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ABSTRACT 
 

 An Analytical and Experimental Investigation for an Interstitial Insulation 

Technology. 

(May 2008) 

Dong Keun Kim, B.S., Hankuk Aviation University; 

M.S., Hankuk Aviation University 

Chair of Advisory Committee: Dr. Egidio Marotta 

 

 

An insulation technique has been developed which contains a single or combination 

of materials to help minimize heat loss in actual industrial applications. For the 

petroleum industry, insulation for deep sea piping is one of the greatest challenges 

which would prevent the industry from meeting the high demand for oil through 

exploration into deeper ocean environments.  At current seafloor depths 

(5,000~10,000ft), pipeline insulation is essential in preventing pipeline blockage 

resulting from the solidification of paraffin waxes and / or hydrate formation which 

exist in crude oil.  To maintain crude oil temperatures above the paraffin solidification 

point (68°C or 155°F), new and better insulation techniques are essential to minimize 

pipeline heat loss and maintain crude oil temperatures.  Therefore, the objective of this 

investigation was to determine whether or not the thermal resistance of a new 

insulation concept, which involves IIT (Interstitial Insulation Technology) with screen 

wire, was greater than existing readily available commercial products through 
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analytical modeling and experimentation. The model takes into account both 

conforming and nonconforming interfaces at the wire screen contacts within the 

interstitial space between coaxial pipes.  

In addition, confirmation was needed to determine whether or not laboratory testing 

of simulated coupons translate to thermal performance for a prototype pipe segment 

that fabricated with two layers of low conductivity wire-screen (stainless steel) as the 

interstitial insulation material.  Both the inner and outer surface temperatures of the 

coaxial pipes were measured in order to evaluate the effective thermal conductivity and 

thermal diffusivity of the insulation concept.  The predicted results from the model 

compared very favorably with the experimental results, confirming both the trends and 

magnitudes of the experimental data.  In other words, whether the reduction in heat 

transfer observed for small laboratory samples was realistic for application to a pipeline 

configuration. This effort involved both analytical modeling for all thermal resistances 

and experimental test runs for validation of the analytical model.  

Finally, it was a goal of this investigation to develop a simplified model for a 

multilayer composite structure which will include radiation heat transfer exchange 

among the layers that constitute the insulation. With the developed model, feasibility 

and performance characteristics of the insulation concept were predicted. The thermal 

predictions have demonstrated the thermal competitiveness of the interstitial insulation 

technology. 
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NOMENCLATURE 

 
 
 
A   = Area, ( 2m ) 

A B+  = Geometric parameter related to radius of curvature, (1/ m ) 

Bi   = Biot number, Dimensionless 

C   = Coefficient, dimensionless 

D   = Diameter, ( m ) 

E   = Modulus of elasticity, ( 2/N m ) 

   Emissivity Power, ( 2/W m ) 

'E   = Effective modulus of elasticity, ( 2/N m ) 

F   = Applied load, ( N ) 

   View Factor 

H   = Hardness, ( MPa ) 

gI   = Gap conductance integral, dimensionless 

K   = Complete elliptic integral of first kind, dimensionless 

L   = Length, ( m ) 

M   = Gas parameter, ( m ) 

N   = Number of microcontacts, dimensionless 

Nu   = Nusselt Number, Dimentionless 

P   = Pressure, ( 2/ ,N m Pa ) 
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Pr   = Prandtl number, Dimensionless 

Q   = Heat rate, (W ) 

R   = Thermal resistance, ( /K W ) 

Ra   = Rayleigh number, Dimensionless 

*Ra   = Modified Rayleigh number, Dimensionless 

T   = Temperature, ( K ) 

Y   = Mean plane separation, ( m ) 

a   = Semi-major diameter of ellipse, ( m ) 

ca   = Microcontact radius, ( m ) 

b   = Semi-minor diameter of ellipse, ( m ) 

c   = Length between nodes, ( m ) 

1c   = Correlation coefficient, dimensionless 

2c   = Correlation coefficient, (GPa ) 

f   = Combination of terms, dimensionless 

g   = Gravitational Acceleration, ( 2/m s ) 

h   = Thermal conductance, Heat transfer coefficient, ( 2/W m K⋅ ) 

k   = Thermal conductivity, ( /W m K⋅ ) 

m   = Absolute asperity slope, radian 

   Semimajor axis parameter, dimensionless 

n   = Number density of contact spot ( 21/ m ) 

*r   = Dimensionless Radius, Dimensionless 



 

 

xv

t   = Elapsed cooling time, ( s ) 

   Wall thickness, ( m ) 

α   = Ratio of semi-major axes, dimensionless 

   Thermal diffusivity, ( 2 /m s ) 

δ   = Normal deformation of surface, ( m ) 

ε   = Relative contact spot size, dimensionless 

*θ   = Dimensionless temperature, dimensionless 

κ   = Parameter, dimensionless 

ζ   = Eigen value, dimensionless 

λ   = Relative mean plane separation, dimensionless 

ν   = Poisson’s ratio, dimensionless 

   Kinematic viscosity, ( 2 /m s ) 

ρ   = Minimum Radius of curvature, ( m ) 

ρ′   = Maximum Radius of curvature, ( m ) 

σ   = Effective surface roughness, ( m ) 

ψ   = Constriction parameter, dimensionless  

Δ   = Physical parameter, ( /m N ) 

Subscript 

1 2−   = Surface 1 and 2 

a   = Apparent 

b  = Black body 

c   = Constriction, Contact, Coolant 



 

 

xvi

ct   = Elapse cooling 

e   = Elliptic, elastic 

eff   = Effective 

g   = Gas 

i   = Inner 

is   = Inner Surface 

iw   = Inner wall 

mc   = Microcontact 

n   = Order 

o   = Outer 

ow   = Outer wall 

os   = Outer surface 

p   = Plastic 

r   = Real 

rad   = Radiation 

ss   = Cooing bath surface 

tmc   = Total microcontact 

tot   = Total 

w   = Wire of screen mesh, Water  
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CHAPTER I 

INTRODUCTION 

 
The high demand for oil has come from an exponential increase in transportation’s 

use of the internal combustion engine within developed and developing countries. To 

meet this high demand, oil industries have explored more offshore locations for more 

oil products. But within the deep sea environment temperatures can range from 0°C to 

2°C (32°F to 35°F), thus pipe insulation is obligatory to prevent blockage in the pipe 

due paraffin and hydrate build-up. Crude oil often contains a type of wax that begins to 

form solid paraffin deposits on the inner surface of the pipe when the oil temperature 

reaches the paraffin cloud point (68°C or 155°F); therefore, blockage can and does 

occur. When paraffin waxes block the inside of the pipe, an additional process is 

needed to remove it which translates to reduced production efficiency. Crude oil 

production temperatures are typically above 70°C (159°F) and to maintain the inner 

wall temperature above the paraffin and hydrate formation point, heat loss from the 

pipe wall must be minimized. Several insulation techniques have been developed to 

overcome the thermal issue by the addition of low conductivity materials and coatings 

on the external pipe surface using syntactic form and urethane. However, these 

techniques often have had severe limitations such as damage due to large hydrostatic 

pressure differentials and installation concerns.[1, 2, 3] Thus, more advanced insulation 

techniques have been developed to assure proper oil flow in increasingly challenging 

environments. Raymond et al. [3] developed a new insulation technique, named 

This dissertation follows the style of the ASME Journal of Heat Transfer. 
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ILS(Liquid Solid Insulation), using a liquid solid which acts as a heat accumulator in 

normal flow conditions, but during cool down restores its stored thermal energy to the 

flow line. It is claimed that this ILS can enhance the cool down period 2 to 4 times 

longer with respect to the existing insulation technologies. Azzola et al. [4] developed 

an insulation technique, named VIT (Vacuum Insulated Tubing), which contains a 

vacuumed annulus between inner and outer pipe walls. This minimizes the heat loss 

from hot inner pipe walls up to 90% of total heat loss. Compact space of insulation 

layer, high load capacity (200,000~500,000 lbs tension load) and high thermal 

insulation values are known as its advantages. However, these new insulation 

techniques still have problems such as environmental pollution when leakage occurred 

and difficult to maintain its vacuum status. This could cause additional maintenance 

cost and have to face the situation of trading off between the performance and the cost. 

In this research, analytical and experimental investigations on a newly developed 

insulation technique, IIT (Interstitial Insulation Technology), which contains either one 

or more layers of a wire screen as an interstitial material within the annulus are 

conducted. A reduction in the heat transfer rate, and thus retardation in paraffin build-

up, can be achieved without the limitations previously stated. Moreover, the 

manufacture and installation process for sub-sea piping will be greatly simplified [5]. 

Within the interstitially insulated coaxial pipe, the interstitial fluid is air which remains 

stagnant. However, other gases can be employed to achieve greater insulation 

performance. Air spaces between the coaxial pipes are small enough to prevent natural 

convection from occurring which leads to conduction heat transfer through the annulus. 
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Therefore, the dominate heat transfer mechanism for this system will be conduction 

through nonconforming contacts between the wall and wire screen. In addition, 

conforming micro contacts within the screen wire and pipe wall itself can provide an 

additional resistance heat flow path between contacting interfaces. Both macro contact 

and micro contact models will be reviewed to develop a proper joint resistance model. 

To aid in the model development, a thermal network circuit will be drawn to help 

visualize the heat path and aid in the joint model development.  

A review of the literature on thermal contact resistance shows an extensive number 

of publications for both experimental and analytical studies. There exist numerous 

papers which detail correlations and analytical models for contact resistance for rough, 

conforming surfaces and nonconforming contacting surfaces [6]. These studies take 

various approaches; however, little work has been performed for a joint that contains 

both contacts simultaneously such as a wire screen. 

An initial analytical study by Cividino et al. [7] analyzed joint conductances for a 

woven wire screen utilizing only Hertzian theory [8] to predict the macro contact area 

when a wire screen contacts a solid surface. The authors have neglected bulk resistance 

due to wire-to-wire contacts and micro resistances present at the surface. However, to 

obtain a more accurate model, micro contact analysis under the deformed macro 

contact area is required as well. Therefore, this investigation will develop an analytical 

model that combines both macro and micro contact theory to predict the overall joint 

resistance for contacting surfaces containing a wire screen. 
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Lambert and Fletcher [9] reviewed contact resistance models for various cases 

under vacuum condition while Sridhar and Yovanovich [10] reviewed elastic and 

plastic models which showed that smooth, contacting surfaces deform elastically and 

rough surfaces deform plastically. Also, Savija et al. [11] contained an excellent review 

for thermal conductance models with interstitial substances inserted at the joint. 

In this investigation, along with an improved model for macro and micro contact 

resistances, fluid gap resistances are developed simultaneously. Predictions from the 

enhanced model are compared with experimental data from a previous experimental 

study [5] which contained an interstitially wire screen material in the annulus of a 

simulated coaxial pipe.  

From the prior coupon size testing [5], an insulation system incorporating a low 

thermal conductivity screen mesh between a pipe and an interior liner was shown to be 

an effective passive thermal insulation solution for deepwater flow lines and risers. It 

has been established that a thermal resistance (due to the metrology of the contacting 

surfaces) was created at an interface between two materials, in this case a pipe and a 

liner.  If the two contacting surfaces are further separated by a screen wire or mesh at 

the pipe and liner interface, then a higher thermal interface resistance will result, which 

will significantly increase the resistance to thermal transport characteristics.  The 

screen wire reduces the heat transfer by restricting the path for conduction and forms a 

stagnant air gap to minimize convective heat transfer.  Heat transfer can be further 

reduced by adding a polymeric insulation layer (between the screen mesh and interior 

liner) and by the addition of multiple layers for actual applications. As an intermediate 
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stage towards actual size pipe testing, an experimental investigation with a prototype 

pipe insulation system is conducted. 
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CHAPTER II 

 ANALYTICAL MODEL 

 

Thermal Circuit Modeling 

Cividino et al. [7] developed an analytical model for a woven wire screen 

contacting a solid wall, but in this study the bulk resistance, through the screen wire, 

and the microcontact resistances within the wires were neglected. Moreover, to have a 

more accurate model the contact points among wire screen materials must be account 

for as well. In the present experimental study, the actual specimen diameter was 1 inch 

(2.54 cm) as shown by Fig. 1 a).  

To properly build the thermal circuit, the nominal area was specified, and then 

divided into a unit cell area. Each unit cell area had four nodes. Figs. 1 a) and b) are top 

view of the actual wire screen and thermal flow paths, respectively. The heat flow path 

from the inner pipe wall to the outer pipe wall was simplified as shown in Figs. 2 a) 

and b).  

For a given unit cell, four nodes were connected in parallel connection while each 

node has both serial and parallel paths (resistances).[12] The overall thermal resistance 

for the unit cell can be written as a parallel circuit of each node as shown in Fig. 3. 
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a)                                                                                   

 

 
b) 

 

Figure 1  a) Top view of unit cell of the screen wire. 

          b) schematic of heat flow in a unit cell. 
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a) 

 

                              
b) 

 

Figure 2  a) Side view of unit cell of the screen wire. 

b) schematic of heat flow path. 



 

 

9

 

a)     

  

b) 

Figure 3  a) Thermal circuit in a unit cell.  

b) thermal circuit in a unit cell in a closed form. 
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Contact Resistance Model 

The joint analytical model was based on a combination of macro contact resistance, 

micro contact resistance, micro gap resistance, bulk resistance and air resistance for 

each node in the unit cell, and then programmed with the use of Matlab™ Software. 

 

Macro Contact Model 

Nonconforming contact modeling was the first step in developing the model, and 

was based on expressions for macro contact resistance developed by Yovanovich [13]. 

To obtain the contact area formed by the applied load on each nodal contact, 

geometrical parameters for screen wire and walls14 as shown in Fig. 2. b) were 

calculated with the following expressions, 

w

c
D

α =        (1) 

2
wDρ =        (2) 

2(1 )
4

wDρ α′ = +          (3) 

where ρ′ , ρ  are the maximum and minimum of radius of curvature (for flat surface 

ρ ρ′ = = ∞ ), c and wD  are the distances between nodes and the wire screen diameter, 

respectively. 

The inner and outer walls were assumed to be flat surfaces so that their curvatures 

were considered to be infinite. Each contact point formed an elliptical contact area with 

semi-major and semi-minor axes a and b computed as follow. 
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1 1
3 33 3,

4 4
a m F b n F⎡ ⎤ ⎡ ⎤= Δ = Δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

    (4) 

where m and n are dimensionless parameters obtained from the expressions [14] below 

for the range of values 2 8α< < , F is the applied force on each node and Δ is a 

geometric-physical parameter shown below, 

0.735 1.180.830 , 0.7905mm
n

α α= =     (5) 

2
apparentF PA Pc= =      (6) 

2 2
1 2

1 2
1 2

1 1
E E

A B

ν ν

−

⎡ ⎤− −
+⎢ ⎥

⎣ ⎦Δ =
+

     (7) 

1 1 2 2

1 1 1 1 1
2

A B
ρ ρ ρ ρ
⎡ ⎤

+ = + + +⎢ ⎥′ ′⎣ ⎦
    (8) 

Since the formed elliptical contact area is very small when compared with the nodal 

area, the thermal resistance in the contact area can be modeled as a thermal 

constriction-spreading resistance within half-space [13]. With the calculated semi-

major and semi-minor axes, the thermal constriction resistance for the contact area of 

each node can be determined as, 

4

T
e

constrictionR
ka

ψ
=         (9) 

where T
eψ is the spreading/constriction parameter defined [14] as, 

2 ( )T
e Kψ κ

π
=        (10) 
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and ( )K κ  is the complete elliptic integral of the first kind with κ  defined as, 

1/ 22

1 b
a

κ
⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
       (11) 

The constriction-spreading resistance between the two different materials was the 

summation of each resistance, 

12 1 2constriction c cR R R= +       (12) 

A total of three constriction-spreading resistances existed for each nodal contact 

(e.g. , ,iw w w w w owR R R− − − ). 

 

Bulk Resistance (wire) 

In the thermal circuit, some portion of the heat flow within wire itself between each 

node must be taken into account as shown in Fig. 3. Analyzing the circuit network via 

Kirchhoff’s Law [15], the amount of heat out flow and in flow must be identical, and 

can be modeled as a parallel resistance with the wire to wire constriction resistance and 

bulk resistance. The bulk resistance through the wire was defined as, 

2
bulkwire

w w

LR
k A

=       (13) 

where wA  (defined below) and L  are the wire cross-sectional area and wire length, 

respectively. 

2
2 2,

4
w

w w
DA L c Dπ

= = +       (14) 
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Micro Contact Resistance 

Within the elliptical contact area formed by the applied load, a number of 

conforming microcontacts were also formed; therefore, micro constriction/spreading 

and gap resistances coexisted in parallel. Generally, each surface has roughness where 

all contacting asperities were assumed be isotropic and randomly distributed over the 

contacting surfaces, i.e., Gaussian surface [16]. 

