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Bogotá, Colombia

2011





On Chemical Activity

Foundations of a classificatory approach to the
study of chemical combination

Andrés Bernal

Tesis presentada como requisito parcial para optar al t́ıtulo de:

Doctor en Qúımica
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Abstract

Structure and activity are central yet ambigous concepts of chemical science, being

susceptible to a variety of distinct denotations. The popular (though seldom explicit)

attachment of chemical structure to an atomic constitution theory that accounts for the

behavior of matter as it undergoes chemical change conflicts with contemporary perspec-

tives in the history and philosophy of chemistry and trivializes the concept of chemical

activity, depriving it of any relevant theoretical dimension. Against this perspective, we

define structure and activity as opposing epistemic approaches that interplay in chemi-

cal theory and are characterized by reverse ontological priorities ascribed to the concepts

of property and relation. The prioritization of relations as determinants of substance

properties characteristic of chemical activity theory motivates a peculiar mathematiza-

tion of this epistemic approach, using the formalisms of category theory, formal concept

analysis, and network analysis. The resulting mathematical formalism allows or sug-

gests the possibility of a successful reconstruction of key chemical constructs such as

acid, base, and organic function; provides the foundation of a methodology for the ana-

lylsis of similarity in chemical reaction networks; and unveils the potential of chemical

activity as a fully-fleshed theory of chemical combination, complementary to structure

theory and readily capable of constructing chemical knowledge by its own means.

Keywords: Mathematical Chemistry, Structure-Activity Relationships, Reaction

Networks, Directed Hypergraphs, Philosophy of Chemistry, Category Theory, Formal

Concept Analysis.



Resumen

Estructura y actividad son conceptos centrales y sin embargo ambiguos de la qúımica

que admiten una variedad de denotaciones distintas. La popular (aún si raramente

expĺıcita) identificación de estructura qúımica con una teoŕıa atómica de la constitución

de la materia que da cuenta de su comportamiento durante el cambio qúımico entra

en conflicto con perspectivas contemporáneas en la historia y la filosof́ıa de la qúımica.

Al mismo tiempo, trivializa el concepto de actividad qúımica, privándolo de cualquier

dimensión teórica relevante. En contra de esta perspectiva definimos estructura y activi-

dad como aproximaciones epistémicas opuestas, caracterizadas por otorgar prioridades

ontológicas inversas a los conceptos de relación y propiedad, que interactúan en la teoŕıa

qúımica. La prioridad dada a las relaciones como determinantes de las propiedades de las

sustancias caracteŕıstica de la teoŕıa de la actividad qúımica motiva una matematización

peculiar de esta aproximación epistémica, usando los formalismos de la teoŕıa de cate-

goŕıas, el análisis formal de conceptos, y el análisis de redes. El formalismo matemático

resultante permite o sugiere una reconstrucción exitosa de constructos qúımicos clave

tales como ácido, base, y función orgánica, provee los fundamentos de una metodoloǵıa

para el análisis de similitud entre sustancias vistas como objetos en una red de reacciones

qúımicas, y revela el potencial de la actividad qúımica como una auténtica teoŕıa de la

combinación qúımica, complementaria a la teoŕıa estructural y perfectamente capaz de

construir conocimiento qúımico por sus propios medios.

Palabras clave: Qúımica Matemática, Relaciones Estructura-Actividad, Redes

de Reacciones, Hipergrafos Dirigidos, Filosof́ıa de la Qúımica, Teoŕıa de Categoŕıas,

Análisis Formal de Conceptos.



List of Symbols

(X,Y,R) The dual of context (X,Y, r), page 98

A◦ The interior of subset A in a topological space, page 98

Nin(v) The in-neighborhood of vertex v in a digraph, page 54

Nout(v) The out-neighborhood of vertex v in a digraph, page 54

α A mapping α : AH1 → AH2 that preserves the cardinals of heads and

tails, page 66
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Introduction

“One of the first duties of a scientist is to determine the extent not of the acquired

knowledge, for that knowledge will explain itself, but, rather, of the ignorance.”

–Stanislaw Lem, His master’s voice

Twentieth century witnessed the raise of QSAR methods applied to chemistry, phar-

macology, and toxicological research. Significant amounts of money, manpower and com-

putational resources are devoted nowadays to QSAR studies aimed at developing new

drugs, assessing environmental problems, assisting the resolution of mixtures, predicting

thermodynamic and mechanical properties of new materials, etc. (see e.g. Karelson &

Lobanov (1996); Eriksson et al. (2003); Du et al. (2008); Gharagheizi (2007); Bhhatarai

et al. (2011)). However, after the initial enthusiasm engendered by the promising re-

sults of pioneer works, a feeling of disillusionment has begun to spread among QSAR

practitioners, who feel that “it has not fulfilled the expectations set for its ability to

predict activity” (Johnson, 2008). In what follows, we will argue that this disillusion-

ment is an understandable consequence of the tremendous theoretical indeterminacies

that underly QSAR as it is often applied.

At its core, QSAR invokes the theoretical assumption that the structure of a sub-

stance is a determinant of its activity. This assumption (also known as the SAR prin-

ciple) supports the general methodological approach followed in most QSAR studies,

which consists in characterizing each element of a family of compounds with a set of

structural and activity descriptors, building a statistical model that correlates the first

family of descriptors with the second, and using the model to interpolate the activities

of compounds of known structure but unknown activity.

Along the historical development of QSAR techniques, significant emphasis has been

placed on the statistical rigor and sophistication of the correlation model (see e.g. Trop-

sha et al. (2003), Eriksson et al. (2003)). Unfortunately, though concern for statistical

rigor is of the utmost relevance, it has been emphasized at the cost of overlooking the

need of theoretical clarity. Large QSAR studies resort to sets of hundreds of structural

descriptors, chosen more on statistical than theoretical grounds. On the other hand,

surprisingly low attention is devoted to the choice of an often lone activity descriptor.

Yet, the success of this approach is clearly contingent on the choice of descriptors, which
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evokes a fundamentally theoretical problem that cannot be handled by statistics: the

definition of structure, activity, and the nature of the relation between them.

The core of the issue is that statistical correlation cannot be equated to causality.

For instance, anyone can trace a plot between the most improbable variables (e.g. fresh

lemons imported to USA from Mexico and total US highway fatality rate (Johnson,

2008)) with a high linear correlation coefficient; but it would be a huge mistake to infer

from this plot that there is a causal relationship between those variables. A principle of

causality can only be formulated within a scientific theory, so over-reliance on statistical

tools necessarily leads to an ever increasing collection of meaningless propositions.

QSAR methods, then, require the support of clear-cut theoretical principles both

before and after statistics come into play: before, in order to define the relevant variables

to be introduced into the correlation model; and after, in order to make sense of their

correlation. And there are huge indeterminacies regarding this indispensable theoretical

background:

• There is no consensus on the definition of structure within the context of QSAR.

Some authors identify it with chemistry’s structural formulas, others with molec-

ular geometry, others with critical points in the Born-Oppenheimer potential en-

ergy hyper-surface, with the ground-state wave-function of the molecule, with the

shape of its electron density, etc. Furthermore, there are differences in the way

different researchers interpret these objects. For instance, structural formulas

are susceptible of being interpreted as a simplified image of the distribution of

a molecule’s atoms in space, as a compilation of neighborhood relations between

the atoms that are manifested over the course of reactions, or as a particular

representation of the symmetry of the molecule1. The ambiguity in the definition

of structure is handled in QSAR at the level of descriptor selection, either by

selecting structural descriptors ad hoc according to previous knowledge and ex-

pectations of the researcher, or by using statistical tools to choose a few structural

descriptors from a large and varied pool with no influence from the modeler (Gra-

matica, 2008). Neither of these approaches takes us any closer to the delimitation

and formalization of the concept of structure in QSAR.

• There is no clear, explicit, and widely agreed definition of the concept of ac-

tivity, as evidenced by the diversity of interpretations seen in different QSAR

studies. Just to mention a few, activity has been related to phase-transition con-

stants (Karelson & Lobanov, 1996; Duchowicz et al. , 2008; Bhhatarai et al. ,

2011), enzyme binding(Karelson & Lobanov, 1996), kinetics of specific chemical

1Daza and Villaveces (1997) offer an analysis of the advances towards the definition of the

concept of chemical structure, which though ten years old still offers a broad perspective that

approaches the present state of the matter
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reactions(Karelson & Lobanov, 1996), and complex toxicological and pathogenic

phenomena, probably involving undetermined synergic effects (Du et al. , 2008).

Some authors try to diminish the ambiguity by making a distinction between

QSAR and QSPR: the first refers to studies that deal with the prediction of bi-

ological activity of a substance, understood as any perturbation that it induces

on a living organism, and the later to studies concerned with the prediction of

any other property of a compound (see e.g. Karelson and Lobanov (1996)). This

distinction may help make the QSAR principle more precise within the domain of

medical science, but may also move it uncomfortably close to a problematic form

of chemical reductionism. On the other hand, the distinction increases the ambi-

guity on all other fields were QSAR (now QSPR) may be of utility, by linking the

diffuse concept of structure to just about any material property one may think

of. This QSPR principle feels very close to the trivial assertion that theories of

matter speak of the properties of matter.

• The function linking structure and activity spaces remains unknown. Whatever

this function may be, it seems that it is of notable complexity, probably involving

severe discontinuity. Regarding this point, Maggiora (2006) suggests that the

disappointing predictive power of QSAR models might be a consequence of the

structure-activity surface not being as smooth as often assumed, an idea that

Johnson (2008) retakes. They suggest that one needs only look at the evidence

to find that such assumption should have never been made, as large changes in

activity as a consequence of small changes in structure are customary.

This thesis is concerned with the formalization of the notion of activity. In that

sense, it can be seen as part of a program that intends to strengthen the theoretical

foundations of QSAR. Yet, we actually prefer to settle for a more restricted goal. Struc-

ture and activity are wide notions that appear in a broad range of disciplines that differ

at many levels (phenomenological, methodological). Our focus of interest is not on the

common elements that may determine transversal definitions of the concepts of structure

and activity, but on the particulars of their identity within our main field of research.

Thus, we aim at the specific goal of formalizing the notion of chemical activity; that

is, we will focus on the particular meaning that we can ascribe to the term “activity”,

starting from the broad context of the SAR assumption, but promptly moving into the

specific context of the core principles of chemical theory. Furthermore, we will see no

issue in dropping the idea of a causal relationship between structure and activity as

soon as our chemical knowledge suggests the necessity. In this sense this work could be

seen as part of the proper program of theoretical chemistry.

In the end, we are just taking the indeterminacies of QSAR as a starting point for

theoretical digression; so though we hope to be able to contribute to that debate, this

work is not about QSAR but about a core element of chemical theory that appears
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in its particular formulation the SAR hypothesis. By delimiting and formalizing the

diffuse notion of chemical activity we expect to make a valuable contribution to the

contemporary practice of chemistry.

Outline

According to the usual formulation of the SAR hypothesis in chemistry, activity refers

to the behavior of substances in chemical reactions, and structure refers to the essential

atomic constitution of matter that determines that behavior. In such terms, chemical

activity just points to the phenomenological field of chemistry, which is already perfectly

determined and merits no further theoretical digression. Chapter 1 starts considering

an issue of the previous enunciation of the SAR principle: it comports a commitment to

epistemological reductionism that conflicts with contemporary knowledge on the history

and philosophy of chemistry. The assumption that atomism (regarded as a theory on

the constitution of matter) provided a prolific ground for the development of chemical

ideas is questioned through the examination of classic works in the history of chemical

combination. Early theories of chemical change arose not following on the emerging

program of constitutional atomism, but in open opposition to it. Seventeenth century

chemists distanced themselves from corpuscularian philosophy, in face of its inability

to account for chemical phenomena. Going into the nineteenth century, pioneers of

structure theory still rejected the identification of chemical atoms with metaphysical

entities, which did not prevent them from constructing a rich theoretical field. In the

end, chemical knowledge could be and was constructed without resort to the hypothesis

of an underlying particulate reality.

The existence of a theory of chemical combination independent of the program of

atomic constitution questions both the sufficiency of structure theory and the trivi-

ality of the notion of chemical activity. Against the idea of a unidirectional cause-

and-consequence relationship between structure and activity, we propose a picture of

bidirectional interaction between epistemic perspectives. We identify chemical activity

with an epistemic perspective that is founded on the conceptualization of substances

as internally related entities; that is, as entities that cannot be abstracted from their

mutual relations. This perspective leads to the configuration of a theoretical approach

where substances are characterized in terms of properties determined by examination

of the structure of chemical reaction networks. On the other hand, we characterize

chemical structure as the opposing epistemic perspective: substances are regarded as

externally related entities, that come into being before their mutual relations, leading to

an approach where primary properties of substances are seen as determinants of their

relations.

These epistemic perspectives are not disjoint alternatives, but complementary ap-
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proaches that allow chemists to deal with the complex selectivity of chemical relations.

The activity approach unveils patterns in the intricate network of chemical reactions,

inducing properties on the internally related substances. These properties then are ab-

stracted from the network of reactions and assigned to the isolated substances, thus

constructing structural representations of the substances themselves. Then, this rep-

resentations acquire an identity of their own, becoming able to infer hypothesis on

unobserved chemical phenomena that modify the network of chemical reactions, thus

transforming our understanding of the chemical activity of substances.

Having identified chemical activity with an epistemic approach that induces the

characteristic properties of substances from the relations they establish among each

other by means of chemical reactions, we aboard the problem of formulating this ap-

proach on mathematical terms. Chapter 2 considers the general problem of constructing

a mathematized theory of internal relations. Taking Category Theory as the fundamen-

tal mathematical frame, we propose a model based on the idea of a classification system,

that is, a mathematical framework where entities are characterized in terms of prop-

erties induced by classifications. A classification system is defined by a category of

structured sets and binary relations, built in accordance to the relational logic of the

family of entities being studied. Structure-preserving transformations with domain on a

structured set determine a classification of its elements, according to a pattern of classes

given by the codomain set.

Each ordered pair (u, v) in such a transformation reveals the existence of a connec-

tion between the situation of u in the relational structure of the domain set, and that of

v in the relational structure of the codomain. In other words, the transformation reveals

that v characterizes some aspect of the unique identity of u as an internally related en-

tity. In consequence, we propose that elements of the codomain of a structure-preserving

transformation can be regarded as properties of the elements of its domain, induced by

the relational pattern unveiled by the transformation. In this way we establish a strong

link between the problem of classifying a collection of entities and the problem of deter-

mining their properties in a theory of internal relations, which justifies the important

role that classificatory approaches have played in the development of chemistry. Fur-

thermore, the identification of the codomain of a structure-preserving transformation

in a classification system with a set of properties characterizing the elements of its do-

main opens the road for systematic definition of concepts by means of the formalism of

Formal Concept Analysis.

Equivalences of categories provide another important element of our proposal. An

equivalence of categories can be understood as a transformation that relates mathe-

matical formalisms with essentially the same logical structure. They can thus be used

to induce changes of representation, motivating subtle shifts of perspective that may

unveil properties of the subjects of study that could be hidden in the original model.

Also, they provide a criterion of equivalence between classification systems, allowing us
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to determine the viability of different mathematical images of our field of inquiry. In

this sense, we resort to equivalences of categories to compare some graph-like models of

chemical reaction networks that could be used as the basis for the model of chemical

activity that we present on the next Chapter.

Chapter 3 thus aboards the specific problem of building a mathematical model of

chemical activity. The foundation of such model should be given by a classification

system comprising suitable mathematical images of chemical reaction networks. After

pointing the inadequacies of graph models of reaction networks, we choose a repre-

sentation in terms of directed hypergraphs. Classifications of substances are then de-

termined by adjacency-preserving relations between hyperdigraphs, which we call role

assignments, that extend the concept of adjacency-preserving mapping in graph theory.

Then, we propose a criterion of classification optimality based on the idea of maximizing

its predictive power. Furthermore, the more restrictive demands posed on optimal role

assignments operate in such a way that they allow to determine a consistent classifica-

tion of chemical reactions associated with the classification of substances given by the

role assignment. In this way, role assignments induce classifications that follow the re-

cursive principle that ‘similar substances react in a similar way with similar substances,

to produce substances that are also similar among themselves’.

After illustrating how this formalism relates to key chemical concepts such as organic

function and acidity, at the end of Chapter 3 we re-examine the matter of the relation

between chemical structure and chemical activity, considering the case of structural

formulas. Starting from the principle that reaction networks constitute the primary

image of chemical phenomena, the demand for consistency with empirical knowledge is

translated into the demand that structural formulas span an equivalent image of the

reaction network, related to it by a change of representation. Unlike the original re-

action network, that is determined by explicit accumulation of observed reactions, the

equivalent network of structural formulas is defined by intension, in terms of generalized

properties of its vertices. This procedure is permitted by the fact that structural formu-

las are not mere points devoid of properties other than being related, but sophisticate

mathematical objects with properties of their own. This fact motivates a change in the

methodology, shifting the focus of attention from the relational structure of the reaction

network to the individual properties of structural formulas.

Features of chemical structures not determined by equivalence to a chemical reac-

tion network motivate new statements regarding the reactivity of chemical substances

that transcend the predictions of activity theory. Interestingly, this means that such

statements are unsupported by empirical evidence. Following this line of reasoning we

propose that the main value of structural formulas does not lay in their ability to offer

precise predictions on the outcome of specific chemical transformations (a goal that

activity theory is equally apt to accomplish), but in their potential to motivate hy-

potheses with high empirical content. If corroborated by experiment, these hypotheses
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provoke significant changes in the classifications of activity theory, thus transforming

our understanding of the phenomena of chemical combination.

Chapter 4 explores the possibility of constructing conceptual characterizations of

a classification system other than its associated concept lattice. The main focus of

attention is a topological characterization of chemical similarity based on a method

proposed by Restrepo and collaborators. By taking classes in a role assignment as

a sub-base of closed sets, we induce a topological space on a classification’s domain.

Then, we prove that formal concepts determined by the classification are related to

closed sets in this topological space, and show how its topological invariants provide a

mathematical description of similarity among chemical substances.

The value of this topological representation is contingent on the structure of the

associated classification. For instance, we note that classifications in mutually disjoint

classes produced by standard clustering methodologies induce a relatively trivial topo-

logical image. At the end of the chapter, we point that this triviality ultimately reflects

the inability of disjoint classifications to account for similarity, due to the constraints

introduced by the transitivity of the equivalence relation underlying such classifications.

