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ABSTRACT

MIMO Active Vibration Control of Magnetically Suspended Flywheels for Satellite
IPAC Service. (May 2008)
Junyoung Park,
B.S., Kyung Hee University, South Korea;
M.S., University of Southern California

Chair of Advisory Committee: Dr. Alan B. Palazzolo

Theory and simulation results have demonstrated that four, variable speed flywheels
could potentially provide the energy storage and attitude control functions of existing
batteries and control moment gyros (CMGs) on a satellite. Past modeling and control
algorithms were based on the assumption of rigidity in the flywheel’s bearings and the
satellite structure.

This dissertation provides simulation results and theory which eliminates this
assumption utilizing control algorithms for active vibration control (AVC), flywheel
shaft levitation and integrated power transfer and attitude control (IPAC) that are
effective even with low stiffness active magnetic bearings (AMB), and flexible satellite
appendages.

The flywheel AVC and levitation tasks are provided by a multi input multi output
(MIMO) control law that enhances stability by reducing the dependence of the forward
and backward gyroscopic poles with changes in flywheel speed.

The control law is shown to be effective even for (1) Large polar to transverse



iv

inertia ratios which increases the stored energy density while causing the poles to
become more speed dependent and, (2) Low bandwidth controllers shaped to suppress
high frequency noise. These two main tasks could be successfully achieved by MIMO
(Gyroscopic) control algorithm, which is unique approach.

The vibration control mass (VCM) is designed to reduce the vibrations of flexible
appendages of the satellite. During IPAC maneuver, the oscillation of flywheel spin
speeds, torque motions and satellite appendages are significantly reduced compared
without VCM. Several different properties are demonstrated to obtain optimal VCM.

Notch, band-pass and low-pass filters are implemented in the AMB system to
reduce and cancel high frequency, dynamic bearing forces and motor torques due to
flywheel mass imbalance. The transmitted forces and torques to satellite are
considerably decreased in the present of both notch and band-pass filter stages.

Successful IPAC simulation results are presented with a 12 [%] of initial attitude
error, large polar to transverse inertia ratio (Ip / I7), structural flexibility and unbalance
mass disturbance.

Two variable speed control moment gyros (VSCMGs) are utilized to demonstrate
simultaneous attitude control and power transfer instead of using four standard pyramid
configurations. Launching weights including payload and costs can be significantly

reduced.
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CHAPTER I

INTRODUCTION

1.1 Overview

Satellite weight and cost reduction goals may benefit from Satellite Integrated
Power and Attitude Control (IPAC). This will be accomplished by replacing the present
energy storage system (electrochemical batteries) and attitude control torque actuator
(control moment gyros) with an array of 4 high performance and speed flywheels [1].
Successful implementation of IPAC requires a control approach that uncouples the
attitude control and power transfer functions so as to avoid unplanned motion actuation
due to power transfer and unplanned power transfer due to satellite motion actuation.
This separation of functions can be realized by utilizing attitude control torques obtained
from the range space of underdetermined system and power transfer torques from the
orthogonal null space [1, 2].

The prior IPAC literatures focused on control algorithm development which
assumed that the satellite structure (no flexible appendage model), flywheel shafts and
flywheel bearings were all rigid and that the flywheels were perfectly mass balanced to
ignore the mass imbalance sinusoidal disturbance which occurs at the spin speeds of the
flywheels. Even though, the flywheels are manufactured delicately, the imbalance still

exists on it. This approach further simplified the problem by assuming that the motions

This dissertation follows the style and format of the ASME Journal of Dynamic
Systems, Measurement and Control.



of each flywheel could be adequately modeled with a single degree of freedom per
flywheel (executing only spin motion).

The high speed, longevity, contamination and loss requirements for these flywheels
mandate that magnetic bearings (MB) be utilized for suspension of the spinning rotor.
The magnetic bearings have many advantages over the traditional bearings such as no
contact between the shaft and stator, no lubrication, high spin speed operation, and
adjustable equivalent damping and stiffness, which are functions of controller
parameters [3]. The stiffness and damping of the magnetic bearings may be conveniently
adjusted through gain changes in their feedback control electronics.

In contrast to the assumptions employed in prior IPAC publications, the bearing
stiffness is intentionally set at a low value to yield high frequency force isolation
between the satellite and the spinning shafts. Also, the transmitted forces and torques
could be significantly diminished by employing several filter stages in the magnetic
bearing feedback control loop. The versatility and low loss benefits of the magnetic
bearings are gained only by incorporating sophisticated control algorithms to reject shaft
and satellite borne disturbances while maintaining stable control.

The MB control task is made complicated by the presence of speed dependent poles
that result from gyroscopic moments of the spinning, vibrating shafts. The effect of
speed dependent poles is magnified as an increased energy density demand on the
flywheel is met by increasing the ratio (Ip / Ir), of the polar to transverse mass moments
of inertia of the spinning rotors. These poles typically bifurcate from their zero speed

values into a forward and a backward whirling pole pair, where the direction of vibration



whirl is forward (backward) for whirl in the direction (opposite) of spin.

The rigid body gyroscopic poles asymptotically approach 0 [Hz] (backward pole)
and (Ip / Ir) times spin frequency (forward pole) producing a very low frequency pole
and a very high frequency pole for Ip / Iy > 1. The strength of gyroscopic moment
depends on the ratio (Ip / I7), which becomes larger as the rotor is pancake shape rather
than cylindrical one. This complicates the control task since increased active damping
(derivative gain) is ineffective at low frequencies and causes noise amplification at high
frequency. Also, the high frequency pole (forward conical mode) results in voltage
saturation in the power amplifier. It with frequency increases with spin speed so
requiring phase lead, more derivative gain, larger currents at high speed, and finally the
coil voltage in the power amplifier would be saturated.

Effective MB control then requires a shift in strategy from providing phase lead by
derivative gain changes to canceling gyroscopic torques utilizing a multiple input-
multiple output (MIMO) control approach. The gyroscopic torque cancellation strategy
requires that control “pitch” torques be applied to the rotor in one plane that are
proportional to the shaft “yaw” angular motions in the quadrature plane. Hence the shaft
motions that are sensed near to the MB’s could be converted into coordinates that
approximately describe the translation of the shaft’s mass center and rigid body rotations
about it (“CG” coordinates). These form the inputs to the MIMO control algorithm. The
outputs of the control algorithm are CG force and torque commands that are converted to
force commands at the MB’s in both planes. The relationship between “CG” and “MB”

coordinates is presented in the Chapter IV.



From this discussion it is apparent that significant technical detail, as presented in
this paper, is required to apply the general algorithms for IPAC that appear in the
literature to actual satellite systems.

The demand of maintaining a jitter free environment on the spacecraft inspired a
novel contribution for utilizing band-pass filters that track flywheel spin speed to assist
in canceling shaking forces caused by the imbalanced spinning flywheel shafts at their
spin frequencies. The source of this force is that all magnetic bearings possess a passive
negative stiffness making them open-loop unstable. The orbit (vibration) motion of the
shaft section in the magnetic bearing combines with the negative stiffness to produce a
shaking force (transmitted force) on the satellite at the shaft spin frequency. The tracked
vibration component is inverted and routed through a gain stage to produce a signal for
nulling the negative stiffness induced shaking forces.

The flexible appendage models are utilized to introduce low frequency modes into
the plant as suggested to the authors by satellite design engineers. These may represent
solar panels or other mission related equipment. For sake of simplicity, the appendages
are modeled as uniform beams with very low values of equivalent Young’s modulus to
produce low frequency and lightly damped modes. Vibrations of the appendages during
an attitude control and power tracking cause low frequency, small amplitude oscillations
in the power transferred into or out of the flywheel array. These vibrations and the
ensuing oscillations are significantly attenuated by attachment of a “Vibration Control
Mass (VCM)” at the free end of both appendages. The optimal stiffness and damping of

the VCM are obtained with a simplified assumed modes model of the appendages.



The following sections attempt to answer questions posed by satellite design
engineers related to implementing IPAC: (1) Is satellite IPAC effective with structural
flexibility included in the bearings, flywheel shaft and appendages, (2) Is it possible to
stabilize all eigenvalues related to the flywheel-MB system in the IPAC system of (1),
and (3) Can low frequency appendage mode interference of IPACS be passively
suppressed.

Two variable speed control moment of gyros are presented to show simultaneous
attitude control and power transfer functions without interfering each other. The
dynamics and control laws of four standard pyramid configuration VSCMGs are
developed in the literature [4] and simultaneous attitude control and power tracking are
performed in [5] with four VSCMGs case. However, only two VSCMGs are utilized to
demonstrate successful IPAC service in this research.

1.2 Literature Review

Utilizing flywheels for energy storage on satellites was suggested as early as 1961
in the Roes paper [6]. Sindlinger [7] and Brunet [8] discussed the advantages of the MB
suspension of a flywheel for attitude control and energy storage. Flatly [9] employed a
tetrahedral array of four momentum wheels to consider the issues associated with
applying wheel control torques for simultaneous attitude control and energy storage.

Tsiotras [10] introduced a logarithmic term for a kinematical parameter in the
Lyapunov function that makes the controller corresponding to this parameter become
linear. Schaub et al [11] presented a nonlinear feedforward / feedback controller for a

prototype for large three dimensional rotational satellite maneuver and the actual closed



—loop controller and estimator matched very well with the dynamics predicted in the
feedback gain selection. This strategy for choosing flywheel motor feedback gains in this
paper was reference in the Chapter III and also Landmark-tracking spacecraft, Near-
minimum time and near-minimum fuel reference control torques were utilized in the
Chapter II1. Tsiotras et al [1] presented a control law for an integrated power and attitude
control system for a rigid satellite with momentum wheels/reaction wheels. Y. Kim [2]
outlined implementation of IPAC for a rigid structural satellite with SISO magnetic
bearing control system.

Okada et al [12] utilized a proportional, cross feedback control to stabilize a high-
speed rotor supported on magnetic bearings. Ahrens et al [13] also verified that the
cross-feedback control leads to better system performance and improved stability for a
flywheel-AMB energy storage system with strong gyroscopic coupling moments. U. Na
et al [14] presented algorithms for fault-tolerant control of heteropolar magnetic
bearings. Raoul Herzog et al [15] proposed a generalized narrow-band notch filter which
is inserted into the multivariable feedback without destabilizing the closed loop and has
advantages in terms of runtime complexity and analytical verification of closed loop
stability.

Sanjay P. Bhat et al [16] showed that a continuous dynamical system on a state
space that has the structure of a vector bundle on a compact manifold possess no
globally asymptotically stable equilibrium and they explained how attitude stabilizing
controllers appearing in the literature lead to unwinding instead of global asymptotic

stability. S. Parman and H. Koguchi [17] presented a three-dimensional rest-to-rest



attitude control of a flexible spacecraft equipped with on-off reaction jets, utilizing finite
elements for modeling of flexible solar panels and with a Lagrangian formulation for the
equations of motion. They applied time-optimal and fuel-efficient input shapers to
reduce the residual oscillation of its motion at several natural frequencies in order to get
an expected pointing precision of the satellite.

Magnetic bearing supported flywheels for energy storage and satellite attitude
systems [2, 18, 19, 20, 21, 22] appear in many publications, but without reference to
MIMO (GYRO) control for higher polar to transverse inertia ratio stability or to
utilization of band-pass filters for removing transmitted forces induced by the magnetic
bearing position stiffness.

NASA related flywheel R&D includes the pioneering work of Kirk et.al [23, 24, 25,
26] for improving energy density and for incorporating magnetic bearings. The work of
Kenny, B. et. al. [27] integrated sensorless field oriented motor control which was
successfully demonstrated at 60,000 rpm on a NASA flywheel. Christopher and Beach
provide a comprehensive overview of the NASA Glenn flywheel program in [28].

The dynamics and control laws of four standard pyramid configuration variable
speed control moment gyros are developed in [4]. Variable speed control moment gyros
(VSCMGs) combines the advantages of the single gimbal control moment gyro (CMGQG)
and reaction wheel (RW).It has rotation speed of RW and precession rate of CMG. Two
different control steering laws (velocity based and acceleration based steering laws) are
developed from the Lyapunov stability approach and compared simulation results with

classical control moment gyro. The weighting matrix is utilized to obtain minimum norm



solution (required torque) to achieve MRP attitude and angular velocity error regulation
problem. The simultaneous attitude control and energy storage using four standard
pyramid configuration VSCMGs were presented in [5]. In this literature, they used Euler
parameters for attitude kinematics instead of Modified Rodrigues Parameter shown [4].
The attitude control torque and power tracking torque are obtained from the range space
and the null space of dynamic matrix which is not N by N matrix and the velocity based
steering control law was employ to achieve given tasks.

The present research demonstrates the effectiveness of a cross coupled, MIMO and
AMB control approach for providing rotor-dynamic stability and vibration suppression
during a simulated IPAC maneuver with flywheel bearing and satellite flexibility
included in the model. The term cross coupled control signifies application of control
torques in one plane, i.e.) x-y, due to angular motion in the quadrature plane, i.e.) x-z.
This mimics the action of a gyroscopic torque which acts in one plane and is
proportional the angular velocity in the quadrature plane. The MIMO control
implements a strategy of gyroscopic torque cancellation, which reduces the dependence
of the forward and backward conical mode poles on spin speed. This simplifies the
control law by reducing its dependence on spin speed and reduces high frequency noise
amplification by lowering the frequency of the forward conical mode, and in turn

lowering the level of required derivative gain.



