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1. Introduction

The graphs on Weyl groups were defined and studied in [1]. The basic idea
was to define the graph on Weyl groups using a relation on the Weyl groups
introduced in [6]. The relation on Weyl groups arose due to the technique used
in proving the Verma's conjecture on Weyl's dimension polynomial. This new
relation on Weyl groups gives rise to a partial order in a very natural manner.
This partial order or the incidence matrix of our graph on Weyl groups has
applications in the representation of algebraic Chevally groups [7]. Several
problems on the graph on Weyl groups have been solved: [2], [3], [4], [5]. In
this paper we determine the Weyl groups for which the associated graph is an
interval graph. Here we take the root system to be arbitrary and show that
the graph on the Weyl group with such a root system is an interval graph only
when the root system is essentially of the type A2, A3, B2, A3 X A3, A3 X B2 or
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B2 X B2. We summarize below few facts about root systems and Weyl groups
but for details we refer to [8].

Let E be a Euclidean space of dimension n with a positive definite inner
product ( , ). For any vector a E E we can define a reflection ROt whose action
on A E E is given by AROt = A - (A, aV)a. Suppose <Jlis a root system in E.
Then the reflections ROt, a E <Jlgenerate the finite group called Weyl group
W(<Jl) associated with the root system <Jl. If a1,a2, ... ,an are the simple
roots in <Jlthen Ra.." i = 1,2, ... ,n, generate the Weyl group W(<Jl). Let
ROt, = R; for i = 1,2, ... ,n. Then the elements of the Weyl group W(<Jl)
can be written as the product of the generators Rl, R2,'" ,Rn. In general,
for any element a in W, the expression a = ~l Ri2 .. , Rik is not unique. The
minimum value of k in all such expressions for a given a E W(<Jl) is called
the length l(a) of a. There exists a unique element 0'0 in W(<Jl) which has
maximum length. Let A1,A2,'" ,An be the fundamental weights of <Jl.Then
we have by definition (Ai,a'f) = bij (Kronecker delta) for i,j = 1,2, ... ,no
The action of R, on Aj is given by AjRi = Aj - bijai. For a E W(<Jl), define
L; = {i 11:::; i :::;n, l(aRi) < l(an· Let bu = LiEI". Ai and Cu = bua-1. We
also write W for W(<Jl).

2. The graph on Weyl group

A point A E E is called W-regular iff A lies in the interior of a Weyl chamber
relative to the root system <Jl.It can be shown that the point A E E is W-
regular iff D(A) =I- 0 where D(A) is the Weyl's dimension polynomial. This
enables us to define a new relation ----t on W. For a, T E W, define a ----t T iff
-cuuo +c,. is W-regular. The relation cuuo = -(b - bu)a-1 for a E W, proved
in [6],shows that a ----t a. It is shown [6]that only one of a ----t T and T ----t a
holds if a =I- To We define the graph r(W (<Jl))whose vertices are the elements
of the Weyl group W (<Jl)and for distinct a, T E W (<Jl)the unordered pair (a,

. T) is an edge iff either a ----t T or T ----t a holds. This gives a graph in the
usual sense [9]. The definition of an edge in r(W(<Jl)) shows that the graph
depends upon <Jlalso. We write r(W) or r(<Jl) for the graph r(W(<Jl)).

Let J be a subset of 1= {1,2, ... ,n}. Then the roots {aj IJ E J} give a
root system <JlJ and the group WJ generated by Rj, j E J is the Weyl group
of <JlJ' It is easy to see that W = WI' We have the following result on WJ
proved in [3].
Lemma 1. For distinct a, T E W J, the rmordered pair (a, T) is an edge
in r(W J) iff (a, T) is an edge in r(W). In particular, r(W J) is an induced
subgrspb. ofr(W).
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3. Irreducible root systems

In general, a root system ~ is a union of irreducible root systems. So first
we consider I'(~) when ~ is an irreducible root system. The irreducible root
systems are of the followingtypes: An for n 2: 1, Bn for n 2: 2, Cn for n 2: 3,
o; for n 2: 4, E6, E7, E8, F4 and G2·

If the root system is of the type X, we write r(X) for r(~). For example
r(B2) means a graph on a Weyl group whose associated root system is of the
type B2• The fact that the graph r(~) depends on the root system ~ also and
not merely on the Weyl group is best illustrated by the root systems of the
type Bn and Cn' The graphs r(Bn) and r(Cn) for n 2: 3 are distinct although
the Weyl groups W(Bn) and W(Cn) are isomorphic.

