

normally takes a longer time for the system to recover once a rotor failure occurs, while 

exciter failure is easier to fix and does not lead to extended power generation loss. 

Comparing to rotor and exciter, the stator has much lower failure rate and hence we can 

ignore the failure of stator.  In fact, no stator failure events are found in the database. 
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As for supporting system failures, sometimes they can lead to power loss due to 

downgraded power generation.  For example, problems with hydrogen cooling will lead 

to loss of power generation, because the generator can not run at full power without 

adequate cooling. However, such problems or supporting system failures do not result in 

full loss of power generation, which means that they do not lead to “reactor trip 

equivalent” type of failures. 

Given this introduction of the main generator system and its possible failures, the 

main objectives of generator maintenance and aging management are respectively: 

• Maintain generator reliability and availability for power generation 

• Ensure generator life expectancy to be comparable to other main unit 

components, such as turbine, steam generators and the reactor. 

In this dissertation, we are mainly focused on the generator maintenance, in order to 

maintain generator reliability and availability for power generation. To reach this 

objective, preventive maintenance is done to the main generator system in NPPs to 

increase the likelihood of reliable performance. Because the cost associated with 

maintenance varies according to different policies, a financial analysis has to be done 

when making maintenance decisions; one industry standard for this purpose is the EPRI 

PMBasis program [28]; however, that program is somewhat qualitative in nature, and 

here we are exploring a prototypical more quantitative approach. 

In the following sections of this chapter, the entry-time model is used to analyze the 

reliability of a main generator system, under different maintenance policies. Definitions 

and the corresponding assumptions are given in Section 5.2, the reliability performance 
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analyses and financial analyses are carried out in Section 5.3 and Section 5.4 

respectively. 

5.2 Definition of States and Assumptions 

The components of main generator system and the objective of generator 

maintenance are outlined in the preceding section. To apply the entry-time approach to 

the maintenance of the system, a definition of states appropriate to the objectives of the 

particular analysis is required. (It was already mentioned in Chapter II that the definition 

of states for entry-time model is sufficiently flexible so as to allow for the needs of a 

particular application.) In this section, a definition of states appropriate to analysis of the 

maintenance issues for main generators is given, and the assumptions associated with 

those states are discussed. 

The most important part of the revenue loss is main generator failure, which leads 

directly to reactor trip and hence 100% power generation loss and corresponding losses 

such as repair and O&M costs. Hence in our analysis, we consider the failures that lead 

to 100% power generation losses. For example, a catastrophic failure of the main 

generator leads to a reactor trip; also, once such an unplanned failure happens, it takes 

longer time for the system to be restored (to go back to 100% power generation). For 

example, an unplanned rotor failure may take up to 10 months outage time, given there 

are no spare rotors.  Comparing to the catastrophic failures, a noncatastrophic failure 

may also lead to reactor trip and hence 100% power generation loss, however, it does not 

take much time (sometimes around 10 days or even shorter) for the system to restore 

power generation. 
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When the main generator is in a reduced power state, it does not necessarily trip the 

reactor, hence the corresponding loss is negligible if the down power rate is low 

comparing to the loss due to catastrophic and noncatastrophic failures that will result in 

trip of the reactor. 

With this larger picture in mind, we make the following assumptions for the analysis 

of this chapter:  

1) When considering main generator failures, only “trip-equivalent” (i.e. those 

failures that lead to 100% power generation loss or trip of the reactor) 

catastrophic and noncatastrophic failures will be counted 

2) Even when the system is running in degraded state, i.e. operating with some 

deficiencies, it still generates 100% power 

3) 95% and 5% split in failure rate between noncatastrophic and catastrophic failure 

modes. This assumption is based on the similar analysis done at STP. 

4) When doing preventive maintenance, we consider only the rotor/stator rewind 

which normally takes places every 15 years (for rotor rewind) or 20 years (for 

stator). 

5) After rewinding or replacement, the system is as good as new. 

Hence we define the following system states for the main generator: 

1) State 1: Normal running state with 100% power generation 

2) State 2: Out of service due to preventive maintenance  

3) State 3: Out of service due to noncatastrophic failures  

4) State 4: Out of service due to catastrophic failures  
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The transition relationship among the states is defined as follows: 

• Rewind or replace the system after a fixed replacement period rT   

• After the replacement time rt , the system goes back to state 1  

• The transition rates from state 1 to state 3 and 4 are defined by the failure 

distribution from the previous analysis, according the failure data from 

the INPO-EPIX database, and further there is a 95%/5% split in failure 

rate between noncatastrophic and catastrophic failure modes 

• When the system is repaired after nct , it returns from state 3 to state 1 

• When the system is repaired after ct , it returns from state 4 to state 1 

• There are no transitions among any other states 

The transition relationship can be seen in the following figure (Figure 40) 

 

 

Figure 40. Transition relationships between states 

 
As we can see from the lognormal distribution overview plots in Figure 41 using the 

data acquired from the analysis in Subsection 4.5.4, because aging does not have a 



 

  

123 

strong effects to the system at a early stage (see the discussion in Section 4.4), the 

probability density function and cumulative distribution function for failures are 

relatively small when age is less than 10 years, but the cdf for failures increase rapidly 

(pdf becomes significantly positive) between 10 and 15 years. Hence it is reasonable to 

draw a tentative conclusion that there is no need to do a routine preventive maintenance 

at earlier stage (for example, 5 or 6 years of the age), as the aging effects have not 

become a big concern (failures are highly unlikely). However, if the infant-mortality is 

considered in the analysis, then preventive maintenance may become important. This 

will be further studied when doing the detailed analysis to the system in the following 

sections (cf. Section 5.3).  

Also according to judgment from engineers at nuclear power plant, the main parts of 

the main generators (for example, rotors) are replaced around every 10 to 15 years.  We 

therefore choose to use replacement period rT  as a parameter to do the following 

analysis; i.e. we choose representative values of rT  as 6, 10, 12, 16 and 20, to assess how 

the failure probability differs as the replacement period rT  changes. In NPPs, when 

doing preventive maintenance, the PM periods likely would be subordinated to refueling 

outages. Here for 12rT = , other than the lognormal distribution as chosen from the 

preceding chapter, Weibull distribution is also applied to the analysis to see the effects of 

choice of different distribution. Additionally, the policy of run-to-failure ( )rT = ∞  is 

analyzed, and compared to the other policies, for both distribution types. 
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Figure 41. lognormal distribution overview plots 

 

Current NPPs have been running for decades (for STP, both units have been running 

for almost 20 years).  Most of them have a design life of 40 years and the license may be 

extended to another 20 years. Therefore, most commercial NPPs have a plant life at 

around 50 years. Hence it is reasonable to do a 50-year analysis when doing life-cycle 

management calculations. In the analysis below, a terminal time of 50 years is therefore 

employed. 
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Based on the above, we have the following defined states and parameters for the 

analysis to the main generator system: 

States defined for the main generator system: 

• State 1: Normal running state with 100% power generation 

• State 2: Out of service due to preventive maintenance (100% power loss) 

• State 3: Out of service due to noncatastrophic failures (100% power loss) 

• State 4: Out of service due to catastrophic failures (100% power loss) 

Corresponding cost and revenue information associated with each state will be given 

in Section 5.4, which treats a related financial analysis. When carrying out preventive 

maintenance, the activity typically has been planned in advance, with all parts and 

materials pre-ordered.  Therefore it tends to take a much shorter time than when the 

system needs to be repaired or replaced after an unplanned catastrophic failure. 

Normally preventive maintenance, whether replacement or repair, can be done within 3 

to 4 months, with all parts and components preordered and ready. Therefore, 0.3rt =  

years is used as a typical time in the preventive maintenance state (state 2).  In the 

analysis done to the main generator system. However, when a catastrophic failure occurs, 

given there are no spare components to be installed immediately and some big 

components have to be ordered from the manufacturer, it could take up to 1 year to 

replace the failed component/system before the main generator system and the nuclear 

unit are back to service. The system restore time needed for a catastrophic failure varies 

according to the particular failed components of the system, and can be 6 to 12 months. 

Hence it is reasonable to assume the time needed to recover from a catastrophic failure is 
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around tc = 0.8 years. For a noncatastrophic failure, no special components orders are 

required and it takes a relatively shorter time for the system to return to normal running 

state, compared to the time needed for a catastrophic failure. Again, the system restore 

time needed for a noncatastrophic failure also varies according to the failed components 

of the system, and can be 1 to 3 months. A system restore time of  0.2nct =  years is 

applied in the analysis. 

Therefore, we have the following parameters used in the calculation and analysis: 

• Replacement time: 0.3rt =  years 

• Noncatastrophic failure repair time: 0.2nct =  years 

• Catastrophic failure repair time: 0.8ct =  years 

• Terminal Calendar time: 50 years 

In the next section, using the lognormal failure (hazard) rate (see also Figure 41 

above), probability plots using different preventive maintenance periods as parameter are 

plotted and compared against each other. Also probability plots using Weibull 

distribution are compared to those from the lognormal distribution, with the same 

preventive maintenance periods applied. 