1.3 Contributions
This presented research contains the following unique contributions;

(1) Significant extension of prior IPAC simulation implementations to include
flexible shafts and satellite appendages along with MB suspended flywheel
system. The flexibility of flywheel shafts and satellite appendages are
considered for shaft higher mode and satellite solar panel model utilized by
finite element analysis.

(2) Novel approach to isolate satellite imbalance forces from flywheels. Band pass
filter stage is employed to diminish satellite transmitted forces due to residual
forces created from flywheel relative displacement and position stiffness.

(3) Application of MIMO (GYRO) control algorithm for higher energy density
flywheel (higher ratio of moment of inertia, /p/ Ir) including nonlinearity of
MB suspension component such as power amplifier saturation.

(4) Two single gimbaled flywheels called as variable speed control moment gyro
(VSCMQG) are utilized to demonstrate simultaneous attitude control and power
transfer functions without interfering each other instead of using four standard

pyramid configurations presented in the literature [5].
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CHAPTER 11

SYSTEM MODEL AND STRUCTURAL DYNAMICS*

2.1 Overview

The Integrated Power and Attitude Control (IPAC) system model and structural
dynamics including flexible flywheels and satellite appendages are developed in this
chapter. Each coordinate system is described in the section 2.2 and dynamic differential
equations are presented in the sections 2.3 thru 2.5. The translational and rotational
motions of one rigid flywheel [2] are derived first to obtain flexible system model. Each
finite element model comprised with N rigid disks has same differential form of one
rigid flywheel model.

Prior IPAC system control algorithm assumed that the flywheels are mounted on the
satellite with infinite stiffness bearings, thus contributing only spin degree of freedom
per flywheel (spin direction). However, in reality high speed flywheels will be supported
by magnetic bearing (MB). The MB’s compliance allows the flywheel to move with
additional degree of freedoms relative to the satellite. Modeling of flywheel shaft
flexibility adds even more degree of freedoms since its bending deformation provides
relative motions in the shaft fixed frame [29]. Finite element analysis is utilized to model
these flexible flywheel shafts and satellite appendages. The details are presented in the

sections 2.3 thru 2.5.

*Reprinted with permission from “MIMO Active Vibration Control of Magnetically
Suspended Flywheels for Satellite [IPAC Service,” Park, J., 2007, Journal of Dynamic
Systems, Measurement and Control, Accepted, Copyright [2008] by ASME.
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2.2 System Model Coordinates
The motions in the IPAC satellite model (Fig.2.1) are described based on the
following coordinate systems:
(a) An inertially fixed coordinate system for the satellite’s center of mass

translations: (7, 7,, ;)

(b) Four satellite flywheel housing coordinates to indicate the very small relative
motions of the flywheels with respect to the satellite at their housing (stator)
locations: (k.4 ., )

(c) Satellite body fixed coordinates for defining the satellite’s angular velocity
components: (§,,5,,5,)

(d) Four coordinate frames that precess, but do not spin, with the axisymmetric
flywheels. The flywheel inertias are constant in these frames, thus the frames
require only 2 instead of 3 angular coordinates to define the direction cosine
matrix for each flywheel: ( fisfos f3)

(e) Two satellite fixed coordinate frames are oriented along the undeformed

appendages. Relative motion coordinates (4,,d,,d,) define the small deflections

~

of the appendages with respect to these coordinate axes: (h h, . h )

a,1*"%a,2>"%a,3
Only (a) and (c) coordinate systems are shown in the Fig.2.1 due to complexity but the
rest of coordinate systems are depicted in the Fig.6.2 on pp.59 and Fig.6.3on pp.60,

respectively.



12

Fig. 2.1 System Model Configuration

2.3 Translational Motions of Flexible Flywheel and Appendage Models

The translational motion for one rigid flywheel module suspended magnetic bearing
is obtained from the coordinate configuration shown in the Fig.2.2. The detailed
explanation of each coordinate system is presented before. The relative flywheel and
appendage displacements respect to flywheel housing and appendage reference frame

are expressed as x, yin the Fig.2.2. Based on this coordinate; the translational motion of

a rigid flywheel in the flywheel housing frame [2, 29] can be expressed in equation (2.5)
and (2.6). Each flexible flywheel and appendage model can be divided into N disks
which have rigid body mass and inertia properties and is interconnected by flexible beam
type finite elements. Each disk is modeled as executing 3D translational and rotational
motion. The flexible flywheel and appendage for 2-noded, 6 degree of freedom per each

node are modeled with 3D beam type finite elements as illustrated in the Fig.2.3.
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n
f;,i =1,2,3: Inertial reference coordinates a,,i =1,2,3: Appendage body coordinates
§.,i =1,2,3: Satellite body fixed coordinates h:,_,. ,i =1,2,3 : Appendage reference coordinates
fl.,i =1,2,3 : Flywheel non-spinning coordinates A sl =1238 Flywheel housing coordinates

Fig. 2.2 Inertial, Satellite, Housing, Flywheel and Appendage Coordinate Systems

The mass-less, elastic beam elements connect rigid disks in the flywheel shaft and
appendage models. The equations of motion for these disks are identical to the rigid
body equations provided in the equation (2.5) and (2.6) except for stiffness and damping
effects from finite element model. For example, if one rigid flywheel and appendage are
modeled as 2 rigid disks connected by a flexible beam type element, respectively. The
translational equations of motion for each flywheel and satellite disk become equation
(2.7) thru (2.10) which has similar form of a rigid flywheel equation of motion written in

(2.6).
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Node.i-{™

Fig. 2.3 Nodal Degrees of Freedom for a 3-D Beam Type Finite Element

The nodal rotational and translational degrees of freedom of the 2-noded, 6 degree
of freedom per node beam element in Fig.2.3 are arranged in the element displacement
vector with the following convention

U,=lx;, yi z 6, 9)'i 0, X Yin Za O 9)',i+l 9z,i+1]T (2.1)

i

The diagonal lumped mass matrix and stiffness matrix for the beam element are
given in equation (2.2) and (2.3). It is important to note that equation (2.2) is shown only
to identify the inertia associated with each DOF. The mass matrix in (2.2) is not
multiplied times the 2" time derivative of (2.1) to obtain inertia forces, which are
instead obtained via the full 3D nonlinear Euler equations. Equation (2.4) describes a
proportional damping matrix [30] employed to account for the damping inherent in the
material.

Me:diag([mi m; m; Ip,i L, I, my m, m, Ip,i+l 1 It,i+l]) (2.2)

t,i



a;, 0 0 O O O —-a O 0 0 0 0
a;, 0 0 O a; O —a; O 0 0 a;
a;, 0 a; O 0 0 —-a; O as 0
S agc 0 0 0 0 0 —-a; O 0
Y a; 0 0 0 —-a; O ag 0
K = M agz 0 —aj 0 0 ay,
‘ M af 0 0 0 0 0
E a, 0 0 0 -a;
T a, 0 —-a; O
R as 0 0
1 a; 0
_ ¢ a; |
3]
(0
where

al =E‘A°/L, a, =12E°I, /L,  a,=6EI%/L al=12EI,/L
ai=—6E1 YL a,=GJ/L, as =4E°IS, /L, ay =2E°I;,/L,
a, =4E°I /L, a,=2E1YL,

2.3.1 Translational Equation of Motion for a Rigid Flywheel Model [29]
From Fig. 2.2:

.
m Xy, =F;

m A5), +1h,m1X = X!, XTh, 510, Y= F, = 2m, [h,s1Q, % (£), = m, {510, x ([h, s1Q, x X !

fls
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(2.3)

(2.4)

(2.5)

)} (2.6)

2.3.2 Translational Equations of Motion for a Pair of Neighboring Rigid Disks in

the Flexible Flywheel and Appendage Models

e i th Disk Translational Motion (Flywheel)

i,c

m (%), +[hnl X, =X/}, x(h,s,Q, }+F, +F, =

F=2m, [hs],Q X(%), —m, { Ly 51,9, %( [y 51,2, % Xihf/s) }

2.7



* i+1 th Disk Translational Motion (Flywheel)

h
mi+l.f { ( 1+l ) [h n]1+l 1+l/‘/s X[h S‘]H»l i+l 5} + E+l c + F;-H s

. h
Fly 2m:+1f[h 8§10 Avx(xiJrl),z _mi+l,f{ [h ) RO ( [h 8l l+lxXXl+lf/x) }

* i th Disk Translational Motion (Appendage)

m, AG)), +hnl, X, = X," X[h,s1,Q, J+F, +F,,
—2m, [h,s1,Q,,x(3,), —=m. ATh,s1,2Q,, x([h,s1,Q, xx",.)}

ia

e i+1 th Disk Translational Motion (Appendage)

l+l a{(yHI) + [h n]Hl l+lZ/_g X[h S]Hl i+, Y}+ E+l c + E+l s =
i+l,a l+l a[h S]Hl i+l,s X (yi+l )h l+l a{[h S]HI i+l,s ( [h S]HI i+l,s Xl/::l al v) }

where

X = )clhf’1 + )czh_ﬂ2 + x3hf,3 , y= ylh

a,l

+ Yol o+ Yl 5 R, = Rf,1§1 + Rf,2§2 + Rf,3§3
R, =R, 3 +R,,8,+ R s8> X = X+ Xy + Xohys XV, = x+[hsIR,

X", = (&), +[h,s1Q, xx +Th,sIQ xR, )5 X!, = (&), +h,s1Q, xx+[h,s1(Q, xR, )+ [hn]X

F, :Ke,(1:3,1112)Ue’ F,

i, i+l,s

= Ke,(7:9,1:12)Ue

T, = Ke,(4:6,1:12)Ue’ Ti+1,s = Ke,(10:12,1:12)Ue

is

F, C (13,112) U s Fy.= Ce,(7:9,1:12)Ue

C

T C ,(4:6,112) U ’ Ti+l,c = Ce,(lO:lZ,l:lZ)Ue

2.4 Rotational Motion of Flexible Flywheel and Appendage Models

16

(2.8)

(2.9)

(2.10)

The rotational equations of motion for a rigid flywheel model are derived in a non-

spinning coordinate system [2, 29]. The flywheel angular momentum vector is given by

(2.11) and the flywheel rotational equation of motion is obtained through differentiation

of the angular momentum vector.
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2.4.1 Rotational Equation of Motion for a Rigid Flywheel Model

H,=1,0,, where @ =Q +[fs]Q, 2.11)

d d
p= ) vy, xH =1, 2@ 4 151), 4wy, xH, =T, (2.12)
1O, +1,10, =T, -&,1,0, +(1,8, -@,1, | 12, (2.13)

2.4.2 Rotational Equations of Motion for a Pair of Neighboring Rigid Disks in the
Flexible Flywheel and Appendage Models

* i th Disk Rotational Motion (Flywheel)

Ii,f Qi,f+li,f L/s]; Qi,s+T Tm Tl Ii, Q', +(I,-,f Qi,f_(b,-,f I,-,f)[fs],-g,;s (214)

* i+1 th Disk Rotational Motion (Flywheel)

Ii+l,f Qi+l,f +Ii+l,f [fs]iﬂ Qiﬂ s +T;+lc +T;+l s (2 15)

Ti+1,f Wy Ii+1,f Qi+1,f +(Ii+1,f Qi+1,f _a)i+1,f Ii+1,f )[fs]m Qi+1,s

* i th Disk Rotational Motion (Appendage)

Ii,u Qi,u + Ii,u [as]i Q i,s +T; c +T; s T: a &)I,Ll Ii,u Qi.a +( Ia l(/l ):as K (2' 16)
* i+1 th Disk Rotational Motion (Appendage)
Ii+l,a QHI a + Il+l a [as]Hl i+l,s + ]:H c T +1,s = (2. 17)
Ti+1,a - E)M,a Ii+1,a Qi+l,a + (Ii+1,a Qi+1,a - &)Hl,a Ii+1,a ias]m ,+1 s

2.5 Satellite Rotational and Translational Equations of Motions
The satellite rotational and translational motions are described in (2.18) and (2.19)
in the case of no external forces. These equations are basically derived from

conservation of momentum theory.



2.5.1 Rotational Motion (No External Torques)

10,4010, :_z{j[ FSTT J}_z[j{ (34 Yo, (X054, )+ (x4, )x
3| St |5 S (620 o (2132
J=1

Jj=1

2.5.2 Translational Motion (No External Forces)

MX = _Z{Zn:[hﬁi”f Fy } - Z{i[h‘,,/"f Fa,j}
i=1 J=1

F,,

Jx(

]

F

a,j

)
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(2.18)

(2.19)
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CHAPTER III

SATELLITE IPAC MANEUVER AND FEEDBACK CONTROL*

3.1 Overview

The total IPAC system has mainly two different feedback control loops shown in
the Fig.6.1 on p.58, which are flywheel motor control and magnetic bearing position
control. This chapter will be discussed about flywheel motor control to achieve attitude
control and power tracking tasks and magnetic bearing control will be dealt in the next
chapter. For flywheel motor control matters in order to obtain stable satellite maneuver,
the Lyapunov stability approach is employed and derived as non linear state feedback
equation. As for as IPAC achievement concerned, the flywheel spin speeds should be
controlled in the sense of satellite attitude control and power tracking.