We describe briefly an interval graph. An intersection graph f2(F) for the
family F = {81, 82,... ,8m} of subsets S, of a set 8 is a graph whose vertices
are 81, 82,... ,8m and for i #- j, S, is said to be adjacent to 8j iff8i n 8j is not
a null set. An interval graph is defined to be a graph which is isomorphic to an
intersection graph f2(F) , where F is some family of intervals oh the real line [9].
One can easily replace the real line by any linearly ordered set and the intervals
on it in the definition of interval graphs in order to make it more general. In
fact, with this definition the characterization of interval graphs have been given
by Gilmore and Hoffman [11]. We do not need those characterizations in full
form. In fact, it is enough for our purpose to know that a graph G cannot be
an interval graph if it has a cycle of length 4 as an induced subgraph [9]The
interval graphs have also been studied by Boland and Lekkerkerker [10]. We
require some definitions from the graph theory. A cycle in a graph r means
any finite sequence of vertices ala2 ... ak of I'with the followingconditions:

(i) The edges (ai, aHd for 1 :::;i :::;k are in I'where ak+l = al·
(ii) For any two vertices T and p and integers i, j < k, i #- j the relation

T = ai = aj, P = aHl = aj+l or T = a, = ak, P = ai+l = al does not
hold.

A cycle ala2 ... ak is called odd or even depending on whether k is odd or even.
This definition of cycle allows the repetition of vertices i.e. all the vertices in
a cycle need not be distinct. Let ala2' .. ak be a cycle. Then the edges (ai,
aH2), 1 :::;i :::;k - 2 , (ak-1l ad and (ak' (2) are called triangular chords of
the cycle al a2 ... ak' With these definitions we have the following theorem of
Gilmore and Hoffman: A graph I' is an interval graph iff every quadrilateral
in I' has a diagonal and every odd cycle in I'", the complementary graph of I',
has a triangular chord [11].

We show that the graph I'( <1» on a Weyl group corresponding to an irre-
ducible root system <I> has a cycle of length 4 as an induced subgraph except



4 H. K. PATEL & S. G. HULSURKAR

in few cases. First we show that a cycle of length 4 occurs as an induced sub-
graph in the graphs r(~), r(B3), r(C3) , r(D4) and r(Gz). Next we show
that for an irreducible root system <P the graph r(<p), when <P is not a root
system of type AI, Az, A3 and Bz, has one of the graphs f(A4), r(B3), r(C3),
r(D4) and r(Gz) as an induced subgraph, Before going into the details of the
method we describe briefly the graph I'( <I» on a Weyl group for root systems
<P of low orders. The graphs r(A1) and r(Az) are totally disconnected and
have 2 and 6 vertices respectively. The graph r(A3) has 24 vertices in which
8 are isolated and has 8 disjoint edges. The graph r(Bz) has 8 vertices with 4
disjoint edges. This leaves the following graphs on Weyl groups corresponding
to an irreducible root system:

r(An) for n 2: 4, r(Bn) for n 2: 3, r(Cn) for n 2: 3, }
r(Dn) for n 2: 4, r(E6) , r(E7),

r(Es) , r(F4) , r(Gz).

According to the method described before, now we prove the following.