In the section following that, a financial analysis is described, for different scenarios. 

This includes the net revenue for each state, expected yearly net revenue, standard 

deviation and skewness. Specifically, the NPV (Net Present Value) cost is calculated for 

each case, and the results are applied for decision-making purposes.  
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5.3 System Reliability Analysis 

In this section, system state probabilities are computed, using the entry-time 

methodology previously developed and different preventive maintenance periods as 

parameters. Based on these results, the corresponding system reliability analysis is then 

carried out. 

As can be seen from Figure 41, the probability density function for failure is 

relatively small when time is less than 6 years, but becomes significantly larger between 

10 and 15 years. It reaches a maximum at around the 12th year. In the following analysis, 

we will select some maintenance policies that collectively capture all significant changes 

in this probability density. First, we choose 12rT = , when the probability density reaches 

its maximum. Then 10,16rT =  are applied to catch the beginning and end, respectively, 

of the significantly large range of values in the probability density. Also 6rT = , is tested 

to study the effect of sufficiently frequent to prevent even the beginning of aging effects. 

20rT =  is applied to show the impacts of longer maintenance period to the system 

reliability performances. Additionally, rT = ∞  (not shown in the plots below) is applied 

to the entry-time model to demonstrate the run-to-failure policy, which sometimes is 

adopted by plant maintenance personnel for the maintenance of components or systems.  

To start the discussion, we choose 12rT =  (i.e. to replace the system every 12 years). 
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Figure 42. States probability plots using lognormal distribution, with Tr=12 

 

As can be seen from Figure 42, with a preventive maintenance policy of 

replacement every 12 years the probability of failure (either noncatastrophic or 

catastrophic, i.e. P3 or P4) is always small, but becomes noticeably nonzero around year 

6, and increases out to year 12.  At that point the replacement causes the probability of 

(either type of) failure to decrease sharply.  Further, the probability that the system is in 

preventive maintenance state ( 2P ) increases correspondingly. Note the occasional 

appearance of computed state probabilities greater than one (1) or less than zero (0); 

these phenomena were previously discussed in Subsection 3.2.2. 
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Figure 43. States probability plots using lognormal with Tr=6 

 

Similar to the plots given in Figure 42, state probability plots using the lognormal 

distribution with 6rT =  (replace the system every 6 years) are shown in Figure 43.   It 

shows in the figure that the preventive maintenance of the system decreases the 

probability that the system is in failure state (both catastrophic and noncatastrophic 

failures, i.e. 3 4 and P P ) every 6 years. And the probability that the system is in preventive 

maintenance state ( 2P ) increases correspondingly. Before the maintenance, the 
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probability the system is in failure states ( 3 4 and P P ) increases as the system ages. 

Comparing to the policy to replace the system every 12 years, the much shorter 

maintenance period (6 years) has greatly decreased the risk of failure and hence 

increased the system reliability performance. That is, from Figure 43 we can see that 

both 3 4 and P P  are around the magnitude of 10-4, while 3 4 and P P  from Figure 42 show a 

magnitude of 10-2. It is clear that the system failure probability with 6-year-period 

maintenance policy is roughly around 1% of the system failure probability with 12-year-

period one. The reason for that is, with a shorter maintenance period, the system was 

replaced before it ages, which thus prevents the aging effects from ever occurring. 

However, when comparing system reliability performance for different maintenance 

policies, we can not judge only based on the failure state probabilities; other factors, 

such as system availability and economic issues, should be taken into account when 

making decisions regarding maintenance and repair policies. The system availability 

performance will be discussed later in this section for different maintenance policies and 

the financial analysis (NPV etc.) will be given in the following section. 
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Figure 44. Probability plots of noncatastrophic failures using lognormal distribution 

 

Figure 44 shows the probability plots for noncatastrophic failure, using preventive 

maintenance time as a parameter. It can be seen from the figure that some of the plots 

overlap with each other and the plot for 20rT =  overlaps with all other lines for time 

before 15 years. The reason for that is obvious: Before the preventive maintenance is 

done, the system tends to have the same reliability performance. While after the 

preventive maintenance, the system reliability performance changes accordingly and the 

probability plot lines separate afterwards. From the plots we can see that the shortest 

maintenance period ( 6rT = , the blue dash line)) has the smallest probability of failure. 
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With longer and longer maintenance period, as the system ages, the probability that 

system is in the noncatastrophic failure state becomes larger. Normally, when the system 

was replaced, the preventive maintenance action would prevent the aging effects, for 

example, the 10-year-period maintenance policy decreases the failure probability around 

every 10 years. However, when the system was replaced using a 20-year-period 

maintenance policy, the preventive maintenance action did not help a lot in enhancing 

the system reliability performance. As we look back to the lognormal distribution plots 

in Figure 41, it is easy to find out the reason: after 20 years of operation, it is almost 

certain that the system eventually will be in failure state due to the aging effects, hence 

there will not be too much help to do a preventive maintenance at that time.  

Comparing to Figure 44, Figure 45 shows the probability plots for catastrophic 

failures using preventive maintenance time as a parameter. Similarly to the 

noncatastrophic failure plots, we can see from Figure 45 that the shortest maintenance 

period ( 6rT = , the blue dash line)) has the smallest probability of failure. However, due 

to the same reason as stated above, when the system was replaced according to the 20-

year-period maintenance policy, the preventive maintenance action did not help a lot in 

enhancing the system reliability performance.  
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Figure 45. Probability plots of catastrophic failures using lognormal distribution 

 

Based on the analysis of Chapter IV, the lognormal distribution was chosen as the 

primary distribution for the reliability performance analysis in the present chapter, with 

different preventive maintenance periods as parameter. However, the probability density 

functions (pdf) and the cumulative distribution functions (cdf) plots using the parameters 

acquired from the failure data in Chapter IV with lognormal distribution and Weibull 

distribution are very identical, as seen in Figure 46. The only significant difference 

between the two distributions is the hazard rate (failure rate) plot as shown in the lower 

right of Figure 46. As discussed in Subsection 4.5.1, due to the differences in the failure 

rates, Weibull distribution is preferred in some studies because the failure rate for this 
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distribution follows natural observations better than that for lognormal distribution. 

However, the study in this section shows that there is no significant difference in the 

results when using Weibull or lognormal distributions given that they both fit the failure 

data well. 
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Figure 46. Comparison of reliability performance of lognormal and Weibull distributions 

 

It is easy to see from the plot that the hazard rates of the two are quantitatively 

comparable roughly before 13 years but the difference between the two increases 

dramatically after that point. For Weibull distribution, the hazard rate increases faster 
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than that of the lognormal distribution. Some may argue that the Weibull distribution is a 

more “reasonable choice” for reliability analysis because it tends to be consistent with 

what is observed from aging effects, but others may prefer using lognormal distribution 

because it takes into account the “infant mortality” feature (the failure rates tends to 

increase first and then decrease. cf. Figure 18 ) which can be often found in system and 

component failure.  

Then it comes to the following question: When doing system reliability performance 

analysis, which distribution is preferable, lognormal distribution or Weibull distribution, 

or does perhaps the choice of distributions does not make any difference on the 

performance analysis?  

To explore these issues, in the following, Weibull distribution will be applied to the 

analysis using a 12-year-period preventive maintenance policy. The corresponding 

reliability plots acquired using Weibull distribution will be compared to those acquired 

using lognormal distribution with the same preventive maintenance policies to see the 

effects of different choices of distributions. 

As can be seen from the figure below (Figure 47) that the policy to replace the 

system every 12 years decreases the probability that the system is in failure state (both 

catastrophic and noncatastrophic failures, i.e. 3 4 and P P ) every 12 years. And the 

probability that the system is in preventive maintenance state ( 2P ) increases 

correspondingly. Before the preventive maintenance occurs, the probability that the 

system is in failure state increase as the system ages. Hence the maintenance policy 

enhanced the system reliability performance. 
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Figure 47. States probability plots using Weibull distribution with Tr=12 

The reliability plots acquired using Weibull distribution are compared to those 

acquired using lognormal distribution with the same preventive maintenance policy 

( 12rT = ) in Figure 48. A rough look at the figures gives the impression that there is no 

prominent differences for state probability plots, between using the Weibull and the 

lognormal distributions, especially in probability plots for state 1 (running state) and 

state 2 (preventive maintenance state). This is understandable from the plots of Figure 46 

because the probability density functions (pdf) and the cumulative distribution functions 

(cdf) plots using the parameters acquired from the failure data with lognormal 

distribution and Weibull distribution are almost identical. Therefore it can be foreseen 
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that the state probability plots overlap a lot with, only negligible differences. However, 

there are notable differences between the two plots for both state 3 (noncatastrophic 

failure state) and state 4 (catastrophic failure state); more details of these are shown in 

the plots of Figure 49 and Figure 50. 
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Figure 48. States probability plots comparison with Tr=12 