The satellite reference motion is designed by “bang-bang” control which is optimal
control for a rigid body minimum time maneuver. The structures of the “bang-bang”
control of a rest to rest maneuver through a principal angle are presented in this chapter.
The details of “bang-bang” control and “bang-off-bang” control are referenced in the
[11] for near minimum time and near minimum fuel maneuver.

Closed-loop error dynamics and root-locus analysis are utilized to determine proper
flywheel motor control gains. The closed-loop error dynamics could be expressed in the

linearized form with reasonable approximation.

*Reprinted with permission from “MIMO Active Vibration Control of Magnetically
Suspended Flywheels for Satellite IPAC Service,” Park, J., 2007, Journal of Dynamic
Systems, Measurement and Control, Accepted, Copyright [2008] by ASME.
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The torque and power distribution to each flywheel could not be determined uniquely
because the satellite has more than 3 flywheel modules (underdamped system). The
flywheel motor torque distribution and control gains are presented in the sections 3.3.3
and 3.3.2, respectively.
3.2 Satellite Reference Motion Design

Euler’s Principal Axis Theorem shows that a rigid body may undergo an arbitrary
three dimensional re-orientation by rotating about a single “principal” axis. A near-
minimum-time control law for single axis, rest to rest maneuver of a rigid body has the
form [31].

16 =u = +u,, fa, 1,, 1) (3.1)

(3.2)

2
f(AL,t,,1) 1_2(t tlj [3_2(1‘ tlﬂ’ for 1, <t<-LiAr=t,
A 2

where u_, and @ are one-dimensional quantities measured along the principal axis of

rotation.

Integration of (3.1) yields

é(t)=90+bt“‘7“.|‘l f(At,tf,Z')dT (3.3)

fo
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0(;): 90 + (t _to)éo + ul;ax J‘: J‘:I f(Al,lf,Tz)dTZdTl (34)

For rest-to-rest maneuver, we impose the boundary conditions
Attimez,=0: 6(0)=6,=0, 6(0)=6,=0 (3.5)
Attimer,: 6(;,)=6,, 6lt,)=6,=0 (3.6)

and upon carrying out the integrations implies in equation (3.3) and (3.4). We obtain the

useful relationship.

6, Iﬂ{l——a+—a2}tﬁ 3.7)

Let A= u"li in the equation (3.3) and (3.4). Plug (3.7) into A, then we obtain followings

~ 460

S (3.8)
(1-2a+0.40)2

The above equations (3.1), (3.3) and (3.4) can be expressed by (3.9) after plugged in;
6 =4f(Ar 1, 1)

> bfo

0(t)=A J'; f(ant, 2z (3.9)

0(t)= ZL; j: f(At,tf 7, )d7,dr,

If Euler’s principle axis of rotation is determined as /, then the corresponding angular

velocity, angular acceleration and Modified Rodrigues Parameters (MRP) are given by
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Q. .1)=16(r), Q ()=16(t) and o, (1) =ltan(6:(:)j (3.10)
The satellite reference motions such as angular acceleration, angular velocity, and

Modified Rodrigues Parameter (Q er,aw) can be obtained from (3.1) thru (3.10).

3.3 Flywheel Speed Control for IPAC

System control includes both position control for each of the magnetically supported
flywheels and control of the flywheel speeds for actuation and power transfer in IPAC
service. This section contains the analysis for the IPAC control law which consists of a
nonlinear, state feedback, asymptotic stable [16], tracking control law derived with a
Lyapunov approach [10]. The primarily purpose of feedback control is to eliminate any
non-zero attitude error so the reality model tracks the designed reference motion

presented in the previous chapter. The satellite angular velocity, Q , is defined in the

s

satellite body fixed frame and satellite designed angular velocity, 2  ,is coordinatized in

the reference frame.
3.3.1 IPAC Control Law

Consider the following candidate Lyapunov function [32,33] expressed in terms of
the tracking error and its time derivative in the (3.11) and its time derivative can be

obtained as (3.12) from remarkable results in (3.13)

V=L 60 1 6w+ 2k, Inl + 667 5) 3.11)
2

oo' 66 do” f(d0)ow _
1+ 00" o

V =0d I o+ 4k, =00 I v+ 4k, —— =00 (I 6>+k,00) (3.12)
1+ 00" 60
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1+ oo’ 6o

where 86 = f(00)0w, So” f(d0)dw= oo" S (3.13)

Let the term in the parenthesis of (3.12) be equal to—k, d@ , then equation (3.12) yields;

V =—k 00 w<0, forall dw andk, >0 where [ 6@+ k,00=—kdw  (3.14)

where k,is satellite angular velocity feedback gain and k, is a scalar gain for the attitude

error feedback. The angular velocity error and its time derivative can be written as (3.15)

and (3.16) in the satellite coordinates.
ow=Q —[sr]Q,, (3.15)

o ([4 ), =0, - :
sir=0, —[(dt[mjﬂw +[sr1szwj =0 -ale, ) i)

=Q —[sr1Q, +(Q,)x(Q, - dw) =Q, —[sr)Q,, + 6D Q,
where % ([sr]) = % ([sn] [rn]T ): % ([sn])[rn]T +[sn] % ([rn]T ) = —QS [sr]+ [sr]f)sr
The effective torque required for the actual motion is

r=10+010 orQ =170 -0.10) (3.17)

Pre-multiply equation (3.16) by 7 , to obtain equation (3.18) (error motion). Equation
(3.19) is obtained by substituting (3.17) into (3.18)

16 =1Q, —1][sr1Q, +1060Q, (3.18)

1.60=T,-Q1Q —1[sr]Q, +1060%Q, (3.19)

Equating equation (3.14) and (3.19) to obtain
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1660=T, -0 1.0 1[5, +1,66Q, =—k - k,00 (3.20)

L,=7,- [T, ] (3.21)
Then the flywheel control motor torques are obtained by substituting (3.21) into (3.20)

Z |:[fs]T T;nr :| = T,\‘ - QSI,\‘Q,\‘ - Is [sr]er + Isé‘m\ + k15w+ k250- (322)

where

TS:_Z[[fS]T ] Z[Z[hfts]( ;t/s mg; fl/n+X;t/s ,)} Z[Z[a S] }
—Z[Z[h ] (X:;/sxmu/X://n'i'X://sXFt,;):|

Equation (3.22) indicates that required flywheel motor torque to track designed
reference motion. The way selecting satellite attitude and angular velocity error feedback

gains, k, and k,, will be discussed in the next chapter. The Lyapunov function V is

positive definite and radially unbounded in terms of the tracking errors. The time
derivative of V given by (3.14) is negative definite without external torques. Therefore
the departure motion (3.19) and kinematical equation for the departure motion (3.13)
with the feedback motor torque control law (3.22) are also asymptotically stable in the
absence of external torques. In the presence of a disturbing external torque, the satellite
body angular velocity errors still decay to zero. However, the attitude error will converge

to a finite offset depending upon attitude error control gain (k, ). It can be also reduced

by choosing a large attitude feedback gain [11].
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3.3.2 Flywheel Motor Control Gain Selection [11]

The flywheel motor control gains, k, (satellite angular velocity control gain) and k,
(satellite attitude control gain) can be obtained from closed-loop error dynamics and
root-locos analysis. Assuming no external torque case, the closed-loop dynamics can be
written as differential form in the equation (3.14).It can be recognized that this equation
depends on angular velocity and attitude error. If satellite attitude error, d0 , is zero, then
the poles of equation (3.14) could be selected arbitrary by k,. The differential equation
for 00 depends quadratically on do which is given the first equation of (3.13).
However, this quadratic equation can be approximated by linearizing about 0o =0 as

shown equation (3.23)
00 ~ — (3.23)

After combining equation (3.14) and (3.23), the following closed-loop error dynamic

equation can be obtained.

56 0,, 025I,](dc
= 5 . (3.24)
ow| |-k~ -kl ||low

The root-locos method could be utilized to obtain the poles of equation (3.24) given
inertia matrix. If the inertia matrix and the angular velocity control gain matrix k,are
selected to be diagonal matrice, the equation (3.24) can be decoupled into 6 separate

equations as equation (3.25).

00, 0 1/4 oo, ]
{5&)} = {—k (Ii)—l —ki(li)_l}{é'a)} wherei=1,2,3 (3.25)
i 2\ s 1\ s i
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Also the roots of equation (3.25) can be solved as

2N\2
1| &, k, (ki
K e (lzj o

Fig. 3.1 plots the root — locos of equation (3.26). The attitude feedback control
gain, k,, can be selected only one (because of scalar), however, the angular velocity
error feedback control gain, k,, can be chosen for each body axis. If the closed-loop

dynamics is slightly underdamped system, the angular velocity gains can be expressed in

terms of the controller decay time constants, 7. .[30] and the scalar attitude feedback
control gain, k, , has the condition for the closed-loop underdamped system. The
following equations (3.27) and (3.28) indicate the expression of 7, and condition ofk,,

respectively.

ki=2I' ==, i=1,2,3 (3.27)

ky, >-——, i=1,2,3 (3.28)

It can be recognizable that k, and k, determine whether the closed —loop system is
over, critically or underdamped. Once the system is selected as underdamped, then only
k; determines how fast a state error will decay. The simulation results in the Chapter VI,
the controller decay time, T, is chosen as 4 [sec]. The linearized equation of (3.23) and

the assumption of a diagonal satellite inertia matrix are two approximation of this

analysis. Since the linearization of the Modified Rodrigues Parameters is valid for four
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times the rotational range of the Euler angles and the off-diagonal terms in the inertia

matrix are usually very small compared to the diagonal terms [11].

A Im
3
P2
k2 — (kl)
k,=0 I k,=0
\A \4 >/ Re
S, > P < P >
ko _ Kk
I 21!
v

Fig. 3.1 Root —Locus Plot of the Decoupled, Linearized Error Dynamics

3.3.3 Torque Distributions and Power Tracking [1]
The individual flywheel motor torques and the torque required by the satellite for
attitude control are related by;

T, = AT (3.23)

mt
where T, and 7, are the required motor torques applied to the flywheel and satellite,

respectively and A is the 3Xn system configuration matrix (7 is number of flywheel)
with columns equal to the unit vectors of the flywheel housing coordinate axes. The

solution of (3.23),T,,, is a linear combination of vectors belongs to the range space of
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matrix A . If the number of flywheel modules is less than 3, the system is over-
determined and a solution may not exist. If the number is 3, the solution is uniquely
determined and if the number of flywheel modules exceeds 3, the system is
underdetermined and there exist an infinite number of solutions. For this paper, the
satellite has 4 flywheel modules which form an underdetermined system. One useful
solution is the minimum norm solution obtained by using a pseudo-inverse. The general

solution for 7, is given by

T, =A'T +T, where A'=A"(AA")' (3.24)

The vector A'T belongs to the range space of A" and T, belongs to the null space
of A, in other words, AT, =0 so 7, does not affect the satellite motion. Simultaneous

attitude control and power tracking require that the torque satisfy the following set of

AY (T,
)¢}

The second constraint of (3.25) is written as ;. (A*TX +Tn): P

linear equations.

Define the modified power as
P, = P-w AT, = T, (3.26)

The power torque, 7, , belongs to the null space of the configuration matrix A ;

therefore there exists a vector 77, in the null space which satisfies,
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T =Py (3.27)

n n

where p =1 - A" (AAT)"1 A is the orthogonal projection matrix onto the null space of A.
Thus equation (3.26) can be expressed by @} P,y = P, which after substituting (3.27), has
the minimum norm solution

n=po(fpo) P (3.:28)

m

Finally, the power tracking torque is given by equation (3.29)

T,=Pw, (0 Pw,)'P (3.29)

m
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CHAPTER 1V
MAGNETIC BEARING SUSPENSION SYSTEM WITH MIMO

(GYRO) CONTROL*

4.1 Overview

The high speed flywheels will be suspended by magnetic bearings (MB) which have
minimal loss, do not require lubrication and operate very well in a vacuum. In previous
IPAC control algorithm model assumed that the flywheels are mounted on the satellite
with infinite stiffness which can execute only rotational motion. In the MB feedback
control point, the flywheel needs additional degrees of freedom (This chapter presents 5
axis MB feedback control loops).

The MB control algorithm is complicated by the presence of speed dependent poles
that result from gyroscopic moments of the spinning, vibrating shafts. The effect of
speed dependent poles is magnified as an increased energy density demand on the
flywheel is met by increasing the ratio (Ip / I7) of the polar to transverse mass moments
of inertia of the spinning rotors. The rigid body gyroscopic poles asymptotically
approach 0 [Hz] (backward pole) and (Ip / Iy) times spin frequency (forward pole)
producing a very low frequency pole and a very high frequency pole for Ip /Iy > 1. The
forward conical pole’s frequency increase with speed and need phase lead and higher

derivative gain at the high frequency, furthermore, time derivative of current, L-di/dt,

*Reprinted with permission from “MIMO Active Vibration Control of Magnetically
Suspended Flywheels for Satellite IPAC Service,” Park, J., 2007, Journal of Dynamic
Systems, Measurement and Control, Accepted, Copyright [2008] by ASME.
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gets higher in the power amplifier causing current and voltage saturation. This
complicates the control task since increased active damping (derivative gain) is
ineffective at low frequencies and causes noise amplification at high frequency. As the
results, the general single input single output (SISO) control is not appropriate in the
case of higher polar and transverse moment of inertia ratio to lower the frequency of a
forward conical mode.