Along the manuscript we use several examples to illustrate the meaning of the

mathematical formalism begin developed. Some were taken from the bibliography; they

comprise either standard material or ideas introduced by other authors and we give

the corresponding references to the original sources. Most of the examples, however,

were worked by us, and present our own take on the material they comprise. These

examples pursuit objectives that go beyond illustration: they test the adequacy of the

model in development against its ability to formalize existing chemical knowledge, or

present results that are of relevance in upcoming developments. In consequence, they

should be considered as an integral part of our proposal.
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Chapter 1

Structure and activity

“I agree with J. van Brakel that the older definition (used in the 18th and in the first

half of the 19th century) of chemistry as a science of substances and their

transformations is to be preferred to those of contemporary textbooks saying, for

example, that chemistry is the science of transferring electrons between atoms and/or

molecules, or something like that.”

–Rein Vihalemm

“For anyone who thinks there is only one true explanation of a psychic process, this

vitality of psychic contents, which necessitates two contradictory theories, is a matter

for despair, especially if he is enarmoured of simple and uncomplicated truths,

incapable maybe of thinking both at the same time.”

–Carl Gustav Jung

When asked about the meaning of ‘structure’, a chemist will most likely answer

in terms of structural formulas and/or mechanical or quantum-mechanical models of

molecules. Chances are that he will link both to an atomic theory of matter. If further

questioned on its utility, he will try to show how they can be used to predict what

happens when two substances are mixed, or how DNA can be translated into a protein,

or why that protein is able to catalyze the oxidation of sugar. On this hypothetical

interview, the chemist is illustrating his particular interpretation of the SAR principle.

His answers reveals the double identity of chemistry in the mind of its practitioners: it

is seen as a science concerned with the intimate constitution of matter, and as a science

concerned with transformations of substances.

According to the orthodox history, it was the discovery of the atomic constitution

of matter that allowed the pioneers of chemistry to understand, predict, and control its

transformations. In these terms, the SAR principle boils down to the acknowledgement

that the atomic nature of matter (its structure) determines the transformations of sub-

stances that conform the field of chemical research (its activity). This statement adopts
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different meanings depending on what fundamental philosophical tenats accompany it.

If we avoid the naive identification of a theory with an objective reality it may represent

and understand constitutional atomism as a theory of matter, the above formulation of

SAR turns into a commitment to epistemic reductionism: it states that the same atomic

theories describing the fundamental constitution of matter offer an adequate account

of chemical combination. This premise comports the following historical assumption:

either the first successful chemical theories arose from the program of constitutional

atomism, or at some point they were replaced by one such theory. On the first sections

of this chapter we illustrate why we believe this assumption to be wrong.

Early chemical theories in the seventeenth century appeared not as a consequence

of the emerging corpuscularian philosophy of the time, but in reply to its inability to

account for the empirically observed transformations of matter. Seventeenth century

atomism proved to offer a very poor theory of chemical change, being able at most to

produce a series of increasingly ad hoc explanations, and even leading to conclusions

that ran counter to empirical evidence (Section 1.1). Opposing the corpuscularian

tradition, the French chemist Étienne François Geoffroy constructed a successful theory

of metallic dissolution and displacement, while explicitly distancing his ideas form the

corpuscularian program (Section 1.2). His classificatory approach emphasized the role

of affinity relations among the substances as the key quality for recognizing a pattern

on their seemingly capricious transformations.

If the first successful theories of chemical change were alien to the program of ma-

terial constitution, we are left with the possibility of they being replaced by upcoming

constitutional theories. Once more, contemporary history of science says something

different. The ideas of seventeenth century chemists were neither rejected, nor forgot-

ten. They played a central role in shaping a peculiar form of atomism that achieved

remarkable success in nineteenth century chemistry and that is still deeply embedded in

the contemporary practice of this discipline (Section 1.3). The distance separating this

new “chemical atomism” from the ideas of corpuscularian philosophers is reflected in

the fact that chemists could develop an atomic theory of matter, and still reject belief

in the material reality of atoms.

This analysis provides a different insight into the nature of chemical structure and

activity. The first theoretical ideas on chemical change were very explicit in their rejec-

tion of any attachment to a description of the ultimate constitution of matter, a position

that was still common in the nineteenth century. On their purest form, these ideas con-

formed legitimate theories of chemical activity, devoid of any concern with the ultimate

constituents of chemical substances. The recognition of the central role they played in

shaping modern chemistry unveils the depth of the concept of chemical activity, helping

us to overcome its current trivialization.

These considerations lead us to replace both the picture of a deterministic rela-

tionship between two attributes of matter and that of a unified theory successfully
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accounting for certain phenomenological field, with one of an interplay between epis-

temic perspectives. The main goal of chemistry is to gain knowledge on the phenomenon

of chemical combination, whose fundamental theoretical image has the logical structure

of a network (Section 1.4). There is something that we could call the ‘activity approach’

to the research of this network of chemical reactions, and something else that we could

call the ‘structure approach’. These two epistemic perspectives can be characterized in

terms of opposing ontologies of concepts (Sections 1.5): while the structure approach

attempts to unveil the individual properties of substances that determine the structure

of the network of chemical reactions, the activity approach looks for patterns on the

network itself that induce characteristic properties of the substances. The relationship

between both approaches is bidirectional, each one relying on the other to configure its

concepts and heuristics. The theoretical field of chemistry is conformed by neither of

them, but by their interplay.

This chapter thus provides both the justification and the foundation for the rest of

this work: the de-trivialization of chemical activity justifies the pursuit of its theoretical

formalism, and the characterization of the activity approach provides the basis for the

construction of its mathematical formalism.

1.1 The failure of mechanistic corpuscularism

Current programs in chemical education often present the rise of the atomic hypothesis

as the turning point in the development of chemistry as a proper science. Atomism

is introduced as the essential and fundamental ground over which chemical theories

have been constructed. Contemporary history of chemistry, however, presents a very

different picture. Atomism comes in several flavors, and not all of them have led to

the development of central chemical ideas; for instance, mechanistic corpuscularism has

been shown to be a particularly sterile philosophy for chemistry.

As early as 1952, Kuhn argued that, contrary to the widely accepted belief, Boylean

atomism ran counter to fundamental chemical ideas and heuristics that arose not fol-

lowing his corpuscularian mechanism, but opposing it (Kuhn, 1952). Previous accounts

of the influence of Boyle in the development of chemical ideas praised the role of his

atomism in the development of “the ‘modern’ belief in the endurance of elements in their

compounds” and in “the recognition of analysis and synthesis as fundamental tools of

the working chemist”, both now regarded as cornerstones of the chemical revolution

(Kuhn, 1952, p. 13). But according to Kuhn, the innovation of Boyle’s mechanistic

corpuscularism was not in deriving the qualitative characteristics of natural substances

from the permanent characteristics of their ultimate atomic constituents, but from the

movement and arrangement of the corpuscles in his clockwork universe. Furthermore,

the former was not even an innovation of the chemical revolution but the result of the
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steady work of the very authors whom Boyle harshly criticized. And, most impor-

tant, the points where Boyle’s atomism diverged from the ideas of his antagonists were

precisely those that lead to the cornerstones of chemistry.

By reducing all qualities of stable bodies, as well as changes on those qualities, to

the size, shape and motion of the atoms, he put an absolute emphasis on the configu-

rations of the fundamental corpuscles as the primary cause of all perceptible qualities

of matter. This emphasis lead him to reject the thesis of the existence of enduring

elements. “Committed to deriving the secondary qualities of bodies from the relative

positions and motions of their qualitatively neutral corpuscles, Boyle was bound to the

conclusion that by sufficient rearrangement of positions and motions one could obtain,

not simply gold from lead, but anything from almost anything. Boyle did not just reject

the Aristotelian elements, but the very idea of elemental substance.” (Kuhn, 1952, pp.

21-22). Elemental substances, an indispensable part of modern theories of chemistry,

were incompatible with Boyle’s atomism.

Kim (2003) and Bensaude-Vincent and Simon (2008) have developed a similar the-

sis, showing how corpuscularism turned to be an unfertile ground for the growth of

seventeenth-century theories of chemical combination. According to Kim, during this

period chemistry came under the focus of natural philosophers “seeking to domesticate

this rich empirical field in order to refurbish their systems of philosophical knowledge”

(Kim, 2003, p. 3). Central to this enterprise was the introduction of popular philo-

sophical perspectives on matter into the discourse of chemistry, in order to transform

this discourse “to conform to chemists’ analytic practice”, but also to give it a “level

of respectability and legitimacy” (Kim, 2003, p. 37). Boyle’s corpuscularian program

constitutes a notably explicit example of this phenomenon.

While corpuscularism would achieve significant success regarding the second point,

functioning as “the legitimating discourse of chemical practice in the emerging public

sphere of the early Enlightenment” (Kim, 2003, p. 47), it arguably failed regarding the

first. Kim looks at the roots of this failure on her accounts of the history of seventeenth-

century chemistry at the Académie royale des sciences. During this period she identifies

a shift from distillation to solution methods as the preferred analytical technique, that

would result in a significant transformation in French chemistry. The new emphasis in

solution methods took the problem of selective dissolution and displacement of metals to

the front of chemical philosophy (Kim, 2003, p. 112). In this way, in 1677 a prominent

figure, Nicolas Lemery, identified this problem as “one of the most difficult to resolve

well, of any in Natural Philosophy” and attempted to give a corpuscularian answer

(Kim, 2003, p. 55). Lemery’s discourse, however, promptly degenerated into elaborated

ad hoc explanations that gained him “the satirical scorn of a number of chemists”

(Bensaude-Vincent & Simon, 2008, p. 142). Bensaude-Vincent and Simon offer a

beautiful example of the sterility of this discourse, quoting Lemery’s corpuscularian

account of the displacement of gold from a solution in aqua regia by the addition of an
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alkali:

“I suppose that when the aqua regia acted on the gold in such a way that

it dissolved the gold, the points which are responsible for the acid’s strength

were stuck into the particles of gold. But, because these little bodies are

very hard, and consequently difficult to penetrate, the points only enter

superficially, although far enough to suspend the particles of gold and to

prevent them from precipitation; that is why, add as much extra gold as

you will, when each of these points has taken up what it can support, it

will not dissolve a grain more of it; it is also this suspension that renders

the particles of gold imperceptible. But if you add some body, that thanks

to its motion and figure can, by this shock, shake-up the acids enough to

break them, the particles of gold, being free, will precipitate due to their

own weight: this, I claim, is what the oil of tartar and the volatiles spirits

of alkali do.” (Bensaude-Vincent & Simon, 2008, pp. 141-142)

Lemery’s discourse was promptly saturated with a multitude of different shapes and

sizes that he had to attribute to the corpuscles (round, jagged, point, hooked), necessary

for explaining a variety of transformations that refused to show any clear and simple

harmony. This unrestrained multiplication of the entities was to strip the corpuscularian

theories of chemistry of any theoretical value.

The problem of selective dissolution and displacement remained open and would go

on to become a prevalent challenge for corpuscularian accounts of chemical phenomena

at the Académie. After unsuccessfully trying to account for selectivity in acid-alkali

reactions through a principalist approach, Homberg would resort to a “speculative cor-

puscular ontology” with no better results than Lemery’s (Kim, 2003, pp. 75-79). Going

into the eighteenth-century, Louis Lemery worked extensively on the matter, that by

the time had acquired a “theoretical urgency” (Kim, 2003, p. 132). His lengthy spec-

ulations on the corpuscular mechanism of metallic displacement did not help chemists

predict the outcome of dissolution reactions anymore than those of Homberg or his fa-

ther (Kim, 2003, pp. 121-123). At this point, the corpuscularian language was more

impeding than helpful in constructing an explanation of these phenomena.

1.2 The affinity table

This problem received a radically different treatment in the hands of Etienne François

Geoffroy, with significantly better results (Kim, 2003, pp. 132-146). He shared the

concern over the theoretical foundations of solution chemistry, but he “did not care

much for the corpuscular ontology his colleagues employed for the purpose” (Kim, 2003,

p. 134). He was more interested in the fact that chemical substances “offered a certain
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preferences in reactions” (Kim, 2003, p. 134). Abandoning all forms of corpuscular

speculation, he instead devoted himself to the construction of a Table des differents

rapports observés entre differentes substances. This Affinity Table summarized known

reactions in solution chemistry, allowing easy access to a cumulus of data collected

through years of chemical practice.

The structure of the table is relatively simple (see Figure 1.1). The top row comprises

sixteen substances often employed in chemistry: 4 acids, 4 alkalis, sulphur, mercury,

water, and several metals and semi-metals. On each column, a series of substances

were listed in decreasing order of affinity towards the top substance. This organization

summarized chemical experience on selective dissolution and displacement. For instance,

the first column of the table was headed by acid spirits, followed by fixed alkali salt,

volatile alkali salt, absorbent earth, and metallic substances. This meant that volatile

alkali salt could displace metallic substances from its combinations with acid spirits, as

it had a greater affinity for the later. Then, it could not displace fixed alkali salt, which

had a greater affinity for acid spirits (Kim, 2003, p. 136).

Figure 1.1: Table des differents rapports observés entre differentes substances, by Etienne

François Geoffroy (1718).

While corpuscularian philosophers endeavored to find the causes of the selectivity

of the phenomena of chemical combination in the attributes of the primary corpuscles,

Geoffroy focused on characterizing that selectivity without hypothesizing on its ulti-

mate cause. He thus “represented the order of selectivity visually in his 1718 table

des rapports.” (Kim, 2003, p. 113). In Geoffroy’s discourse the smooth, round and
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small corpuscles of Lemery are replaced by simple letters designating each substance:

“If among the substances [...] two were found united (A,B) and subsequently mixed

with another (C), either the third substance (C) would join one of the substances (A)

and shake the other (B) loose or it would not join either of the substances originally in

combination (A or B). If C joined A, one could conclude with sufficient probability that

C had ‘more rapport of union or disposition to unite’ with A than B did” (Kim, 2003,

p. 135). Against the ever increasing family of attributes ascribed to the mechanical

corpuscles, substances in Geoffroy’s system could be characterized by a mere letter.

Ultimate qualities of the individual substances were of little consequence here; all that

mattered was what combined with what. If two substances shared a common affinity

for a third, the affinity table reflected that feature on its classificatory structure.

Much more than corpuscularism, the affinity table provided a theory of the chemical

phenomenon of metallic dissolution and displacement. The goal of such a theory would

be to grant knowledge and control on the experimentally achievable combinations of

metals and acids. Corpuscularian philosophers offered a theory that “relates back to

a system of philosophy that could provide a set of causes and thereby claim a corre-

spondence to nature” (Kim, 2003, p. 142), i.e they connected chemical phenomena to a

metaphysical system that establishes a relation of causality between empirical facts and

an underlying reality. But they failed to provide the kind of knowledge that chemists

wanted: “to know what quantities of various substances should be mixed together to

make successful products, which substances reacted together, and which did not”(Kim,

2003, p. 5). This was exactly what the affinity table offered.

“For Geoffroy, a theory meant a reasonable explanation of a group of chemical op-

erations that could be applied across the boundaries of different analytical methods”

(Kim, 2003, p. 142). The generality demanded on a predictive theory, that mechanistic

corpuscularism accomplishes through reference to atoms as primary causes of chemical

phenomena, is achieved by the affinity table by providing a systematic classification

of substances that encompasses a broad family of experimental methods. Beneath this

classificatory structure lied the conception of affinity, or rather of “rapport”, as “mathe-

matical ratio and relationship” between substances, a concept that “projected the affin-

ity table as an instrument that would transform chemistry into a predictive science”

(Kim, 2003, p. 444). By looking into any given column of the table, chemists were able

to predict the outcome of a significant number of combinations, based on the order of

relative affinities of the substances involved. Analysis of relative affinities also allowed

for detailed accounts of “what went on in the mixture of several bodies” that avoided

the multiplication of entities that plagued corpuscularian theories of chemical combina-

tion1. In this way, Geoffroy’s table evidenced inconsistencies in current classifications

1On this regard, see the description of the preparation of corrosive sublimate, a complex

process involving a mixture of three substances with emission of a vapor, distillation, and further
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of substances, allowed subtle differentiations that had not been possible previously (see

e.g. (Kim, 2003, p. 141)), and provided a solid ground for predicting other reactions

(Kim, 1992). Even more, it prefigured central concepts of modern chemistry, such as

that of “chemical compound” (Klein, 1994), and, of course, affinity. It was, properly

speaking, a powerful theory of solution chemistry, much more than the corpuscularian

model.

The affinity table thus constituted a theory of chemical combination that was com-

pletely alien to the predominant atomic philosophies of the time, and that succeeded

where the later failed. Affinity theories in the eighteenth century followed on the success

of Geoffroy’s approach, and were brought into the work of the group of The Arsenal by

Lavoisier’s closest collaborators, thus playing a determinant role in the chemical revo-

lution of the seventeenth century(Kim, 2003). Against the picture of chemistry as an

unavoidably atomistic science, we now face evidence of the existence of at least another

theoretical approach that had a major impact on its development into an autonomous

science.

But this does not mean that Geoffroy’s table is embedded in a tradition that could be

characterized as ‘anti-atomism’. Mechanistic corpuscularism is but one of several atomic

philosophies, from which it differs by other relevant characteristics that have nothing to

do with its status as a particulate theory of matter. In fact, nineteenth century chemists

assumed a different kind of atomism that achieved remarkable success. This peculiar

“chemical atomism” was more akin to Geoffroy’s perspective than to corpuscularian

philosophy.

1.3 Chemical atomism

The history of chemistry in the nineteenth century opens with the publication of Dal-

ton’s atomic theory, which promptly became one of the core elements of future theo-

retical developments. Yet his atomic hypothesis was not universally well-received by

chemistry practitioners and theoreticians. It is now acknowledged that chemists such

as Berzelius, Laurent, and Ostwald were skeptical about the existence of the atoms.

Furthermore, nowadays the cognitive value of Daltonian atomism has been questioned

by philosophers of science such as Chalmers (2008), who argues that it only explains the

laws of proportions, and Needham (2004), who concludes that it did not provide any

novel explanations, since the laws of chemical combination could be interpreted without

resource to Daltonian atomism .

It is worth noting, however, that Chalmers’ epistemological demands on an atomic

calcination with strong fire (Kim, 2003, pp. 137-138). By looking at the relative positions of

the substances involved on this process in his affinity table, Geoffroy was able to determine the

nature of the combinations involved, thus identifying all substances produced.
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theory of chemistry are somewhat different from those required by Needham, and that

the spirit e.g. of Laurent’s rejection of atomism is very different from that of Ostwald.