Between two Gaussian surfaces, the contact can be simplified as a flat/rough 

surface with an effective roughness and slope. The effective RMS surface roughness 

and effective absolute mean asperity slope were computed as,   

2 2 2 2
1 2 1 2, m m mσ σ σ= + = +      (15) 

Depending on the deformation mode of the contacting asperities, two model types 

are available - plastic or elastic. With geometric parameters obtained from each model, 

the contact resistances can be obtained with the use of the following relationships [17],  

2
( )

s
c

nakh
ψ ε

=       (16) 

1 2

1 2

2
s

k kk
k k

=
+

     (17) 

1.5( ) (1 ) , r

a

A
A

ψ ε ε ε= − =      (18) 

 

Details of plastic and elastic model are further explained in the following sections 

below. 
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Plastic Model 

If contacting asperities are deformed plastically, then the following relationships 

via Cooper et al.[17, 18] are applicable with appropriate geometric parameters, 

1 22
p p

Y Perfc
H

λ
σ

−
⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

    (19) 

28 exp
2 2ca erfc

m
σ λ λ

π
⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
     (20) 

2 21 exp( )
16 ( / 2)

mn
erfc

λ
σ λ

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

      (21) 

1 ( )
2 2

r

a

A erfc
A

λ
=       (22) 

where , ,ca nλ  and /r aA A  are the relative mean plane separation, radius of 

microcontact, number density of contact, and the ratio of actual contact area to nominal 

area, respectively. In Eq. (19), pH  is the microhardness of the softer contacting 

asperities. 

An appropriate microhardness can be obtained from the relative contact pressure  

/ PP H  relationship developed by Song et. al.[19], 

2

2

1/(1 0.071 )

1(1.62 / )

c

c
p

P P
H c mσ

+
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

     (23) 
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B
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c
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=

= − +

  (24) 

where 1 2,c c are the correlation coefficients which are obtained from Vickers 

microhardness measurements. Equivalent Vickers microhardness can be computed 

from Brinell hardness values BH . 

 

Elastic Model 

The Elastic deformation model for contacting asperities was initially proposed by 

Mikic [20] as follows, 

1 42
e e

Y Perfc
H

λ
σ

− ⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

    (25) 

22 exp
2 2ca erfc

m
σ λ λ

π
⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
    (26) 

2 21 exp( )
16 ( / 2)

mn
erfc

λ
σ λ

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

     (27) 

1 ( )
4 2

r

a

A erfc
A

λ
=       (28) 

, 0.7071eH CmE C′= =      (29) 
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2 2
1 2

1 2

1 11
E E E

ν ν− −
= +
′

      (30) 

where 1,eH
E′

are the equivalent elastic hardness and the effective Young’s modulus, 

respectively.  

With appropriate geometrical parameters and either the plastic or elastic model, the 

microcontact thermal resistance can be computed as, 

2

1
mc

c c

R
h aπ

=      (31) 

For a given nodal area, the total microcontact resistance was calculated with the 

following expression, 

mc
tmc

mc

RR
N

=       (32) 

where ( ,mc e eN n A A abπ= × = ) mcN  is the number of micro contacts within the nodal 

area nodeA . 

 

Micro Gap Resistance 

In the present investigation, the space within the wall and wire screen and the 

micro-gap between the contacting interfaces was filled with air, which is the media of 

conduction across the gap. The gap conductance model was first developed by 

Yovanovich [18] as 

g
g g

k
h I

σ
=       (33) 
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A correlation equation for the gap integral gI  was developed by Negus et al. [21] 

which depends on two dimensionless parameters, the relative mean planes separation 

/Y σ and the relative gas rarefaction parameter /M σ . 

g
g

f
I Y M

σ σ

=
+

     (34) 

where 
1.68 0.84

1.063 0.0471 4 lng
Yf

M
σ

σ
⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.  

The gas’s dependence on pressure and temperature for the gas parameter M was 

presented by Yovanovich et al.[22] in Eq. (35). 

,160.373 10
323

g atmair

g

PTM
P

−= × × ×    (35) 

With these parameters, the micro-gap resistance for a node was obtained as 

1
g

g

R
h abπ

=      (36) 

In Eq. (36), abπ  is the formed contact area in a node. 

 

Air Resistance in the Space Within Walls and Wire screen  

The interstitial area between the inner and outer wall was occupied with air and 

wire screen, and the area not occupied by the wire screen was the cross-sectional area 

occupied by trapped air. The area of the unit cell was 2
nodeA c= . Thus the occupied air 

cross-sectional area was computed as, 

( )22air node w wA A c D D= − × × −    (37) 
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When the load was applied to the node, each contact point was deformed in the 

same direction as the applied, whose deformation can be obtained from the expression 

developed by Johnson [8], 

'

3 ( )
2

F bK
abE

δ κ
π

=      (38) 

Therefore, the thermal resistance through the air in the space for each deformed 

node and air space can be expressed as, 

2 w iw w w w w ow
air

air air

DR
k A

δ δ δ− − −− − −
=     (39) 

This expression takes into account the wire deformation and its influence on the 

gap of the air space. 

 

Total Resistance  

The total contact resistance for each node from the inner wall to the wire mesh, and 

then the outer wall was a summation of all the resistances which were in serial and 

parallel as shown in Fig. 4. 

The following expressions detail the equations used to calculate each component. 

For the inner or outer wall and wire screen, the following expressions were used,  

1

, , ,
, ,

1 1
c iw w c iw c w

tmc iw w g iw w

R R R
R R

−

−
− −

⎛ ⎞
= + + +⎜ ⎟⎜ ⎟

⎝ ⎠
  (40) 

1

, , ,
, ,

1 1
c w ow c w c ow

tmc w ow g w ow

R R R
R R

−

−
− −

⎛ ⎞
= + + +⎜ ⎟⎜ ⎟

⎝ ⎠
  (41) 
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Figure 4  Total thermal circuit for a node. 
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For the resistance of the wire screen, the following expression was employed, 

1

, 1

, ,
, ,

1 1

1 1
c w w

bulkwire

c w c w
tmc w w g w w

R
R

R R
R R

−

− −

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= +
⎜ ⎟⎛ ⎞⎛ ⎞
⎜ ⎜ ⎟ ⎟+ + +⎜ ⎟⎜ ⎟⎜ ⎜ ⎟ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

  (42) 

The total contact resistance of each node was calculated from the summation of the 

contact points as follow, 

, , , ,tot c c iw w c w w c w owR R R R− − −= + +    (43) 

The total contact resistance was in parallel with the air space resistance shown in 

Fig. 4 and computed as, 

1

,
,

1 1
tot node

tot c air

R
R R

−
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

    (44) 

One unit cell had four nodes that exist as parallel resistances; therefore, the total 

resistance for the unit cell became, 

1

,
,

4
tot cell

tot node

R
R

−
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

    (45) 

The number of unit cells in an actual area can obtained from the following 

expression, 

actual
cell

cell

AN
A

=      (46) 

In a similar manner, actual joint thermal resistance can obtained as, 
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1

,

cell
actual

tot cell

NR
R

−
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠       (47) 

Finally, conductance for the actual area can be expressed as, 

 

1
actual

actual actual

h
R A

=      (48) 

In this expression, actual area is a coupon area which has one (1) inch diameter.  

As mentioned above, thermal resistance of a node which included all resistance 

components such as macro contact resistance, micro gap resistance, bulk resistance, 

micro resistance (plastic or elastic), micro gap resistance and air resistance and 

presented as parallel and serial resistance combination form as shown in Fig. 4. Four 

resistances of a node formed a resistance of a unit cell as a parallel form and finally, 

unit cells in actual coupon area formed actual resistance as a parallel form as in Eq. 

(47). From the analytical model, the characteristics of IIT are shown in the Results and 

Discussions section. 

 

Radiative Resistance in the Space Within Walls and Wire screen  

Radiation can be one of the heat transport mode in interstitial area among walls and 

wire screen. Radiative thermal resistance between two separate surfaces can be 

expressed as [6], 

4 4 3

1
( ) 4

i j
rad

a ij i j a ij ij

T T
R

A F T T A F Tσ σ

−
= =

−
  (49) 
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where 
4 4

3
4 ,

2
i j i j

ij ij
i j

T T T T
T T

T T
− +

≈ =
−

 

For the thermal resistance among two walls and screen wire, view factor can be 

obtained from geometrical relationship between infinite flat plane and row of cylinders 

as in Fig. 5 and Eq(50) [23], 

 
1/ 2 1/ 22 2 2

1
21 1 tanw w w

iw w
w

D D s DF
s s D

−
−

⎡ ⎤⎡ ⎤ ⎛ ⎞−⎛ ⎞ ⎛ ⎞ ⎢ ⎥= − − +⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎢ ⎥⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎣ ⎦

      (50) 

 

Where s  is the distance between wires. 

Radiative thermal resistance circuit can be expressed and assumed screen wire 

behaves as reradiating surface (i.e. 0wq = ) as shown in Fig. 6, thus radiative thermal 

resistance can be expressed as Eq. (51). 

1

3

1 11
1 1

4

iw ow
ow ow iw

iw iw ow ow

iw iw w ow ow W
rad

iw ow

A F
A A

A F A F
R

T

ε ε
ε ε

σ

−

−

− −

−

⎛ ⎞
⎜ ⎟− −⎜ ⎟+ + +
⎜ ⎟+⎜ ⎟
⎝ ⎠=         (51) 

The radiative resistance was existed as parallel resistance with air and total contact 

resistances in a node thus new total thermal resistance in a node can be expressed as 

Eq.(52), 

1

,
,

1 1 1
tot node

tot c air rad

R
R R R

−
⎛ ⎞

= + +⎜ ⎟⎜ ⎟
⎝ ⎠

     (52) 
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Figure 5  View factor between wall and screen wire. 
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Figure 6  Thermal circuit for radiation among walls and wire in a node. 
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With new total thermal resistance in a node, total resistance in a unit cell and actual 

joint thermal resistance and conductance can be expressed with new total as in Eq. (45), 

(47) and (48) respectively.   

From modified model, effect of radiation in total resistance is discussed in the 

result section. 

 

Multilayer Model 

A multilayer model is required for the actual design and optimization. The 

multilayer model will be able to predict the overall thermal conductance and 

deformation of wire screen thickness. In a multilayer design, the liner material’s 

selection is important due to its function as a radiation shield as well as a separator for 

the individual screen layers. In the developed model, the properties of the outer wall 

were replaced with liner’s properties. In the same way, properties of the inner wall on 

the last layer should be replaced with liner properties. As for properties of the middle 

layer walls, the liner properties were used.  

For resistance calculation, the temperatures of each layer were required. The heat 

rate can be calculated as shown in Eq. (53). With calculated heat rate, temperatures of 

each layer can be expressed as Eq.(54).  

As shown in Fig. 7, the overall thermal resistance of the multilayer structure can be 

calculated from the summation of the serial type resistances.  
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, ,

h iH L
node

tot node node i

T TT TQ
R R

−−
= =      (53) 

1 , 1i i node node iT T Q R+ += − ⋅      (54) 

 

The modified model for the multilayer structure included the macro and micro 

resistances (plastic and elastic), as well as air-gap and radiation resistances. 

 

Parametric Study 

One of the best advantages from modeling is that a parametric study can be 

conducted. Parametric study was executed for the one varied value parameter with 

other fixed value parameters which can be made the different sets of input parameters 

(i.e. selected mechanical, geometrical and thermophysical properties). Among the 

mechanical and/or thermophysical properties, the dominant property of the material 

that most affect the thermal performance can be determined through this parametric 

study. With the developed modeling it is possible to find the dominating property of 

metal material. For non metal material, a different modeling is required.   
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Figure 7  Schematic of the multilayer (three layers) structure and thermal circuit 
among walls, wire and liner in a node. 

 

 



 

 

27

CHAPTER III 

 EXPERIMENTAL INVESTIGATION 

 

Experimental investigation part of this study involved the construction, assembly, 

and testing of an initial prototype pipe section as an intermediate stage towards a 

conventional size pipe for actual applications. The test pipe, manufactured by Stress 

Engineering Houston, TX, was three (3) feet long and made of common pipe steel. The 

inner diameter of the inner pipe was three (3) inch, the outer diameter of the outer pipe 

was four (4) inch. As shown in Fig. 8, IICP (Interstitially Insulated Coaxial Pipe) had 

two layers of insulation which means two (2) stainless steel wire meshes, divided by a 

thin aluminium liner that acts as a radiation heat transfer barrier comprise the prototype 

piping and on one end a flange was welded onto the pipe to connect it with the test 

apparatus. While on the other end there was a drill hole containing threading for 

attachment to an exterior pipe fitting. 

 

Purpose 

The objective of the prototype experiments was to investigate the performance 

characteristic of the insulation technology that is named “The Interstitial Insulation 

Technology (IIT)”. Its performance can be represented by following thermo physical 

properties [23]. 

1) Thermal conductivity, k , is the intensive property of a material that indicates its 

ability to conduct heat. However, it is more useful to represent the heat transfer ability  
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Figure 8  IICP-test-section & cross-section view of the test pipe. 
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using effective thermal conductivity, ek , when heat transfer through any of these 

insulation systems may include several modes: conduction through the solid materials; 

conduction or convection through the air in the void spaces; and, if the temperature is 

sufficiently high, radiation exchange between the surfaces. Effective therma 

conductivity depends on the thermal conductivity and surface radiative properties of 

the solid material, as well as the nature and volumetric fraction of air or void space.  

2) Thermal diffusivity,α , the ratio of the thermal conductivity to the volumetric 

heat capacity is an important property which measures the ability if a material to 

conduct thermal energy relative to its ability to store thermal energy. Material of 

large,α ,will respond quickly to change in their thermal environment, while small ,α , 

will respond more slowly, taking longer to reach a new equilibrium condition. These 

properties are highly depend on a special parameter of system, bulk density (solid 

mass/total volume), which depends strongly on the manner in which the solid materials 

is interconnected.   

The experimental facility was appropriate for simulating deepwater thermal 

applications. The tests consisted of two parts to measure the thermal properties stated 

above, 1) steady state and 2) transient testing. The details of the experimental 

procedure and experimental plans are described below. In each test run, the inner and 

outer surface temperatures were measured with an Omega 30 gauge – SLE (Special 

Limited Error) thermocouple. Each surface had twelve (12) temperature reading 

locations which were spaced at three (3) inch intervals along with the axial direction 

from inlet to outlet. Fig. 9 shows the prototype pipe after all the thermocouple wires 
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were attached. These thermocouples were used to measure the axial temperature 

distributions on the surfaces every second (i.e., the reading rate of the data logger). 

 
Steady State Test 

Steady state tests were conducted at several temperatures which were set with the 

use of a hot water heater. The temperatures were 50, 60, 70, 75 and 80°C with a preset 

mass flow rate (0.05-0.4 GPM) that allowed the control of the heat flux. At each given 

inlet temperature, the heat flux could be controlled by the inlet hot water valve and the 

flow meter which were connected to the hot loop inlet line. With data from the steady 

state tests, the effective thermal conductivities were computed (see the result and 

discussion section).   

 

Transient Test 

Transient tests were conducted under prescribed hot water temperatures that 

maintained a free inner pipe flow volume with no mass flow variations. Each test was 

run at 50, 60, 70, 73, 75 and 80°C for the initial hot water temperature. The 

temperature measurements were recorded as a function of time, and then the thermal 

diffusivities were calculated which are shown in the result and discussion section. 

Under the above two test conditions, the temperature of the inner and outer surface 

of the pipe and the hot water and coolant inlet and outlet temperatures were measured 

with a data acquisition system every one (1) second. 

In summary, the results from the steady state tests were plotted as thermal 

conductivity as a function of heat flux under a given inlet hot water temperature. And 
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Figure 9  Prototype pipe with thermo couples. 
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for the transient tests, the thermal diffusivity was plotted as a function of temperature. 

With the data obtained from these experimental tests, the performance of the IIT was 

ascertained. 

 

Apparatus Design Overview 

The experiment setup was constructed with cold and hot loops to simulate actual 

working environment with the hot water as the crude oil and the coolant as the 

seawater. The hot loop was designed so as to control the input heat load by using a hot 

water inlet valve with a flow meter connected to the hot water source. A built-in 

temperature controller maintained the hot loop inlet temperature while the cold loop 

was connected to a coolant bath to maintain the outer surface environment. A 

schematic of the test apparatus and loops is shown in Fig. 10. Twelve “T” type 

thermocouples were attached to the inner surface and outer surfaces to measure the 

temperature. For the cold and hot loops, the inlet and outlet temperatures were 

measured with two thermocouples within each loop flow line. Preliminary test results, 

with a relatively large cooling bath, indicated that a new design was required to meet 

the cooling loads. Therefore, a new cooling bath design was fabricated to satisfy the 

proper capacity of the coolant bath. The new cooling bath design was a plug-in type 

cooling bath (i.e., prototype IICP was insert and placed in the coaxial PVC cooling 

bath). 
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A six (6) inch inner diameter PVC pipe was used for the coolant bath. The 

prototype pipe was inserted to PVC pipe with copper coil wrapping which was 

connected to low temperature circulator, assembly is shown in Fig. 11. 

The gap between the prototype piping and the PVC pipe was filled with ethylene 

glycol. To minimize heat loss, the coolant bath (PVC pipe) and all connected lines 

were entirely enclosed with air bubble/ fiberglass insulation as shown in Fig. 12.   

For the hot loops source, an A.O. Smith water heater was used which had a 66 

gallon capacity for a given temperature setting (Fig. 13 top). For the cold loop source, a 

NESLAB UTL-95 Low Temperature Circulator was employed as shown in Fig. 13 

bottom. 

 

Data Acquisition System 

For the temperature data collection a National Instruments TC-2095 Data Board 

was used, which provided thirty two (32) channels for thermo couples. All 

measurements were displayed via Lab View 7.1. Lab View is a graphical programming 

development environment based on “G programming” language. It offers interactive 

control for data acquisition, data analysis and data presentation. Each temperature was 

recorded by the data acquisition system with measurements taken every one second.   

