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ABSTRACT 

MIMO Active Vibration Control of Magnetically Suspended Flywheels for Satellite 

IPAC Service. (May 2008) 

Junyoung Park, 

 B.S., Kyung Hee University, South Korea; 

 M.S., University of Southern California 

Chair of Advisory Committee: Dr. Alan B. Palazzolo 

 

    Theory and simulation results have demonstrated that four, variable speed flywheels 

could potentially provide the energy storage and attitude control functions of existing 

batteries and control moment gyros (CMGs) on a satellite. Past modeling and control 

algorithms were based on the assumption of rigidity in the flywheel’s bearings and the 

satellite structure.  

    This dissertation provides simulation results and theory which eliminates this 

assumption utilizing control algorithms for active vibration control (AVC), flywheel 

shaft levitation and integrated power transfer and attitude control (IPAC) that are 

effective even with low stiffness active magnetic bearings (AMB), and flexible satellite 

appendages.  

    The flywheel AVC and levitation tasks are provided by a multi input multi output 

(MIMO) control law that enhances stability by reducing the dependence of the forward 

and backward gyroscopic poles with changes in flywheel speed.  

    The control law is shown to be effective even for (1) Large polar to transverse 
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inertia ratios which increases the stored energy density while causing the poles to 

become more speed dependent and, (2) Low bandwidth controllers shaped to suppress 

high frequency noise. These two main tasks could be successfully achieved by MIMO 

(Gyroscopic) control algorithm, which is unique approach. 

    The vibration control mass (VCM) is designed to reduce the vibrations of flexible 

appendages of the satellite. During IPAC maneuver, the oscillation of flywheel spin 

speeds, torque motions and satellite appendages are significantly reduced compared 

without VCM. Several different properties are demonstrated to obtain optimal VCM. 

    Notch, band-pass and low-pass filters are implemented in the AMB system to 

reduce and cancel high frequency, dynamic bearing forces and motor torques due to 

flywheel mass imbalance. The transmitted forces and torques to satellite are 

considerably decreased in the present of both notch and band-pass filter stages. 

    Successful IPAC simulation results are presented with a 12 [%] of initial attitude 

error, large polar to transverse inertia ratio (IP / IT), structural flexibility and unbalance 

mass disturbance. 

    Two variable speed control moment gyros (VSCMGs) are utilized to demonstrate 

simultaneous attitude control and power transfer instead of using four standard pyramid 

configurations. Launching weights including payload and costs can be significantly 

reduced. 
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CHAPTER I 

 INTRODUCTION  

1.1 Overview 

    Satellite weight and cost reduction goals may benefit from Satellite Integrated 

Power and Attitude Control (IPAC). This will be accomplished by replacing the present 

energy storage system (electrochemical batteries) and attitude control torque actuator 

(control moment gyros) with an array of 4 high performance and speed flywheels [1]. 

Successful implementation of IPAC requires a control approach that uncouples the 

attitude control and power transfer functions so as to avoid unplanned motion actuation 

due to power transfer and unplanned power transfer due to satellite motion actuation. 

This separation of functions can be realized by utilizing attitude control torques obtained 

from the range space of underdetermined system and power transfer torques from the 

orthogonal null space [1, 2]. 

    The prior IPAC literatures focused on control algorithm development which 

assumed that the satellite structure (no flexible appendage model), flywheel shafts and 

flywheel bearings were all rigid and that the flywheels were perfectly mass balanced to 

ignore the mass imbalance sinusoidal disturbance which occurs at the spin speeds of the 

flywheels. Even though, the flywheels are manufactured delicately, the imbalance still 

exists on it. This approach further simplified the problem by assuming that the motions  

______________ 

This dissertation follows the style and format of the ASME Journal of Dynamic 

Systems, Measurement and Control. 
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of each flywheel could be adequately modeled with a single degree of freedom per 

flywheel (executing only spin motion). 

    The high speed, longevity, contamination and loss requirements for these flywheels 

mandate that magnetic bearings (MB) be utilized for suspension of the spinning rotor. 

The magnetic bearings have many advantages over the traditional bearings such as no 

contact between the shaft and stator, no lubrication, high spin speed operation, and 

adjustable equivalent damping and stiffness, which are functions of controller 

parameters [3]. The stiffness and damping of the magnetic bearings may be conveniently 

adjusted through gain changes in their feedback control electronics. 

    In contrast to the assumptions employed in prior IPAC publications, the bearing 

stiffness is intentionally set at a low value to yield high frequency force isolation 

between the satellite and the spinning shafts. Also, the transmitted forces and torques 

could be significantly diminished by employing several filter stages in the magnetic 

bearing feedback control loop. The versatility and low loss benefits of the magnetic 

bearings are gained only by incorporating sophisticated control algorithms to reject shaft 

and satellite borne disturbances while maintaining stable control. 

    The MB control task is made complicated by the presence of speed dependent poles 

that result from gyroscopic moments of the spinning, vibrating shafts. The effect of 

speed dependent poles is magnified as an increased energy density demand on the 

flywheel is met by increasing the ratio (IP / IT), of the polar to transverse mass moments 

of inertia of the spinning rotors. These poles typically bifurcate from their zero speed 

values into a forward and a backward whirling pole pair, where the direction of vibration 



 3 

whirl is forward (backward) for whirl in the direction (opposite) of spin.  

    The rigid body gyroscopic poles asymptotically approach 0 [Hz] (backward pole) 

and (IP / IT) times spin frequency (forward pole) producing a very low frequency pole 

and a very high frequency pole for IP / IT > 1. The strength of gyroscopic moment 

depends on the ratio (IP / IT), which becomes larger as the rotor is pancake shape rather 

than cylindrical one. This complicates the control task since increased active damping 

(derivative gain) is ineffective at low frequencies and causes noise amplification at high 

frequency. Also, the high frequency pole (forward conical mode) results in voltage 

saturation in the power amplifier. It with frequency increases with spin speed so 

requiring phase lead, more derivative gain, larger currents at high speed, and finally the 

coil voltage in the power amplifier would be saturated. 

    Effective MB control then requires a shift in strategy from providing phase lead by 

derivative gain changes to canceling gyroscopic torques utilizing a multiple input-

multiple output (MIMO) control approach. The gyroscopic torque cancellation strategy 

requires that control “pitch” torques be applied to the rotor in one plane that are 

proportional to the shaft “yaw” angular motions in the quadrature plane. Hence the shaft 

motions that are sensed near to the MB’s could be converted into coordinates that 

approximately describe the translation of the shaft’s mass center and rigid body rotations 

about it (“CG” coordinates). These form the inputs to the MIMO control algorithm. The 

outputs of the control algorithm are CG force and torque commands that are converted to 

force commands at the MB’s in both planes. The relationship between “CG” and “MB” 

coordinates is presented in the Chapter IV. 
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    From this discussion it is apparent that significant technical detail, as presented in 

this paper, is required to apply the general algorithms for IPAC that appear in the 

literature to actual satellite systems. 

    The demand of maintaining a jitter free environment on the spacecraft inspired a 

novel contribution for utilizing band-pass filters that track flywheel spin speed to assist 

in canceling shaking forces caused by the imbalanced spinning flywheel shafts at their 

spin frequencies. The source of this force is that all magnetic bearings possess a passive 

negative stiffness making them open-loop unstable. The orbit (vibration) motion of the 

shaft section in the magnetic bearing combines with the negative stiffness to produce a 

shaking force (transmitted force) on the satellite at the shaft spin frequency. The tracked 

vibration component is inverted and routed through a gain stage to produce a signal for 

nulling the negative stiffness induced shaking forces.  

    The flexible appendage models are utilized to introduce low frequency modes into 

the plant as suggested to the authors by satellite design engineers. These may represent 

solar panels or other mission related equipment. For sake of simplicity, the appendages 

are modeled as uniform beams with very low values of equivalent Young’s modulus to 

produce low frequency and lightly damped modes. Vibrations of the appendages during 

an attitude control and power tracking cause low frequency, small amplitude oscillations 

in the power transferred into or out of the flywheel array. These vibrations and the 

ensuing oscillations are significantly attenuated by attachment of a “Vibration Control 

Mass (VCM)” at the free end of both appendages. The optimal stiffness and damping of 

the VCM are obtained with a simplified assumed modes model of the appendages. 
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    The following sections attempt to answer questions posed by satellite design 

engineers related to implementing IPAC: (1) Is satellite IPAC effective with structural 

flexibility included in the bearings, flywheel shaft and appendages, (2) Is it possible to 

stabilize all eigenvalues related to the flywheel-MB system in the IPAC system of (1), 

and (3) Can low frequency appendage mode interference of IPACS be passively 

suppressed. 

   Two variable speed control moment of gyros are presented to show simultaneous 

attitude control and power transfer functions without interfering each other. The 

dynamics and control laws of four standard pyramid configuration VSCMGs are 

developed in the literature [4] and simultaneous attitude control and power tracking are 

performed in [5] with four VSCMGs case. However, only two VSCMGs are utilized to 

demonstrate successful IPAC service in this research. 

1.2 Literature Review 

    Utilizing flywheels for energy storage on satellites was suggested as early as 1961 

in the Roes paper [6]. Sindlinger [7] and Brunet [8] discussed the advantages of the MB 

suspension of a flywheel for attitude control and energy storage. Flatly [9] employed a 

tetrahedral array of four momentum wheels to consider the issues associated with 

applying wheel control torques for simultaneous attitude control and energy storage. 

    Tsiotras [10] introduced a logarithmic term for a kinematical parameter in the 

Lyapunov function that makes the controller corresponding to this parameter become 

linear. Schaub et al [11] presented a nonlinear feedforward / feedback controller for a 

prototype for large three dimensional rotational satellite maneuver and the actual closed 
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–loop controller and estimator matched very well with the dynamics predicted in the 

feedback gain selection. This strategy for choosing flywheel motor feedback gains in this 

paper was reference in the Chapter III and also Landmark-tracking spacecraft, Near-

minimum time and near-minimum fuel reference control torques were utilized in the 

Chapter III. Tsiotras et al [1] presented a control law for an integrated power and attitude 

control system for a rigid satellite with momentum wheels/reaction wheels. Y. Kim [2] 

outlined implementation of IPAC for a rigid structural satellite with SISO magnetic 

bearing control system. 

    Okada et al [12] utilized a proportional, cross feedback control to stabilize a high-

speed rotor supported on magnetic bearings. Ahrens et al [13]
 
also verified that the 

cross-feedback control leads to better system performance and improved stability for a 

flywheel-AMB energy storage system with strong gyroscopic coupling moments. U. Na 

et al [14] presented algorithms for fault-tolerant control of heteropolar magnetic 

bearings. Raoul Herzog et al [15] proposed a generalized narrow-band notch filter which 

is inserted into the multivariable feedback without destabilizing the closed loop and has 

advantages in terms of runtime complexity and analytical verification of closed loop 

stability. 

    Sanjay P. Bhat et al [16] showed that a continuous dynamical system on a state 

space that has the structure of a vector bundle on a compact manifold possess no 

globally asymptotically stable equilibrium and they explained how attitude stabilizing 

controllers appearing in the literature lead to unwinding instead of global asymptotic 

stability. S. Parman and H. Koguchi [17] presented a three-dimensional rest-to-rest 
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attitude control of a flexible spacecraft equipped with on-off reaction jets, utilizing finite 

elements for modeling of flexible solar panels and with a Lagrangian formulation for the 

equations of motion. They applied time-optimal and fuel-efficient input shapers to 

reduce the residual oscillation of its motion at several natural frequencies in order to get 

an expected pointing precision of the satellite. 

    Magnetic bearing supported flywheels for energy storage and satellite attitude 

systems [2, 18, 19, 20, 21, 22] appear in many publications, but without reference to 

MIMO (GYRO) control for higher polar to transverse inertia ratio stability or to 

utilization of band-pass filters for removing transmitted forces induced by the magnetic 

bearing position stiffness. 

    NASA related flywheel R&D includes the pioneering work of Kirk et.al [23, 24, 25, 

26] for improving energy density and for incorporating magnetic bearings. The work of 

Kenny, B. et. al. [27] integrated sensorless field oriented motor control which was 

successfully demonstrated at 60,000 rpm on a NASA flywheel.  Christopher and Beach 

provide a comprehensive overview of the NASA Glenn flywheel program in [28]. 

   The dynamics and control laws of four standard pyramid configuration variable 

speed control moment gyros are developed in [4]. Variable speed control moment gyros 

(VSCMGs) combines the advantages of the single gimbal control moment gyro (CMG) 

and reaction wheel (RW).It has rotation speed of RW and precession rate of CMG. Two 

different control steering laws (velocity based and acceleration based steering laws) are 

developed from the Lyapunov stability approach and compared simulation results with 

classical control moment gyro. The weighting matrix is utilized to obtain minimum norm 
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solution (required torque) to achieve MRP attitude and angular velocity error regulation 

problem. The simultaneous attitude control and energy storage using four standard 

pyramid configuration VSCMGs were presented in [5]. In this literature, they used Euler 

parameters for attitude kinematics instead of Modified Rodrigues Parameter shown [4]. 

