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ABSTRACT

In this work, we propose a multi-agent learning framework based on the mutual

information between the agents and their environment. Initially, each agent, based

on its neighborhood information, uses the Gaussian process regression (GPR)

to infer the environment behavior. Then, a minimization of the mutual information

between an agent and the environment is calculated by means of the rate distortion

function (RDF). In this way, a border between misunderstanding and redundancy of the

environment information is obtained, which is used as a decision rule by the agents. The

calculation of the RDF is conveniently performed through the Blahut-Arimoto algorithm,

from which, the most important elements for our model are the Lagrange multiplier s,

and the conditional distribution describing the similitude between the agent and the

environment. The parameter s plays an important role in the rationality level assumed

by the agents in the decision making process. On the other hand, due to its Boltzmann

distribution form, the conditional probability distribution establishes a Logit dynamics
pattern, used by the agents as a rule for the action selection. Finally, we include a

distributed optimization setting by means of the potential games approach, in which the

Nash equilibrium convergence is found through a distortion based potential function.

The framework, in spite of being mainly implemented in mobile sensor networks,

demonstrates applicability in other multi-agent contexts, such as smart grids.
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1
INTRODUCTION

In the last years, the field of multi-agent systems has gained lots of interest in

the research community to develop solutions in areas such as smart grids, con-

ventional power networks, social networks, static and mobile sensor networks,

communication networks, among others, in order to provide to the elements of a system

abilities to make decisions in a decentralized form, since the conditions of isolation

in the case of microgrids, or the high data traffic to sink nodes, in the case of mobile

sensor networks, and the impossibility to have a continuous connection between all the

network nodes in the general case, make the centralized dependency more difficult every

day. The most relevant characteristics, which have begun to be intrinsic of multi-agent

systems, are the distributed control and optimization, whose implementation has a

narrow relationship with game theory. Additionally, the learning capacity on each agent

requires a network adaptation to maintain the environment understanding in spite of

the continuous interconnection change. In this sense, multiple learning techniques have

been applied in multi-agent systems, among which we can find reinforcement learning,

neuronal networks, deep learning, just to mention a few. In the game theory context,

the learning process is implicit in something known as the dynamics, which depend on

the type of game played, and consequently on the application in which they are used.

Some examples are the replicator dynamics, used in evolutionary games, and the Logit
or best response dynamics, used in strategic games. In general, the dynamics objective is

to define the set of learning rules to choose the strategies offering the best payoffs, and

in this way, allow the system to reach an optimal state, which is commonly known as the

1



CHAPTER 1. INTRODUCTION

Nash equilibrium.

Most of the approaches, especially in mobile sensor networks, that involve game

theory and distributed optimization, have been focused on agent utility definitions based

on energy consumption, sleep and awake modes, consensus based payoffs, and so on.

However, these works have not been concerned about the value of the information found

in the agent environment, an how it can improve the decision making and the system

convergence towards an equilibrium point. In this regard, we propose a multi-agent

learning framework that allows the agents to identify the environmental cues offering

the highest welfare, which can be focused to follow redundant signals or, on the contrary,

to follow the cues offering the highest difference to the current environment state. This

proposed model, begins with an environment perception at each agent, obtained through

the Gaussian process regression (GPR) approach, in which the neighbor information

is used to infer the state in the agent surroundings. After that, by means of the rate

distortion function (RDF), the agents can identify a border between redundancy and mis-

understanding about the environment information, and in this way, they can choose the

strategies to follow. Finally, the potential games approach is used to include a distributed

optimization scheme. In this way, we establish a Logit dynamics pattern to define the ac-

tion selection rule for the agents under the rationality levels established by the Lagrange

multiplier s associated to the Blahut-Arimoto algorithm, which is a computational and

straightforward way to calculate the rate distortion function. The convergence towards

an Nash equilibrium is guaranteed by a distortion based potential function, inspired in

the expected distortion associated to the mutual information minimization.

The model adaptability to different contexts is shown through an application in smart

grids in Appendix A. However, we focus the implementation to mobile sensor networks

due to the relevance of the redundancy identification in settings having a high number of

agents recovering information in spatial fields, which can cause clustering formation and

redundant covering in determined zones, and consequently, redundant transmissions to

sink nodes or data centers. Additionally, the continuous change of the network topology

and the node connections do not allow the agents to have a full environment knowledge,

which can be modeled through the proposed rationality measure.

In this sense, in the next section we describe the most relevant work related to

mobile sensor networks in which the environment information is included in the decision

making process, and the distributed control is based on game theory.

2



1.1. RELATED WORK

1.1 Related Work

The agent environment prediction through GPR (also known as Kriging filter) has been

combined with information theory in many works, mainly to find informative positions

where the agents can move. In [36], authors use a distributed Gaussian process regression

(DPGR) in order to infer the agent environment behavior using just its neighborhood

information. In this way, locations with the highest uncertainty are determined by means

of the entropy maximization to define a utility function used in the central Voronoi

tessellation (CVT) algorithm [26]. The entropy maximization is also applied in [76] to

design a sampling strategy for mobile robotic wireless sensor networks (MRWSs) focused

on the most informative zones within a spatial field that is described using a Gaussian

process. The computational cost on each node associated to the environment prediction

is addressed in [78] by means of a sparse Gaussian process. The authors in this work

compare three strategies to find the most informative locations for the agents: mutual

information based measurement selection algorithm (MI), principal feature analysis

(PFA) and informative vector machine (IVM). In [119], a Gaussian process is proposed to

describe an anisotropic field where mobile nodes find their next position according to a

centralized sampling strategy based on the Fisher Information Matrix minimization. In

[14], authors use Gaussian processes to model a scalar field in which underwater vehicles

(AUVs) define their movement through the entropy minimization between un-sampled

and sampled positions. Despite of the fact that these works address the uncertainty level

in spatial fields, the redundancy of the environment information is not considered as a

learning factor for the agent decision making.

The redundancy in the environment information has also been taken into account

in approaches focused on the energy consumption, which have been covered mainly

from the data collection and data aggregation perspectives[6]. In the case of the data

collection, in [54] a compressed sensing (CS) theory is proposed in order to reduce the

sampling points on each sensor, which leads to the reduction of energy consumption

and redundancy, since the low sampled information is reconstructed in data centers

where the energy is not limited. In [111], authors propose a model based on a random

network to reduce energy consumption in zones with redundant information, defining a

sleep-awake schedule for nodes in which the number of active terminals necessary for

keeping the network connected is minimized. In the case of the data aggregation, even

though most of the research is focused on the network lifetime and energy consumption,

data redundancy reduction is also taken into account. In [120], a distributed routing

3



CHAPTER 1. INTRODUCTION

algorithm based on game theory is proposed to reduce the network load compressing

the correlated data between nodes. In [91], authors propose a method based on the rate

distortion function, in which, under a given distortion condition, agents estimate the

measurements of all their peers within the network and detect correlated information

to prevent its transmission. These works, in spite of involving data redundancy, do not

consider the agent environment perception as a tool for decision making. Furthermore,

most of them require a full information configuration, in which, all the network terminals

must be linked.

On the other hand, an analysis of game theory and distributed optimization for

sensor networks involving redundancy identification, lead us to the network coverage

problem, which has been addressed in literature from two sensing contexts, the static

and the mobile. In terms of coverage optimization for static networks, i.e., networks

lacking of node movement, most of the research has been focused on sleep and awake

scheduling for nodes in order to increase the lifetime of the network, and to decrease

the redundancy of monitored locations. In this regard, in [121], authors propose an

evolutionary game based algorithm named Game-Theoretical Complete Coverage (GCC)

that schedules the sleep and awake modes for nodes in a sensor network to reduce the

energy consumption, and to improve the coverage. In this work, the nodes monitoring

redundant locations are scheduled to waste energy in a distributed way, and the sensing

radius is changed depending on the population in the area. In [2], the coverage problem

in wireless sensor networks is addressed using the k-cover problem, in which k represents

the minimum number of sets, named cover sets, required to cover the whole network. A

node belongs just to one k-cover set i, and it is activated to sense in a time slot i, which

means that the network lifetime is proportional to k. The k-cover set selection for each

node follows a potential game approach, in which the payoff increases if the node is

the only one belonging to it. Through the two implemented algorithms, called SNECA

and ANECA, authors in this work demonstrate convergence to the Nash equilibrium.

In [123], authors propose a potential game in which the utility function depends on the

energy/processing cost, and the agent assignment of numerical values to the network

locations having relevant events. The Nash equilibrium is also proven in this case. From

a mobility context, network coverage has been addressed from different perspectives.

From a partial perspective, techniques such as sweep, focused, targeted, and barrier

coverages, are the most studied. On the other hand, from a full coverage point of view,

many techniques have been proposed, being the most relevant the fuzzy and evolutionary

computing, virtual force, and geometry based coverage[71]. In [57], through a game

4



1.2. MAIN CONTRIBUTION

theoretic approach, authors show the improvement in target detection when the network

nodes have mobility abilities. Additionally, they compare the coverage area between static

and mobile sensor networks, showing the advantages of mobility. In [110], the Voronoi

diagrams are the basis to implement three algorithms to calculate the locations where

sensors have to move in order to optimize the network coverage. The first two, named

VOR and Minimax, are designed to make the nodes move towards uncovered holes,

avoiding the new holes generation in the Minimax case. In the third one, named VEC,

the sensors are simulated as electronic particles, and in this way, they move away from

densely covered areas. In [21], a sweep coverage case is addressed, in which each point of

interest (POI) within the monitored region receives a weight according to their relevance

level. In this way, the proposed algorithm allows the mobile sensors to visit the most

relevant places more frequently. In [112], a particle Swarm Optimization (PSO) approach

based on social behavior of flocking birds is formulated to maximize the network coverage

and minimize the energy consumption. In this work, a re-sampling process is introduced

to improve the performance of PSO, and the exploration of regions having the highest

fitness is controlled through an inertia parameter. In [19], authors define a mission space

Ω ∈R2, and a density function R(x), with x ∈Ω, to represent the probability that an event

s at x exceeds a specific threshold. The event detection follows the model proposed in

[25], in which the event signal decays as a polynomial of the distance. The joint detection

probability P(x,a), i.e., the probability that the event is detected by the set of agents

located at a, is used to maximize the expected event detection frequency. This work, is

used in [60] to define the potential function φ(a)=∑
s R(x)P(x,a), which is maximized to

optimize the coverage in a spatial field. The maximization is performed by each agent

using the algorithm RSAP (Restricted Spatial Adaptive Play) and a wonderful life utility

function (WLU [106]). The trade-off between energy consumption and coverage is also

studied in [84]. This time, authors use a potential game whose utility function depends

on the energy expenditure both for sensing and moving. They show that the convergence

time to a Nash Equilibrium decreases if the mutual information between observed and

unobserved regions is included within the utility function.

1.2 Main Contribution

Although the aforementioned approaches exhibit a successful performance in static and

mobile settings, they are not concerned about the redundancy of information between the

agent and the environment, and how it can improve the decision making process. Addi-

5



CHAPTER 1. INTRODUCTION

tionally, the research works involving game theory do not put an especial interest to the

definition of rationality levels at which an agent can get the highest or the lowest under-

standing about the environment. In this regard, the main contribution of our approach

is the ability of the agents to detect environment cues having high or low redundancy,

whose identification is performed through the mutual information minimization provided

by the rate distortion function. In this way, agents can decide to follow redundant signals

in event tracking tasks, or to avoid them if a field exploration is desired. On the other

hand, the rationality level given by the parameter s of the Blahut-Arimoto algorithm,

allows the system to define a high or a low environment understanding. At the highest

rationality level, the agents find environment positions having more utility in terms

of the distortion reduction. On the contrary, at the lowest rationality level, the agents

perform in a highly distorted setting, but developing exploratory skills that contribute to

the system convergence towards the Nash equilibrium.

As we will show in Chapter 4, the model is implemented in mobile sensor networks,

outperforming the work in [60] in terms of the number of agents covering a variable

spatial field, and in the number of time steps in an invariant field with obstacles.

Additionally, in Appendix A, we demonstrate its applicability in other multi-agent

contexts, where the reactive power sharing problem of a microgrid is addressed. Below

we show a list of the published and submitted work related to our approach.

1.3 List of Publications

1.3.1 International Journals

1. D.A. Martínez, E. Mojica-Nava, K. Watson, and T. Usländer, “Multi-Agent Self-
Redundancy Identification and Tuned Greedy-Exploration”. Submitted to the IEEE

Transactions on Cybernetics.

2. D.A. Martínez, E. Mojica-Nava, “Distortion Based Potential Game for Distributed
Coverage Control”. Submitted to the IEEE Transactions on Systems, Man and

Cybernetics:Systems.

1.3.2 International Conferences

1. D. A. Martínez, E. Mojica-Nava, K. Watson, and T. Usländer, “Multi-agent Learning
Framework for Environment Redundancy Identification for Mobile Sensors in
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1.3. LIST OF PUBLICATIONS

an IoT Context”, 3rd International Conference on Smart Data and Smart Cities,

Delft-The Netherlands, vol. XLII-4/W11. ISPRS - International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, pp.

33–41.