 

Figure 49 shows the state probability plot for 3P  (noncatastrophic failure) which is 

an enlarged version of the plot for 3P  in Figure 48. From this plot we can see that 

although the noncatastrophic failure plots using the two different distributions are almost 

the same, there are some notable differences. The difference in the plots is because of the 
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different probability density values and different failure rates (hazard rates) for the two 

distributions at the same given time. However, as we compared the difference between 

the two, it is easy to see that the difference is so small (around 10-3) that we sometimes 

can ignore it when doing reliability analysis such as PRA and GRA. 
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Figure 49. Probability plots of noncatastrophic failures 

 

Similarly, Figure 50 shows the state probability plot for 4P  (catastrophic failure) 

which is an enlarged figure for 4P  in Figure 48. Again, here we see a lot of similarities, 

and some differences. The shape of the catastrophic failure curve is almost the same as 
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that for the noncatastrophic failures, because of the assumed constant (95-5 percent) split 

between the two. 
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Figure 50. Probability plots of catastrophic failures 

 

From the preceding analysis, we can see that a proper preventive maintenance can 

enhance the system reliability performance and hence decrease the probability that the 

system is in failure state (noncatastrophic and catastrophic failure). However, as the 

system ages, doing preventive maintenance at a very long period (for example, 20 years 
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for this problem) does not help a lot in enhancing the reliability performance, as it is 

almost surely certain the system will fail before maintenance is performed.. 

As far as the choice of parametric form for the underlying failure distribution is 

concerned, even the analysis done in Chapter IV suggests that lognormal distribution is 

preferred to Weibull distribution, however, no matter whether Weibull or lognormal 

distribution is applied in the reliability analysis, no major differences are found for the 

reliability plots (state probability plots) for the preventive maintenance polices tested 

( 12,15, 20 and rT = ∞ , only 12rT =  is shown in the plots, others give similar results).  

Therefore, we can use both distributions in the analysis to this system. 

Considering only reliability performance, one may prefer the shortest preventive 

maintenance period because of the low failure probabilities. However, cost/revenue is 

affected by maintenance policies and hence connected to the reliability performance 

corresponding to those policies. For example, comparing to the 6-year-period 

maintenance policy (as shown in Figure 43) to the 12-year-maintenance policy (as 

shown in Figure 42), the former has a better reliability performance because the 

preventive maintenance successfully prevents the aging effects before they take effect, 

but the related maintenance cost would be more than that of the latter.  

Therefore, when making decisions regarding maintenance and repair policies, 

multiple factors such as reliability, availability, risk/safety, cost and revenue should all 

be taken into account. In the following section, an economic-related cost-benefit analysis 

will be done for different maintenance policies, and the related reliability/availability 

performance, as regards the main generator system in nuclear power plants. 



 

  

141 

5.4 Financial Related Analysis of the System 

System reliability performance, such as failure probabilities and system 

availabilities, can sometimes be used as important input for decision-making processes, 

especially for PRA and GRA analysis. However, when it comes to the plant management 

level, not only the reliability performance, but also the financial performance is used as 

merit-of-comparison. In the present section, a financial analysis is carried out, as an 

adjunct to maintenance decisions for plant management. The expected (mean) net 

present value (NPV) cost is used as the figure of merit in comparing different preventive 

maintenance policies. Also the variance and skewness related to each policy are given as 

supplemental information for the decision making process. 

To begin with, financial parameters related to each state (operation, preventive 

maintenance and failures) must be determined, based on some assumptions for NPP 

operation. 

Consider a NPP with designed power generation capacity of 1200MW per unit. The 

expected market electricity price is around $40/MW, and we will consider the net 

present values (NPV) cost for the NPP with fifty years of operation.  

When the system is in the operating state, the NPP generates electricity at full 

capacity and the utility sells the electricity at market price to make profit. The cost 

associated with the normally operating state can be divided into two major parts: fuel 

cost and O&M (Operation and Maintenance) cost. Hence the net profit for the operation 

state (state 1) can be expressed as: 

 Re   Re - ( &     )Net venue Power Generation venue O M Cost Fuel Cost= +  
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For states other than the operating state, when the main generator is offline due to 

maintenance or failure, there is no electricity generation and therefore no profit from the 

power generation. However, the utility needs to purchase electricity from other sources, 

such as a coal-fired power plant, to ensure normal electricity supply to its customers. 

Here we make an assumption that when the nuclear utility purchases electricity from 

elsewhere, the utility sells it at the same price and hence does not make any profit out of 

it. Therefore, when the system is offline, there is only cost related to that state. In general, 

there is no fuel cost when the system is offline, hence we have the cost in the following 

three parts: O&M (Operation and Maintenance) cost, cost of extra engineers and 

craftsmen cost for repair and maintenance, and the corresponding components and 

materials cost. Since the extra crafts and engineers cost can be grouped in the O&M cost, 

we have only two sources of cost when the system is in a non-operational state (PM state, 

noncatastrophic state and catastrophic state): O&M cost (including the extra engineers 

and crafts cost, varies for different states) related to that state and the corresponding 

components and materials cost. 

To take into account the needs of extra personnel, when the system is in each non-

operational state, other than the basic O&M cost, an adjustment factor ( iα  for state i) is 

applied to each state to accommodate the actual cost associated with that state. Here we 

use the O&M cost for operational state (State 1) as the base cost.  When the system is in 

preventive maintenance state (State 2), because the maintenance is planned and the 

components can be pre-ordered, the extra O&M cost will be less than the cost when the 

system is in a catastrophic failure state (State 4), but the O&M cost must be higher than 
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a noncatastrophic failure (State 3) due to the urgent needs of system recovery. Hence the 

adjustment factor assumed here for state 2 is 2 1/ 5α = . The adjustment factors for state 3 

and state 4 are taken as 3 41/ 6, 1/ 4α α= = respectively. 

For components and materials cost associated with each non-operational state, the 

following assumptions are made: When the system is in preventive maintenance state 

(state 2), the cost of purchasing components and materials is $10,000,000. When the 

system is in a noncatastrophic failure, the cost related to that is $5,000,000 because it is 

relatively easy to recover from that state. For recovery from catastrophic failure, due to 

the necessity for rush orders to avoid long waiting time for components and materials, 

the cost is more significant; it is taken here as $20,000,000 for the duration of recovery. 

From the assumptions in the previous sections, we have different maintenance/repair 

duration for each of the non-operational state, hence the corresponding yearly 

components and material cost for each non-operational state can be calculated by: 

( &  ) (   ) /(  )i i iC M Cost Cost per duration Duration Time=  

Hence the yearly components and materials cost for the three non-operational states 

are as in the following table (Table 18): 

 

Table 18  

Components and materials cost for the three non-operational states 

State No. 2 3 4 
Recovery time (year) 0.3 0.2 0.8 

Cost per duration (Mil. $) 10 5 20 
Annual cost 33.33 25 25 
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 Therefore, the total cost for the three non-operational states can be expressed using 

the following equation: 

(  ) ( &  ) ( &  )

( &  ) (  &  ) (1 )
i i i

i i

Total Cost C M Cost O M Cost

C M Cost Base O M Cost α
= +
= + × +

 

Hence, we have the general equation for the calculation of net profit/cost for each 

state as follows: 

(  Re ) (  Re ) - (  )

-( &  ) - (  &  ) (1 )
i i i

i i

Net venue Generation venue Fuel Cost

C M Cost Base O M Cost α
=

× +
 

Based on the above analysis, we can calculate the net revenue/cost for each of the 

four states. Detailed revenue/cost balance table can be found in Appendix E. The 

numbers used in the calculations are based on discussion with NPP personnel. Table 19 

below shows the total annual net revenue/cost for all states: 

 

Table 19  

Annual net revenue/cost for all states 

State No. 1 2 3 4 
Duration Time (year) N/A 0.3 0.2 0.8 

O&M Cost adjustment 0 1/5 1/6 1/4 
Generation Revenue (Mil. $) 420.48 0 0 0 

Fuel Cost (Mil. $) 36.50 0 0 0 
O&M Cost (Mil. $) 146.00 175.20 170.33 182.5 
C&M Cost (Mil. $) N/A 33.33 25.00 25.00 

Net Profit/Cost (Mil. $) 237.98 -208.53 -195.33 -207.50 
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As mentioned in Chapter III, “minimizing the cost” is often the stated objective of 

analyses in industry. In this chapter, the application of entry-time analysis to support 

such an objective (i.e. minimizing the cost) will be illustrated, for PM policies relative to 

the main generator system.  Although the focus here will be on minimizing cost, in 

accord with the industry norm, we still begin with a revenue calculation, to indicate how 

the two formulations are related. 

From the results of the reliability analysis of the preceding section, we already know 

the state probabilities for the system, at any given time t, within the initial 50 years of 

operation. Therefore, the annual state probabilities can be calculated by integrating the 

state probabilities over each year. Once we have the state probabilities ( )iP t  for all four 

states over 50 years, using the net profit/cost data ( iR ) given in the table above (Table 

19), the expected value of the annualized net revenue, the annualized standard deviations 

and skewnesses are calculated using the formulas for same that are given in Section 3.3. 