The attitude control torque and power tracking torque are obtained from the range space 

and the null space of dynamic matrix which is not N by N matrix and the velocity based 

steering control law was employ to achieve given tasks. 

    The present research demonstrates the effectiveness of a cross coupled, MIMO and 

AMB control approach for providing rotor-dynamic stability and vibration suppression 

during a simulated IPAC maneuver with flywheel bearing and satellite flexibility 

included in the model. The term cross coupled control signifies application of control 

torques in one plane, i.e.) x-y, due to angular motion in the quadrature plane, i.e.) x-z. 

This mimics the action of a gyroscopic torque which acts in one plane and is 

proportional the angular velocity in the quadrature plane. The MIMO control 

implements a strategy of gyroscopic torque cancellation, which reduces the dependence 

of the forward and backward conical mode poles on spin speed. This simplifies the 

control law by reducing its dependence on spin speed and reduces high frequency noise 

amplification by lowering the frequency of the forward conical mode, and in turn 

lowering the level of required derivative gain.  



 9 

1.3 Contributions 

    This presented research contains the following unique contributions; 

(1) Significant extension of prior IPAC simulation implementations to include 

flexible shafts and satellite appendages along with MB suspended flywheel 

system. The flexibility of flywheel shafts and satellite appendages are 

considered for shaft higher mode and satellite solar panel model utilized by 

finite element analysis. 

(2) Novel approach to isolate satellite imbalance forces from flywheels. Band pass 

filter stage is employed to diminish satellite transmitted forces due to residual 

forces created from flywheel relative displacement and position stiffness. 

(3) Application of MIMO (GYRO) control algorithm for higher energy density 

flywheel (higher ratio of moment of inertia, IP / IT) including nonlinearity of 

MB suspension component such as power amplifier saturation. 

(4) Two single gimbaled flywheels called as variable speed control moment gyro 

(VSCMG) are utilized to demonstrate simultaneous attitude control and power 

transfer functions without interfering each other instead of using four standard 

pyramid configurations presented in the literature [5]. 
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CHAPTER II 

SYSTEM MODEL AND STRUCTURAL DYNAMICS* 

2.1 Overview  

    The Integrated Power and Attitude Control (IPAC) system model and structural 

dynamics including flexible flywheels and satellite appendages are developed in this 

chapter. Each coordinate system is described in the section 2.2 and dynamic differential 

equations are presented in the sections 2.3 thru 2.5. The translational and rotational 

motions of one rigid flywheel [2] are derived first to obtain flexible system model. Each 

finite element model comprised with N rigid disks has same differential form of one 

rigid flywheel model. 

    Prior IPAC system control algorithm assumed that the flywheels are mounted on the 

satellite with infinite stiffness bearings, thus contributing only spin degree of freedom 

per flywheel (spin direction). However, in reality high speed flywheels will be supported 

by magnetic bearing (MB). The MB’s compliance allows the flywheel to move with 

additional degree of freedoms relative to the satellite. Modeling of flywheel shaft 

flexibility adds even more degree of freedoms since its bending deformation provides 

relative motions in the shaft fixed frame [29]. Finite element analysis is utilized to model 

these flexible flywheel shafts and satellite appendages. The details are presented in the 

sections 2.3 thru 2.5. 

_____________ 

*Reprinted with permission from “MIMO Active Vibration Control of Magnetically 

Suspended Flywheels for Satellite IPAC Service,” Park, J., 2007, Journal of Dynamic 

Systems, Measurement and Control, Accepted, Copyright [2008] by ASME. 
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2.2 System Model Coordinates 

    The motions in the IPAC satellite model (Fig.2.1) are described based on the 

following coordinate systems: 

  (a) An inertially fixed coordinate system for the satellite’s center of mass 

              translations: ( )321
ˆ,ˆ,ˆ nnn  

     (b) Four satellite flywheel housing coordinates to indicate the very small relative 

              motions of the flywheels with respect to the satellite at their housing (stator) 

              locations: ( )3,2,1,
ˆ,ˆ,ˆ

fff hhh  

     (c) Satellite body fixed coordinates for defining the satellite’s angular velocity 

              components: ( )321
ˆ,ˆ,ˆ sss  

     (d) Four coordinate frames that precess, but do not spin, with the axisymmetric 

              flywheels. The flywheel inertias are constant in these frames, thus the frames 

              require only 2 instead of 3 angular coordinates to define the direction cosine 

              matrix for each flywheel: ( )321
ˆ,ˆ,ˆ fff  

     (e) Two satellite fixed coordinate frames are oriented along the undeformed 

              appendages. Relative motion coordinates ( )321
ˆ,ˆ,ˆ aaa  define the small deflections 

              of the appendages with respect to these coordinate axes: ( )3,2,1,
ˆ,ˆ,ˆ

aaa hhh  

Only (a) and (c) coordinate systems are shown in the Fig.2.1 due to complexity but the 

rest of coordinate systems are depicted in the Fig.6.2 on pp.59 and Fig.6.3on pp.60, 

respectively. 
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Fig. 2.1 System Model Configuration 

 

2.3 Translational Motions of Flexible Flywheel and Appendage Models  

    The translational motion for one rigid flywheel module suspended magnetic bearing 

is obtained from the coordinate configuration shown in the Fig.2.2. The detailed 

explanation of each coordinate system is presented before. The relative flywheel and 

appendage displacements respect to flywheel housing and appendage reference frame 

are expressed as yx, in the Fig.2.2. Based on this coordinate; the translational motion of 

a rigid flywheel in the flywheel housing frame [2, 29] can be expressed in equation (2.5) 

and (2.6). Each flexible flywheel and appendage model can be divided into N disks 

which have rigid body mass and inertia properties and is interconnected by flexible beam 

type finite elements. Each disk is modeled as executing 3D translational and rotational 

motion. The flexible flywheel and appendage for 2-noded, 6 degree of freedom per each 

node are modeled with 3D beam type finite elements as illustrated in the Fig.2.3. 

3n̂

1n̂

2n̂

3Ŝ  

2Ŝ  

1Ŝ  
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   Fig. 2.2 Inertial, Satellite, Housing, Flywheel and Appendage Coordinate Systems 

 

    The mass-less, elastic beam elements connect rigid disks in the flywheel shaft and 

appendage models. The equations of motion for these disks are identical to the rigid 

body equations provided in the equation (2.5) and (2.6) except for stiffness and damping 

effects from finite element model. For example, if one rigid flywheel and appendage are 

modeled as 2 rigid disks connected by a flexible beam type element, respectively. The 

translational equations of motion for each flywheel and satellite disk become equation 

(2.7) thru (2.10) which has similar form of a rigid flywheel equation of motion written in 

(2.6). 

1n̂
2n̂

3n̂

X

1̂s
2ŝ

3ŝ

af RR  ,  

1,1,
ˆ ,ˆ
af hh  

2,2,
ˆ,ˆ
af hh  

3,3,
ˆ,ˆ
af hh  

yx  ,  

11
ˆ ,ˆ af  

22
ˆ ,ˆ af  

33
ˆ ,ˆ af  

1,2,3,ˆ =isi
 : Satellite body fixed coordinates  

1,2,3,ˆ =ini
 : Inertial reference coordinates  

: Flywheel non-spinning coordinates  1,2,3,ˆ =if i
 1,2,3,ˆ

, =ih if
 : Flywheel housing coordinates  

1,2,3,ˆ =iai
 : Appendage body coordinates  

: Appendage reference coordinates  1,2,3,ˆ
, =ih ia
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Fig. 2.3 Nodal Degrees of Freedom for a 3-D Beam Type Finite Element 

 

    The nodal rotational and translational degrees of freedom of the 2-noded, 6 degree 

of freedom per node beam element in Fig.2.3 are arranged in the element displacement 

vector with the following convention 

                        T

iziyixiiiziyixiiiie zyxzyxU ]                                   [ 1,1,1,111 ++++++= θθθθθθ  (2.1) 

 

    The diagonal lumped mass matrix and stiffness matrix for the beam element are 

given in equation (2.2) and (2.3). It is important to note that equation (2.2) is shown only 

to identify the inertia associated with each DOF. The mass matrix in (2.2) is not 

multiplied times the 2
nd

 time derivative of (2.1) to obtain inertia forces, which are 

instead obtained via the full 3D nonlinear Euler equations. Equation (2.4) describes a 

proportional damping matrix [30] employed to account for the damping inherent in the 

material. 

            ( )]                                 [ 1,1,1,111,,, ++++++= ititipiiiititipiiie IIImmmIIImmmdiagM  (2.2) 

 

Node i 

Node i+1 

ziθ yiθ

xiθ

iz

iy

ix

1, +izθ
1, +iyθ

1, +ixθ

1+iz
1+iy

1+ix
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ee KC ⋅




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=

ω

ξ2
 (2.4) 

 

where 

 

e

eee
LAEa /1 =         3

32 /12 e

e

x

ee
LIEa =      2

33 /6 e

e

x

ee
LIEa =     3

24 /12 e

e

x

ee
LIEa =     

2

25 /6 e

e

x

ee
LIEa −=     

e

eee
LJGa /6 =          

e

e

x

ee
LIEa /4 27 =     

e

e

x

ee
LIEa /2 28 =  

e

e

x

ee
LIEa /4 39 =      

e

e

x

ee
LIEa /2 310 =  

 

2.3.1 Translational Equation of Motion for a Rigid Flywheel Model [29] 

 

From Fig. 2.2:  

 

f

h

nff FXm =/
&&  (2.5) 

 

( ){ } ( ) { })]([][][2][][ //

h

sfsfsffhsfffsf

h

sffhf XshshmxshmFshXXnhxm ×Ω×Ω−×Ω−=Ω×−+ &&&&&&  (2.6) 

 

2.3.2 Translational Equations of Motion for a Pair of Neighboring Rigid Disks in 

 the Flexible Flywheel and Appendage Models 

 

• i th Disk Translational Motion (Flywheel) 

 

              
( ){ }

( ) ( ){ }
, / , , ,

, , , , , ,  /

 [ ] [ ]

2 [ ]  [ ]  [ ]  

h

i f i f i i i f s f i i s i c i sh

h

i f i f f i i s i i f f i i s f i i s i f sh

m x h n X X h s F F

F m h s x m h s h s X

+ − × Ω + + =

− Ω × − Ω × Ω ×

&& &&&

&

 (2.7) 
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• i+1 th Disk Translational Motion (Flywheel) 

 

             
( ){ }

( ) ( ){ }
1, 1 1 1 1 / 1 1, 1, 1,

1, 1, 1 1, 1 1, 1 1, 1 1, 1, /

 [ ] [ ]

2 [ ]  [ ]  [ ]  

h

i f i f i i i f s f i i s i c i sh

h

i f i f f i i s i i f f i i s f i i s i f sh

m x h n X X h s F F

F m h s x m h s h s X

+ + + + + + + + +

+ + + + + + + + + + +

+ − × Ω + + =

− Ω × − Ω × Ω ×

&&&

&

 (2.8) 

• i th Disk Translational Motion (Appendage) 

 

 
( ){ }

( ) ( ){ } ][ ][ ][2

][][ 

/ ,,,,,,

,,,/,

h

saisiiasiiaaihisiiaaiai

sicisiia

h

saiiiahiai

XshshmyshmF

FFshXXnhym

×Ω×Ω−×Ω−

=++Ω×−+

&

&&&&&
 (2.9) 

 

• i+1 th Disk Translational Motion (Appendage) 

 

            
( ){ }

( ) ( ){ } ][ ][ ][2

][][ 

/,1,11,11,11,11,1,1

,1,1,11/1111,1

h

saisiiasiiaaihisiiaaiai

sicisiia

h

saiiiahiai

XshshmyshmF

FFshXXnhym

+++++++++++

+++++++++

×Ω×Ω−×Ω−

=++Ω×−+

&

&&&
 (2.10) 

 

where 

 