2. D. A. Martínez and E. Mojica-Nava, “Information Theory and Self Organization in
Sensor Networks”, 9th International Workshop on Optimization in Logistics and

Industrial Applications 2018 - 1st German-French Joint Research Workshop on

Industrie 4.0 and Industrie Du Futur, Karlsruhe-Germany, May 2018.

3. D. A. Martínez, R. Rincón, E. Mojica-Nava, and A. Pavas, “Reactive power sharing
in microgrids: An information-theoretical approach”, 2017 IEEE 3rd Colombian

Conference on Automatic Control (CCAC), IEEE, Cartagena-Colombia, Oct 2017,

pp. 1–6.

4. D. A. Martínez and E. Mojica-Nava, “Correlation as a measure for fitness in multi-
agent learning systems”, 2016 IEEE Latin American Conference on Computational

Intelligence (LA-CCI), IEEE, Cartagena-Colombia, Nov 2016, pp. 1–6.

5. D. A. Martínez and E. Mojica-Nava, “Graph transfer function representation to
measure network robustness”, Impact and Advances of Automatic Control in Lati-

namerica, Medellin-Colombia, Oct 2016, pp. 172–176.

6. D. A. Martínez and E. Mojica-Nava, “Entropy measures in evolving networks”, Com-

plex Networks: from theory to interdisciplinary applications, Marseilles-France,July

2016.

7. D. A. Martínez, C. Cusgüen, and E. Mojica-Nava, “Correlation network with stub-
born agents in an opinion dynamic model”, 2016 Conference on Complex Systems,

Amsterdam-The Netherlands, September-2016.

8. D. A. Martínez, R. Rincón, E. Mojica-Nava, “Reactive Power Sharing in Isolated
Micogrid Using a Controller Based on Information Theory”, Latin American Con-

ference on Complex Networks, Puebla-Mexico, September 2017.

9. D. A. Martínez, E. Mojica-Nava, “Agent-Environment Mutual Information in a Po-
tential Game Context”, Latin American Conference on Complex Networks, Cartagena-

Colombia, Agosto 2019.
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CHAPTER 1. INTRODUCTION

1.4 Document Organization

The rest of this paper is organized as follows. In Chapter 2, we describe the main concepts

associated to the definition of the proposed learning model. First, we describe the rate

distortion function (RDF) and the associated Blahut-Arimoto algorithm, used to find

it in a less complex way. Second, we describe the Gaussian process regression (GPR)

approach, and how it will be used to infer the agent information. Finally, we show the

main concepts about game theory, with especial emphasis in potential games, the Logit
and the replicator dynamics, which are used in the model implementation for mobile

sensor networks and smart grids, respectively.

In Chapter 3, by means of the parameter s of the Blahut-Arimoto algorithm, we

define the highest and the lowest rationality values for the agent learning process, which

determine the maximum and minimum environment understanding, according to the

borders established by the rate distortion function.

In Chapter 4, we include the potential game approach in the model, defining a

distortion based potential function that allows the system to find a Nash equilibrium.

Finally, we show the model performance in a mobile sensor network in order to address

the network coverage problem. Additionally, the applicability of the model in other

multi-agent system context is demonstrated in Appendix A.
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In this chapter, we describe the main concepts used to formulate the proposed multi-

agent learning framework. Firstly, we describe the fundamental notions related

to information theory, putting especial interest in the rate distortion function and

the Blahut-Arimoto algorithm. Secondly, we expose the most relevant definitions about

the Gaussian process regression approach, which is used in our model to infer the agent

environment behavior. Finally, we describe the game theory definitions associated to our

framework formulation, emphasizing in potential games and the Logit dynamics model,

which is used as a rule for agents to choose their strategies towards a desired system

configuration, known as the Nash equilibrium.

2.1 Entropy and Mutual Information

The entropy is a measure of the uncertainty of a random variable X , which can take any

value x belonging to the alphabet X . This is defined by

H(X )=− ∑
x∈X

p(x) log p(x), (2.1)

where p(x) is the probability of X = x, and the logarithm base is 2, hence, the entropy

is given in bits1 [27] [93]. The above quantity is always positive, since 0≤ p(x)≤ 1 and

log p(x)≤ 0.
1Although we have chosen 2 as the logarithm base, it could take any base value. So, for instance, a

logarithm base e results in an entropy measured in nats.

9
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Example 2.1.1. Consider a random variable X , with alphabet X = [a,b, c,d, e]. Let us

suppose that there is no information about the frequency of each symbol in a communi-

cation process, therefore, we assume the uniform probability distribution p(x)= 1
5 . Then,

the entropy is given by

H(X )=− ∑
x∈X

p(x) log p(x)=−5
(
1
5

log
1
5

)
= 2.3219 bits. (2.2)

Now, suppose that the receptor of a transmitted message receives the string {aaabcccdee}.

In this case, the probability of each x ∈X is p(a) = 0.4, p(b) = 0.1, p(c) = 0.3, p(d) = 0.1,

and p(e)= 0.1. In consequence, the entropy value is

H(X )=− ∑
x∈X

p(x) log p(x)=−0.4log0.4−3(0.1log0.1)−0.3log0.3= 2.0464 bits, (2.3)

which reflects the uncertainty reduction when we have previous information about the

symbol probabilities in a message.

In general terms, the entropy is maximum when the probability distribution is

uniform, and decreases as previous information is provided. This can be observed in

Figure 2.1, which shows the entropy curve for a random variable X having two possible

values a,b ∈X , each one with probabilities q and 1− q, respectively. Observe how the

entropy value is the highest when q = 1
2 , i.e., the distribution is uniform, and it is zero

when q = 0 or q = 1, since at these points there is no uncertainty about the value of X .

The above description lead us to define an expression for the conditional entropy

between two random variables.

Definition 2.1. The conditional entropy of two random variables X and Y is defined by

H(Y |X )=− ∑
x∈X ,y∈Y

p(x, y) log p(y|x). (2.4)

The expression in (2.4) allows us to formulate the next theorem.

Theorem 2.1. The joint entropy of two random variables X and Y is defined as

H(X ,Y )=− ∑
x∈X ,y∈Y

p(x, y) log p(x, y)= H(X )+H(Y |X ). (2.5)

Proof.

H(X ,Y )=− ∑
x∈X ,y∈Y

p(x, y) log p(x, y) (2.6)

=− ∑
x∈X

∑
y∈Y

p(x, y) log p(x)p(y|x) (2.7)

=− ∑
x∈X

∑
y∈Y

p(x, y) log p(x)− ∑
x∈X

∑
y∈Y

p(x, y) log p(y|x), (2.8)
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Figure 2.1: Entropy curve for a random variable X with two possible values a,b ∈ X
having probabilities p(a)= q, and p(b)= 1− q.

since
∑

y∈Y p(x, y)= p(x),

H(X ,Y )=− ∑
x∈X

p(x) log p(x)− ∑
x∈X

∑
y∈Y

p(x, y) log p(y|x), (2.9)

and from (2.4), we have

H(X ,Y )= H(X )+H(Y |X ). (2.10)

�

The above theorem tell us that the joint entropy is equal to the entropy of X plus

the entropy of Y reduced because of the previous knowledge of X . Now, having into

account the above definitions, let us define the mutual information between two random

variables, which is one of the most relevant concepts of our research work.

Definition 2.2. The mutual information between two random variables X and Y is

defined by

I(X ;Y )= ∑
x∈X ,y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (2.11)

and is given in bits.

The expression in (2.11) can also be described through the Kullback-Leibler diver-

gence, which is defined as a measure of the distance between the probability distributions

11
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p(x) and q(x), and is given by

KL(p(x)||q(x))= ∑
x∈X

p(x) log
p(x)
q(x)

. (2.12)

Equation (2.12) is interpreted as the loss of information when a random variable X ,

originally described with a probability distribution p(x), is described using a different

distribution q(x). Then, for the mutual information case, we have

I(X ;Y )= KL(p(x, y)||p(x)p(y)). (2.13)

In an entropy context, the mutual information represents the uncertainty reduction of

Y when some cue about X is previously known. This is established through the next

theorem.

Theorem 2.2 (Entropy and mutual information). For two random variables X and Y ,
we have that

I(X ;Y )= H(Y )−H(Y |X ). (2.14)

Proof. From (2.11) we have

I(X ;Y )= ∑
x∈X ,y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(2.15)

= ∑
x∈X ,y∈Y

p(x, y) log
p(y|x)
p(y)

(2.16)

=− ∑
x∈X ,y∈Y

p(x, y) log p(y)+ ∑
x∈X ,y∈Y

p(x, y) log p(y|x) (2.17)

(2.18)

since
∑

x∈X p(x, y)= p(y), then

I(X ;Y )=− ∑
y∈Y

p(y) log p(y)−
(
− ∑

x∈X ,y∈Y
p(x, y) log p(y|x)

)
, (2.19)

and using (2.4), we obtain

I(X ;Y )= H(Y )−H(Y |X ). (2.20)

�

Once the concept of mutual information has been defined, we focus our interest in

the minimum mutual information necessary to represent X by means of Y when they

are separated by a distance commonly know as the distortion measure. This is described

in the next section.
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2.2. THE RATE DISTORTION FUNCTION

2.2 The Rate Distortion Function

The rate distortion function represents the minimum mutual information between two

random variables involved in a setting having distortion. In order to describe this

concept, let us assume a message interchange between a sender and a receiver through

a communication channel, as depicted in Figure 2.2. The random variable X represents

the sent message, while the random variable Y the received one. The noise source,

intrinsic to the communication channel, generates the distortion that avoids to have X
in the reception point [93]. The difference between the sent and the received messages is

described through a distortion measure, which in our case is the squared error distortion
measure defined by

L(x, y)= (y− x)2, x ∈X , y ∈Y . (2.21)

Input Communication
channel

Output

Noise source

X Y

Figure 2.2: Message interchange between a sender and a receiver.

The expression in (2.21) determines an expected distortion value, named D, associated

to a rate in bits, named R, necessary to have legibility of the sent message in the reception

point. In this sense, the rate distortion function is defined as the next minimization

problem2

R(D)= minimize
p(y|x)

I(X ;Y )=∑
x,y

p(x, y) log
p(y|x)
p(y)

subject to
∑
x,y

p(y|x)p(x)L(x, y)≤ D∑
x,y

p(y|x)= 1

p(y|x)≥ 0,

(2.22)

2Henceforth, for simplicity, we are going to use x and y to refer the x ∈X and y ∈Y , respectively.
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which, represented in the Lagrange multipliers form3, lead us to the expression

R(D)=minimize
p(y|x)

[∑
x,y

p(y|x)p(x) log
p(y|x)
p(y)

− s(
∑
x,y

p(y|x)p(x)L(x, y)−D)

+∑
x
λx(

∑
y

p(y|x)−1)
]
,

(2.23)

where the inequality restriction p(y|x)≥ 0, is temporarily ignored. Now, making

J [p(y|x), p(y)]=
∑
x,y

p(y|x)p(x) log
p(y|x)
p(y)

− s
∑
x,y

p(y|x)p(x)L(x, y)+∑
x
λx

∑
y

p(y|x),
(2.24)

we have
R(D)= sD−λ+ min

p(y|x)
min
p(y)

J [p(y|x), p(y)] , (2.25)

where
∑

xλx =λ. Equation (2.25) is a double minimization problem tackled in two steps

described in Appendix C, whose solutions are given by

p∗(y|x)= p(y)esL(x,y)∑
y p(y)esL(x,y) , (2.26)

and

p∗(y)=∑
x

p(x)p(y|x), (2.27)

which are the basis for the Blahut-Arimoto algorithm formulation [15], described here

below.

2.2.1 The Blahut-Arimoto Algorithm

The Blahut-Arimoto algorithm calculates iteratively the p∗(y|x) and p∗(y) of (2.25),

until a convergence condition is found, as depicted in Figure 2.3. This receives as

input parameters an initial uniform distribution po(y) = 1
|Y | , the Lagrange multiplier

s ∈ R−, and the previously known source distribution p(x). The resulting outputs are

the conditional distribution p(y|x), i.e., the probability of a y ∈Y for a given x ∈X , the

expected distortion D, and its associated rate R, whose values are determined by the

value of s, which we describe in detail hereafter.
3We use the Lagrange multiplier representation s as an approximation to the symbol used in the

literature related to the Blahut-Arimoto algorithm.
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Input: s,
p(y) = p0(y) Axy = esL(y,x)

cy =
∑
x

p(x)
Axy∑

y p(y)Axy

p(y)← p(y)cy

TU =−∑
y

p(y) log cy

TL =−maxlog cy

Check for the
convergence

TU −TL < ε

p(y|x)= Axy p(y)∑
y Axy p(y)

D =∑
x

∑
y

p(y)p(y|x)L(x, y)

R = sD−∑
x

p(x) log
∑
y

Axy p(y)−∑
y

p(y)cy log cy

No

Yes

Figure 2.3: The Blahut-Arimoto algorithm.