Proposition. The graphs r(A4), r(B3), r(C3), r(D4) and r(Gz) are not
interval graphs.
Proof. We show that each of the graphs in the statement has a cycle of length 4
as an induced subgraph. In each case we display the 4 elements of the relevant
group which gives a cycle of length 4 as an induced subgraph. We give a table
displaying the elements 0 of a Weyl group along with t:u and t:uuo' It is easy
to verify that D( -t:uuo + t:r) is zero or not for a given pair of elements 0, T

in this table. The elements of the Weyl group are of the form Ri1 Ri2 ••• ~k

and for convenience we write this as i1iz··· ik. For example we write 2312 for
RzRJR1Rz. The identity element of a Weyl group is written as id.
(i) The graph r(A4) has 120 vertices and 180 edges. For A E E we have
A = XA1 + yAz + ZA3 + tA4 and the Weyl's dimension polynomial D(A) in this
case is ¢(x,y,z,t) where

¢(1,1,1,1)

¢(x, y, z, t) = xyzt(x + y)(y + z)(z + t)(x + y + z)(y + z + t)(x + Y + z + t).

The four elements 01, O'z, 0'3 and 04 which give the edges (01, O'z), (O'z, 0'3),
(03, 0'4) and (04, od making a cycle of length 4 as an inducedsubgraph are
listed below. We conclude that r(A4) is not an interval graph.

S. No. 0 t:u t:uuo
1 0'1= id 0 -AI - AZ - A3 - A4
2 O'z= 324 Al + AZ - 2A3 + A4 -AI - AZ + A3 - A4
3 0'3 = 4321 -A4 -AI - AZ - A3 + 3A4
4 0'4 = 14232 -2A1 + AZ + A3 - 2A4 Al - AZ - A3 + A4
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(ii) The graph r(B3) has 48 vertices and 100 edges. For>. E E, >. = X>'l +
y>'2+Z>'3 and the Weyl's dimension polynomial D(>') is given by: ~:1:~)where

4>(x,y, z) = xyz(x + y)(y + z)(2y + z)(x + y + z)(x + 2y + z)(2x + 2y + z).

The four elements all a2, a3 and a4 which give the edges (aI, (2), (a2' (3),
(a3' (14) and (<14, (11) making a cycle of length 4 are listed below. This cycle is
also an induced subgraph. It shows that r(B3) is not an interval graph.

S. No. a C(7 C(7(70

1 a1= id 0 ->'1 - ),2 - >'3
2 <12= 321 >'2 - 2>'3 - >'1 - 2),2 + 3),3
3 <13 = 2323 3>'1 - >'2 - >'3 ->'1
4 <14 = 213 ),1 - 2>'2 + 3>'3 ->'1 + >'2 - 2>'3

(iii) The graph r(C3) has 48 vertices and 96 edges. For>. E E, >.= X),l +Y>'2 +
Z>'3 and the Weyl's dimension polynomial D(>') is given by : ~:1:~where

4> = xyz(x + y)(y + z)(y + 2z)(x + y + z)(x + y + 2z)(x + 2y + 2z).

We give below the 4 elements <111a2, a3 and <14which make a cycle of length
4 whose edges are (aI, (12), (<12, (13), (<13, (14) and (<14, (1) and which is also an
induced subgraph of r(C3)' This proves that r(C3) is not an interval graph ..

S. No. a C(7 C(7(70

1 <11= id 0 ->'1 - >'2 - >'3
2 <12= 2132 >'1 - 2>'2 + >'3 -2>'1 + 3>'2 - 2),3
3 <13 = 1231213 ->'1 - 2>'2 + >'3 >'1 + >'2 - ),3
4 <14 = 1232 -2),1 - ),2 3>'1 - >'2 - >'3

(iv) The graph r(D4) has 192 vertices and 624 edges. For>. E E, >.= X),l +
y>'2 +Z>'3 +t),4 and the Weyl's dimension polynomial D(>.) is given by :(~:r:;:~.
where

4>(x,y, z, t) =

xyzt(x+y)(y+z)(y+t)(x+y+z)(x+y+t)(y+z+t)(x+y+z+t)(x+2y+z+t).