3,32,21,1
ˆˆˆ

fff hxhxhxx ++= ,    
3,32,21,1

ˆˆˆ
aaa hyhyhyy ++= ,    

33,22,11,
ˆˆˆ sRsRsRR ffff ++=  

33,22,11,
ˆˆˆ sRsRsRR aaaa ++= ,    

332211
ˆˆˆ nXnXnXX ++= ,    

ff

h

sf RshxX ][/ +=  

( ) ( )
fsfsfh

h

sf RshxshxX ×Ω+×Ω+= ][][/
&& ,    ( ) ( ) XnhRshxshxX ffsfsfh

h

nf
&&& ][][][/ +×Ω+×Ω+=  

( ) eesi UKF 12:1,3:1,, = ,    ( ) eesi UKF 12:1,9:7,,1 =+
 

( ) eesi UKT 12:1,6:4,, = ,    ( ) eesi UKT 12:1,12:10,,1 =+
 

( ) eeci UCF &
12:1,3:1,, = ,    ( ) eeci UCF &

12:1,9:7,,1 =+
 

( ) eeci UCT &
12:1,6:4,, = ,    ( ) eeci UCT &

12:1,12:10,,1 =+
 

 

2.4 Rotational Motion of Flexible Flywheel and Appendage Models 

    The rotational equations of motion for a rigid flywheel model are derived in a non-

spinning coordinate system [2, 29]. The flywheel angular momentum vector is given by 

(2.11) and the flywheel rotational equation of motion is obtained through differentiation 

of the angular momentum vector. 
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2.4.1 Rotational Equation of Motion for a Rigid Flywheel Model  

 

sfffff fswhereIH Ω+Ω== ][        , ωω  (2.11) 

 

                  ( ) ( )
ffnffsfffnffff THfs

dt

d
IHH

dt

d
H =×+Ω+Ω=×+= // ][ ωω&  (2.12) 

 

                           ( ) sffffffffsfff fsIIITfsII Ω−Ω+Ω−=Ω+Ω ][~~~][ ωω&&  (2.13) 

 

2.4.2 Rotational Equations of Motion for a Pair of Neighboring Rigid Disks in the 

 Flexible Flywheel and Appendage Models  

 

• i th Disk Rotational Motion (Flywheel) 

 

       ( ), , , , , , , , , , , , , , ,  [ ]      [ ]i f i f i f i i s i c i s i f i f i f i f i f i f i f i f i i sI I fs T T T I I I fsω ωΩ + Ω + + = − Ω + Ω − Ω& & %% %  (2.14) 

• i+1 th Disk Rotational Motion (Flywheel) 

 

                      
( )

1, 1, 1, 1 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1 1,

  [ ]  

    [ ]  

i f i f i f i i s i c i s

i f i f i f i f i f i f i f i f i i s

I I fs T T

T I I I fsω ω

+ + + + + + +

+ + + + + + + + + +

Ω + Ω + + =

− Ω + Ω − Ω

& &

%% %

 (2.15) 

 

• i th Disk Rotational Motion (Appendage) 

 

      ( ) siiaiaiaiaiaiaiaiaisicisiiaiaiai asIIITTTasII ,,,,,,,,,,,,,,, ][ ~~
   ~ ][  Ω−Ω+Ω−=++Ω+Ω ωω&&  (2.16) 

 

• i+1 th Disk Rotational Motion (Appendage) 

 

                    
( ) siiaiaiaiaiaiaiaiai

sicisiiaiaiai

asIIIT

TTasII

,11,1,1,1,1,1,1,1,1

,1,1,11,1,1,1

 ][ ~~
   ~

 ][  

++++++++++

+++++++

Ω−Ω+Ω−

=++Ω+Ω

ωω

&&
 (2.17) 

 

2.5 Satellite Rotational and Translational Equations of Motions   

    The satellite rotational and translational motions are described in (2.18) and (2.19) 

in the case of no external forces. These equations are basically derived from 

conservation of momentum theory. 
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2.5.1 Rotational Motion (No External Torques) 
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   
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& % & &
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 (2.18) 

 

2.5.2 Translational Motion (No External Forces) 

 

                                     
, , , ,

1 1

[ ] [ ]
n m

T T

s f i f i a j a j

i j

M X h n F h n F
= =

  
= − −   

   
∑ ∑ ∑ ∑&&  (2.19) 
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CHAPTER III 

SATELLITE IPAC MANEUVER AND FEEDBACK CONTROL* 

3.1 Overview 

    The total IPAC system has mainly two different feedback control loops shown in 

the Fig.6.1 on p.58, which are flywheel motor control and magnetic bearing position 

control. This chapter will be discussed about flywheel motor control to achieve attitude 

control and power tracking tasks and magnetic bearing control will be dealt in the next 

chapter. For flywheel motor control matters in order to obtain stable satellite maneuver, 

the Lyapunov stability approach is employed and derived as non linear state feedback 

equation. As for as IPAC achievement concerned, the flywheel spin speeds should be 

controlled in the sense of satellite attitude control and power tracking. 

    The satellite reference motion is designed by “bang-bang” control which is optimal 

control for a rigid body minimum time maneuver. The structures of the “bang-bang” 

control of a rest to rest maneuver through a principal angle are presented in this chapter. 

The details of “bang-bang” control and “bang-off-bang” control are referenced in the 

[11] for near minimum time and near minimum fuel maneuver. 

    Closed-loop error dynamics and root-locus analysis are utilized to determine proper 

flywheel motor control gains. The closed-loop error dynamics could be expressed in the 

linearized form with reasonable approximation.  

 

_____________ 

*Reprinted with permission from “MIMO Active Vibration Control of Magnetically 

Suspended Flywheels for Satellite IPAC Service,” Park, J., 2007, Journal of Dynamic 

Systems, Measurement and Control, Accepted, Copyright [2008] by ASME. 
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The torque and power distribution to each flywheel could not be determined uniquely 

because the satellite has more than 3 flywheel modules (underdamped system). The 

flywheel motor torque distribution and control gains are presented in the sections 3.3.3 

and 3.3.2, respectively. 

3.2 Satellite Reference Motion Design 

    Euler’s Principal Axis Theorem shows that a rigid body may undergo an arbitrary 

three dimensional re-orientation by rotating about a single “principal” axis. A near-

minimum-time control law for single axis, rest to rest maneuver of a rigid body has the 

form [31].  

                                               ( )tttfuuI f   ,  ,        max ∆±==θ&&  (3.1) 
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where 
maxu and θ&&  are one-dimensional quantities measured along the principal axis of 

rotation. 

 

Integration of (3.1) yields 

 

                                                   ( ) ( )∫ ∆+=
t

t
f dttf

I

u
t

0

,,max
0 ττθθ &&  (3.3) 



 21 

 

                                    ( ) ( ) ( )∫ ∫ ∆+−+=
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For rest-to-rest maneuver, we impose the boundary conditions 

 

                                         At time 00 =t :   ( ) ( ) 00    ,00 00 ==== θθθθ &&  (3.5) 

 

                                         At time
ft :   ( ) ( ) 0    , === ffff tt θθθθ &&  (3.6) 

 

and upon carrying out the integrations implies in equation (3.3) and (3.4). We obtain the 

useful relationship. 
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Let 
I

u
A max~

=  in the equation (3.3) and (3.4). Plug (3.7) into A
~

, then we obtain followings 
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The above equations (3.1), (3.3) and (3.4) can be expressed by (3.9) after plugged in; 
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 If Euler’s principle axis of rotation is determined as l, then the corresponding angular 

velocity, angular acceleration and Modified Rodrigues Parameters (MRP) are given by 
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The satellite reference motions such as angular acceleration, angular velocity, and  

Modified Rodrigues Parameter ( )srsrsr σ,,ΩΩ&  can be obtained from (3.1) thru (3.10).  

3.3 Flywheel Speed Control for IPAC  

    System control includes both position control for each of the magnetically supported 

flywheels and control of the flywheel speeds for actuation and power transfer in IPAC 

service. This section contains the analysis for the IPAC control law which consists of a 

nonlinear, state feedback, asymptotic stable [16], tracking control law derived with a 

Lyapunov approach [10]. The primarily purpose of feedback control is to eliminate any 

non-zero attitude error so the reality model tracks the designed reference motion 

presented in the previous chapter. The satellite angular velocity, sΩ , is defined in the 

satellite body fixed frame and satellite designed angular velocity, srΩ ,is coordinatized in 

the reference frame. 

3.3.1 IPAC Control Law 

    Consider the following candidate Lyapunov function [32,33] expressed in terms of 

the tracking error and its time derivative in the (3.11) and its time derivative can be 

obtained as (3.12) from remarkable results in (3.13) 
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                      where ( )δωδσσδ f=& ,   ( )   
4

1
δωδσ

δσδσ
δωδσδσ T

T
T

f
+

=  (3.13) 

 

Let the term in the parenthesis of (3.12) be equal to δω1k−  , then equation (3.12) yields; 

 

           01 ≤−= δωδωTkV& ,   for all δω  and 01 >k  where  δωδσωδ 12 kkI s −=+&  (3.14) 

 

where 1k is satellite angular velocity feedback gain and 2k is a scalar gain for the attitude 

error feedback. The angular velocity error and its time derivative can be written as (3.15) 

and (3.16) in the satellite coordinates. 
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              where ( ) ( ) ( ) ( ) srs
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 The effective torque required for the actual motion is 

 

                                       
ssssss II ΩΩ+Ω=Γ

~&  or ( )ssssss II ΩΩ−Γ=Ω − ~1&  (3.17) 

 

Pre-multiply equation (3.16) by
sI , to obtain equation (3.18) (error motion). Equation 

(3.19) is obtained by substituting (3.17) into (3.18) 

 

                                     
sssrssss IsrIII Ω+Ω−Ω= ωδωδ ~][ &&&  (3.18) 

 

                                      
sssrssssss IsrIII Ω+Ω−ΩΩ−Γ= ωδωδ ~][

~ &&  (3.19) 

 

Equating equation (3.14) and (3.19) to obtain  



 24 

 

                               δσδωωδωδ 21

~][
~

kkIsrIII sssrssssss −−=Ω+Ω−ΩΩ−Γ= &&  (3.20) 

 

                                                     [ ]T

s s mt
fs Tτ  Γ = −  ∑  (3.21) 

Then the flywheel control motor torques are obtained by substituting (3.21) into (3.20) 
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    Equation (3.22) indicates that required flywheel motor torque to track designed 

reference motion. The way selecting satellite attitude and angular velocity error feedback 

gains, 1k and 2k , will be discussed in the next chapter. The Lyapunov function V  is 

positive definite and radially unbounded in terms of the tracking errors. The time 

derivative of V  given by (3.14) is negative definite without external torques. Therefore 

the departure motion (3.19) and kinematical equation for the departure motion (3.13) 

with the feedback motor torque control law (3.22) are also asymptotically stable in the 

absence of external torques. In the presence of a disturbing external torque, the satellite 

body angular velocity errors still decay to zero. However, the attitude error will converge 

to a finite offset depending upon attitude error control gain ( 2k ). It can be also reduced 

by choosing a large attitude feedback gain [11]. 
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3.3.2 Flywheel Motor Control Gain Selection [11] 

    The flywheel motor control gains, 1k  (satellite angular velocity control gain) and 2k  

(satellite attitude control gain) can be obtained from closed-loop error dynamics and 

root-locos analysis. Assuming no external torque case, the closed-loop dynamics can be 

written as differential form in the equation (3.14).It can be recognized that this equation 

depends on angular velocity and attitude error. If satellite attitude error,δσ , is zero, then 

the poles of equation (3.14) could be selected arbitrary by 1k . The differential equation 

for δσ  depends quadratically on δσ  which is given the first equation of (3.13). 

However, this quadratic equation can be approximated by linearizing about 0=δσ  as 

shown equation (3.23) 

                                                                  
4

δω
σδ ≈&  (3.23) 

After combining equation (3.14) and (3.23), the following closed-loop error dynamic 

equation can be obtained. 
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    The root-locos method could be utilized to obtain the poles of equation (3.24) given 

inertia matrix. If the inertia matrix and the angular velocity control gain matrix 1k are 

selected to be diagonal matrice, the equation (3.24) can be decoupled into 6 separate 

equations as equation (3.25).  
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Also the roots of equation (3.25) can be solved as 
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    Fig. 3.1 plots the root – locos of equation (3.26). The attitude feedback control 

gain, 2k , can be selected only one (because of scalar), however, the angular velocity 

error feedback control gain, 1k , can be chosen for each body axis. If the closed-loop 

dynamics is slightly underdamped system, the angular velocity gains can be expressed in 

terms of the controller decay time constants, cT .[30] and the scalar attitude feedback 

control gain, 2k , has the condition for the closed-loop underdamped system. The 

following equations (3.27) and (3.28) indicate the expression of cT  and condition of 2k , 

respectively. 

                                                  
c
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2 > ,          i = 1, 2, 3  (3.28) 

    It can be recognizable that 
i

k1  and 2k  determine whether the closed –loop system is 

over, critically or underdamped. Once the system is selected as underdamped, then only 

i
k1  determines how fast a state error will decay. The simulation results in the Chapter VI, 

the controller decay time, cT , is chosen as 4 [sec]. The linearized equation of (3.23) and 

the assumption of a diagonal satellite inertia matrix are two approximation of this 

analysis. Since the linearization of the Modified Rodrigues Parameters is valid for four 
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times the rotational range of the Euler angles and the off-diagonal terms in the inertia 

matrix are usually very small compared to the diagonal terms [11]. 