Effective MB control then requires a shift in strategy from providing phase lead by
derivative gain changes to canceling gyroscopic torques utilizing a MIMO (Multiple
Input — Multiple Output) control approach. MIMO will lower the frequency of the
forward conical mode by canceling some of the gyroscopic moment which requires less
gain at the high frequency and coil voltage in the power amplifier will not saturate. The
details of MIMO control strategy will be discussed in the sections 4.2 to 4.7.

In general a magnetic bearing (MB) suspension system includes position sensors,
feedback controllers, filters, power amplifiers and MB actuators. Each component will
be briefly presented in this chapter. Fig.4.1 and 4.2 show feedback diagram of a typical
magnetic suspension system and a diagram of a flywheel with a magnetic bearing

suspension, respectively.
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Transform to CG coordinate Transform to MB coordinate
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Fig. 4.1 MB Suspension System Feedback Control Diagram for MIMO (GYRO)
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Fig. 4.2 Flywheel System with Magnetic Bearing (MB) Suspension
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The flywheel’s center of gravity, “CG”, coordinates include the center of gravity

translational motions (y and z) and the rotational motions of shaft’s rigid body 6,.6.)

shown below. The “y-z” coordinates, referred to in the introduction as “MB” coordinates,
are (y,,z,,v4.2;) as shown in the following Fig. 4.3 and typically refer to the shaft
motions at the sensor and/or actuator locations. The following analysis relates the “CG”
and “MB” coordinates and equation (4.1) indicates the relationship between two

different coordinate systems.

y Z
By 0 X x Ay B,y gyf' X Ay
I T I N
y BT E Ya ZBT E T4
TS L, L, Lo
Fig. 4.3*“CG” and “MB” Coordinates
Ya L0 0 I, |y
ZA _ 0 - lA 1 0 0y (4 1)
Vg 1 0 0 -4z
%l 10 L, 1 06

where[y, z, v, z,J and [y 6, z 6.] are MB Coordinate and CG Coordinate,

respectively.
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4.2 Position Sensor

Magnetic suspensions typically utilize eddy current, optical or reluctance based
sensors. Approximately, the transfer function of position sensors could be expressed as a
linear first order form shown in the Fig.4.1 where 7 is time constant determined by
cutoff frequency of the sensor characteristic and ¢ is the sensor gain. The bandwidths of
these devices are typically > 5 [KHz] so they are treated as ideal, infinite bandwidth
devices, with sensitivity-gain.
4.2.1 Voltage and Displacement Errors at Position Sensor

Fig.4.4 shows the orthogonal sensor pairs at the A and B bearing position and the
conversion of the position errors to voltage errors for input to the feedback controller

stage.

[ : Position Sensor

Fig. 4.4 Position Sensor Output Voltages

The voltage errors can be expressed in terms of the position errors as shown in (4.2):
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Al (v =Vt (G =T (8 00 00 0 |fey

A = A‘;B _ VYSI; _VYSI;T _ ;lfB Y BS - ; YSB Y BSYT 0 évlfB 0 0 €yp
A [T ysSs _ySsT () S s _ 7S S.T N

A Vo=V $onZi =802y 0 0 &, 0 |len

AVZB VZS _VZ%T ZSB 'Z; - ZSB 'Zzg’T 0 0 0 ZSB €z
or A =¢° g 4.2)
g ;A 0 0 0 YAS - YAS’T €ya
where {5 = 0 é’}fB 0 0 s g = YBS _YBS’T _ )6
0 0 ¢ 0 Sozs -z e,
0 0 0 ¢y Zy-2;" 7

4.2.2 Motion Coordinate Transformation

Fig.4.5 presents a diagram to determine the approximate rigid body motion
coordinates transformation from the measured MB coordinates voltage error at the
position sensors. This approach can be justified since the flexible modes are typically

above 1 [KHz]. The rigid-rotor model frequency analysis is provided in the section 6.3.

CG

C\
ZBS lAS

Fig.4.5 Motions Coordinate Transformation



36

The approximate rigid body motion coordinates are given by (4.3):

S_
Y:[ Lis J-YAS+( Las j-Y;, QZELA Y:[ 1 J-Y,f—[ 1 ]-Y
lAS + lBS lAS + lBS lAS

lAS ZAS

l ! S —
z:(“}z;{ A5 J-zg, eyz—ZA Z:—(lj-zj+(1]-z
lAS +lBS lAS +lBS lAS l l

AS AS

4.3)

Voltage errors in the Y,8, and Z, 8, coordinates (“CG”) are expressed in terms of the

sensor error voltages from (4.2) and (4.3) as

€y =Y-Y'= Vva 'A‘;A + Vs 'A‘;B’ €y =0,—0, =W N, +VWy, e
“4.4)
€; = z-7"= V4 'AVZA + Vs 'AVZB’ ey =06y _QYT =W 'AVZA TWes €y
A matrix form of these equations is given by the following
ey Yia e 0 0 A,
- Cor | _ 0 0 Yoi TVWo2 Vu Vs Vs A‘;B
e, 0 0 Yo A A,
€ Vo YW Vi Ve Vs 0 0 AVZB
or &y =Ty A (4.5)
where 5 _ by Lys -1

1
9 7 = l// = > (// = —
(ZAS + lBS )é/i’gA v (IAS + lBS )é‘)‘fB ! lAS : §;A 2 l

L S VL T S
“ (lAS + lBS );gA @ (lAS + lBS )553 o lAS : ;;A e
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4.3 Power Amplifier

The power amplifier transforms controller output voltages (V) to currents (i, )

that flow through the magnetic bearing coils from the Fig. 4.1. Pulse width modulated
(PWM) servo amplifiers are commonly used in the MB system due to low power
consumption and accurate tracking of the demanded currents. A simplified feedback
model of a servo amplifier including nonlinearities such as voltage and current saturation
is shown in the Fig. 4.1. The closed loop system transfer function of a servo power
amplifier may be represented in a simplified form with proportional gain (Kp,), feedback
gain ( ), coil inductance and resistance (L, R) as (4.6).

Fig. 4.6 describes that typical first order representation of PWM including current
servo transfer function which plotted in the dashed line. The current servo dynamics
could be model with coil voltage, V.., resistance, R, and inductance, L, as mentioned
before; coil voltage will be saturated at the high frequency because inductance term in
the voltage expression could be large. The high frequency of pole could not be lowered

without canceling the gyroscopic moments in the high energy density flywheel case.

N
S
~
95)
4+ |~
=
SEN
=
v

Fig. 4.6 First Order Transfer Function of PWM
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G, () =1 — Ko (4.6)
V LS+(R+y-K,.,)

ctrl

where Kps and J can be selected by matching the transfer function t a first order filter

considering the overall gain and bandwidth [2].
4.3.1 Control Currents

The dynamics (bandwidth) of the servo power amplifier is neglected for sake of
illustration of the IPAC and AMB system vibration control. Therefore the actions of the
power amplifiers may be approximated by control voltage multiply power amplifier gain

which is shown (4.7) in the matrix form.

| |KJ 0O 0 0
. PA -
= || 0 Ky 0 0 or i, =K" V. 4.7)

lpa = =

iy 0 0 KJ o
iy o o0 o0 K2

= =

=

IS

4.4 Magnetic Bearing — Actuator

The forces produced by a MB actuator on the spinning flywheel shaft are nonlinear
function of currents and shaft’s relative position in the actuator clearance space. A MB
actuator for satellite application will most likely incorporate permanent magnets to
supply a bias field to minimize ohmic losses. This MB type has flux paths and other
features that require a more complex model. Thus for the sake of the illustration
purposes assume that an electromagnetic biased MB is utilized. Fig.4.6 [2] shows one
axis of this MB actuator including coils, forces, and their currents. Equation (4.8)
provides a representative form for this force when produced by an electromagnet biased,

opposing pole, heteropolar type MB. The way to obtain the (4.8) and (4.9) will be briefly
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discussed in the following

Fig. 4.7 C-core Electromagnet and Rotor Lamination Stack

The total magnetic bearing force produced in the Fig.4.7 including magnetic flux

density (B), cross section area (A) and magnetic field constant ( £,) can be written as
(4.8) [34] and flex density (B) can be obtained simple form by Ampere’s law and
conservation of flux in the circuit thatis ® =B A;.

Ampere’s law is §Hdl = N-i and can be writtenas H -/ +H -l +2H c= N-i from
Fig. 4.8(a). The flux intensity ( H ;) can be also converted as B,/ u; based on linear

range of B-H curve. Therefore, it can be obtained the following relationship (4.9) thru

(4.11) from above equation and Fig.4.8(a).

F=—1tt__~ P (4.8)

B
| +22%¢c=N-i (4.9)
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s [+ s [, +2

ﬂSAS ILIVAV ﬂUA()

c=N-i, (4.10)

R®+R®+2RP=N-i (4.11)

4—_
Hs 4 ls .
N,i
H,,c H,c
Az At gap
Hr ’ lr Rr
—>
(a) (b)
Fig. 4.8 Equivalent Magnetic Circuit
where R; = . and for a good magnetic conducting material &, >> i , u, >> i,

M4,
yields R, << R, and R, << R, then the equation (4.11) can be shorten as 2R, ® =N -i

from equivalent magnetic circuit shown Fig.4.8(b), therefore, the flux density (B) in

as equation (4.12) then after

oo ?

(4.8) can be derived from equating P = % and® =B A

o

inserts (4.12) into (4.8); the magnetic force can be expressed as (4.13) where i" =i, +1i,

andi” =i, —1i

c*

p = Nt 4.12)
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(4.13)

1 2 (ib +i )2 (ib —i )2
F=-Nu,A o) L
4 to p{(c—xc  e+x)

The standard linearized form for the magnetic bearing force expression can be

written as (4.14). The MB position stiffness (K, ) and current stiffness (K, ) are

cur

obtained by differentiation of the (4.13) with respect to the rotor displacement, x., and

the control current, i, about the operating points which are typically x, =0and i, =0.

2 ) 2 .
F _ N ll'loAplb X + N ll'loAplb

3 ¢ 2
c c

i =K x +K,_i 4.14)

pos ¢ cur-c

In this paper, the following properties are utilized for MB stiffness calculation where
N =(13), u,=12.56e-7 [N/A?], A,=6.7¢e-4 [m’], c=5e-4 [m], ¢ — x,is air gap.

The force, position and current model represented by (4.14) applies only for a
certain type of magnetic bearing. The model is included here for the sake of illustration.
More complex bearings and bearing models, which include eddy currents, fringing and
leakage effects are discussed in [35].

4.4.1 Control Current Forces

Let K, represents the current stiffness matrix. The MB control forces can then be

expressed as (4.15).

Fy, K, 0 0 0 ||iys
FBRG _ Fyy |0 K w 0 0 )i
RO = =

F, 0 0 K, 0 [liy
F, 0 0 0 Killis

or F°=K,_ i =K, i, (4.15)

cur c
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4.4.2 Transformation Matrix

The force and moment coordinate transformation matrix from AMB coordinates to

CG (rigid body) coordinates is obtained from Fig.4.9 and is given in equation (4.16)

A Y A7
FS FS \
0, \ 6y
' T y'y > X X «— - '\‘ i
. LG . F§, CG Ff,
FYB FYA
lBM lAM lAM lBM

Ff 1 1 0 0 |[FS
FCCG _ MZCY _ 0 0 - lAM lBM Fyz;
F, 0 0 1 1 ||F,
Mo Ly =l O 0 ||Fy

or F =TS Fr (4.16)

BRG

Substitute equations (4.7) and (4.15) into (4.16) to obtain the control forces in the

CG (rigid body) coordinates can be shown (4.17).

F&O =Ty  F =Ty Koy K™ Vg (4.17)
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4.5 PID Control

Magnetic suspension control laws vary widely according to the particular
applications. These include both plant based versions such as H-infinity, QR, sliding
mode, etc. or variations of basic PID control. A simple PID type control is described
here for sake of illustration. Filter models are included to represent the natural roll off of
power amplifiers, sensors and actuators, to include effects of anti-aliasing and smoothing
filters and for filter stages intentionally programmed into the feedback path for noise
rejection. The parallel PID paths are shaped to suppress noise or prevent DC instability
and typically have a form similar to;

1 1 S
G (s)= G, (s)= G (s)=—-— 4.18
) 7,5+l /) Ts+1 46) (r,s+1) 19

For the example presented the PD controller is implemented with equal time
constants 7, and 7, which are selected to make the cutoff frequency [ f.=1/ 27[1'] equal

to 1024[Hz] for both proportional and derivative paths.
4.5.1 PD Transfer Function with Unity Gain
The position error voltage terms are differentiated in the controller yielding a rate

feedback variable as shown Fig.4.10 where T,,(s) =T, (s) =T, (s)=T,(s) = 1/(rps + 1)

and T, (s)=T, (s)=T,, (s)=T, (s)=s/(1,s +1)° in (4.18).
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Fig. 4.10 Unity Gain PD Transfer Function Stage

4.5.2 PD Gain Stage for MIMO (GYRO) Control
Fig.4.11 shows the proportional, derivative and cross coupling gain stages between

the tilt directions to form the MIMO, coupled controller. The cross coupled gains (G

CKé
and G, ) could play a significant role to cancel some gyroscopic moment producing high
frequency forward conical pole in the case of high energy density demanding task. This

gain stage is main difference between SISO and MIMO control schematic. Either G,

or G, is zero case, the magnetic suspension system will be unstable and effective

stiffness and damping will be presented in the last section of this chapter.
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Fig. 4.11 MIMO-GYRO PD Gain Diagram
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Fig.4.11 can be represented by the matrix equation form shown (4.19)

F:(PC ceq; + D, ‘egG) 4.19)
G /2 0 0 0 GP12 0 0 0
where p _| 0 Gup/2 0 Gy 12 |, b | 0 —Ggl2 0 Gp 12
¢ 0 0 G2 0 ¢ 0 0 G2 0
0  G2/2 0  Ggl2

0 G5/2 0 —Gupl2

_ T . . . . T
F= {F w Fo Fp Fyg }T ) egc = { €yp Cop €zp e&’zp} ) eé)c = { €pn €ap €zp e&’zu}
4.6 Output Coordinate Transformation Stage

Fig.4.12 is diagrams for converting the rigid body coordinate control signals into the

2 pairs of orthogonal magnetic bearing actuator coordinates.