To understand the points of contention of the different controversies regarding atom-

ism in the nineteenth century, it is important to realize that Daltonian atomism could

be interpreted in at least two different ways: as a metaphysical system, or as an epis-

temic perspective. The first sense refers to the belief in an ultimate reality constituted

by invisible, indivisible corpuscles that are the primary cause of chemical phenomena.

Atomism in this sense was rejected by many nineteenth century chemists not as inade-

quate, but as irrelevant. On the other hand, atomism seen as an epistemic perspective

concerns only the proposal of a discontinuous theory of matter, judged on the basis of

its cognitive value. Daltonian atomism on this sense enjoyed wider acceptance.

In a way, the difference between seventeenth century corpuscularism and nineteenth

century atomism lays in that the former prioritized the first sense, while the later

prioritized the second. Corpuscularism was introduced in seventeenth century chemistry

with the intention of including this discipline into the program of natural philosophy.

It was, first and foremost, a metaphysical system, which then determined a particular

epistemic approach. On the other hand, Daltonian atomism was introduced within

the tradition of experimental science which, particularly in the french school, had little

respect for metaphysical concerns. It was thus taken first as a discontinuous theory of

matter, that could then promote the adherence to a particular metaphysical system.

Adoption of the atomic metaphysics, then, was not a requirement for exploiting its

theoretical power. This is particularly clear in the writings of Auguste Laurent, who

saw no issue in speaking about atoms in one phrase, and disregarding them as an

irrelevant hypothesis on the next2.

Corpuscularian metaphysics configured a theory that ran counter to the developing

chemical knowledge of the seventeenth century. But the problematic elements of this

theory were not the defining features of an atomic system. As Bensaude-Vincent and

Simon put it, “the discontinuity of matter implied by atomism fits well with the ex-

2The first pages of Laurent’s Méthode de chimie are devoted to the matter of structural

formulas, with the unavoidable references to the problem of atomic weights. Then, when dis-

cussing the phenomenon of substitution, he writes: ”In reply to the question, what is meant by

the words: ‘The chloro-ether continues an ether?’ I might repeat, what I have just said, namely,

that the arrangement of its atoms is the same as that of the normal ether. But I prefer to leave

hypotheses aside, and say simply, that an ether is a body obtained by the reaction of an acid

upon an alcohol, with an elimination of water, and that under certain circumstances that ether

can be divided, either by regenerating the alcohol and acid which gave it birth, or by forming

products which belong to the families of the alcohol and of the acid [...] Whether or not the

halides exist as such in the hyperhalides, aldehydes, and chloracids, is a matter of but little con-

sequence. Whatever atomic arrangement we may place to imagine, we cannot destroy the fact,

that certain substances may experience chlorine substitutions without losing their fundamental

properties.” (Laurent, 1963 (1855), pp. 65, our italics)
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planations of the phenomena of chemical combination”. The issue with corpuscularism

was never its character as a particulate theory of matter, but “the reduction of quali-

ties to other parameters considered fundamental such as figure or shape and motion”

(Bensaude-Vincent & Simon, 2008, pp. 139-140). It is this reduction, which is not

a necessary feature of atomic theories, what proved once and again being unable to

produce any significant chemical knowledge.

Nineteenth century chemists detached Daltonian atomism from this form of physi-

calist reductionism. On its most physicalist face, Dalton’s hypothesis takes us back to

the failure of mechanistic corpuscularism, and it is in this sense that Needham ques-

tions its cognitive value (Bernal & Daza, 2010, p. 99). But on its most chemical vein,

Daltonian atomism can be formulated as the assumption that “each chemical element

has least parts that are all alike and which combine in simple and characteristic ways

to form the least parts of compounds” (Chalmers, 2008, p. 159). Those “least parts”

are so in reference to experimental chemical methods, not to any underlying mechanical

reality. This can be seen in the fact that atomic weights were relative weights, and the

standard for their measure was also the atomic weight of a chemical substance: they

were determined by chemical combination, so the atomic weight of any given element

had to be linked to that of a potential reaction partner. More than strictly physical

entities, chemical atoms were “stoichiometric atoms” (Kim, 2003, p. 445), fundamental

units of chemical combination. On the hands of chemists such as Berzelius, Dalton’s

hypothesis was turned into a unique form of “chemical atomism” that played a central

role in the development of chemistry in the nineteenth century (Rocke, 1984).

We see, then, how chemical atomism lays arguably closer to early affinity theories

such as Geoffroy’s than to previous atomic philosophies. Unlike mechanical corpus-

cles, chemical atoms are essentially epistemological, not metaphysical entities (see e.g.

Bensaude-Vincent and Simon (2008), Chapter 11). They are determined by the same

affinity relations and combination ratios that the affinity table spoke of. They were not

regarded as the primary causes of chemical transformation, but as an alphabet neces-

sary for writing chemical formulas, which conformed a language for speaking about this

phenomenon. They play a logical, rather than an ontological role (Bensaude-Vincent &

Simon, 2008, p. 191). Thanks to these differences, chemical atomism avoided both the

multiplication of qualities pathological of previous atomic theories, and the absurd con-

clusions of Boyle’s atomism: chemical atoms provided the basis for a theory of chemical

combination, without requiring any quality besides their weight.

Though chemical atomism bears a high debt to seventeenth century affinity theories,

it is more than a natural extension of them. Its refusal of the realist connotations of

previous atomic philosophies did not make it insensible to their influence. For instance,

half of the nineteenth century was spent solving the controversy surrounding the deter-

mination of atomic weights. The hypothesis of ‘equal number of atoms in equal volumes

of gas’, reminiscent of corpuscularism, played a key role in solving this controversy (see
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e.g. Avogadro (1811)). Also, there is a lot more than chemical atomism to the con-

temporary atomic theories in chemistry: nowadays chemists seldom doubt the reality of

atoms, or deny the influence of physics (a discipline whose atomic theory has developed

a lot closer to the corpuscularian perspective) in shaping the atomic theory they rely

on3. The important point here is that contemporary chemistry is linked to a tradition

that tried (with significant success) to account for the transformations of matter with-

out saying anything about its intimate constitution. This is not just a historical but an

epistemological link, and thus cannot be dismissed.

1.4 The network structure of chemical knowl-

edge

In the previous sections we have challenged the orthodox version of the birth of chemistry

as a proper science thanks to an atomistic tradition that goes from Boyle to the Chemical

Revolution, and then to Dalton. Historians have shown that there is no such tradition as

it has been understood: Boylean atomism was incompatible with key chemical concepts,

and Daltonian atomism had to be deprived from its most physicalist facets to be of use to

chemistry. What were once thought to be major achievements of corpuscularism, were

actually the fruits of the work of chemists who opposed the corpuscularian enterprise,

opting instead for a very different approach.

Still, the most physicalist forms of atomism have had an influence in the development

of chemistry, becoming increasingly prominent at the end of the nineteenth century and

in the early twentieth century, with the appearance of the program of research on the

structure of the atom. Saying that chemistry is a science concerned with atomic theories

on the constitution of matter is not wrong, but incomplete. There exists another way to

engage the study of the transformations of substances, which today is conjugated with

the approach configured by the influences of corpuscularism, newtonianism, etc. At its

core, contemporary chemistry is the fruit of the interplay between these fundamentally

different epistemic approaches.

The picture of chemistry as a science standing on the verge of two opposing epistemic

perspectives is not new. Schummer (2008), for instance, proposes that the coexistence

of two opposing epistemic perspectives, the form perspective and the stuff perspective,

is a remarkable characteristic of contemporary chemistry. Though at some point we

3Then again, its influence is probably over-estimated. Late-twentieth century studies of the

assimilation of quantum mechanics by the chemical community show that, to a large extent,

it played a role not unlike that of mechanistic corpuscularism in the seventeenth century: it

provided legitimacy to the discourse of chemists, who nonetheless kept working as they had pre-

viously, “with the comforting feeling that the most sophisticated theory in modern mathematical

physics supported their actions” (Sutcliffe, 1996, p. 649).
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will deviate from his proposal to present a different take on the matter, many of his

ideas, particularly those regarding the logical structure of chemical knowledge, are key

to developing our own picture.

According to Schummer, a material property is “reproducible behavior within cer-

tain reproducible contextual conditions” (Schummer, 1998, p. 4). Contextual condi-

tions can be made explicit by distinguishing contextual factors, e.g. mechanical forces,

thermodynamic factors, electromagnetic fields, or other chemical substances. Material

properties can be systematically defined by reference to one of these contextual factors

while standardizing the others (Schummer, 1998, p.4).

Chemistry deals with relations established among substances as they interact to

undergo radical change (Schummer, 1998, p. 4). Chemical properties thus are material

properties defined by reference to the chemical factor, i.e. with respect to other chemical

substances they react with and transform into. In these terms, substances and reactions

turn out to be the core entities of chemistry.

Chemical properties are determined by chemical reactions. From the logical point of

view, the latter are “asymmetrical relations with two classes of relata: initial chemical

substances before the change and different chemical substances afterwards” (Schummer,

1998, p. 9). Chemical properties, then, are intrinsically relational properties that

summarize the behavior of substances when they are put together, while keeping other

contextual conditions controlled. A typical chemical property would state: “under

certain conditions, the combination of A and B produces C and D”. Here A-D are “stuff

kinds” (Schummer, 2008), e.g. they may be either substances or classes of substances.

The key point is that chemistry emphasizes the relational nature of its entities.

Chemistry does not study isolated objects: chemical properties only arise when the

objects are put in relation to one another. In this way, chemical knowledge conforms

a network structure within which properties are defined, substances are classified, and

predictions are made (Schummer, 1998).

This take on chemical knowledge allows us to construct a clearer picture of the

differentiation of two epistemic perspectives to chemistry: when chemists rejected the

“reduction of qualities to other parameters”, such as shape and motion in mechanistic

corpuscularism, they where rejecting an epistemic approach that intended to explain

the complexity of the vast network of chemical reactions by means of a small set of at-

tributes of the isolated substances. This project yielded little success in the seventeenth

century because of the high selectivity exhibited by substances in their transformations,

which forced the introduction of more and more attributes to explain a phenomenon

that resisted being reduced to a simple law of interaction (Bernal & Daza, 2010). Op-

posing this approach, chemists endeavored to work the other way around: exploit the

complexity of this network to construct the properties of the substances. Cornerstone

chemical properties were not essential qualities of the substances that determined their

behavior in chemical reactions; on the contrary, they were derived from the behavior of
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the substance when undergoing chemical transformations.

Let us now formulate this thesis on more formal terms.

1.5 The ontology of chemical concepts: relations

and properties 4

In the previous section we opposed the relational properties that conform the core of

chemical knowledge with the primary qualities of the ultimate constituents of the world

that intend to explain this knowledge on some corpuscularian philosophies. At this

point, we drop the term “relational property”, and instead reserve “property” to refer

to qualities of the entities that are proper of them as individuals, and use “relation” to

refer to qualities that require more than one entity to be predicated, but do not demand

reference to their properties. For example, mass is a property of a body, inasmuch as

we declare e.g. a body to have a mass of 100g without requiring a reference to other

bodies; on the other hand, a predicate such as “sodium combines with oxygen” speaks

of a relation, as it unavoidably refers to both sodium and oxygen, two different entities,

but we do not need to know the properties of sodium or oxygen to state that they

combine.

In this way, two opposing epistemic approaches can be formulated in terms of the

ontological priority of those two basic categories: in one perspective, properties of the

entities define their identity, which is then independent of their relations. The former

could, in these terms, be seen as determining the later. A theory adopting this perspec-

tive would aim at deriving the relations of one object with the others from its intrinsic

properties. In the other perspective, relations are prior to any property of the individual

entity, which then has no existence prior to being related. The nature of the related ob-

ject cannot be derived from its intrinsic properties, as in this approach there is no such

thing as an isolated entity to which we could attach some fixed attributes. Relations

determine the identity of the object along with all its properties, so that the work of

the researcher consists in deriving the attributes of each object from emerging patterns

on its relations. The first perspective ascribes to an ontology of external relations, while

the second is linked to an ontology of internal relations5(Ferrater-Mora, 2004).

4The ideas introduced on this chapter have a non-incidental similarity with those introduced

in Bensaude-Vincent and Simon (2008), particularly in Chapter 12: “Agency and Relations”.

For an account of the most notable differences between their thesis and ours see Bernal and

Daza (2010), pp. 6-7.
5Note that our use of the word “ontology” does not point to an ultimate reality. In fact, by

formulating the distinction of two approaches in the present terms, we are making sure that we

keep our discourse within the space of our world representations, avoiding any claims regarding

the ‘real’ nature of the world itself. For instance, we are avoiding the still popular distinction
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The choice between each approach is taken according to their epistemic potential,

which depends on the features of the phenomena being researched. To illustrate this

point, let us go back to the impact of the selectivity of the phenomena of metallic sub-

stitution and displacement in the failure of seventeenth century corpuscularian models

of chemistry. When strong relation selectivity is involved, a complex variety of behav-

iors arises that can hardly be subsumed under an unique law that describes the system

through a proper set of attributes of the individual objects. If attributes of the objects

are supposed to account for their relations in a reasonably simple way, but the objects

display complex, varied preferences in who they relate with, external relation theories

force the researcher to ascribe more and more attributes to the objects, in order to

account for their different preferences. This is what happened to Nicolas Lemery when

he attempted to account for selective dissolution from a corpuscularian ontology: com-

mon relations of the acids, e.g. those defined by their ability to dissolve metals, were

explained by attributing the quality of being pointed to their particles. But then, to ex-

plain the preferences of some acid preparations for certain metals, additional attributes

of the particles were required. Each new observation of selective interaction required

an ad hoc mechanism and/or a new attribute of the bodies. This is what lead to the

proliferation of different corpuscles that gained him the scorn of his colleagues. Adopt-

ing mechanistic corpuscularism for the study of chemical phenomena was problematic

because the mixt of external relations and selective relations easily leads to a violation

of Occam’s razor principle. On the other hand, in this situation an ontology of inter-

nal relations naturally uses relation selectivity as a mean to describe the entities being

related.

Therein lays the root of Geoffroy’s success. In his system, the smooth, round,

and small corpuscles of Lemery could be replaced by simple letters designating each

substance. Like Lemery’s corpuscles, pure substances in Geoffroy’s system acted as

fundamental units for a theory of chemical change; unlike Lemery’s corpuscles, they are

primarily devoid of qualities, they exist only as anchor points for relations. In Geofrroy’s

approach, qualities of the substances (or of its ultimate corpuscular constituents) need

not and cannot explain the selectivity of their relations: relation selectivity determines

the identity and qualities of the substances.

At the other end of the spectrum, consider e.g. the success of the coulombic approach

to the study of electrostatic phenomena. Within this phenomenological domain, any

between objective “primary qualities” of the “thing itself”, and subjective “secondary qualities”

that depend on the observer. For us, properties and relations are categories in the conceptual

universe of our scientific theories. When marking the distinction between external relations

and internal relations, we are just pointing that, in our scientific models, sometimes relations

between the entities are conceived (they ‘come into being’) before properties of the entities

themselves, while some other times we work it out in exactly the opposite way. We are dealing

with epistemic, not metaphysical perspectives.
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body interacts with any body, with just two opposing effects: attraction, or repulsion.

There is no selectivity in the relations between the entities, which fits the external

relations approach perfectly: we can abstract a property ascribed to each of the bodies

by themselves (charge), conceive it as existing prior to any interaction, and formulate

a simple law that allows a deductive reconstruction of all possible relations within the

reach of this material context6. On the other hand, in this situation a theory of internal

relations would tell us little more than that all bodies are alike.

The ontology of internal relations is probably attached to an older chemical tra-

dition than the ontology of external relations. We already saw that the identification

of substances with their relations played a central role in the success of the first theo-

retical accounts of metallic dissolution, showing that this approach was characteristic

of chemistry as early as the eighteenth century7. The first major successes of external

relations theories of chemistry came later, perhaps as late as the nineteenth century,

in the form of the electro-chemical theory. This situation causes the internal relation

ontology to lay closer to the fundamental core of the chemical approach, as it underlies

the genesis of its most ancient concepts and heuristics. Particularly, it lays closer to the

establishment of its empirical field.

As a consequence, the internal relations approach has priority over its counterpart

in one sense: it provides the ultimate criterion for contrasting chemical models with

empirical evidence. When their theories enter a period of crisis, chemists prioritize the

unique identity given to substances by their mutual relations over the unique identity

given by their intrinsic properties. This assertion is illustrated e.g. by Laurent’s rejec-

tion of the most fundamental principles of the electro-chemical theory when confronted

with the phenomenon of chlorine substitution (see e.g. Bensaude-Vincent and Simon

(2008), p. 204, and Bernal and Daza (2010), pp. 91-94). As Berzelius showed, the dual

compound formulas of electro-chemical theory could be modified to encompass the new

phenomenon. Of course, this implied the use of ad hoc hypotheses, but such procedure

is not strange to science, nor was Laurent’s main criticism directed towards that point.

Instead, he pointed that, under the fundamental axioms of electro-chemical theory, the

formulas proposed by Berzelius implied that the corresponding compounds were bound

to react in a very different way from what was observed8. The ad hoc hypothesis in-

6We have not mentioned bodies of zero charge, who do not interact at all. Those bodies

do not pose any problem to the external relations approach, as their lack of interaction is also

entirely non-selective.
7This thesis has been defended on similar terms by Kim (2003) and Bensaude-Vincent and

Simon (2008), who present more extensive historical evidence.
8Laurent is very explicit regarding his point of dissension. For instance, he tells how, upon

receiving his memory on chlorine-substituted derivatives of isatine, Berzelius “endeavored to

show that the chloro-derivatives of isatine, isathyde, &c, were, the one a sub-porrindinous sub-

hypochlorite, the other a fluvidinous hypochlorite, and a third and acid of rubindene, &c.”. In re-
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troduced to save the theory actually destroyed it, as the unmodified theory was no

longer able to provide an explanation for the empirical phenomena it was supposed to

explain by means of the modified formula. Adopting the internal relations perspective

was key in detecting and understanding the powerful consequences of this problem, and

in pointing a way out of the crisis. Both Laurent’s and Gerhardt’s work went back

to the approach set by the affinity theories of the seventeenth century, dismissing the

matter of atomism and the intrinsic structure of matter as irrelevant, opting instead for

a classificatory method not unlike Geoffroy’s9.