 

 
Fig. 3.1 Root –Locus Plot of the Decoupled, Linearized Error Dynamics 

 

3.3.3 Torque Distributions and Power Tracking [1] 

    The individual flywheel motor torques and the torque required by the satellite for 

attitude control are related by; 

                                                              mts ATT =  (3.23) 

 

where 
mtT  and 

sT  are the required motor torques applied to the flywheel and satellite, 

respectively and A  is the n×3  system configuration matrix ( n  is number of  flywheel) 

with columns equal to the unit vectors of the flywheel housing coordinate axes. The 

solution of (3.23),
mtT , is a linear combination of vectors belongs to the range space of 
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matrix A . If the number of flywheel modules is less than 3, the system is over-

determined and a solution may not exist. If the number is 3, the solution is uniquely 

determined and if the number of flywheel modules exceeds 3, the system is 

underdetermined and there exist an infinite number of solutions. For this paper, the 

satellite has 4 flywheel modules which form an underdetermined system. One useful 

solution is the minimum norm solution obtained by using a pseudo-inverse. The general 

solution for 
mtT  is given by  

                                            
nsmt TTAT += +   where  ( ) 1−+ = TT

AAAA  (3.24) 

 

    The vector 
sTA

+ belongs to the range space of 
T

A  and nT   belongs to the null space 

of A , in other words, 0=nAT  so 
nT  does not affect the satellite motion. Simultaneous 

attitude control and power tracking require that the torque satisfy the following set of 

linear equations. 
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The second constraint of (3.25) is written as  ( ) PTTA ns

T

f =++ω  

 

Define the modified power as    

 

                                                      
n

T

fs

T

fm TTAPP ωω       =−= +  (3.26) 

 

    The power torque, nT , belongs to the null space of the configuration matrix A ; 

therefore there exists a vector η , in the null space which satisfies, 
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   ηnn PT =  (3.27) 

 

where ( ) AAAAIP
TT

nnn

1−

× −=  is the orthogonal projection matrix onto the null space of A . 

Thus equation (3.26) can be expressed by
mn

T

f PP =ηω  which after substituting (3.27), has 

the minimum norm solution  

 ( )
mfn

T

ffn PPP
1−

= ωωωη  (3.28) 

 

    Finally, the power tracking torque is given by equation (3.29) 
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CHAPTER IV 

MAGNETIC BEARING SUSPENSION SYSTEM WITH MIMO 

(GYRO) CONTROL* 

4.1 Overview 

    The high speed flywheels will be suspended by magnetic bearings (MB) which have 

minimal loss, do not require lubrication and operate very well in a vacuum. In previous 

IPAC control algorithm model assumed that the flywheels are mounted on the satellite 

with infinite stiffness which can execute only rotational motion. In the MB feedback 

control point, the flywheel needs additional degrees of freedom (This chapter presents 5 

axis MB feedback control loops). 

    The MB control algorithm is complicated by the presence of speed dependent poles 

that result from gyroscopic moments of the spinning, vibrating shafts. The effect of 

speed dependent poles is magnified as an increased energy density demand on the 

flywheel is met by increasing the ratio (IP / IT) of the polar to transverse mass moments 

of inertia of the spinning rotors. The rigid body gyroscopic poles asymptotically 

approach 0 [Hz] (backward pole) and (IP / IT) times spin frequency (forward pole) 

producing a very low frequency pole and a very high frequency pole for IP / IT > 1. The 

forward conical pole’s frequency increase with speed and need phase lead and higher 

derivative gain at the high frequency, furthermore, time derivative of current, dtdiL /⋅ ,  

 

_____________ 

*Reprinted with permission from “MIMO Active Vibration Control of Magnetically 

Suspended Flywheels for Satellite IPAC Service,” Park, J., 2007, Journal of Dynamic 

Systems, Measurement and Control, Accepted, Copyright [2008] by ASME. 
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gets higher in the power amplifier causing current and voltage saturation. This 

complicates the control task since increased active damping (derivative gain) is 

ineffective at low frequencies and causes noise amplification at high frequency. As the 

results, the general single input single output (SISO) control is not appropriate in the 

case of higher polar and transverse moment of inertia ratio to lower the frequency of a 

forward conical mode. 

    Effective MB control then requires a shift in strategy from providing phase lead by 

derivative gain changes to canceling gyroscopic torques utilizing a MIMO (Multiple 

Input – Multiple Output) control approach. MIMO will lower the frequency of the 

forward conical mode by canceling some of the gyroscopic moment which requires less 

gain at the high frequency and coil voltage in the power amplifier will not saturate. The 

details of MIMO control strategy will be discussed in the sections 4.2 to 4.7. 

    In general a magnetic bearing (MB) suspension system includes position sensors, 

feedback controllers, filters, power amplifiers and MB actuators. Each component will 

be briefly presented in this chapter. Fig.4.1 and 4.2 show feedback diagram of a typical 

magnetic suspension system and a diagram of a flywheel with a magnetic bearing 

suspension, respectively. 
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Fig. 4.1 MB Suspension System Feedback Control Diagram for MIMO (GYRO)  
 

 

 

 

 

Fig. 4.2 Flywheel System with Magnetic Bearing (MB) Suspension 
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    The flywheel’s center of gravity, “CG”, coordinates include the center of gravity 

translational motions (y and z) and the rotational motions of shaft’s rigid body ),( zy θθ  

shown below. The “y-z” coordinates, referred to in the introduction as “MB” coordinates, 

are ),,,( BBAA zyzy  as shown in the following Fig. 4.3 and typically refer to the shaft 

motions at the sensor and/or actuator locations. The following analysis relates the “CG” 

and “MB” coordinates and equation (4.1) indicates the relationship between two 

different coordinate systems. 

 

 

Fig. 4.3“CG” and “MB” Coordinates 
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where [ ]T

BBAA zyzy  and [ ]T
zy zy θθ are MB Coordinate and CG Coordinate, 

respectively. 
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4.2 Position Sensor 

    Magnetic suspensions typically utilize eddy current, optical or reluctance based 

sensors. Approximately, the transfer function of position sensors could be expressed as a 

linear first order form shown in the Fig.4.1 where sτ is time constant determined by 

cutoff frequency of the sensor characteristic and ζ is the sensor gain. The bandwidths of 

these devices are typically > 5 [KHz] so they are treated as ideal, infinite bandwidth 

devices, with sensitivity-gain. 

4.2.1 Voltage and Displacement Errors at Position Sensor 

    Fig.4.4 shows the orthogonal sensor pairs at the A and B bearing position and the 

conversion of the position errors to voltage errors for input to the feedback controller 

stage. 

 

 
Fig. 4.4 Position Sensor Output Voltages 
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4.2.2 Motion Coordinate Transformation 

 

    Fig.4.5 presents a diagram to determine the approximate rigid body motion 

coordinates transformation from the measured MB coordinates voltage error at the 

position sensors. This approach can be justified since the flexible modes are typically 

above 1 [KHz]. The rigid-rotor model frequency analysis is provided in the section 6.3. 
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The approximate rigid body motion coordinates are given by (4.3): 
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Voltage errors in the 
ZY θ,  and 

YZ θ,  coordinates (“CG”) are expressed in terms of the 

sensor error voltages from (4.2) and (4.3) as 
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A matrix form of these equations is given by the following  
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4.3 Power Amplifier  

 

    The power amplifier transforms controller output voltages ( ctrlV ) to currents ( PAi ) 

that flow through the magnetic bearing coils from the Fig. 4.1. Pulse width modulated 

(PWM) servo amplifiers are commonly used in the MB system due to low power 

consumption and accurate tracking of the demanded currents. A simplified feedback 

model of a servo amplifier including nonlinearities such as voltage and current saturation 

is shown in the Fig. 4.1. The closed loop system transfer function of a servo power 

amplifier may be represented in a simplified form with proportional gain (KPA), feedback 

gain ( χ ), coil inductance and resistance (L, R) as (4.6). 

    Fig. 4.6 describes that typical first order representation of PWM including current 

servo transfer function which plotted in the dashed line. The current servo dynamics 

could be model with coil voltage, Vcoil, resistance, R, and inductance, L, as mentioned 

before; coil voltage will be saturated at the high frequency because inductance term in 

the voltage expression could be large. The high frequency of pole could not be lowered 

without canceling the gyroscopic moments in the high energy density flywheel case. 

 

 

Fig. 4.6 First Order Transfer Function of PWM 
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 (4.6) 

 

where KPA and χ can be selected by matching the transfer function t a first order filter 

considering the overall gain and bandwidth [2]. 

4.3.1 Control Currents 

    The dynamics (bandwidth) of the servo power amplifier is neglected for sake of 

illustration of the IPAC and AMB system vibration control. Therefore the actions of the 

power amplifiers may be approximated by control voltage multiply power amplifier gain 

which is shown (4.7) in the matrix form. 
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4.4 Magnetic Bearing – Actuator 

 

    The forces produced by a MB actuator on the spinning flywheel shaft are nonlinear 

function of currents and shaft’s relative position in the actuator clearance space. A MB 

actuator for satellite application will most likely incorporate permanent magnets to 

supply a bias field to minimize ohmic losses. This MB type has flux paths and other 

features that require a more complex model. Thus for the sake of the illustration 

purposes assume that an electromagnetic biased MB is utilized. Fig.4.6 [2] shows one 

axis of this MB actuator including coils, forces, and their currents. Equation (4.8) 

provides a representative form for this force when produced by an electromagnet biased, 

opposing pole, heteropolar type MB. The way to obtain the (4.8) and (4.9) will be briefly 
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discussed in the following  

 

                           

 

 

 

 

 

 

 

Fig. 4.7 C-core Electromagnet and Rotor Lamination Stack 

 

 

 

    The total magnetic bearing force produced in the Fig.4.7 including magnetic flux 

density (B), cross section area (A) and magnetic field constant ( 0µ ) can be written as 

(4.8) [34] and flex density (B) can be obtained simple form by Ampere’s law and 

conservation of flux in the circuit that is jj AB=Φ . 

Ampere’s law is ∫ ⋅= iNHdl  and can be written as iNcHlHlH orrss ⋅=+⋅+⋅ 2  from 

Fig. 4.8(a). The flux intensity ( jH ) can be also converted as jjB µ/  based on linear 

range of B-H curve. Therefore, it can be obtained the following relationship (4.9) thru 

(4.11) from above equation and Fig.4.8(a). 
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                                           iNRRR ors ⋅=Φ+Φ+Φ 2  (4.11) 

 

 

 

Fig. 4.8 Equivalent Magnetic Circuit 

 

where 
jj

j

j
A

l
R

µ
=  and for a good magnetic conducting material os µµ >> , or µµ >> , 

yields os RR <<  and or RR << , then the equation (4.11) can be shorten as iNRo ⋅=Φ2  

from equivalent magnetic circuit shown Fig.4.8(b), therefore, the flux density (B) in 

(4.8) can be derived from equating
oR

iN

2

⋅
=Φ and oo AB=Φ  , as equation (4.12) then after 

inserts (4.12) into (4.8); the magnetic force can be expressed as (4.13) where cb iii +=+  

and cb iii −=− . 
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    The standard linearized form for the magnetic bearing force expression can be 

written as (4.14). The MB position stiffness ( posK ) and current stiffness ( curK ) are 

obtained by differentiation of the (4.13) with respect to the rotor displacement, cx , and 

the control current, ci , about the operating points which are typically 0=cx and 0=ci . 
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22 µµ
 (4.14) 

 

In this paper, the following properties are utilized for MB stiffness calculation where 

N = (13), 0µ =12.56e-7 [N/A
2
], pA =6.7e-4 [m

2
], c =5e-4 [m], cxc − is air gap. 

    The force, position and current model represented by (4.14) applies only for a 

certain type of magnetic bearing. The model is included here for the sake of illustration. 

More complex bearings and bearing models, which include eddy currents, fringing and 

leakage effects are discussed in [35]. 