The required 4 elements <11, a2, <13 and <14 are listed below. These give an
induced subgraph of r(D4) which is a cycle of length 4 with edges (<11, (12),
(<12, (13), (<13, (4) and (<14, (11)' This shows that I'(D4) is not an interval graph.
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S. No. a Cq Cqqo

1 a1= id 0 -.A1 - .A2- .A3- .A4
2 a2= 24312 .A1- 2.A2+ .A3+ .A4 -2.A1 + 3.A2 - 2.A3 2.A4
3 a3 = 324312134 .A1- 2.A2 - .A3+ .A4 -.A1 +.A2 +.A3 - .A4
4 a4 = 32412 .A2- 2.A3 -.A1 - .A2+ 3.Aa - .A4

(v) The graph r(G2) has 12 vertices and 12 edges. For .AE E, .A= X.A1 + y.A2
and the Weyl's dimension polynomial D(.A) is given by :~~:t?where

¢ = xy(x + y)(x + 2y)(x + 3y)(2x + 3y).

We list below 4 elements a1, a2, a3 and a4. These elements give a cycle of
length 4 with edges (a1' (2), (a2' (3), (a3' (4) and (a4' ad which is also an
induced subgraph of r(G2).

S. No. a Cq Cqqo

1 a1= id 0 -.A1 - .A2
2 a2= 121 -2.A1 +>'2 3.A1 - 2.A2
3 a3 = 121212 ->'1 - .A2 0
4 a4 = 212 3.A1 - 2>'2 -2.A1 + .A2

Therefore we conclude that r(G2) is not an interval graph. ~
We now come to our main result. I

Theorem 1. Let ~ be an irreducible root system. The only graphs I'(~) on
the Weyl groups which are interval graphs are r(A1), r(A2), r(A3) and r(B2).

Proof. Recall that the graphs r(Ad, r(A2), r(A3) and r(B2) have the con-
nected components as isolated vertices and disjoint edges. An isolated vertex
and a disjoint edge are the interval graphs of a single interval and two inter-
secting intervals on a real line respectively. Therefore, the union of appropriate
number of disjoint single intrevals and two intersecting intervals on a real line
gives the graphs on r(A1), r(A2), r(A3) and r(B2). This proves that these
graphs are interval graphs.

Next we show that the remaining graphs on Weyl groups, which are precisely
those listed in (*), are not interval graphs. Our method of proof is to show that
each of the graphs in (*) has one of the graphs r(A4), r(B3), r(C3) , r(D4)

and r(G2) as an induced subgraph. Then by Lemma 1, and the proposition it
follows that the graphs in (*) are not interval. graphs. For each of the graph
in (*) we exhibit a proper choice of J so that r(W J) is one of the graphs in
the proposition. For the explicit choice of J we refer to the Dynkin diagrams
of the irreducible root system given in [9, p. 58]. For the graph r(An) for
n ~ 4 choose J = {I, 2, 3, 4} to get r(~) as an induced subgraph. In the case
of r(Bn) for n ~ 3 and r(F4) choose J = {n - 2,n - 1,n} and J = {I, 2, 3}
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respectively to get an induced subgraph r(B3). The graph r(C3) is an induced
subgraph of r(Cn) for n 2: 3 with J = {n - 2,n -l,n}. The graphs r(Dn)

for n 2: 4, r(E6), r(E7) and r(Ea) have r(D4) as an induced subgraph with
J = {n - 3,n - 2,n - 1,n} for r(Dn) and J = {2,3,4,5} for the rest. The
graph r(G2) is not an interval graph by the proposition. This complete the
proof. l!f