N3
=
~
»
L

»

FILT §
Fyy

] o]

FBIF/ILT =due to 62/-_\
]
X T WCG | T

Fig. 4.12 Diagrams for Output Coordinate Transformation

Low pass filter, lead/lag compensation and notch filter stages are arranged in series

at the output end of the controller. A band pass filter is also utilized to aid in canceling
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magnetic bearing forces at the spin frequency due to rotating, mass imbalance. These
stages are illustrated in Fig. 4.1. The outputs of the filter stages are represented by

EN BN Ff"and FJ)" , these quantities are in the rigid body coordinates and must be
transformed into the magnetic bearing actuator coordinates. The transformations are
provided in the following equations (4.20) and (4.21).

FILT _ Y7 ~
Fyy" =V +Vy

~

FH?LT =Ly 'VY —lon Vig

(4.20)

FILT _ 7 5
F," =V, +Vy

~

FélLT =lpy "72 SR

v, Ly 10 O7(Fm
golVel Ul —1 0 ORI ooy EmT (401)

Vol L+l | 0 0 1, —1||F2
) 0 0 1, 1| Fm

I, 1 0 0 Flr

where  __ 1 Ly =1 0 0| gapnd FT _ F

M40 0 1, -1 v

AM BM BM 77
0o 0 1, |1 Fo

The final output voltages from the controller are obtained by applying gains to

compensate for differences in gains that are external to the controller, i.e. the sensors,

amplifiers and magnetic bearing axes,
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ﬂYA 0 0 0 VYA Via
- 0 By O 0 |V,|_ - 5, where Vig (4.22)
V = ~YB = . V ’ V = :
CTRL O O ﬁZA 0 VZA ﬁ ouTt CTRL VZA
0 0 0 Bullv, Vs

4.7 Effective AMB Stiffness, Damping and Gyro Cancellation Torque Coefficients
Although the AMB model presented here possesses a finite bandwidth, it is
instructive to consider an infinite bandwidth approximation in order to identify

equivalent stiffness, damping and gyro torque coefficients. For this ideal case, the filter

output ( F ") equals the filter input ( F ). Equation (4.17) becomes

-CG _ mnCG T-BRG _ 77 CG T PA Y7 7 CG - PA Il
FC - TBRG ’ Fc - TBRG ' Kcur K ’VCTRL TBRG K K IBOUT MFT F

:i;fe(é (K K™. IBOUT)‘TMFT'(PC'egG"‘Dc‘egG) (4.23)
A, 0 0 0
0 A 0 0 (4.24)

where
ﬂ'YA KPA ﬂYA’ ﬂ'YB = KlifB 'Kg? 'ﬂYB
lZA:K;A'KZPf.ﬁZA’ ﬂ’ZB:KéB.KgBA'ﬂZB

Further assume that the power amplifier and current stiffness gains are identical for

all axes, so KJ -K;’A can be expressed as K' - K™, and assume that the #’s are tuned to

make
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Ap=Ayp=A, =4, =K -K™" (4.25)
The control forces in the CG (rigid body) coordinates become:

FCCG :T}ificG; (K, K™ 'IBOUT)'TMFT ) (PC 'egG + D¢ 'egG)

cur

G 0o 0 0 e G’ 0 0 0|4
_KK" 0 Gy 0 =G [ | [ K'KMI O Gy 0 GoglJen | (4.26)

210 0 G 0 |l 20 0 G 0|¢

0 Gyw 0 G |ley 0 -Gy 0 Gplléw

The active stiffness and damping in the CG coordinates are then obtained by

comparing (4.17) with (4.26), yielding

i PA
F = mé, = %{65 e, +Gy 'éy} (4.27)

c . . _K'K™y b .
My, =1 ép + 1,064 = —{Gay "oy —Gegg o + Gy gy + Gy 'eaz} (4.28)

i PA

Ff =m,é, =%{G§ e, +G2 6} (4.29)

c . . _K'K™ g b .
Mg, =1 éq 1,0, = —{Gez g + G oy +Ggp g — G 'eey} (4.30)

Therefore, for the ideal, non-saturated and infinite bandwidth case, the effective stiffness

and damping matrices are:

Kyy Kyow Kyz Kyg G, 0 0 0
R - Kyy Kyow Ky, Koo _ K'K™| 0 GHSY 0 =Gy 4.27)
- KZ,Y Kz,ey Kz,z Kz,gz 2 0 0 GZS 0
Kyy Koo Ko, Kgpao 0 Guy O G,,
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..<
N
A

Y.z Gy 0 0 0

wee | K'K™| 0 G, 0 Gg (4.28)
7.6z 2 0 0 G, 0

. 0 -G, 0 G,

Y.or

a
sgﬁ
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N N
SIKe)

Equations (4.27) to (4.30) may be inverted to solve for the required MIMO gains in
terms of the required natural frequencies and damping ratios as
(1) “CG” control gains:

2 2
GS _ 2mfa)0yl D — 4mf cylwcyl S _ 2’ITa)con D — 41T§conwmn

Y_KiKPA’ Y KiKPA ’ 6’Y—KiKPA’ oy KiKPA
G =GS, G? =GP, G? =G” and G°, = G2

(2) Gyro control gains

2.IP.0)5 in
Go =WPAP’ Gcxo :O.S-Ggy

The gyro control gains, G, and G, , are positioned in equation (4.26) to buck

(cancel) a portion of the natural gyroscopic moments that result from spinning the

flywheel.
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CHAPTER V
VIBRATION CONTROL OF FLEXIBLE APPENDAGES AND

FLYWHEEL UNBALANCE ISOLATION*

5.1 Overview

This chapter presented the methods that reduce flexible satellite appendage’s
oscillation and flywheel imbalance force transmitting to satellite. The vibration control
mass (VCM) is placed on the ends of each appendage to demonstrate its effects. The
notch filter and band-pass filter stages are also analyzed in this chapter. The imbalance
force due to unbalanced mass could be reduced by positioning the center frequency of a
notch filter at the flywheel spin speed in the feedback path of the magnetic bearing
supported system, however, there still exists another components of force which created
by position stiffness and flywheel relative motion. Section 5.3 will discuss about more
details how to eliminate the residual magnetic bearing dynamic forces.

5.2 Vibration Control Mass (VCM) to Suppress the Oscillation of the Satellite’s
Flexible Appendages

A machine or system may experience excessive vibration if it is acted upon by a
force whose excitation frequency nearly coincides with a natural frequency of the
machine or system. In such case, the vibration of the machine or system can be reduced

by utilizing a dynamic vibration absorber [36].

*Reprinted with permission from “MIMO Active Vibration Control of Magnetically
Suspended Flywheels for Satellite IPAC Service,” Park, J., 2007, Journal of Dynamic
Systems, Measurement and Control, Accepted, Copyright [2008] by ASME.
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Fig. 5.1 Vibration Control Mass (VCM) Model

For the classical vibration absorber case, VCM approach in the Fig.5.1(a) can be
modeled as Fig.5.1(b). The equations of motions, steady-state solutions and more

analytical parts are given by [36]. The optimum damping ratio can be calculated as,

) 3u
= 5.1
optimum 8(1 + /,l)S ( )

where g =m,/m, from Fig.5.1(b) [36]. In the case of 1.35[kg] vibration control mass,

the mass ratio (#)=0.3 and ¢, . =0.2236 which is similar with in the Table.5.1.

timum

For illustration of VCM approach, assume that a flexible appendage behaves similar

to a cantilever beam with deflection pattern,

L

e=(2] a0 52)

where ¢,(¢) is a generalized coordinate for the beam’s deflection. The equations of
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motion for the VCM in Fig 5.1(a) and the beam coordinate becomes,

PAL {él} [c —c}{q}} Lk —k {ql}_m
5 .ot G 5 =
0 m, q, —Cc ¢ |49 —k k|42 0
or Mg+Cqg+Kqg=0 (5.3)

AL
Where,q:{q‘}, leps 0

q,

The first order form of this equation can be written as

X = AX where A= 0 I, and x =17 (5.4)
-M7'K -M™'C q

The damping ratios (£, ) may then be obtained from the eigenvalues of A as

£ - abs|(real pai"t of ezgenvalue)i] i=123.4 (5.5)
abs[(elgenvalue)i |

The VCM'’s attachment stiffness and damping were selected to maximize the 1%

mode’s damping ratio as illustrated in Table 5.1.
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Table 5.1 VCM Damping Ratios VS VCM Attachment Stiffness and Damping

mpylkgl Cop [Ns/ml K, [N/m] & & & &, &
0.45 0.9065 10.767  0.1136  0.1136  0.1398 0.1398  0.1136
1.35 6.1197 32310 02757 02757 02491 02491 0.2491
2.25 10.202 39.672  0.3240 0.3240 03286 0.3286  0.3240
3.15 14.280 43575 03950 03950 0.3878 0.3878  0.3878
4.05 18.370 45900  0.4888 0.4888  0.43 0.43 0.43

5.3 Flywheel Unbalance Isolation

Mass imbalance of the flywheel creates a force at its spin frequency, which in turn
causes a time varying error in the magnetic suspension position control at the spin
frequency. This may be very undesirable since the ensuing vibrations can interfere with
the proper operation of onboard, precision instrumentation. This may be rectified by
positioning the center frequency of a notch filter at the flywheel spin frequency in the
feedback path of the magnetic suspension control. Equation (4.14) shows that there still
exists another component of force at the spin frequency due to the position stiffness and
flywheel relative displacement. This force is proportional to the relative vibration of the
rotor with respect to the stator, and so the force may be cancelled by band-pass filtering
this relative vibration at the spin frequency, and then multiplying this signal by an
appropriate gain to create forces that opposes the position stiffness related forces. The
characteristic of notch and band-pass filters are presented in the Fig.5.2, and the transfer

function of standard second order notch filter is shown in the Fig.5.3. It could be
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implemented to eliminate sensor runout disturbance with its own characteristic which
reduces the input signal around a specific frequency and its characteristic is determined
by the center frequency of the filter (flywheel spin speed) and Q factor.

The band-pass filter is modeled as a second-order transfer function as shown in
Fig.5.3. It is a filter that passes frequencies within a specific range and rejects
frequencies outside of that range. The Fig.5.2 utilized that Q =50 for notch and band-pass
filter, k =1 for band-pass filter and flywheel spin speed is 40000[rpm]. In addition, a low
pass filter is utilized in the flywheel motor torque feedback loop to remove high

frequency components.

(a) Characteristic of Band Pass Filter
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Fig. 5.2 Characteristics of Band-Pass and Notch Filters
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Fig. 5.3 AMB Control to Attenuate the Forces at the Spin Frequency

The output amplitude of the band pass filter at the flywheel spin speed isQ - x/ @,
where Q is the band-pass quality factor, w is 40000[rpm] and X represents the relative

vibration (displacement) at the magnetic bearing actuator location. The total magnetic

bearing force at the spin frequency is expressed asF,, =K, -x+K_, -i,, - The forces

pos
applied to the satellite by the magnetic bearing actuator, at the flywheel spin frequency,
will therefore be null if it is assumed that the power amplifier gain is 1 [A/V] and the

N . K
gain & in Fig.5.3 is selected as g =——+=. 2.
K. ©Q

cur
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CHAPTER VI

NUMERICAL SIMULATIONS*

6.1 Overview

The numerical example results are presented in the Chapter VI. This chapter has
mainly separated 7 sections. The satellite including flexible appendages and their finite
element model are shown in the section 6.2. As far as total system coordinate concerned,
inertial reference and satellite body coordinates are described in the Chapter II and the
rests of coordinates (flywheel, appendage and each housing reference) are shown in this
chapter. Also, the system parameter values for the numerical results are tabulated. The
validation of finite element model for flexibility is presented in the section 6.3 and
compared analytical solution with finite element model results. The satellite reference
motion and responses including MB suspension and flexibility are discussed in the
section 6.4. In the section 6.5 and 6.6, MIMO active magnetic bearing suspension
system results are compared with SISO control case and vibration control mass effects
on flywheels and flexible appendages motions are shown, respectively. The last section
is about isolation of the satellite from flywheel’s mass imbalance forces. Notch and
band-pass filters are utilized to reduce transmitted force to satellite.