The Entry-time approach produces precisely discrete approximations to the 

probabilities ( )iP t .  The time stream of expected net revenues plotted in Figure 51 were 

produced by using the finite-difference methodology and the failure rates acquired from 

the analysis in Section 4.3, with time step 0.1 years, and then evaluating the rightmost 

integrals by means of the trapezoidal rule.  Refinement to a step size of 0.05 years in the 

entry-time calculation produced relatively minor changes in the computed values. 
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Figure 51. Comparison of financial parameters for different PM policies 

 

The first overall observation is that expected net revenues for this system are 

typically rather large and that the system has some degree of uncertainty in financial 

performance, as there are periods during which the standard deviation (variance) in 

annualized net revenue tends to have values of the same order as the expected net 

revenues, especially when maintenance is done to the system more frequently (for 

examples, 6rT =  years).  Further, the large negative values of skewness indicate that 

much of the variance is located along a long left tail of the underlying distribution; i.e., 

the business is subject to a substantial downside risk. 
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The most aggressive of the three preventive maintenance policies described, a 

replacement period of 6 years (PM cycle of 6 years), substantially reduces this downside 

risk as can be seen from the “skewness” plot in Figure 51.  

This shortest of the three replacement periods considered is therefore perhaps most 

likely to be adopted by concerns that are strongly risk averse.  However, the graph of 

expected net revenue shows that this decrease in downside risk is purchased at a cost of 

some 10-15% reduction in expected net revenue, depending upon the year.  Management 

more inclined toward (financial, not safety) risk might be inclined to adopt other 

maintenance policies expected to provide more revenue, while still maintaining the 

safety goal. 

As compared to this other replacement periods, the most passive replacement policy 

of “run-to-failure” (i.e. never do preventive maintenance to the system) provides no 

advantage in either expected net revenue or reduction in downside risk.  In fact, the run-

to-failure policy has the “most negative” skewness comparing to other policies and 

hence has the most significant downside risk. Taking into account both financial and 

reliability considerations, the run-to-failure policy seems unlikely to be adopted by 

informed plant management teams. 

More detailed analysis is done to the system based on cost associated with each state. 

From the way the profit is defined (Profit = Generation Revenue - Cost), it is clear that 

any loss of production should be considered as part of the loss in cost calculation. This 

can be seen from the basic algebra shown below: 

1 1 2 3 4 1 1 2 3 4Profit = (G - C ) + (0 - C ) + (0 - C ) + (0 - C ) = G - C - C - C - C  
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where G1 is the generation risk cost from when the system is in state 1 (normal operation 

state) and Ci is the expected value of the actual cost associated to state i.  

Here we define the effective cost for any non-operational state to include the power 

generation loss in the following way: (  ) ,   2,3, 4i i iEffective Cost C G i= + = , hence the 

total annual cost is: 

1 2 2 3 3 4 4

2 3 4 1 2 3 4

1 1 2 3 4

Cost = C + (C + G ) + (C + G ) + (C + G )

= G + G + G + C + C + C + C

= G- (G - C - C - C - C ) 

 

where G=G1+G2+G3+G4 is the total annual revenue without any cost which is a 

constant value. 

From the above equation, we can see that when the cost is defined in the way such 

that any production loss is also counted as part of the lost, then the maximizing profit 

strategy is equivalent to the minimizing cost strategy. And such calculations can also be 

carried by using the entry-time approach. The corresponding effective cost rates of the 

various states are given in Table 20. (In comparing these rates for States 3 and 4, note 

that while the cost rates are similar, the cost of a catastrophic failure is larger because 

the time spent in that state is larger.) 
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Table 20  

Annual effective costs associated with each state 

State No. 1 2 3 4 
Generation Loss (Mil. $) 0 420.48 420.48 420.48 

Fuel Cost (Mil. $) 36.50 0 0 0 
O&M Cost (Mil. $) 146.00 175.20 170.33 182.5 
C&M Cost (Mil. $) N/A 33.33 25.00 25.00 

Cost (Mil. $) 182.50 629.01 615.81 627.98 
 

 

Similar to the revenue calculations, using the effective cost data given in the table 

above (Table 20), the expected value of the effective costs, and the annualized standard 

deviations and skewnesses are calculated. Also the expected values of the net present 

values (NPV) of effective costs were calculated for each preventive maintenance policy, 

as an adjunct in making maintenance decisions. Here the NPV was calculated using the 

equation, 

( )
( )

(1 )

n
n

n
f

F
P

i
=

+
 

where ( )nF  is the revenue at nth year,  and ( )nP  is the present value corresponded to the 

revenue at the nth year ( ( )nF ). Further, fi  is the inflation-adjusted interest rate which has 

included the effects of real interest rate (i) and the inflation rate (f). The relationship of 

the three is defined as 

fi i f if= + +  [35]. 

Hence the net present value (NPV) over N years can be expressed as: 
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( )
( )

1 1 (1 )

nN N
n

n
n n f

F
NPV P

i= =

= =
+� �  

Please note there that constant interest rate and constant inflation rate are applied to 

the calculation. The values for the rates were taken as 5%i =  and 2.5%f = respectively 

by referring the most recent government data [36]. Therefore the inflation-adjusted 

interest rate is 7.63%fi = . 

Using the parameters defined and the equations given above, the expected NPV cost 

can be calculated for the 50 year plant life.  The corresponding results are given in Table 

21. From the expected NPV cost values in this table, one can see that the maintenance 

policy of replacing the system every 10 years ( 10rT =  years) brings the minimum 

expected net present value effective cost to the NPP. The more aggressive maintenance 

and dense preventive maintenance cost of replacing the system every 6 years ( 6rT =  

years) brings the largest expected net present value cost to the NPP. Some risk-adverse 

people in the management may prefer a shorter maintenance policy to get the best 

system reliability performance; however, in reality they have to take into account the 

financial performance in order to minimize the net cost while still meeting the 

safety/reliability requirements, which is especially true for the current commercial 

nuclear power plants in operation. Therefore, a balance of reliability/risk and net cost is 

often needed when making maintenance decisions in commercial nuclear power plants. 
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Table 21  

NPV cost for all the PM policies over 50 years 

PM (Years) 6 10 12 16 20 Never 
NPV (Mil.) 2306.4 2243.1 2258.9 2277.8 2277.6 2271.6 

 

 

Figure 52 shows the plot of NPV cost over 50 years, for different maintenance 

policies. It is easy to see from the figure that the minimum value of the expected NPV 

effective cost would be acquired when rT  is close to 10rT =  years. i.e., with a preventive 

maintenance policy to replace the system every N years where 6 12N< < , we should 

expect to see the minimum NPV cost for 50 years. 

Detailed analysis was done using preventive maintenance policy of replacing the 

system every N years where 6 12N< < . Table 22 shows the expected value of NPV 

effective cost results corresponding to all the preventive maintenance policies. Also the 

cumulative distribution function (cdf), survival functions at the time of preventive 

maintenance are given to demonstrate the reliability performance for that particular 

maintenance policy. The average skewness is also given to help understand the financial 

performance of each maintenance policy and help make maintenance decisions as regard 

to when the best period is to replace the system. 
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NPV Vs. PM Policies (Lognormal Distribution)
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Figure 52. Comparison of expected value of NPV cost over 50 years plant life, for 

different maintenance policies 

 

Table 22  

NPV for all the PM policies over 50 years using lognormal distribution 

PM 
(Years) 

6 7 8 9 10 11 12 16 20 Never 

NPV 
(Mil.) 2306.4 2276.3 2255.2 2244.0 2243.1 2249.2 2258.9 2277.8 2277.6 2271.6 

cdf 2.5e-4 0.0033 0.0200 0.0707 0.1715 0.3171 0.4823 0.9165 0.9936 1.0000 
Survival 
function 0.9998 0.9967 0.9800 0.9293 0.8285 0.6829 0.5177 0.0835 0.0064 0.0000 
Average 

Skewness 2.2271 2.3750 2.6159 2.9064 3.0312 2.5763 1.7460 1.0821 1.3210 1.6200 
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From Table 22, we can see that the survival function at the time of preventive 

maintenance decreases as the maintenance period increases. The average skewness value 

increases first as the time for preventive maintenance increases from Tr=6 years to Tr=10 

years and then decreases as the maintenance period increases, and there is a slightly 

change after Tr=16 years. A detailed analysis of the variation in skewness and survival 

function will be given later in this section. 
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Figure 53.  Detailed comparison of NPV of 50 years for different maintenance policies 
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Figure 53 shows the expected net present values of the effective costs, from using 

different maintenance policies over a 50-years lifetime. As mentioned before, the 

minimum expected net present value effective cost ocurs for maintenance periods 

somewhere between 6 years and 12 years. The plot above shows that the minimum net 

present value cost comes with the maintenance policy to replace the system every 10 

years (Tr=10 years). However, the difference in NPVs for Tr=10 years and Tr=9 years is 

not significant, as seen from Table 22  and Figure 53. Based only on NPV effective cost, 

one may prefer to choose the maintenance policy to replace the system every 10 years 