2.2.1.1 The Parameter s

For simplicity, let us explain the relevance of the parameter s by means of the following

example. Consider a random variable X with X = {x ∈R :−10≤ x ≤ 10}, and a Gaussian

source distribution p(x)=N
(
µ= 0, σ2 = 3

)
. For −20≤ s≤−2, the rate distortion function

is the one shown in Figure 2.4. The allowed region is composed of the set of points {R,D}

that guarantee message legibility in a reception point, in spite of receiving a symbol y ∈Y
when the sent symbol in the transmission point was x ∈X . On the other hand, the set of

points {R,D} on the R(D) curve determine the boundary at which the mutual information

is minimum but enough to have legibility between the emitted and the received message,

in other words, this set of points establish the limit at which the information is neither

redundant nor misunderstood.
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Figure 2.4: R(D) curve for −20≤ s≤−2 and p(x)=N
(
µ= 0, σ2 = 3

)
The relationship between the parameter s and the R(D) curve is visible if we recall

(2.25), which can be rewritten in the linear form

R(D)= sD+b, (2.28)

in other words, s determines a negative slope in a {D,R} point of the curve, being the

lowest value associated to the highest rate and the lowest distortion, as shown in Figure

2.5, in which we can observe a lower distortion for a slope s = −2
σ2 than for a slope s = −1

σ2 .

The parameter s also affects the certainty of the conditional distribution p(y|x).

Figure 2.6 shows how the variance of p(y|x =−5.15) changes depending on the value of s.

Note how the variance decreases when s is more negative, i.e., for a low distortion. In

contrast, the variance increases for values of s close to zero, i.e., when the distortion is

higher.

At this point, it is noticeable that the selection of s can define the level of distortion

that we want to have for a specific application. In our approach, this parameter is

important to establish an agent rationality level for the learning process of a multi-agent

system. This will be described in detail in Chapter 3.

2.2.1.2 Calculation of the Source Probability p(x)

The source distribution p(x) used as an input in the Blahut-Arimoto algorithm is not

always known, which means that it must be obtained through a statistical procedure.
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Figure 2.5: Relationship between the parameter s and the R(D) curve.
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Figure 2.6: Relationship between the parameter s and p(y|x).

In this sense, one of the most popular approaches to calculate unbiased probability

distributions from previous knowledge exposed in the form of distribution moments, is

the maximum entropy principle, whose expression is defined by
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maximize
p(x)

∑
x

p(x) log p(x)

subject to
∑
x

p(x)gk(x)= Fk∑
x

p(x)= 1

p(x)≥ 0,

(2.29)

where Fk is the expected value of a function gk(x). Using the Lagrange multipliers, the

solution of this maximization problem is given by

J(p,λ)=−∑
x

p(x) log p(x)+λ0

(
1−∑

x
p(x)

)
+∑

k
λk

(
Fk −

∑
x

p(x)gk(x)
)
, (2.30)

where
∂J(p,λ)
∂p(x)

=−1− log p(x)−λ0 −
∑
k
λk gk(x). (2.31)

Setting the above term to zero we have

p(x)= 1
Z

e−
∑

kλk gk(x), (2.32)

where Z = e1+λ0 . From the first constraint

1= p(x)=∑
x

p(x)= 1
Z

∑
x

e−
∑

kλk gk(x), (2.33)

therefore

Z =∑
x

e−
∑

kλk gk(x). (2.34)

The above approach is highly useful to find an unbiased probability distribution

p(x) when the previous knowledge is present in form of distribution moments, such as

the expected value. However, when this previous information is not present, the p(x)

distribution having maximum entropy can be found in the following equivalent Gaussian

distribution with mean (µ= 0), and covariance Σ [74]

p(x)= 1

(2π)2|Σ| 1
2

e
1
2 xTΣ−1x. (2.35)

Then, assuming a zero mean, our problem is reduced to the calculation of the covariance

Σ. Fortunately, we can take advantage of the popular kernel RBF (Radial Basis Function),

which is defined as

c(xn, xm)=αe−γ(xn−xm)2 , (2.36)
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where c(xn, xm) is the covariance between a pair of points xn and xm belonging to the

observed data, named training data, while the parameters α and γ define the smoothness

of the resultant distribution. This lead us to describe the Gaussian process regression

approach, used in this work as a method to infer the source distribution describing the

agent environment.

2.3 Non Parametric Learning

One of the most simple cases of a learning process is the fitting of a function f (x) based

on a set of known values, named the training data, to predict unknown values, named the

test data, in a set of positions in x. In this regard, the use of linear parametric regressions

with the form

yn = f (xn;w0,w1)= w0 +w1x, (2.37)

has been widely used, in which, the parameters wn are calculated from an error min-

imization. In this sense, for a two parameters regression, and using the squared loss
function4, this minimization takes the form

argmin
wo,w1

1
N

N∑
n=1

(yn − f (xn;w0,w1))2, (2.38)

where the set y = [y1, ..., yN] represents the training values corresponding to the x =
[x1, ..., xN] training points. This kind of model, in spite of being extended to non linear

cases by means of the addition of parameters, becomes unmanageable as the parameter

number increases. In this regard, the Gaussian Processes Regression (GPR), offers a non

parametric alternative to address this kind of problems.

2.3.1 Gaussian Process Regression

The GPR consists of the definition of a posterior function f ∗, from a prior function f
satisfying a previously set of observed data, named the training data. In order to explain

this, let us assume that we have a set of N training points, given by the set x= [x1, ..., xN ],

and their corresponding training values, given by f = [ f1, ..., fN]. In the same way, we

have a set of M testing points, given by the set x∗ = [x∗1 , ..., x∗M], at which we want to

predict the corresponding testing values, given by the set f∗ = [ f ∗1 , ..., f ∗M].

4The squared loss function measures how close is a particular prediction model to the training data.

19



CHAPTER 2. PRELIMINARIES

Since the GPR assumes that the function values at all the points (training and

testing) follow a Gaussian density, the vectors f and f∗ can be combined in a single vector

given by

ft =
(

f
f∗

)
, (2.39)

which, also follows a Gaussian density [89] [86]. Assuming a zero mean, the prior

distribution describing the whole model, is defined by

p(ft)=N
(
0,

[
C C∗

CT∗ C∗∗

])
, (2.40)

where C is the covariance matrix for the training points, C∗ is the cross-covariance

between the training and test points, while C∗∗ is the covariance matrix for the testing

points, which are obtained by applying the kernel function defined in (2.36). On the other

hand, since in a multivariate Gaussian context a subset of variables conditioned on the

others is also Gaussian distributed, the expression

p(f∗|f)=N (µ,Σ), (2.41)

also represents a Gaussian distribution, where

µ= C∗C−1f, (2.42)

and

Σ= C∗∗−CT
∗ C−1C∗. (2.43)

Finally, if we want to find the set of testing values f∗, we use the Cholesky decomposition

to find a J such that Σ= JJT , and thus, f∗ ≈µ+ JN (0, I). Let us to illustrate the above

concepts with a simple example.

Example 2.3.1. Consider the Figure 2.7, which shows the set of training points

x= [−8,−6,−4,−2,0,2,4,6,8],

and their corresponding training values

f= [0.54,1.9,−2,0.54,0.43,−1.25,−0.6,0.28,3.6],

represented as red circles. Suppose that we want to predict the testing values at the set

of testing points given by x∗ = [−7,−5,−1,3,5], depicted as the dashed vertical lines.
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Figure 2.7: The sets of training points, training values, and the test points.

By means of a MATLAB script, we calculate the set of mean values

µ= [−0.17,0.6,0.84,1.12,0.52],

and the set of covariances

Σ= [0.35,0.34,0.34,0.34,0.34].

These results are shown in Figure 2.8. In Figure 2.8a, we observe the mean values,

represented as black dots, and their corresponding standard deviation. In Figure 2.8b

we show the resulting function f ∗, depicted as a black curve.

2.4 Game Theory

Game theory has become a powerful tool for multi agent learning systems, since its

inclusion in distributed optimization approaches, has permitted the maximization or

minimization of objective functions in order to reach a Nash equilibrium, at which each

agent has the best utility, while the others remain in their current state. In this section,

we describe the most relevant concepts related to game theory, emphasizing in potential

games, which is one of the key elements to formulate our learning model.
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(a) The testing values and their corresponding stan-
dard deviations.

x

-8 -6 -4 -2 0 2 4 6 8

f(
x
)

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) The resultant predicted function.

Figure 2.8: The GPR prediction result.

2.4.1 Strategic Games

The concept of strategic games was introduced by Neumann and Morgenstern in their

seminal work “Theory of Games and Economic Behavior” [108], whose initial economic

focus, has been derived to others sciences such as mathematics, biology, sociology, physics,

and engineering, among others. In this theory, the game players, henceforth referred to

as agents, interact in a setting at which the individual welfare does not only depend on

the individual selected strategy, but also on the strategies assumed by the others.

In a formal way, a strategic game defined by G, is composed of a set of N selfish

agents, in which an agent i, i ∈ {1, ..., N}, has a finite set of strategies or actions Si. In

this way, the set of all the system strategy configurations, or strategy profiles, is given

by S =∏N
1 Si = S1×, ...,×SN . This means that in a determined time step, each agent can

choose a strategy si ∈ Si, which results in a system strategy profile s= (s1, ..., sN),s ∈ S,

at which the utility of the agent i is Ui(s) : S1×, ...,×SN →R. Adopting the standard game

theoretic notation, we use s−i to refer the set of actions assumed by the agents different

to the agent i. With the above concepts in mind, let us define the Nash equilibrium.

Definition 2.3 (The Nash equilibrium). An action profile s∗ = (s∗i , s∗−i) is a Nash equilib-

rium, if ∀i ∈ N and ∀si ∈ Si

Ui(s∗)≥Ui(si, s∗−i). (2.44)

This means that in the strategy profile s∗, an agent has no incentive to adopt a unilateral

deviation [123] [8].
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As we have mentioned, the agent strategy selection depends on its utility, and the

actions taken by the others. This process, commonly known as the dynamics, is an

evolving mechanism that defines the action selection of the agents, through which the

multi-agent system eventually finds the Nash equilibrium. In this sense, many types

of dynamics have been proposed, being the most popular the Logit dynamics, replicator
dynamics, Smith dynamics, among others [90]. In this work, we are especially concerned

with the Logit dynamics, which is a noisy version of the best response dynamics. However,

the replicator dynamics is also considered in one of the applications of the proposed

learning model, as we will see in Appendix A.

2.4.2 The Logit Dynamics

In a simple form, in a best response dynamics setting, the agents take turns to assume

the most profitable action against the selected actions by the other agents. According to

[17], for a given set of best responses denoted as M(si, s−i), where (si, s−i) is the current

strategy profile, the best response choice for an agent i, is determined by the probability

p(sk|s−i)=


1
|M(si ,s−i)| if sk ∈M(si, s−i)

0 otherwise.
(2.45)

This kind of dynamics assume agent rationality, i.e., agents have complete knowledge

about the strategies followed by the others, which is not always possible in a realistic

context. In this regard, the Logit dynamics tackles the knowledge limitation through a

rationality measure β, used to define the rules followed by an agent in order to choose its

strategies [17], according to the expression

p(sk|s−i)= eβUi(sk,s−i )∑
si∈Si eβUi(si ,s−i)

, (2.46)

where sk ∈ Si.

The above expression has the form of a Boltzmann distribution, in which the rational-

ity measure β is similar to the inverse temperature. According to [8], the Logit dynamics
is a noisy best-response dynamics, where the noise level is determined by β. In this sense,

for β = 0, the decisions are made under the highest noise condition, and the strategy

selection follows a uniform distribution, i.e., each strategy has the same probability to

be chosen. On the other hand, when β→∞, the agent tends to choose the strategy that

corresponds to its best response. Independently of the initial strategy profile, the Logit
dynamics converges to a stationary distribution after a number of steps given by the
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rationality level. This means that, after a sufficiently large time, the probability of find

the system in a specific strategy profile remains unchanged, and there is no a strategy

that improves an agent benefit when the others remain static, which constitutes a Nash
equilibrium.

2.4.3 Replicator Dynamics

Before to explain the concept of replicator dynamics, let us explain some relevant concepts

related to evolutionary games.

2.4.3.1 Evolutionary Game Theory

In evolutionary games the utility of each individual or player is interpreted as a fitness

value that depends on the frequency or proportion of a phenotype in a population [77]. In

contrast with strategic games, in evolutionary games the players do not make decisions

based on rationality, but in the acquired information through the interaction. In this

sense, the individuals find out the payoff of their peers, and emulate the strategies

followed by the ones having the highest rewards. This process is similar to the natural

selection, in which the strategies having good rewards reproduce faster, whereas those

strategies having the poorest incentives tend to disappear. This is illustrated in Figure

2.9. First, in Figure 2.9a we show a player in red to represent the population proportion

following the strategy with the highest payoff. Second, in Figure 2.9b we show how the

players that initially follow the blue strategy having lower payoff, begin to change to

the red one after the interaction with the first player. The increment of the number of

players following the red strategy causes its payoff decrease. Conversely, the strategy in

blue begins to be worthy.

In a formal way, for a pair of strategies A and B, the respective frequencies are

denoted by xA and xB. Then, the population composition is given by x = (xA, xB), and

the corresponding fitness are fA(x) and fB(x), which lead us to express the selection

dynamics as

ẋA = xA

[
fA(x)− f

]
(2.47)

ẋB = xB

[
fB(x)− f

]
, (2.48)

where f = xA fA(x)+ xB fB(x) is the average fitness, and xA + xB = 1. This last condition,
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(a) The fitness of the strategy A (in red)
is higher.