 

Data Analysis 

For steady state testing, once steady state conditions were reached, the temperature 

data were used to calculate the heat rate from the hot water to the pipe’s inner surface  
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Figure 10  Schematic of test apparatus. 
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Figure 11  Old (top) and new design (bottom) of cooling bath. 
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Figure 12  Before(top) and after(bottom) application of insulation. 
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Figure 13  Hot water heater (top) and low temperature circular (bottom). 



 

 

38

by applying Newton’s law of cooling. The inlet and outlet hot water temperatures were 

employed for this calculation. The effective thermal conductivity was calculated from 

the heat rate and the measured temperature drop across the pipe insulation. The volume 

flow range for all experiments was 0.05 – 0.4 GPM and the Reynolds number was less 

than 2300 (i.e. laminar flow). With a constant heat flux condition, the Nusselt number 

was obtained,  

4.36i i

w

h DNu
k

= =       (55) 

Therefore, the convection heat transfer coefficient for internal flow can be 

expressed as, 

4.36 w
i

i

kh
D

=        (56) 

The heat rate for internal flow was computed as, 

( )i is i oQ h A T T= −       (57) 

From an energy balance, the effective thermal conductivity was calculated with the 

use of the heat rate above,  

( )
ln( / )

2
os is

eff
is os

r r Qk
L T Tπ

=
−

      (58) 

 

In transient testing, when the temperature data from one steady state condition to 

the desired steady condition were obtained, the free convection heat transfer coefficient, 

oh , in the cooling bath was calculated from the temperature difference between the 

outer pipe surface and the cooling bath temperature. The Biot number was calculated 
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with the use of the heat transfer coefficient. The Fourier number can be calculated with 

the use of the Biot number and an equation which contained a Bessel function. Finally, 

the thermal diffusivity was calculated from the Fourier number. The free convection 

heat transfer coefficient was then calculated from the Rayleigh number,  

3( )os ss
L

c

g T T tRa β
να
−

=       (59) 

For concentric cylinders, Raithby and Hollands [24] developed the following 

correlations for the effective thermal conductivity, 

( )
1/ 4

1/ 4*Pr0.386
0.861 Pref c ck k Ra⎛ ⎞= ⎜ ⎟+⎝ ⎠

   (60) 

 

where  
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( )

4

*
53 3/5 3/5

ln /s o L
c

s o

D D Ra
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t D D− −

⎡ ⎤⎣ ⎦=
+

     (61) 

The heat transfer rate was expressed as, 

( )
2

ln( / )
ef

os ss
s o

k L
Q T T

D D
π

= −     (62) 

The free convection heat transfer coefficient was obtained as, 

( )o
os os ss

Qh
A T T

=
−

     (63) 

The Biot number can be expressed as, 

oh tBi
k

=       (64) 
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From the one dimensional form of the heat conduction equation with initial wall 

temperature and convective boundary conditions, the equations were developed by 

Schneider [25] as follows,  

* 2 *
1 1 0 1exp( ) ( ) os ss

osi ss

T TC Fo J r
T T

θ ζ ζ −
= − =

−
   (65) 

where * / or r r= , 

The discrete value for  nζ (zeta, eigen value) can be calculated from the Biot 

number as, 

1

0

( )
( )

n
n

n

JBi
J

ζζ
ζ

=      (66) 

 

The coefficient nC  can be calculated from the Bessel function, 

1
2 2

0 1

( )2
( ) ( )

n
n

n n n

JC
J J

ζ
ζ ζ ζ

=
+

    (67) 

From Eq. (65), the solution for the Fourier number can be obtained,  

2

ct

Fot
t

α =        (68) 

From the solution for Fourier number, the thermal diffusivity was calculated for a 

given elapsed cooling time as in Eq. (68). 

 

Experimental Procedure 

The experimental tests were conducted with a specific procedure developed for 

each case. For steady state tests, the hot water temperature had to be maintained with 
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minimal variance. An A.O. Smith hot water heater was employed which had a large 

tank capacity and contained two heaters controlled by built-in temperature controllers 

with thermo stats (upper and lower reservoir part). Natural convection could exist in 

the reservoir which could cause temperature fluctuations during the heating operation. 

To obtain a constant flow rate, flow meter readings were frequently required. Even 

when the experiment reached steady state condition, the variance levels of the 

temperature measurements were confirmed by statistical tools. 

For the transient test, initial steady state conditions were crucial factors, therefore, 

the same method for temperature variance level checking was performed prior to 

starting and ending of the experiment run.       
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CHAPTER IV 

RESULTS AND DISCUSSIONS 

 
Analytical Model 

In the analytical modeling study, both macro and micro plastic and elastic models 

were employed. The model included constriction/spreading resistances for an elliptical 

contact area, the bulk resistance for the wire screen and an air space resistance for a 

contacting node. Plastic and elastic models for micro contacts and gap resistance 

models were employed. 

To investigate the contribution of each resistance to the overall resistance in a node, 

total contact resistance and air resistance and the total resistance for a node is plotted as 

a function of applied pressure as shown in Fig. 14. This figure indicates that the contact 

resistance decreased as applied pressure increased while the air resistance decreased 

only slightly. The contact resistance sharply decreased due to increasing contact area. 

When the applied pressure reached roughly 283 kPa, the contact resistance was lower 

than the air resistance, and there-after the air resistance dominated the total resistance. 

The contact resistances within a node can be classified into either contact resistance 

by the inner wall-to-wire, the wire-to-wire, or the wire-to-outer wall resistance. In the 

model, the inner wall-to-wire and wire-to-outer wall had similar properties; therefore, 

they were similar resistance components. Fig. 15 shows a plot of the total contact 

resistance and contact resistances for the inner wall-to-wire and wire-to-wire 

resistances. As shown in the figure, the inner wall-to-wire or wire-to-outer wall contact 
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created higher resistance than the wire-to-wire contact resistance thus controlling the 

overall resistance for the range of applied pressures investigated. The resistance in the 

wire-to-wire contact had a relatively large decrease as 200 kPa was approached as 

indicated by the changing slope of the curve. 

To obtain a better understanding of the contact resistance caused by the wall-to-

wire interface, which seems to dominate the overall resistance in the node, a plot of 

multiple interface resistances is shown in Fig. 16. From Fig. 16, the dominant 

resistance component at the inner wall-to-wire interface is clearly the microcontact 

resistance (Rtmc: total microcontact) which is highly dependent on the applied 

interface pressure. The analysis also indicated that the macro constriction (Rc,iw) and 

spreading (Rc,w) resistances at the inner wall and wire were the least dominant 

resistances, and then this was followed by the microgap resistance (Rg,iw-w). All of 

these resistances were located at the inner wall-to-wire interface. To highlight this 

same behavior within the wire-to-wire interface, Fig. 17 shows these same individual 

contact and gap resistances at this interface. Even in wire-to-wire contact, the total 

microcontact resistance (Rtmc,w-w) seemed to be the dominant resistance parameter, 

similar to the inner wall-to-wire interface shown in Fig. 16. Again, the least influence 

at this interface came from the macro constriction and spreading resistances. However, 

the addition of the bulk wire resistance did cause a lower overall total contact 

resistance when compared to the inner wall-to-wire interface which is indicated by the 

solid lines (Rc,iw-w and  Rc,w-w) in both Figs 16 and 17. This lower resistance is 

more prevalent between 230 and 600 kPa of applied pressure. The overall total contact 
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resistance included all of the resistances which comprise the thermal circuit network 

(see Fig. 4 for a single node). 
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Figure 14  Thermal resistance as a function of applied pressure in a node. 
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Figure 15  Thermal contact resistances as a function of applied pressure in a node. 
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Figure 16  Thermal resistance as a function of applied pressure  

within inner wall and wire of a node. 
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Figure 17  Thermal resistance as a function of applied pressure  

within wire and wire of a node. 
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To investigate the effects of contact resistance as a function of applied pressure at a 

node, a nondimensionalized expression was developed which included macrocontact, 

microcontact, micro gap, bulk wire and the air resistance in the space between inner 

and outer wall and within screen mesh, , ,/tot c tot nodeR R , 

, ,

,

1tot c tot c

tot node air

R R
R R

= +       (69) 

Eq.(69) is plotted in Fig. 18 as a function of applied nominal pressure over the 

range 1 kPa ≤ P ≤ 3500 kPa. It seemed from this analysis that the interface contact 

resistances had a greater influence on the overall resistance over all pressure regions. 

Further, contact resistances sharply decreased as the applied pressure approached 283 

kPa which was mainly caused by the reduction in micro contact resistance.   

For comparison, experimental data are also shown along with the model predictions 

in Fig. 18. The trend indicated a large reduction in contact resistance influence as the 

pressure was increased up to 690 kPa, then the air resistance began to dominate for 

pressures greater than 1015 kPa. The comparison indicated that the inclusion of a 

plastic model for micro contacts was better at predicting the experimental data than the 

assumption of elastic micro contacts at these higher pressures (RMS errors have been 

computed). 

As shown by Figs. 16 and 17, the resistance due to micro contacts and micro gaps 

was much larger than other resistances, and thus became the controlling factor for this 

system. This means that a wire screen can be a proper insulating medium for an 

interstitially insulated system if the applied pressure is controlled properly. 
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Figure 18  Dimensionless thermal resistance as a function of applied pressure. 
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The total thermal resistance for three different deformation models is compared 

with experimental data as shown in Fig. 19. The comparison indicated that the trends 

for the total thermal resistance variation, which included the effect for plastic and 

elastic deformations were similar, but that the elastic model showed a higher resistance. 

The difference between two the contact models was mainly caused by the deformation 

mode of the contacting asperities in microcontact, and generally rough surfaces tended 

to follow the plastic model rather than elastic deformation model. However, the elastic 

macro model by itself had lower resistance and tended to under predict the 

experimental thermal resistance results.  

Fig. 20 shows the thermal conductance for the various models employed in this 

study as a function of the experimental data. In this plot, a significant under prediction 

at light pressure range is observed, for micro models especially, for applied pressures 

under 1500 kPa. This is a similar trend as seem in Fig. 19 for low applied pressures. 

As a quantitative comparison between model predictions and experimental data, 

Table 1 shows the RMS error between these results. For the plastic contact model, the 

error ranged from 10 to 19%, which happens to be the lowest values. With the 

assumption of elastic microcontact deformation, the RMS error ranged from 19 to 29%. 

While these values were higher than for the plastic deformation assumption, they were 

still lower than for the assumption of just macrocontact without inclusion of 

microcontact effects. In the macro model (not include microcontact effects), the error 

ranged from 68 to 78% which was due to the assumption of perfect contact in the 
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deformed area. Table 2 shows the geometrical and thermophysical properties of the 

metallic materials that were used for this analytical and experimental study.  

In summary, the reason for higher conductance/lower resistance at lighter pressures 

(light applied load) as compared to the model predictions can be accounted for from 

visual inspection of the wire screen prior to any testing. In the untested state, pre-

deformation was observable at each wire-to-wire interface for each node caused by the 

stresses of the fabrication process. The applied load due to fabrication formed an initial 

contact area which results in lower resistance, or higher conductance, when compared 

to the model predictions. The model predictions did not take into account pre-

deformation of any contacting surfaces.  
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Figure 19  Prediction of thermal resistance for each model compared with 
experimental data as a function of applied pressure. 
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Figure 20  Prediction of thermal conductance for each model compared with 

experimental data as a function of applied pressure. 
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Table 1 RMS error between the experimental data and models 

Model 53°F 135°F 200°F Average 

Elastic Micro 29 29 19 26 

Plastic Micro 19 19 10 16 

Macro 68 69 78 72 
 

 

Table 2 Properties of materials [23] 

Material Poison’s 
Ratio 

Modulus 
(GPa) 

Roughness 
( mμ ) 

Absolute 
Asperity 

Slope 

Thermal 
Conductivity 

(W/mK) 
Emissivity 

Steel 4140 P110 
(Inner or Outer Wall) 0.3 207 1.5 0.0938 42.7~46.7 0.44 

Stainless Steel 316 
(Mesh Screen) 0.3 190 0.4 0.0471 16.3~16.5 0.22 

C(Length between nodes, mm) 25.4 wD (Wire Diameter, mm ) 0.925 
 

 

 

 

 

 

 



 

 

54

Radiative Resistance Model 

As one of the heat transfer modes within the interstitial space, thermal transport by 

radiation was included in the model. Radiation heat transfer was placed in the thermal 

circuit as a parallel resistance along with the total contact resistance and air resistance. 

To determine the contribution of each resistance to the overall resistance in a node; the 

total contact resistance, air resistance, radiative resistance and the total resistance for a 

node were plotted as a function of applied pressure as shown in Fig.21. This figure 

indicated that the contact resistance dominants in the low pressure range (~25Kpa) and 

linearly decreased as applied pressure increased, meanwhile, the radiative and air 

resistance decreased only slightly. Therefore, it was observed that the total resistance in 

a node was highly dependent on the change of contact resistance which was similar to 

results without radiative resistance being added. After adding the radiative mode, the 

analysis showed a higher thermal conductance (lower thermal resistance) at the lower 

pressure range as shown in Fig 22 and 23. After the inclusion of the radiative mode 

into the model, the under prediction of thermal conductance at the light pressure range 

was decreased while at the high pressure range its change was negligible. This is a 

positive effect to the prediction of the thermal performance.  
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Figure 21  Thermal Resistance as a function of applied pressure in a single node. 
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Figure 22  Prediction of thermal conductance for each model  

with /without radiation model and compared with experimental  

data as a function of applied pressure. 
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Figure 23  Prediction of thermal resistance for each model  

with /without radiation model and compared with experimental data 

 as a function of applied pressure. 
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Comparison with Other Mesh Numbers and Materials  
 

An analytical model was developed to predict the thermal performance of the 

interstitial insulation technology with different mesh material and mesh number (i.e. 

number of mesh per square inch). With experimental data [5] and material properties, 

as shown in Table 3, a comparison between model predictions and the experimental 

data was conducted.  

With the developed model, applied to an Inconel Alloy with a mesh number of 5, a 

comparison of the experimental and theoretical thermal conductance values as a 

function of applied pressure was conducted and is shown in Fig. 24. The trend for the 

predicted values correlated very well with experiment data; however, an under-

prediction of the conductance occurred in low pressure range as shown previously with 

Stainless Steel 316. At an interface pressure of 172kPa, the difference in thermal 

conductance between model prediction and experimental data was 15.2 2/W m K while 

its difference was reduced to 0.91 2/W m K  at 2080 kPa.  

Fig. 25 shows a comparison between model predictions and experiment data for 

Stainless Steel and Inconel at a mesh number of 5, and Titanium material for a mesh 

number of 9. The model predicted the thermal conductance very well with the given 

pressure range tested. As a quantitative comparison, between model prediction and 

experimental data, the RMS error was calculated for each material which is shown in 

Table 4. For Inconel, the RMS error was 10.5% which was the lowest among the three 

materials while the Titanium mesh material had a value of 21.9 % (the highest error 

computed).  
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For Titanium material at different mesh numbers (e.g., 9, 14 and 18), a comparison 

between predicted and experiment data for thermal conductance as a function of 

applied pressure is shown in Fig. 26. As Fig. 26 reveals, as the number mesh increased, 

the difference between model predictions and experimental data increased noticeably at 

low interface pressures. Again, a possibility for this effect is the observed pre-

deformation at the wire-to-wire interface as the number of nodes increased; this caused 

the apparent area to increase. 

 

 

Table 3 Properties of screen mesh material [5, 23] 

Material Mesh 
number 

Thermal 
conductivity 

W/mK  at 366K 

Young's 
Modulus 

GPa 

Wire 
Diameter 

mm 
Inconel 5 9.8 207 0.819 

Titanium 9 22.3 116 0.812 
 14 22.3 116 0.406 
  18 22.3 116 0.616 

 

Table 4 RMS error between the experimental data and models 

Material Mesh Number RMS  
SS 316 5 13.6 
Inconel 5 10.5 

Titanium 9 21.9 
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Figure 24  Prediction of thermal conductance of Inconel wire mesh for model 

compared with experimental data as a function of applied pressure. 
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Figure 25  Prediction of thermal conductance of different mesh material for 
model compared with experimental data as a function of applied pressure. 
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Figure 26  Prediction of thermal conductance of different mesh size of Titanium 
wire mesh for model compared with experimental data as a function of applied 

pressure. 
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Multilayer Model 

In real applications, design performances for the IIT are important. Geometrical 

factors play a pivotal role in the design’s performance; therefore, determination of the 

number of layers is an important parameter to identifying the critical thickness. This 

helps to achieve the optimum performance at the lowest cost. Fig. 27 shows the 

thermal conductance as a function of pressure. Each line represents the number of 

layers from a single screen wire mesh to fifty (50) layers.  As the number of layers 

increased, thermal conductance of the IIT structure decreased. In Fig. 27, the 

conductance of a single layer at an applied interface pressure of 145Kpa was calculated 

as 27.5 2/W m K , 3.3 2/W m K for eight (8) layers and 1.6 2/W m K for sixteen (16) layers. 