4. Arbitrary root systems

Let ~ be a root system. If ~ is not irreducible then it is a union of irreducible
root systems. It is known that the Dynkin diagram of ~ is connected iff ~ is
irreducible root system. If ~ is reducible and is union of irreducible root systems
~1, ~2, .•• ,~k then the connected components of the Dynkin diagram of ~
are precisely the Dynkin diagram of each irreducible component ~i of~. The
Dynkin diagram also determines the Weyl group uniquely. The Weyl group
W(~) is the direct product of the Weyl groups W(~i), i = 1,2, ... ,k. If any
one of the root system ~i is of the type given in (*) then the graph I'(~) cannot
be an interval graph by Lemma 1. Therefore we can assume that ~ is a union of
the root systems of the type AI, A2, A3 and B2 where repetitions are allowed.
We require some results to analyze such a root system~. Suppose ~ is a union
of two root systems ~1 and ~2 which are not necessarily irreducible. In this
case we write ~ = ~1 X ~2 and if ~1 = ~2 then ~ = (~1)2. The Weyl group W
of ~ is the direct product of the Weyl groups WI and W2 of the root systems
~1 and ~2 respectively. Since W = WI X W2 (direct product), every element
pEW can be written uniquely as p = (17 with CT E WI and 7 E W2. Also
Ip = Iu U IT" (disjoint union) and cp = Cu EBCr (direct sum). This shows that
Cur = Cu EBC7" for CT E WI and 7 E W2. If 8, 81 and 82 are the fundamental
weights of the root systems ~, ~1 and ~2 respectively then 8 = 81 EB82, It is
easy to see that if CTo, CT~ and CT~ are the unique elements of maximal length in
W, WI and W2 respectively then CTo = CT~CT~. Similar relations hold if ~ is a
union of more than two root systems.

With above notations we prove the following results.

Lemma 2. Let CT1, CT2 E WI and 71, 72 E W2' The relations CT1 ---+ CT2 in WI

and 71 ---+ 72 in W2 hold iff CT171 ---+ CT272 in W = WI X W2 holds. If (11 ---+ (12

in WI with CT1 =f (12 and 71 ---+ 72 in W2 with 71 =f 72 then (1172 -,to> (1271 and
CT271 -,to> (1172 in W.

Proof. For the first part of the statement see [5]. The proof for the second is
by contradiction. Suppose (1172 ---+ (1271. The result in the first part implies
that CT1 ---+ CT2 in WI and 72 ---+ 71 in W2. But by assumption 71 ---+ 72 in
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W2. But both Tl ---t T2 and T2 ---t Tl in W2 cannot be true [6]. Therefore
al T2 --+t a2Tl' Similarely aZTl --+t al T2 can be proved. ~

Remark. The lemma can be generalized when W = WI X W2 X ••. X Wk.

Lenuna 3. Let (aI, a2) be an edge in r(Wdand (Tl' T2) be an edge in r(W2)'
Then the induced subgraph for the 4 vertices aiTj, i, j = 1,2, in r(WI x W2)
is a quadrilateral with a diagonal. More precisely, if al ---t a2 in WI and
Tl ---t T2 in W2 then following are the only edges joining the vertices aiTj,
i, j = 1,2 in r(WI x W2): (alT1, a2T1), (a1 T2, a2T2), (a1Tl, a1T2), (a2T1' a2T2)
and (alT1, a2T2)'
Proof. If W is any Weyl group then for a E W we always have a ---t a [6].
Therefore, ai ---t a, for i = 1,2 in WI and Ti ---t Ti for i = 1,2 in W2. The
result follows by applying Lemma 2 to al ---t a2 in WI' T1 ---t T2 in W2 and
to a, ---t ai for i = 1,2 in WI and Ti ---t Ti for i = 1,2 in W2. ~

In a graph I', we shall call a vertex isolated if it is not adjacent to any other
vertex and an edge disjoint if it is not adjacent to any other edge. With these
definitions we prove the following.

Lenuna 4. Let a E WI and T E W2. Then a and T are isolated vertices in
r(Wd and r(W2) respectively iff o-r is an isolated vertex in r(Wl x W2).

Proof. We show that if neither a is an isolated, vertex in r(Wd nor T is an
isolated vertex in r(W2) then or is not an isolated vertex in r(Wl x W2).
Suppose a is not an isolated vertex in r(W1). Then for some al E WI, (a,
a1) is an edge in r(Wl). By Lemma 2, (aT, a1T) is an edge in r(Wl x W2) as
a ---t a1 in WI. This shows that o-r is not an isolated vertex. Same result can
be proved if we assume that T is not an isolated vertex in r(W2).

