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Abstract

The class of gamma regression models is based on the assumption that
the dependent variable is gamma distributed and that its mean is related
to a set of regressors through a linear predictor with unknown coefficients
and a link function. This link can be the identity, the inverse or the log-
arithm function. The model also includes a shape parameter, which may
be constant or dependent on a set of regressors through a link function,
as the logarithm function. In this paper we describe the Gammareg R-
package, which provides the class of gamma regressions in the R system
for their statistical computing. The underlying theory is briefly presented
and the library implementation illustrated from simulation studies.

Keywords: Gamma regression, mean regression structures, shape regres-
sion structures, Fisher Scoring algorithm, R-package

1 Introduction

The Gamma distribution can be used for regression models with more flexibil-
ity than other models, such as exponential and poisson, among others. Thus,
gamma regression models allow for a monotone, no constant hazard in sur-
vival models, and have the reproductive property that the sums of independent
gamma distributions are also gamma distributed. Moreover, gamma regression
models have the advantage of providing a count-data model with substantially
higher flexibility than the Poisson model, which involves very sparse time-series
that can be modeled by the gamma regression (Bateson 2009). These models
are extended in a wide range of empirical applications, such as in the process of
rate setting in the frame-work of heterogeneous insurance portfolios, which is the
most important function of insurers (Krishnamoorthy 2006), and in a hospital
admissions for rare diseases where time series are very sparse due to infrequency
of events (Winklemann 2008). This paper considers gamma regression models
in which both the mean and the shape parameters are allowed to depend on un-
known parameters and on covariates. Joint modeling of the mean and the shape
parameters in gamma regressions were proposed by (Cepeda-Cuervo 2001), un-
der both classical and Bayesian approaches. In the former, the parameters are
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estimated by an alternative iterated maximum likelihood method based on the
Fisher scoring algorithm. In the Bayesian approach, estimations of the regres-
sion parameters are obtained by a hybrid Metropolis Hasting algorithm, as in
Chib & Greenberg (1995) and Gamerman & Lopes (2006).

In this paper we introduce the use of the Gammareg R-package, an R-code
developed by us that contains the algorithms and customizable options to fit,
under classic methodology, Gamma regression model where both, mean and
shape parameters follow regression structures. After the introduction, this pa-
per includes six sections. In Section 2, a mean-shape re-parameterizations of the
Gamma distribution is presented. In Section 3 the gamma regression models,
where both mean and shape parameters follow regression structures, is pre-
sented. In Section 4, a classic method to fit gamma regression models is suma-
rized. Section 4 presents the Classic Gammareg R-package. Section 6 contains
two applications based on simulated data. Finally, in Section 6 we present our
main conclusions.

2 Gamma distribution

A random variable Y follows a gamma distribution if its probability density
function is given by

f(y|α, λ) = λαyα−1e−λy

Γ(α)
I(0,∞)(y) (1)

where α, λ > 0 and Γ(.) denotes the gamma function; and I is an indicator
function such that I(0,∞)(y) = 1 if y ∈ (0,∞), and zero otherwise. Under this
parameterization, the mean and variance of Y are given by E(Y ) = α/λ and
Var(Y ) = α/λ2 = µ2/α.

With the re-parameterization of the gamma distribution as a function of
the mean, µ = E(Y ),and the shape parameter,α, as proposed in Cepeda-Cuervo
(2001) and Cepeda & Gammerman (2005), setting λ = α/µ, the gamma density
function can be written as

f(y|µ, α) = 1

Γ(α)

(
αy

µ

)α

e−αy/µ

(
1

y

)
I(0,∞)(y) (2)

Under this re-parameterization, we use Y ∼ G(µ, α) to denote that Y follows
a gamma distribution with E(Y ) = µ and α as a shape parameter.

From this re-parameterization of the gamma distribution, the joint mean
and shape gamma regression were proposed in Cepeda-Cuervo (2001), under
classic and Bayesian methodologies, as presented in the next section.

3 Gamma regression models

Let Yi ∼ G(µi, α), i = 1, . . . , n be a Gamma random sample, of size n. In the
gamma regression model with constant shape parameter, the mean regression

2



structure is defined by
g(µi) = xi

′β = ηi

where g is the link function,β = (β0, . . . , βp)
′ is the vector of mean regression

parameters, xi is the i-th vector value of the explanatory variables, and ηi
is a linear predictor. Here, g(.) : (0,∞) 7→ ℜ is a real value function strictly
monotonic and twice differentiable (McCullagh & Nelder 1989). Some usual link
functions in the gamma regression are: log g(µ) = log(µ); identity g(µ) = µ;
and inverse g(µ) = 1/µ. In the exponential family, the canonical link for the
mean is the inverse function.