(b) The fitness of the strategy B (in
blue) begins to increase.

Figure 2.9: Population dependency of fitness.

allows us to make x = xA and xB = 1− x, therefore we have that

f = xfA(x)+ (1− x) fB(x) (2.49)

= xfA(x)+ fB − xfB. (2.50)

Replacing (2.50) in (2.47), we obtain

ẋ = x(1− x)[ fA(x)− fB(x)], (2.51)

which is a differential equation with equilibrium at x = 0, x = 1, and all the values of x

satisfying fA(x)= fB(x).

2.4.3.2 The Replicator Dynamics Equation

Consider a set of n strategies and a n×n matrix, denoted as the payoff matrix, whose

component ai j represents the payoff associated to the interaction between the strategies

i, j ∈ n [77]. Then, the expected payoff of the strategy i is given by

f i =
n∑

j=1
x jai j. (2.52)

Therefore the average fitness is

f =
n∑

i=1
xi f i. (2.53)

Then, the resulting replicator dynamics equation is given by

ẋ = xi

[
f i(x)− f

]
. (2.54)
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Example 2.4.1 (The prisoners dilemma). In this popular example, two crooks have been

captured by the police, who has offered two options. The first one is to confess, and the

second one is to keep quiet. If one of the crooks confess that both committed the crime,

he will be set free and the other will spend 5 years in jail. If both confess, they will get a

sentence of 3 years. If neither confess, they have to spend 1 year in jail. Let us denote

by A the strategy of keep quiet, and by B the strategy of confess. The corresponding

payoff matrix is shown in Table 2.1. The pairs (x, y) on each cell, represent the payoff of

player X and Y, respectively, for a given combination of strategies A and B. Observing the

payoff values, we can deduce that when both players choose A, just the player X improves

its payoff for changing to strategy B. On the other hand, if both payers have chosen B,

neither player will improve its utility for changing to A. Therefore, the strategy B is

a Nash equilibrium [113] [77]. In terms of evolutionary games, this Nash equilibrium

implies an evolutionarily stable strategy (ESS), i.e, a strategy that will offer the best

payoff in spite of the appearance of other strategies.

Player Y
C K

Player X
C (3,3) (0,5)
K (5,0) (1,1)

Table 2.1: Payoff matrix for the prisoner dilemma game.

If we apply the replicator dynamics equation of (2.54), we can observe the evolution

of both strategies. This is shown in Figure 2.10. Observe how the frequency of strategy B

(xB) overcomes the frequency of A (xA), no matter the initial conditions.

2.4.4 Potential Games

A strategic game is a potential game if exists a potential function φ(s) : S → R,s ∈ S
that reflects the individual utility change when each agent unilaterally assume a new

strategy, no matter which one caused it. In this way, the local optima of φ(s) can be used

to find the set of pure Nash equilibrium of the whole system. We can find many types of

potential games in literature [73] [109]. Hereafter, let us describe some of them.

Definition 2.4 (Ordinal potential game). An ordinal potential game is defined by

Ui(sk, s−i)−Ui(sl , s−i)> 0⇐⇒φ(sk, s−i)−φ(sl , s−i)> 0, (2.55)

where sk, sl ∈ Si.
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Figure 2.10: The evolution of strategies A and B.

Definition 2.5 (Exact potential game). An exact potential game is defined by

Ui(sk, s−i)−Ui(sl , s−i)=φ(sk, s−i)−φ(sl , s−i), (2.56)

where sk, sl ∈ Si.

Definition 2.6 (Weighted potential game). A weighted potential game is defined by

Ui(sk, s−i)−Ui(sl , s−i)= φ(sk, s−i)−φ(sl , s−i)
wi

, (2.57)

where sk, sl ∈ Si, and wi ∈R+.

Example 2.4.2. Considering the prisoners dilemma of example 2.4.1, we can define the

potential function shown in Table 2.2. This is an exact potential function since for player

X we have

UX (A, A)−UX (B, A)= 5−3= 2, (2.58)

which is equal to

φ(A, A)−φ(B, A)= 2−0= 2. (2.59)

The above proof can be demonstrated for any strategy combination and player.

In this regard, the agents constituting a multi-agent system have as common goal

the maximization (minimization) problem

max
s

φ(s)

s.t. s ∈ S.
(2.60)
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Player Y
A B

Player X
A 0 2
B 2 1

Table 2.2: Potential function for the prisoner dilemma game.

Additionally to the exposed variety and relative simplicity, one of the main advantages

of potential games is the existence of at least one action profile that guarantees a Nash

equilibrium, which is reached in our case, through the Logit dynamics. However, in

most of the cases, the potential function definition could become a challenging affair.

The most straightforward method is to make Ui(s) =φ(s), s ∈ S, which is applicable in

systems having small number of agents, since it requires that each agent has a complete

information about the payoffs obtained by the others, due to its utility depends directly

on the potential function. In this sense, approaches such as wonderful life utility and

the Shapley value, have been proposed in [116] and [7] respectively, which fit well in

incomplete information contexts [101]. In our work, we define a distortion based potential
function, that exploits the rate distortion function characteristics, defined in Section 2.22.

We will describe it in detail in Chapter 4.
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3
INFORMATION-BASED RATIONALITY

The multi-agent learning model proposed in this work combines the predictive ca-

pabilities of GPR, the minimization of the mutual information, obtained through

the rate distortion function, and the qualities of potential games in terms of dis-

tributed optimization. In this chapter, we firstly establish a multi-agent setting, in which

each agent infers its environment by means of the GPR approach, using as training data
the information provided by the agents belonging to its neighborhood. Once this environ-

ment is modeled through a probability distribution, it is used as the source distribution

of the Blahut-Arimoto algorithm, which allows us to obtain the rate and distortion values

associated to the parameter s, which in our case, acts as a rationality measure having a

maximum and a minimum determined by the rate distortion function. In this regard, the

maximum rationality value establishes the point from which there is no an improvement

for the agent in terms of environment understanding, while the minimum rationality
value defines the border at which the distortion about the environment is maximum

but enough to understand it. Both rationality levels determine the agent behavior, since

they can define the equilibrium deviation, and the convergence time, as we will show in

Chapter 4, where the potential game approach is included in our model.

3.1 The Multi-Agent Environment

In order to describe the multi-agent environment, let us consider the configuration

shown in Figure 3.1, which contains a set of N mobile sensing agents indexed by i ∈
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{1, ..., N}, deployed in a spatial fieldΩ ∈R2, having the positions S = {s1, ..., sN },S ∈Ω, and

sensing measurements V = {v1, ...,vN }1. The training set for an agent i combines its own

position si and measurement vi, with the positions s j
′s and measurements v j

′s of its

neighborhood, defined by Ni = { j ∈ N : ||si − s j|| ≤ rc}, where rc is the connection radius.

The environment of the agent i is composed of the set of testing points Zi = {z1, ..., zM},

and the corresponding set of testing values Wi = {w1, ...,wM}, which are inferred using

GPR. As we have mentioned in Section 2.3.1, the GPR prediction process give us a pair

(µm,Σm) for each point m = {1, ..., M} of the testing set, in other words, the environment

for an agent i, can be described by a set of Gaussian distributions N (µ,Σ). This lead us

to the next definition.

Definition 3.1 (The agent environment). The environment of the agent i is given by

N (µ,Σ)=



N (µ1,Σ1)

.

.

.

N (µM ,ΣM)

 , (3.1)

where µm and Σm are the predicted mean and variance in the testing point m ∈ {1, ..., M},

respectively.

The set of locations Zi constituting the environment, becomes a set of possible actions

to take for the agent, and defines its movement within the spatial field.

Definition 3.2 (The agent action set). The set of locations Zi = {z1, ..., zM} determines

the set of possible actions to be taken for an agent i, named the agent action set.

In this sense, each agent chooses the action offering the best utility at each time step,

and in this way, it moves within the spatial field towards an equilibrium point, as we

will describe in Chapter 4.

The set of distributions given in (3.1) determines the source distribution p(x) neces-

sary to calculate the rate distortion function through the Blahut-Arimoto algorithm.

Remark 3.1 (Blahut-Arimoto source distribution). The source distribution p(x), nec-
essary to calculate the rate distortion function R(D), and consequently, the minimum

1Although the model is defined in R2, it can be extended to ∈R3
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vi, si

rc v2, s2

v3, s3
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v5, s5

vN , sN

w1, z1

w2, z2

w3, z3

w4, z4

w5, z5

w6, z6

w7, z7

w8, z8

Figure 3.1: Multi-agent model setting.

mutual information between the agent i and its environment, is given by

p(x)=



p(x1)

.

.

.

p(xM)

=



N (µ1,Σ1)

.

.

.

N (µM ,ΣM)

 . (3.2)

With this in mind, we can proceed to apply the Blahut-Arimoto algorithm, which

provides the pair rate and distortion (R,D), for a given value of the parameter s, which,

as we have mentioned, is the factor that set the rationality level of or approach. This is

described below.

3.1.1 The Lowest Rationality

In Section 2.2.1.1, we have shown the relationship between the parameter s of the

Blahut-Arimoto algorithm, with the rate distortion function, and how it determines the

points (R,D) on it. Now, let us find the value of s at which an agent has the maximum

allowed distortion about its environment, but enough information to comprehend it.

At this point, we have the lowest rationality, which is described by means of the next

theorem.
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Theorem 3.1 (The lowest rationality). Consider the environment for the agent i, de-
scribed by the vector of Gaussian distributions p(x) given by (3.2), and the corresponding
set of values for the parameter s expressed as

s=
[
s1, . . . ,sM

]T
. (3.3)

Then, the upper boundary condition for s is

s≤− 1
2Σ

. (3.4)

Proof. According to [27], the rate distortion function for a Gaussian source N (µ,σ2) and

squared-error distortion is given by the expression

R(D)=


1
2 log σ2

D , 0≤ D ≤σ2

0, D >σ2.
(3.5)

For the case of our work, this Gaussian source is given by p(x). Then, the rate distortion

function between an agent i and the environment point m ∈ {1, ..., M}, for 0≤ Dm ≤Σm, is

defined by

R(Dm)= 1
2

log
(
Σm

Dm

)
. (3.6)

Recalling that the slope in a point (D,R) of the function R(D) is given by the parameter

s, we have from (3.6) that

sm = dR(Dm)
dDm

=− 1
2Dm

. (3.7)

Then, for the upper distortion limit Dm =Σm, we have

sm ≤− 1
2Σm

. (3.8)

Therefore, considering all the points belonging to the agent environment, we have that

s≤− 1
2Σ

. (3.9)

�

Remark 3.2 (Exploratory behavior). For the lowest rationality defined in (3.4), the agents
behave in a exploratory form, since they tend to avoid the environment cues determined
by their neighbors.

The above result gains relevance in a setting where the field exploration is required,

since the agent movement through uncorrelated regions, could promote the discovering

of wealthy locations. Hereafter, we describe the set of steps necessary to establish the

maximum rationality value.
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3.1.2 The Highest Rationality

In the previous section, we have found the value of the parameter s at which an agent

has the minimum information about the environment, but enough to understand it,

which is determined by the limits imposed by the rate distortion function. Now, we are

going to find the value of s at which an agent has the maximum information about

its environment, in other words, the highest rationality. If we think in the distortion

reduction as a measure of utility, the highest rationality point defines a limit at which

an agent does not improve its benefit for decreasing the distortion or increasing the rate,

as we will shown in Chapter 4. In other words, there is a distortion level at which the

agent understands the environment in the same way as if it were zero. In this approach,

we are going to employ the conditional distribution p(y|x), resulting from the mutual

information minimization, as a measure of the understanding about the environment for

each agent. This lead us to the next definition.

Definition 3.3 (Agent environment understanding). Let p(y) be the distribution describ-

ing the agent behavior, and let p(x), defined in (3.2), be the distribution describing the

agent environment. Then, the agent understanding about the environment is given by

the set of conditional distributions

p(y|x)=



p(y|x1)

.

.

.

p(y|xM)

 , (3.10)

where p(y|xm)= Axy p(y)∑
y Axy p(y) , and Axy = esL(y,xm), as stated in the Blahut-Arimoto algorithm

described in Section 2.2.1.

In this sense, there is a value for the parameter s at which the agent information

has the highest similitude to the environment, and it occurs when the distributions p(x)

and p(y|x) have the lowest distance or, in other words, the minimum Kullback-Leibler

divergence. To find it, let us begin describing, through Lemmas 3.1 and 3.2, respectively,

the matrix Axy, and the distribution p(y) in terms of the distortion, which, for the set of

points constituting the agent action set, is given by the vector

D=
[
D1, . . . ,DM

]T
. (3.11)
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Lemma 3.1. Let 0 ≤ Dm ≤ Σm, with m ∈ {1, ..., M}. Then, for a given x = xm and y ∈ Y ,
Axy is exponentially decreasing in Dm, and is given by2,3

Axy = e−
(y−xm)2

2Dm . (3.12)

Proof. From the Blahut-Arimoto algorithm we have Axy = esm(y−xm)2 , and from Theorem

3.1 we have sm = −1
2Dm

.