4.4.1 Control Current Forces 

    Let curK  represents the current stiffness matrix. The MB control forces can then be 

expressed as (4.15). 
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4.4.2 Transformation Matrix 

 

    The force and moment coordinate transformation matrix from AMB coordinates to 

CG (rigid body) coordinates is obtained from Fig.4.9 and is given in equation (4.16) 

 

Fig. 4.9 Force - Moment Transformation Diagram 
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    Substitute equations (4.7) and (4.15) into (4.16) to obtain the control forces in the 

CG (rigid body) coordinates can be shown (4.17). 
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4.5 PID Control 

 

    Magnetic suspension control laws vary widely according to the particular 

applications. These include both plant based versions such as H-infinity, QR, sliding 

mode, etc. or variations of basic PID control. A simple PID type control is described 

here for sake of illustration. Filter models are included to represent the natural roll off of 

power amplifiers, sensors and actuators, to include effects of anti-aliasing and smoothing 

filters and for filter stages intentionally programmed into the feedback path for noise 

rejection. The parallel PID paths are shaped to suppress noise or prevent DC instability 

and typically have a form similar to; 

                    ( )
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         ( )
1
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s
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i
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τ

          ( )
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s

s
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d

d
τ

 (4.18) 

 

    For the example presented the PD controller is implemented with equal time 

constants pτ and dτ which are selected to make the cutoff frequency [ ]πτ2/1=cf  equal 

to 1024[Hz] for both proportional and derivative paths. 

4.5.1 PD Transfer Function with Unity Gain 

    The position error voltage terms are differentiated in the controller yielding a rate 

feedback variable as shown Fig.4.10 where ( )1/1)()()()( +==== ssTsTsTsT pZYYZ τθθ  

and ( )2
1/)()()()( +==== sssTsTsTsT dZYYZ

µ
θθ &&&&  in (4.18). 
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                              Fig. 4.10 Unity Gain PD Transfer Function Stage 

 

 

4.5.2 PD Gain Stage for MIMO (GYRO) Control 

    Fig.4.11 shows the proportional, derivative and cross coupling gain stages between 

the tilt directions to form the MIMO, coupled controller. The cross coupled gains ( θCKG  

and θGG ) could play a significant role to cancel some gyroscopic moment producing high 

frequency forward conical pole in the case of high energy density demanding task. This 

gain stage is main difference between SISO and MIMO control schematic. Either θCKG  

or θGG  is zero case, the magnetic suspension system will be unstable and effective 

stiffness and damping will be presented in the last section of this chapter. 
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Fig. 4.11 MIMO-GYRO PD Gain Diagram 
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Fig.4.11 can be represented by the matrix equation form shown (4.19) 
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4.6 Output Coordinate Transformation Stage 

 

    Fig.4.12 is diagrams for converting the rigid body coordinate control signals into the 

2 pairs of orthogonal magnetic bearing actuator coordinates. 

 

 
Fig. 4.12 Diagrams for Output Coordinate Transformation 

 

 

 

    Low pass filter, lead/lag compensation and notch filter stages are arranged in series 

at the output end of the controller. A band pass filter is also utilized to aid in canceling 

Zθ  

FILT

ZZF  

Yθ  

AMl  

CG X 

ZBV
~

 ZAV
~

 

Y

FILT

Z todueF θθ   =  

BMl  

FILT

YYF  

BMl  
AMl  

YAV
~

 
YBV

~
 

X CG 

Z

FILT

Y todueF θθ   =  



 47 

magnetic bearing forces at the spin frequency due to rotating, mass imbalance. These 

stages are illustrated in Fig. 4.1. The outputs of the filter stages are represented by 

Filt

Z

Filt

ZZ

Filt

Y

Filt

YY FandFFF θθ ,, , these quantities are in the rigid body coordinates and must be 

transformed into the magnetic bearing actuator coordinates. The transformations are 

provided in the following equations (4.20) and (4.21). 
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    The final output voltages from the controller are obtained by applying gains to 

compensate for differences in gains that are external to the controller, i.e. the sensors, 

amplifiers and magnetic bearing axes, 
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4.7 Effective AMB Stiffness, Damping and Gyro Cancellation Torque Coefficients 

    Although the AMB model presented here possesses a finite bandwidth, it is 

instructive to consider an infinite bandwidth approximation in order to identify 

equivalent stiffness, damping and gyro torque coefficients. For this ideal case, the filter 

output ( FILT
F ) equals the filter input ( F ). Equation (4.17) becomes 
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where 
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    Further assume that the power amplifier and current stiffness gains are identical for 

all axes, so PA

j

i

j KK ⋅  can be expressed as PAi
KK ⋅ , and assume that the β ’s are tuned to 

make   
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                                           PAi
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The control forces in the CG (rigid body) coordinates become:  
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    The active stiffness and damping in the CG coordinates are then obtained by 

comparing (4.17) with (4.26), yielding 
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Therefore, for the ideal, non-saturated and infinite bandwidth case, the effective stiffness 

and damping matrices are: 
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Equations (4.27) to (4.30) may be inverted to solve for the required MIMO gains in 

terms of the required natural frequencies and damping ratios as 

(1) “CG” control gains: 
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(2) Gyro control gains 
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    The gyro control gains, θGG  and θCKG , are positioned in equation (4.26) to buck 

(cancel) a portion of the natural gyroscopic moments that result from spinning the 

flywheel. 
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CHAPTER V 

VIBRATION CONTROL OF FLEXIBLE APPENDAGES AND  

 

FLYWHEEL UNBALANCE ISOLATION* 
 

5.1 Overview 

    This chapter presented the methods that reduce flexible satellite appendage’s 

oscillation and flywheel imbalance force transmitting to satellite. The vibration control 

mass (VCM) is placed on the ends of each appendage to demonstrate its effects. The 

notch filter and band-pass filter stages are also analyzed in this chapter. The imbalance 

force due to unbalanced mass could be reduced by positioning the center frequency of a 

notch filter at the flywheel spin speed in the feedback path of the magnetic bearing 

supported system, however, there still exists another components of force which created 

by position stiffness and flywheel relative motion. Section 5.3 will discuss about more 

details how to eliminate the residual magnetic bearing dynamic forces. 

5.2 Vibration Control Mass (VCM) to Suppress the Oscillation of the Satellite’s 

      Flexible Appendages  

 

    A machine or system may experience excessive vibration if it is acted upon by a 

force whose excitation frequency nearly coincides with a natural frequency of the 

machine or system. In such case, the vibration of the machine or system can be reduced  

by utilizing a dynamic vibration absorber [36]. 

 

_____________ 

*Reprinted with permission from “MIMO Active Vibration Control of Magnetically 

Suspended Flywheels for Satellite IPAC Service,” Park, J., 2007, Journal of Dynamic 

Systems, Measurement and Control, Accepted, Copyright [2008] by ASME. 
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Fig. 5.1 Vibration Control Mass (VCM) Model  

 

 

 

    For the classical vibration absorber case, VCM approach in the Fig.5.1(a) can be 

modeled as Fig.5.1(b). The equations of motions, steady-state solutions and more 

analytical parts are given by [36]. The optimum damping ratio can be calculated as, 
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where 
12 / mm=µ  from Fig.5.1(b) [36]. In the case of 1.35[kg] vibration control mass, 

the mass ratio )(µ = 0.3 and 2236.0=optimumξ  which is similar with in the Table.5.1. 

    For illustration of VCM approach, assume that a flexible appendage behaves similar 

to a cantilever beam with deflection pattern, 
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motion for the VCM in Fig 5.1(a) and the beam coordinate becomes,  
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The first order form of this equation can be written as 
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The damping ratios (
iξ ) may then be obtained from the eigenvalues of A as 
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    The VCM’s attachment stiffness and damping were selected to maximize the 1
st
 

mode’s damping ratio as illustrated in Table 5.1. 
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Table 5.1 VCM Damping Ratios VS VCM Attachment Stiffness and Damping 

Dm [ kg ] optc ]/[ mNs  optk ]/[ mN  
1ξ  2ξ  3ξ  

4ξ  minξ  

0.45 0.9065 10.767 0.1136 0.1136 0.1398 0.1398 0.1136 

1.35 6.1197 32.310 0.2757 0.2757 0.2491 0.2491 0.2491 

2.25 10.202 39.672 0.3240 0.3240 0.3286 0.3286 0.3240 

3.15 14.280 43.575 0.3950 0.3950 0.3878 0.3878 0.3878 

4.05 18.370 45.900 0.4888 0.4888 0.43 0.43 0.43 

 

 

5.3 Flywheel Unbalance Isolation 

    Mass imbalance of the flywheel creates a force at its spin frequency, which in turn 

causes a time varying error in the magnetic suspension position control at the spin 

frequency. This may be very undesirable since the ensuing vibrations can interfere with 

the proper operation of onboard, precision instrumentation. This may be rectified by 

positioning the center frequency of a notch filter at the flywheel spin frequency in the 

feedback path of the magnetic suspension control. Equation (4.14) shows that there still 

exists another component of force at the spin frequency due to the position stiffness and 

flywheel relative displacement. This force is proportional to the relative vibration of the 

rotor with respect to the stator, and so the force may be cancelled by band-pass filtering 

this relative vibration at the spin frequency, and then multiplying this signal by an 

appropriate gain to create forces that opposes the position stiffness related forces. The 

characteristic of notch and band-pass filters are presented in the Fig.5.2, and the transfer 

function of standard second order notch filter is shown in the Fig.5.3. It could be 
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implemented to eliminate sensor runout disturbance with its own characteristic which 

reduces the input signal around a specific frequency and its characteristic is determined 

by the center frequency of the filter (flywheel spin speed) and Q  factor. 

    The band-pass filter is modeled as a second-order transfer function as shown in 

Fig.5.3. It is a filter that passes frequencies within a specific range and rejects 

frequencies outside of that range. The Fig.5.2 utilized thatQ =50 for notch and band-pass 

filter, k =1 for band-pass filter and flywheel spin speed is 40000[rpm]. In addition, a low 

pass filter is utilized in the flywheel motor torque feedback loop to remove high 

frequency components.  
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Fig. 5.2 Characteristics of Band-Pass and Notch Filters 
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Fig. 5.3 AMB Control to Attenuate the Forces at the Spin Frequency 

 

 

    The output amplitude of the band pass filter at the flywheel spin speed is ω/xQ ⋅ , 

where Q  is the band-pass quality factor, ω  is 40000[rpm] and x  represents the relative 

vibration (displacement) at the magnetic bearing actuator location. The total magnetic 

bearing force at the spin frequency is expressed as
PAcurposMB iKxKF ⋅+⋅= . The forces 

applied to the satellite by the magnetic bearing actuator, at the flywheel spin frequency, 

will therefore be null if it is assumed that the power amplifier gain is 1 [A/V] and the 

gain α̂  in Fig.5.3 is selected as 
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CHAPTER VI 

NUMERICAL SIMULATIONS* 

6.1 Overview 

    The numerical example results are presented in the Chapter VI. This chapter has 

mainly separated 7 sections. The satellite including flexible appendages and their finite 

element model are shown in the section 6.2. As far as total system coordinate concerned, 

inertial reference and satellite body coordinates are described in the Chapter II and the 

rests of coordinates (flywheel, appendage and each housing reference) are shown in this 

chapter. Also, the system parameter values for the numerical results are tabulated. The 

validation of finite element model for flexibility is presented in the section 6.3 and 

compared analytical solution with finite element model results. The satellite reference 

motion and responses including MB suspension and flexibility are discussed in the 

section 6.4. In the section 6.5 and 6.6, MIMO active magnetic bearing suspension 

system results are compared with SISO control case and vibration control mass effects 

on flywheels and flexible appendages motions are shown, respectively. The last section 

is about isolation of the satellite from flywheel’s mass imbalance forces. Notch and 

band-pass filters are utilized to reduce transmitted force to satellite.  

    The present simulation model comprised with two different types of feedback 

controller. The first one is the flywheel motor toque control for satellite attitude control  

 

_____________ 

*Reprinted with permission from “MIMO Active Vibration Control of Magnetically 

Suspended Flywheels for Satellite IPAC Service,” Park, J., 2007, Journal of Dynamic 

Systems, Measurement and Control, Accepted, Copyright [2008] by ASME. 
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and power transfer and the other is magnetically suspended flywheel position control. 

Fig. 6.1 explains the details of these two feedback control loop. FB1 and FB2 indicate 

that satellite attitude and power transfer feedback control loop, respectively. FB3 shows 

the flywheel position feedback control loop. AC1 and AC2 are motor torque applied to 

flywheel and MB actuator acting on the flywheel, respectively. AC3 is satellite solar 

power charging, whenever the satellite towards to sun, it stores excessive energy using 

either chemical battery or flywheel energy storage system. TG is like supervisor to 

command target motions.  