An extension of the gamma regression models is proposed in Cepeda-Cuervo
(2001)). In this proposal, the shape parameter is not constant through the
observations and it is modeled following a regression structure. That is,the
mean and shape parameters follow a regression structures given by:

g(µi) = η1i = x′
iβ (3)

h(αi) = η2i = z′iγ (4)

where g and h are appropriate real link functions, β = (β0, . . . , βp)
′ and γ =

(γ0, . . . , γk)
′, with p + k < n, are respectively the mean and shape parameter

vectors, xi and zi are respectively the mean and shape explanatory variables for
the i-th observation, and η1i, η2i are the linear predictors. A usual link function
for the shape model is the logarithm function.

4 A classic method to fit gamma regression mod-
els

(Cepeda-Cuervo 2001) proposed a classical approach to joint modeling the mean
and shape parameters using the Fisher scoring algorithm. In that work, he
showed that with the gamma reparametrization given by (2), the likelihood
function on the gamma regression models defined by (3) and (4), can be written
in the form:

L(β, γ) =
n∏

i=1

1

Γ(αi)

(
αi

µi

)αi

yαi−1
i exp

(
−αi

µi
yi

)
where µi = x′

iβ and αi = exp(z′iγ), and the log likelihood function by:

l(β, γ) =
n∑

i=1

{
− log[Γ(αi)] + αi log

(
αiyi
µi

)
− log(yi)−

(
αi

µi

)
yi

}
Thus, the score function has components:
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∂l

∂βj
=

n∑
i=1

−αi

µi

(
1− yi

µi

)
xij , j = 1, . . . p

∂l

∂γk
=

n∑
i=1

−αi

[
d

dαi
log Γ(αi)− log

(
αiyi
µi

)
− 1 +

yi
µi

]
zik, k = 1, . . . , r

And the Hessian matrix determined by:

∂2l

∂βkβj
=

n∑
i=1

αi

µ2
i

(
1− 2yi

µi

)
xijxik, j, k = 1, . . . p

∂2l

∂γkβj
=

n∑
i=1

−αi

[
d

dαi
log Γ(αi)− log

(
αiyi
µi

)
− 1 +

yi
µi

]
zik, k = 1, . . . , r

∂2l

∂γkγj
=

n∑
i=1

−αi

[
d

dαi
log Γ(αi)− log

(
αiyi
µi

)
− 1 +

yi
µi

]
zik, k = 1, . . . , r

Thus, the Fisher information matrix is given by:

−E

(
∂2l

∂βkβj

)
=

n∑
i=1

αi

µ2
i

xijxik, j, k = 1, · · · , p

−E

(
∂2l

∂γkβj

)
= 0, j = 1, · · · , p, k = 1, · · · , r

−E

(
∂2l

∂βkβj

)
=

n∑
i=1

α2
i

[
d2

dα2
i

log Γ(αi)−
1

αi

]
zijzik, j, k = 1, · · · , r

It can be noted that the Fisher information matrix is a block diagonal ma-
trix, where one of the blocks corresponds to the mean regression parameters
β and the other to the shape regression parameter γ. The parameters β and
γ are then orthogonal, and the maximum likelihood estimators, β̂ and γ̂, are
asymptotically independent.

Taken in account the structure of the Fisher information matrix, (Cepeda-
Cuervo 2001) proposed an iterative algorithm to obtain the maximum likelihood
estimates of then regression parameters, where:

1. Given the k -th parameter values (β(k),γ(k))′, the mean vector β(k+1) is
updated from :

β(k+1) = (X′W (k)X)−1X′W (k)Y (5)

where W (k) is a matrix with elements w
(k)
i = (µ2

i /αi).
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2. Given (β(k),γ(k))′, the shape parameter vector γ(k+1) is updated from :

γ(k+1) = (Z′W (k)Z)−1X′W (k)Y (6)

where W (k) is a matrix with elements w
(k)
i = 1/di, with

di = α−2
i

[
d2

dα2
i

log Γ(αi)
1

αi

]−1

Therefore, the alternate iterate algorithm can be summarized as follows:

1. Start an iteration count k = 0.

2. Give initial values for the parameters β(k), γ(k).

3. Obtain β(k+1) from equation (5),giving the current values of β and γ.

4. Obtain γ(k+1) from equation (6),giving the current values of β and γ.

5. Set the counter iteration k = k + 1

6. Go to 3 and 4 are until convergence is achieved.

For other links functions, similar results can be obtained. In particular if g(.)
and h(.) are logarithm function, the Fisher information matrix is block diagonal,
with two blocks, one for β and other for γ, and thus a similar alternate iterated
algorithm can be implemented.

5 Implementation in R: Gammareg package

We can estimate the parameters of a gamma regression as proposed by (McCullagh
& Nelder 1989) in R (Team n.d.), using the function glm {stats} for fitting
GLMs. An important difference with our proposal is that in Gammareg there
are potentially two regression structures, one for the mean and other for the
shape parameter.