The present simulation model comprised with two different types of feedback

controller. The first one is the flywheel motor toque control for satellite attitude control

*Reprinted with permission from “MIMO Active Vibration Control of Magnetically
Suspended Flywheels for Satellite IPAC Service,” Park, J., 2007, Journal of Dynamic
Systems, Measurement and Control, Accepted, Copyright [2008] by ASME.
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and power transfer and the other is magnetically suspended flywheel position control.
Fig. 6.1 explains the details of these two feedback control loop. FB1 and FB2 indicate
that satellite attitude and power transfer feedback control loop, respectively. FB3 shows
the flywheel position feedback control loop. AC1 and AC2 are motor torque applied to
flywheel and MB actuator acting on the flywheel, respectively. AC3 is satellite solar
power charging, whenever the satellite towards to sun, it stores excessive energy using
either chemical battery or flywheel energy storage system. TG is like supervisor to

command target motions.

FB 1
Motor ., Power | Motor
Controller Amplifier Generator
, | AC1
FB 2 P
16— Flywheel [$ 3] Satellite
A
AC2
MB Power Actuator AC3
Controller Amplifier (MB)
Solar
Panel

Fig. 6.1 IPAC System Feedback Control Loop
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6.2 Model Description

The overall configuration of this example employs four rigid flywheels aligned in a
tetrahedral shaped array and two flexible appendages attached to the satellite in the
Fig.6.2 [18]. The mass centers of the flywheels and appendages are offset from the

satellite mass center by distances R and A , respectively. Each flywheel’s housing is

assumed to be rigid and have a rigid attachment to the satellite. Each appendage’s
motions are referenced to a fictitious rigid “appendage reference” which coincides with
the appendage centerline in the zero motion state as depicted in Fig.6.3. Fig.6.2 indicates

that the flywheel housing body coordinate axes, ;

o of module 1, 2 and 3 are separated
by 120 degrees from each other, and their spin axes make a 19.471[deg] angle with
respect to the satellite S5, plane. Module 4 is perpendicular to this plane and pointed
along the —§, axis direction. All flywheel spin directions are in the clockwise sense as
viewed from the satellite coordinate origin. It is assumed that the satellite inertias

include the effects of the flywheel housings and that the MB centers coincide with the

flywheel housing center lines.
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YcCMm

Satellite appendage Satellite appendage

Fig. 6.2 Tetrahedral Array of Flywheels Attached to the Satellite

Vibration Cémtrol Mass (=1.35[kg])

Flexible Connection

/ Massless intermediate beam element

Mlllllll

Rigid Disk

Appendage Reference Coordinate: ﬁa,i ,i=123
Satellite Body

Fig. 6.3 Flexible Appendage Model Consisting of Beam Type Elements

The 1.35[kg] (3[1b]) VCM shown in Fig.6.3 is utilized to reduce the vibration of the
appendage thereby reducing ripple error in the power transfer (charge or discharge) and
suppress the oscillation of flexible appendage. The detailed VCM effects are discussed

and plotted in the section 6.6. This mass is attached to the free end of the appendage
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utilizing a spring and damper and is constrained in the model to displace only
perpendicular to the appendage. The appendage model also includes a small level of
structural damping to more closely simulate an actual structure. An actual appendage on
a satellite may be collapsible and consist of a truss-like structure with embedded masses
and panels. The low stiffness and natural frequencies of this form of appendage is
emulated by assigning a low value of Young’s modulus for the appendages, which are
otherwise modeled as uniform cantilever beams of rectangular cross-section.

Numerical simulation system model parameters are presented in the Table 6.1 and
AMB parameters and their control gains are tabulated in the Table 6.2 and 6.3,

respectively.

Table 6.1 Model Parameter Values

Initial
Parameters Weight I,-g I - g R; R,
speed
_ 1360[kg] 1693[N-m-s’] 2258[N-m-s’]
Satellite ., .,
=3000[Ib]  =15000[lb-in-s’]  =20000[Ib-in-s’]
22.7[kg] 69.5[N-m-s°] 55.67[N-m-s’] 40,000 0.61[m]
Flywheel ., ., )
=50[1b] =617[lb-in-s’] =494([1b-in-s°] [rpm]  =24[in]
22.7[kg] 2.4[m]
Appendage s *ok 0 )
=50[1b] =95[in]

Note: 1.**: Ja = diag( 0.47, 18.4, 18.85[N-m-s’] ) = diag( 4.178, 162.7, 167 [Ib-in-s’] )
2. Young’s modulus and shear modulus of flexible appendages:
E=2.06x10°[N/m*], G=8.27x10"[N/m’]

3. Length of each appendage = 3.2[m]
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Table 6.2 AMB Parameter Values

Magnetic Current Stiffness  Position Stiffness Load Locations from
Bearing K. K s Capacity flywheel CG
' 41.4[N/A] -1208312[N/m] 444 8[N] L, =0.127[m]
Combo (Radial) ) )
=9.3[Ib/A] = -6900[Ib/in] = 100[Ib] =5[in]
' 85.5[N/A] -1383448[N/m] 889.6[N] l,,=0.127[m]
Combo (Axial) ] )
= 19[Ib/A] = -7900[1b/in] =200[Ib] =5[in]
Radial 39.1[N/A] -1078739[N/m] 444 8[N] l,,=0.127[m]
adia
= 8.8[Ib/A] = -6160[Ib/in] = 100[Ib] =5[in]

Table 6.3 AMB and Flywheel Motor Control Gains

Motor

MIMO Control Gains Control Gains

Gy G Gy Gy Ggp G, G Gy Gy Guy Kk K

11.1  0.012 324 0.064 0.67 11.1 0.012 324 0.064 162 154 117

6.3 Validation of Finite Element Model for Satellite Flexibility

The Finite Element Model described in the Fig.2.3 is validated in the section. The
purpose of this section is that comparing a simple illustration of gyroscopic effects,
forward and backward eigenvalues, synchronous whirl analysis between the long rigid
rotor case and its finite element model case. Fig. 6.4 shows the model, in which the disk
may be a long cylinder. The origin of the nonrotating XYZ axes is at the undeflected

centroid of the rotor. The two bearings are located at X=L/2. The undamped eigenvalues
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can be found by substituting a purely elastic and symmetric model for the bearing forces

into (6.1) thru (6.4) [37]

mY +2K,Y =0 (6.1)
mZ+2K,Z=0 (6.2)
ITB+1Pwsa+%KLL2/5=o (6.3)
10— IPa)X,[}’+%KLL20( =0 (6.4)

The characteristic matrix resulting from the homogeneous solution a je‘” , for j=1, 2,

3,4 is [37]
(ms® +2kK,) 0 0 0 a) [0
0 (ms> +2K,) 0 0 ol ol s
0 0 I,s+K, L /2 1,0, a, 0 '
0 0 —1,0,s I.s+K,L’/2|la,] |0

The purely imaginary eigenvalues of the system ares; =tiw,, for j=1, 2, 3, 4,

where

o =, =\2K, Im (6.6)

2
I K, I? I
w, =—= a)s+\/L—+( = a)j (6.7)
21, 21, 21,
2
I K, I’ I
w,=—"o0 - |—+t—+ Lo, (6.8)
21, 21, 21,

These are undamped natural frequencies of the rotor-bearing system, if the rotor
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angular spin speed @, is zero, the natural frequencies are /2K, /m and+/K,L’*/2I, .In

the case, the vibration modes are heaving-swaying and pitching-yawing, respectively. A

nonzero shaft spin speed @, changes @, and ), frequencies but not @, and w, .

The latter are the natural frequencies of cylindrical whirl. Shaft spin speed @, raises

the @, frequency above the planar pitching vibration value /K,L*/2I, and lower

w, frequency. These are the natural frequencies of forward and backward conical whirl.

The axial and torsional springs are attached to the each end of rotor-bearing model to
compare finite element analysis results. The equation (6.9) and (6.10) indicate the axial
and torsional natural frequencies, respectively, and Table 6.4 shows the long rigid rotor-
bearing model parameters utilized in this section. The finite element model of Fig.6.4 is

comprised of 6 elements (7 nodes) and each node executes 6 degrees of freedom motions.

w, = 2K, I'm (6.9)
w, =+2K, /1, (6.10)

Table 6.5 shows that frequencies results obtained from analytical and finite element
model. The natural frequencies are almost identical except for the conical whirl

mode, @,, which has about 0.5 [%] differences between analytical solution and finite
element model. One of conical whirl frequency, ®,, will converge to zero when spin

speed is very high. Table 6.5 doesn’t show @, which has negative frequency value.



65

N

%@ S
it
5

~

J
!

L2

L2

Fig. 6.4 Long Rigid-Rotor Model with Coordinate System

Parameter values utilized in the Fig.6.4 are shown in the Table 6.4 where K, linear
bearing stiffness is attached to rotor, K, and K, indicate that axial and torsional spring,

respectively.



Table 6.4 Parameters of Long Rigid-Rotor Model
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Long Rigid Rotor Model Parameters

K L K A K T L R P ,
[N/m] [N/m] [N/m] [m] [m] [kg/m"3] [rpm]
11290 56450 22580 0.762 0.05 7833 40000

Table 6.5 Comparison of Natural Frequencies between Analytical and FE Model

Case 1: Spin Speed is O[rpm]

Analytical Solution [Hz] Finite Element Model [Hz]

2] @, @, W5 Ws @, @, w, W5 Ws

135 135 232 191 214 135 135 223 191 213

Case 2: Spin Speed is 40000[rpm]

Analytical Solution [Hz] Finite Element Model [Hz]

o, o, o, w; o, o, o, o, o, o,

135 135 241 191 214 135 135 232 191 213
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6.4 Satellite Responses Including MB Suspension and Flexibility
The reference motion is designed such that the satellite changes orientation 90[deg]

about the Euler’s Principal Axis (EPA) of rotation from the initial attitude[sn], to the
final attitude[sn], . The EPA is obtained as the eigenvector which corresponds to the

eigenvalue +1 of the direction cosine matrix [C]

1 00 0.3952 0.0524 09170
[sn],={0 1 O [sn], =| 0.8037 0.4636 —0.3729 [C]=[sn],[sn];
0 01 —0.4447 0.8844  0.1410
0.6286
then the EPA is [ =| 0.6809 (6.11)
0.3756
and the principal angle is & = cos™ {% (C,,+C,,+Cyy - 1)} =90.00[deg] (6.12)

Generally, the initial actual satellite orientation differs from the reference value. The
initial attitude error in this present simulation is assumed to be[-0.025 0.0375 0]" in

terms of the Modified Rodriguez Parameter (0 ), which corresponds to a 10.3[deg]
principal rotation angle deviation from the reference motion. The reference maneuver
rotation is a 90.00[deg] EPA change in 60[sec] as shown in Fig.6.5. Fig.6.6 shows the
satellite’s motions with the tetrahedral array of four rigid shaft flywheels, 2 flexible
appendages and the AMB suspension system for the case of a 10.3[deg] initial

orientation error. The final rotational angle is 89.99[deg] compared to the 90.00[deg]
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target. The satellite’s translational motion is negligible and the satellite’s angular
velocity and orientation errors diminish to zero after about 40[sec] as shown in the
Fig.6.7. As mentioned before, in the Chapter III (Flywheel motor control gain selection),
the amplitude of satellite angular velocity error is designed to be half in the 4[sec]. The
angular velocity error shown in the Fig.6.7 is diminished almost half after 4[sec]. The

total torque applied to the satellite is shown in the Fig.6.8.