These multilayer conductance values showed a big decreased; however, the rate of 

decrease in conductance (i.e., 1 1i i i ih h h− + +Δ = − ), by adding each additional layer, 

decreased as the number of layers increased. For instance, the decrease in conductance 

between a single and double layer was 14.1 2/W m K , eight and nine layer was 

0.36 2/W m K  and sixteen and seventeen was 0.09 2/W m K  while a linear increase in 

thermal resistance was observed as the applied pressure increased as shown in Fig. 28. 

In this figure, the resistance for a single layer was 71 /K W , it increased to 146 /K W  

by 75 /K W with the addition of one more layers and then, 75.7 /K W was resistance 

increase due to adding one more layer between sixteen to seventeen layers. The rate of 

increase in resistance (i.e., ( 1) 1i i i iR R R− − +Δ = − ) was observed as nearly constant and 

thermal resistance was more sensitive to the applied pressure due to greater 

deformation, which resulted in a contact area increase.  
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Figure 27  Thermal conductance of multilayer as a function of applied pressure. 

 
 
 
 
 
 
 
 
 
 



 

 

65

 
 
 
 
 
 
 
 
 

101 102 1030

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Pressure, kPa

R
es

is
ta

nc
e,

 K
/W

 

 

Single Layer
Double Layer
Eight Layers
Sixteen layers
Thirty-Two Layers
Fifty Layers

 
 

Figure 28  Thermal resistance of multilayer as a function of applied pressure. 
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Fig. 29 shows the total thickness of each multilayer structure as a function of the 

applied interface pressure. It indicates that the amount of structural deformation can be 

attributed to the greater compliance of the layered structure. 

The effective thermal conductivity can be calculated by the following equation;  

effk h t= ⋅                                                               (70) 

The effective thermal conductivity of a multilayer structure as a function of applied 

pressure is shown in Fig. 30. At 145KPa interface pressure, the effective thermal 

conductivity of a single layer was 0.050 /W mK , while its value was 0.059 2/W m K  for 

an eight layer structure and 0.060 2/W m K  for sixteen layer configuration. The change 

in effective thermal conductivity value by adding one additional layer decreased as the 

number of layers increased. For instance, the change in thermal effective conductivity 

value ( , 1 , 1 ,eff i i eff i eff ik k k+ − +Δ = − ) was 0.005 2/W m K  for a single to double layer, 

0.000126 2/W m K  for an eight to nine layer structure and 0.000019 2/W m K  for 

sixteen to seventeen layer structure at 145KPa interface pressure.   

In summary, an optimal overall thickness can be found from the use of the 

multilayer model. As the number of layers increased, overall thermal conductance was 

decreased (resistance increased); however, the rate of deduction was reduced after 

sixteen layers thus its effectiveness by adding more layers was decreased. This can be 

observed easily from the effective thermal conductivity comparison between eight 

layers and sixteen layers case as a function of interface pressure as shown in Fig. 27. 
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Figure 29  Total thickness of multilayer as a function of applied pressure. 
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Figure 30  Effective thermal conductivity of multilayer as a function  

of applied pressure. 
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Parametric Study 

A parametric study was conducted to determine the influence of the variation in 

geometrical, mechanical and thermophysical properties on the overall thermal 

conductance of a single layer. The parametric study was conducted by choosing to vary 

one parameter while holding the remaining parameters constant. The geometrical 

property chosen was the surface roughness, σ , the mechanical property was Young’s 

modulus, E , while the thermophysical properties selected were thermal conductivity, 

k , and surface emissivity, ε .  All these properties are influential parameters in 

choosing the optimum material for the application design. To determine the most 

dominant parameter among the selected parameters, each was changed by 10, 20 and 

30% from nominal value as shown in Table.5.  

For the 10% case, relatively big reduction in thermal conductance was observed 

from thermal conductivity parameter case while negligible reductions were observed 

from other parameter cases as shown in Fig. 31. When thermal conductivity was varied 

parameter, thermal conductance reduction value was 2.66 2/W m K at 144kPa, it 

increased as applied pressure increase which was 13.55 2/W m K at 3454kPa. Fig. 32 

shows thermal conductance percent differences between the chosen nominal parameter 

value and a ten percent (10%) change in its value. From Fig. 32, the percent reduction 

in thermal conduction as a function of pressure for each parameter can be identified 

easily.   

Reduction by varying thermal conductivity increased up to 9.5 percent (%) at 

900kPa, and then negligible increases were observed thereafter. Other parameters 
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affected the reduction by 1.7 percent. For the emissivity case, its reduction was 

decreased as pressure increased, which had a 1.6 percent reduction at the low-end 

pressure (6.8 kPa) and 0.23 percent at the high-end pressure (3454 kPa), repectively. 

When each parameter was varied by twenty percent (20%), the overall thermal 

conductance as a function of interface pressure is shown in Fig. 33. Thermal 

conductance was observed as the most affecting parameter on overall conductance 

among the selected parameters like in 10% case and conductance reduction was 

27 2/W m K at 3454 kPa. Fig. 34 shows percent change in thermal conductance as a 

function of interface pressure with twenty percent (20%) variation in each parameter. 

When thermal conductivity was changed, an upper limit of 19.5 percent (%) reduction 

in thermal conductance can be expected and for the other parameters only 3.1 percent 

reduction can be expected. When roughness was varied, the reduction in thermal 

conductance increased up to 3.17 percent at 489kPa, and then it decreased as the 

interface pressure increased. For 30% parameter changes, Fig. 35 shows thermal 

conductance as a function of pressure when the selected parameters were changed one 

after another. Similar to the 10 and 20% varying cases, thermal conductivity was the 

most influential parameter on thermal conductance, it had a 5.3 2/W m K reduction at 

6.8 kPa and 40.6 2/W m K  reduction at 3454 kPa. When reduction was plotted in 

percent difference from nominal conductance as shown in Fig. 36, up to a 29.3 percent 

reduction can be expected by varying thermal conductivity. For Young’s modulus, the 

reduction was increased up to 1.05 percent at 75.8kPa interface pressure, and then it 
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decreased with a negative reduction (increase in conductance) up to -0.75 percent. 

However, the reduction due to Young’s modulus was small enough to neglect.  

In summary, a parametric study was conducted from the developed model and 

thermal conductivity, k ,  was the most affecting parameter among the selected 

parameters such as surface roughness, σ , Young’s modulus, E , and surface emissivity, 

ε . Each selected parameter showed its change as a function of interface pressure, but 

not to the extent as thermal conductivity. 

 

Table 5 Properties of selected materials for parametric study 

Walls/Wire Nominal 10% 20% 30% 
Thermal Conductivity  

W/mK 46.7/16.5 42.03/14.85 37.36/13.2 32.69/11.55 

Surface Roughness  
µm 1.5/0.4 1.65/0.44 1.8/0.48 1.95/0.52 

Young's Modulus 
GPa 207/190 227.7/209 248.4/228 269.1/247 

Surface Emissivity 0.44/0.22 0.396/0.198 0.352/0.176 0.308/0.154 
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Figure 31  Thermal conductance on each parameter varies by 10%  

as a function of applied pressure. 
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Figure 32  Thermal conductance difference by 10% varying parameter  

as a function of applied pressure. 
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Figure 33  Thermal conductance on each parameter varies by 20%  

as a function of applied pressure. 
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Figure 34  Thermal conductance difference by 20% varying parameter  

as a function of applied pressure. 
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Figure 35  Thermal conductance on each parameter varies by 30%  

as a function of applied pressure. 
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Figure 36  Thermal conductance difference by 30% varying parameter  

as a function of applied pressure. 
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Prototype Experiment 

Steady State Test 

Steady state experimental results compared the effective thermal conductivity of 

the insulation system to the flow fluid temperature or heat rate. The effective thermal 

conductivity, ek , variation is shown in Fig. 37 as a function of incoming hot water 

temperature at five different volumetric fluxes (gallons per minute).  At the lowest in-

flow water temperature, 50°C, the effective thermal conductivity, ek , had a relatively 

large variation which ranged from 0.084 /W mK  to 0.017 /W mK as the volume flux 

was changed from 0.1 GPM to 0.4 GPM. The difference between 0.1 GPM and 0.4 

GPM was 0.066 /W mK . As the in-flow temperature was increased, the effective 

thermal conductivity difference between the lowest and highest volume flux decreased, 

for instance, at 80°C the difference was 0.024 /W mK . The effective thermal 

conductivity decreased as temperature increased. As the volume flux increased, the 

effective thermal conductivity changed as the temperature was reduced. 

The effective thermal conductivity, ek , as a function of heat rate (W) at five 

different in-flow hot water temperatures is shown in Fig. 38. At the lowest heat rate 

(10W), the effective thermal conductivity had relatively small differences among the 

five different temperatures. For a given heat rate condition, the thermal conductivity 

decreased as the incoming fluid temperature increased (e.g. at 10W), the lowest ek  was 

0.011 /W mK , while the highest value was 0.019 /W mK  with a difference of 0.008 

/W mK . The effective thermal conductivity increased as the heat rate was increased at 



 

 

79

the same temperature condition. For instance, at 80°C in-flow temperature, ek  

increased from 0.011 to 0.05 /W mK  as the heat rate changed from 10 to 46W. 

For comparison of effective thermal conductivity for IIT to air, the dimensionless 

thermal conductivity ratio, /eff airk k , is shown in Fig. 39 as a function of mean wall 

temperature of the pipe walls for five different volumetric fluxes. The effective thermal 

conductivity for the IIT had its highest values for volumetric fluxes equal to 0.1gpm 

and 0.15 gpm (275% and 150%, respectively). However, the effective thermal 

conductivity showed large decrease as the temperature was increased. As the inflow 

rate was increased, the dimensionless thermal conductivity ratio decreased. At lower 

inflow rates there was a significant decrease in the dimensionless thermal conductivity 

ratio while it was nearly constant as the volumetric flux was increased. 

For comparison purposes, Fig. 40 shows the thermal conductivity ratio data, 

/eff airk k , for coupon tests previously conducted [5] and the pipe prototype test data for 

the current experimental investigation. The thermal conductivity values at pressures of 

165 and 351 KPa and mean interface temperature of 5ºC were selected from the 

coupon tests for this comparison. These interface pressure values were closest to the 

experimental environmental conditions conducted in phase II. Under these values the 

calculated ratios for the coupons ranged from 0.27 to 0.32. The lowest ratio value 

computed from the pipe prototype tests was 0.38; this represents a ratio difference of 

0.11 from the coupon tests. However, the estimated environmental pressure for the pipe 

prototype tests was approximately 1 atm (101KPa); this is approximately two times 

lower than the pressure value for the coupon tests. This difference in pressure was 
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caused by the pipe’s construction process. Therefore, this limits a direct one-to-one 

comparison between the values. But if one takes into consideration the experimental 

uncertainty in the experimentally measured thermal conductivity values the ratio 

difference becomes less significant. In conclusion, the values for the thermal 

conductivity ratio are very similar even thou slight differences exist. For comparison 

the effective thermal conductivity of IIT (0.017 to 0.079 /W mK ) with commercial 

product, conductivity values of commercial materials are shown in Table. 6. 
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Figure 37  Effective thermal conductivity at each volume flux as a function of  hot 
water temperature. 
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Figure 38  Effective thermal conductivity at each starting hot water temperature 

as a function of heat rate. 
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Figure 39  Ratio of thermal conductivity at each volume flux as a function of mean 

temperature of pipe wall. 
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Figure 40  Ratios of thermal conductivity for prototype pipe and coupon tests as  

a function of mean temperature of pipe wall. 

 
 

Table 6 Thermal conductivity of present technology to conventional  

materials [26, 27] 

 

Material IIT Contra  
Therm™ C Therm™ Urethane Air 

Thermal 
Conductivity 0.017 ~ 0.079 0.151 0.08 ~ 

0.15 0.026 0.0264 

 At 27°C 
Varies by 

water 
absorption 

Varies by 
water 

absorption 
At 27°C At 27°C 
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Transient Test  

For the transient tests, the thermal diffusivity was calculated from the surface 

temperature measurements as a function of mean temperature for the pipe wall. The 

thermal diffusivity,α , is compared to five different starting temperatures during the 

cool down period as shown in Fig. 41. At the higher mean temperatures, the thermal 

diffusivity difference between 50°C and 80°C was relatively large, however, as the 

mean temperature decreased, the difference decreased. For instance, at 27°C mean 

temperature the difference between 50°C and 80°C was 6 21.8 10 /m s−×  but at 4°C 

mean temperature, the difference decreased to 9 26.1 10 /m s−× , this difference is very 

small. For comparison purposes, the thermal diffusivity for this technology is shown 

with other conventional materials. Table 7 shows the comparison for these values. 

The elapsed cooling times are shown in Fig. 42 for two (inner hot water 

temperatures of 50 and 80°C) cases. The cool down times were 16.6 and 18.1 hours, 

respectively, with similar cooling trends. For instance, when the starting temperature 

(the inner surface average temperature) was initially 72°C, the complete cool down 

period was 18.1 hours while at 47°C as the starting temperature it was 16.1 hours. 

However, the elapsed time difference was much smaller for the transient cool down 

period which started at 74°C and ended at 47°C, the measured time cycle was 1.4 hours. 

When the temperature trend for 47°C is shifted to approximately 74°C, the trends 

showed consistency. 
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Figure 41  Thermal diffusivity variations at each starting hot water temperature 

as a function of mean pipe wall temperature. 

 
 

Table 7  Thermal diffusivity of present technology to conventional  

materials [23, 25]. 

Material IIT Carbon Steel 
1010 

Stainless Steel 
304 Glass Fiber Air 

Thermal 
Diffusivity 

At 27°C 

4.721E-07 ~ 
2.278E-06 1.88E-05 3.95E-06 1.42E-06 2.25E-05 

Difference, %  825~3980 173~837 62.4~301 988~4765 
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Figure 42  Mean temperature of inner and outer surface temperature of each 

contained water temperatures as a function of elapsed cooling time. 
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Figure 43 shows the ratio of the thermal diffusivities, / airα α , for the IIT with 

respect to air as a function of mean temperature of pipe wall at each water temperature 

case. At low temperature (2.5°C), the IIT had a very low thermal diffusivity compare to 

air with a ratio values equal to 0.002, i.e. 0.2% of thermal diffusivity of air at same 

temperature. As the temperature was increased, the ratio for the thermal diffusivities 

increased up to 0.095 which represents 9.5% of the value for air. And as the 

temperature is increased further, the differences among the four different cases were 

observable but small enough to be within uncertainty range. 

In summary, results from steady state and transient tests show the feasibility of the 

IIT. Visual investigation of the manufactured test pipe showed that the wire screen did 

not full come into contact with the pipe walls in every location. This may have affected 

the results for the effective thermal conductivity and the thermal diffusivity. However, 

as a prototype the pipe section was still very useful. For more realistic operating 

conditions, a full length pipe with more layers under more controlled manufacturing 

processes should be fabricated and evaluated for both thermal and mechanical 

performance. 
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Figure 43  Thermal diffusivity ratios at each starting hot water temperature as a 

function of the mean pipe wall temperature. 
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CHAPTER V 

FINDINGS 

 

Analytical Model 

1. The contact resistance decreases as applied interface pressure increases while 

the air resistance decreases only slightly. The model indicates that the thermal 

contact resistance is the dominant resistance in a node. 

2. The contact resistances within a node can be divided into several contact 

resistances. The thermal contact resistance at the inner wall-to-wire interface, 

the wire-to-wire interface, and the wire-to-outer wall interface thermal 

resistance. The inner wall-to-wire or wire-to-outer wall contacts creates higher 

resistance than the wire-to-wire contact resistance. Therefore these contacts 

controlled the overall thermal resistance for the range of applied pressures 

investigated. 

3. The dominant resistance component at the inner wall-to-wire interface was 

clearly the microcontact resistance, which is highly dependent on the applied 

interface pressure. 

4. Even at the wire-to-wire interface, the microcontact resistance seemed to be the 

dominant resistance parameter; similar to the inner wall-to-wire interface.  

5. As a comparison to model predictions, experimental data were shown with 

model predictions. The inclusion of a plastic model for micro contacts was 
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better at predicting the experimental data than the assumption of elastic micro 

contacts. 

6. The average RMS errors were calculated for the various model predictions as 

compared to the experimentally measured values. Incorporating only the 

macrocontact model, an upper limit of 72% for the RMS error was calculated; 

while the inclusion of the plastic deformation model for microcontacts had an 

upper limit of 16%. The assumption of elastic microcontact deformation at the 

contacting interfaces had an upper limit of 26%.  

7. The reason for the higher conductance/lower resistance at lighter pressures 

(light applied load) as compared to the model predictions can be accounted for 

from visual inspection of the wire screen prior to any testing. In the untested 

state, pre-deformation was observable at each wire-to-wire interface for each 

node. This can be attributed to stresses from the fabrication process. The 

applied load due to fabrication formed an initial contact area which results in 

lower resistance and higher conductance when compared to the model 

predictions.  

8. To investigate the contribution of each resistance to the overall resistance in a 

single node, a radiative resistance further added to the model. As a result, 

higher thermal conductance (lower thermal resistance) was observed at lower 

pressure range. Under prediction at light pressure was decreased while at the 

high pressure its change was negligible, which is a positive result in the 

prediction of the thermal performance.   
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9. Thermal conductance for other wire mesh materials with different mesh 

numbers was predicted well by the analytical model for the given pressure 

range tested; however, under prediction was observed at low pressure. The 

RMS errors ranged from 10.5~21.9% . 