The Gammareg R-package has the computational implementation of the
Classical method defined in Section 4. The main model-fitting function inGam-
mareg is Gammareg(), which allows the user to calculate the mean and shape
regression parameters in a gamma regression model under classical perspective.
The general formula for this function is

Gammareg(formula1,formula2,meanlink)
where

1. formula1 is an object of class formula, that describes the interest variable
Y and the regressors X of the mean regression structure.
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2. formula2 is an object of class formula that describes the regressors Z for
the shape regression structure.

3. meanlink is the link function for the mean.

The default link is the log (log) link, but the identity (ide) link is also allowed
as admisible value.

The returned fitted-model object of the Gammareg class is a list similar to
glm objects. It provides to the user the regression parameter estimates, β̂ and γ̂
and their standard deviations. It also provides the estimated covariance matrix
for β and γ, the criterion value AIC, the number of iterations to covergence and
the value of covergence obtained.

The Gammareg R-package has five other functions which allow the user,
among other things, to obtain summaries for gamma regression models.

The functions on the package BayGammareg are described in the Table
1.

Table 1: Gammareg functions

Function Description
Gammareg estimates the media and shape regression parameters
gammahetero1() performs the classic gamma regression using link log

for the mean and link log for the shape.
gammahetero2() performs the classic gamma regression using identity link

for the mean and link log for the shape
summary.Gammareg() is the standard regression output (coefficient estimates,

standard errors, criterions); returns an object
of class summary.Gammareg containing the relevant summary statistics
(which has a print() method)

print.Gammareg prints the estimates coefficients and the confidence
intervals of a classic gamma regression

print.summary.Gammareg prints the summary of a classic gamma regression

6 Gammareg in practice

To illustrate the use of Gammareg we consider two gamma regression models
with simulated data, using two differents links for the mean: log and identity
links.

6.1 First simulation

In the first simulation, we consider a gamma regression model with mean and
shape structures, given by:

µi = xi
′β

log(αi) = z′iγ
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First, we generated values of the explanatory variables X1, X2, X3 and X4.
For each of this variables, we simulated n = 500 values with x1i = 1 for i =
1, ..., n;x2i, i = 1, ..., n, from a uniform distribution on the interval (0, 30);
x3i, i = 1, ..., n; from a uniform distribution on the interval (0, 15), and x4i,
i = 1, ..., n, from a uniform distribution in the interval (10, 20). The values
Yi were generated from a gamma distribution with µi = 15 + 2x2i + 3x3i and
αi = exp(0.2 + 0.1x2i + 0.3x4i), as follow:

>library(Gammareg)

>X1 <- rep(1,500)

>X2 <- runif(500,0,30)

>X3 <- runif(500,0,15)

>X4 <- runif(500,10,20)

>mui <- 15 + 2*X2 + 3*X3

>alphai <- exp(0.2 + 0.1*X2 + 0.3*X4)

>Y <- rgamma(500,shape=alphai,scale=mui/alphai)

>X <- cbind(X1,X2,X3)

>Z <- cbind(X1,X2,X4)

>formula.mean= Y~X2+X3

>formula.shape= ~X2+X4

>a=Gammareg(formula.mean,formula.shape,meanlink="ide")

>summary(a)

The results obtained to apply the Gammareg R-pakage were:

################################################################

### Classic Gamma Regression ###

################################################################

Call:

Gammareg(formula1 = formula.mean, formula2 = formula.shape, meanlink = "ide")

Estimate L.Intv U.Intv

beta.(Intercept) 15.2231 14.6931 15.753

beta.X2 2.0382 2.0131 2.063

beta.X3 2.8965 2.8483 2.945

gamma.(Intercept) 0.1877 0.1870 0.189

gamma.X2 0.1031 0.1031 0.103

gamma.X4 0.2934 0.2933 0.293

Covariance Matrix for Beta:

(Intercept) X2 X3

(Intercept) 0.072747993 -2.615207e-03 -2.819056e-03

X2 -0.002615207 1.637345e-04 -3.582766e-05

X3 -0.002819056 -3.582766e-05 6.024330e-04

Covariance Matrix for Gamma:
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(Intercept) X2 X4

(Intercept) 1.485298e-07 -1.243918e-09 -6.456682e-09

X2 -1.243918e-09 4.430374e-11 7.859803e-12

X4 -6.456682e-09 7.859803e-12 3.468175e-10

AIC:

[1] 6606828

Iteration:

[1] 13

Convergence:

[1] 4.660965e-06

These results show that all the parameters estimates obtained using the
Gammareg R-package are close to the true parameters values of the model. In
all of cases with a small standard deviation and the 95% confidence interval
contain the true parameter value.