Then

Axy = e−
(y−xm)2

2Dm . (3.13)

�

Lemma 3.2. Let 0 ≤ Dm ≤ Σm, with m ∈ {1, ..., M}. Then, for a given x = xm and y ∈ Y ,
p(y) is an exponentially increasing function in Dm, and is given by

p(y)= e−
(y−xm)2

2(Σm−Dm) . (3.14)

Proof. According to [27], the mutual information of two correlated Gaussian random

variables is given by

I(X ,Y )=−1
2

log(1−ρ2), (3.15)

where ρ is the correlation coefficient between X and Y . Equating this expression with

(3.6), we have
1
2

log
Σm

Dm
=−1

2
log(1−ρ2

m). (3.16)

Therefore

Σm = Dm

1−ρ2
m

. (3.17)

On the other hand, from the Blahut-Arimoto algorithm we have4

p(y|x)= Axy p(y). (3.18)

Since, p(x) and p(y|x) are Gaussian, then p(y) is also Gaussian. Therefore

p(y|x)= e−
(y−xm)2

2Dm e
− (y−xm)2

2σy2
m . (3.19)

2The alphabet Y represents a set of possible measurement values taken by the agent.
3To facilitate the calculation we ignore the normalization term 1∑

y Axy
.

4To facilitate the calculation we ignore the normalization term 1∑
y Axy p(y) .
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The conditional Gaussian distribution p(y|x) can be expressed as

p(y|x)=N
(
µym +

ρm

√
Σmσy2

m

Σm
(xm −µm),σy

2
m − ρ2

mσy
2
mΣm

Σm

)
. (3.20)

Hence

e

− (y−xm)2

2

(
σy2

m−ρ
2
mσy2

mΣm
Σm

)
= e−

(y−xm)2
2Dm e

− (y−xm)2

2σy2
m (3.21)

and σy
2
m = Dmρ

2
m

1−ρ2
m

.

Now, using (3.17), we have

Σm −Dm = Dm

1−ρ2
m
−Dm = Dmρ

2
m

1−ρ2
m

=σy
2
m. (3.22)

Then

p(y)= e−
(y−xm)2

2(Σm−Dm) . (3.23)

�

So far, we have defined p(y) and Axy as functions of the distortion. Now, using (3.18),

Lemma 3.1 and 3.2, the conditional distribution p(y|x) can also be given in terms of the

distortion. This is established in the following Lemma.

Lemma 3.3. Let 0 ≤ Dm ≤ Σm, with m ∈ {1, ..., M}. Then, for a given x = xm and y ∈ Y ,
p(y|x) has the expression

p(y|x)= e
−(y−xm)2

2Dm
Σm

(Σm−Dm) . (3.24)

Proof. According to the Blahut-Arimoto algorithm, p(y|x)= Axy p(y). Then, using Lemma

3.1 and Lemma 3.2 we have

p(y|x)= e
−(y−xm)2

2Dm e
−(y−xm)2

2(Σm−Dm) , (3.25)

so that

p(y|x)= e
−(y−xm)2

2Dm
Σm

(Σm−Dm) . (3.26)

Then, the resultant covariance of the Gaussian distribution p(y|x) is given by

σ2
(y|x)m

= Dm

Σm
(Σm −Dm). (3.27)

�
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Now, using (3.27), we can obtain a relationship between the distribution p(x) describ-

ing the environment, and the distribution p(y|x), which, as we have defined, describes

the agent understanding about the environment. This is formulated by means of the

next theorem.

Theorem 3.2 (The highest rationality). Let KL [p(x)||p(y|x)] be the distance between
the distribution describing the environment and the distribution describing the agent
understanding about the environment. Then, the agent rationality is the highest when
KL [p(x)||p(y|x)] is minimized, and this occurs for

s= −1
Σ

. (3.28)

Proof. The similitude between the conditional distribution p(y|x) and the distribution

p(x), which describes the environment, can be measured through the Kullback-Leibler

divergence, which for a pair of Gaussian distributions as in this case, has the expression

(see Appendix B)5

KL [p(x)||p(y|x)]= 1
2

log
σ(y|x)

2
m

Σm
+ Σm

2σ(y|x)2m
− 1

2
. (3.29)

From Lemma 3.3 we have

σ(y|x)
2
m = Dm

Σm
(Σm −Dm). (3.30)

Then

KL [p(x)||p(y|x)]= 1
2

log
Dm
Σm

(Σm −Dm)

Σm

+ Σm

2 Dm
Σm

(Σm −Dm)
− 1

2
.

(3.31)

Now, the value of Dm for a minimum distance between both distributions is found solving

the minimization problem

minimize
Dm

−KL [p(x)||p(y|x)]

subject to Dm ≤Σm

−Dm ≤ 0.

(3.32)

Using the Lagrange multipliers method we have

(Σm −2Dm)
2

[
Dm(Σ∗

m −Dm)− (Σ∗
m)2

D2
m(Σm −Dm)

]
−λ1Σm −λ2 = 0, (3.33)

5We use µym =µm, i.e., the Blahut-Arimoto algorithm finds the conditional distribution p(y|x =µm)
for each point m ∈ {1, ..., M} of the agent environment.
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where λ1 ≥ 0,λ2 ≥ 0,λ1(Dm −Σm)= 0,Dmλ2 = 0.

From (3.33), it is evident that Σm 6= Dm and Dm 6= 0, then λ1 = λ2 = 0, and the only

possible solution is Dm = Σm
2 .

Since from Theorem 3.1 sm =− 1
2Dm

, then we have that

sm =− 1
Σm

. (3.34)

Therefore, considering all the points belonging to the agent environment, we have

s=− 1
Σ

. (3.35)

�

Corollary 3.1. Let sm =− 1
Σm

be the value of s at the environment point m ∈ {1, ..., M} for
an agent i. Then, the amount of information at this point is equal to 0.5 bits.

Proof. From (3.6) we have sm =− 1
Σm

.

From Theorem 3.1, if sm =− 1
Σm

then Dm = Σm
2 .

So that

R(Dm)= 1
2

log
Σm
Σm
2

= 0.5 bits. (3.36)

�

The results in (3.35) and (3.36), show the limits for the distortion and the rate at which

the agent rationality is maximum. In other words, a decrease of the distortion below Dm
2 ,

or an increase of the rate above 0.5 bits does not improve the agent understanding about

its environment. This is demonstrated in the next section.

3.1.3 The Rationality Effect

As we have mentioned, the highest rationality occurs when s=− 1
Σ , whose equivalent

distortion is D= Σ
2 . This can be observed in Figure 3.2, which shows a minimum for the

Kullback-Leibler value at this point, and a maximum in the borders. This effect is also

visualized in Figures 3.3, 3.4, and 3.5, which show in the left side, the trajectories followed

by a set of 10 agents moving through a variable spatial field, and the corresponding

comparison between the distributions p(x) and p(y|x) in the right side. In Figure 3.3a,

we observe the trajectories of the agents when s=−100
Σ , i.e., a very low distortion value.

In this case, the similitude between the distributions p(x) and p(y|x) is low, as depicted
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in Figure 3.3b. On the other hand, Figures 3.3a and 3.3b show the behavior when s=− 1
Σ ,

i.e., the highest rationality value. In this case, the trajectories of the agents are almost

the same as in the previous case, and the similitude between the probability distributions

is the highest. Finally, in Figures 3.5a and 3.5b, we show the case of s = − 1
Σ , i.e., the

lowest rationality. Here, the agents follow trajectories that cover more locations within

the spatial field, making the system more exploratory. On the other hand, the similitude

between the probability distributions also decreases.
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Figure 3.2: KL [p(x)||p(y|x)] for different distortion values.

3.1.4 Agent Redundancy Tracking

The agent understanding about the environment, given by the conditional p(y|x), allows

the agent to choose the action zi ∈ Zi to be performed depending on the desired kind of

exploration within the spatial field. In this sense, an agent selects the action having the

highest conditional probability when it expects to follow redundant environment cues.

On the other hand, an agent selects the action having the lowest conditional probability

if it wants to avoid redundant cues coming from the environment. This lead us to the

next pair of definitions.

Definition 3.4 (The less redundant environment location). For an agent i, with action

set Zi, the action exhibiting the lowest redundancy about the environment is given by

zm ∈ Zi : minp(y|x)= p(y|xm), for m ∈ {1, ..., M}. (3.37)
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(a) Trajectories of agents when s=− 100
Σ .
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Figure 3.3: Multi-agent system behavior for a very low distortion value.

(a) Trajectories of agents when s=− 1
Σ .
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Figure 3.4: Multi-agent system behavior for the highest rationality.

Definition 3.5 (The most redundant environment location). For an agent i, with action

set Zi, the action exhibiting the highest redundancy about the environment is given by

zm ∈ Zi : maxp(y|x)= p(y|xm), for m ∈ {1, ..., M}. (3.38)

In Figure 3.6, we show the trajectories of a set of agents when they follow redundant

and non redundant cues. Observe how in the case of Figure 3.6a, the agents tend to repel

each other, contributing to the environment exploration. On the other hand, in Figure

3.6b, we can notice how the agents tend to follow the trajectories of their neighborhood,
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(a) Trajectories of agents when s=− 1
2Σ .
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Figure 3.5: Multi-agent system behavior for the lowest rationality.

promoting the cluster formation. Notice how in this case, the isolated agents do not have

enough environment information, since their training data are reduced to their own

measurements.

(a) Trajectories of agents folowwing non redundant
cues.

(b) Trajectories of agents folowwing redundant cues.

Figure 3.6: Agent redundancy tracking.

The behavior exposed above, gains relevance in a system requiring that the agents

develop a repulsive or an attracting behavior, depending on the number of individuals

attending a specific event. This will be described in detail in Chapter 4, when the

proposed model is applied in a sensor coverage problem.
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So far, we have defined a multi-agent learning model in which agents have the ability

to decide between two specific behaviors established by the parameter s of the Blahut-

Arimoto algorithm. First, they can adopt a behavior conditioned by the lowest rationality

level, in which the environment exploration is promoted. Second, agents can understand

their environment without the necessity of a very low distortion or high information

levels as established in Theorem 3.2. Additionally, agents are able to define their actions

according to the level of redundancy in their environments.

In the next chapter, we include the game theory approach in our model, in order to

improve the agent performance, by means of a distributed optimization scheme that

allows the system to find a Nash equilibrium.
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INFORMATION THEORY LEARNING MODEL AND

EQUILIBRIUM CONVERGENCE

In this chapter, we include the potential games approach in order to define a scheme

for the action selection used by the agents towards an equilibrium. First, we use

the expected distortion, provided by the rate distortion function, as a potential

function, whose minimization becomes the system objective. Second, the conditional

distribution obtained through the minimization of the mutual information, which, as we

stated in Chapter 3, describes the agent understanding about the environment, defines a

Logit dynamics pattern that the agents use to choose the actions offering the best utility

in an event tracking setting. Finally, the rationality levels also defined in Chapter 3,

which are determined by the parameter s of the Blahut-Arimoto algorithm, are used to

establish a convergence time towards a Nash equilibrium.

We show the performance of the final model in a mobile sensing setting, in which the

coverage problem is addressed. We first show the agent behavior in an invariant envi-

ronment, where the results resemble the consensus based potential function described

in [60]. Then, the model is implemented in a variant environment, and the distortion

minimization demonstrates to be dependent on the environment measurements and the

agent locations. Finally, our model exhibits a very good performance in a more realistic

setting, in which the trending network coverage problem is addressed with satisfactory

results in terms of convergence time, and number of agents, in comparison with the

results exposed in [60] and . However, in spite of the importance of this convergence time
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and the number of agents to reach the Nash equilibrium, the main result of this work, is

the ability of the agents to detect redundancy in their environment, an in this way, the

capacity to decide about the actions to assume. This, to the best of our known, has not

been addressed in literature.

4.1 The Logit Dynamics Pattern

As we shown in Chapter 2, one of the outputs of the Blahut-Arimoto algorithm is the

conditional distribution, which for a point m ∈ {1, ..., M}, i.e., a point belonging to the

agent action set, is given by

p(y|x =µm)= p(y)es(y−µm)2∑
y p(y)es(y−µm)2

, (4.1)

which measures the agent understanding about the environment, under a distortion

value determined by s. Equation (4.1), can also be shown as a Boltzmann distribution,

in which s resembles the inverse temperature. This lead us to think on the conditional

distribution, as the expression used by the agents to choose their strategies, according to

a rationality measure given by the parameter s, whose limits were established through

Theorems 3.1 and 3.2 in Chapter 3.

Definition 4.1 (Logit dynamics pattern). The expression in (4.1) defines the strategy

updating rule for an agent i, according to the utility function

Ui = (y−µm)2, (4.2)

with y ∈Y1.