Chemist’s resistance to the existence of noble gases in the late nineteenth century

provides another example of the preponderance of relations over properties when threats

to the foundations of chemistry appear. Though we could not speak properly of a crisis

here, chemist’s resistance to admit an unrelated entity was so strong that Mendeleev

even felt that argon threatened the stability of his periodic system (Bensaude-Vincent,

1986). The question in debate was not whether such an entity could exist in absolute

terms, but whether it could be defined within the field of chemistry: even if the me-

chanical and thermodynamic properties of the substance had been determined, it could

not be characterized in chemical terms unless it was forced to react (Bernal & Daza,

2010, pp. 94-98).

In the end, the main goal of chemistry is to describe transforming substances. It

speaks ultimately of entities in mutual relation. It is thus not by chance that its core

experimental methods are synthesis and analysis, which are closer to the identification

of substances with their interactions and transformations than to the explanation of

those relations by reference to the intrinsic properties of the entities. When chemistry

faces a theoretical crisis, prioritizing the internal relations approach ensures that the

empirical phenomena that conform its field stay at the core of the controversy. This

prevents the discussion from going astray, endeavoring to achieve consistency within

the family of properties that characterize the individual structure of each substance,

without warranting that they are also consistent with the phenomena that define the

chemical context of materiality.

The previous argument, however, should not be miscontructed as a call for the

absolute methodological priority of the internal relations approach. The situation we

are presenting is not one of a confrontation between two epistemic alternatives, with

ply, Laurent exclaims: “A sub-hypochlorite volatile without decomposition! A sub-hypochlorite

undecomposable by sulphuric acid! A sub-hypochlorite without action upon vegetable colouring

matters! [...] It is almost incredible.” (Laurent, 1963 (1855), p. 63).
9“[Gerhardt’s] main motivation was not to explain chemical combinations, but to classify the

huge amount of substances that had conformed an impenetrable jungle. [...] To do it, he had to

dismiss the existence of atoms, to declare the impossibility of the isolation of radicals [...] The

question regarding the force that bounds atoms would probably appear to him as metaphysic

and deprived of all scientific interest.” (Villaveces, 1989, p. 96, my translation).
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one being imposed over the other. This would underestimate the power of deductive

theories of chemistry following on the external relations approach. The construction

of such theories has proven to be a particularly hard enterprise; a difficulty that is

partially explained by the selectivity of chemical relations, as we put it before10. But

whenever they have appeared, they have enjoyed extraordinary success. Perhaps the

earliest example of such formalism is precisely the electro-chemical theory of Berzelius:

through a simple principle of dual combination of the opposites, this theory succeeded

in reducing a vast variety of chemical combinations to the scale of the electro-chemical

series11.

Yet, we should also avoid the mistake of picturing chemistry as a discipline endeav-

oring for deductive theories, with the inductive approach of internal relation theories

being used just to measure the degree of success of the former, and as a temporary

replacement when they enter in crisis. Instead, we think that chemistry is at its best

when both epistemic approaches interplay to produce a rich theoretical field.

This interplay is in broad display on chemistry’s core concepts. For instance, the

determination of atomic weights by exclusive reference to chemical combination lead to

ambiguous results that arose huge controversy among nineteenth century chemists. The

controversy was settled by Cannizzaro (1858), who brought the work of Avogadro to

the front of the chemical scene. His approach was founded on two principles: first, the

hypothesis of the existence of molecular elements, which arises from the stoichiometric

analysis of gas phase reactions in light of the laws of proportions –the internal rela-

tions approach keeps prevalence on this part. But the experimental method he used is

based on measurements of the densities of gases, a characteristic property of the isolated

substances12. Furthermore, once the controversy is settled, atomic weights move from

being a property of elemental substances that has to be determined by chemical combi-

nation, to being a property that determines the writing of formula, and thus chemist’s

predictions on viable combinations.

This double nature of chemical concepts is even clearer in the case of valence. Chem-

10It has also been noted that such theories face important epistemological problems when

dealing with radical change. See e.g. Bensaude-Vincent and Simon (2008), pp. 142-144.
11Note, however, that the polarities of the elements in the electro-chemical series are not of

the same nature as coulombic charges. If they were, each element could be identified with a

real number in such a way that their interaction would be determined by a simple algebraic

law. Actually, the ‘charge’ of each element in the electro-chemical theory is defined with respect

to the element it may combine with. The same element may have positive or negative charge

depending on its position in the electro-chemical series relative to the element it combines with.

On this light, not even the electro-chemical theory provides an example of a chemical theory

strictly attached to an ontology of external relations.
12We previously noted the role that the hypothesis of ‘equal number of atoms in equal volume

of gas’ played in the adoption of this empirical method. But even if we ignore this fact, it is

clear that density is not a property defined by reference to chemical combination.
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ical valences first appeared on Frankland’s communication “On a New Series of organic

bodies” (Frankland, 1963 (1852)). The main body of the text reports the synthesis of a

series of organo-metallic compounds, along with their characterization through chemical

analysis. Organo-metallic compounds were a novelty at the time; yet the classic status

of the paper comes from a paragraph near the end, whose implications concern not just

the theory of organo-metallic compounds, but the whole body of chemistry:

“When the formulae of inorganic chemical compounds are considered,

even a superficial observer is struck with the general symmetry of their

construction; the compounds of nitrogen, phosphorus, antimony and ar-

senic especially exhibit the tendency of these elements to form compounds

containing 3 or 5 equivs. of other elements an it is in these proportions

that their affinities are best satisfied [...] Without offering any hypothesis

regarding the cause of this symmetrical grouping off atoms, it is sufficiently

evident, from the examples just given that such a tendency or law prevails,

and that, no matter what the character of the uniting atoms may be, the

combining power of the attracting element, if I may be allowed the term, is

always satisfied by the same number of atoms. It was probably a glimpse of

the operation of this law amongst the more complex organic groups, which

led Laurent and Dumas to the enunciation of the theory of types; and had

not those distinguished chemists extended their views beyond the point to

which they were well supported by then existing facts, –had they not as-

sumed, that the properties of an organic compound are dependent upon

the position and not upon the nature of its single atoms, that theory would

undoubtedly have contributed to the development of the science to a still

greater extent than it has already done.” (Frankland, 1963 (1852), p. 104)

Here, in the inception of the concept of valence, we find a clear instance of the

internal relations approach: the extensive reports on the synthesis and analysis of a

series of compounds leads to the identification of fixed proportions attached to the

combinations of certain elements. But then, as experimental evidence accumulates, a

principle of induction allows valences to become intrinsic and fixed attributes of the

elements. Chemists move from determining valences from the chemical formulas to

using valence as a guideline for deducing the formula of new compounds, and in turn,

to predict what reactions are they expected to undergo. Atomic models such as that

of Lewis furthered this shift, moving valence closer to a research program aimed at

understanding the intimate structure of matter. Yet, when a compound combines in

a way that resists to fit known standards, chemists surrender to the weight of the

evidence of chemical relations, and declare it a substance with ‘non-standard valence’.

The anomaly poses a challenge to structure theory, but does not prevent chemists from

exploiting the epistemic potential of the newly found valence. Analogous combinations
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are proposed and tested, configuring a local feature of the network of chemical reactions

that determines the novel behavior, and that may eventually point to an answer to the

challenge. Sooner or later the anomaly fades, and a new standard valence is included

among the properties of the relevant element, thus completing another iteration of the

cycle13.

Internal and external relations ontologies offer two different epistemic perspectives,

but neither is the chemical perspective. Perhaps Geoffroys’ table could be seen as a

theory of internal relations, but that is no longer the case in chemistry. The previous

examples show how both perspectives are inextricably entangled in chemical theories.

Disentangling them would only attain an epistemic purity of questionable value, at the

price of destroying centuries-old achievements.

1.6 Structure and activity

Chemistry is the science of substances and transformations. Its experimental practice

has been dominated over the centuries by synthesis and analysis. The experimentalist

faces a picture of a huge family of substances that interact with complex selectivity.

The selectivity of these phenomena enforces the adoption of an epistemic perspective

that regards substances as fundamentally related entities, and tries to derive their prop-

erties from the relation pattern embodied in a chemical reaction network. We propose

to reserve the term chemical activity to refer to the study of the transformations of

substances following this internal relations approach

But the pursuit of its ultimate goal has connected chemistry to a research program

concerned with the intimate structure of matter. After some unsuccessful attempts at

its origins, chemistry has found the abstraction of an isolated entity endowed with some

characteristic properties to be a useful mean to attain its objective. This abstraction

is particularly strong in contemporary atomism, but such is not its only instance in

the theory of chemistry. When we derive a molecular Hamiltonian from the charges

and masses of the atomic constituents of a molecule, when we compute electrostatic

fields and other molecular descriptors from quantum mechanical calculations, when we

use graph-theoretical descriptors to characterize substances, we are attaching to an

epistemic approach that characterizes our entities through their intrinsic properties,

which then become determinants of their mutual interactions. Whenever we are taking

this particular epistemic approach, we are talking of chemical structure.

13It is interesting to note that IUPAC has a comprehensive rule for compounds with non-

standard valences (IUPAC, 1982). This peculiar ‘standard for the non-standard’ illustrates

the appealing paradox that arises as a consequence of the interaction between two opposing

epistemic perspectives: anomalies of structure theory are quite normal and dealt with without

apprehension.
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Structure and activity, then, appear not as different concepts in an homogeneous

theoretical field, but as opposing epistemic perspectives that interplay in our contem-

porary chemical theories. Neither can claim to be more fundamental than the other. In

these terms, the current formulation of the SAR principle in chemistry seems too naive:

chemical structure cannot claim to be a determinant of chemical activity, since there

has never been anything like a ‘pure’ structural model that has successfully determined

a ‘pure’ activity model.



Chapter 2

Foundations for a mathematized

theory of internal relations

“Mathematicians do not study objects, but relations among objects; they are indifferent

to the replacement of objects by others as long as relations do not change.”

–Henri Poincaré

Within the internal relations perspective, an experiment provides information that

comes in the form of a relation between empirical entities. Properties of the entities

are not immediately given by the experiment. In consequence, one of the main goals of

a theory of internal relations is to induce characteristic properties on each element of

a delimited universe of study that are determined by its relations with the remaining

elements. On this chapter we present a mathematical methodology for assessing this

challenge.

From a mathematical point of view, the information accumulated through a series

of such experiments can be represented as a structured set, whose elements represent

the subjects of study, and whose structure embodies their relations. Different systems

may exhibit different kinds of relations among their entities, which demand different

mathematical representations –e.g. graph-theoretical, algebraic, or topological. In prin-

ciple, this suggests that we must deal with the problem of inducing properties ad hoc.

However, category theory offers a characterization of structured sets that transcends

the frontiers between different branches of mathematics, thus allowing the formulation

of a general methodology for the induction of properties on internally related entities.

A category consists of a collection of structured sets, along with a collection of

structure-preserving transformations between them, known as morphisms. Intuitively,

a structure-preserving transformation relates the elements of a structured set with those

of another structured set while respecting the relevant structural features of the original

set. The collection of structure preserving transformations with domain on any given



22 2 A mathematized theory of internal relations

set within a category provides the primary and complete characterization of that set’s

structure. Each of these transformations induces a classification on the domain set,

which unveils common properties of its elements, determined by the particular structural

features reflected in the transformation under consideration. In this way, each structure-

preserving transformation allows for a characterization of the relational structure of a

system of internal related entities in terms of properties of its constituents.

Section 2.1 introduces the fundamental definitions and ideas of category theory that

we will rely on1, while Section 2.2 presents a more detailed description of the mathemat-

ical methodology sketched above. Then, on Section 2.3 we show how morphism-induced

classifications provide a natural link with Formal Concept Analysis2, that allows us to

go further by describing the conceptual field defined by the properties induced by a

morphism.

Section 2.4 introduces the idea of equivalent categorical representations of a system

of internally related entities. In principle, the system is uniquely represented by means

of a set in a category that matches the logical structure of the relations among the enti-

ties being studied. However, categories are related by functors, i.e. structure preserving

transformations between whole categories. In particular, pseudo-isomorphic functors

know as natural isomorphisms relate categories that are identical regarding all their

category-theoretical properties. This means that actually there is not a unique cate-

gorical representation of a particular system: any member of a collection of categories

related by natural isomorphisms provides exactly the same information. We may then

use functors to perform changes of representation, i.e. to transform e.g. an algebraic

representation of our system of study into an equivalent topological or graph-theoretical

image. The cognitive value of such changes comes from the fact that the new represen-

tation may unveil important patterns that, though present in any equivalent category,

may have remained obscure in the original. Also, they provide the ultimate criterion of

equivalence between different mathematical models.

Oftentimes we consider some classifications on a set of interest to be better than

others –for instance, a classification in unitary classes is generally undesired, though

it adequately matches the structure of pretty much any set we could think of. This

preference for some specific classification(s) comports the existence of a criterion of op-

timality. Section 2.5 considers the matter of defining such criterion. In principle, we

would expect classification optimality to be accountable in terms of the basic mathe-

matical framework of the model we are proposing –that is, in terms of category theory.

However, in our model different classifications on a given set are associated with different

morphisms in its corresponding category, and we see no reason to prefer any morphism

1Definitions, propositions, and examples introduced in this section were taken from Awodey

(2006).
2Definitions and propositions presented in this section were taken from Carpineto and Ro-

mano (2004).
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over the others from a strictly category-theoretical point of view. This forces us to

handle the problem of classification optimization ad hoc. Thus, classification optimality

is introduced by means of a measure function that weights the adequacy of each viable

morphism according to factors that are not necessarily determined by the categorical

structure of the system of study.

Last, on Section 2.6 we summarize the formalism proposed, going from its most

general to its most specific elements.

All along the chapter we will use several examples to illustrate our ideas. We tried to

present examples that go beyond the realm of chemistry, to emphasize the broad reach

of the methodology. They link known methods of cluster analysis and network anal-

ysis, whose utility goes across the boundaries of scientific disciplines, to the category-

theoretical formalism proposed. The application of the formalism to the specific case of

chemical activity is left for the next chapter.

2.1 Mathematical background: category theory

The notion of a structure-preserving transformation is ubiquitous in mathematics. In

group theory we have group homomorphisms, transformations that map one group in

another while respecting their algebraic structure; in topology we have continuous func-

tions, that map open sets into open sets, thus preserving the topological structure of the

space; in graph theory we have adjacency-preserving mappings that preserve adjacency,

and so on. If the mapping has an inverse it lets the structure of the space completely

untouched; in such case we further speak of isomorphisms or homeomorphisms, trans-

formations that define a criterion of identity between mathematical constructions. This

notion that has emerged in different branches of mathematics is generalized in category

theory through the definition of morphism.

Definition 2.1 (Category). A category C consists of a collection C0 of objects and a

collection C1 of morphisms such that

i) For each f ∈ C1 there exist a unique object Dom(f) ∈ C0 called the domain of f

and a unique object Cod(f) ∈ C0 called the codomain of f . A morphism f with

Dom(f) = A and Cod(f) = A is noted as f : A→ B.

ii) For each A,B,C ∈ C0, f : A→ B, and g : B → C, there exists a unique morphism

g ◦ f : A→ C in C1 called the composite of f and g.

iii) For each f, g, h ∈ C1, h ◦ (g ◦ f) = (h ◦ g) ◦ f

iv) For each A ∈ C0 there exists a morphism 1A : A → A in C1, called the identity

morphism of A, such that for all B ∈ C0, f : A→ B, and g : B → A, f ◦ 1A = f

and 1A ◦ g = g.
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Definition 2.2 (Isomorphism). Let C be a category. A morphism f : A → B is an

isomorphism if there is a g : B → A such that f ◦ g = 1B and g ◦ f = 1A. In such case

it is said that g is the inverse of f (from now on noted f−1), and that A and B are

isomorphic, which is noted as A ' B

Example 2.3.

i) The category Sets of sets and functions. Function composition and identity functions

are defined in the usual way. Isomorphisms in this category are bijective functions.

ii) The category Top of topological spaces and continuous functions. Function compo-

sition and identities are defined as in Sets, which is correct because identity functions

are continuous, and the composition of two continuous functions is continuous. Isomor-

phisms in this category are homeomorphisms.

iii) The category Graphs (Digraphs) of graphs (directed graphs) and adjacency-preserving

mappings. Function composition and identities are defined as in Sets, which is correct

since the identity mapping on the vertex set of a graph (digraph) preserves adjacency,

and so does the composition of adjacency-preserving mappings. Graph-isomorphisms

provide the isomorphisms of this category.

iv) The category Met of metric spaces and metric maps. Composition and identities are

once more defined as in Sets. Isomorphisms in this category are isometries.

v) The category Pos of partially ordered sets (POSETs) and monotone functions. Iso-

morphisms in this category are order isomorphisms.

vi) The category Rel of sets and binary relations. Composition of two relations r ⊂
X × Y and Y × Z is defined by

s ◦ r = {(x, z) : there is a y ∈ Y such that (x, y) ∈ r and (y, z) ∈ s}, (2.1)

and the identity on X is the identity function on X. Isomorphisms in this category are

also bijective functions.

* * *

Category theory does not limit to offering a general formulation of a key concept in

mathematics. It goes beyond, by intently avoiding all concepts that cannot be derived

from the family of structure-preserving transformations characteristic of each object

or collection of objects in a category. Though this may seem as a harsh constraint,

the fact is that most concepts in many branches of mathematics can be formulated

within category theory (Awodey, 2006). For instance, the category-theoretical definition

of isomorphism perfectly matches the different definitions of isomorphism in algebra,

topology, etc.3. This generality shows that the philosophy of mathematics, as seen by

3Once more, we refer the reader to (Awodey, 2006) for the details.
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category theory, is not unlike that of chemical activity: it does not matter what an

object is ‘made of’, but just what it can transform into. In this way, category theory

unveils the nature of formal mathematics as a discipline ascribed to an ontology of

internal relations –which, of course, perfectly fits our present interest.

One of the most interesting facts of category theory is that categories conform a

category themselves. Mappings from objects to objects and morphisms to morphisms

known as functors provide the morphisms on this category.

Definition 2.4 (Functor). Let C,D be two categories. A functor is a mapping F : C→
D of objects to objects and morphisms to morphisms such that:

i) F (f : A→ B) = F (f) : F (A)→ F (B)

ii) F (g ◦ f) = F (g) ◦ F (f)

iii) F (1A) = 1F (A).

To avoid confusion, FA is used to denote the image of object A under F , and F (f) is

used to denote the image of morphism f under F .