10. A multilayer model which ranged from a single layer to fifty (50) layers was 

developed. As the number of layers increased, the thermal conductance of the 

structure decreased. Thermal conductance of a multilayer structure showed a 

significant decreased; however, the amount of decrease by adding each 

additional layer decreased as the number of layers increased. 

11. For the multilayer structure, the thermal resistance, increased linearly as a 

function of applied interface pressure. The thermal resistance seemed more 

sensitive to applied pressure due to greater deformation of the structure; this 

resulted in greater contact area. 

12. The effective thermal conductivity of the multilayer structure increased as the 

number of layer increased; however, its rate of increase decreased as the layers 

increased. 

13. A sensitive study was conducted that included geometrical property and 

mechanical property such as surface roughness and Young’s modulus. 

Moreover, thermophysical properties such as thermal conductivity and 

emissivity were included. When each parameter was varied by 10, 20 and 30% 

from nominal values (Table 5), thermal conductivity was observed to be the 

most dominant parameter.  
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Prototype Experiment 

 

1. Under various experimental and steady state conditions, the effective thermal 

conductivity, effk , for various in-flow hot water temperatures and different 

volumetric flow rates (0.1 to 0.4 GPM) was computed. The results showed a 

very low value of 0.011 /W mK at 80°C; however, for the entire range of 

combinations, the value varied from 0.011 to 0.079 /W mK .  

2. When the effect of heat rate on the effective thermal conductivity was analyzed, 

the lowest values observed ranged from 0.011 to 0.02 /W mK  for a heat rate of 

10W. These values occurred at inlet hot water temperatures between 50 to 80°C.  

It was observed that the effective thermal conductivity increased as the 

temperature and volumetric flow rate were decreased. 

3. With four (4) different inlet hot water temperatures (50, 60, 70 and 80°C), 

transient tests were conducted so that the thermal diffusivity, α , and cooling 

times could be computed. At 27ºC, the thermal diffusivity of IIT determined to 

be ranged  74.721 10−×  6 2~ 2.278 10 /m s−× . 

4. As the wall mean temperature was decreased, the thermal diffusivity decreased 

and among the various temperature cases the thermal diffusivity variance also 

decreased. 

5.  For comparison purposes, the thermal diffusivity values were compared with 

conventional insulation materials. The analysis showed a bare Carbon steel 
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ANSI 1010 had 825 ~ 3980% and a glass fiber insulation had 61 ~ 301% 

diffusivity values than IIT. 

6. At an inlet hot water temperature of 80°C, the cooling time was 18.1 hours, and 

this value decreased to 16.6 hours as the initial hot water temperature was 

decreased to 50°C.  
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CHAPTER VI 

CONCLUSIONS 

 

In this study, an analytical and experimental study was conducted for an interstitial 

insulation technology (IIT). It included analytical modeling for performance 

predictions and the testing of a prototype pipe for measurement of actual thermal 

performance characteristics. By developing an analytical model for a multilayer screen 

wire structure its thermal conductance (resistance) was predicted for any given contact 

pressure for a one (1) inch diameter coupon.  

Macro and micro contact resistance models were used to predict the thermal 

performance of an interstitial insulation technology which contained wire screen. The 

model developed showed very good agreement with the experimentally measured 

conductance, h , values over an applicable pressure range. We believe that this model 

can be used for an entire array of wire screen mesh sizes. This concept dramatically 

increased the thermal resistance when compared with a metallic slab (acting as a wall 

for pipe). As a result, the rate of heat loss from the inner hot wall to the outer cold wall 

was dramatically decreased by more than two orders of magnitude.  These orders of 

magnitude will be higher when compared to higher thermal conductivity metals acting 

as the wall thickness of a pipe. The thermal conductance was further reduced by adding 

more layers of wire screen insulation.  

In addition, the study modeled the influences of several contact resistance 

parameters which encompassed both macrocontacts and microcontacts at the interface 
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of contacting surfaces. Calculated average RMS errors were showed for the various 

model predictions as compared to the experimentally measured values. Incorporating 

only the macrocontact model gave higher RMS error, while the inclusion of the 

microcontact models gave lower errors. The assumption of plastic microcontact 

deformation at the interfaces gave the lowest error value; therefore, we conclude that 

plastic deformation is occurring at the contacting asperities.  

Clearly, among the three deformation models, the inclusion of the plastic 

microcontacts with elastic macrocontact deformation showed very good results 

throughout the entire contact pressure range with especially excellent agreement at 

higher pressures. From the analytical model investigation, microcontact resistance was 

found to be the dominant resistance parameter.  

A radiative resistance was added to the model as a parallel thermal resistance with 

the contact and air resistance. With the modified model, the contribution of the 

radiative resistance was investigated.  As a result, the under prediction of thermal 

conductance (over prediction in thermal resistance) at light pressure range was reduced 

while at the high pressure its change was negligible, which is a positive result in the 

prediction of the thermal performance.  

Thermal conductance predictions for different wire mesh materials and mesh 

number were compared against experimental data. The model predicted very well at 

the pressure range tested with results similar to Stainless Steel with respect to 

agreement. 



 

 

96

A multilayer structure increases the number of layers from a single layer to the 

required number of layers, its performance characteristic was predicted with new 

multilayer model. Predictions indicate that as the number of layers increased, the 

thermal conductance of the structure decreased. However, the rate of reduction in 

conductance by adding each additional layer decreased as the number of layers 

increased. A linear increase in overall thermal resistance was observed with addition of 

layers. Thermal resistance seemed to be more sensitive to applied pressure. The 

effective thermal conductivity of the multilayer structure increased as the number of 

layer increased; however, its rate of increase decreased as the layers increased.  

By conducting a parametric study with surface roughness, σ , as a geometrical 

property, Young’s modulus, E , as a mechanical property and thermal conductivity, k , 

and emissivity, ε ,  as the thermophysical properties, it was observed that  thermal 

conductivity was the dominant variable and each parameter’s contribution to the 

thermal performance improvement (reduce thermal conductance) was identified as a 

function of applied interface pressure. Therefore, by modifying the geometrical, 

mechanical and thermophysical parameters of the wire screen an optimum design can 

be achieved.  

Experimental tests using a prototype pipe with two layers of stainless wire mesh 

which were separated by a thin aluminum layer permitted preliminary measurement of 

the wire screen’s thermal performance under simulated conditions. Under various 

combinations and steady state conditions, the effective thermal conductivity for in-flow 
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hot water temperatures at different volume flow rates (0.1 to 0.4 GPM) was calculated 

and its values were from 0.011 to 0.079 /W mK . 

With seven different inlet hot water temperatures, transient tests were also 

conducted so that the thermal diffusivity and cooling times could be determined. The 

thermal diffusivity,α , was computed at different water temperatures. As the wall mean 

temperature was decreased, the thermal diffusivity decreased and among the various 

temperature cases the thermal diffusivity variance also decreased. For comparison 

purposes, the thermal diffusivity values were compared with conventional insulation 

materials. The analysis showed a 228% reduction as compared to bare Carbon steel 

ANSI 1010, and 80% reduction when compared to glass fiber insulation. 

Using mean temperatures for the inner and outer walls, instead of inlet temperature, 

the results were similar. Therefore, it could be possible to predict cooling times for 

inlet hot water temperatures in the range between 50 to 80°C. 

The results from both the modeling and experimental investigations seem to 

indicate superior insulating characteristics for the IIT when compared to current 

technologies, Thus, the present technology has shown promise for sub-sea piping and 

oil/gas applications and the viability of using a wire mesh as an insulating material has 

been proven in this investigation. However, to ensure the best performance 

optimization of the IIT is required and further study is needed to account for the over-

prediction at lighter pressures as indicated by the analytical contact model. Pre-

deformation of the contact area within the wire-to-wire interface was clearly observed. 

This could be attributed to wire tension forces from the fabrication process.  
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In summary, IIT (Interstitial Insulation Technology) is a strong candidate for 

reducing heat losses in many applications. Its advantages are higher structural strength, 

ease of installation, relatively low product cost and environmentally design due to non-

chemical based material usage. Investigated results indicate superior insulating 

characteristics for the IIT when compared to current technologies. Thus, the present 

technology shows promise for most industrial applications besides insulating subsea 

piping. 
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APPENDIX A 

EXPERIMENTAL DATA 

 
Steady State Test  

Effective Thermal Conductivity at Inflow hot water temperature and volume flux rate 

 50 o C  60 o C  70 o C  75 o C  80 o C  
0.1GPM 0.08406 0.065969 0.059016 0.046464 0.036143 
0.15GPM 0.066428 0.059459 0.053689 0.039723 0.035211 

0.245GPM 0.038436 0.03146 0.029328 0.024278 0.023846 
0.35GPM 0.01776 0.014544 0.015296 0.015161 0.01495 
0.4GPM  0.013841 0.012507 0.013142 0.011588 

 
Effective Thermal Conductivity at Inflow hot water temperature and Heat rate 

Heat Rate(W) 4.78E+01 2.46E+01 1.19E+01 
50 o C  0.087371 0.041577 0.019901 

Heat Rate(W) 4.82E+01 2.30E+01 1.11E+01 
60 o C  0.065969 0.031461 0.014544 

Heat Rate(W) 4.69E+01 2.65E+01 1.10E+01 
70 o C  0.053689 0.030153 0.012475 

Heat Rate(W) 4.30E+01 2.27E+01 1.10E+01 
75 o C  0.046464 0.024278 0.011086 

Heat Rate(W) 4.64E+01 2.42E+01 1.15 E+01 
80 o C  0.050157 0.023846 0.011588 
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Transient Test  

Thermal Diffusivity at given elapsed cooling time and mean surface 

temperature for initially contained Hot water 

60 o C  α  65 o C  α  73 o C  α  
33.17 2.288E-06 32.94 2.269E-06 37.46 2.286E-06 
30.34 1.151E-06 29.94 1.143E-06 33.92 1.153E-06 
27.83 7.729E-07 27.26 7.688E-07 30.79 7.756E-07 
25.58 5.84E-07 24.86 5.819E-07 27.99 5.873E-07 
23.57 4.708E-07 22.70 4.701E-07 25.48 4.745E-07 
20.09 3.42E-07 18.97 3.429E-07 21.21 3.460E-07 
15.95 2.46E-07 14.55 2.487E-07 16.23 2.505E-07 
11.07 1.722E-07 9.45 1.770E-07 10.56 1.773E-07 
7.89 1.356E-07 6.27 1.420E-07 7.03 1.414E-07 
4.54 9.768E-08 3.16 1.065E-07 3.46 1.059E-07 
3.20 7.629E-08 2.03 8.572E-08 2.09 8.714E-08 
2.66 6.198E-08 1.61 7.054E-08 1.57 7.379E-08 
2.44 5.191E-08 1.46 5.929E-08 1.36 6.313E-08 
2.35 4.457E-08 1.40 5.093E-08 1.29 5.464E-08 
2.32 3.901E-08 1.38 4.459E-08 1.25 4.797E-08 

 

75 o C  α  78 o C  α  80 o C  α  
37.74 2.285E-06 39.85 2.299E-06 39.41 2.293E-06 
34.17 1.153E-06 36.23 1.158E-06 36.00 1.154E-06 
30.98 7.756E-07 33.01 7.782E-07 32.93 7.749E-07 
28.14 5.874E-07 30.14 5.886E-07 30.15 5.855E-07 
25.58 4.748E-07 27.56 4.750E-07 27.63 4.721E-07 
21.21 3.466E-07 23.14 3.457E-07 23.26 3.431E-07 
16.10 2.515E-07 17.95 2.494E-07 18.06 2.472E-07 
10.30 1.79E-07 11.96 1.755E-07 12.00 1.739E-07 
6.74 1.437E-07 8.18 1.389E-07 8.18 1.379E-07 
3.24 1.088E-07 4.33 1.012E-07 4.32 1.009E-07 
1.95 8.992E-08 2.85 7.992E-08 2.84 7.974E-08 
1.46 7.591E-08 2.28 6.530E-08 2.26 6.510E-08 
1.28 6.462E-08 2.06 5.481E-08 2.03 5.459E-08 
1.21 5.576E-08 1.98 4.708E-08 1.94 4.688E-08 
1.18 4.889E-08 1.94 4.123E-08 1.89 4.104E-08 
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Inner and outer Surface Temperature at given elapsed cooling time for three different 

contained hot water temperatures.  

 50 o C   80 o C   
Cooling 

Time (Sec.) Inner( o C ) Outer( o C ) Inner( o C ) Outer( o C ) 

0.0001 46.29 13.57 70.69 15.71 
60 45.98 13.54 70.25 15.67 

1000 41.44 13.03 63.70 15.12 
2000 37.27 12.47 57.49 14.51 
3000 33.67 11.92 51.98 13.88 
4000 30.55 11.36 47.06 13.23 
5000 27.81 10.81 42.68 12.57 
7000 23.27 9.72 35.27 11.25 

10000 18.19 8.21 26.81 9.30 
15000 12.61 6.11 17.51 6.49 
20000 9.18 4.62 11.90 4.45 
30000 5.63 3.06 6.26 2.37 
40000 4.15 2.52 3.98 1.71 
50000 3.54 2.34 3.02 1.51 
60000 3.28 2.28 2.61 1.46 
70000 3.18 2.27 2.43 1.44 
80000 3.13 2.26 2.35 1.44 

 



 

 

106

APPENDIX B 

UNCERTAINTY ANALYSIS 

 
Steady State Test 

Uncertainty in inner surface Area 

is iA D Lπ=   

iDΔ = 0.00005m, LΔ =0.0005m 

is
i i

i

dA D L D
dD

π⋅Δ = ⋅Δ        

 (A. 1) 

is
i

dA L D L
dL

π⋅Δ = ⋅Δ        

 (A. 2) 

2 2
is is

A i
i

dA dAD L
dD dL

ω
⎛ ⎞ ⎛ ⎞= ⋅Δ + ⋅Δ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
     

 (A. 3) 

 

Uncertainty in the heat transfer coefficient  

4.36 w
i

i

kh
D

=  

wkΔ = 0.001 W/m-K 
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4.36i
w w

w i

dh k k
dk D

⋅Δ = ⋅Δ        

 (A. 4) 

2

4.36i w
i i

i i

dh kD D
dD D

⋅Δ = − ⋅Δ        

 (A. 5) 

2 2

i

i i
h w i

w i

dh dhk D
dk dD

ω
⎛ ⎞ ⎛ ⎞

= ⋅Δ + ⋅Δ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

     

 (A. 6) 

 

Uncertainty in heat rate  

( )i is i oQ h A T T= −  

TΔ = 0.0018 o C  

( )is i o i
i

dQ h A T T h
dh

⋅Δ = − ⋅Δ        

 (A. 7) 

( )is i i o is
is

dQ A h T T A
dA

⋅Δ = − ⋅Δ       

 (A. 8) 

i i is i
i

dQ T h A T
dT

⋅Δ = ⋅Δ        

 (A. 9) 
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o i is o
o

dQ T h A T
dT

⋅Δ = − ⋅Δ        

 (A. 10) 

2 2 2 2

is i oQ
i is i o

dQ dQ dQ dQh A T T
dh dA dT dT

ω
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ⋅Δ + ⋅Δ + ⋅Δ + ⋅Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  

 (A. 11) 

 

Uncertainty in the effective thermal conductivity 

( )eff
is i o

Qtk
A T T

=
−

 

tΔ = 0.0001m, t = 0.0127m 

( )
eff

is i o

dk tQ Q
dQ A T T

⋅Δ = ⋅Δ
−

      

 (A. 12) 

( )
eff

is i o

dk Qt t
dt A T T

⋅Δ = ⋅Δ
−

       

 (A. 13) 

2 ( )
eff

is is
is is i o

dk QtA A
dA A T T

⋅Δ = − ⋅Δ
−

      

 (A. 14) 

2( )
eff

i i
i is i o

dk QtT T
dT A T T

⋅Δ = − ⋅Δ
−

      

 (A. 15) 
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2( )
eff

o o
o is i o

dk QtT T
dT A T T

⋅Δ = ⋅Δ
−

      

 (A. 16) 

2 2 22 2

eff

eff eff eff eff eff
k is i o

is i o

dk dk dk dk dk
Q t A T T

dQ dt dA dT dT
ω

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⋅Δ + ⋅Δ + ⋅Δ + ⋅Δ + ⋅Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (A. 17) 
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Inflow 50 o C  hot water  

 A.1 A.2    A.3   

 1.46E-04 1.20E-04    1.89E-04   

 A.4 A.5    A.6   

 5.72E-02 -2.44E-02    6.22E-02   

Inflow rate 
(GPM) A.7 A.8 A.9 A.10  A.11   

1.00E-01 8.05E-02 4.08E-02 1.44E-02 -1.44E-02  9.25E-02   

1.50E-01 6.61E-02 3.35E-02 1.44E-02 -1.44E-02  7.69E-02   

2.45E-01 5.10E-02 1.45E-02 1.44E-02 -1.44E-02  6.47E-02   

3.50E-01 1.82E-02 9.25E-03 1.44E-02 -1.44E-02  2.89E-02   

Heat Rate 
(W) A.7 A.8 A.9 A.10  A.11   

4.78E+01 8.12E-02 5.38E-02 1.44E-02 -1.44E-02  9.95E-02   

2.46E+01 4.18E-02 2.12E-02 1.44E-02 -1.44E-02  5.11E-02   

1.19E+01 2.02E-02 1.02E-02 1.44E-02 -1.44E-02  3.05E-02   

         