This means that an agent will choose the action having the highest similitude in

relation with the environment when it is developing a tracking event task. However,

there are some cases in which the number of agents attending a specific event, could

produce redundant measurements and unnecessary data transmission to sink points. In

this sense, the agents can revert the benefit described in (4.2), which lead them to refuse

dense locations and to explore new field positions, following the redundancy tracking
behavior exposed in Section 3.1.4. This will be demonstrated in the network coverage

problem described in Section 4.4.4. So far, we have defined the dynamics to be used

by the agents in order to make their action choice. In the next section, we define the

distortion based potential function that allows us to find an equilibrium.
1The alphabet Y represents a set of possible measurement values taken by the agent.
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4.2 Distortion Based Potential Game

As we shown in Chapter 2, the Nash equilibrium of a multi-agent system can be found if

the utility change of the each agent can be mapped through a potential function. In our

case, this potential function is based on the expected distortion established by the rate

distortion function. This is described by means of the next theorem.

Theorem 4.1. Let Z =∏N
1 Zi be the set of strategy profiles for a potential game G having

N agents, in which the agent i ∈ {1, ..., N}, has the action set Zi = {z1, ..., zM}. The agent
utility function given in (4.2), constitutes an ordinal potential game whose potential
function is the expected distortion measure given by

φ(z)= ∑
µ(z),y

p
(
y,µ(z)

)(
y−µ(z)

)2, (4.3)

where µ(z) is the set of estimated mean values at the set of locations z = (z1, ..., zN) ∈ Z
constituting the system action profile.

Proof. According to (2.55), φ(z) is a potential function if

φ(z2, z−i)−φ(z1, z−i)> 0⇐⇒Ui(z2, z−i)−Ui(z1, z−i)> 0, (4.4)

where, z1, z2 ∈ Zi, and z−i is the set of actions assumed by the agents different to i. Then,

without loss of generality, from (2.22), and Theorem 3.2 we have that

φ(z2, z−i)−φ(z1, z−i)= Σ2

2
− Σ1

2
> 0. (4.5)

The conditional probability p(y|x =µm) is inversely proportional to Σm, then

p(y|µ2)< p(y|µ1)=
p(y)es(y−µ2)2 < p(y)es(y−µ1)2 =
log(es(y−µ2)2)< log(es(y−µ1)2)=

s(y−µ2)2 < s(y−µ1)2.

(4.6)

Since s ∈R<0, then (y−µ2)2 > (y−µ1)2, and

Ui(z2, z−i)−Ui(z1, z−i)> 0. (4.7)

�

With this in mind, the system objective is the minimization of the expected distortion.

At this point, we have defined all the aspects involved in the learning model pro-

posed in this work. In the next section, we summarize it and explain its computational

implementation.
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4.3 Information Theory Based Learning Model

Figure 4.1, summarizes the proposed multi-agent learning framework. Recalling the

multi-agent model described in Section 3.1, first we have the sets of training points S =
{s1, ..., sN }, and training values V = {v1, ...,vN }, coming, respectively, from the positions

and the measurements of the agents belonging to the neighborhood of the agent i,
which are used to infer, by means of GPR, the testing values W = {w1, ...,wM}, in a set of

previously known testing points Zi = {z1, ..., zM}. In this way, an agent i obtains a set of

mean and covariances for each point m ∈ {1, ..., M} of its action set, which define the set

of Gaussian distributions p(x) describing its environment. The rationality values, found

through Theorems 3.1 and 3.2, are used to define the desired amount of information that

the agents want to have about the environment, in order to promote the field exploration

when it is low, or to accelerate the equilibrium convergence of the system when it is

high. Once, the source distribution p(x) and the rationality value of s are defined, the

conditional probability p(y|x = µm) describing the similitude between the agent and a

point m ∈ {1, ..., M} of its environment2, is used as a Logit dynamics pattern, though

which the agent choose their actions. The selected action, can be oriented to follow high

or low redundancy, improving the event tracking in the first case, or the avoidance of

repetitive lectures due to the cluster formation in the second case, as we stated in Section

3.1.4. Finally, the distortion based potential function φ(z), allows the system to find a

Nash equilibrium at which the agents do not receive incentive to change their strategies

unilaterally.

2The set of points Zi = {z1, ...zm} corresponding to the action set of the agent i, is the same set of points
corresponding to its environment, as we stated in Chapter 3.
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Start

Training
data:

Zi,S,V

Environment behavior:
p(x) = N (µ,Σ)

Rationality value:
− 1
Σ ≤ s ≤ − 1

2Σ

Blahut-Arimoto algorithm:
R(D)

Logit dynamics pattern:

p(y|x = µm) = p(y)es(y−µm)2∑
y p(y)es(y−µm)2

∀ m ∈ {1, ..., M}.

Nash equilibrium
convergence:
φ(z) : z =

(z∗i , z∗−i),z ∈ Z

End

Yes

No

Figure 4.1: The information theory based learning model.
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4.3.1 Computational Implementation

Algorithm 1 shows the computational implementation of our model. The Blahut-Arimoto

algorithm, described in Section 2.2.1, is included to obtain the conditional distribution

that defines the action selection rule of the agents. The set of covariance matrices, C∗,C,

and C∗∗, are obtained using the kernel function RBF, as defined in the GPR approach.

The selected action zi depends on the desired behavior of the agent, which can be to

follow redundancy or not. This behavior, will be applicable in the network coverage

problem described in Section 4.4.4, where the redundancy avoidance is used for the

agents to scape from positions covered by others. This algorithm calculates the action to

be selected by each agent, until the utility of each position belonging to the action set is

the same or almost the same, in such a way that there is no incentive to move,i.e., until

the Nash equilibrium condition is satisfied. In Section 4.4, we firstly show the model

Algorithm 1 REDUNDANCY BASED LEARNING

Input: S,V , Zi
Output: z∗i ∈ Zi
1: while Ui(zi, z∗−i)≤Ui(z∗i , z∗−i) do
2: M ← length(V )

µ← C∗C−1V
Σ← C∗∗−CT∗ C−1C∗

3: for m ← 1 to M do
4: p(x)←N (µm,Σm)
5: − 1

Σm
≤ sm ≤− 1

2Σm
6: p(y|x =µm)←BLAHUT-ARIMOTO(p(x),sm)
7: end for
8: if Event tracking then
9: zi ← {zm : maxp(y|x)= p(y|xm)}, m ∈ {1, ..., M}

10: else if Environment redundancy then
11: zi ← {zm : minp(y|x)= p(y|xm)}, m ∈ {1, ..., M}
12: end if
13: return zi
14: end while

performance in a variant and an invariant environment, in order to demonstrate the

effect of the measurements on the equilibrium convergence. Finally, we show how this

approach, works in a realistic setting that solves the network coverage problem.
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4.4 Model Implementation

In this section, we show the results of the model implementation through a set of

simulations developed in a spatial 2-D field given by a 100×100 grid, in which, the

agents are deployed at random locations. The initial and final positions of the agents, are

represented by grey and black small circles, respectively. At each time step, an agent i,
selected at random, chooses its action from the action set Zi, according to (4.1), until the

potential function minimization is reached. First, by means of a simple example using

three agents, we demonstrate the effect of the parameter s on the learning rationality.

Second, we show how the agents behave in an invariable and in a variable setting to

demonstrate the effect of the environment change on the agent learning process. Finally,

we show a more realistic case in which a higher number of agents move in the spatial

field in order to fulfill a sensor coverage problem.

4.4.1 The Rationality Effect in Equilibrium Convergence

As we demonstrated in Theorem 3.2, there is a highest rationality value at which an agent

obtains the maximum information about the environment, and at which, a distortion

decrease does not improve the convergence time time to a Nash equilibrium. This is

shown in Figures 4.2a and 4.3a, in which we can observe, respectively, the trajectories

followed by the agents for s= −1
Σ , and for s= −200

Σ , i.e., the highest rationality value, and

a value of s corresponding to a very low distortion, equivalent to D = Σ
400 . We can notice

that in addition to the similitude in the trajectories in both cases, the convergence time

is the same, in spite of the difference in the distortion levels, as shown in Figures 4.2b

and 4.3b. This proves that a decrease of the distortion value below the one settled by the

highest rationality, does not produce an improvement in the convergence time towards

the Nash equilibrium. On the other hand, in Figure 4.4a, we show the trajectories of the

agents when the parameter s is equal to −1
2Σ , i.e., the lowest rationality. In this case, we

can observe how the path of agent 1, initially deviates to locations far from its neighbors,

due to the increase in the distortion perceived about the environment, as shown in Figure

4.4b. Additionally, in this last case, the convergence time to the Nash equilibrium is

longer than the one obtained in the previous cases.
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(a) Trajectories of agents when s= −200
Σ or D = Σ

400 .

Simulation steps
0 15 30 45 60 75 90

D
is
to
rt
io
n
ch
a
n
g
e

0.4

0.45

0.5

0.55

0.6

0.65

agent1

agent2

agent3

(b) The corresponding potential function minimiza-
tion.

Figure 4.2: The rationality effect when s= −200
Σ .

(a) Trajectories of agents when s= −1
Σ , i.e., the highest

rationality.
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Figure 4.3: The rationality effect when s= −1
Σ .

4.4.2 Model Performance in an Invariable Environment

In Figure 4.5, we show the behavior of three agents moving in an invariant environment.

In this case, we assume that all the agents are connected, which means that the training
data set for each one is V = [v1, ...,v3]T , where v1 = v2 = v3, since the environment

is not variable. As a result, we can notice in Figure 4.5a, how the agents reach a

final arrangement in which the distortion based potential function is minimized in

approximately 45 simulation steps, as shown in Figure 4.5b. Additionally, we can observe
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(a) Trajectories of agents when s= −1
2Σ , i.e., the lowest

rationality.
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Figure 4.4: The rationality effect when s= −1
2Σ .

how the distortion for the three agents is almost the same during the whole simulation,

due to the uniform state of the environment.

x

0 0.2 0.4 0.6 0.8 1

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
231

2

3

(a) Trajectories followed by the agents until the Nash
equilibrium.
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(b) The potential function minimization.

Figure 4.5: Agent behavior in an invariable environment.

Due to the unchanging environment, the agent utility function

Ui = (y−C∗C−1V )2, (4.8)

only depends on the matrices

C∗ =αe
−||sn−zm||

γ , (4.9)
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and

C =αe
−||si−s j ||

γ , (4.10)

with zm ∈ Zi, and sn ∈ S, i.e., the utility function, mostly depends on the distances

between the agents and the locations of the action set. This resembles the consensus based

utility function described in [60] [70], which only depends on the euclidean distances

between the agents, and is given by

Ui(zi, z−i)=− ∑
j∈Ni

||zi − z j||, (4.11)

where Ni is the neighborhood of the agent i. The potential function in this case, is

equated to the utility. Then φ(z)=Ui(z), where z ∈ Z, i.e., z is the current action profile

of the system. The action choice, in a spatial field with obstacles, follows a model named

restrictive spatial adaptive play (RSAP), where a trial action ẑi, is selected from the

highest of the two following probabilities, which determine if the agent has to move or to

stay in the current position, respectively.

Pr[ẑi = zi]= 1
ki

, zi ∈ R(zi(t−1))\zi(t−1) (4.12)

Pr[ẑi = zi(t−1)]= 1− (|Ri(zi(t−1)|−1)
ki

(4.13)

where Ri(zi(t−1)) is the set of restricted actions due to the obstacles, ki = maxzi∈Zi |Ri(zi)|
denotes the maximum number of possible actions if were not obstacles, and zi(t−1)

represents the current position. Once the trial action is selected, the agent action for the

next time step is chosen according to the probabilities

Pr[zi = ẑi]= eβUi(ẑi ,z−i(t−1))

G
, (4.14)

and

Pr[zi = zi(t−1)]= eβUi(zi(t−1))

G
, (4.15)

where β is the rationality measure, and

G = eβUi(ẑi,z−i(t−1))+ eβUi(zi(t−1)). (4.16)

Equations (4.14) and (4.15) define if the agent assumes the trial action or if it prefers

to keep its current location.

Coming back to our approach, in Figures 4.6a and 4.6b, we compare its performance

with the results of the model described above in an invariant environment having
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obstacles. As we can notice, in terms of simulation steps, the information theory based
model outperforms the results of the consensus based model shown in [60], since the

action choice in our case, is directly defined through the environment information,

established by the Logit pattern of (4.1), without the previous selection of a trial action.

Additionally, in our case, the rationality measure is constant and determines a highest

understanding about the environment, whereas in [60], this parameter is changed

arbitrarily until a good performance is found.
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(a) Concensus based model of [60]. Convergence after
1500 simulation steps.
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(b) Information theory based learning model.
Convergence after 240 simulation steps.

Figure 4.6: Comparison of our approach with the results shown in [60] in an invariant
field with obstacles.

4.4.3 Model Performance in a Variable Environment

The case of a variable environment is shown in Figure 4.7. Here, we can observe how the

measurement variations found in the environment of an agent i, affect the conditional

probability value p(y|x = µm) at each location zm ∈ Zi. In this sense, the final system

arrangement, shown in Figure 4.7a, not only depends on the distances between the

agents and their action sets, but also of the agents measurements and the inferred

values. In this case, in Figure 4.7b, we can observe at the beginning, how the distortion

value has a considerable difference for agent 2 in relation to the values of agents 1 and

3. This is a consequence of the measurements variation around them, since agents 1

and 3 have a similar setting, which is very different to the case of agent 2. Additionally,

due to the environment variability, the potential function requires more time steps to be

minimized in comparison with the case shown in Section 4.4.2.
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(a) Trajectories followed by the agents until the Nash
equilibrium.
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Figure 4.7: Agent behavior in a variable environment.