Proposition 2.5. The collection of all categories with functors as morphisms is a

category.

The category Cat of categories and functors thus provides a setting from com-

paring structures of many kinds (Awodey, 2006). Isomorphisms in Cat immediately

stand out as particular relevant, since isomorphic categories are equivalent regarding

all their category-theoretical properties. Isomorphisms in Cat thus allow us to move

between different mathematical structures (algebraic, topological, etc.) that are ulti-

mately equivalent, so that we can “specialize the theory” for each concrete application

(Awodey, 2006, p. 125).

But presently, isomorphisms are more restrictive than required for a criterion of

equivalence between categories. This is due precisely to the fact that relevant category-

theoretical properties are invariant ‘up to isomorphism’. Two categories, then, could be

regarded as equivalent if their properties are equivalent ‘up to isomorphism’. The most

powerful definition of category equivalence is thus not given by isomorphism in Cat,

but by a functor that, intuitively, constitutes an ‘isomorphism up to isomorphism’. We

now proceed to define this notion of equivalence on formal terms; but first, we require

an auxiliary definition:

Definition 2.6 (Natural Transformation). Let C and D be two categories. Let F :

C → D and G : C → D be two functors. A natural transformation ϑ : F → G is a
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collection (ϑC : FC → GC)C∈C0 of morphisms in D such that for any f : C → C ′ in C,

ϑC′ ◦ F (f) = G(f) ◦ ϑC . This can be expressed by means of the diagram:

FC
ϑC−−−−→ GC

Ff

y yGf
FC ′ −−−−→

ϑC′
GC ′

In that case, it is said that ϑC is the component of ϑ at C.

Note that each component of ϑ transforms the image of an object under F into

the image of the same object under G, while preserving consistency with the relevant

morphisms. A natural transformation thus provides a way of transforming functors

into functors while respecting the internal structure of the categories involved. In fact,

natural transformations act as morphisms in a category whose objects are functors.

Proposition 2.7. Let C and D be two categories. The collection of functors F : C→ D

along with natural transformations ϑ between those functors conforms a category. This

category is known as Fun(C,D), and its isomorphisms are known as natural isomor-

phisms.

Proof (Sketch). For each functor F the composite transformation of natural transfor-

mations ϑ and φ has components

(φ ◦ ϑ)C = φC ◦ ϑC (2.2)

and the identity morphism 1F has components

(1F )C = 1FC : FC → FC. (2.3)

The strict criterion of equivalence of categories is isomorphism in Cat. According

to Definition 2.2 two categories C and D are isomorphic if there exists an invertible

functor between them, that is, if there are functors F : C→ D and G : D→ C such that

G ◦ F = 1C

F ◦G = 1D
(2.4)

As discussed previously, we can relax this criterion and regard two categories as equiv-

alent if their properties are identical ‘up to isomorphism’. This can be expressed by

demanding not that the compositions of functors above give the identity functors 1C
and 1D respectively, but that they give functors that are isomorphic to the identities,

i.e. that are related to them by natural isomorphisms in Fun(C,C) and Fun(D,D)

respectively.
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Definition 2.8 (Equivalence of Categories). An equivalence of categories consists of a

pair of functors

F : C→ D

G : D→ C
(2.5)

and a pair of natural isomorphisms

α : 1C → G ◦ F in Fun(C,C)

β : 1D → F ◦G in Fun(D,D).
(2.6)

In this situation, it is said that G is a pseudo-inverse of F , and that C and D are

equivalent, written C ' D.

It is important to note that the existence of an object to object mapping between two

categories is not enough to prove their equivalence, even if that mapping is invertible.

This fact will be of great relevance in the next chapter, when we choose an adequate

mathematical image of chemical reaction networks.

Following we introduce a proposition that is very useful for determining if two cat-

egories are equivalent, as it avoids the need of finding a pseudo-inverse. Before we do

so, we require two auxiliary definitions:

Definition 2.9. Let C be a category and A,B ∈ C0. The set HomC(A,B) is defined as

the set of all morphisms f : A→ B in C1.

Definition 2.10. A functor F : C→ D is said to be:

i) faithful if for all A,B ∈ C0, the map

FA,B : HomC(A,B)→ HomD(FA,FB) (2.7)

defined by f → F (f) is injective.

ii) full if for all A,B ∈ C0, FA,B is surjective.

iii) essentially surjective on objects if for each D ∈ D there is some C ∈ C such that

FC ' D.

Proposition 2.11. The following conditions on a functor F : C→ D are equivalent:

i) F is (part of) an equivalence of categories.

ii) F is full, faithful, and essentially surjective on objects.
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2.2 Categories, classifications, and properties

As we said at the beginning of this chapter, we can represent a system of internally

related entities by means of a structured set. Now we will think of this set in the

context of a category. Morphisms in the category say everything there is to say about

that set’s structure, and how it relates to the structure of other sets of the same kind.

We want these morphisms to refer explicitly to the elements of the set, so that the

former can be used to characterize the later.

So let us consider the case of subcategories of Rel, i.e. set categories where a

morphism from set X to set Y is a binary relation r ⊂ X × Y that is structure-

preserving in some appropriate sense. Each r in the category describes a structural

feature of its domain, by linking the structure of this set with that of the codomain

set. This characterization of the global structure of the domain can be extended into a

characterization of its individual elements, by considering the specific pairs of elements

that conform the relation: for any x ∈ X, the set of y ∈ Y related to x by a (x, y) ∈ r
gives the full family of structural descriptors of x determined by this particular morphic

representation. In other words, each y ∈ Y can be regarded as a property characteristic

of each element of X that is related to y by r.

For the sake of clarity, let us reconstruct the previous argument more formally for

the particular case where r is a function f : X → Y . The binary relation ker f defined

by

ker f = {(x, x′) ∈ X ×X : f(x) = f(x′)} (2.8)

is known as the kernel of f . It follows immediately that ker f is an equivalence relation,

so that it induces a partition of X in equivalence classes Cy = {x ∈ X : f(x) = y} for

each y ∈ Y . Intuitively, each Cy defines a class of elements of X that are ‘equivalent

as far as f can tell’. Since f is structure-preserving, the fact that it cannot tell two

elements of X apart means that they are identical regarding the particular structural

features captured by f . In this way, f naturally induces a classification of the elements

of X according to the set’s structure.

In the broadest sense, a class may be defined as a collection that can be characterized

by some properties that all its elements share. Since our objects did not have any

properties before the classification was constructed, they must have been endowed with

some characteristic properties as the classification was build. Indeed, in the present

case the class-defining property is precisely the common image under f shared by all

elements of a given class Cy: an element y in Y . This is what suggests us to think

of Y as the set of properties that characterize the elements of X under the morphic

representation given by f . We then say that each x ∈ Cy has the property y.

In conclusion, there is a correspondence between classifications on a structured set

X and morphisms f with domain on X, as well as between classes in a classification

on X, elements of Cod(f), and structurally-determined properties of the elements of



2.2 Categories, classifications, and properties 29

X. We thus see how, in a theory of internal relations, properties of the entities are

constructed by classifying them.

The following examples show how known methods of cluster analysis can be under-

stood in terms of categories and morphism-induced classifications.

Example 2.12 (Non-hierarchical clustering). Non-hierarchical clustering aims at clas-

sifying the elements of a set according to their similarity relationships. Many clustering

techniques operate on a representation of the set to be classified in terms of a metric

space: as similarity between a pair of entities increases, the metric distance between the

corresponding elements of the metric space decreases. The goal is to produce classes

of equivalence such that elements in the same class are closer (thus more similar) to

each other than to members of other classes. In formal terms, a morphism f : X → Y

inducing an adequate classification on a metric space (X, dX) should be such that for

any x1, x2, x3 ∈ X if f(x1) = f(x2) then dX(x1, x2) ≤ dX(x1, x3). This condition is

fulfilled by demanding that

dX(x1, x2) ≤ dX(x1, x3) implies dY (f(x1), f(x2)) ≤ dY (f(x1), f(x3)), (2.9)

which also warrants that similarity between two classes reflects similarities between their

elements. We verify that mappings satisfying this condition are morphisms between

metric spaces:

i) Domain and codomain are defined as in Sets

ii) Composition is defined as in Sets. It is known that the composition of surjective

functions is surjective. It remains to prove that the composition of mappings

satisfying (2.9) also satisfies the same condition. Consider two such mappings,

f : X → Y and g : Y → Z. Let x1, x2, x3 ∈ X, such that dX(x1, x2) ≤ dX(x1, x3),

so that

dY (f(x1), f(x2)) ≤ dY (f(x1), f(x3)) (2.10)

which implies

dZ(g(f(x1)), g(f(x2))) ≤ dZ(g(f(x1)), g(f(x3))) (2.11)

or equivalently,

dZ(g ◦ f(x1), g ◦ f(x2)) ≤ dZ(g ◦ f(x1), g ◦ f(x3)). (2.12)

iii) Composition in Sets is associative.

iv) For any metric space X, the identity f : X → X in Sets trivially satisfies (2.9),

so it also gives the identity in M.



30 2 A mathematized theory of internal relations

We thus see how the goal of non-hierarchical clustering can be attained by means of

classifications in a category whose objects are metric spaces, with morphisms defined

by surjective mappings f : X → Y satisfying (2.9). We denote this category as M.

* * *

Example 2.13 (Dendrogram cuts). Hierarchical clustering constructs representations

of similarity among elements of some given data set X by means of dendrograms. A

dendrogram is a particular type of binary tree, that can be defined as a rooted tree T

such that each parent node has exactly two children (see Figure 2.1). The leaves of the

dendrogram represent the elements of X, and the similarity between two elements is

determined by the length of the longest geodesic going from either of the corresponding

leaves to their nearest ancestor. A classification is represented as a ‘cut’ of the den-

drogram, graphically illustrated in Figure 2.1 (b): the dendrogram is partitioned in a

collection of disjoint subtrees, each one determining an equivalence class conformed by

its leaves.

Let us see how can we define dendrogram cuts as morphisms in a category of den-

drograms. First, to emphasize the special character ascribed to the leaves of the rooted

tree of the dendrogram, we more strictly define a dendrogram as a pair (X,T ), where

X is a set and T is a rooted tree with leaf set X and such that each parent node has

exactly two children. Then, for any two dendrograms (X1, T1), (X2, T2), we define a

dendrogram cut as a mapping f : X1 → X2 such that

i) T2 is a rooted subtree of T1 with the same root node

ii) there is a mapping f ′ : VT1 → VT2 such that f ⊂ f ′ and for any v ∈ VT1 f ′(v) is

the closest ancestor of v (including v itself) that is a vertex in VT2 .

Figure 2.1 (b) illustrates the link between this definition and the pictorial notion

of a dendrogram cut. We are constructing a mapping from the rooted tree of the

dendrogram to the subtree starting just ‘above the cut’, that preserves the ancenstor-

descendant relationships of the dendrogram: vertices ‘below the cut’ are mapped by

f ′ into their closest ancentors ‘above the cut’, and vertices above the cut are mapped

by f ′ into themselves. Leaves of T1 are necessarily mapped into leaves of T2, so that

equivalence classes are given by the kernel of f as desired.

Now we verify that dendrogram cuts defined in this way are morphisms in a category

whose objects are dendrograms.

i) Domain and codomain are defined as in Sets

ii) Composition is defined as in Sets. We prove that the composition of dendrogram

cuts is a dendrogram cut: let f : X1 → X2 and g : X2 → X3 be two dendrogram
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cuts, and let v ∈ VT1 . Then, either f ′(v) is a closest ancestor of v in T2. In turn,

g′ ◦ f ′(v) = g′(f ′(v)) is a closest ancestor of f ′(v) in T3, which by transitivity is a

closest ancestor of v in T3.

iii) Function composition in Sets is associative

iv) For any dendrogram (X,T ), the identity f : X → X in Sets is a dendrogram cut,

with f ′ : VT → VT .

Thus, dendrograms along with dendrogram cuts conform a subcategory of Graphs that

embodies all classifications attainable in several hierarchical clustering methodologies.

We will note this category as T.

Figure 2.1: A cut of a dendrogram on the set {a, b, c, d, e, f, g, h}: (a) seen as a decomposition

of the dendrogram in subtrees; (b) seen as a morphism f in the category of dendrograms T.

Leaves of Cod(f) are labeled with the corresponding classes in ker f . Dotted arrows represent

the associated mapping f ′.

* * *

Example 2.14 (Regular equivalence and block modelling). Block models are central

tools in social network analysis. A social network may be represented as a graph whose

vertex set V represents actors, and whose edge set E represents social relations between

the actors. A role assignment is a classification of actors according to their social role.

In general, a role assignment may be seen as a surjective mapping f : V → W onto a
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set of roles W . A role assignment is regular if for each u, v ∈ V , f(u) = f(v) implies

f(N(u)) = f(N(v)), where N(u) is the set of neighbors of u in G. In such case, we say

that u and v are regular equivalent. The rationale behind this definition is that actors

of a given role interact with actors of the same given subset of roles.

Consensual social links between roles are summarized by means of block models. For

a given graph G = (V,E) and a regular role assignment f , a block model B is the graph

with vertex set f(V ) such that (f(u), (fv)) is an edge in B if and only if (u, v) ∈ E.

From this definition it is clear that f is a surjective adjacency-preserving mapping from

G onto B. A regular role assignment then gives a classification of G in the category

Graphs.

* * *

Now, we generalize the previous construction for a category where morphisms are

arbitrary binary relations. The main difference is that now kernels are not necessarily

equivalence relations, so that the classifications that they induce are conformed by

possibly non-disjoint classes, and in consequence each element of the structured set

may be characterized by more than one property.

Definition 2.15 (Kernel of a relation). Let X,Y be two sets, r ⊂ X × Y be a binary

relation, and P(X) be the power set of X The kernel of r is the binary relation defined

by

ker r = {(x1, x2) ∈ X : there is a y ∈ Y such that (x1, y) ∈ r and (x2, y) ∈ r} (2.13)

Note that whenever r is a function this definition becomes identical to (2.8), as

desired. In analogy to that case, the kernel of a relation induces a classification on its

domain set whose classes are given by the ‘pre-images’ of the elements of the codomain

of r. In this way, the mapping ker r : Y → P(X) defined as4

ker r(y) = {x ∈ X : (x, y) ∈ r} (2.14)

provides a classification of X in possibly non-disjoint classes. Non-disjointness appears

whenever there are (x1, y), (x2, y) ∈ r such that x1 6= x2, that is, whenever r is not

a function. Otherwise, the mapping of the previous equation gives the partition in-

duced by the kernel of the corresponding function. Since in the present work we will

always consider subcategories of Rel, equation (2.14) gives the general definition of

classification that we will adopt.

4We use the same notation to refer to the kernel of r and to the classificatory mapping that

it induces, in order to avoid unmeasured proliferation of symbols. We think that it is possible

to discern which one we are referring to by context.
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Definition 2.16 (Classification). Let C be a category where C0 is a collection of sets

and C1 is a collection of left-total and surjective binary relations. Let X,Y ∈ C0 and

r ⊂ X × Y ∈ C1. We say that ker r : Y → P(X) defined by (2.14) is a classification on

X, that ker r(y) is the class induced by y, that x ∈ ker r(y) has the property y, and that

C is a classification system.

We demand the binary relation to be left-total to ensure that no elements of X are

left unclassified, and to be surjective in order to avoid ‘dummy’ properties that are not

related to any element of X.

The following examples illustrate the potential of this broader definition of clas-

sification. The first derives a well-known graph-theoretical invariant by means of a

classification in a classification system. The second transcends a limitation of a role

analysis methodology in social network analysis, providing an extended mathematical

formalism that encompasses more sophisticated descriptions of social networks and sim-

ilar systems. In both cases the key step is the construction of an extended version of

the category Graphs by allowing morphisms to be arbitrary binary relations. This

replacement of mappings by arbitrary binary relations will be a recurring theme in the

present manuscript.

Example 2.17 (Vertex neighborhood). Let G,H be two graphs. Recall that morphisms

in Graphs are adjacency-preserving mappings, that is, mappings f : VG → VH such that

(u, v) ∈ EG implies (f(u), f(v)) ∈ EH . By analogy, we define an adjacency-preserving

relation r ∈ VG×VH as a relation such that for each (u, v) ∈ EG, there is a (x, y) ∈ EH
such that (u, x) ∈ r and (v, y) ∈ r. It is easy to check that the collection of graphs and of

adjacency-preserving relations conform a category that has Graphs as a subcategory.

Now, note that EG is an adjacency preserving relation EG : G→ G that relates each

v ∈ VG to its neighbors. Since a vertex in a graph is completely characterized by its

neighborhood, kerEG offers a classification that is complete in the sense that it relates

each vertex with a set of properties that completely determine its identity in terms of

the structure of the set under consideration.

* * *

Example 2.18 (Generalized regular equivalence block modelling). One issue with the

block modelling technique sketched in Example 2.14 is that it identifies each social

actor with a unique role. Oftentimes this is an overly restrictive constraint, as an actor

may play different roles in its social relations with different actors. For example, in

a network of progeny relationships, an actor may be seen as playing the role of a son

relative to its progenitor, and the role of a parent relative to its offspring.

The definition of adjacency-preserving relation of Example 2.17 extends the con-

cept of adjacency-preserving mapping that lays at the core of regular equivalence block
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modelling (see Example 2.14), thus allowing us to generalize this technique to over-

come the limitations of unique role assignment. For instance, the binary relation given

by EG in Example 2.17 can be seen as a generalized block model where each actor is

characterized as playing a different role on each of its relations with its neighbors, but

all actors play the same role when interacting with any given actor.

* * *

2.3 Concepts

Formal Concept Analysis (FCA) provides a mathematical framework for the definition

of concepts. The formalism of FCA starts by considering a context, defined as a relation

linking a set of objects with a set of attributes. Concepts are then dually defined as a

pair consisting of a maximum set of objects that share a set of attributes, and of the

maximum set of attributes that they share5.

Definition 2.19 (Formal Context). A formal context (or context for short) consists of

a set G, a set M of attributes, and a binary relation r ⊂ G×M . It is said that x ∈ G
has the attribute y ∈M if and only if (x, y) ∈ r.

Definition 2.20. Let (G,M, r) be a context. For any O ⊂ G and A ⊂M ,

Or = {y ∈M : (x, y) ∈ r for all x ∈ O}
Ar = {x ∈ G : (x, y) ∈ r for all y ∈ A}

(2.15)

In other words, Or is the set of attributes common to all elements of O, and Ar is the

subset of elements of G which have all attributes in A. For the sake of simplicity, we

will note {x}r as xr.