 

 
Fig. 6.1 IPAC System Feedback Control Loop 
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6.2 Model Description 

    The overall configuration of this example employs four rigid flywheels aligned in a 

tetrahedral shaped array and two flexible appendages attached to the satellite in the 

Fig.6.2 [18]. The mass centers of the flywheels and appendages are offset from the 

satellite mass center by distances 
i

R  and
i

A , respectively. Each flywheel’s housing is 

assumed to be rigid and have a rigid attachment to the satellite. Each appendage’s 

motions are referenced to a fictitious rigid “appendage reference” which coincides with 

the appendage centerline in the zero motion state as depicted in Fig.6.3. Fig.6.2 indicates 

that the flywheel housing body coordinate axes,
3,

ˆ
fh , of module 1, 2 and 3 are separated 

by 120 degrees from each other, and their spin axes make a 19.471[deg] angle with 

respect to the satellite 
21

ˆ,ˆ SS   plane. Module 4 is perpendicular to this plane and pointed 

along the 
3Ŝ−   axis direction. All flywheel spin directions are in the clockwise sense as 

viewed from the satellite coordinate origin. It is assumed that the satellite inertias 

include the effects of the flywheel housings and that the MB centers coincide with the 

flywheel housing center lines.  
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Fig. 6.2 Tetrahedral Array of Flywheels Attached to the Satellite 

 

 

 
Fig. 6.3 Flexible Appendage Model Consisting of Beam Type Elements 

 

    The 1.35[kg] (3[lb]) VCM shown in Fig.6.3 is utilized to reduce the vibration of the 

appendage thereby reducing ripple error in the power transfer (charge or discharge) and 

suppress the oscillation of flexible appendage. The detailed VCM effects are discussed 

and plotted in the section 6.6. This mass is attached to the free end of the appendage 
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utilizing a spring and damper and is constrained in the model to displace only 

perpendicular to the appendage. The appendage model also includes a small level of 

structural damping to more closely simulate an actual structure. An actual appendage on 

a satellite may be collapsible and consist of a truss-like structure with embedded masses 

and panels. The low stiffness and natural frequencies of this form of appendage is 

emulated by assigning a low value of Young’s modulus for the appendages, which are 

otherwise modeled as uniform cantilever beams of rectangular cross-section. 

    Numerical simulation system model parameters are presented in the Table 6.1 and 

AMB parameters and their control gains are tabulated in the Table 6.2 and 6.3, 

respectively. 

 

Table 6.1 Model Parameter Values 
 

Parameters Weight gIP ⋅  gIT ⋅  
Initial 

speed 
fR  

aR  

Satellite 
1360[kg] 

=3000[lb] 

1693[N-m-s
2
] 

=15000[lb-in-s
2
] 

2258[N-m-s
2
] 

=20000[lb-in-s
2
] 

0   

Flywheel 
22.7[kg] 

=50[lb] 

69.5[N-m-s
2
] 

=617[lb-in-s
2
] 

55.67[N-m-s
2
] 

=494[lb-in-s
2
] 

40,000 

[rpm] 

0.61[m] 

=24[in] 
 

Appendage 
22.7[kg] 

=50[lb] 
** 0  

2.4[m] 

=95[in] 

 

Note:  1. **: Ia = diag( 0.47, 18.4, 18.85[N-m-s
2
] ) = diag( 4.178, 162.7, 167 [lb-in-s

2
] ) 

           2. Young’s modulus and shear modulus of flexible appendages: 

              ]/[1006.2 29
mNE ×= , ]/[1027.8 210

mNG ×=  

           3. Length of each appendage = 3.2[m]  
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Table 6.2 AMB Parameter Values 
 

Magnetic 

Bearing 

Current Stiffness 

curK  

Position Stiffness 

posK  

Load 

Capacity 

Locations from 

flywheel CG 

Combo (Radial) 
41.4[N/A] 

= 9.3[lb/A] 

-1208312[N/m] 

= -6900[lb/in] 

444.8[N] 

= 100[lb] 

mbl =0.127[m] 

=5[in] 

Combo (Axial) 
85.5[N/A] 

= 19[lb/A] 

-1383448[N/m] 

= -7900[lb/in] 

889.6[N] 

= 200[lb] 

mbl =0.127[m] 

=5[in] 

Radial 
39.1[N/A] 

= 8.8[lb/A] 

-1078739[N/m] 

= -6160[lb/in] 

444.8[N] 

= 100[lb] 

mbl =0.127[m] 

=5[in] 

 

 

Table 6.3 AMB and Flywheel Motor Control Gains 
 

MIMO Control Gains 
Motor 

Control Gains 

S

YG  
D

YG  
S

YGθ  
D

YGθ  θGG  S

ZG  
D

ZG  
S

ZGθ  
D

ZGθ  θCKG  
1k  2k  

11.1 0.012 324 0.064 0.67 11.1 0.012 324 0.064 162 15.4 117 

 

 

 

6.3 Validation of Finite Element Model for Satellite Flexibility 

    The Finite Element Model described in the Fig.2.3 is validated in the section. The 

purpose of this section is that comparing a simple illustration of gyroscopic effects, 

forward and backward eigenvalues, synchronous whirl analysis between the long rigid 

rotor case and its finite element model case. Fig. 6.4 shows the model, in which the disk 

may be a long cylinder. The origin of the nonrotating XYZ axes is at the undeflected 

centroid of the rotor. The two bearings are located at X=L/2. The undamped eigenvalues 
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can be found by substituting a purely elastic and symmetric model for the bearing forces 

into (6.1) thru (6.4) [37] 

                                                  02 =+ YKYm L
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    The characteristic matrix resulting from the homogeneous solution st

jea , for j=1, 2, 

3, 4 is [37] 
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    The purely imaginary eigenvalues of the system are jj is ω±= , for j=1, 2, 3, 4, 

where 
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    These are undamped natural frequencies of the rotor-bearing system, if the rotor 
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angular spin speed sω is zero, the natural frequencies are mK L /2  and TL ILK 2/2 . In 

the case, the vibration modes are heaving-swaying and pitching-yawing, respectively. A 

nonzero shaft spin speed sω  changes 3ω  and 4ω frequencies but not 1ω  and 2ω . 

    The latter are the natural frequencies of cylindrical whirl. Shaft spin speed sω  raises 

the 3ω  frequency above the planar pitching vibration value TL ILK 2/2  and lower 

4ω frequency. These are the natural frequencies of forward and backward conical whirl. 

The axial and torsional springs are attached to the each end of rotor-bearing model to 

compare finite element analysis results. The equation (6.9) and (6.10) indicate the axial 

and torsional natural frequencies, respectively, and Table 6.4 shows the long rigid rotor-

bearing model parameters utilized in this section. The finite element model of Fig.6.4 is 

comprised of 6 elements (7 nodes) and each node executes 6 degrees of freedom motions.  

                                                          mK A /25 =ω  (6.9) 

                                                         PT IK /26 =ω  (6.10) 

    Table 6.5 shows that frequencies results obtained from analytical and finite element 

model. The natural frequencies are almost identical except for the conical whirl 

mode, 3ω , which has about 0.5 [%] differences between analytical solution and finite 

element model. One of conical whirl frequency, 4ω , will converge to zero when spin 

speed is very high. Table 6.5 doesn’t show 4ω  which has negative frequency value. 
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Fig. 6.4 Long Rigid-Rotor Model with Coordinate System 

 

 

 

    Parameter values utilized in the Fig.6.4 are shown in the Table 6.4 where LK linear 

bearing stiffness is attached to rotor, AK and TK  indicate that axial and torsional spring, 

respectively.  
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Table 6.4 Parameters of Long Rigid-Rotor Model 
 

Long Rigid Rotor Model Parameters 

LK  

[N/m] 
AK  

[N/m] 
TK  

[N/m] 

L  
[m] 

R  
[m] 

ρ  

[kg/m^3] 
sω  

[rpm] 

11290 56450 22580 0.762 0.05 7833 40000 

 

 

 

Table 6.5 Comparison of Natural Frequencies between Analytical and FE Model 
 

Case 1: Spin Speed is 0[rpm] 

Analytical Solution [Hz] Finite Element Model [Hz] 

1ω  2ω  3ω  5ω  6ω  
1ω  2ω  3ω  5ω  6ω  

135 135 232 191 214 135 135 223 191 213 

Case 2: Spin Speed is 40000[rpm] 

Analytical Solution [Hz] Finite Element Model [Hz] 

1ω  2ω  3ω  5ω  6ω  
1ω  2ω  3ω  5ω  6ω  

135 135 241 191 214 135 135 232 191 213 
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6.4 Satellite Responses Including MB Suspension and Flexibility 

    The reference motion is designed such that the satellite changes orientation 90[deg] 

about the Euler’s Principal Axis (EPA) of rotation from the initial attitude tisn][   to the 

final attitude
tfsn][ . The EPA is obtained as the eigenvector which corresponds to the 

eigenvalue +1 of the direction cosine matrix ][C  
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and the principal angle is  ( ) [deg]00.901
2

1
cos 332211

1 =








−++=Φ − CCC  (6.12) 

 

    Generally, the initial actual satellite orientation differs from the reference value. The 

initial attitude error in this present simulation is assumed to be T]0   0375.0   025.0[−  in 

terms of the Modified Rodriguez Parameter (δσ ), which corresponds to a 10.3[deg] 

principal rotation angle deviation from the reference motion. The reference maneuver 

rotation is a 90.00[deg] EPA change in 60[sec] as shown in Fig.6.5. Fig.6.6 shows the 

satellite’s motions with the tetrahedral array of four rigid shaft flywheels, 2 flexible 

appendages and the AMB suspension system for the case of a 10.3[deg] initial 

orientation error. The final rotational angle is 89.99[deg] compared to the 90.00[deg] 
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target. The satellite’s translational motion is negligible and the satellite’s angular 

velocity and orientation errors diminish to zero after about 40[sec] as shown in the 

Fig.6.7. As mentioned before, in the Chapter III (Flywheel motor control gain selection), 

the amplitude of satellite angular velocity error is designed to be half in the 4[sec]. The 

angular velocity error shown in the Fig.6.7 is diminished almost half after 4[sec]. The 

total torque applied to the satellite is shown in the Fig.6.8. 
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Fig. 6.5 Satellite Reference Motion 
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Fig. 6.6 Satellite Motions Including Flexibility and MB Suspension System 
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Fig. 6.7 Satellite Error Motions 
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Fig. 6.8 Torques Applied to the Satellite 

 

6.5 Comparison of SISO and MIMO AMB Suspension Control 

    This section compares the robustness of SISO and MIMO control for the case of a 

25.1/ =TP II  flywheel polar to transverse inertia ratio, and PD controller bandwidth of 

1024 [Hz] for both SISO and MIMO approaches. Saturation states were imposed on the 

actuator forces at a level of 444.8[N] = 100[lb], on the voltage applied across the 

magnetic bearing coils at 80[volt] and relative displacement of the flywheel is limited by 

nominal air gap which is defined in the section 4.4, ( ][45][020.0 meinchc −== ). All 

attempts to identify stable gains for the decentralized, PD, SISO controller failed, as 

documented in the Figs below. Control requirements to simultaneously reject the initial 

position error and imbalance disturbances, maintain the force and coil voltages in an 

unsaturated state and provide sufficient gain margin to overcome the controller phase 
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lags could only be met by the MIMO controller despite many efforts to optimize the 

SISO controller. The physical reason for this result lies in the MIMO control’s ability to 

cancel the gyroscopic torque that drives the forward and backward conical modes of 

each flywheel to extremely high or extremely low frequencies, respectively. Fig.6.9 

shows how the relative displacements of the flywheels diverge at each module with 

SISO control. Fig.6.11 and 6.13 show that the corresponding AMB forces and coil 

voltages oscillate between their ( )+ and ( )− saturation values. Fig.6.10, 6.12 and 6.14 

show analogous plots for the MIMO control. Stable and unsaturated operations are 

maintained throughout the satellite model’s simulated IPAC operation.  
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Fig. 6.9 Displacements of Flywheels at Sensor Position with SISO Control 
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Fig. 6.10 Displacements of Flywheels at Sensor Position with MIMO Control 
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Fig. 6.11 MB Forces at Each Module (SISO Control) 
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Fig. 6.12 MB Forces at Each Module (MIMO Control) 
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Fig. 6.13 Coil Voltages with SISO Control 
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Fig. 6.14 Coil Voltages with MIMO Control 

 

6.6 VCM Effects on Flywheels and Flexible Appendages Motions 

    Each appendage is modeled with 5 rigid disks connected by flexible Euler-Bernoulli 

type beam elements. The number of disks is arbitrary and could be easily increased in 

the model. The proportional damping matrix is employed to stabilize satellite appendage 

motions. From modal analysis [30], the proportional damping ratio satisfies. 

22 βωαξω += . If α  is selected to be zero, the damping ratio can be expressed 

as 2/βωξ = . It is assumed that the appendage damping ratio increases linearly with 

frequency, with approximately 5[%] damping at 2[Hz] for the sake of illustration. The 

last 2 Figs in this section 6.6, the different results are presented between 5[%] and 2[%] 

damping at the same satellite appendage vibration frequency. The vibration control mass 

(VCM) to attenuate flexible appendage is selected as 1.35[Kg] on both ends. The 
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following Figs are consist of flywheel power charging and delivery case. 