Inflow rate 
(GPM) A.12 A.13 A.14 A.15 A.16 A.17(

effkω ) 2( / )effk W m K  % Difference

1.00E-01 9.08E-04 3.66E-03 -4.01E-04 -1.42E-04 1.42E-04 3.80E-03 7.93E-02 4.79E+00 

1.50E-01 9.19E-04 3.66E-03 -4.01E-04 -1.73E-04 1.73E-04 3.80E-03 6.64E-02 5.73E+00 

2.45E-01 9.25E-04 3.66E-03 -4.01E-04 -3.32E-04 3.32E-04 3.88E-03 3.84E-02 1.01E+01 

3.50E-01 1.25E-03 3.66E-03 -4.01E-04 -6.25E-04 6.25E-04 3.99E-03 1.78E-02 2.25E+01 

Heat Rate  
(W) A.12 A.13 A.14 A.15 A.16 A.17(

effkω ) 2( / )effk W m K  % Difference

4.78E+01 9.68E-04 3.66E-03 -4.01E-04 -1.40E-04 1.40E-04 3.81E-03 8.74E-02 4.37E+00 

2.46E+01 9.66E-04 3.66E-03 -4.01E-04 -2.73E-04 2.73E-04 3.83E-03 4.16E-02 9.21E+00 

1.19E+01 1.19E-03 3.66E-03 -4.01E-04 -5.65E-04 5.65E-04 3.95E-03 1.99E-02 1.99E+01 
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Inflow 80 o C  hot water  

 A.1 A.2    A.3   

 1.46E-04 1.20E-04    1.89E-04   

 A.4 A.5    A.6   

 5.72E-02 -2.55E-02    6.26E-02   

Inflow rate 
(GPM) A.7 A.8 A.9 A.10  A.11   

1.00E-01 5.68E-02 2.99E-02 1.51E-02 -1.51E-02  6.76E-02   

1.50E-01 5.48E-02 2.88E-02 1.51E-02 -1.51E-02  6.55E-02   

2.45E-01 3.97E-02 2.09E-02 1.51E-02 -1.51E-02  4.96E-02   

3.50E-01 2.44E-02 1.28E-02 1.51E-02 -1.51E-02  3.48E-02   

4.00E-01 1.89E-02 9.96E-03 1.51E-02 -1.51E-02  3.02E-02   

Heat rate 
(W) A.7 A.8 A.9 A.10  A.11   

4.30E+01 7.62E-02 4.01E-02 1.51E-02 -1.51E-02  8.87E-02   

2.27E+01 3.97E-02 2.09E-02 1.51E-02 -1.51E-02  4.96E-02   

1.10E+01 1.89E-02 9.96E-03 1.51E-02 -1.51E-02  3.02E-02   

         
Inflow rate 

(GPM) A.12 A.13 A.14 A.15 A.16 A.17(
effkω ) 2( / )effk W m K  % 

Difference

1.00E-01 9.47E-04 3.82E-03 -4.19E-04 -2.11E-04 2.11E-04 3.97E-03 3.61E-02 1.10E+01

1.50E-01 9.50E-04 3.82E-03 -4.19E-04 -2.19E-04 2.19E-04 3.97E-03 3.52E-02 1.13E+01

2.45E-01 9.95E-04 3.82E-03 -4.19E-04 -3.02E-04 3.02E-04 3.99E-03 2.38E-02 1.68E+01

3.50E-01 1.14E-03 3.82E-03 -4.19E-04 -4.91E-04 4.91E-04 4.07E-03 1.50E-02 2.72E+01

4.00E-01 1.27E-03 3.82E-03 -4.19E-04 -8.16E-04 8.16E-04 4.21E-03 1.16E-02 3.63E+01

Heat rate 
(W) A.12 A.13 A.14 A.15 A.16 A.17(

effkω ) 2( / )effk W m K  % 
Difference

4.30E+01 9.26E-04 3.82E-03 -4.19E-04 -1.57E-04 1.57E-04 3.96E-03 4.98E-02 7.95E+00

2.27E+01 9.95E-04 3.82E-03 -4.19E-04 -3.02E-04 3.02E-04 3.99E-03 2.38E-02 1.68E+01

1.10E+01 1.27E-03 3.82E-03 -4.19E-04 -6.33E-04 6.33E-04 4.15E-03 1.16E-02 3.58E+01
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Transient Test 

Uncertainty in Rayleigh Number 

3( )os ss
L

c

g T T tRa β
να
−

=
 

gΔ =0.001 2/m s , βΔ = 0.00001 1K − , osTΔ = 0.5 o C , ssTΔ =0.05 o C  

tΔ = 0.002m, νΔ = 0.1 2 /m s , cαΔ = 10 210 /m s−  

3( )os ssL

c

T T tdRa g g
dg

β
να
−

⋅Δ = ⋅Δ       

 (A. 18) 

3( )os ssL

c

g T T tdRa
d

β β
β να

−
⋅Δ = ⋅Δ       

 (A. 19) 

3
L

os os
c

dRa g tT T
d

β
β να

⋅Δ = ⋅Δ        

 (A. 20) 

3
L

ss ss
c

dRa g tT T
d

β
β να

⋅Δ = − ⋅Δ        

 (A. 21) 

23 ( )os ssL

c

g T T tdRa t t
dβ να

−
⋅Δ = ⋅Δ       

 (A. 22) 
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3

2

( )os ssL

c

g T T tdRa
d

βν ν
ν ν α

−
⋅Δ = − ⋅Δ       

 (A. 23) 

3

2

( )os ssL
c c

c c

g T T tdRa
d

βα α
α να

−
⋅Δ = − ⋅Δ      

 (A. 24) 

22 2 2 2 2 2

L

L L L L L L L
Ra os ss c

c

dRa dRa dRa dRa dRa dRa dRag T T t
dg d d d d d d

ω β ν α
β β β β ν α

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅Δ + ⋅Δ + ⋅Δ + ⋅Δ + ⋅Δ + ⋅Δ + ⋅Δ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (A. 25) 

 

Uncertainty in Concentric Cylinder Rayleigh Number 

( )
( )

4

*
53 3/5 3/5

ln /s o L
c

s o

D D Ra
Ra

t D D− −

⎡ ⎤⎣ ⎦=
+

 

sDΔ = 0.0000508m 

oDΔ = 0.0004m 

( )
( )

( )
( )

4 318/5 2 3 2*

6 53/5 3/5 3 3/5 3/5 3

3 ln / 4 ln /o s s o L o s s o Lc
s s

s s o s o

D D D D Ra D D D D RadRa D D
dD D D t D D t

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪⎣ ⎦ ⎣ ⎦⋅Δ = + ⋅Δ⎨ ⎬
+ +⎪ ⎪⎩ ⎭

 (A. 26) 

( ) ( ){ }
( )

3 2 3/5 3/5 3*

63/5 3/5 3

ln / 4 3 ln / 4s o o o s o s s Lc
o o

o s o

D D D D D D D D RadRa D D
dD D D t

− ⋅ ⋅ ⋅ − ⋅ − ⋅ ⋅ ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⋅Δ = ⋅Δ
+

 (A. 27) 
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( )
( )

4
*

53 3/5 3/5

ln /s oc
L L

L s o

D DdRa Ra Ra
dRa t D D− −

⎡ ⎤⎣ ⎦⋅Δ = ⋅Δ
+

     

 (A. 28) 

( )
( )

4
*

54 3/5 3/5

3 ln /s o Lc

L s o

D D RadRa t t
dRa t D D− −

⎡ ⎤⎣ ⎦⋅Δ = − ⋅Δ
+

     

 (A. 29) 

*

2 2 2 2* * * *

c

c c c c
s o LRa

s o L L

dRa dRa dRa dRaD D Ra t
dD dD dRa dRa

ω
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ⋅Δ + ⋅Δ + ⋅Δ + ⋅Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 (A. 30) 

 

Uncertainty in Effective thermal conductivity in Concentric Rayleigh Number 

( )
1/ 4

1/ 4*Pr0.386
0.861 Pref c ck k Ra⎛ ⎞= ⎜ ⎟+⎝ ⎠

 

ckΔ = 0.1 2/W m K  

PrΔ = 0.1 

( )
1/ 4

1/ 4*Pr0.386
0.861 Pr

ef
c c c

c

dk
k Ra k

dk
⎛ ⎞⋅Δ = ⋅Δ⎜ ⎟+⎝ ⎠

    

 (A. 31) 

( )
( )

1/ 4*

3/ 4
2

0.083087
Pr Pr

Pr PrPr 0.861
0.861 Pr

c cef k Radk
d

⋅Δ = ⋅Δ
⎛ ⎞+ ⋅⎜ ⎟+⎝ ⎠

    

 (A. 32) 
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( ) 3/ 4*1/ 4
* *

*

Pr0.386
0.861 Pr 4

cef
c c c

c

Radk
Ra k Ra

dRa

−

⎛ ⎞⋅Δ = ⋅ ⋅Δ⎜ ⎟+⎝ ⎠
  

 (A. 33) 

2 22
*

*Pr
Pref

ef ef ef
k c c

c c

dk dk dk
k Ra

dk d dRa
ω

⎛ ⎞ ⎛ ⎞⎛ ⎞
= ⋅Δ + ⋅Δ + ⋅Δ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
   

 (A. 34) 

 

Uncertainty in Heat rate 

( )
2

ln( / )
ef

os ss
s o

k L
Q T T

D D
π

= −  

LΔ =0.001m 

( )2
ln( / )ef os ss ef

ef s o

dQ Lk T T k
dk D D

π
⋅Δ = − ⋅Δ      

 (A. 35) 

( )
2

ln( / )
ef

os ss
s o

kdQ L T T L
dL D D

π
⋅Δ = − ⋅Δ      

 (A. 36) 

2
ln( / )

ef
os os

os s o

k LdQ T T
dT D D

π
⋅Δ = ⋅Δ       

 (A. 37) 

2
ln( / )

ef
ss ss

ss s o

k LdQ T T
dT D D

π−
⋅Δ = ⋅Δ       

 (A. 38) 
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[ ]
( )2

2

ln( / )
ef

s os ss s
s s o s

k LdQ D T T D
dD D D D

π−
⋅Δ = − ⋅Δ     

 (A. 39) 

[ ]
( )2

2

ln( / )
ef

o os ss o
o s o o

k LdQ D T T D
dD D D D

π
⋅Δ = − ⋅Δ     

 (A. 40) 

2 2 2 2 22

ef os ss s oQ
ef os ss s o

dQ dQ dQ dQ dQ dQk L T T D D
dk dL dT dT dD dD

ω
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞

= ⋅Δ + ⋅Δ + ⋅Δ + ⋅Δ + ⋅Δ + ⋅Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 (A. 41) 

 

Uncertainty in Free Convection heat transfer coefficient 

( )o
os os ss

Qh
A T T

=
−

 

osAΔ =0.00049163 2m  

( )
1o

os os ss

dh Q Q
dQ A T T

⋅Δ = ⋅Δ
−

      

 (A. 42) 

( )2
o

os os
os os os ss

dh QA A
dA A T T

⋅Δ = − ⋅Δ
−

     

 (A. 43) 

( )2
o

os os
os os os ss

dh QT T
dT A T T

⋅Δ = − ⋅Δ
−

     

 (A. 44) 
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( )2
o

ss ss
ss os os ss

dh QT T
dT A T T

⋅Δ = ⋅Δ
−

      

 (A. 45) 

2 2 22

o

o o o o
h os os ss

os os ss

dh dh dh dhQ A T T
dQ dA dT dT

ω
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞

= ⋅Δ + ⋅Δ + ⋅Δ + ⋅Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 (A. 46) 

 

 

Uncertainty in Biot Number 

oh tBi
k

=  

kΔ = 0.5 2/W m K  

o o
o

dBi th h
dh k

⋅Δ = ⋅Δ         

 (A. 47) 

ohdBi t t
dt k

⋅Δ = ⋅Δ         

 (A. 48) 

2
oh tdBi k k

dk k
⋅Δ = − ⋅Δ        

 (A. 49) 
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2 2 2

oh o
o

dBi dBi dBih t k
dh dt dk

ω
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅Δ + ⋅Δ + ⋅Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
    

 (A. 50) 

 

Uncertainty in Dimensionless Radius 

* / or r r=  

rΔ = 0.00005m 

orΔ = 0.00005m 

* 1

o

dr r r
dr r

⋅Δ = ⋅Δ         

 (A. 51) 

*

2o o
o o

dr rr r
dr r

⋅Δ = − ⋅Δ        

 (A. 52) 

*

22* *

or
o

dr drr r
dr dr

ω
⎛ ⎞⎛ ⎞

= ⋅Δ + ⋅Δ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

      

 (A. 53) 

Uncertainty in Coefficient 

1 1
1 2 2

1 0 1 1 1

( )2
( ) ( )

JC
J J

ζ
ζ ζ ζ

=
+

 

[ ]1 1 0 1 1 11 1 1 2 1
1 122 2 2 2 2 2 2

1 1 0 1 1 1 1 0 1 1 1 0 1 1 1

( ) 2 ( ) 2 ( )( ) ( )2 2
( ) ( ) ( ) ( ) ( ) ( )

J J JdC J J
d J J J J J J

ζ ζ ζζ ζζ ζ
ζ ζ ζ ζ ζ ζ ζ ζ ζ

⎧ ⎫⎧ ⎫⋅ +−⎪ ⎪ ⎪⎪⋅Δ = − + − ⋅Δ⎨ ⎨ ⎬⎬+ + ⎡ ⎤+⎪ ⎪ ⎪⎪⎣ ⎦⎩ ⎭⎩ ⎭
 (A. 54) 
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1

2

1
1

1
C

dC
d

ω ζ
ζ

⎛ ⎞
= ⋅Δ⎜ ⎟

⎝ ⎠
       

 (A. 55) 

 

Uncertainty in Dimensionless Temperature 

* os ss

osi ss

T T
T T

θ −
=

−
 

osiTΔ = 0.05 o C  

* 1
os os

os osi ss

d T T
dT T T
θ

⋅Δ = ⋅Δ
−

       

 (A. 56) 

( )

*

2
1 os ss

ss ss
ss osi ss osi ss

T Td T T
dT T T T T
θ ⎡ ⎤−−

⋅Δ = + ⋅Δ⎢ ⎥
− −⎢ ⎥⎣ ⎦

    

 (A. 57) 

( )
( )

*

2
os ss

osi osi
osi osi ss

T Td T T
dT T T
θ − −

⋅Δ = ⋅Δ
−

      

 (A. 58) 

*

2 2 2* * *

os ss osi
os ss osi

d d dT T T
dT dT dTθ

θ θ θω
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ⋅Δ + ⋅Δ + ⋅Δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

   

 (A. 59) 
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Uncertainty in Fourier Number 

*

*
1 0 1

2
1

ln
( )C J r

Fo

θ
ζ

ζ

⎛ ⎞
⎜ ⎟
⎝ ⎠=

−
 

*
* *

* 2
1

1
dFo
d

θθ θ
θ ζ

⋅Δ = ⋅Δ
−

       

 (A. 60) 

1
1 12

1 1

1
CdFo C C

dC ζ

−
⋅Δ = ⋅Δ

−
       

 (A. 61) 

*

* *
1 0 1 1 1

1 13 2
1 1 1

12 ln
( ) ( )C J r r JdFo

d

θ
ζ ζ

ζ ζ
ζ ζ ζ

⎡ ⎤⎛ ⎞ ⎛ ⎞
−⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⋅Δ = + ⋅Δ
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

   

 (A. 62) 

*
* *1 1

* 2
1

1
( )J rdFo r r

dr
ζ
ζ

−
⋅Δ = ⋅Δ

−
      

 (A. 63) 

2 22 2
* *

1 1* *
1 1

Fo
dFo dFo dFo dFoC r
d dC d dr

ω θ ζ
θ ζ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= ⋅Δ + ⋅Δ + ⋅Δ + ⋅Δ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 (A. 64) 
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Uncertainty in Thermal Diffusivity 

2

ct

Fot
t

α =  

2

ct

d tFo Fo
dFo t
α

⋅Δ = ⋅Δ        

 (A. 65) 