6.2 Second simulation

In the second simulation, it is considered a gamma regression model with mean
and shape structures, given by: In the second simulation study we considere the
model

log(µi) = x′
iβ

log(αi) = z′iγ

In this case, n = 500 values of the explanatory variables X1, X2, X3 and X4

were generated as in the first simulation, but the values of the interest variable
Y were generated from a Gamma distribution with µi = −5 + 2x2i + 3x3i and
αi = exp(0.2 + 0.1x2i + 0.3x4i), as follow:

>library(Gammareg)

X1 <- rep(1,500)

X2 <- runif(500,0,30)

X3 <- runif(500,0,15)

X4 <- runif(500,10,20)

mui <- exp(-5 + 0.2*X2 -0.03*X3)

alphai <- exp(0.2 + 0.1*X2 + 0.3*X4)

Y <- rgamma(500,shape=alphai,scale=mui/alphai)

X <- cbind(X1,X2,X3)

Z <- cbind(X1,X2,X4)

formula.mean= Y~X2+X3

formula.shape= ~X2+X4

a=Gammareg(formula.mean,formula.shape,meanlink="log")

8



summary(a)

The results obtained from the application of the Gammareg R-package are:

################################################################

### Classic Gamma Regression ###

################################################################

Call:

Gammareg(formula1 = formula.mean, formula2 = formula.shape, meanlink = "log")

Estimate L.Intv U.Intv

beta.(Intercept) -4.98768 -4.99730 -4.978

beta.X2 0.19953 0.19915 0.200

beta.X3 -0.03021 -0.03083 -0.030

gamma.(Intercept) 0.33678 0.33610 0.337

gamma.X2 0.08687 0.08686 0.087

gamma.X4 0.30849 0.30846 0.309

Covariance Matrix for Beta:

(Intercept) X2 X3

(Intercept) 2.397679e-05 -7.517510e-07 -8.062176e-07

X2 -7.517510e-07 3.746544e-08 -1.793592e-09

X3 -8.062176e-07 -1.793592e-09 1.016449e-07

Covariance Matrix for Gamma:

(Intercept) X2 X4

(Intercept) 1.188862e-07 -8.320284e-10 -5.352878e-09

X2 -8.320284e-10 2.967992e-11 7.473412e-12

X4 -5.352878e-09 7.473412e-12 2.810451e-10

AIC:

[1] -3469938

Iteration:

[1] 20

Convergence:

[1] 1.085736e-08

In this case,these results also show that all the parameters estimates obtained
using the Gammareg R-package are close to the true parameters values of the
model, except by γ0, but in all cases the 95% confidence interval contain the true
parameter value. The standard deviation are small for all parameters, except
to γ0.
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7 Conclusions and Extensions

This paper is introduced the Gammareg R-package, that can be used to fit
gamma regression models applying the classic method proposed in Cepeda-
Cuervo (2001). We use two simulated studies to illustrate the use of the different
functions of this package. In all of the cases, there is a speed convergence to
the maximum likelihood estimation of the regression parameters, showing the
efficient block-iterative alternate algorithm.

There are many possibilities to future works and practical tissues are possi-
ble. One is the use of alternative link functions, like the inverse link, that could
adjust in a better way some database. Other is the develop a R-package to fit the
gamma regression models proposed in Cepeda-Cuervo (2001), where both mean
and variance follows regression structures. This are works in development.

References

Bateson, T. F. (2009), ‘Gamma regression of interevent waiting times versus
poisson regression of daily event counts: Inside the epidemiologist’s tool-
boxselecting the best modeling tools for the job’, Epidemiology 20(2), 202–
204.

Cepeda-Cuervo, E. (2001), ‘Modelagem de variabilidade em modelos lineares
generalizados’, Unpublished Ph.D.thesis, Mathematics Institute, Universi-
dade Federal Rio de Janeiro .

Cepeda, E. & Gammerman, D. (2005), ‘Bayesian methodology for model-
ing parameters in the two parameters exponential family’, ESTADSTICA
57(168), 93–105.

Chib, S. & Greenberg, E. (1995), ‘Understanding the metropolis-hastings algo-
rithm’, The American Statistician 49(4), 327–335.

Gamerman, D. & Lopes, H. F. (2006), Markov chain Monte Carlo: Stochastic
simulation for Bayesian inference, CRC Press, address=New York,.

Krishnamoorthy, K. (2006), Handbook of Statistical Distributions with Applica-
tions, Chapman & Hall/CRC, Florida.

McCullagh, J. & Nelder, J. (1989), Generalized Linear Models. Second Edition,
Chapman and Hall, London.

Team, R. D. C. (n.d.), A language and environment for statistical computing.
R Foundation for Statistical Computing.

Winklemann, R. (2008), Econometric analysis of count data, Springer-Verlag,
Berlin, Germany.

10