6.6.1 VCM Effects on Flywheel Power Charging Case 

    Figures 6.15, 6.16, 6.17 and 6.18 show the flywheel motions and attitude control - 

power charging torques with and without the VCM. These figures confirm that the 

“without VCM” oscillations are significantly higher. Power charging responses for the 

“with and without” VCM cases are shown in Fig.6.19 and 6.20. For illustration, the 

IPAC operation consists of charging (power transfer) the flywheels at a rate of 500 

[watt] for 30[sec], while the satellite is simultaneously rotated by 90 degrees over a 60 

second period. Fig.6.21 and 6.22 show the magnified power charging responses of Fig. 

6.19(e) and 6.20(e) revealing that the power fluctuation is significantly reduced by the 

VCM. 
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Fig. 6.15 Flywheel Motions without VCM for Power Charging Case 
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Fig. 6.16 Flywheel Motions with VCM (1.35[kg]) for Power Charging Case 
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Fig. 6.17 Attitude Control Torque and Power Charging Torque without VCM 
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Fig. 6.18 Attitude Control Torque and Power Charging Torque with VCM  
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Fig. 6.19 Power Charging Response without VCM 
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Fig. 6.20 Power Charging Response with VCM (1.35[kg]) 
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Fig. 6.21 Magnified Power Transfer (Charging) without VCM 
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Fig. 6.22 Magnified Power Transfer (Charging) with VCM (1.35[kg]) 

 

6.6.2 VCM Effects on Flywheel Power Delivery Case 

    The Flywheel spin speed and flywheel motor torque including attitude and power 

delivery torques are plotted in the Fig. 6.23 and 6.24 with and without VCM. As same as 

power charging case, the oscillations of flywheel speed and motor torque are 

significantly attenuated compared these two Figs. As mentioned before, the flywheel 

motor torque consists of satellite attitude control torque and power transfer torque, Fig. 

6.25 and 6.26 show that these two torques with and without VCM of 1.35[Kg]. Attitude 

control torque derived from range space and power delivery torque from null space 

performed that 90[deg] rotation about principle axis over 60[sec] and 500[watt] power 

discharging for 30[sec] successfully. Each flywheel module power delivery rate is 

shown in the Fig. 6.27 and 6.28 in the case of with and without VCM. Total power 



 80 

transfer, 500[watt] for 30[sec], is sum of each flywheel module shown (a), (b), (c) and 

(d) in these Figs. It can be easily recognized that the power fluctuation reduction 

compared between magnified total power transfer in the Fig. 6.29 and 6.30. 
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Fig. 6.23 Flywheel Motions without VCM for Power Delivery Case 
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Fig. 6.24 Flywheel Motors with VCM (1.35[kg]) for Power Delivery Case 
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Fig. 6.25 Attitude Control Torque and Power Delivery Torque without VCM 
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Fig. 6.26 Attitude Control Torque and Power Delivery Torque with VCM  
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Fig. 6.27 Power Delivery Response without VCM 
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Fig. 6.28 Power Delivery Response with VCM (1.35[kg]) 

 

 

 

10 15 20 25 30 35 40 45 50
-501

-500.5

-500

-499.5

-499

Time[sec]

P
o

w
e

r[
w

a
tt

]

(a)Target Power profile

10 15 20 25 30 35 40 45 50
-501

-500.5

-500

-499.5

-499

Time[sec]

P
o

w
e

r[
w

a
tt

]

(b)Power Transfer

 

Fig. 6.29 Magnified Power Transfer (Delivery) without VCM 
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Fig. 6.30 Magnified Power Transfer (Delivery) with VCM (1.35[kg]) 

 

6.6.3 VCM Effects on Flexible Appendages Motion 

    Fig.6.31 and 6.32 show the translational motion of the appendage disks relative to 

the appendage reference line. The disk vibration amplitude increases as one moves along 

the appendage away from the satellite since the first disk is attached to the satellite with 

very stiff linear and torsional springs, so its amplitude is very small. Fig.6.32 

demonstrates the ability of the VCM to reduce appendage vibration. Fig.6.33 and 6.34 

show the maximum power ripple and the relative stroke (displacement difference 

between the VCM and disk 5) for varying VCM mass with 2% and 5% damping ratio at 

2[Hz], respectively. The maximum power ripple is 0.23[watt] for the case of no VCM, 

however, this ripple is reduced by about 70% with a (1.35[kg]) VCM at 5% damping 

ratio case. 
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Fig. 6.31 Vibration along Satellite Appendage during IPAC without VCM 
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Fig. 6.32 Vibration along Satellite Appendage during IPAC with VCM (1.35[kg]) 
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Fig. 6.33 Maximum Power Ripple VS Vibration Control Mass 
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Fig. 6.34 Maximum Relative Stroke of Appendage Vs Vibration Control Mass 
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6.7 Isolation of the Satellite from the Flywheel’s Mass Imbalance Forces 

    Fig.6.35 thru 6.38 show various of the system responses due to a flywheel 

imbalance eccentricity of 1e-5 [in] (=2.54e-7 [m]) at module 2. The rigid bearing 

supported flywheel case, the transmitted imbalance force is approximately 67 [N]. 

Fig.6.35 shows the AMB forces applied to the satellite and the motor torque without the 

notch and band-pass filters in the AMB suspension controller and without the low-pass 

filter in the flywheel motor torque control loop. The maximum forces transmitted to 

satellite are about 2.8 [N] and the maximum torques are about 1.25 [N-m] for this case. 

Fig.6.36 and 6.37 show AMB forces and flywheel motor torques with only the notch 

filter inserted, and with both the notch and the band-pass filters inserted, respectively. 

The transmitted forces and torques are reduced to 0.55 [N] and 0.258 [N-m] for the 

notch filter only case, and 0.0035 [N] and 0.0018 [N-m] for the notch and band-pass 

filters inserted case, respectively. Fig.6.38 shows that transmitted forces and torques 

with the low-pass, band-pass and notch filter (cut off frequency = 100[Hz]) systems 

inserted. The forces are almost the same as Fig.6.37, however, the flywheel motor 

torques are significantly reduced. 

    In summary, in the case of rigid bearing suspended flywheel (flywheel has only spin 

motion) the shaking force due to flywheel imbalance is enormous compared with AMB 

suspended flywheel case. The filter stages including notch and band pass filters can 

diminish shaking force almost zero.  
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Fig. 6.35 Transmitted Forces and Torques without Notch and Band-Pass Filter 
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Fig. 6.36 Transmitted Forces and Motor Torques with Notch Filter 
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Fig. 6.37 Transmitted Forces and Motor Torques with Notch and Band-Pass Filter 
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Fig. 6.38 Transmitted Forces and Motor Torques with All Filter Stages 
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CHAPTER VII 

IPAC WITH TWO VARIABLE SPEED CONTROL MOMENT 

GYROS 

7.1 Overview 

    This Chapter VII will present IPAC service with two single gimbaled variable speed 

flywheels. The single gimbaled variable speed flywheel is called as variable speed 

control moment of gyroscope (VSCMG). Generally speaking, VSCMG combines 

advantages of the classical single gimbaled control moment of gyro and reaction wheel. 

The advantages of a control moment gyro (CMG) and reaction wheels (RWs) are that a 

large effective control torque applied to the spacecraft could be produced by a relatively 

small gimbal torque input , and do not have singularity configurations and typically have 

simpler control law than CMG clusters, respectively. On the other hand, the 

disadvantages are that the single gimbaled CMGs are that their control laws are fairly 

complex and encounter certain singular gimbal angle configurations and RW systems 

include a relatively small effective torque being produced on the spacecraft and the 

possibility of reaction wheel saturation [4]. VSCMGs can produce an extra degree of 

control to the classical single gimbaled device because the spinning disk can be rotated 

or gimbaled about a single body fixed axis, while the disk spin rate is also free to be 

controlled [38, 39].  

    The dynamics, feedback control law and two different steering laws (velocity based 

and acceleration based steering laws) of VSCMGs are discussed in [4]. The previous 

work [5] examines the four simultaneous use of single gimbaled variable speed control 
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moment of gyroscopes as spacecraft attitude control actuators and excessive energy 

storage devices. This present work will demonstrates that the integrated power and 

attitude control tasks will be achieved by with only two VSCMGs instead of utilizing a 

standard four VSCMGs pyramid configuration in the literature [5]. The detailed 

dynamics and control laws are derived in [4, 5] concerning IPAC, so they might be 

briefly reviewed again in this chapter and mostly simulation results will be presented. 

7.2 VSCMGs Dynamics Part 

 

 

 
 

 

    One variable speed control moment of gyro is shown in the Fig.7.1, and then 

equation of motion can be written as following. The system angular momentum is sum 
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Fig. 7.1 One VSCMG Coordinate System 
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of each component (satellite body, wheel and gimbal) and be expressed as (7.1) and 

(7.2). The inertial reference, satellite body and gimbal coordinated are denoted as n̂ , b̂ , 

and ĝ , respectively.  The angular velocities of gimbal respect to body and momentum 

wheel angular velocity respect to gimbal frame are [ ]γγ && 00~ =  and [ ]00
~

Ω=Ω , 

respectively. 

                                                   gwscsys HHHH
~~~~

++=  (7.1) 

                        b

nb

b

scsc IH /

~~
ω= ,    g

nw

g

ww IH /

~~
ω= ,    g

ng

g

gg IH /

~~
ω=  (7.2) 

    The satellite body inertia matrix shown in (7.2) is satellite body inertia itself plus 

VSCMG inertia components due to the fact that the mass center of VSCMG is located 

from the satellite center of mass by a vector d
~

. Let’s define the inertial time derivative 

of a vector A is expressed as (7.3.1) and ω
t

 is defined as (7.3.2), respectively. 

                                                     ( ) AA
dt

d
N

&~~
≡  (7.3.1) 
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 where [ ]T321
~ ωωωω =  (7.3.2) 

so, the inertial time derivative of each component and equations of motion of a system of 

rigid bodies from Euler’s equation can be written as (7.4.1) thru (7.4.3) and (7.5), 

respectively. 
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where C is direction cosine matrix (DCM) between satellite body and gimbal frame, 

b

nb /
~ω  is satellite body angular velocity coordinatized in body frame ( [ ]T321

~ ωωωω = ),  

g

nb /
~ω  is satellite body angular velocity in gimbal frame ( [ ]T321

ˆˆˆˆ ωωωω = ),  

g

nw /
~ω  is wheel angular velocity coordinatized in the gimbal frame ( Ω++=

~~~~
/ γωω &Tg

nw C ),  

g

ng /

~ω  is gimbal angular velocity coordinatized in the gimbal frame ( γωω &~~~
/ += Tg

ng C ), 

and L
~

 is external torque applied to satellite which is assumed 0
~~

=L . 
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The equations (7.4.1) thru (7.4.3) can be rewritten as following with some manipulation, 

1. The first term of (7.4.1) is expressed as 
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2. Sum of second term of (7.4.1), (7.4.2) and third term of (7.4.3) is also expressed as 
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3. Sum of first term of (7.4.2) and (7.4.3) is expressed as 
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4. Sum of third term of (7.4.2) and second term of (7.4.3) is expressed as 
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Therefore, the total equation of motion can be obtained by gathering from (7.6.1) thru 

(7.6.4) as shown by (7.7.1) in the satellite body coordinate. 
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F term in the (7.7.2) can be simplified as combining the inertia matrix of the RW and the 

gimbal frame into VSCMG inertia matrix J. and rewritten as (7.7.4) with 

aS JJ ≈ assumption. 
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    Now, the equation (7.7.2) can be extended as following utilized by results of (7.7.4). 
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, where [ ]3

1CJB G=  
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7.3 VSCMGs Control Law Part 

    The feedback control law utilized for variable speed control moment gyro is 

identical with that used in the Chapter III. The following Lyapunov function V is a 

positive definite, radially unbounded measure of the total system state error relative to 

the target state where k1 is a scalar attitude feedback gain. 
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of second term in (7.8) is derived in the Chapter III. 
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Lyapunov stability theory requires that V& be negative semi-definite to guarantee 

stability, let 2k is a positive definite angular velocity feedback gain, then (7.9.2) can be 
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expressed as (7.9.3) and (7.9.4). 
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The equation (7.9.4) can be rearranged by plugging (7.7.5) into (7.9.4) as following, 

                ωωωδσδωδωγγ IkkJILFEDB
b

rS

t
&&&&&& −+++−=Ω+Ω++ ~~~

2

1~~
21  (7.9.5) 

As mentioned above, the external torque vector, L
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is zero and the third term of right hand 

side in the (7.9.5) can be expressed as followings, 
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where  [ ]2
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CJCJR rr ωδωδ +=  , gT

C δωωδωδ == ~ˆ  and TSr JJJ −=  

The following relationship (7.9.7) can be found by substituting (7.9.6) into (7.9.5) 

                         ωωωδσδωγγ IkkIFEDB r

t&&&&& −++−=Ω+Ω++ ~~~
21  (7.9.7) 

where RDD S −=  and as usual if the gimbal acceleration is assumed to be small, the 

first term of (7.9.7) can be ignored, then it can be rearranged as (7.9.8) 

                                                      Ω−=Ω+ FLED r

~&&γ  (7.9.8) 

where ωωωδσδω IkkIL rr

t& −++−= ~~~~
21  is required attitude control torque. 
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7.4 VSCMGs Torque Distributions Part 

    In this section, attitude control and power transfer torques will be presented. Most 

required torques produced by a combination of the RW angular velocity ( Ω& ) and gimbal 

rate (γ& ) not gimbal acceleration (γ&& ) are desirable to amplify the potential torques 

    The total kinetic energy stored in the reaction wheel is 
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~~

2

1
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RW JE  (7.10) 

Hence, the rate of change of the energy (power) is given by 
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where ( )21 , SSRW JJdiagJ = , therefore simultaneous attitude control and power transfer 

constraint equation can be obtained by combining (7.9.8) and (7.11). 
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As defining [ ] [ ]2221212111  , QQQQQQ == , required attitude control torque constraint 

becomes (7.13) and 14  ,431 ×=×= ηQ  matrices. 