Conversely, suppose aT is not an isolated vertex in r(Wl x W2). Then for
some p E WI X W2, P 1: o-r, the unordered pair (aT, p) is an edge in r(Wl x W2).
Now p E WI X W2 implies that p = a1T1 for unique a1 E WI and T1 E W2.
Therefore, (aT, a1 T1) is an edge in r(Wl x W2) and this gives ar ---t a1 T1
which in turn gives a ---t a1 in WI and T ---t T1 in W2. Since p = a1T1 f:. ar ,
we must have either a f= a1 or T 1: T1. Therefore, either a ---t a1 with a 1: a1
or T ---t T1 with T 1:T1· We conclude that either (a, ad is an edge in r(Wd or
(T, ri) is an edge in r(W2). This shows that either a is not an isolated vertex
in r(W1) or T is not an isolated vertex in r(W2). ~

Corollary. The graphs r(W1) and r(W2) are totally disconnected if and only
ifr(Wl x W2) is totally disconnected.

Remark. This corollary has obvious generalization to the direct product of
more than two Weyl groups.

Next we need a result proved in [3] which is stated below.
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Lemma 5. lfr(W1) is totally disconnected and r(W2) is any graph on a Weyl
group W2 then r(W1 x W2) consists of IW11 number of disjoint copies of the
graph r(W2)'

The following result will be required in the proof of our main result.
Lemma 6. Suppose the graphs r(W1) and r(W2) are such that their connected
components are isolated vertices or disjoint edges or both. Then the graph
r(W1 x W2) is an interval graph.
Proof. We have shown in Lemma 4, that if a E WI and T E W2 are isolated
vertices in f(Wr) and r(W2) then a r is an isolated vertex in r(W1 x W2).

Next we prove that an isolated vertex a E WI in r(W1) and a disjoint edge
(Tl, T2) in r(W2) for Tl, 72 E W2 gives a disjoint edge (aTI, aT2) in r(W1 x W2).
Suppose (aTl' aT2) is not a disjoint edge in r(W1 x W2). Then either for some
p =f. aT2, the pair (aTl' p) or for p =f. aTl the pair (a72' p) is an edge in
r(W1 x W2). Suppose (aTI, p) with p =f. a72 is an edge in r(W1 X W2). This
gives p E WI X W2 and p = al T3 with unique al E WI and T3 E W2 and p =f. aTl
and p =f. aT2 i.e. a71 =f. al T3 and aT2 =f. al T3. The last part shows that either
a =f. al or Tl =f. T3 and T2 =f. T3· If (aTl' alT3) is an edge in r(WI x W2) then
aTl ---+ alT3. By Lemma 2, a ---+ al and Tl ---+ T3' Therefore, if a =f. al then
(a, ar) is an edge in r(W1) and if Tl =f. T3 then (TI, T3) where T3 =f. T2 is an
edge in r(W2). This shows that either a is not an isolated vertex or (Tl' T2)
is not a disjoint edge. A contradiction. Similar contradiction is arrived at if
(aT2' p) with p =f. aTI is an edge in r(W1 x W2). We conclude that (aTl, aT2)
is a disjoint edge in r(W1 x W2).

Next suppose (aI, (2) and (Tl' T2) are disjoint edges in r(W1) and r(W2)
respectively. Lemma 3 shows that the 4 vertices aiTj, i, j = 1,2 in r(W1 x W2)
give a quadrilateral with a diagonal. Again we can show that this quadrilateral
with a diagonal is a connected component of the graph r(W1 x W2) by the
arguments similar to those used in the previous paragraph.