Satellite Angular Velocity Satellite Rotational Angle
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Fig. 6.5 Satellite Reference Motion
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Fig. 6.6 Satellite Motions Including Flexibility and MB Suspension System

Satellite Angular Velocity Error
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Fig. 6.8 Torques Applied to the Satellite

6.5 Comparison of SISO and MIMO AMB Suspension Control

This section compares the robustness of SISO and MIMO control for the case of a
I,/1, =1.25 flywheel polar to transverse inertia ratio, and PD controller bandwidth of

1024 [Hz] for both SISO and MIMO approaches. Saturation states were imposed on the
actuator forces at a level of 444.8[N] = 100[/b], on the voltage applied across the
magnetic bearing coils at 80[volt] and relative displacement of the flywheel is limited by
nominal air gap which is defined in the section 4.4, (¢ =0.020[inch]=5e—4[m]). All
attempts to identify stable gains for the decentralized, PD, SISO controller failed, as
documented in the Figs below. Control requirements to simultaneously reject the initial
position error and imbalance disturbances, maintain the force and coil voltages in an

unsaturated state and provide sufficient gain margin to overcome the controller phase
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lags could only be met by the MIMO controller despite many efforts to optimize the
SISO controller. The physical reason for this result lies in the MIMO control’s ability to
cancel the gyroscopic torque that drives the forward and backward conical modes of
each flywheel to extremely high or extremely low frequencies, respectively. Fig.6.9
shows how the relative displacements of the flywheels diverge at each module with
SISO control. Fig.6.11 and 6.13 show that the corresponding AMB forces and coil

voltages oscillate between their (+) and () saturation values. Fig.6.10, 6.12 and 6.14

show analogous plots for the MIMO control. Stable and unsaturated operations are

maintained throughout the satellite model’s simulated IPAC operation.

x 107 Module 1 x 107 Module 2
5 { | TN AR I 1T I T
L“H\“\ “HH \H e
— o L I Y A — R R
£ S R A A £ . Vb
— | IR A | | — ! A
= | I s o I e
GE_) 0 ﬂ/\w‘\:: :: I : :HH“\‘ GE_) \: | :\:\‘HMU
o AN I i | o | | R
«© \‘H‘H\“\ I ‘\‘ «© !M \“H\
rof [ L A AL ro% Il R
L i A A R R i L ;! P
o H“‘\ “\ I ‘\ | o \H N IR
T e Il N
-5 | A A Il i W R AR
0 0.5 1 0.5 1
Time[s] Time[s]
x 10" Module 3 x 10" Module 4
‘ \: : | T I 5 I ) ‘ H\ T
I I ! I
Sl b E O Al
— ! ! | 1 — I I
gL RN
e o [T T | I e _J\ Y IR
I | T - T | *
< et ! < Il
¥ [T T | I ¥ o IR
R I | Tty R] L S
o ‘rl : | 1 | o N ‘ H\ I
-5 ‘1\ | 1 | L -5 ‘H 1A
0 0.5 1 0 0.5 1
Time[s] Time[s]

Fig. 6.9 Displacements of Flywheels at Sensor Position with SISO Control
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Fig. 6.10 Displacements of Flywheels at Sensor Position with MIMO Control
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Fig. 6.12 MB Forces at Each Module (MIMO Control)
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Fig. 6.14 Coil Voltages with MIMO Control

6.6 VCM Effects on Flywheels and Flexible Appendages Motions

Each appendage is modeled with 5 rigid disks connected by flexible Euler-Bernoulli
type beam elements. The number of disks is arbitrary and could be easily increased in
the model. The proportional damping matrix is employed to stabilize satellite appendage
motions. From modal analysis [30], the proportional damping ratio satisfies.
2lw=a+ pw’ . If a is selected to be zero, the damping ratio can be expressed
as&=Pw/2. It is assumed that the appendage damping ratio increases linearly with
frequency, with approximately 5[%] damping at 2[Hz] for the sake of illustration. The
last 2 Figs in this section 6.6, the different results are presented between 5[%] and 2[%]
damping at the same satellite appendage vibration frequency. The vibration control mass

(VCM) to attenuate flexible appendage is selected as 1.35[Kg] on both ends. The
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following Figs are consist of flywheel power charging and delivery case.
6.6.1 VCM Effects on Flywheel Power Charging Case

Figures 6.15, 6.16, 6.17 and 6.18 show the flywheel motions and attitude control -
power charging torques with and without the VCM. These figures confirm that the
“without VCM” oscillations are significantly higher. Power charging responses for the
“with and without” VCM cases are shown in Fig.6.19 and 6.20. For illustration, the
IPAC operation consists of charging (power transfer) the flywheels at a rate of 500
[watt] for 30[sec], while the satellite is simultaneously rotated by 90 degrees over a 60
second period. Fig.6.21 and 6.22 show the magnified power charging responses of Fig.
6.19(e) and 6.20(e) revealing that the power fluctuation is significantly reduced by the

VCM.
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Fig. 6.15 Flywheel Motions without VCM for Power Charging Case
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Fig. 6.16 Flywheel Motions with VCM (1.35[kg]) for Power Charging Case
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Fig. 6.18 Attitude Control Torque and Power Charging Torque with VCM
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Fig. 6.22 Magnified Power Transfer (Charging) with VCM (1.35[kg])

6.6.2 VCM Effects on Flywheel Power Delivery Case

The Flywheel spin speed and flywheel motor torque including attitude and power
delivery torques are plotted in the Fig. 6.23 and 6.24 with and without VCM. As same as
power charging case, the oscillations of flywheel speed and motor torque are
significantly attenuated compared these two Figs. As mentioned before, the flywheel
motor torque consists of satellite attitude control torque and power transfer torque, Fig.
6.25 and 6.26 show that these two torques with and without VCM of 1.35[Kg]. Attitude
control torque derived from range space and power delivery torque from null space
performed that 90[deg] rotation about principle axis over 60[sec] and 500[watt] power
discharging for 30[sec] successfully. Each flywheel module power delivery rate is

shown in the Fig. 6.27 and 6.28 in the case of with and without VCM. Total power
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transfer, 500[watt] for 30[sec], is sum of each flywheel module shown (a), (b), (c¢) and
(d) in these Figs. It can be easily recognized that the power fluctuation reduction

compared between magnified total power transfer in the Fig. 6.29 and 6.30.
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Fig. 6.23 Flywheel Motions without VCM for Power Delivery Case
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Fig. 6.30 Magnified Power Transfer (Delivery) with VCM (1.35[kg])

6.6.3 VCM Effects on Flexible Appendages Motion

Fig.6.31 and 6.32 show the translational motion of the appendage disks relative to
the appendage reference line. The disk vibration amplitude increases as one moves along
the appendage away from the satellite since the first disk is attached to the satellite with
very stiff linear and torsional springs, so its amplitude is very small. Fig.6.32
demonstrates the ability of the VCM to reduce appendage vibration. Fig.6.33 and 6.34
show the maximum power ripple and the relative stroke (displacement difference
between the VCM and disk 5) for varying VCM mass with 2% and 5% damping ratio at
2[Hz], respectively. The maximum power ripple is 0.23[watt] for the case of no VCM,
however, this ripple is reduced by about 70% with a (1.35[kg]) VCM at 5% damping

ratio case.
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6.7 Isolation of the Satellite from the Flywheel’s Mass Imbalance Forces

Fig.6.35 thru 6.38 show various of the system responses due to a flywheel
imbalance eccentricity of le-5 [in] (=2.54e-7 [m]) at module 2. The rigid bearing
supported flywheel case, the transmitted imbalance force is approximately 67 [N].
Fig.6.35 shows the AMB forces applied to the satellite and the motor torque without the
notch and band-pass filters in the AMB suspension controller and without the low-pass
filter in the flywheel motor torque control loop. The maximum forces transmitted to
satellite are about 2.8 [N] and the maximum torques are about 1.25 [N-m] for this case.
Fig.6.36 and 6.37 show AMB forces and flywheel motor torques with only the notch
filter inserted, and with both the notch and the band-pass filters inserted, respectively.
The transmitted forces and torques are reduced to 0.55 [N] and 0.258 [N-m] for the
notch filter only case, and 0.0035 [N] and 0.0018 [N-m] for the notch and band-pass
filters inserted case, respectively. Fig.6.38 shows that transmitted forces and torques
with the low-pass, band-pass and notch filter (cut off frequency = 100[Hz]) systems
inserted. The forces are almost the same as Fig.6.37, however, the flywheel motor
torques are significantly reduced.

In summary, in the case of rigid bearing suspended flywheel (flywheel has only spin
motion) the shaking force due to flywheel imbalance is enormous compared with AMB
suspended flywheel case. The filter stages including notch and band pass filters can

diminish shaking force almost zero.
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CHAPTER VII

IPAC WITH TWO VARIABLE SPEED CONTROL MOMENT

GYROS

7.1 Overview

This Chapter VII will present IPAC service with two single gimbaled variable speed
flywheels. The single gimbaled variable speed flywheel is called as variable speed
control moment of gyroscope (VSCMG). Generally speaking, VSCMG combines
advantages of the classical single gimbaled control moment of gyro and reaction wheel.
The advantages of a control moment gyro (CMG) and reaction wheels (RWs) are that a
large effective control torque applied to the spacecraft could be produced by a relatively
small gimbal torque input , and do not have singularity configurations and typically have
simpler control law than CMG clusters, respectively. On the other hand, the
disadvantages are that the single gimbaled CMGs are that their control laws are fairly
complex and encounter certain singular gimbal angle configurations and RW systems
include a relatively small effective torque being produced on the spacecraft and the
possibility of reaction wheel saturation [4]. VSCMGs can produce an extra degree of
control to the classical single gimbaled device because the spinning disk can be rotated
or gimbaled about a single body fixed axis, while the disk spin rate is also free to be
controlled [38, 39].

The dynamics, feedback control law and two different steering laws (velocity based
and acceleration based steering laws) of VSCMGs are discussed in [4]. The previous

work [5] examines the four simultaneous use of single gimbaled variable speed control



91

moment of gyroscopes as spacecraft attitude control actuators and excessive energy
storage devices. This present work will demonstrates that the integrated power and
attitude control tasks will be achieved by with only two VSCMGs instead of utilizing a
standard four VSCMGs pyramid configuration in the literature [5]. The detailed
dynamics and control laws are derived in [4, 5] concerning IPAC, so they might be
briefly reviewed again in this chapter and mostly simulation results will be presented.

7.2 VSCMGs Dynamics Part

Fig. 7.1 One VSCMG Coordinate System

One variable speed control moment of gyro is shown in the Fig.7.1, and then

equation of motion can be written as following. The system angular momentum is sum
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of each component (satellite body, wheel and gimbal) and be expressed as (7.1) and
(7.2). The inertial reference, satellite body and gimbal coordinated are denoted as 7, b,
and g, respectively. The angular velocities of gimbal respect to body and momentum
wheel angular velocity respect to gimbal frame are ?: [O 0 j/] and Q = [Q 0 O],
respectively.

H =H +H +H (7.1)

7 _ yb b 7 _ 78758 _ J88
H =Iw,6 H =I0 H,=1,0

K wPwlind g g/n

(7.2)

The satellite body inertia matrix shown in (7.2) is satellite body inertia itself plus

VSCMG inertia components due to the fact that the mass center of VSCMG is located

from the satellite center of mass by a vector d . Let’s define the inertial time derivative

of a vector A is expressed as (7.3.1) and @ is defined as (7.3.2), respectively.

N
d (~ <
—\A)=A 7.3.1
“ () (7.3.1)
0 - o
b= o, 0 —a|where@d=[w o0, o (7.3.2)
-, 0

so, the inertial time derivative of each component and equations of motion of a system of
rigid bodies from Euler’s equation can be written as (7.4.1) thru (7.4.3) and (7.5),

respectively.

H =H +a A" (7.4.1)

sc sc

H, =CH!+d@,, CH: +C& ,HE (7.4.2)
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H,=CH!+C&: ,H! +@,,CH® (74.3)
where Cis direction cosine matrix (DCM) between satellite body and gimbal frame,

@,,, is satellite body angular velocity coordinatized in body frame (@ = [a)l o, o, .
@f, . is satellite body angular velocity in gimbal frame (@ =[® @, &[] ),

a)g

w/n

is wheel angular velocity coordinatized in the gimbal frame (@

w/n -
@;,, is gimbal angular velocity coordinatized in the gimbal frame (&5, =C T+ 7),
and L is external torque applied to satellite which is assumed L=0.

H, =H +H, +H, =L (7.5)

The equations (7.4.1) thru (7.4.3) can be rewritten as following with some manipulation,

1. The first term of (7.4.1) is expressed as
Hb =&, (7.6.1)

2. Sum of second term of (7.4.1), (7.4.2) and third term of (7.4.3) is also expressed as

), A+, CH: +a@), CAS =@, (1" +1 )@, +@),crefle o 7] +
a,ciib o i vaf,lat, - 762
@, (1" +1° +Ig)a)b,n +ayp, CIE[Q 0 7 +
@, cri-o o yf
3. Sum of first term of (7.4.2) and (7.4.3) is expressed as
cit+cis=crslo o 3 +cec'a, @, + 108, + 163

cisfo o 3 +ci:c’@, @, + 1@,

4. Sum of third term of (7.4.2) and second term of (7.4.3) is expressed as
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Caf  HE +Cax, HE =Cax, 1:[Q 0 I +cax, 1:C"a), 76
cat, 1o o j1 +ca,1:Ca@,, o

Therefore, the total equation of motion can be obtained by gathering from (7.6.1) thru
(7.6.4) as shown by (7.7.1) in the satellite body coordinate.

b b b\ ~=b ~b b b b \~b
(Isc +Iw +Ig)wh/n +wh/n(lsc +IW+Ig)wh/n +

as el o g +a, o o gT+rsfe ol -rcar,ar, +

wglb

(171
cirsfo oyl -1:@¢,@f, + @059 0 gl + @, 1iCTe,, +  t=L
@ If0 o gy +a,1C"a),,
1&), +@, 1@}, +CF =L (7.7.2)

(Jr +J3)7./6?)2 +(‘]a +J1)j/(b2+‘,ag_(‘lt +J2)76?)2
where F =17,Qa,—(J, +J,)jiy - (J, + J,)jin + T Qy+ (U, + J,)i3
~J Qo+ (I, +1,)y

I} =diag(J,,J,,J,), I; =diag(J,,J,,J;) and I = I’ +1° +I:
F term in the (7.7.2) can be simplified as combining the inertia matrix of the RW and the

gimbal frame into VSCMG inertia matrix J. and rewritten as (7.7.4) with
J¢ = J,assumption.
J=18+1¢ =diag(J,J;.J ;) (7.7.3)
Js(j/(bz +Q)_(‘IT _Jc)j/(bz
F=3J,Q+@)y+J,Q0,-(J, +J, )i, (7.7.4)
J7—JQb,
Now, the equation (7.7.2) can be extended as following utilized by results of (7.7.4).