4.4.4 Distributed Coverage Control

In Figure 4.8, we show the model performance in a field having 10 agents trying to cover

a specific area at which an event has occurred. In this setting, agents have different

sensing radius (rs), which are represented by colored circles surrounding them, whereas

each connection radius is defined as 2rs. As in [60], [19], and [123], in our model the

event detection is associated to a threshold level, which we have named thr. In this

regard, as we stated in Section 3.1.4, an agent i chooses the action having the lowest

conditional probability, i.e.,

zm ∈ Zi : min[p(y|x = thr)]= pm(y|x = thr), (4.17)

when its measurement is far from thr. In other words, the agent moves towards the

environment locations having the highest difference to its current measurement.

On the other hand, an agent i, chooses the action having the highest conditional

probability, i.e.,

zm ∈ Zi : max[p(y|x = thr)]= pm(y|x = thr), (4.18)

when its measurement is close to thr. This means that the agent moves towards the

environment locations having the lowest difference to its current measurement. In

this case, after a finite number of simulation steps, all the conditional probabilities

p(y|x = thr) of each action zm ∈ Zi, begin to exhibit similar values, which means that the

agent i does not have an action that improves its utility, whereas the other agents remain

static, in other words, they reach the Nash equilibrium. In Figure 4.8a, we can observe
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the initial positions and the trajectories followed by each agent until they reach the

locations around the environment event. Here, we can notice how some agents such as

the numbers 9 and 7 try to explore far from the profitable locations, and how they decide

to change their path towards more interesting positions reported by their neighbors. The

final configuration after 1000 time steps is shown in Figure 4.8b, and the behavior of

the distortion based potential function is shown in Figure 4.9. As we can observe, the

convergence to a minimum distortion in the system is obtained after 500 time steps, with

some slight increases after this point, which are caused by the repulsive movement of

agents in the borders, since they try to avoid locations covered by others.

The exhibited results outperform the results shown in [60] in terms of the number

of agents necessary to cover an event in a spatial field. This can be attributed to the

fact that in our model, each agent requires less time to decide about its next action,

since it does not require to make a previous calculation about a trial action, as stated

in the RSAP algorithm described in [60]. Additionally, in our case we have defined the

value at which the rationality measure (s) determines the highest understanding about

the environment, whereas in [60] this parameter is changed arbitrarily until a good

performance is found. Although we have shown the results in an environment having

only a covered region, the model is not limited to this type of settings, which means that

multiple events can be attended by the agents, leading the system to multiple local Nash

equilibrium. This is demonstrated through the results shown in Fig. 4.10. In Fig. 4.10a

we can observe the trajectories followed by the agents to attend two relevant locations,

whereas Fig. 4.10b shows how the distortion based potential function is minimized in less

time steps due to the change in the initial conditions and the increase of the rewarding

regions. The distortion increase exhibited at the beginning is produced by the initial

isolation of agents 3 and 4, which is reduced when they begin to find each other through

the communication link represented by the colored circles.
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(a) The initial deployment of agents in the spatial
field and their trajectories towards the Nash equilib-
rium.

(b) The final network configuration.

Figure 4.8: Coverage problem.
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Figure 4.9: The evolution of the potential function of the system.
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(a) The initial deployment of agents in the spatial field
and their trajectories towards the Nash equilibrium.
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(b) Evolution of the potential function of the system.

Figure 4.10: Network coverage problem for two rewarding regions and change in the
initial conditions shown in Fig. 4.8.
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5
CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we use some of the advantages offered by the information theory

to define a multi-agent learning framework in which the information acquires

importance in the agent decision making process. The model is based on three

approaches. The first one is the Gaussian process regression (GPR), through which

agents infer their environment. The second one is the rate distortion function (RDT),

which defines a redundancy border of the environment understanding for each agent. The

last one is the potential games approach, which, along with the established distortion
based potential function and the rationality levels given by the Lagrangian multiplier s,

allow the system to find a Nash equilibrium.

By means of the Blahut-Arimoto algorithm, used to calculate the RDF, we found two

relevant values that determine the lowest and the highest rationality measures, which,

as we demonstrated in a mobile sensor network, improve the agent understanding about

the environment and the field exploration, respectively. Additionally, the redundancy

based decision making, allows the agents to avoid overpopulated locations and migrate

to positions with promising welfare. This redundancy avoidance, has an important role

in the current sensing network design, especially in IoT applications, where the number

of monitoring devices increases continuously.

On the other hand, the Boltzmann form of the obtained conditional distribution,

which in our case represents the similitude between the agent and the environment

behavior, demonstrated to be an effective action selection rule for the agents in variant

and invariant spatial fields, even in cases involving obstacles, in which we outperform
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the consensus based potential game presented in [60] in terms of time steps.

From the distributed optimization point of view, the proposed distortion based poten-
tial function demonstrated a good performance in terms of the distortion minimization

of the environment information, and consequently the Nash equilibrium convergence

in an acceptable number of time steps, as we shown in the network coverage problem.

Additionally, due to the reduced number of probability calculations, in comparison with

the RSAP model initially proposed in [60], the action choice in our model does not require

a considerable number of agents to track and cover locations exhibiting relevant events

for the system.

Since this model is based on strategic games, in which agents choose their action

before the others choose theirs, the GPR inference tool provides an indirect connection

to the agents far from the agent neighborhood, since the actions taken by a neighbor of

one of its neighbors, are finally reflected in the training data set. This effect is visible in

the event tracking case of the coverage problem, in which some agents, in spite of being

outside of the connection radius of the ones located in wealth positions, move towards

these regions. In addition to this virtual neighborhood extension, the increment of the

training data points improves the environment prediction, and in this way, the quality of

the decisions. This is proven when the points inside of the sensing radius are used to

decrease the environment distortion, and therefore, the convergence time.

In spite of the fact that the model performance was described for mobile sensor

networks, its applicability was also demonstrated in the smart grids context, in which

the reactive power sharing problem was solved in an acceptable way, without considerable

affectations in the voltage regulation in a set of four DG’s when one of them suffers an

overload. Additionally, in this case we demonstrate the versatility of the model to involve

other types of game theory approaches in order to accomplish a distributed optimization

requirement, which was proven through the use of evolutionary game theory and the

replicator dynamics concept.

In general terms, the proposed model offers a learning structure in which the re-

dundant information of the environment is a determinant factor in the agent decision

making process, which is a relevant factor if we consider the continuous raising of mo-

bile sensor networks and their use in IoT applications, which generate high amounts

of redundant data. Additionally, due to the permanent node mobility, these types of

networks require distributed synchronization schemes, in which the nodes can decide

when and which one has to transmit data to the sink. In this sense, we are working in a

distributed synchronization model that combines the maximum entropy principle and
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INFORMATION THEORY LEARNING MODEL FOR

REACTIVE POWER SHARING IN MICROGRIDS

In this chapter, we show a variation of the model described in Chapters 3 and 4,

which is used in a power system application. The implementation combines the

known concepts of information theory such as the maximum entropy (MaxEnt), and

the rate distortion function (RDF), to control the reactive power sharing in an islanded

microgrid. In this case, the agents are representations of the distributed generators,

named DG’s, and the environment behavior is determined by the shared information

between them through a communications network. The distortion level of the information

that each agent has about the environment, determines a distortion based fitness function,

which is used in a replicator dynamics setting to control, in a distributed way, the power

support in the DG’s when they are overloaded.

A.1 Motivation

The massive rising of technological solutions focused to energy generation in isolated

locations, using renewable and environmentally friendly sources, has led to the imple-

mentation of distributed generators (DG) for electrical networks with low and medium

scope, designed to have a connection with the conventional power network, providing

significant benefits in the operation, such as power ancillary services for management

[18].
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The idea of the distributed generation, has been embraced by the concept of mi-

crogrids, which can be described as a resource to interconnect conventional voltage

transmission systems with the mentioned isolated distributed generators [52]. The ele-

ments comprising a microgrid, such as the storage devices, and loads, among others, can

be managed through a centralized control system, named the point of common coupling

(PCC), or through a distributed system with abilities to stabilize voltage and frequency

faults on each node, without the intervention of a centralized entity [58].

When a microgrid operates in this islanded mode, the main challenge is the sharing

of the reactive power demand between all the nodes (DG’s), in a way that has coherence

with the capacity of each one. The complexity of this objective is increased due to the

conflict between the voltage regulation and the reactive power sharing, caused by the

operating characteristics of the DG’s, since both variables have a dependency conditioned

by the drop control [96]. Such dependency, avoids to have a good performance in the

secondary control in terms of voltage regulation and reactive power simultaneously,

which has become in an interesting issue for the research community. In this sense, we

propose a multi-agent learning model, based on information theory that addresses the

problem of reactive power sharing, without affecting the voltage regulation considerably.

In a first step, the model calculates the maximum entropy (see Section 2.2.1.2) of every

reactive power input around an expected value that depends on the capacity in every DG.

Second, a fitness function is determined according to the value of the distortion of every

node with the environment, using the rate distortion function described in Section 2.2.

Finally, we use this fitness function in a replicator dynamics context, in order to identify

where and when some DG’s require reactive power support from the system.

In the next section, we describe the main technical concepts related to a microgrid.

A.2 Microgrid Control

In order to describe the control system of a microgrid, let us begin considering the

microgrid model shown in Figure A.1. This model is composed of a set of N = 6 buses, or

agents, in which two are loads, and four are DG’s. A reactance line connecting the pair of

buses i and j, is denoted as X i j. The active and the reactive power injections for a bus i,
are denoted by Pi and Q i, respectively, and are given by

Pi =
N∑

j=1

E iE j

X i j
sin

(
θi −θ j

)
, (A.1)
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Figure A.1: Microgrid model.

and

Q i =
E2

i

X i
−

N∑
j=1

E iE j

X i j
cos

(
θi −θ j

)
, (A.2)

where E i is the voltage magnitude, θi is the phase angle, and X i = 1∑N
j=1 X−1

i j
.

The heterogeneity of the generation in microgrids, includes systems such as photo-

voltaic, wind, and micro turbine, among others, which normally produce DC or variable

frequency power that require inverters to allow the DG’s connect to a synchronous AC

power system [97]. This connection process, demands control actions to achieve adequate

reactive power sharing between DG’s in order to avoid overcharges on them. In this

regard, there are three levels associated to the voltage control in microgids [96], which

we describe below.

A.2.1 Primary “Droop” Control

A main objective of a primary control is the microgrid stabilization by means of “droop”

controllers for the inverters [20], which causes voltage deviations in the buses of the

microgrid. In an islanded operation, the inverters operate as VSIs (Voltage Source

Inverters) with controlled voltage magnitudes. The “droop” controllers also provide the

voltage references, which are based on the decoupling between the active and reactive

power. For the inductive lines, these controllers specify the inverter voltage magnitudes

E i and frequency ωi, which are given by

E i = E∗−ni
(
Q i −Q i,set

)
, (A.3)

and

ωi =ω∗−mi
(
Pi −Pi,set

)
, (A.4)
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where E∗ is a nominal network voltage, Q i is the measured reactive (non-active) power

injection, ω∗ is the nominal network frequency, and Pi is the measured active power

injection. The constants ni and mi, are the “droop” coefficients. Finally, the quantities

Q i,set and Pi,set, represent the reactive and active power set points, respectively.

A.2.2 Secondary Control

In conventional interconnected electrical power systems, the sharing of reactive power

demand among generators, is not a relevant problem, due to the capacitive compensation

of the loads and the transmission lines. On the other hand, in microgrids, the low ratings

of DG units, the short electrical distances between nodes, and the lack of compensation,

require an accurate sharing of the reactive power demand among DG’s in order to avoid

overloading. In this sense, due to the impedance of the transmission lines, the primary

“droop” controller is unable to share reactive power among identical or different inverters

[58], which creates the necessity of a secondary controller that fulfills this purpose.

However, this reactive power sharing attempt, produces a conflict with the voltage

regulation, which can be observed in Figure A.2. First, without secondary control, two

DG’s operate at voltages E1 and E2 with their corresponding reactive power injections

Q1 and Q2, as represented by the black line. Once the secondary voltage-regulating

control is applied, the voltage in both DG’s is restored to a common rating denoted as

E∗, being the green line for the first DG, and the blue one for the second. In this case,

the power injections of both inverters have changed to Q
′
1 and Q

′
2, respectively, which

evidences the deterioration of the reactive power sharing, because in this case, these

values in both DG’s are more distant than before the secondary control application.

The accuracy of reactive power sharing depends on the upper and the lower limits of

the DG voltage magnitudes, and of the homogeneity of the transmission line reactances.

An ideal secondary voltage controller, should ensure a compromise between voltage regu-

lation and the reactive power sharing. In this sense, we propose a secondary controller

based on information theory approach, as we describe in Section A.3.

A.2.3 Tertiary Control

Since this kind of controller is out of the scope of this work, we only mention its main

purpose. The tertiary controller, is associated with a global economic dispatch. It is

possible to use different techniques to solve the economic dispatch problem in microgrids,

such as dynamic population games, as exposed in [72].
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Figure A.2: E-Q “Droop” Controller.