(Tr=10 years) which minimize the NPV cost for a 50 year lifetime. Again, back to the 

original goal of the maintenance of a commercial nuclear power plant, we want to 

minimize the cost (represented by expected NPV effective cost in this example) while 

still having acceptable reliability performance. Hence more analysis needs to be done 

and more performance needs to be compared in order to make final maintenance 

decisions. In the following, the NPV cost and the survival function as well as the average 

skewness will be plotted together to give us a better understanding of both the financial 

performance and the risk/reliability performance for each preventive maintenance policy.  
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NPV and Survival Function Vs. PM Policies
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Figure 54. NPV and survival function of 50 years for different maintenance policies 

 

From the plot above (Figure 54), we can see that the survival function decreases as 

the maintenance period increases. When the NPV cost reaches its minimum at 10rT = , 

the survival function takes the value of 0.8285 and hence the corresponding cdf value for 

failure is 0.1715, which means that the cumulative failure probability at the time when 

preventive maintenance is done is slightly more than 17% and therefore the cumulative 

survival probability is somewhat less than 83%. For risk-averse management, that might 

be a very high detriment to choosing such a large replacement period. For maintenance 

policies 9rT = , 10rT = and 11rT = , the NPV cost for these three maintenance policies 

are $2244.0M, $2243.1M and $2249.2 respectively, hence there are only small 
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differences among the three NPV values; however, the cumulative survival probability 

values for the three policies are 0.9293, 0.8285 and 0.6829 and the difference between 

the former two values is 0.1008. That means the cumulative probability of failure 

increases about 10% if we choose the maintenance policy of replacing the system every 

10 years ( 10rT = ) instead of replacing it every 9 years ( 9rT = ). This 10% increase is 

generally regarded as very large number in reliability analysis, especially for 

generation/risk related systems such as the main generators.  

Since there is no significant difference between the NPV cost acquired using the two 

different maintenance policies ( 9rT = and 10rT = ), while there is big difference in the 

reliability performance, the one with better reliability performance will tend to be 

preferred. Hence, if we want to choose between the two maintenance policies, 9rT =  is 

probably preferable to 10rT =  because of its high reliability performance and low NPV 

cost value, provided the a cumulative failure value of 7% (the cdf for 9rT =  is 0.0707 )is 

acceptable. 
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NPV and Skewness Plots
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Figure 55. NPV and average skewness of 50 years for different maintenance policies 

 

In addition to the comparison of cumulative failure values and the cumulative 

survival function values, the average skewness values over the 50 year life also can be 

compared, so as to assist the decision-making process as to which maintenance policy is 

preferable.  Figure 55 shows the NPV cost and the corresponding average skewness 

values for each maintenance policy. As can be seen from Figure 55 the magnitude of the 

skewness value increases as the maintenance period increases from 6 years to 10 years 

and then decreases as we increase the maintenance period to 11 years or above. However, 

when the maintenance is longer than 16 years, there is a slight increase in the skewness 

value, as the expected NPV effective cost starts to decrease. These two phenomena are 
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believed to be closely related in the sense that when choosing among the last three 

maintenance policies (Tr=16 years to Tr=20 years and never do PM), the run-to-failure 

policy (never do PM) is preferred because it has a relatively smaller NPV cost. 

Similarly, in comparing the two different maintenance policies 9rT = and 10rT = , 

there is again no huge difference between the expected NPV cost achieved, and also 

there is no big difference in the average skewness. The average skewness values are 

2.9064 and 3.0312 respectively. Hence, if we want to choose between these two 

maintenance policies based on the comparison of skewness values, even though 10rT =  

is more preferable to 9rT =  because of it has larger positive skewness; however, the 

difference is small, so there is room for different philosophies without greatly affecting 

either expected NPV cost or downside risk. Still it is too hard to make judgment because 

the difference is almost negligible. 

From this discussion we draw the following conclusion: Considering the 

requirement to minimize the NPV cost and still get a good reliability performance, if we 

want to choose between the two maintenance policies 9rT =  and 10,rT =  then 9rT =  is  

preferable to 10rT =  because it has higher reliability performance (with cumulative 

survival probability of  0.9293) and smaller NPV cost value, and it also has  roughly the 

same skewness number as does 10rT = . However, the conclusion is based on the 

assumption that the cumulative failure value of 7% (the cdf for 9rT =  is 0.0707) is 

acceptable to plant management. It is possible that plant management judges the value of 
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7% is too high for the consideration of risk/reliability. In that scenario, a shorter 

maintenance policy such as 7rT = or 8rT = may even be considered. 

As has been discussed in the preceding section, the probability density functions 

(pdf) and the cumulative distribution functions (cdf) plots using the parameters acquired 

from the failure data with lognormal distribution and Weibull distribution are almost 

identical (Figure 46). The only difference between the two distributions is the hazard 

rate (failure rate), as shown in plot at the lower right of Figure 46.   Also, from the 

analysis done in the preceding section, we know that the reliability performances using 

the two distributions are roughly the same with slightly differences. 

However, when it comes to the system financial performance analysis, one may ask 

which distribution is preferable, lognormal distribution or Weibull distribution, or indeed 

if the choice of distributions makes little or any difference in the financial performance 

analysis?  

 

Table 23  

Comparison of expected NPV cost for all the PM policies over 35 years 

PM (Years) 6 7 8 9 10 11 12 Never 
NPV(Weibull) 

(Mil. $) 2186.6 2156.9 2140.7 2123.9 2118.0 2117.6 2116.9 2129.1 
NPV(lognormal) 

(Mil. $) 2184.9 2153.7 2136.9 2120.3 2117.6 2120.1 2121.2 2127.7 
cdf(Weibull) 0.0076 0.0196 0.0441 0.0890 0.1633 0.2744 0.4220 1 

cdf(lognormal) 2.5e-4 0.0033 0.0200 0.0707 0.1715 0.3171 0.4823 1 
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As has been done in the preceding section, the financial performances will now be 

compared using the Weibull and lognormal distributions. To see only the effects of the 

two distributions in the calculation of NPV and hence the analysis of financial 

performances, a plant life of only 35 years is used rather than 50 years. 

The expected NPV of the costs of each maintenance policy using the two 

distributions are given in Table 23. A rough observation of the numbers shows that no 

matter which distribution is used, the minimum expected NPV costs occurs at 10rT =  

years.  A detailed comparison of the expected NPV costs shows that the minimum NPV 

costs from the two distributions are roughly the same ($2118.0M for Weibull and 

$2117.6M for lognormal). Also a comparison of the corresponding cdf values from the 

two distributions shows that they are roughly the same, with difference of around 1% for 

9rT =  years and 10rT = years. 

Figure 56 gives a better of view of the comparison of NPV values. It is clear to see 

from this figure that the expected NPV cost attains its minimum at 10,rT =  for both 

distributions. Also the increasing/deceasing trends of the two tend to be the same: 

Expected NPV cost decreases with a PM period shorter than 10 years and increases 

afterwards with a longer PM period. However, a detailed comparison shows some 

significant differences in the NPV values, especially for 9rT =  years and 11rT =  years. 

For NPV values acquired using lognormal distribution, the NPV for 9rT =  tends to be 

smaller than that of 11rT = . On the other hand, for expected NPV cost obtained using the 
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Weibull distribution, it is the opposite; expected NPV cost for 9rT =  is larger than that 

for 11rT = . 
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Figure 56.  NPV costs for 35 years plant life, for different maintenance policies and 

different failure distributions 
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Figure 57. Comparison of expected NPV costs for 35 year plant life, different 

maintenance policies, and different failure distributions 

 

The trends of expected NPV costs for both distributions are shown in Figure 57. As 

can be clearly seen from the figure, the expected NPV cost acquired using the lognormal 

distribution tends to be less than that acquired using Weibull distribution, for 

replacement periods less than 10rT =  years. Further, the expected NPV costs at 10rT =  

for the two distributions are almost the same. After that point ( 10rT =  years), the 

expected NPV cost acquired using Weibull distribution tends to be less than that 

acquired using lognormal distribution. This is easy to understand from the cdf and pdf 

plots for the two distributions, as can be found in Figure 46.  That is, both cdf and pdf 
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values for the failures tend to be greater for Weibull distribution that those from 

lognormal distribution when 10t < years and the trends become opposite afterwards.  

This means that the probability of system failure tends to be larger using Weibull 

distribution when 10t < years, hence the expected NPV cost found using Weibull 

distribution is larger due to the higher failure costs. Similarly the NPV obtained using 

lognormal distribution is larger than that from the Weibull distribution, when 

10rT > years. 