1@}, +@, 18, +By+D,7+EQ+FQ=1L (7.7.5)
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, where B=|7,.C?|
D, = (750, - J,@,)C) + T (@ +Q,)C? - T ,&,C?]
E=lcl]
F=la.c?-7,0,07)
7.3 VSCMGs Control Law Part
The feedback control law utilized for variable speed control moment gyro is
identical with that used in the Chapter III. The following Lyapunov function V is a

positive definite, radially unbounded measure of the total system state error relative to

the target state where k; is a scalar attitude feedback gain.
V(68,56) :% &' 150+ 2k, log(1+ 667 65) (7.8)

The first term of (7.8) can be rewritten as (7.9.1) due to time varying of VSCMG

inertia matrix. The inertia matrix I is defined asI =1, +1, +1, =1, +J" before where

J" =1, +1I and the time derivative of (7.8) is expressed as (7.9.2). The time derivative

of second term in (7.8) is derived in the Chapter III.
% &)TI(S'&):%&?T (12 +7" )o@ (7.9.1)

V(6,65 = 50" 166+~ 55" J' 560 + k5" 56
2
! (7.9.2)
= 55)7(155”5]”5&‘” kﬁ&j
Lyapunov stability theory requires that V be negative semi-definite to guarantee

stability, let k,is a positive definite angular velocity feedback gain, then (7.9.2) can be



96

expressed as (7.9.3) and (7.9.4).
V(ow, 50) = —60" k,00 (7.9.3)
15&)+%J‘”5cb+ k,06 =—k,00 where 6@ = & — @, (7.9.4)
The equation (7.9.4) can be rearranged by plugging (7.7.5) into (7.9.4) as following,

By+D,y+EQ+FQ=L—1&, +%jb5c7)+ k08 + k,00 — Dl w (7.9.5)

As mentioned above, the external torque vector, L is zero and the third term of right hand

side in the (7.9.5) can be expressed as followings,
Iy 1 . - T
EJ 5w:§C[a)§,bJ"” —Jga);’,,,]c ow
=%C[@§,,,Jg — T, b (7.9.6)
=Ry
where R = %[Jré'c?)ch +J 60,C?), S=C"0@ =60 and J =J,—J,
The following relationship (7.9.7) can be found by substituting (7.9.6) into (7.9.5)
By+Dy+EQ+FQ=—I®, +k 06 +k, 00— dlw (7.9.7)
where D = D; — R and as usual if the gimbal acceleration is assumed to be small, the
first term of (7.9.7) can be ignored, then it can be rearranged as (7.9.8)
Dy+EQ=1L, —FQ (7.9.8)

where L = —1&, + k,06 + k,0@ — @l o is required attitude control torque.
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7.4 VSCMGs Torque Distributions Part

In this section, attitude control and power transfer torques will be presented. Most
required torques produced by a combination of the RW angular velocity () and gimbal
rate ( ) not gimbal acceleration ( ) are desirable to amplify the potential torques

The total kinetic energy stored in the reaction wheel is

E,, =§sz]ng (7.10)

Hence, the rate of change of the energy (power) is given by

~ o
Epy =Py =07 om[ } 7.11)

~

where J,, =diag(J},J2), therefore simultaneous attitude control and power transfer

constraint equation can be obtained by combining (7.9.8) and (7.11).

Qll le Z‘T
= 7.12
{Qn sz” [P} (712

where Q,, =E, Q,=D, 0, =Q"J,,, 0,,=0,,, = [fz 7*/1 L.=L -FQ
As defining Q, = [Ql . Qu], 0, = [Q21 sz]’ required attitude control torque constraint
becomes (7.13) and Q, =3x4, 7 =4x1 matrices.
on=L, (7.13)
The general solution to (7.13) is given by
=0 L +1,, (7.14)

where Q,"is general inverse matrix of Q, which obtained from range space of Q, and
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n,.. 1s null vector which obtained from null space of Q, (i.e.Q7n,,, =0).
Required power transfer control torque constraint becomes (7.15) and Q, =1x4, np=4x1
matrices. After substitute (7.14) into (7.15), it yields (7.16) and the null vector, 77, can
be obtained from it.
Qo1 = Frw (7.15)
0:( Ty + 7 )= Paw (7.16)

Let define modified power P, = P,,, — 0,0, ltT =Q,n,.. - As discussed in the Chapter III,

the null vector, 7, is obtained from null space of Q,, so there exists a vector satisfying

nnull = PNV (717)

where P, is the orthogonal projection onto null space of Q, and property of P, P, =1

andP, =1 — 070, =1, — Q" (0,07 0, then insert (7.17) into modified power equation,
P, =01, - It yields (7.18).
o,Pv=P, (7.18)
and can be rewritten as following using by minimum norm solution
v=(0.r) QR PO P, =E0I(Q.P0] P, (7.19)
Therefore, the power transfer torque can be given by (7.20).
M = P03 (Q,P,01 )P, (7.20)

Finally, the simultaneous attitude control and power transfer torque can be presented as

combining (7.14) and (7.20).
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. -1
n=0/L, +P,0!(0,P0])'P, (7.21)
In this presented work, the weighted generalized inverse Q," is utilized which is

given as [4].

o =wo! (owo! ) (7.22)

where W is a diagonal RW/CMG mode weighting matrix, W = diag (WY,Wg) where W,
and W, are reaction wheel and CMG weighting factor, respectively, which is given by
W, = diagW,,.W.,), W, =diag (Wg 1,Wgz). The reaction wheel mode weight, W, is defined

as W, =W, exp(~ u8) where W, and u are positive scalars to be chosen by the control

designer and ¢ is factor of proximity of singularity which indicates that the gimbal

angles approach a singularity CMG configuration, this parameter will go to zero.

§=det(0,07) (7.23)
7.5 VSCMGs Simulation Results
From the previous work [5], it is assured that four VSCMGs can achieve attitude
control and power transfer functions at the same time. In this section, the near minimum
time rest to rest reference motion is designed as same manner as previous Chapter III
and target power transfer is assigned to 1000[watt] for 30[sec] during attitude control.
The numerical simulations of both four VSCMGs and two VSCMGs are presented in
this section with same satellite moment of inertia utilized in the Chapter VI.
The four VSCMGs in a pyramid configuration are described in the [4] and Fig.7.2
shows the two VSCMGs configuration which is removed third and fourth variable speed

control moment of gyro from [4]. Table 7.1 presents those simulation parameters for
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both four and two cases. The different results between four and two cases are compared

in the next section.

Fig. 7.2 Two VSCMGs IPAC Service Configuration

The angle @in the Fig. 7.2 represents the angle of each VSCMG that is measured
from the satellite/spacecraft body axis (131 —132) plane to the VSCMG’s gimbal axis and
the initial gimbal angles are 45[deg] and -45[deg], respectively. The same initial attitude
and velocity errors are used to achieve same satellite motion results with four tetrahedral

array flywheels case presented in the previous Chapter VI. The parameter, &, is selected
in a sense of flywheel (reaction wheel) weighting factor(W ) will not be zero. In this

simulation, a weighted pseudo inverse is used instead of standard Moore- Penrose
inverse to obtain solution in (7.13) because ideally the VSCMGs are to act like classical

CMGs. If the parameter ¢ 1s chosen to make W, to be zero, flywheel spin accelerations

will be zero, in other words, the flywheel spin velocities are constant which recovered to
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classical CMGs behavior (reaction wheel speed is constant and only gimbal angle rate is

changed). Therefore, the parameter (& ), which can be selected by the control engineer,

should be chosen to make W to be non-zero value. The time varying W, is plotted in the

following and the gimbal weighting factor W, is chosen constant value during IPAC.

Table 7.1 VSCMG Simulation Parameters

Parameter Value Units
Four VSCMGs Two VSCMGs
N 4 2
6 54.75 54.75 [deg]
@(0) [000] [000] [rad/sec]
a(0) [-0.025 0.0375 0] [-0.025 0.0375 0]
7(0) [45 -45 -45 45] [45 -45] [deg]
#0) [0000] [0 0] [rad/s]
Q(0) [44 4 4]%1e+d [4 4]* 1e+d [rpm]
W, 2 2
W, 1 1
J diag[0.07 0.04 0.03] diag[0.07 0.04 0.03] [kg-m’]
k, 1.74 1.74 [kg-m*/sec]
k, 13.2 13.2 [kg-m*/sec’]
7, le-24 le-24

7.5.1 IPAC Simulation Results with Two VSCMGs

The satellite rotational angle, attitude and velocity vectors are shown in the Fig. 7.3.

The target rotational angle (dashed line) is compared with actual rotational angle (solid

line) which has initially 10 [deg] errors and the latter tracks almost completely after

18[sec]. Fig. 7.4 is plotted of attitude and velocity error vectors and both of them
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diminished to zero after 30[sec] later. To perform the desired VSCMGs motion, the
weight factors are depending on the proximity to a single gimbal CMG singularity. The
scalar factor determined in (7.23) will go to zero when the gimbal angles approach a
singular CMG configuration. Fig.7.5 presents the proximity of singularity in two
VSCMGs case and it does not go to zero during whole maneuver time. The second plot

in the Fig. 7.5 shows the flywheel and gimbal weighting factors (W,

S

W, ), respectively.
The flywheel factor (W,;) is time varying parameter which shows almost close to 2
during whole maneuver time and gimbal factor (W) is selected to be constant value in

the Table 7.1. The gimbal angles and angle rates are shown in the Fig. 7.6. Initially the
angles are 45[deg] and -45[deg] for each gimbal and they reached about -20[deg] and -
275[deg] at the final time, respectively. The second gimbal angle rate is dramatically
increased from -0.05[rad/s] to -1.4[rad/s] at 45[sec]. Flywheel spin velocities and
accelerations are presented in the Fig. 7.7 and they changed very much compared with
four VSCMGs case. The final spin velocities are about 55000[rpm] and 10000[rpm],
respectively. The target power (‘x’ mark) and actual power (solid line) schedules are
plotted in the Fig. 7.8. The target power is designed to transfer 1000[watt] for 30[sec] of
charging case and it can be recognized that the actual power tracks target power

successfully.
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7.5.2 TPAC Simulation Results with Four VSCMGs

The following Figs are presented the same attitude control and power tracking tasks
with two VSCMGs instead of four. The satellite rotational angle, attitude and angular
velocity are identical with two VSCMGs case. The proximity scalar factor shown in the
Fig. 7.11 never closes to zero which indicates approach gimbal singularity.

Four different gimbal angles and rates are plotted in the Fig. 7.12 which are little
change compared with two gimbal case. The maximum gimbal rate is about 0.5[rad/s] at
the beginning of power tracking task starts. The four flywheels spin speeds and
accelerations are shown in the Fig. 7.13. Flywheels spin speed change is very smaller
than two gimbal case. In the four VSCMGs case, the attitude control and power tracking
variables have 8 (4 flywheel spin speeds and 4 gimbal rates) compared with two
VSCMGs case which has only 4 (2 flywheel spin speeds and 2 gimbal rates). These 8
variables can be divided to produce 3 required IPAC torques. Power tracking during

attitude maneuver is presented in the Fig. 7.14 and identical with two VSCMGs case.
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CHAPTER VIII

CONCLUSION AND FUTURE WORK

A simulated IPAC operation consisting of a 90 [deg] rotation over 60 [sec], with a
12% initial attitude error and 500[watt] power transfer for 30[sec] was presented. The
IPAC algorithm utilized a nonlinear feedback controller and the magnetic bearings
utilized a special gyro torque canceling MIMO control. The magnetic bearing model had
a nominal air gap of (5e-4[m]), force limit of (444.8[N]) and coil voltage limit of
(80[volt]). The vibration control masses (VCM) attached to the flexible appendages were
very effective for reducing both the power transfer and appendages vibration oscillations.
The maximum power ripple is 0.23 [watt] without the VCM at 5% damping ratio, which
is reduced by about 70% with a 1.35[kg] VCM. The flexible appendage oscillations also
nearly disappear after 25[sec] with the VCM included. The forces transmitted to the
satellite were reduced by about 80% by including a notch filter stage in the MIMO
control path. In the case when both the notch and band-pass filters were utilized, the
transmitted forces were reduced to 3.5e-3[N].

Two variable speed control moment gyro (VSCMGs) performed attitude control and
power tracking functions simultaneously without interfering each other. In the literature,
four standard pyramid configuration VSCMGs are utilized for IPAC service, however,
this work shows that two VSCMGs can also take care of both attitude and power control
functions as same as four VSCMGs case.

For the example considered, the simulation results confirmed the following

objectives:
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(1) Demonstrate the effectiveness of IPAC with satellite appendage flexibility, and
magnetic bearing feedback dynamics included in the simulation.

(2) Demonstrate the effectiveness of passive dampers for suppressing power
oscillations in the IPAC system.

(3) Demonstrate the effectiveness of a MIMO-GYRO torque canceling AMB control
algorithm even for a high Ip/ Irratio and when coupled with a IPAC model of a
satellite.

(4) Demonstrate the effectiveness of the magnetic bearing suspension to isolate the
rotor imbalance forces from the satellite body.

(5) Demonstrate two VSCMGs can be utilized to perform simultaneous attitude
control and power tracking functions rather than four VSCMGs case.

Some future work in this area will be seek to demonstrate the effectiveness of IPAC
as implemented with only two gimbaled flywheels including MB supported system
response with higher energy storage density, nonlinearities of MB system components
such as power amplifier saturation and nonlinear MB with magnetic flux saturation and
the effects of structural flexibility. Unconditional stability theory of IPAC for MB

suspended system and builds and tests in Lab and on satellite.
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