A.3 Information Theory Based Model for Reactive
Power Sharing

In Figure A.3, we summarize the proposed multi-agent learning model. As we have

mentioned, it combines the rate distortion function, the maximum entropy principle, and

the replicator dynamics approach. The agent decision rule, is determined by a fitness

function that depends on its knowledge about the environment, which is calculated

through the distortion measure L(x, y) associated to the rate distortion function, where

the agent information is represented by y, and the environment information is repre-

sented by x. This means that a reduced distortion about the environment implies a good

fitness or utility for an agent.

For the microgrid case, the scheme depicted in Figure A.3 represents the modules

composing the DG controller. Let us describe it through the following steps:

1. Consider a microgird composed of N DG’s, supported by a communications network

to allow the information interchange. The neighborhood of a DG i, defined by the set

Ni = [DG1, ...,DGM], is composed of all the DG’s having a communication channel

towards DG i. The environment information of a DG i, which is obtained through

the intrinsic communications network, contains the reactive power data of Ni,

which we denote as Q = [Q1, ...QM].

2. The expected value 〈QDG〉, is determined by the reactive power at which each DG

normally should operate.
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Environment
information

Expected
value 〈QDG〉

Maximum Entropy

p(QDG)= e−λ−µQDG

Replicator Dynamics

ṙ i = r i( f i − f ),

with

f i = p(y)e−sL(x,y)∑
y p(y)e−sL(x,y) .

RDF
Blahut-Arimoto

p(y|x)= p(y)e−sL(x,y)∑
y p(y)e−sL(x,y)

Figure A.3: Information Theory Based Learning Model.

3. By means of the maximum entropy principle, described in Section 2.2.1.2, the

model calculates a probability distribution p (QDG) through the expression

maximize
p(QDG )

∑
M

p(QDG) log p(QDG)

subject to
∑
M

p(QDG)QDG = 〈QDG〉∑
M

p(QDG)= 1

p(QDG)≥ 0,

(A.5)

which describes the deviation of each DG in relation to the expected value 〈QDG〉.

4. The resulting probability p(QDG), is used as the source distribution in the Blahut-

Arimoto algorithm. At this point, we make p(x)= p(QDG), since we assume p(QDG)
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as the distribution describing the environment.

5. The Blahut-Arimoto algorithm, described in Section 2.2.1, is used to measure the

similitude of each DG and the environment behavior, which is determined by the

conditional distribution1

p(y|x)= p(y)e−sL(x,y)∑
y p(y)e−sL(x,y) . (A.6)

6. Finally, the similitude between the DG an its environment, define the fitness

function f i, and the replicator dynamics equation

ṙ i = r i( f i − f ), (A.7)

with

f i = p(y)e−sL(x,y)∑
y p(y)e−sL(x,y) , (A.8)

where r i is the proportion of the population assuming the strategy followed by

DG i, and ṙ i represents its variation in time.

A.4 Model Implementation

In this section, we describe the characteristics of the primary and the secondary con-

trollers, as well as the microgrid used to evaluate the effects of the proposed model on

the reactive power sharing.

A.4.1 Primary Control

Although the main interest of this approach is focused in the secondary controller, we

give a short description of the primary controller because of its influence. This is shown

in Figure A.4. In order to model the inverters, they are represented by controlled-voltage

sources, since in islanded operation, each inverter acts as a VSI (voltage source inverter),

to control the exported and the imported power to and from the conventional power

network to stabilize the microgrid [42]. The main idea behind the “droop” controllers is to

imitate the behavior of a synchronous machine, which in this case, reduces the frequency

when the active power load increases, and reduces the voltage magnitude, when the

reactive power increases.
1As stated in Section 2.1, x and y belong to the alphabets X and Y , respectively, which in the case of

the microgrid, correspond to a set of possible values for the reactive power.
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Figure A.4: Primary Control.

A.4.2 Secondary Controller

The secondary controller is used to compensate the deviations for frequency and voltage

magnitude, ensuring that they tend to zero after a change in load or generation in the

microgrid. A detailed diagram of the implemented secondary control for voltage, in the

case of a single DG, is depicted in Figure A.5. It is important to mention that although

the primary frequency control of each DG must be considered to obtain the reference

voltage signal, no secondary frequency control action is performed.

p(y|x)

p(x)

Q1

QMQM

 RDF

Figure A.5: Secondary Control.
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A.4.3 Microgrid Model

The microgrid used to simulate the behavior of the proposed information theory based
controller, is shown in Figure A.1, which is composed of four inverters, three intercon-

nection lines and two loads. The lines are modeled as RL branches connected in series,

the loads are connected to units 1 and 4, and are modeled as constant power devices. In

Table A.1, we provide the most relevant parameters. Additional information is reported

in [96].

Table A.1: Microgrid Parameters

Parameter Value
Nominal frequency 50 Hz
DC Voltage 650 V
AC Voltage 325.3 V
Filter capacitance 25 µF
Filter inductance 1.8 mH
Output inductance 1.8 mH
Line Impedance Z12 0.8+ j1.131 Ω
Line Impedance Z23 0.4+ j0.565 Ω
Line Impedance Z34 0.7+ j0.597 Ω
mi 2.5×10−3 rad/s

W
ni 1.5×10−3 V

VAr

A.5 Results

The simulation results show the voltage and reactive power behavior on each DG when

the load is abruptly duplicated in the DG1 during the time interval from t=1s to t=2.5s.

In Figure A.6, we show the effect of the proposed controller on the reactive power sharing.

In Figure A.6a, we show how the information theory based controller reduces the reactive

power in the DG1, which is distributed to the others. On the other hand, in Figure A.6b,

we show that the reactive power is poorly shared.

In contrast, a comparison between Figures A.7a and A.7b, illustrates a non-significant

difference between the voltage magnitudes before and after applying the proposed

secondary control when the load increase occurs, which means that there is not a

considerable voltage variation.

Finally, in Table A.2, we show the relationship between the maximum reactive power

values when the MaxEnt principle is included or not in the proposed controller. In the
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(a) Reactive power sharing using secondary control.
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(b) Reactive power sharing without secondary control.

Figure A.6: The effect of the secondary controller on the reactive power sharing.
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(b) Voltage response without secondary control.

Figure A.7: The effect of the secondary controller on the voltage.

first case, when the MaxEnt module is included, the maximum reactive power peak,

reached when the load increases in the DG1, is higher in relation to the value obtained

when this module is ignored, i.e., the RDF stage assumes p(x) as a uniform distribution.

This result demonstrates that in addition to the distortion reduction between the DG

behavior and its environment, provided by the RDF, there is an extra reduction in

uncertainty produced by the MaxEnt principle, which is demonstrated in Figure A.8.

Notice how the MaxEnt module produces and extra reduction in the distortion value

when the DG1 is overloaded, which impacts favorably in the reactive power sharing.
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Table A.2: Maximum DG1 peaks and times in overload event

Maximum Q (VAr) time (s)
Without controller 1025 1.1629

Using MaxEnt 779 1.1629
Without MaxEnt 794 1.1652
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Figure A.8: Distortion when MaxEnt is included or not in the controller.

A.6 Conclusions

We implemented a secondary voltage controller based on information theory concepts

such as the rate distortion function and the maximum entropy in order to define a

distortion based fitness function. The distributed control is implemented by means of

the replicator dynamics approach, which uses the previously calculated fitness function

to define the strategy selection of each distributed generator (DG) of a microgrid. The

implemented controller improves considerably the power sharing condition between all

of the DG’s operating in an islanded mode, specially when an abrupt load increase is

applied to the system.

When the MaxEnt module is included in the controller, the distortion is reduced and

consequently the reactive power peaks decrease when abrupt changes in load are present

in any of the DG’s.

On the other hand, in terms of the voltage magnitudes, in spite of the fact that they

are not directly controlled, there is not a considerable degradation in their behavior
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when the information theory based controller is used to obtain a reactive power shar-

ing. It demonstrates that it is possible to use the proposed control technique without

compromising the microgrid performance.
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KULLBACK-LEIBLER DIVERGENCE OF TWO GAUSSIAN

DISTRIBUTIONS

As we described in Section 2.1, the Kullback-Leibler divergence, also known

as the relative entropy, is a measure of the distance between two probability

distributions. It is commonly used to find the gain or loss of information obtained

for describing with a distribution Q a random variable X whose original distribution is

P. This difference is given by

KL(P||Q)=∑
P log

P
Q

[bits], (B.1)

which is always non-negative and equal to zero if and only if P =Q.

B.1 Kullback-Leibler Divergence of Two Gaussian
Distributions

Theorem B.1. Let p(x)=N (µ1,σ1) and q(x)=N (µ2,σ2), then

KL(p||q)= 1
2

log
σ2

σ1
− 1

2
+ 1

2σ22

[
σ1

2 + (µ1 −µ2)2] (B.2)

Proof. Using (B.1),

KL(p||q)=
∫

p(x) log
p(x)
q(x)

dx (B.3)
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=
∫

p(x) log
1p

2πσ1
e
− (x−µ1)

2σ12
2

1p
2πσ2

e
− (x−µ2)

2σ22
2 dx (B.4)

=
∫

p(x) log

√
σ22

σ12 dx (B.5)

+
∫

p(x)
[−(x−µ1)2

2σ12 + (x−µ2)2

2σ22

]
dx (B.6)

= 1
2

log
σ2

σ1
+ 1

2σ12

[
−

∫
(x−µ1)2 p(x)dx

]
(B.7)

+ 1
2σ22

∫
(x−µ2)2 p(x)dx (B.8)

= 1
2

log
σ2

σ1
− σ1

2

2σ12 (B.9)

+ 1
2σ22

∫
(x−µ1 +µ1 −µ2)2 p(x)dx (B.10)

= 1
2

log
σ2

σ1
− 1

2
+ 1

2σ22

[∫
(x−µ1)2 p(x)dx (B.11)

+ (µ1 −µ2)2
∫

p(x)dx (B.12)

+2(µ1 −µ2)
∫

(x−µ1)p(x)dx
]

(B.13)

= 1
2

log
σ2

σ1
− 1

2
+ 1

2σ22

[
σ1

2 + (µ1 −µ2)2] (B.14)

�
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STEPS TO MINIMIZE THE MUTUAL INFORMATION

As we stated in Section 2.2, if we ignore temporarily the inequality restriction

p(y|x)≥ 0, the rate distortion function can be described by the expression

R(D)=minimize
p(y|x)

[∑
x,y

p(y|x)p(x) log
p(y|x)
p(y)

− s(
∑
x,y

p(y|x)p(x)L(x, y)−D)

+∑
x
λx(

∑
y

p(y|x)−1)
]
.

(C.1)

If we make
J [p(y|x), p(y)]=

∑
x,y

p(y|x)p(x) log
p(y|x)
p(y)

− s
∑
x,y

p(y|x)p(x)L(x, y)+∑
x
λx

∑
y

p(y|x),
(C.2)

then
R(D)= sD−λ+ min

p(y|x)
min
p(y)

J [p(y|x), p(y)] . (C.3)

The above double minimization problem, is solved through the next two steps:

1. For fixed p(y): Since I(x, y) is a convex function for p(y|x), we have

R(D)= ∂

∂p(y|x)

[
sD−λ+ J [p(y|x), p(y)]

]
= p(x) log p(y|x)+ p(x)− p(x) log p(y)

− sp(x)L(x, y)+λ= 0.

(C.4)
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APPENDIX C. STEPS TO MINIMIZE THE MUTUAL INFORMATION

If we make logu = 1+ λ
p(x) , then

p(y|x)= p(y)esL(x,y)

u
. (C.5)

Since
∑

y p(y|x)= 1,

u =∑
y

p(y)esL(x,y), (C.6)

i.e., λ is selected to accomplish the condition
∑

y p(y|x)= 1. Therefore, the initially

ignored condition p(y|x)≥ 0 is also satisfied.

Hence,

p∗(y|x)= p(y)esL(x,y)∑
y p(y)esL(x,y) . (C.7)

2. For fixed p(y|x): In this case, it is enough to prove that

I(X ;Y )=min
p(y)

J [p(y)] . (C.8)

Then

I(X ;Y )−∑
x,y

p(y|x)p(x) log
p(y|x)
p∗(y)

= 0 (C.9)

(C.10)

since I(X ;Y )=∑
x,y p(y|x)p(x) log p(y|x)

p( y) , we have

∑
x,y

p(y|x)p(x) log
p(y|x)
p( y)

−∑
x,y

p(y|x)p(x) log
p(y|x)
p∗(y)

= 0
(C.11)

so that

∑
x,y

p(x)p(y|x) log
p∗(y)
p(y)

= 0. (C.12)

Setting
∑

x p(x)p(y|x) = p∗(y) and using the Kullback-Leibler divergence (see ap-

pendix B), we obtain ∑
y

p∗(y) log
p∗(y)
p(y)

= KL(p∗||p)= 0, (C.13)
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which means that the equality is satisfied if and only if the probability distributions

p and p∗ are the same. Therefore,

p∗(y)=∑
x

p(x)p(y|x). (C.14)
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