When it comes making a decision as to which maintenance policy is better, from 

both reliability and financial point of view, 9rT = years is chosen as well when Weibull 

distribution instead of lognormal distribution is used in the analysis. This is because  

9rT = years provides a high reliability performance (with cumulative survival 

probability of 0.9110 while the value for 10rT = years is 0.8367), and small expected 

NPV cost as well. 

From the analysis done in this and the previous sections, we draw the following 

conclusion for the maintenance of the main generator system: 

i. The reliability performance of the main generator system tends to be better 

with a shorter maintenance period. 

ii. The financial performance (expected NPV cost) tends to be better when the 

replacement period is close to 10rT =  years, but this minimum is relatively 

broad in that the associated expected NPV cost changes relatively little for 

changes of  Tr on the order of a year or so. 
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iii. Considering the requirement to minimize the NPV cost and still get a better 

reliability performance, if we want to choose between the two maintenance 

policies, 9rT =  years is preferable to 10rT =  years, because it has high 

reliability performance (with cumulative survival probability of  0.9293) and 

only a very slightly larger expected NPV cost.  It also has large positive 

skewness which brings good financial performance as well. 

iv. The above conclusions are largely independent, from the perspective of both 

reliability performance and financial performance, of whether one uses the 

Weibull or lognormal distribution. The choice of distribution has little effect 

on the analysis of the system, and hence little effect on the selection of the 

preferred maintenance policy. 

5.5 Applications of Entry-time Processes in PRA/GRA 

From the preceding sections of this chapter we can see that entry-time processes can 

be applied to PM-based issues and to help make maintenance decisions from the aspects 

of both reliability and financial performance. Another possible application of the entry-

time approach is to incorporate time-dependent failure rates, especially aging effects and 

maintenance policies, into PRA/GRA.  

It is clear that system reliability performance measures such as failure probabilities 

and system availabilities can sometimes be used as important input for decision-making 

process, especially for PRA and GRA analyses. However, in classic PRA, constant 
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failure rates are applied to the fault tree and event tree analysis, and therefore aging 

effects and maintenance policies are not taken into account.  

There is already some work done (for example, [17]) to incorporate aging effects 

into PRA, as introduced in the first chapter of the dissertation. However, the entry-time 

processes provide a different methodology at the system level that can generates time-

dependent probabilities for the system as a whole. Also, entry-time processes allow 

time-dependent transition rates, which can include not only aging effects, but also time-

dependent maintenance policies. 

For the generator system discussed above, if we use the constant failure rate 

assumption as is being used in the current NPP PRA/GRA models when doing future 

reliability performance predictions, we would have a much lower failure probability (in 

state 3 and state 4) after around 5 years. 

One may argue that the Bayesian updating [37] often used in analyzing reliability 

for NPPs accounts in some way for failure rate changes from past operational experience. 

Nonetheless, the associated drawback is that the PRA calculation of cdf, which is 

supposed to forecast the likelihood, actually only reflects the present experience. The 

associated shortcoming stems from the fact that in NPPs most PRA/GRA models are 

used not only for reflecting the current system status, but also for predicting the future 

system reliability performance so as to make adequate management decisions. For the 

most part, management decisions are made from the viewpoint of long-term system 

reliability rather than short-term performance, which requires not just consideration of 

past experience, but also consideration of system performance as it ages. 
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Consider a common scenario in a GRA model, for the above main generator system. 

In a typical GRA fault tree logic, the failure of a generator will lead directly to one of the 

tops of the fault tree (100% power loss). Without considering preventive maintenance, 

after 5 years the difference between a constant failure rate GRA model and a time-

dependent failure rate model will be more than 2%. That amounts to a huge difference 

(up to 200MWe) in the generation loss calculation for a nuclear power plant with two 

1200MW units. 

Another advantage of this model is that not only aging effects are considered in the 

dynamic calculation, but also different preventive maintenance policies are integrated. 

The incorporation of entry-time processes with PRA/GRA models would not only permit 

the inclusion of aging effects, but also provide a methodology for evaluating the benefits 

of maintenance in controlling aging. 
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CHAPTER VI 

CONCLUSIONS 

The entry-time model was developed, assessed and applied to a case study for 

maintenance of main generator in nuclear power plants in the preceding chapters. The 

data and methodology issues are also addressed in the discussion. 

In this chapter, the work is summarized to give a brief overview of the model and its 

applications in Section 6.1. Also the future research and application directions are 

discussed in Section 6.2.  

6.1 Summary of the Work 

The research has developed, assessed and demonstrated the applicability of a novel 

reliability methodology, centered about what we term as “entry-time processes,” that has 

the potential to provide a significantly greater range of applicability and flexibility than 

traditional reliability tools for case studies related to equipment and components in 

nuclear power plants. 

It has been shown that the entry-time methodology has particular potential for 

incorporation into case studies supporting plant planning, and related case studies, 

including such matters as the effects of component aging and the scheduling of 

inspections, tests and planned preventive maintenance activities. The potential for this 

type of application can only be further enhanced by what appears to be a movement 

toward obtaining improved estimates of equipment failure rates through first-principles 

consideration of the underlying causes of failure. 
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In this work, the entry-time model is defined and the integro-differential equations 

and its discrete algorithm are developed in the second chapter. In the third chapter, this 

discrete algorithm is verified by some analytically solvable hypothetical examples and 

by comparison to results from simulation. After that (Chapter III), the entry-time 

approach is applied to a real field NPP application, in a RIAM-based scenario.  This 

application is based on data from the INPO-EPIX database (Sections 5.3 and 5.4) and 

followed by a discussion of possible applications of the entry-time approach to PRA and 

GRA model in NPP (Section 5.5). Also the applicability of the EPIX database is proved 

(In Chapter IV). 

6.2 Future Research/Application Directions 

As mentioned in the third chapter, further research needs to be done to compare the 

accuracy and efficiency of the entry-time methodology against simulations. A detailed 

analysis should be done as part of the future research about the error and “efforts” 

(computational efficiency) of the entry-time methodology and simulation. This is very 

important in choosing the calculation methodology when dealing with some ‘rare event” 

problems. For example, for some catastrophic failure for a risk-related system, the 

probability of such failure is so rare that it is very difficult to capture in a simulation 

calculation, with a feasibly small number of sample paths. However, determination of 

the probability of such events is not particularly stressful for entry-time calculation. This 

could delineate a type of application for which the entry-time methodology has 

substantial advantages over traditional simulation approaches.. 
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When dealing with different failure modes for the same system, when the failures 

are not independent, the “bad as old” assumption, as applied in Section 4.5, is invalid 

because of the data collection mechanism.  Hence one might wish some alternative 

approach.  The “good as new” assumption might be true, but would need to allow for 

infant mortality in the failure mode that was attempted to repair.  An entry time model 

could accommodate that, but would need to allow for multiple entry times, one for each 

failure mode. This could be an important area of future research, when expanding the 

application of entry-time models for other applications. 

One of the most important features of the entry-time approach is the inclusion of 

time-dependent failure rates.  This permits inclusion of infant mortality, aging effects 

and maintenance policies in the analysis. As mentioned Chapter I that one of the 

drawbacks of the classis PRA/GRA models is that only constant failure rates are applied 

when setting up the event trees and fault trees. 

Therefore, with the inclusion of time-dependent failure rates, the entry-time 

approach can be applied to set up dynamic event trees and dynamic fault trees and hence 

to build dynamic PRA/GRA models. 

One possible way of doing that is to apply the entry-time model to a system or 

component where time-dependent failure rates are important, to obtain the dynamic 

reliability performance (such as time-dependent state probabilities) of the 

system/component. Once the state probabilities are acquired from the entry-time 

calculation, the evolution of the “states” can be identified as a function of time and other 

environmental parameters and hence a dynamic event tree for the system/component 
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performance can be set up, based on the results acquired from entry-time analysis. Then 

the dynamic event tree for the system/component can be fit into the comprehensive fault 

tree to construct a dynamic event tree for all systems. Using the same methodology as 

for  constructing the dynamic event tree, the corresponding dynamic fault tree can be set 

up and used for PRA/GRA models and therefore can be used to quantify the dynamic 

performance of the systems. 

Other than dynamic PRA/GRA applications, the entry-time approach can be applied 

mainly to the RIAM applications such as maintenance optimization and 

sensitivity/uncertainty analysis. In this dissertation an illustrative and relatively simple 

application to preventive maintenance decisions was presented. However, depending on 

the requirements of different applications, the general approach can be modified to 

obtain a more detailed analysis of systems or components.  
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APPENDIX A  

SAMPLE FAILURE RECORDS FROM EPIX DATABASE 

The EPIX database is queried using different search criteria to get records for 

component failures, as discussed in Section 4.2. 