Definition 2.21 (Formal Concept). Let (G,M, r) be a context. A formal concept

(concept for short) in (G,M, r) is a pair (O,A), with O ⊂ G and A ⊂ M , such that

Or = A and Ar = O. In other words,

i) for each x ∈ O and for each y ∈ A we have (x, y) ∈ r

ii) for each x 6∈ O there is a y ∈ A such that (x, y) 6∈ r

iii) for each a 6∈ A there is an x ∈ O such that (x, y) 6∈ r.

For any given concept (O,A), O is known as the extent of the concept, and A is known

as the intent of the concept.

5Definitions introduced in this section were taken from Carpineto and Romano (2004), but we

used a different notation to avoid confusion with other concepts from the formalism introduced

on previous sections.
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The idea behind this definition is to make concepts ‘closed’ both regarding their

intent and their extent. Indeed, the extent of a concept is a maximal subset of G

characterized by the attributes in its intent, and the intent of a concept is a maximal

set of attributes in M characteristic of all elements in its extent. Formally, this means

that O ⊂ Orr and A ⊂ Arr, and Orrr = Or and Arrr = Ar for any O ∈ G, A ∈ M ,

so that the operator rr is a closure both in G and M (see e.g. Carpineto and Romano

(2004), pp. 10-11 or Krötzsch (2005), pp. 20-23 for further details). A formal concept

can then be constructed either by closing a subset O ⊂ G with this operator, which

produces the concept (Orr, Or), or by closing a subset A ⊂ M , producing the concept

(Ar, Arr).

Note that for any given subcategory C of Rel each morphism r : X → Y ∈ C1

defines a context with G = X and attribute set M = Y , induced by the category-

theoretical identity of those sets. Concepts on this context are defined with respect

to the properties induced on X by ker r. Thus, we have a natural link between the

category-theoretical formalism proposed and FCA, that allows us to take a further step

by inducing concepts on a set of internally related entities.

Concepts in a context can be characterized in terms of partial ordered theory, thanks

to the fact that they conform a lattice under set inclusion.

Proposition 2.22. The set of all concepts on a formal context (G,M, r) together with

the relation ≤r defined by

(O1, A1) ≤r (O2, A2) iff O1 ⊂ O2 (2.16)

is a complete lattice, called the concept lattice of (G,M, r). The supremum (a.k.a. least

upper bound) and infimum (a.k.a. greatest lower bound) of any subset of concepts are

given by ∨
i∈I

(Oi, Ai) = ((∪i∈IOi)rr,∩i∈IAi)∧
i∈I

(Oi, Ai) = (∩i∈IOi, (∪i∈IAi)rr)
(2.17)

Example 2.23 (Concepts on natural numbers). Consider a context (G,M, r) where

G is the set of naturals from 1 to 10, and M comprises the attributes “composite”

(c), “square” (s), “even” (e), “odd” (o), and “prime” (p), and the appropriate binary

relation. Figure 2.2 shows the Hasse diagram of the corresponding concept lattice. The

structure of the concept lattice unveils several generalizations that can be predicated in

terms of those concepts, such as:

i) No element of O has all attributes in A (the infimum of the lattice is a concept

with empty extent)
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Figure 2.2: Concept lattice of the naturals from 1 to 10, with the attributes

composite (c), even (e), odd (o), squared (s), and prime (p). Taken from

http://en.wikipedia.org/w/index.php?title=Special:Search&search=semiconcept, last visit on

May 17, 2011.

ii) No element of O is both odd and even (the infimum of the corresponding concepts

is the infimum of the lattice)

iii) Primes in O are neither square, nor composite (the infimum of the corresponding

concepts is the infimum of the lattice).

Also, note that for any given pair of subsets of attributes A1, A2 ∈ A, the implication

A1 → A2 holds if and only if (Ar1, A
rr
1 ) ≤r (Ar2, A

rr
2 ); that is, if the largest concept

containing A1 as part of its intent is also described by A2 (Carpineto & Romano, 2004).

For instance, take A1 = {c, o} and A2 = {s}. We have:

(Ar1, A
rr
1 ) = ({9}, {c, o, s}),

(Ar2, A
rr
2 ) = ({1, 4, 9}, {s}),

(2.18)

so that (Ar1, A
rr
1 ) ≤r (Ar2, A

rr
2 ), meaning that in the present context ‘odd and compos-

ite’ implies ‘squared’. In the same way we can prove that ‘even and square’ implies

‘composite’.

* * *

Example 2.24 (Network positions). Consider the category of graphs and adjacency

preserving relations introduced in Example 2.17. For any given graph G, the con-
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cept lattice of the context induced by EG : G → G (see e.g. Figure 2.3) provides a

generalization of the notion of position in network analysis.

Two vertices u, v ∈ VG are said to be structural equivalent if N(u) = N(v). In that

case, it is also said (mainly in the social sciences) that both vertices have the same

position in the network. The idea is that two structural equivalent vertices share the

same relations to all other vertices in the network, so their ‘position’ with respect those

nodes is essentially the same. Now, note that any vertex w such that N(u) ⊂ N(w) is

related to all vertices u and v are linked to. This means that w is in a position that

allows it to perform all actions that u and v may perform. For example, suppose that

edges in G represent communication between the vertices they connect. This means

that u may mediate communication between two vertices x and y if and only if it stands

in a path going from x to y. But in that case, there is necessarily a path connecting

x and y that goes through w, so it may also mediate communication between these

vertices. We could then say that w is also in the same position as u and v, despite not

being structural equivalent to them, or that it is in a position that dominates that of u

and v.

Figure 2.3: A graph (left) and the concept lattice of its positions (right).

We introduce a broader definition of position following the previous argument. The

first requirement for saying that a subset of vertices are in a given position is that they

are adjacent to a given subset of vertices. Thus, for a vertex subset U ⊂ VG, we define

U ′ as the set of vertices adjacent to all u ∈ U . In this way, we can say that all vertices

in U are in the same position relative to vertices in U ′. But then, any v 6∈ U such that

all vertices w ∈ U ′ are adjacent to it is also in the same position as any element of U



38 2 A mathematized theory of internal relations

relative to vertices in U ′. Since adjacency relations are symmetric, this means that the

full position is given not by U , but by U ′′.

Note that U ′′ is a closure operator analogous to rr in Definition 2.20, and that

(U ′′, U ′) satisfies the properties of a concept introduced in Definition 2.21. Also, note

that the relation EG : G→ G relates each v ∈ VG with the set of its neighbors, so that

U ′ = U r. In conclusion, a position can be defined as a concept in the context induced

by EG : G→ G.

Figure 2.3 depicts a graph and the concept lattice of its positions. For any given

vertex v in the graph, its most specific position is given by the infimum of all concepts

that include it; that is, (vrr, vr). Notice that such position is not necessarily conformed

by a class of structural equivalent vertices, though it must contain one. For instance,

the smallest position containing object g in Figure 2.3 is ({a, g, h}, {f}) –the concept of

vertices related to f . Out of the three elements of its extent, only g and h are structural

equivalent, and conform a full structural equivalence class. Though we cannot know

this just by examining the concept extent grr, knowledge that f and g are structural

equivalent is not lost: it is reflected in the fact that (grr, gr) = (hrr, hr).

Dominance relations are reflected in order relations in the concept lattice of po-

sitions. Once more, in Figure 2.3 we have grr = {a, g, h} and arr = {a}, then

(arr, ar) ≤ (grr, gr). This means that the characteristic relations of a’s most specific

position imply those of g’s most specific position, so that the former dominates the later.

* * *

2.4 Changes of representation

Consider a system of internally related entities being represented by means of an object

C in a category C. A functor F : C → D in an equivalence of categories (Definition

2.8) maps C into an object D ∈ D0 that offers an equivalent representation of the

system. In other words, everything that we may say about the structure of the system

by looking into the category-theoretical properties of C can be equally said by looking

into the category-theoretical properties of D.

Equivalence of categories thus introduce changes of representation that transform

a mathematical image of a system into a new structure, while preserving all its char-

acteristic features. Though nothing new is introduced by the change of representation,

key attributes of the system that went unnoticed in C may stand out on its image in

the codomain of D.

Also of relevance, the lack of an equivalence of categories allow us to determine when

we are not dealing with equivalent images of a system, raising awareness on the loss of

information or introduction of artifacts involved in the transformation. The following

example goes in this line, analyzing the transformation of metric spaces into dendro-
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grams performed in many hierarchical clustering techniques. In category-theoretical

terms, this transformation is carried by means of a functor f : M → T. Here we prove

that this functor cannot be an equivalence of categories, which means that transforming

a metric space into a dendrogram implies loss of information on similarity.

Example 2.25 (More on hierarchical clustering). On previous examples we have con-

sidered two mathematical images of similarities among elements of a set: metric spaces

(Example 2.12) and dendrograms (Example 2.13). Unlike metric spaces, dendro-

grams can always be represented by a two-dimensional picture that can be easily read

and interpreted. On light of this advantage, hierarchical clustering algorithms have been

designed to transform the metric space representations of a set into a dendrogram that

respects the similarities consigned in the original image.

From the perspective of classification systems and changes of representation, an

algorithm of hierarchical clustering relies on a functor from a category of metric spaces

into a category of dendrograms. Since elements of the dendrogram (i.e. leaves of its

rooted tree) are identified with the elements of the metric space, this functor must

be such that it maps metric spaces with n elements into dendrograms with n elements.

Ideally, this functor should be part of an equivalence of categories, since that would mean

that all similarities consigned in the original metric space are kept in the dendrogram.

Is there such a functor?

Consider the category M of metric spaces introduced in Example 2.12, and the

category T of dendrograms introduced in Example 2.13. In Figure 2.4 we illustrate the

particular case of metric spaces and dendrograms with up to 3 elements, corresponding

to the subcategories M3 and T3. Since our interest is to find an equivalence of categories

F : M3 → T3, we only need to consider one representative from each class of isomorphic

objects on each category. In the case of T3 all pairs of dendrograms with the same

number of elements are isomorphic, so we just pick one representative Ti from each

class of dendrograms with i elements. In M3 we have six equivalence classes:

i) The class of metric spaces with three equidistant elements. We pick an element

M== from this class.

ii) The class of metric spaces with three elements a, b, c, such that d(a, c) < d(a, b) =

d(b, c). We pick an element M<= from this class.

iii) The class of metric spaces with three elements a, b, c, such that d(a, c) > d(a, b) =

d(b, c). We pick an element M>= from this class.

iv) The class of metric spaces with three elements a, b, c, such that d(a, b) < d(b, c) <

d(a, c). We pick an element M<< from this class.

v The class of metric spaces with two elements, from which we pick an element M2.
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vi) The class of metric spaces with one element, from which we pick an element M1.

Figure 2.4: A functor F : M3 → T3 such that for any metric space M , the dendrogram FM

has exactly |M | leaves. The diagram on the left represents M3, and the diagram on the right

represents T3. We only consider one representative from each class of isomorphic objects on each

category (see the text for details). Solid arrows represent morphisms in each category, arrow

weights stand for the number of different morphisms with the same domain and codomain. Iden-

tity morphisms and compositions are not drawn. Dotted arrows represent the object mapping

of the functor. The morphism mapping is not shown.

Since we have just one dendrogram (up to isomorphism) with 3, 2, or 1 elements,

there is but one possible candidate functor (up to natural isomorphism) F : M3 → T3

satisfying the restriction of mapping metric spaces with n elements into dendrograms

with n elements. The object mapping of this functor is represented by the dotted arrows

in Figure 2.4. This functor is not part of an equivalence of categories for two reasons:

i) since there are up to 6 morphisms between some pairs of elements in M but never

more than 2 morphisms between any pair of elements in T, F cannot be faithful

ii) since M== is not related by a morphism to M2, the functor cannot be full. Indeed,

|HomM(M==,M2)| = 0

|HomT(T3, T2)| = 2
(2.19)

so FM==,M2 : HomM(M==,M2)→ HomT(FM3, FM2) = HomT(T3, T2) cannot be

surjective.

The last issue is particularly remarkable, as it points to the inadequacy of equating

M== to T3: by doing so we are saying that the former can also be reasonably partitioned

in two classes of equivalence, which is doubtful: all elements being equidistant, clustering
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any two of them together while leaving a third out on its own class is very questionable,

to say the least.

Though they look trivial, morphisms in M3 with codomain in M== are actually

quite important. For instance, as the difference between d(a, b), d(b, c), and d(a, c)

becomes smaller M<< approaches M==, so that the classification in two classes given by

h : M<< →M2 seems intuitively less adequate, while the one given by f : M<< →M==

looks more attractive6. So, even though f may look as a trivial classification, the fact

that we still have the option of choosing it above h : M3< → M2 is important. By

changing into a representation in terms of dendrograms we are losing this option.

In conclusion, T is not equivalent to M. This means that, regardless of how much

effort and care we put in the design of a hierarchical clustering algorithm, some relevant

information contained in the metric space will be lost in translation.

* * *

2.5 Optimal classifications

Each morphism f : C → D in a category satisfying the conditions introduced in Defini-

tion 2.16 provides a different classification on C. Often times scientists are interested

in choosing ‘the best’ classification on C among all possibilities. This enterprise implies

the existence of a criterion of optimality that singles a unique (up to category equiv-

alence) morphism in the category. We may thus formulate the problem of finding an

optimal classification as an optimization problem in a category C, whose solutions are

morphisms in C1. Let us do so in formal terms.

An optimization problem is a quadruple (I, f,m, g) where

i) I is the set of instances of the problem

ii) for any instance x ∈ I, f(x) is the set of feasible solutions of the problem

iii) for any instance x ∈ I and a feasible solution y ∈ f(x), m(x, y) ∈ R+ is the

measure of y

iv) g is the goal function, which is either min or max.

For any given instance x, the function m(x, y) gives the measure of the optimality of

a feasible solution y, according to the criterion introduced by the goal function. The

6This intuition is formalized by the optimality criterion that will be introduced in Example

2.26. As we move towards the aforementioned limit, the value m(h : M<< → M2) of the

measure function of equation (2.20) becomes increasingly large, showing that the corresponding

classification is becoming less optimal.
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objective of an optimization problem, then, is to evaluate the goal function on the

measure function for some given instance of the problem.

In the case of classification optimization, the set of instances is the object set C0

of a classification system C, and for any instance C ∈ C0 the set of feasible solutions

is the set of morphisms in C1 with domain in C. The goal function is normally chosen

simultaneously with the measure function, which would be the last element required for

determining a classification optimization problem.

Though a classification system immediately determines the instance set and feasi-

ble solutions of a classification optimization problem, it does not naturally determine

a unique measure function. This means that we may formulate multiple optimization

problems on the same classification system just by introducing different measure func-

tions. In other words, optimal classifications on a structured set are not “unique up to

isomorphism”. Far from considering this indeterminacy as a weakness of the method,

we think that it is necessary. A category C taken as a mainframe for research on a

system of internally related entities is constructed in accordance with the relational

structure exhibited by those entities. In other words, such category is determined by

general features of a given research field. On the other hand, classification optimality

is heavily contingent in more specific goals set by the researcher, that may vary within

the same field of inquiry. Expecting the existence of a unique legitimate criterion of

classification optimality on any given category would equate to expecting the existence

of a unique legitimate question to be posed on some given corner of nature.

The following examples illustrate this position. We work within the frame of non-

hierarchical clustering with metric spaces, that is, within the classification system M of

Example 2.12. The first example introduces a measure function that feels naturally de-

termined by the structure of M. But then, the second example shows that this measure

function determines an optimization problem whose solutions are actually undesirable,

as they do not attain the ultimate goal of clustering. In consequence, we introduce a

second measure function that discards such solutions. Last, on the third example we

show that regardless of which of the previous measure functions we choose, solutions

of the corresponding classification problems induce trivial concept lattices. Thus, if

we were looking for a classification that conforms a conceptual structure intended for

logical inference, we would require a different measure of optimality.

Example 2.26. The main goal of clustering techniques is to partition a set into classes

of equivalence according to similarity relationships among its elements. In Example

2.12 we introduced a suitable category for achieving this purpose by means of metric

spaces, i.e M. In this classification system similarity between two elements is inversely

proportional to their distance. Classifications are determined by morphisms that pre-

serve order relations among distances (see equation (2.9)), so that elements of the same

class are always more similar to each other than to elements of other classes. Follow-
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ing this same criterion, a good classification should achieve large similarity among the

members of the same class, and low similarity among members of different classes. The

k-medoids clustering method tries to achieve this goal by minimizing the within-cluster

distance to the cluster medoid µy; that is, for X ∈M and f : X → Y , it minimizes the

measure function

m(X, f) =
∑
y∈Y

∑
x∈ker f(y)

d(x, µy), (2.20)

where µy is the element of ker f(y) whose average distance to all remaining elements of

that class is minimum.

This measure function comes quite close to the ideal of an optimality criterion that

is naturally induced by the classification system. If classifications in M are such that

elements of the same class are closer than elements of different classes, by minimizing

(2.20) we are taking this condition to the extreme, asking for a classification were

elements of the same class are as closely packed together as possible, and different

classes are spread far away from each other.

* * *

Example 2.27. Note that any isomorphism in M minimizes (2.20); that is, a partition

in unitary classes is optimal under this criterion. Such partition is generally undesirable

in cluster analysis. The fact that it minimizes (2.20) is hardly a problem in practice,

as the standard k-medoids clustering algorithm requires the number of clusters to be

produced as a parameter. Yet, it is pertinent to ask what criterion of optimality are

we following when discarding isomorphism-induced classifications, as it is clear that it

is not the same underlying the k-medoids clustering method.

Restrepo et al.(2005) explain the avoidance of both the discrete partition in unitary

classes and the gross partition in a single class in terms of optimization of the information

contained in the classification: what we are optimizing in this case is the number of

similarity and dissimilarity relations that it establishes. According to the authors, two

elements belonging to the same class determines a similarity relation, and two elements

belonging to different classes determines a dissimilarity relation. Thus, the authors

propose

m(X, f) =
∏
y∈Y
| ker f(y)| (2.21)

as a measure function for choosing an optimal classification on these grounds. Note

how m(X, f) grows with both cluster size, which is proportional to the number of

similarity relations contained in the classification, and with the number of clusters,

which is proportional to the number of dissimilarity relations.