                                                              TLQ
~

1 =η  (7.13) 

The general solution to (7.13) is given by  

                                                        nullTLQ ηη += + ~
1  (7.14) 

where +
1Q is general inverse matrix of 1Q which obtained from range space of 1Q  and 
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nullη  is null vector which obtained from null space of 1Q (i.e. 01 =nullQη ). 

Required power transfer control torque constraint becomes (7.15) and 14  ,412 ×=×= ηQ  

matrices. After substitute (7.14) into (7.15), it yields (7.16) and the null vector, nullη can 

be obtained from it. 

                                                              RWPQ =η2  (7.15) 
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Let define modified power nullTRWm QLQQPP η212

~
=−= + . As discussed in the Chapter III, 

the null vector, nullη is obtained from null space of 1Q , so there exists a vector satisfying  

                                                          νη Nnull P=  (7.17) 

where NP is the orthogonal projection onto null space of 1Q and property of 1=T
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−+ −=−= ,then insert (7.17) into modified power equation, 

nullm QP η2= . It yields (7.18). 
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and can be rewritten as following using by minimum norm solution 

                             ( ) ( ) ( ) m

T

N

TT

Nm

TT

NN

T

N PQPQQPPQPPQPQ
1

222

1

222

−−
==ν  (7.19) 

Therefore, the power transfer torque can be given by (7.20). 
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Finally, the simultaneous attitude control and power transfer torque can be presented as 

combining (7.14) and (7.20). 
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    In this presented work, the weighted generalized inverse +
1Q  is utilized which is 

given as [4]. 
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where W is a diagonal RW/CMG mode weighting matrix, ( )
gs WWdiagW ,=  where sW  

and gW are reaction wheel and CMG weighting factor, respectively, which is given by 

( )21, sss WWdiagW = , ( )
21, ggg WWdiagW = . The reaction wheel mode weight, sW is defined 

as ( )µδ−= exp0

Sis WW  where 0

SiW  and µ  are positive scalars to be chosen by the control 

designer and δ is factor of proximity of singularity which indicates that the gimbal 

angles approach a singularity CMG configuration, this parameter will go to zero. 

                                                          ( )TQQ 11det=δ  (7.23) 

7.5 VSCMGs Simulation Results 

    From the previous work [5], it is assured that four VSCMGs can achieve attitude 

control and power transfer functions at the same time. In this section, the near minimum 

time rest to rest reference motion is designed as same manner as previous Chapter III 

and target power transfer is assigned to 1000[watt] for 30[sec] during attitude control. 

The numerical simulations of both four VSCMGs and two VSCMGs are presented in 

this section with same satellite moment of inertia utilized in the Chapter VI. 

    The four VSCMGs in a pyramid configuration are described in the [4] and Fig.7.2 

shows the two VSCMGs configuration which is removed third and fourth variable speed 

control moment of gyro from [4]. Table 7.1 presents those simulation parameters for 
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both four and two cases. The different results between four and two cases are compared 

in the next section. 

 

 

Fig. 7.2 Two VSCMGs IPAC Service Configuration 

 

    The angleθ in the Fig. 7.2 represents the angle of each VSCMG that is measured 

from the satellite/spacecraft body axis ( )21
ˆˆ bb −  plane to the VSCMG’s gimbal axis and 

the initial gimbal angles are 45[deg] and -45[deg], respectively. The same initial attitude 

and velocity errors are used to achieve same satellite motion results with four tetrahedral 

array flywheels case presented in the previous Chapter VI. The parameter, µ , is selected 

in a sense of flywheel (reaction wheel) weighting factor( siW ) will not be zero. In this 

simulation, a weighted pseudo inverse is used instead of standard Moore- Penrose 

inverse to obtain solution in (7.13) because ideally the VSCMGs are to act like classical 

CMGs. If the parameter µ  is chosen to make siW to be zero, flywheel spin accelerations 

will be zero, in other words, the flywheel spin velocities are constant which recovered to 

 

θ  
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classical CMGs behavior (reaction wheel speed is constant and only gimbal angle rate is 

changed). Therefore, the parameter ( µ ), which can be selected by the control engineer, 

should be chosen to make siW to be non-zero value. The time varying siW is plotted in the 

following and the gimbal weighting factor giW is chosen constant value during IPAC. 

 

Table 7.1 VSCMG Simulation Parameters 
 

Value 
Parameter 

Four VSCMGs Two VSCMGs 
Units 

N 4 2  

θ  54.75 54.75 [deg] 

( )0ω  [0 0 0] [0 0 0] [rad/sec] 

( )0σ  [-0.025 0.0375 0] [-0.025 0.0375 0]  

( )0γ  [45 -45 -45 45] [45 -45] [deg] 

( )0γ&  [0 0 0 0] [0 0] [rad/s] 

( )0Ω  [4 4 4 4]*1e+4 [4 4]*1e+4 [rpm] 

0

siW  2 2  

giW  1 1  

J  diag[0.07 0.04 0.03] diag[0.07 0.04 0.03] [kg-m
2
] 

2k  1.74 1.74 [kg-m
2
/sec] 

1k  13.2 13.2 [kg-m
2
/sec

2
] 

µ  1e-24 1e-24  

 

 

7.5.1 IPAC Simulation Results with Two VSCMGs  

    The satellite rotational angle, attitude and velocity vectors are shown in the Fig. 7.3. 

The target rotational angle (dashed line) is compared with actual rotational angle (solid 

line) which has initially 10 [deg] errors and the latter tracks almost completely after 

18[sec]. Fig. 7.4 is plotted of attitude and velocity error vectors and both of them 
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diminished to zero after 30[sec] later. To perform the desired VSCMGs motion, the 

weight factors are depending on the proximity to a single gimbal CMG singularity. The 

scalar factor determined in (7.23) will go to zero when the gimbal angles approach a 

singular CMG configuration. Fig.7.5 presents the proximity of singularity in two 

VSCMGs case and it does not go to zero during whole maneuver time. The second plot 

in the Fig. 7.5 shows the flywheel and gimbal weighting factors ( siW , giW ), respectively. 

    The flywheel factor ( siW ) is time varying parameter which shows almost close to 2 

during whole maneuver time and gimbal factor ( giW ) is selected to be constant value in 

the Table 7.1. The gimbal angles and angle rates are shown in the Fig. 7.6. Initially the 

angles are 45[deg] and -45[deg] for each gimbal and they reached about -20[deg] and -

275[deg] at the final time, respectively. The second gimbal angle rate is dramatically 

increased from -0.05[rad/s] to -1.4[rad/s] at 45[sec]. Flywheel spin velocities and 

accelerations are presented in the Fig. 7.7 and they changed very much compared with 

four VSCMGs case. The final spin velocities are about 55000[rpm] and 10000[rpm], 

respectively. The target power (‘x’ mark) and actual power (solid line) schedules are 

plotted in the Fig. 7.8. The target power is designed to transfer 1000[watt] for 30[sec] of 

charging case and it can be recognized that the actual power tracks target power 

successfully. 
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Fig. 7.3 Satellite Motions with Two VSCMGs 
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Fig. 7.4 Satellite Error Motions 
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Fig. 7.5 Proximity Scalar and Weights Factor 
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Fig. 7.6 Gimbal Motions 
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Fig. 7.7 Flywheels (RWs) Motions 
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Fig. 7.8 Power Transfer during Attitude Control 
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7.5.2 IPAC Simulation Results with Four VSCMGs  

    The following Figs are presented the same attitude control and power tracking tasks 

with two VSCMGs instead of four. The satellite rotational angle, attitude and angular 

velocity are identical with two VSCMGs case. The proximity scalar factor shown in the 

Fig. 7.11 never closes to zero which indicates approach gimbal singularity. 

    Four different gimbal angles and rates are plotted in the Fig. 7.12 which are little 

change compared with two gimbal case. The maximum gimbal rate is about 0.5[rad/s] at 

the beginning of power tracking task starts. The four flywheels spin speeds and 

accelerations are shown in the Fig. 7.13. Flywheels spin speed change is very smaller 

than two gimbal case. In the four VSCMGs case, the attitude control and power tracking 

variables have 8 (4 flywheel spin speeds and 4 gimbal rates) compared with two 

VSCMGs case which has only 4 (2 flywheel spin speeds and 2 gimbal rates). These 8 

variables can be divided to produce 3 required IPAC torques. Power tracking during 

attitude maneuver is presented in the Fig. 7.14 and identical with two VSCMGs case. 
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Fig. 7.9 Satellite Motions with Four VSCMGs 
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Fig. 7.10 Satellite Error Motions 
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Fig. 7.11 Proximity Scalar and Weights Factor 
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Fig. 7.12 Gimbal Motions 
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Fig. 7.13 Flywheels (RWs) Motion 
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Fig. 7.14 Power Transfer during Attitude Control 
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CHAPTER VIII 

CONCLUSION AND FUTURE WORK 

    A simulated IPAC operation consisting of a 90 [deg] rotation over 60 [sec], with a 

12% initial attitude error and 500[watt] power transfer for 30[sec] was presented. The 

IPAC algorithm utilized a nonlinear feedback controller and the magnetic bearings 

utilized a special gyro torque canceling MIMO control. The magnetic bearing model had 

a nominal air gap of (5e-4[m]), force limit of (444.8[N]) and coil voltage limit of 

(80[volt]). The vibration control masses (VCM) attached to the flexible appendages were 

very effective for reducing both the power transfer and appendages vibration oscillations. 

The maximum power ripple is 0.23 [watt] without the VCM at 5% damping ratio, which 

is reduced by about 70% with a 1.35[kg] VCM. The flexible appendage oscillations also 

nearly disappear after 25[sec] with the VCM included. The forces transmitted to the 

satellite were reduced by about 80% by including a notch filter stage in the MIMO 

control path. In the case when both the notch and band-pass filters were utilized, the 

transmitted forces were reduced to 3.5e-3[N]. 

    Two variable speed control moment gyro (VSCMGs) performed attitude control and 

power tracking functions simultaneously without interfering each other. In the literature, 

four standard pyramid configuration VSCMGs are utilized for IPAC service, however, 

this work shows that two VSCMGs can also take care of both attitude and power control 

functions as same as four VSCMGs case. 

    For the example considered, the simulation results confirmed the following 

objectives: 
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(1) Demonstrate the effectiveness of IPAC with satellite appendage flexibility, and 

magnetic bearing feedback dynamics included in the simulation.  

(2) Demonstrate the effectiveness of passive dampers for suppressing power 

oscillations in the IPAC system. 

(3) Demonstrate the effectiveness of a MIMO-GYRO torque canceling AMB control 

algorithm even for a high IP / IT ratio and when coupled with a IPAC model of a 

satellite. 

(4) Demonstrate the effectiveness of the magnetic bearing suspension to isolate the 

rotor imbalance forces from the satellite body. 

(5) Demonstrate two VSCMGs can be utilized to perform simultaneous attitude 

control and power tracking functions rather than four VSCMGs case. 

    Some future work in this area will be seek to demonstrate the effectiveness of IPAC 

as implemented with only two gimbaled flywheels including MB supported system 

response with higher energy storage density, nonlinearities of MB system components 

such as power amplifier saturation and nonlinear MB with magnetic flux saturation and 

the effects of structural flexibility. Unconditional stability theory of IPAC for MB 

suspended system and builds and tests in Lab and on satellite. 
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