After appropriate SQL queries, we can find the following failure records for motors 

from the INPO-EPIX database. The structure of the data records can be seen from the 

following data segment: 
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APPENDIX B  

COMPLETE FAILURE DATA ANALYSIS TO CIRCUIT BREAKERS 

AND MOTORS FOR SECTION 4.2 

The results are shown below as a sequence of plots of data resulting from analyses 

of generators of different model numbers and model types, as discussed in Section 4.2: 

Distribution plots for circuit breakers: 

Model number: DS 206; Type: K: 

Weibull distribution plots: 
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Exponential distribution plots: 
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Normal distribution plots: 
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Model number: DS 206; Type: S: 

Weibull distribution plots: 
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Exponential distribution plots: 
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 Normal distribution plots: 
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Model number: HFB3; Type: K: 

Weibull distribution plots: 
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Exponential distribution plots: 
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Normal distribution plots: 
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Model number: HFB3; Type: S: 

Weibull distribution plots: 
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Exponentail distribution plots: 
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Normal distribution plots: 
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Distribution plots for motors: 

Model number: CS VSS; Type: S: 

Weibull distribution plots:  
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Exponential distribution plots: 
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Normal distribution plots: 

*�������	5����



�
�

���������������

�������

�������

�������

�������

*�������	5����



�
�
�
�
�
�

���������������

		

	�

��

��

�

*�������	5����



�
�
�
�
�
�

���������������

���

��

�

*�������	5����

�
�
��

���������������

�������

�������

�������

�������

�
�� �������

���
� �������

�
���� �������

��� �������

 ���!�
 ��


 
�"�� �

#�$ �����


 ���
������ ��	��

%�&�
'�('�����"���"
)��&�&����* '�
�"��* ' !������

�!�� �� ��' !������ +�,���' !������

����������������������
��������*�������	5����� &��'��"
-�./'0"��1��
"2
�1��
�
'����

5��1��'

 



 

  

184 

Model number: TBDP; Type: S: 

Weibull distribution plots: 
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Exponential distribution plots: 
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Normal distribution plots: 
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Model number: FTYPE AN; Type: S:  

Weibull distribution plots:  
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Exponential distribution plots: 
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Normal distribution plots:  
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APPENDIX C  

COMPLETE FAILURE DATA RECORDS FOR MAIN GENERATOR 

(ARBITRARY CENSORING PROCEDURE APPLIED) 

The failure records for main generators manufactured by Westinghouse are queried 

from the EPIX database, as discussed in Section 4.5. The data are then analyzed using 

Mintitab. The following table shows the data used in Minitab using the arbitrary 

censoring procedure.  

 
EstAgeAtFailure_MG_WH_1 EstAgeAtFailure_MG_WH_2 

* 649 
649 1797 

1797 2196 
2196 2202 
2202 2216 
2216 2234 
2234 2238 
2238 2238 
2238 2257 
2257 2387 
2387 2632 
2632 2684 
2684 2690 
2690 2715 
2715 3221 
3221 3231 
3231 3321 
3321 3367 
3367 3385 
3385 3387 
3387 3464 
3464 3494 
3494 3530 
3530 3586 
3586 3597 
3597 3602 
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EstAgeAtFailure_MG_WH_1 EstAgeAtFailure_MG_WH_2 
3602 3655 
3655 3677 
3677 3717 
3717 3844 
3844 3940 
3940 3975 
3975 3986 
3986 4006 
4006 4006 
4006 4011 
4011 4030 
4030 4072 
4072 4086 
4086 4244 
4244 4294 
4294 4372 
4372 4377 
4377 4453 
4453 4465 
4465 4494 
4494 4520 
4520 4564 
4564 4619 
4619 4623 
4623 4641 
4641 4725 
4725 4742 
4742 4762 
4762 4854 
4854 4854 
4854 5011 
5011 5051 
5051 5064 
5064 5122 
5122 5157 
5157 5200 
5200 5270 
5270 5357 
5357 5404 
5404 5476 
5476 5781 
5781 5883 
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EstAgeAtFailure_MG_WH_1 EstAgeAtFailure_MG_WH_2 
5883 5986 
5986 5996 
5996 6054 
6054 6439 
6439 6576 
6576 6611 
6611 6637 
6637 6805 
6805 6816 
6816 7239 
7239 7347 
7347 7865 
7865 8774 
8774 9000 
9000 9347 
9347 9538 
9538 9698 
9698 9732 
9732 10308 
10308 10487 
10487 10534 
10534 10650 
10650 10686 
10686 10812 
10812 10829 
10829 10841 
10841 10916 
10916 11197 
11197 11359 
11359 11778 
11778 11864 
11864 12384 
12384 * 
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APPENDIX D 

DATA CENSORING METHODS 

The data queried from the database can be interpreted as different observations, as 

discussed in Section 4.4. The different observations correspond to different “censoring 

schemes” in MiniTab. In this appendix, some examples are given to show the 

connections between observations and “censoring schemes” 

In MiniTab, the user can input the data using different “censoring schemes”. Here 

the table below shows how the censoring scheme is related to the observation of data:  

Here Table D-1 shows the different types of observations that are supported by the 

current version of MiniTab [33]. 
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Table D-1 

Different types of observations 

Type of 
observation 

Description Example 

Exact failure 
time 

You know exactly 
when the failure 
occurred. 

The fan failed at exactly 
500 days. 

Right censored You only know that 
the failure occurred 
after a particular 
time. 

The fan had not yet failed 
at 500 days. 

Left censored You only know that 
the failure occurred 
before a particular 
time. 

The fan failed sometime 
before 500 days. 

Interval censored You only know that 
the failure occurred 
between two 
particular times. 

The fan failed sometime 
between 475 and 500 
days. 

 

 

From Table D-1, we know we may have different types of observations. Then when 

using the MiniTab software to do reliability analysis to the data, we have different 

censoring methods corresponding to those observations. Table D-2 shows how to input 

the observed data into MiniTab software using different censoring methods (here “*” 

means missing data):  
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Table D-2  

Examples of MiniTab input corresponding to different types of observations: 

Start End    
* 10000 Left censored at 10000 hours. 

10000 20000   
20000 30000   
30000 30000 Exact failures at 30000 hours. 
30000 40000   
40000 50000   
50000 50000   
50000 60000 Interval censored between 

50000 and 60000 hours. 
60000 70000   
70000 80000   
80000 90000   
90000 * Right censored at 90000 

hours. 
 

 

Table D-3  

Sample failure data (Estimated age at failure) from the EPIX database 

      

Age at 
Failure 
3494 
3975 
4006 
4011 
4244 
4372 
4377 
4453 
4520 
5051 
5883 
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Here Table D-3 shows some sample failure data acquired from the database.In our 

analysis, we use two different data interpretation schemes in the analysis of the failure 

data. Scheme 1 is “discovery by inspection” in which we assume the failures occurred in 

between two inspections. Hence the MiniTab input data for the above failure records 

(Table D-3) can be found in Table D-4. 

 

Table D-4 

Method 1 “discovery by inspection” procedure 

 

Start End 
* 3494 

3494 3975 
3975 4006 
4006 4011 
4011 4244 
4244 4372 
4372 4377 
4377 4453 
4453 4520 
4520 5051 
5051 5883 
5883 * 

 
 

Method 2 is “discovery by alarm, with no censoring” in which we assume all 

failures are exact, which means they are discovered immediately after the failures. 

Hence the MiniTab input data using this censoring procedure for the above failure 

records (Table D-3) can be found in Table D-5. 
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Table D-5 

Method 2 “discovery by alarm, with no censoring” procedure (Assume all failures are 

exact) 

Start End 
3494 3494 
3975 3975 
4006 4006 
4011 4011 
4244 4244 
4372 4372 
4377 4377 
4453 4453 
4520 4520 
5051 5051 
5883 5883 
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APPENDIX E  

DETAILED COST/REVENUE TABLE (USED IN SECTION 5.2) 

 
Unit Capacity(MW) 1200     

Electricity Price ($/MWh) 40     
Recovery time for PM (Year) 0.3     

Recovery time for N-C failure (Year) 0.2  PM N-C Failure C Failure 
Recovery time for C failure (year) 0.8 O&M Change factor 1/5 1/6 1/4 

 Per day Per Year   
Fuel cost $100,000 $36,500,000   

O&M $400,000 $146,000,000   
Power Generation $1,152,000 $420,480,000   

 
 

State 1(running) 
 
 Net Profit $652,000 $237,980,000   

 Per day Per recovery time Per Year  
O&M 480,000 N/A $175,200,000  

Power Generation 0 0 $0  
Components costs N/A 10,000,000 $33,333,333  

 
 

State 2(PM State) 
 
 Net Profit  N/A $(208,533,333.33)  

 Per day Per recovery time Per Year  
O&M 466,667 N/A $170,333,333  

Power Generation 0 0 $0  
Components costs N/A 5,000,000 $25,000,000  

 
 

State 3(Noncatastrophic Failure) 
 
 Net Profit  N/A $(195,333,333.33)  

 Per day Per recovery time Per Year  
O&M 500,000 N/A $182,500,000  

Power Generation 0 0 $0  
Components costs N/A 20,000,000 $25,000,000  

 
 

State 4(Catastrophic Failure) 
 