* * *
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Example 2.28. In Section 2.3 we sketched how we can use FCA to define concepts on

a morphism-induced classification, and then look into the concept lattice to formulate

generalities and make inferences. The possibility of exploiting this tool is contingent

on the structure of the concept lattice, which for the case of disjoint classifications

is trivial: the concept with empty intent is the supremum of any subset of concepts,

and the concept with empty extent is the infimum of any subset of concepts, all other

concepts being incomparable under the partial order (see Figure 2.5). No generalities or

inferences are possible, besides the assertion that all attributes are mutually exclusive.

By contrast, in Example 2.24 we showed that a non-disjoint classification induced

by a general binary relation produces a concept lattice with a richer structure. Thus,

disjoint classifications that are preferred in cluster analysis are highly sub-optimal when

we intend to define concepts and characterize the system by means of FCA.

Figure 2.5: Concept lattice of a partition.

* * *

Though the criteria introduced in the previous examples are clearly different, they

are not incompatible. Yet, as they aim at distinct purposes, in most situations each cri-

teria will be associated with a different optimum. Thus, though we may combine several

of these measure functions into one single classification optimization problem, it is very

unlikely that its solution would be a classification with both minimum within-cluster

distance, maximum information content, and inducing a complex concept lattice. Com-

promises are necessary, so it is important to set out priorities. Would we rather have

a classification with maximum information, even if its classes are not as compact and

separated as possible? How many similarity relations are we willing to sacrifice to make

classes more compact? These are the kind of questions that must be solved when choos-

ing a measure function. If data structure determines the classification system of choice,

it is the awareness of the main purpose pursued on each classificatory enterprise that

allows us to single one classification from all the alternatives given by the classification

system.
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2.6 Summarizing

Structured sets provide a mathematical image of a system of internally related enti-

ties. The collection of all subcategories of Rel along with their functors thus defines

the broadest landscape for the mathematical formalization of the internal relations ap-

proach. In principle, each of these categories offers a mathematical representation of

fundamentally different kinds of systems of study, characterized by the logical struc-

ture of the relations among its objects. Equivalent categories, however, are equivalent

precisely in the sense that they share a common logical structure. In consequence, a

class of equivalent categories offers a system of models for scientific inquiry. Functors

allow us to move between these categories, looking for new yet equivalent mathematical

images that may assist our intuition in different ways, revealing patterns, properties

and concepts that may have gone unnoticed previously.

Once we are standing in an specific category, morphisms determine the collection

of structure-preserving transformations that answer to the different patterns emerging

in the relations among the relevant empirical entities. Each of these transformations

induces a classification of those entities, that provides a characterization of the relational

structure of the system in terms of properties of its constituents. In this way, a particular

set category defines a classification system, i.e. a collection of viable classifications

within which property and concept definition take place, thus advancing our knowledge

on the nature of the entities being researched.

Though each classification within a classification system is equally legitimate and

provides valuable information on the system of study, the specific purpose pursued on

a given research problem leads us into preferring some classifications over others. This

preference can be materialized in a measure function that links each viable classification-

inducing morphism with a real number that weights its degree of optimality. We thus

arrive to the formulation of a classification problem, i.e. an optimization problem whose

goal is to find a morphism that yields an optimal classification under a criterion grounded

on the particular objective pursued by the researcher.

In these terms, a mathematical model of chemical activity consists of: a set category

that better suits the peculiar logical structure of chemical reaction networks, where

classifications are constructed; the collection of equivalent images of that category, which

offer alternative representations that may suggest new concepts and heuristics; and a

collection of optimality criteria, that guide our choice of particular classifications in

response to more specific goals.
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Chapter 3

A network model of chemical

activity

“It never occurred to anybody that a chemical analysis could contain an undisturbed

object.”

–Rudolf Werner Soukup

In the last chapter we proposed to use objects in set categories as the fundamental

images of sets of internally related entities. We now propose a specific category designed

for the characterization of chemical substances in terms of their chemical activity.

In Section 1.4 we noted that chemical knowledge on substance reactivity conforms

a network of chemical reactions. It is thus natural to search candidate objects for our

category among the mathematical representations used in network analysis. Graphs are

the top candidates, as they are probably the most widely spread representation of net-

works across scientific disciplines. However, when constructing a network model, special

care must be put in ensuring that node connections in the network properly match the

logical structure of relations between the entities being represented. Sometimes, the re-

lations established by edges in a graph are unable to achieve this purpose. Thus, several

variations on the concept of graph, such as directed graphs, hypergraphs, and directed

hypergraphs, have been proposed as representations of different kinds of networks. On

Section 3.1 we argue that the peculiar relational structure of chemical reaction networks

points to the inadequacy of simple graph models as a foundation for a network model of

chemical activity and propose directed hypergraphs as a better suited alternative. We

support this choice in an extense analysis that considers the recent impact of directed

hypergraphs in the understanding of biochemical reaction networks and intently refutes

the statement, sometimes found in the literature of network analysis, that hyperdigraph

models of reaction networks are ultimately equivalent to a particular graph model.

In the second section of this chapter we define the category HyperD of directed
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hypergraphs which conforms the core of our model of chemical activity. We introduce

adjacency preserving relations between hyperdigraphs that we call role assignments,

and prove that they constitute the morphisms of a category whose objects are directed

hypergraphs. This category defines a classification system for the characterization of

substance activity. In general, classifications in HyperD are non-disjoint, so the ques-

tion appears on how can we determine what particular property is exhibited by a sub-

stance when participating in a specific chemical reaction. To address this question, we

show that role assignments are closely related to mappings that define a set of rules for

assigning a unique role to each substance on each relation. We call these mappings role

models.

After illustrating how morphisms in HyperD may induce well know classifications

of chemical substances, on section 3.3 we consider the matter of their predictive power.

We argue that the sole classificatory structure induced by a role assignment is able

to make predictions on the activity of unknown substances, by means of an auxiliary

hypothesis regarding the completeness of the associated concept lattice. Then, we show

that the capability of a classification to make predictions depends on the size of the

role assignment that induces it, which may thus be used as a criterion of optimality. In

consequence, we propose to use the cardinal of role assignments as a measure function

to define an optimization problem whose solutions are classifications with maximum

predictive power.

Last, on section 3.4 we analyze the link between chemical activity and chemical

structure by considering the case of structural formulas. We show that structural for-

mulas can be induced by means of a change of representation into a category whose

elements are sets of structural graphs. Up to this point, structural formulas are com-

pletely determined by HyperD, so they offer nothing more than an alternative image

of the reaction network. However, since unlike vertices in a hyperdigraph structural

formulas have properties of their own, an inversion of analogy allows us to generate

hypotheses on the activity of chemical substances by analyzing the individual proper-

ties of their corresponding formulas. In this way, the bidirectional relation between

structure and activity is made explicit: on a first moment an activity model determines

an structure model, but then on a second moment the structure model becomes able

to induce changes on the activity model, improving our understanding of the chemical

nature of substances.

3.1 The hyperdigraph as a model of chemical

reaction networks

Chemical reaction networks are becoming an important construction in systems biology,

where they are used as a model for cell metabolism (see e.g. Barabási and Oltvai (2004)



3.1 Hyperdigraphs and reaction networks 49

for a brief review on this subject). The main interest in this field is the study of global

network properties that describe the organization characteristic of living beings. Several

graph models of reaction networks have been proposed, which are our prime candidates

for defining a category for the characterization of chemical activity:

Figure 3.1: A network of three phosphorilation reactions (a) modeled as a simple substrate

graph (b), as a directed substrate graph (c) and as a directed bipartite reactions-substances

graph (d).

• An undirected graph, with one node for each substance, and an edge between

two nodes if there is a precursor-product relation between the corresponding sub-

stances. This is known as the substrate graph (Figure 3.1(b)).

• A directed graph, with one node for each substance and arcs pointing from reac-

tants to products. This is known as the directed substrate graph (Figure 3.1(c)).

• A bipartite digraph, where nodes of one class represent substances, nodes of the

other represent chemical reactions, and arcs point from reactants to reactions and

from reactions to products (Figure 3.1(d)).

With growing interest in network models of the metabolism, criticism has arisen

towards these proposals. The issue pointed is that graph models are unable to capture
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transverse ‘and’ relations among reactants and products (Klamt et al. , 2009; Bernal &

Daza, 2011). A chemical reaction does not take place unless all reactants are present,

and cannot yield one product in the absence of the others. This means that a generic

reaction, say a+ b→ c+ d, establishes a connection not from a to c or from b to d, but

from a and b to c and d. The connectivity patterns of graphs suggests otherwise: notice

e.g. how all graph models depicted in Figure 3.1 suggest that ADP can be obtained

as the unique product of the transformation of UMP, while the reactions in Figure

3.1(a) make it clear that such transformation only happens in the presence of ATP, and

inevitably yields ADP as a second product.

In light of this issue, directed hypergraphs are becoming increasingly popular as a

mathematical image of chemical reaction networks (Klamt et al. , 2009; Bernal & Daza,

2011, and references):

Definition 3.1 (Klamt et al. (2009)). A directed hypergraph or hyperdigraph H consists

of a set VH of vertices, and a setAH of ordered pairs of subsets of VH , known as hyperarcs.

For a = (U, V ) ∈ AH , U is know as the tail of a, which we note tail(a), and V is known

as the head of a, which we note head(a).

Directed hypergraphs achieve a more faithful representation of the kind of relation

established by a chemical reaction. Once more, consider a generic reaction a + b →
c + d, which would be represented by the hyperarc ({a, b}, {c, d}) (See Figure 3.2).

The reactant-reactant relation between a and b is encoded by their presence in the tail

of the hyperarc. In the same way, product-product relations are coded in its head.

Last, regarding reactant-product relations, by coding the reaction as an ordered pair of

subsets of nodes, a relation is established between the complete set of reactants {a, b}
and the complete set of products {c, d}. This offers a more accurate image of the

chemical situation: all reactants must be present and consumed in order to yield all the

corresponding products1.

Some authors have pointed that hyperdigraph and bipartite digraphs models of

chemical reaction networks are ultimately equivalent (see e.g. Forst et al (2006)).

The reason behind this statement is the existence of a bijective mapping F from

hyperdigraphs onto bipartite graphs: Given a hyperdigraph H with vertex set VH
and hyperarc set AH , define the vertex set of the bipartite digraph FH as VD =

1It is worth noting that stoichiometry is not accounted for on this formulation. This issue

has been dealt with by several authors in two ways: either define the terms of a hyperarc as

multisets of vertices(Dittrich & di Fenizio, 2007; Centler et al. , 2007), so that the number of

occurrences of a given vertex gives the stoichiometric coefficient of the corresponding substance;

or introduce a matrix of stoichiometric coefficients, that determines a weighting on each vertex

in each hyperarc(Stelling et al. , 2002; Klamt & Gilles, 2004). For the sake of simplicity, here we

decided to let stoichiometry unaccounted for. Including stoichiometry is one of the top priorities

for future iterations of the model.
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Figure 3.2: A generic reaction represented as a hyperdigraph with a single hyperarc (left) or

as a bipartite digraph with one class of vertices for substances and another class for the single

reaction (right). There is a bijective transformation F relating hyperdigraphs with bipartite

digraphs, represented here by dotted arrows.

VH ∪ AH , and for each a ∈ AH , a = ({u, . . . , v}, {x, . . . , y}), introduce the subset of

arcs {(u, a), . . . , (v, a), (a, x), . . . , (a, y)} into FH (see Figure 3.2). This mapping can

be inverted, so it defines a bijection F between hyperdigraphs and bipartite digraphs,

which seems to prove the equivalence. Though so far this statement has been presented

matter-of-factly and has not had much impact in the development of graph-like mod-

els of chemical reaction networks2, if correct it would bear important consequences.

While graphs have been present in chemistry for some decades and are already familiar

to the community of mathematical chemists, the mathematics of directed hypergraphs

necessary for their implementation in reaction network models have just started to be

developed. And there would be no point in undergoing this demanding enterprise if

hyperdigraphs were ultimately equivalent to a particular family of graphs. Or, more

precisely, equivalence would imply that the required mathematics of hyperdigraphs have

already been developed: they are the same mathematics of bipartite graphs.

This shows that the matter of equivalence between these two constructions is a

key issue for the present proposal. It concerns the choice of the basic mathematical

formalism to be used. If both models were equivalent, we could still rely on the standard

mathematics of graphs, despite all appearences. Else, a different formalism has to be

developed. We will thus take some time to dicuss in what sense can directed hypergraphs

be considered equivalent to bipartite digraphs, if they can.

The first thing to note is that equivalence between two models cannot be proven by

the mere existence of a bijection between their fundamental entities. We doubt anyone

2For instance, Forst et al (2006) work all the mathematical details of an hyperdigraph model

with no reference at all to bipartite digraphs beyond the brief statement that they are equivalent

to hyperdigraphs.
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would sustain such a thing in general. For instance, both the set of all possible bipartite

digraphs and the set of all possible directed hypergraphs have the same cardinal as the

set of integers and can thus be bijectively mapped into it; yet it is clear that an integer

would give a very poor representation of a reaction network. It is not just because

F is a bijection that we feel that it proves equivalence; there is something else that

makes that particular bijection special. Indeed, there is something ‘natural’ in the way

it maps vertices and hyperarcs of H into the vertices of FH that gives the feeling that

the essential connectivity pattern of the network is being preserved. Yet, we find us at

odds when attempting to define exactly what that statement means.

Things are more clear if we think in terms of category theory. Bipartite digraphs

are defined as objects in a category, so “the essential connectivity pattern” of a bipar-

tite digraph is characterized by its viable transformations. Equivalences of categories

preserve those viable transformations, so the statement that bipartite digraphs and

hyperdigraphs give equivalent models of reaction networks means that they span equiv-

alent categories. This means that F just gives us one of the elements necessary to prove

equivalence: an object-to-object mapping between two still undetermined categories.

We still have to explicitly define the morphisms in the categories of bipartite digraphs

and of hyperdigraphs, and to define two mappings connecting morphisms in each cat-

egory with morphisms in the other that are pesudoinverses in Fun (see Definition

2.8, page 27). Note that the existence of such mappings depends on how we define the

corresponding categories, a matter that is not solved by the sole definitions of bipartite

digraph and hyperdigraph. We have to say how they can be transformed. This empha-

sizes the fact that the question of whether a bipartite digraph model of reaction networks

is equivalent to a hyperdigraph model does not boil down to whether bipartite digraphs

are equivalent to hyperdigraphs, as neither bipartite digraphs nor hyperdigraphs give a

model by themselves. A model (in the internal relations perspective) comprises both its

objects and their viable transformations. The question at hand cannot be solved until

we define the latter.

So let us consider the matter of determining the categories involved. The ratio-

nale behind the transformation of hyperdigraphs into bipartite digraphs is that, instead

of using the more complex and less known hyperdigraphs, we may rely on a repre-

sentation of a reaction network as the already well-characterized and familiar directed

graphs. We would thus be regarding bipartite digraphs as a subcategory of Digraphs,

where morphisms are adjacency-preserving mappings. So we will consider the category

of bipartite digraphs and adjacency preserving mappings, which we call BDgraphs.

Regarding directed hypergraphs, we may define morphisms through a generalization

of adjacency preserving mappings, i.e. mappings f : VH → VB such that for each

({u1, . . . , um}, {v1, . . . , vn}) ∈ AH, ({f(u1), . . . , f(um)}, {f(v1), . . . , f(vn)}) ∈ AB, thus
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completing the definition of the hyperdigraph category HyperD3.

Figure 3.3: A morphism in BDgraphs. Solid arrows represent arcs on each graph, dotted

arrows represent a morphism from the digraph on the left to the digraph on the right.

Now, consider a network of a single reaction, a+ b→ c+ d. This network would be

represented by the bipartite digraph D1 with vertex and arc sets given by

VD1 ={a, b, c, d,R}
AD1 ={(a,R), (b, R), (R, c), (R, d)}

(3.1)

and by the hyperdigraphH1 with vertex set {a, b, c, d}, and a lone hyperarc ({a, b}, {c, d})
(see Figure 3.2). Next, consider the bipartite digraph D2 given by

VD2 ={u, v, S}
AD2 ={(u, S), (S, v)}

(3.2)

According to the inverse object-to-object mapping F−1, this digraph corresponds to

the directed hypergraph H2 with vertex set {u, v} and a lone hyperarc ({u}, {v}). As

shown in Figure 3.3, there is an adjacency preserving mapping f : VD1 → VD2 that is a

morphism in BDgraphs. On the other hand, since the cardinalities of the terms of the

only hyperarc in H1 are greater than the cardinalities of the terms of the only hyperarc

in H2, there is no morphism in HyperD with domain in H1 and codomain in H2. This

means that, no matter what morphism-to-morphism mapping we may propose, it cannot

be such that F (f : D1 → D2) = F (f) : F (D1) → F (D2). Thus, the object-to-object

mapping F does not allow for the definition of a functor F : HyperD→ Digraphs, so

it cannot be part of an equivalence of those categories. In conclusion, according to our

criterion we are dealing with two different models.

Though the bijective mapping F between bipartite digraphs and hyperdigraphs may

be the object-to-object mapping of an equivalence of categories between HyperD and

3It is important to note that since the terms of a hyperarc are sets, the previous condition

implies that f(ui) 6= f(uj) for i, j = 1, . . . ,m, and f(vi) 6= f(vj) for i, j = 1, . . . , n. In other

words, the restriction of f to each of the terms of a hyperarc must be a bijective mapping.
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a category of bipartite digraphs, the latter cannot be the category BDgraphs defined

above. This shows that our take on bipartite digraphs changes at a fundamental level

when we think of them as equivalent images of hyperdigraphs that thus give the same

mathematical description of chemical reaction networks. Though in such case bipartite

digraphs may still be defined as usual, they can no longer be transformed in the same

way –i.e., they span a category whose morphisms are not the same of BDgraphs. These

‘new’ bipartite digraphs are thus embedded in a different mathematical formalism, and

in that sense differ from their usual self. To determine their category we must look

deeper into how chemical constraints affect the collection of viable transformations

between bipartite digraphs that represent reaction networks.

So let us determine precisely what is different about the way such bipartite digraphs

transform. The key change comes from our appreciation of the two vertex classes in the

bipartite digraph. To show this, let us explicitly define a bipartite digraph as consisting

of two vertex sets V a and V b, and two arc sets Aab ∈ V a×V b and Aba ∈ V b×V a, so that

V a represents the substance set and V b represents the reaction set of the network. Now,

let G1 and G2 be two bipartite digraphs. We note that adjacency preserving mappings

in BDgraphs that map vertices in V a
G1

into vertices in V b
G2

‘transform’ substances into

chemical reactions, a procedure that is not allowed by chemistry. The two vertex classes

defining a bipartite digraph are incompatible, meaning that they must be transformed

separately; that is, a viable transformation should map vertices in V a
G1

into vertices in

V a
G2

, and in the same way for V b
Gi

.