This shows that a connected component of the graph r(WI x W2) is either
a vertex or an edge or else a quadrilateral with a diagonal. The first two are
interval graphs where we can take a single interval or two intersecting intervals
on the real line. For the last one take intervals as given below: let Xl, X2, ... ,Xs

be real number with Xl < X2 < X3< X4 < X5 <X6 < X7 < Xs and a = [X3, X7],

b = [X5' xs], C = [X2' X6] and d = [Xl, X4] be the 4 intervals. These give
a quadrilateral abed with diagonal ac. This proves that r(WI x W2) is an
interval graph. ~

Lemma 7. Let <P1l<P2and <P3be root systems such that each ofr(<PI), r(<P2)

and r(<P3) has at least one edge. Then r(<PI x <P2x <P3) is not an interval
graph.
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Proof. Let w, = W(~i)' i = 1,2,3. Suppose 0"1, 0"2 E WI; T1, T2 E W2;
PI, P2 E W3 and (0"1,0"2), (T1, T2) and (PI, P2) are edges in r(~l), r(~2)
and r(~3) respectively. Therefore, we also have 0"1 ~ 0"2 in WI, T1 ~
T2 in W2 and PI ~ P2 in W3. If W = W(~l X ~2 X ~3) then the 8
elements O"iTjPk, i, j, k = 1,2 are in W. Put 0"1T1P1 = 0, 0"2T1P1 = a,
0"1T2P1 = b, 0"1T1P2 = e, 0"2T2P1 = d, 0"1T2P2 = e, 0"2T1P2 = I, 0"2T2P2 = g.
By the repeated application of the Lemma 2 to the edges (0"1, 0"2), (T1, T2)
and (PI, P2) we get the following 19 edges in r(W) i.e., r(~1 x ~2 x ~3):
oa, ob, oc, 00, 00, of, og, ee, be, c], a], eg, dg, bd, eg, bg, ad, fg and ago The
induced subgraph I'1 of these 8 vertices 0, a, b, e, d, e, f and 9 in r(W) is
shown in Figure 1.

e d

b e

a I

o 9

FIGURE 1. The graph r..

It is easy to see that every quadrilateral in r1 has a diagonal. In any case, we
consider the graph I'[, the complementary graph of I'1, shown in Figure 2.

The graph ri has an odd cycle a = eabfbcdca which has no triangular chord.
The cycle a is also an odd cycle with no triangular chord in rC(W) as r1 is an
induced subgraph of r(W). Therefore, by the theorem of Gilmore and Hoffman
[11] the graph r(W) i.e. r(~l x ~2 x ~3) is not an interval graph. ~
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d

e f
FIGURE 2. The graph f~.

Theorem 2. Let q> be allYroot system. The graph I'( 4» is an interval graph
iff 4> is equal to 4>1 or 4>2 or else 4>1 x 4>2 where 4>1 is a root system of type
(A1)k1 x (A2)k2 where k}, k2 are nonnegative integers with at least one of k1,

k2 nonzero, and 4>2 is anyone of the following root systems: A3, B2, A3 X A3,
A3 X B2 and B2 x B2.
Proof. The graphs r(A1) and r(A2) are totally disconnected. By Lemma 4, the
graph r(A~l x A~2) is also totally disconnected. Therefore r(4)l) is an interv-al
graph as an isolated vertex can be obtained by a single interval on a real line.
As mentioned earlier we have shown that r(A3) and r(B2) are interval graphs.
The connected components of the graphs r(A3) and r(B2) are isolated vertices
and disjoint edges. Therefore by Lemma 6, the graphs r(A3 x A3), r(A3 x B2)
and r(B2 x B2) are interval graphs. This shows that r(4)2) is an interval graph.
Next, the graph r(4)I) is totally disconnected and hence by Lemma 5 the graph
r(4)1 x 4>2) has !W(4)I)1 number of disjoint copies of the graph r(4)2)' Here
!W(4)I)1 is the number of elements in W(4)l) i.e, number of vertices in r(4)I)'
This shows that the graph f(4)l x 4>2) is an interval graph as r(4)2) is an
interval graph.

Next we prove the converse. The Theorem 1 shows that if 4> contains any
root system given in (*), then I'( 4» is not an interval graph by Lemma 1.
Suppose 4> does not contain any of the root systems given in (*) and 4>2. Then
4> is union of at least 3 root systems of type A3 and B2 with repetitions. Since
f(A3) and r(B2) are not totally disconnected, by Lemma 7 the graph r(4)) is
not an interval graph. ~
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