2

ct
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Cooling from 50 o C  

Time (Hour) A.18 A.19 A.20 A.21 A.22 A.23 A.24 A.25 
1.67E-02 8.12E-06 1.23E-03 1.23E-03 -1.23E-04 3.76E-02 -1.40E-04 -7.97E-12 3.77E-02 
2.78E-01 7.11E-06 1.07E-03 1.23E-03 -1.23E-04 3.30E-02 -1.22E-04 -6.98E-12 3.30E-02 
5.56E-01 6.21E-06 9.37E-04 1.23E-03 -1.23E-04 2.88E-02 -1.07E-04 -6.09E-12 2.88E-02 
8.33E-01 5.45E-06 8.22E-04 1.23E-03 -1.23E-04 2.52E-02 -9.37E-05 -5.34E-12 2.53E-02 
1.11E+00 4.80E-06 7.25E-04 1.23E-03 -1.23E-04 2.23E-02 -8.27E-05 -4.71E-12 2.23E-02 
1.39E+00 4.26E-06 6.42E-04 1.23E-03 -1.23E-04 1.97E-02 -7.33E-05 -4.18E-12 1.98E-02 
1.94E+00 3.39E-06 5.12E-04 1.23E-03 -1.23E-04 1.57E-02 -5.84E-05 -3.33E-12 1.58E-02 
2.78E+00 2.50E-06 3.77E-04 1.23E-03 -1.23E-04 1.16E-02 -4.30E-05 -2.45E-12 1.17E-02 
4.17E+00 1.63E-06 2.46E-04 1.23E-03 -1.23E-04 7.54E-03 -2.80E-05 -1.60E-12 7.64E-03 
5.56E+00 1.14E-06 1.72E-04 1.23E-03 -1.23E-04 5.29E-03 -1.96E-05 -1.12E-12 5.44E-03 
8.33E+00 6.41E-07 9.68E-05 1.23E-03 -1.23E-04 2.97E-03 -1.10E-05 -6.29E-13 3.22E-03 
1.11E+01 4.10E-07 6.19E-05 1.23E-03 -1.23E-04 1.90E-03 -7.05E-06 -4.02E-13 2.27E-03 
1.39E+01 3.01E-07 4.54E-05 1.23E-03 -1.23E-04 1.39E-03 -5.17E-06 -2.95E-13 1.86E-03 
1.67E+01 2.51E-07 3.78E-05 1.23E-03 -1.23E-04 1.16E-03 -4.31E-06 -2.46E-13 1.69E-03 
1.94E+01 2.28E-07 3.44E-05 1.23E-03 -1.23E-04 1.06E-03 -3.93E-06 -2.24E-13 1.63E-03 
2.22E+01 2.18E-07 3.29E-05 1.23E-03 -1.23E-04 1.01E-03 -3.76E-06 -2.14E-13 1.60E-03 

Time (Hour) A.26 A.27 A.28 A.29    A.30 
1.67E-02 6.99E-06 -1.81E-05 1.03E-03 -4.12E-04    1.11E-03 
2.78E-01 6.71E-06 -1.73E-05 8.99E-04 -3.96E-04    9.83E-04 
5.56E-01 6.42E-06 -1.66E-05 7.85E-04 -3.78E-04    8.72E-04 
0.00E+00 6.12E-06 -1.58E-05 6.89E-04 -3.61E-04    7.78E-04 
1.11E+00 5.82E-06 -1.50E-05 6.08E-04 -3.43E-04    6.98E-04 
1.39E+00 5.52E-06 -1.43E-05 5.39E-04 -3.26E-04    6.30E-04 
1.94E+00 4.94E-06 -1.28E-05 4.30E-04 -2.92E-04    5.19E-04 
2.78E+00 4.13E-06 -1.07E-05 3.17E-04 -2.44E-04    4.00E-04 
4.17E+00 3.01E-06 -7.77E-06 2.08E-04 -1.77E-04    2.74E-04 
5.56E+00 2.21E-06 -5.71E-06 1.48E-04 -1.30E-04    1.97E-04 
8.33E+00 1.37E-06 -3.55E-06 8.77E-05 -8.10E-05    1.19E-04 
1.11E+01 1.08E-06 -2.79E-06 6.17E-05 -6.38E-05    8.88E-05 
1.39E+01 9.86E-07 -2.55E-06 5.07E-05 -5.82E-05    7.72E-05 
1.67E+01 9.56E-07 -2.47E-06 4.62E-05 -5.64E-05    7.29E-05 
1.94E+01 9.47E-07 -2.45E-06 4.43E-05 -5.58E-05    7.13E-05 
2.22E+01 9.44E-07 -2.44E-06 4.35E-05 -5.57E-05       7.07E-05 
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Time (Hour) A.31 A.32 A.33         A.34 
1.67E-02 1.53E-02 2.13E-06 4.17E-01     4.17E-01 
2.78E-01 1.51E-02 2.11E-06 3.82E-01     3.82E-01 
5.56E-01 1.49E-02 2.09E-06 3.50E-01     3.50E-01 
0.00E+00 1.48E-02 2.06E-06 3.24E-01     3.24E-01 
1.11E+00 1.46E-02 2.04E-06 3.02E-01     3.02E-01 
1.39E+00 1.44E-02 2.01E-06 2.83E-01     2.83E-01 
1.94E+00 1.40E-02 1.96E-06 2.54E-01     2.54E-01 
2.78E+00 1.34E-02 1.87E-06 2.24E-01     2.24E-01 
4.17E+00 1.24E-02 1.73E-06 1.94E-01     1.94E-01 
5.56E+00 1.14E-02 1.60E-06 1.76E-01     1.77E-01 
8.33E+00 1.02E-02 1.42E-06 1.52E-01     1.53E-01 
1.11E+01 9.58E-03 1.34E-06 1.36E-01     1.36E-01 
1.39E+01 9.36E-03 1.31E-06 1.26E-01     1.27E-01 
1.67E+01 9.29E-03 1.30E-06 1.22E-01     1.22E-01 
1.94E+01 9.26E-03 1.30E-06 1.20E-01     1.21E-01 
2.22E+01 9.26E-03 1.29E-06 1.20E-01     1.20E-01 

Time (Hour) A.35 A.36 A.37 A.38 A.39 A.40  A.41 
1.67E-02 4.41E+02 4.28E+01 6.03E+02 -6.03E+01 -7.40E+012.19E+02  7.85E+02 
2.78E-01 3.54E+02 3.75E+01 5.97E+02 -5.97E+01 -6.42E+011.90E+02  7.26E+02 
5.56E-01 2.83E+02 3.27E+01 5.90E+02 -5.90E+01 -5.54E+011.64E+02  6.80E+02 
0.00E+00 2.30E+02 2.87E+01 5.83E+02 -5.83E+01 -4.80E+011.42E+02  6.48E+02 
1.11E+00 1.89E+02 2.53E+01 5.76E+02 -5.76E+01 -4.18E+011.24E+02  6.23E+02 
1.39E+00 1.57E+02 2.24E+01 5.68E+02 -5.68E+01 -3.66E+011.08E+02  6.04E+02 
1.94E+00 1.12E+02 1.79E+01 5.53E+02 -5.53E+01 -2.84E+018.37E+01  5.74E+02 
2.78E+00 7.30E+01 1.32E+01 5.29E+02 -5.29E+01 -2.00E+015.90E+01  5.40E+02 
4.17E+00 4.12E+01 8.57E+00 4.88E+02 -4.88E+01 -1.20E+013.55E+01  4.94E+02 
5.56E+00 2.63E+01 6.01E+00 4.52E+02 -4.52E+01 -7.80E+002.30E+01  4.56E+02 
8.33E+00 1.28E+01 3.38E+00 4.01E+02 -4.01E+01 -3.89E+001.15E+01  4.04E+02 
1.11E+01 7.26E+00 2.16E+00 3.78E+02 -3.78E+01 -2.34E+006.92E+00  3.80E+02 
1.39E+01 4.96E+00 1.58E+00 3.69E+02 -3.69E+01 -1.68E+004.96E+00  3.71E+02 
1.67E+01 4.00E+00 1.32E+00 3.67E+02 -3.67E+01 -1.39E+004.10E+00  3.69E+02 
1.94E+01 3.59E+00 1.20E+00 3.66E+02 -3.66E+01 -1.26E+003.72E+00  3.68E+02 
2.22E+01 3.41E+00 1.15E+00 3.65E+02 -3.65E+01 -1.21E+003.56E+00   3.67E+02 
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Time (Hour) A.42 A.43 A.44 A.45       A.46 
1.67E-02 8.30E+01 -1.21E+00 -1.11E+01 1.11E+00    8.37E+01 
2.78E-01 8.75E+01 -1.32E+00 -1.38E+01 1.38E+00    8.86E+01 
5.56E-01 9.40E+01 -1.43E+00 -1.71E+01 1.71E+00    9.56E+01 
0.00E+00 1.02E+02 -1.53E+00 -2.09E+01 2.09E+00    1.04E+02 
1.11E+00 1.11E+02 -1.63E+00 -2.53E+01 2.53E+00    1.14E+02 
1.39E+00 1.22E+02 -1.73E+00 -3.02E+01 3.02E+00    1.25E+02 
1.94E+00 1.45E+02 -1.89E+00 -4.13E+01 4.13E+00    1.51E+02 
2.78E+00 1.85E+02 -2.05E+00 -6.09E+01 6.09E+00    1.95E+02 
4.17E+00 2.60E+02 -2.11E+00 -9.65E+01 9.65E+00    2.78E+02 
5.56E+00 3.42E+02 -2.05E+00 -1.33E+02 1.33E+01    3.68E+02 
8.33E+00 5.40E+02 -2.02E+00 -2.34E+02 2.34E+01    5.89E+02 
1.11E+01 7.96E+02 -2.34E+00 -4.24E+02 4.24E+01    9.02E+02 
1.39E+01 1.06E+03 -2.84E+00 -7.02E+02 7.02E+01    1.27E+03 
1.67E+01 1.26E+03 -3.28E+00 -9.72E+02 9.72E+01    1.60E+03 
1.94E+01 1.38E+03 -3.56E+00 -1.16E+03 1.16E+02    1.81E+03 
2.22E+01 1.44E+03 -3.70E+00 -1.26E+03 1.26E+02    1.92E+03 

Time (Hour) A.47 A.48 A.49     A.50 
1.67E-02 5.32E+00 1.79E+01 -5.70E-01     1.87E+01 
2.78E-01 5.63E+00 1.78E+01 -5.64E-01     1.86E+01 
5.56E-01 6.07E+00 1.76E+01 -5.58E-01     1.86E+01 
0.00E+00 6.61E+00 1.74E+01 -5.51E-01     1.86E+01 
1.11E+00 7.25E+00 1.71E+01 -5.44E-01     1.86E+01 
1.39E+00 7.96E+00 1.69E+01 -5.37E-01     1.87E+01 
1.94E+00 9.59E+00 1.65E+01 -5.22E-01     1.90E+01 
2.78E+00 1.24E+01 1.57E+01 -4.99E-01     2.00E+01 
4.17E+00 1.76E+01 1.45E+01 -4.61E-01     2.29E+01 
5.56E+00 2.33E+01 1.35E+01 -4.27E-01     2.69E+01 
8.33E+00 3.74E+01 1.19E+01 -3.79E-01     3.93E+01 
1.11E+01 5.73E+01 1.13E+01 -3.57E-01     5.84E+01 
1.39E+01 8.08E+01 1.10E+01 -3.49E-01     8.16E+01 
1.67E+01 1.01E+02 1.09E+01 -3.46E-01     1.02E+02 
1.94E+01 1.15E+02 1.09E+01 -3.46E-01     1.15E+02 
2.22E+01 1.22E+02 1.09E+01 -3.45E-01     1.22E+02 

 A.51 A.52      A.53 
  1.64E-04 -4.37E-04           4.67E-04 
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Time (Hour) A.54             A.55 
1.67E-02 -6.92E+01       6.92E+01 
2.78E-01 -6.89E+01       6.89E+01 
5.56E-01 -6.87E+01       6.87E+01 
0.00E+00 -6.87E+01       6.87E+01 
1.11E+00 -6.88E+01       6.88E+01 
1.39E+00 -6.91E+01       6.91E+01 
1.94E+00 -7.04E+01       7.04E+01 
2.78E+00 -7.41E+01       7.41E+01 
4.17E+00 -8.46E+01       8.46E+01 
5.56E+00 -9.98E+01       9.98E+01 
8.33E+00 -1.46E+02       1.46E+02 
1.11E+01 -2.17E+02       2.17E+02 
1.39E+01 -3.03E+02       3.03E+02 
1.67E+01 -3.79E+02       3.79E+02 
1.94E+01 -4.28E+02       4.28E+02 
2.22E+01 -4.55E+02       4.55E+02 

Time (Hour) A.56 A.57 A.58     A.59 
1.67E-02 3.83E-02 -9.47E-06 -3.82E-03     3.84E-02 
2.78E-01 3.83E-02 -1.59E-04 -3.67E-03     3.84E-02 
5.56E-01 3.83E-02 -3.21E-04 -3.50E-03     3.84E-02 
0.00E+00 3.83E-02 -4.84E-04 -3.34E-03     3.84E-02 
1.11E+00 3.83E-02 -6.47E-04 -3.18E-03     3.84E-02 
1.39E+00 3.83E-02 -8.09E-04 -3.02E-03     3.84E-02 
1.94E+00 3.83E-02 -1.13E-03 -2.70E-03     3.84E-02 
2.78E+00 3.83E-02 -1.57E-03 -2.26E-03     3.84E-02 
4.17E+00 3.83E-02 -2.18E-03 -1.64E-03     3.84E-02 
5.56E+00 3.83E-02 -2.62E-03 -1.21E-03     3.84E-02 
8.33E+00 3.83E-02 -3.08E-03 -7.51E-04     3.84E-02 
1.11E+01 3.83E-02 -3.24E-03 -5.91E-04     3.84E-02 
1.39E+01 3.83E-02 -3.29E-03 -5.39E-04     3.84E-02 
1.67E+01 3.83E-02 -3.30E-03 -5.22E-04     3.84E-02 
1.94E+01 3.83E-02 -3.31E-03 -5.17E-04     3.84E-02 
2.22E+01 3.83E-02 -3.31E-03 -5.16E-04         3.84E-02 
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Time (Hour) A.60 A.61 A.62 A.63   A.64     
1.67E-02 -6.78E-03 7.60E+00 3.05E-01 7.84E-05  7.60E+00   
2.78E-01 -7.06E-03 7.57E+00 2.67E-01 7.84E-05  7.57E+00   
5.56E-01 -7.38E-03 7.55E+00 2.25E-01 7.84E-05  7.55E+00   
0.00E+00 -7.74E-03 7.55E+00 1.81E-01 7.84E-05  7.55E+00   
1.11E+00 -8.14E-03 7.57E+00 1.35E-01 7.85E-05  7.57E+00   
1.39E+00 -8.57E-03 7.60E+00 8.66E-02 7.85E-05  7.61E+00   
1.94E+00 -9.58E-03 7.75E+00 -1.72E-02 7.86E-05  7.75E+00   
2.78E+00 -1.15E-02 8.16E+00 -1.97E-01 7.87E-05  8.16E+00   
4.17E+00 -1.58E-02 9.34E+00 -5.88E-01 7.89E-05  9.36E+00   
5.56E+00 -2.15E-02 1.10E+01 -1.11E+00 7.91E-05  1.11E+01   
8.33E+00 -3.47E-02 1.62E+01 -2.58E+00 7.94E-05  1.64E+01   
1.11E+01 -4.42E-02 2.41E+01 -4.57E+00 7.96E-05  2.45E+01   
1.39E+01 -4.85E-02 3.37E+01 -6.79E+00 7.97E-05  3.43E+01   
1.67E+01 -5.01E-02 4.21E+01 -8.65E+00 7.97E-05  4.30E+01   
1.94E+01 -5.06E-02 4.76E+01 -9.85E+00 7.97E-05  4.86E+01   
2.22E+01 -5.07E-02 5.06E+01 -1.04E+01 7.97E-05  5.16E+01   

Time (Hour) A.65 A.66 A.67   A.68( αω ) α  % Difference
1.67E-02 2.04E-05 7.43E-07 -1.97E-08   2.05E-05 3.77E-05 5.42E+01 
2.78E-01 1.22E-06 4.49E-08 -7.12E-11   1.22E-06 2.28E-06 5.36E+01 
5.56E-01 6.09E-07 2.26E-08 -1.79E-11   6.10E-07 1.15E-06 5.31E+01 
0.00E+00 4.06E-07 1.52E-08 -8.03E-12   4.06E-07 7.70E-07 5.27E+01 
1.11E+00 3.05E-07 1.15E-08 -4.55E-12   3.05E-07 5.82E-07 5.24E+01 
1.39E+00 2.45E-07 9.24E-09 -2.93E-12   2.45E-07 4.70E-07 5.23E+01 
1.94E+00 1.79E-07 6.71E-09 -1.52E-12   1.79E-07 3.41E-07 5.24E+01 
2.78E+00 1.32E-07 4.82E-09 -7.66E-13   1.32E-07 2.45E-07 5.38E+01 
4.17E+00 1.01E-07 3.36E-09 -3.56E-13   1.01E-07 1.71E-07 5.89E+01 
5.56E+00 8.95E-08 2.63E-09 -2.09E-13   8.95E-08 1.34E-07 6.70E+01 
8.33E+00 8.80E-08 1.87E-09 -9.87E-14   8.80E-08 9.48E-08 9.28E+01 
1.11E+01 9.88E-08 1.44E-09 -5.73E-14   9.88E-08 7.33E-08 1.35E+02 
1.39E+01 1.11E-07 1.17E-09 -3.71E-14   1.11E-07 5.93E-08 1.87E+02 
1.67E+01 1.15E-07 9.77E-10 -2.59E-14   1.15E-07 4.97E-08 2.33E+02 
1.94E+01 1.12E-07 8.39E-10 -1.90E-14   1.12E-07 4.26E-08 2.63E+02 
2.22E+01 1.04E-07 7.33E-10 -1.46E-14     1.04E-07 3.73E-08 2.79E+02 
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Cooling from 80 o C  