 Net Profit  N/A $(207,500,000.00)  
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APPENDIX F  

CODES USED IN THE ENTRY-TIME ANALYSIS OF THE MAIN 

GENERATOR RELIABILITY PERFORMANCE IN SECTION 5.3 

Entry_time_Main.m: 
 
%Program Name: Entry_time_Main.m 
%Program function: This is the main entry of the entry-time process code 
%Program NOTE: This is a revision of the initial program 
%Program by: Eric Wang 
%Program Date: 06/01/2007 
%%%%%%%%%%%%%%Revision History%%%%%%%%%%%%%%%%% 
%Revision Date%%%%%%%Revision reason%%%%%%%%%%%%%%%% 
%06/01/2007: Program initial setup 
%07/30/2007: Use this program for the Main Generator Example 
%           This example uses lognormal dis. rather than Weibull Dist. 
% 
%%%%%%%%%%End of Revision History%%%%%%%%%%% 
%% 
%%%%%%%%%%%%%%%%%%%%%%%% Functions List %%%%%%%% 
%Function Name%%%%%%%%%%%Function usage %%%%%%%%%%%% 
%lambda0: Differential transition probability at entry time zero 
%Lambda:  Cumulative transition probability 
% 
% 
%%%%%%%%%%%%%%End of Functions List%%%%%%%%%%%% 
%% 
%%%%%%%%%%%%%%Definition of states%%%%%%%%%%%%% 
%% State 1: System is in normal running state 
%% State 2: System is down for preventive maintenance 
%% State 3: System is down due to non-catastrophic failure 
%% State 4: System is down due to catastrophic failure 
%% Note that: 95% the failure is non-catastrophic and 5% is catastrophic 
home;clear all;close all; 
global I N Delt N_r n_c_nc n_c_c n_p mu sigma beta eta 
Time0=clock; 
disp(sprintf('The program starts at: %s\n',time_display(0))); 
disp(sprintf('Program running, please stand by...\n')); 
Pdiag_Save_name='Pdiag_Save_10';Figure_Name='Plot_10'; 
I=4;    %Number of states 
N=350;   %Number of time stpes 
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Terminal_time=35;    %Termial calendar time 
T_r=15;       % Max time between maintenances 
t_c_nc=0.2;  % Time for non-catastrophic corrective maintenance 
t_c_c=0.8;   % Time for catastrophic corrective maintenance 
t_p=0.4;     % Time for preventive maintenance 
P_ini=[1,0,0,0];    %Initial probability the system is in each state 
mu=4510.22/365; 
sigma=919.001/365; 
beta=5.853; 
eta=4851/365; 
%%%%%%%%%Change the parameters above for 
calculation%%%%%%%%%%%%%%%% 
Delt=Terminal_time/N; %Time step 
N_r=T_r/Delt;     % Max no. of time steps between maintenances 
n_c_nc=t_c_nc/Delt;     % No. of time steps for non-catastrophic CM 
n_c_c=t_c_c/Delt;     % No. of time steps for catastrophic CM 
n_p=t_p/Delt;     % No. of time steps for preventive maintenance 
T=Terminal_time; 
for i=1:I   %Initialize the P matrix: P{i}(m,n)=P_i(m,n) in equations 
    P{i}=zeros(N+1,N+1); 
    P{i}(1,1)=P_ini(i); 
end 
disp(sprintf('Now starting entry-time calculation...\n')); 
for n=1:N       % Calendar time index of probability being computed 
    Time_loop_start=clock; 
    disp(sprintf('Now calculating N=%d, and %d loop(s) remaining...\n',n,N-n)); 
    disp(sprintf('This loop starts at: %s\n',time_display(0))); 
    for m=1:n   % Entry time index of probability being computed 
        for i=1:I   % State index of probability being computed 
            Delp=0; % Initialize transitions from earlier times 
            for j=1:I 
                Delp=Delp+Delt*lambda0(j,i,1,n)*P{i}(1,n); 
            end 
            for mp=1:m-1  % Loop to obtain transitions from all earlier entry times 
                for j=1:I  % Loop over all states, including state being computed 
                    DelLambda=Lambda(j,i,mp,n+1)-Lambda(j,i,mp+1,n+1); 
                    Delp=Delp+(P{i}(mp+1,n)-P{i}(mp,n))*DelLambda; 
                end 
            end 
            P{i}(m,n+1)=P{i}(m,n)-Delp; 
        end 
    end 
    % Calculate next probabilities along diagonal, for all states 
    for i=1:I   % Next diagonal update 
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        Delp1=0; 
        Delp2=0; 
        for j=1:I 
            Delp1=Delp1+Delt*lambda0(i,j,1,n+1)*P{j}(1,n); 
            Delp2=Delp2+Delt*lambda0(j,i,1,n+1)*P{i}(1,n); 
        end 
        for mp=1:m-1 
            for j=1:I 
                DelLambda1=Lambda(i,j,mp,n+1)-Lambda(i,j,mp+1,n+1); 
                DelLambda2=Lambda(j,i,mp,n+1)-Lambda(j,i,mp+1,n+1); 
                Delp1=Delp1+(P{j}(mp+1,n)-P{j}(mp,n))*DelLambda1; 
                Delp2=Delp2+(P{i}(mp+1,n)-P{i}(mp,n))*DelLambda2; 
            end 
        end 
        P{i}(n+1,n+1)=P{i}(n,n)+(Delp1-Delp2); 
    end 
    time_used_loop=etime(clock,Time_loop_start); 
if time_used_loop>60 
    disp_loop_running_time=sprintf('Total time used for the loop is %f minutes\n 
\n',time_used_loop/60); 
else 
    disp_loop_running_time=sprintf('Total time used for the loop is %f seconds\n 
\n',time_used_loop); 
end 
disp(sprintf('This loop ends at: %s\n',time_display(0))); 
disp(disp_loop_running_time); 
end 
for i=1:I 
    Pdiag{i}=diag(P{i}); 
end 
save(Pdiag_Save_name,'Pdiag'); 
t=linspace(0,T,N+1); 
figure(1); 
hold on; 
subplot(4,1,1) 
hold on 
plot(t,Pdiag{1},'-'); % Probability of first state 
xlabel('Time (years)') 
ylabel('P_1') 
subplot(4,1,2) 
hold on 
plot(t,Pdiag{2},'-'); % Probability of second state 
xlabel('Time (years)') 
ylabel('P_2') 
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subplot(4,1,3) 
hold on 
plot(t,Pdiag{3},'-'); % Probability of third state 
xlabel('Time (years)') 
ylabel('P_3') 
subplot(4,1,4) 
hold on 
plot(t,Pdiag{4},'-'); % Probability of Fourth state 
xlabel('Time (years)') 
ylabel('P_4') 
saveas(1,Figure_Name,'fig'); 
time_used_total=etime(clock,Time0); 
if time_used_total>60 
    disp_total_running_time=sprintf('Total time used for the program is %f 
minutes\n',time_used_total/60); 
else 
    disp_total_running_time=sprintf('Total time used for the program is %f 
seconds\n',time_used_total); 
end 
disp(sprintf('The program ends at: %s\n',time_display(0))); 
disp(disp_total_running_time); 
 
 
lambda0.m: 
 
%Program Name: lambda0.m 
%Program function: Subroutine for differential transition probability at 
%entry time zero 
%Program by: Eric Wang 
%Program Date: 06/01/2007 
%%%%%%%%%%%Revision History%%%%%%%%%%%%% 
%Revision Date%%%%%%%%%Revision reason%%%%%%%%%%% 
%06/01/2007: Program initial setup 
% 
% 
% 
%%%%%%%%%%End of Revision History%%%%%%%%% 
%% 
%%%%%%%% Functions List %%%%%%%%%%%%% 
%Function Name%%%%%%%%%Function usage %%%%%%%%%% 
%NONE 
% 
% 
% 
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%%%%%%%%%End of Functions List%%%%%%%%%%%%%%% 
%% 
function lambda0=lambda0(i,j,m,n) 
global I N Delt N_r n_c_nc n_c_c n_p mu sigma beta eta 
lambda0=0; 
if i==2&j==1 
    if n-m<=N_r & n-m+1>N_r 
        lambda0=1.0/Delt; 
    end 
elseif i==3&j==1 
    if n>m 
lambda=beta/eta*((n-m)*Delt/eta)^(beta-1)*0.95; 
    end 
elseif i==4&j==1 
    if n>m 
 lambda=beta/eta*((n-m)*Delt/eta)^(beta-1)*0.05; 
    end 
elseif i==1&j==2 
    if n-m<=n_p& n-m+1>n_p 
        lambda0=1.0/Delt; 
    end 
elseif i==1&j==3 
    if n-m<=n_c_nc& n-m+1>n_c_nc 
        lambda0=1.0/Delt; 
    end 
elseif i==1&j==4 
    if n-m<=n_c_c& n-m+1>n_c_c 
        lambda0=1.0/Delt; 
    end 
end 
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