Time (Hour) A.18 A.19 A.20 A.21 A.22 A.23 A.24 A.25 
1.67E-02 1.37E-05 2.06E-03 1.23E-03 -1.23E-04 6.33E-02 -2.35E-04 -1.34E-11 6.34E-02 
2.78E-01 1.22E-05 1.84E-03 1.23E-03 -1.23E-04 5.64E-02 -2.09E-04 -1.19E-11 5.64E-02 
5.56E-01 1.08E-05 1.62E-03 1.23E-03 -1.23E-04 4.99E-02 -1.85E-04 -1.06E-11 4.99E-02 
8.33E-01 9.54E-06 1.44E-03 1.23E-03 -1.23E-04 4.42E-02 -1.64E-04 -9.36E-12 4.42E-02 
1.11E+00 8.47E-06 1.28E-03 1.23E-03 -1.23E-04 3.93E-02 -1.46E-04 -8.31E-12 3.93E-02 
1.39E+00 7.54E-06 1.14E-03 1.23E-03 -1.23E-04 3.49E-02 -1.30E-04 -7.39E-12 3.50E-02 
1.94E+00 6.02E-06 9.08E-04 1.23E-03 -1.23E-04 2.79E-02 -1.04E-04 -5.90E-12 2.79E-02 
2.78E+00 4.38E-06 6.62E-04 1.23E-03 -1.23E-04 2.03E-02 -7.54E-05 -4.30E-12 2.04E-02 
4.17E+00 2.76E-06 4.16E-04 1.23E-03 -1.23E-04 1.28E-02 -4.75E-05 -2.71E-12 1.29E-02 
5.56E+00 1.87E-06 2.82E-04 1.23E-03 -1.23E-04 8.65E-03 -3.21E-05 -1.83E-12 8.74E-03 
8.33E+00 9.74E-07 1.47E-04 1.23E-03 -1.23E-04 4.51E-03 -1.68E-05 -9.55E-13 4.68E-03 
1.11E+01 5.69E-07 8.58E-05 1.23E-03 -1.23E-04 2.64E-03 -9.79E-06 -5.58E-13 2.91E-03 
1.39E+01 3.77E-07 5.69E-05 1.23E-03 -1.23E-04 1.75E-03 -6.49E-06 -3.70E-13 2.14E-03 
1.67E+01 2.88E-07 4.34E-05 1.23E-03 -1.23E-04 1.33E-03 -4.95E-06 -2.82E-13 1.82E-03 
1.94E+01 2.47E-07 3.73E-05 1.23E-03 -1.23E-04 1.14E-03 -4.25E-06 -2.42E-13 1.68E-03 
2.22E+01 2.29E-07 3.45E-05 1.23E-03 -1.23E-04 1.06E-03 -3.94E-06 -2.24E-13 1.63E-03 

Time (Hour) A.26 A.27 A.28 A.29    A.30 
1.67E-02 8.13E-06 -2.10E-05 1.73E-03 -4.80E-04    1.79E-03 
2.78E-01 7.84E-06 -2.02E-05 1.54E-03 -4.62E-04    1.60E-03 
5.56E-01 7.51E-06 -1.94E-05 1.36E-03 -4.43E-04    1.43E-03 
0.00E+00 7.17E-06 -1.85E-05 1.21E-03 -4.23E-04    1.28E-03 
1.11E+00 6.82E-06 -1.76E-05 1.07E-03 -4.02E-04    1.14E-03 
1.39E+00 6.47E-06 -1.67E-05 9.53E-04 -3.82E-04    1.03E-03 
1.94E+00 5.76E-06 -1.49E-05 7.61E-04 -3.40E-04    8.33E-04 
2.78E+00 4.72E-06 -1.22E-05 5.55E-04 -2.78E-04    6.21E-04 
4.17E+00 3.21E-06 -8.30E-06 3.50E-04 -1.89E-04    3.98E-04 
5.56E+00 2.12E-06 -5.47E-06 2.38E-04 -1.25E-04    2.69E-04 
8.33E+00 1.00E-06 -2.59E-06 1.27E-04 -5.92E-05    1.41E-04 
1.11E+01 6.46E-07 -1.67E-06 7.93E-05 -3.81E-05    8.80E-05 
1.39E+01 5.42E-07 -1.40E-06 5.83E-05 -3.20E-05    6.65E-05 
1.67E+01 5.13E-07 -1.33E-06 4.95E-05 -3.03E-05    5.80E-05 
1.94E+01 5.05E-07 -1.30E-06 4.59E-05 -2.98E-05    5.47E-05 
2.22E+01 5.03E-07 -1.30E-06 4.43E-05 -2.96E-05       5.33E-05 
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Time (Hour) A.31 A.32 A.33         A.34 
1.67E-02 1.59E-02 2.22E-06 6.02E-01     6.03E-01 
2.78E-01 1.57E-02 2.20E-06 5.55E-01     5.55E-01 
5.56E-01 1.55E-02 2.17E-06 5.11E-01     5.11E-01 
0.00E+00 1.54E-02 2.15E-06 4.72E-01     4.72E-01 
1.11E+00 1.52E-02 2.12E-06 4.39E-01     4.39E-01 
1.39E+00 1.50E-02 2.09E-06 4.10E-01     4.10E-01 
1.94E+00 1.45E-02 2.03E-06 3.63E-01     3.63E-01 
2.78E+00 1.38E-02 1.93E-06 3.14E-01     3.14E-01 
4.17E+00 1.26E-02 1.76E-06 2.69E-01     2.69E-01 
5.56E+00 1.13E-02 1.58E-06 2.48E-01     2.48E-01 
8.33E+00 9.40E-03 1.31E-06 2.27E-01     2.27E-01 
1.11E+01 8.42E-03 1.18E-06 1.98E-01     1.98E-01 
1.39E+01 8.06E-03 1.13E-06 1.70E-01     1.71E-01 
1.67E+01 7.95E-03 1.11E-06 1.55E-01     1.55E-01 
1.94E+01 7.92E-03 1.11E-06 1.48E-01     1.48E-01 
2.22E+01 7.91E-03 1.11E-06 1.45E-01     1.45E-01 

Time (Hour) A.35 A.36 A.37 A.38 A.39 A.40  A.41 
1.67E-02 1.07E+03 7.47E+01 6.26E+02 -6.26E+01 -1.29E+023.82E+02  1.31E+03
2.78E-01 8.80E+02 6.65E+01 6.20E+02 -6.20E+01 -1.14E+023.37E+02  1.14E+03
5.56E-01 7.16E+02 5.89E+01 6.14E+02 -6.14E+01 -9.99E+012.95E+02  9.97E+02
0.00E+00 5.87E+02 5.22E+01 6.07E+02 -6.07E+01 -8.75E+012.58E+02  8.91E+02
1.11E+00 4.85E+02 4.63E+01 5.99E+02 -5.99E+01 -7.68E+012.27E+02  8.10E+02
1.39E+00 4.03E+02 4.12E+01 5.91E+02 -5.91E+01 -6.74E+011.99E+02  7.49E+02
1.94E+00 2.85E+02 3.29E+01 5.74E+02 -5.74E+01 -5.22E+011.54E+02  6.65E+02
2.78E+00 1.80E+02 2.40E+01 5.46E+02 -5.46E+01 -3.62E+011.07E+02  5.89E+02
4.17E+00 9.68E+01 1.51E+01 4.96E+02 -4.96E+01 -2.07E+016.11E+01  5.12E+02
5.56E+00 6.04E+01 1.02E+01 4.47E+02 -4.47E+01 -1.26E+013.73E+01  4.55E+02
8.33E+00 2.88E+01 5.33E+00 3.71E+02 -3.71E+01 -5.46E+001.61E+01  3.75E+02
1.11E+01 1.47E+01 3.11E+00 3.32E+02 -3.32E+01 -2.86E+008.44E+00  3.35E+02
1.39E+01 8.38E+00 2.06E+00 3.18E+02 -3.18E+01 -1.81E+005.35E+00  3.20E+02
1.67E+01 5.82E+00 1.57E+00 3.14E+02 -3.14E+01 -1.36E+004.03E+00  3.15E+02
1.94E+01 4.77E+00 1.35E+00 3.13E+02 -3.13E+01 -1.17E+003.45E+00  3.14E+02
2.22E+01 4.32E+00 1.25E+00 3.12E+02 -3.12E+01 -1.08E+003.19E+00   3.14E+02
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Time (Hour) A.42 A.43 A.44 A.45       A.46 
1.67E-02 8.22E+01 -8.73E-01 -4.75E+00 4.75E-01    8.24E+01
2.78E-01 8.02E+01 -9.36E-01 -5.72E+00 5.72E-01    8.04E+01
5.56E-01 7.95E+01 -1.00E+00 -6.92E+00 6.92E-01    7.98E+01
0.00E+00 8.01E+01 -1.07E+00 -8.32E+00 8.32E-01    8.06E+01
1.11E+00 8.21E+01 -1.13E+00 -9.92E+00 9.92E-01    8.27E+01
1.39E+00 8.52E+01 -1.19E+00 -1.17E+01 1.17E+00    8.61E+01
1.94E+00 9.48E+01 -1.29E+00 -1.59E+01 1.59E+00    9.61E+01
2.78E+00 1.15E+02 -1.38E+00 -2.33E+01 2.33E+00    1.18E+02
4.17E+00 1.59E+02 -1.35E+00 -3.64E+01 3.64E+00    1.63E+02
5.56E+00 2.09E+02 -1.19E+00 -4.73E+01 4.73E+00    2.15E+02
8.33E+00 3.30E+02 -8.96E-01 -6.84E+01 6.84E+00    3.37E+02
1.11E+01 5.05E+02 -8.85E-01 -1.16E+02 1.16E+01    5.18E+02
1.39E+01 7.28E+02 -1.07E+00 -2.11E+02 2.11E+01    7.59E+02
1.67E+01 9.41E+02 -1.31E+00 -3.39E+02 3.39E+01    1.00E+03
1.94E+01 1.09E+03 -1.50E+00 -4.50E+02 4.50E+01    1.18E+03
2.22E+01 1.18E+03 -1.61E+00 -5.22E+02 5.22E+01    1.29E+03

Time (Hour) A.47 A.48 A.49     A.50 
1.67E-02 5.23E+00 1.86E+01 -5.92E-01     1.94E+01
2.78E-01 5.11E+00 1.85E+01 -5.86E-01     1.92E+01
5.56E-01 5.07E+00 1.83E+01 -5.80E-01     1.90E+01
0.00E+00 5.12E+00 1.81E+01 -5.73E-01     1.88E+01
1.11E+00 5.25E+00 1.78E+01 -5.66E-01     1.86E+01
1.39E+00 5.47E+00 1.76E+01 -5.59E-01     1.84E+01
1.94E+00 6.10E+00 1.71E+01 -5.43E-01     1.82E+01
2.78E+00 7.47E+00 1.63E+01 -5.16E-01     1.79E+01
4.17E+00 1.04E+01 1.48E+01 -4.69E-01     1.81E+01
5.56E+00 1.36E+01 1.33E+01 -4.23E-01     1.91E+01
8.33E+00 2.14E+01 1.10E+01 -3.51E-01     2.41E+01
1.11E+01 3.29E+01 9.89E+00 -3.14E-01     3.43E+01
1.39E+01 4.82E+01 9.47E+00 -3.01E-01     4.91E+01
1.67E+01 6.35E+01 9.34E+00 -2.96E-01     6.42E+01
1.94E+01 7.50E+01 9.30E+00 -2.95E-01     7.56E+01
2.22E+01 8.18E+01 9.29E+00 -2.95E-01     8.23E+01

 A.51 A.52      A.53 
  1.64E-04 -4.37E-04           4.67E-04 
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Time (Hour) A.54             A.55 
1.67E-02 -7.15E+01       7.15E+01
2.78E-01 -7.08E+01       7.08E+01
5.56E-01 -7.00E+01       7.00E+01
0.00E+00 -6.94E+01       6.94E+01
1.11E+00 -6.87E+01       6.87E+01
1.39E+00 -6.81E+01       6.81E+01
1.94E+00 -6.71E+01       6.71E+01
2.78E+00 -6.62E+01       6.62E+01
4.17E+00 -6.68E+01       6.68E+01
5.56E+00 -7.06E+01       7.06E+01
8.33E+00 -8.95E+01       8.95E+01
1.11E+01 -1.28E+02       1.28E+02
1.39E+01 -1.83E+02       1.83E+02
1.67E+01 -2.39E+02       2.39E+02
1.94E+01 -2.81E+02       2.81E+02
2.22E+01 -3.07E+02       3.07E+02

Time (Hour) A.56 A.57 A.58     A.59 
1.67E-02 3.29E-02 -7.45E-06 -3.28E-03     3.30E-02 
2.78E-01 3.29E-02 -1.27E-04 -3.16E-03     3.30E-02 
5.56E-01 3.29E-02 -2.59E-04 -3.03E-03     3.30E-02 
0.00E+00 3.29E-02 -3.95E-04 -2.89E-03     3.30E-02 
1.11E+00 3.29E-02 -5.35E-04 -2.75E-03     3.30E-02 
1.39E+00 3.29E-02 -6.77E-04 -2.61E-03     3.30E-02 
1.94E+00 3.29E-02 -9.65E-04 -2.32E-03     3.30E-02 
2.78E+00 3.29E-02 -1.38E-03 -1.90E-03     3.30E-02 
4.17E+00 3.29E-02 -1.99E-03 -1.30E-03     3.30E-02 
5.56E+00 3.29E-02 -2.43E-03 -8.54E-04     3.30E-02 
8.33E+00 3.29E-02 -2.88E-03 -4.05E-04     3.30E-02 
1.11E+01 3.29E-02 -3.03E-03 -2.61E-04     3.30E-02 
1.39E+01 3.29E-02 -3.07E-03 -2.19E-04     3.30E-02 
1.67E+01 3.29E-02 -3.08E-03 -2.07E-04     3.30E-02 
1.94E+01 3.29E-02 -3.08E-03 -2.04E-04     3.30E-02 
2.22E+01 3.29E-02 -3.09E-03 -2.03E-04         3.30E-02 
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Time (Hour) A.60 A.61 A.62 A.63   A.64     
1.67E-02 -5.82E-03 7.85E+00 2.73E-01 7.83E-05  7.86E+00   
2.78E-01 -6.04E-03 7.77E+00 2.35E-01 7.83E-05  7.78E+00   
5.56E-01 -6.31E-03 7.69E+00 1.92E-01 7.83E-05  7.70E+00   
0.00E+00 -6.60E-03 7.62E+00 1.48E-01 7.84E-05  7.62E+00   
1.11E+00 -6.94E-03 7.55E+00 1.01E-01 7.84E-05  7.55E+00   
1.39E+00 -7.31E-03 7.49E+00 5.14E-02 7.84E-05  7.49E+00   
1.94E+00 -8.22E-03 7.38E+00 -5.44E-02 7.85E-05  7.38E+00   
2.78E+00 -1.00E-02 7.29E+00 -2.32E-01 7.86E-05  7.29E+00   
4.17E+00 -1.48E-02 7.37E+00 -5.82E-01 7.88E-05  7.39E+00   
5.56E+00 -2.25E-02 7.81E+00 -1.02E+00 7.91E-05  7.87E+00   
8.33E+00 -4.77E-02 9.94E+00 -2.21E+00 7.97E-05  1.02E+01   
1.11E+01 -7.43E-02 1.42E+01 -3.95E+00 8.01E-05  1.48E+01   
1.39E+01 -8.87E-02 2.04E+01 -6.10E+00 8.02E-05  2.13E+01   
1.67E+01 -9.38E-02 2.67E+01 -8.17E+00 8.03E-05  2.79E+01   
1.94E+01 -9.54E-02 3.14E+01 -9.68E+00 8.03E-05  3.29E+01   
2.22E+01 -9.58E-02 3.43E+01 -1.06E+01 8.03E-05  3.59E+01   

Time (Hour) A.65 A.66 A.67   A.68( αω ) α  % Difference
1.67E-02 2.11E-05 7.48E-07 -1.98E-08   2.11E-05 3.80E-05 5.56E+01 
2.78E-01 1.25E-06 4.51E-08 -7.17E-11   1.26E-06 2.29E-06 5.47E+01 
5.56E-01 6.21E-07 2.27E-08 -1.80E-11   6.21E-07 1.15E-06 5.38E+01 
0.00E+00 4.10E-07 1.53E-08 -8.07E-12   4.10E-07 7.75E-07 5.29E+01 
1.11E+00 3.04E-07 1.15E-08 -4.57E-12   3.05E-07 5.85E-07 5.20E+01 
1.39E+00 2.42E-07 9.29E-09 -2.95E-12   2.42E-07 4.72E-07 5.12E+01 
1.94E+00 1.70E-07 6.75E-09 -1.53E-12   1.70E-07 3.43E-07 4.96E+01 
2.78E+00 1.18E-07 4.87E-09 -7.72E-13   1.18E-07 2.47E-07 4.76E+01 
4.17E+00 7.95E-08 3.42E-09 -3.62E-13   7.96E-08 1.74E-07 4.58E+01 
5.56E+00 6.35E-08 2.71E-09 -2.15E-13   6.35E-08 1.38E-07 4.61E+01 
8.33E+00 5.48E-08 1.99E-09 -1.05E-13   5.48E-08 1.01E-07 5.43E+01 
1.11E+01 5.96E-08 1.57E-09 -6.23E-14   5.96E-08 7.97E-08 7.48E+01 
1.39E+01 6.87E-08 1.28E-09 -4.07E-14   6.87E-08 6.51E-08 1.06E+02 
1.67E+01 7.51E-08 1.07E-09 -2.84E-14   7.51E-08 5.46E-08 1.38E+02 
1.94E+01 7.58E-08 9.23E-10 -2.09E-14   7.58E-08 4.69E-08 1.62E+02 
2.22E+01 7.23E-08 8.08E-10 -1.60E-14     7.23E-08 4.10E-08 1.76E+02 
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