The transformation of Figure 3.3 points to another problem related to the special

status of vertices in V b. The problem with this transformation is that it does not

preserve the degree of the lone vertex in V b
D1

, which equates to changing reaction molec-

ularity, an important chemical invariant. Morphism in HyperD, on the other hand,

preserve this invariant by keeping the size of hyperarc heads and tails constant.Thus,

just as morphisms in HyperD cannot add or remove vertices from an hyperarc, mor-

phisms in the bipartite digraph category must respect the valences of the corresponding

vertices.

In the end, we have found three additional restrictions that we must pose on the

morphisms of a category of bipartite digraphs suitable for the study of chemical reaction

networks:

i) for each v ∈ V a
1 , f(v) ∈ V a

2 (substances transform into substances)

ii) for each v ∈ V b
1 , f(v) ∈ V b

2 (reactions transform into reactions)

iii) let Nin(v) and Nout(v) be the in-neighborhood and out-neighborhood of v re-

spectively. For each v ∈ V b
1 , |Nin(v)| = |Nin(f(v))| and |Nout(v)| = |Nout(f(v))|

(reaction molecularity must be invariant under the transformation).
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Of course, these restrictions come on top of the demand that the mappings be adjacency

preserving. We denote the category of bipartite digraphs with morphism thus defined

as BipartiteD. In the following we will prove that there is an equivalence of categories

between HyperD and this new category of bipartite digraphs, devised keeping in mind

the specific constraints introduced by the chemical phenomena being modeled.

First, we show that we can define a morphism-to-morphism mapping between cat-

egories HyperD and BipartiteD, that together with the standard object-to-object

mapping F conforms a functor F : HyperD → BipartiteD. Consider a morphism

f : H1 → H2 ∈ HyperD1, which is a vertex mapping f : VH1 → VH1 , and the corre-

sponding bipartite digraphs under the object-to-object mapping F , which we note FH1

and FH2. Note that V a
FHi

= VHi and V b
FHi

= AHi . We define F (f : H1 → H2) as the

mapping

F (f)(v) = f(v) for v ∈ V a
FH1

F (f)((U, V )) = (f(U), f(V )) for (U, V ) ∈ V b
FH1

(3.3)

We now prove that F (f) is a morphism F (f) : FH1 → FH2 ∈ BipartiteD1:

i) By construction, Dom(F (f)) = VFH1 and Cod(F (f)) = VFH2 , as required.

ii) We prove that F (f) is adjacency preserving for any f ∈ HyperD: recall that the

object-to-object mapping of F is such that arcs in FH1 are given by

(u, (U, V )) ∈ AabFH1
,

((U, V ), v) ∈ AbaFH1
,

(3.4)

for each (U, V ) ∈ V b
FH1

= AH1 , u ∈ U and v ∈ V . Since f is adjacency preserving,

we also have (f(U), f(V )) ∈ AH2 = V b
FH2

, which means that

(F (f)(u), F (f)((U, V ))) = (f(u), (f(U), f(V ))) ∈ AabFH2
,

(F (f)((U, V )), F (f)(v)) = ((f(U), f(V )), f(v)) ∈ AbaFH2
,

(3.5)

which together with (3.4) proves that F (f) is adjacency preserving.

iii) Last, we prove that F (f) : VFH1 → VFH2 preserves the degrees of vertices in

V b
FH1

: by construction, for any (U, V ) ∈ V b
FH1

we have |Nin((U, V ))| = |U | and

|Nout((U, V ))| = |V |. Furthermore, since f is a morphism in H1, |U | = |f(U)|
and |V | = |f(V )|, and thus

|Nin(F (f)((U, V ))| = |Nin((f(U), f(V )))| = |Nin((U, V ))|
|Nout(F (f)((U, V )))| = |Nout((f(U), f(V )))| = |Nout((U, V ))|

(3.6)

that is, F (f) preserves the degrees of elements of V b
FH1

, so we conclude that F (f)

is a morphism in BipartiteD with domain FH1 and codomain FH2.
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In this way, we have completed the definition of the functor F : HyperD →
BipartiteD. Now we are going to construct a functor G : BipartiteD → HyperD.

Naturally, its object-to-object mapping is the inverse of the object-to-object mapping

of F . Once more, it remains to define its morphism-to-morphism mapping.

Consider a morphism g : D1 → D2 in BipartiteD. We define G(g : D1 → D2) as

G(g)(v) = g(v), v ∈ V a
D1

(3.7)

We now prove that G(g) is a morphism in HyperD:

i) Since VHi = V a
Di

and g : VD1 → VD2 , it is clear that Dom(G(g)) = VGD1 , and

Cod(G(g)) = VGD2 , as required.

ii) We must prove that (U, V ) ∈ AGD1 implies (G(g)(U), G(g)(V )) ∈ AGD2 . Note

that the object-to-object mapping of G transforms each v ∈ V b
Di

into an hyperarc

(Nin(v), Nout(v)) ∈ AGDi , and that hyperarcs thus constructed conform the whole

set AGDi . So consider any arbitrary hyperarc (Nin(v), Nout(v)) ∈ AGD1 ; we have

that

(G(g)(Nin(v)), G(g)(Nout(v))) = (g(Nin(v)), g(Nout(v))). (3.8)

Furthermore, since g is adjacency-preserving in BipartiteD,

(G(g)(Nin(v)), G(g)(Nout(v))) = (Nin(g(v)), Nout(g(v))) ∈ AGD2 . (3.9)

iii) It remains to prove that for any hyperarc (Nin(v), Nout(v)) ∈ AGD1 , the restric-

tions G(g) : Nin(v) → G(g)(Nin(v)) and G(g) : Nout(v) → G(g)(Nout(v)) are

bijective. This follows immediately from the fact that g preserves degrees of the

vertices in V b
D1

, so that |G(g)(Nin(v))| = |Nin(g(v))| = |Nin(v)| and the same

holds for Nout. Thus, we conclude that G(g) is a morphism in HyperD with

domain in GD1 and codomain in GD2.

In this way, we have completed the construction of the functor G : BipartiteD →
HyperD. Last note that for any H ∈ HyperD0, (G ◦ F )H = H. Also, for any

f : H1 → H2 ∈ HyperD1 and v ∈ VH1 we have

G ◦ F (f)(v) = G(F (f))(v) = F (f)(v) = f(v)

that is, G ◦ F (f) = f , so that G ◦ F = 1HyperD. We may prove in a similar way

that F ◦G = 1BipartiteD. In conclusion, F and G give an equivalence of categories, so

BipartiteD and HyperD are equivalent. Though this is an useful result, we must insist

that it is important not to extrapolate beyond its proper meaning. The identification

of objects in BipartiteD with objects in Digraphs does not preserve morphisms, so

objects in BipartiteD are no longer digraphs in the usual sense.
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The fact that BDgraphs is not equivalent to HyperD shows us that the existence

of the object-to-object mapping F does not spare us the need of developing the mathe-

matical formalism of directed hypergraphs in order to use them as a model of chemical

reaction networks. There is a category of bipartite digraphs equivalent to HyperD,

but it is as alien to Graphs, and thus to the standard formalism of graph theory, as

HyperD itself. Wether we imagine our network representations as bipartite digraphs

or as directed hypergraphs, it is clear that we are now working with a new model.

The issue here is that a model comprises not just its fundamental objects, but also

all the methods for opperating on those objects. Mapping bipartite digraphs into hy-

perdigraphs is one thing, mapping the methods for operating on each construction is an

entirely different thing. Graph theoretical concepts such as in-degree, out-degree, path,

distance, etc. ultimately refer to the categorical structure of Digraphs. The existence

of an invertible mapping from bipartite digraphs to hyperdigraphs is not enough to

allow us to extrapolate the methods developed for operating on the former to the later

–we require an equivalence of categories. The object-to-object mapping just lets us use

digraphs as an image of hyperdigraphs as long as no methods are involved. We may use

the same drawings that we use for representing bipartite digraphs in order to represent

hyperdigraphs –but the way we read the picture must change. Or we may use the same

data structures developed for bipartite digraphs in order to implement a method for

operating on hyperdigraphs in an object-oriented program –but the method itself will

not necessarily be shared by both the ‘bipartite digraph’ and ‘hyperdigraph’ classes,

and most likely will need to be implemented from scratch.

Recent changes in chemical reaction network models used in systems biology illus-

trate this point. In graph models of reaction networks, key concepts from network

analysis such as centrality, vulnerability and reachability are described by means of

graph-theoretical invariants. The shift to a hyperdigraph model is not as simple as

computing those same invariants over the new network representation. The invariants

themselves have to be adapted to the new construction. Some times they can be ex-

tended to the new formalism, but the extension motivates a significant change in their

interpretation. Some times they have to be re-defined, or even discarded. Also, new

relevant invariants may appear. In this way, a fundamentally different description of the

structure of the network is configured, changing our understanding of the underlying

chemical phenomenon.

The following examples go along the lines of the previous argument. We consider

two alternative accounts of vulnerability in metabolic networks: the simpler approach

favored by Barabási and collaborators that uses the degree distribution as the main

descriptor of network vulnerability, and the more complex approach of Elementary Flux

Modes and Minimal Cut Sets proposed by Klamt and collaborators. On each case we

show how the shift from a graph to a hyperdigraph model produces a significant change

on the definition, meaning and values of the corresponding vulnerability descriptors that
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determine our knowledge on this biochemical phenomenon.

Example 3.2 (Neighborhood, degree, and vulnerability). Vulnerability concerns the

capability of a network of retaining its integrity upon removal of connections or nodes,

the later implying the removal of all connections it is involved in. In the case of reaction

networks, particularly those in the metabolism of living beings, removal of an edge

from the substrate graph (see Figure 3.1(b)) is intended to represent the inhibition of

a particular reaction, and removal of a vertex is intended to represent the removal of a

metabolite. The later disables each reaction that involves it, which is reflected in the

removal of all connections to vertices on the corresponding neighborhood.

In graph models of networks vertex degree is considered a broad index of vulnera-

bility: removing a vertex of high degree causes a large number of links to be lost, which

is expected to have a severe impact on the connectivity of the network. The degree dis-

tribution over the whole set of vertices is thus helpful in determining the vulnerability

of a metabolic network (see e.g. Albert and Barabási (2002)).

We took a data set comprising 2478 substances and 1808 reactions occurring in hu-

man cell metabolism from the Reactome data base (available at www.reactome.org/down

load/current/homo sapiens.sbml.gz, visited on November 2006). With this data set we

built the substrate graph representation of the corresponding metabolic network, and

plotted its degree distribution (see Figure 3.4). This distribution reasonably approaches

the power-law distribution characteristic of scale-free networks (Albert & Barabási,

2002), a behavior that has been found previously on other metabolic networks (Barabási

& Oltvai, 2004). Notice the high bias in degree values, with almost all vertices having

low degrees, and very few vertices (known as hubs) having extraordinarily large degrees.

This is a highly centralized structure, where connectivity of the network relies on the

hubs, making it resilient to error but vulnerable to attack : error is represented by the

removal of a random vertex, which is highly likely to target a vertex with low-degree,

having little to no effect in the integrity of the network. On the other hand, a directed

attack could target a hub, causing the removal of a large number of links, which has a

dramatic effect on connectivity (Barabási & Oltvai, 2004).

The previous analysis used the substrate graph representation of the network. Changes

on the underlying graph model to better reproduce the logical structure of chemical re-

action networks significantly affect the final conclusion regarding vulnerability of the

system. This is not because the scale-free degree distribution disappears, but because

the notion of degree is transformed along with the model, altering its correct interpre-

tation.

Consider the bipartite digraph model of Figure 3.1(d). First, note that degrees of

vertices have very different meanings depending on which vertex class they belong to:

i) for each v ∈ V a, N(v) represents the set of reactions substance v is involved in
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ii) for each u ∈ V b, N(u) represents the number of substances involved in reaction

u.

Clearly, each degree distribution should be dealt with separately. This is easily jus-

tified in mathematical terms if we regard bipartite directed graphs as objects in Bipar-

titeD, since in this category valences of each class of vertices are explicitly distinguished

by morphisms. Indeed, degrees of vertices in V a are invariant up to isomorphism, while

those of vertices in V b are invariant under any arbitrary morphism. This detail is very

important, as the same does not happen in BDigraphs. In other words, at this point

we are regarding bipartite digraphs as directed hypergraphs.

Figure 3.4: Comparison of the degree distributions of a human metabolic network when mod-

eled as a substrate graph (points) and when modeled as a bipartite substances-reactions di-

graph (stars). Logarithmic scale. Data comprises 2478 substances and 1808 reactions, down-

loaded from http://www.reactome.org/download/current/homo sapiens.sbml.gz. Both distri-

butions reasonably approach a power law, but hub degrees, average degree, and number of

low-degree vertices differ significantly.

Second, note that now the degrees of vertices that represent substances do not

speak of the number of substances related by chemical reactions to a given substance,
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as happened in the substrate graph, but of the number of reactions it takes part in. This

is, arguably, the correct approach: as far as vulnerability is concerned, the important

point is how many relations (in this case, chemical reactions) are removed along with

a given vertex, more than how many vertices where involved in those relations. It just

happened that, in the case of substrate graphs, both were equivalent.

That equivalence follows on an inaccuracy of the model: approximating the higher-

order relations established by chemical reactions by means of a set of binary relations

between vertices. As a consequence, valences of vertices in the substrate graphs depend

both on the number of reactions a substance is involved in, and on the molecularities

of those reactions. Node degrees on those models are thus biased by molecularity,

which leads to an overestimation of network vulnerability by a significant factor. The

bipartite digraph model avoids this inaccuracy by separating the information concerned

with reaction molecularity, which is now fully comprised by the valences of the elements

of V b, and the information concerned with substance reactivity, which is fully comprised

by the valences of the elements of V a.

To show this effect, in Figure 3.4 we also plotted the total distribution of the same

network, now represented by a bipartite substances-reactions digraph. Note that in the

bipartite digraph representation there are about twice as many low-degree nodes (non-

vulnerabilities) as in the substrate graph, and the total degree of hubs (vulnerabilities) is

halved. As a result, both average degree and the bias in the degree distribution decrease

significantly, suggesting that the network is less vulnerable than previously thought.

Last, we note that arcs in a digraph achieve a closer representation of reaction

networks, by including reaction directionality into the model. This feature also has a

remarkable impact in our understanding of the vulnerability of the reaction network, as

we now show.

In a directed graph D = (VD, AD) we can distinguish two different types of neighbor-

hoods for any given vertex: the in-neighborhood Nin(v), comprising the set of vertices u

such that (u, v) ∈ AD, and the out-neighborhood Nout(v), comprising the set of vertices

u such that (v, u) ∈ AD. Thus, for any v ∈ V a, its in-degree |Nin(v)| gives the number

of reactions consuming the corresponding substance, while its out-degree |Nout(v)| gives

the number of reactions consuming the substance. These two variables have opposing

effects on network vulnerability. Out-degree concerns the demand of a given metabolite,

so that a vertex with high out-degree is indispensable for many different reactions, and

thus constitutes a potential vulnerability of the system. On the other hand, in-degree

concerns the availability of a given metabolite; a vertex with high in-degree is being pro-

duced by many different reactions, so that if one of them fails, the others may support

the metabolic demand for this substance. Far from speaking of a vulnerability, high

in-degree is an indicator of robustness. Total degree distribution adds both descriptors,

and is thus unable to distinguish what may be a potential point of attack from a point

of high resilience.
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A better vulnerability index related to vertex degree is then given by the in-degree

to out-degree ratio. In consequence, we define the degree vulnerability index D(v) as:

D(v) =


0 if |Nin(v)| = 0,

1 if |Nout(v)| = 0,
|Nin(v)|

|Nin(v)|+|Nout(v)| in the remaining cases.

(3.10)

If a substance v is not consumed by any reaction, we have |Nin(v)| = 0, and thus

D(v) = 0: the substance is not necessary for the normal function of the metabolism, and

thus represents no vulnerability for the organism. If it is consumed by some reactions,

but produced by none, we have D(v) = 1: beyond being a potential vulnerability, this

substance reveals that the system is already a failure (that is, unless the substance

is provided by the growth media), as the organism cannot support the demand of

this particular metabolite. In all other cases D(v) grows with Nin(v) and decreases

with Nout(v), following the idea that potential vulnerabilities are characterized by high

demand and low availability.

In Figure 3.5 we present a plot of the degree distribution of the human metabolic

network we have been considering so far, modeled once more by means of a bipartite

digraph, but now taking into account both total valence and the degree vulnerability

index. Note that for any given value of total degree, the distribution is symmetric

with respect to the D(v) = 0.5 plane. This means that, for any given degree, there

are as many vulnerable vertices as robust vertices, suggesting that the overestimation of

vulnerability introduced in the substrate graph model is further multiplied by a factor of

2. For instance, the two vertices with the highest degrees in the distribution correspond

to ATP and ADP. The first has a high value of D(v), while the second has a low

value. This is consistent with biochemical knowledge: ATP is the main energy source

for cellular anabolism, so that blocking the ATP-producing reactions in cell catabolism

(50 reactions here, which is nonetheless a considerable amount) would be catastrophic

for the organism. ADP, on the other hand, is the main product of ATP degradation in

anabolic reactions; though it can be further decomposed to produce some extra energy,

it is highly available from all ATP-degrading reactions, and is unnecessary as long as

ATP is available.

Furthermore, Figure 3.5 draws attention on the potential relevance of low-degree

vertices when it comes to network vulnerability. For instance, there is a large number of

vertices with N(v) = 2 and D(v) = 0.5, meaning that they are produced by exactly one

reaction and consumed by exactly one reaction. Such substances may act as mediators in

reaction cascades that ultimately lead to a central point of the network. In consequence,

inhibition of their production could have a harmful impact on the organism. Whether

this happens or not cannot be determined just by looking at the degree distribution:

we have to consider the structure of reaction paths transversing the network. The
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Figure 3.5: Degree × degree vulnerability distribution of a human metabolic network modeled as

a bipartite substances-reactions digraph. Data comprises 2478 substances and 1808 reactions,

taken from http://www.reactome.org/download/current/homo sapiens.sbml.gz. Plots to the

right show a surface fitted to the data using a 50 × 50 grid, while the others show the actual

data points.
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following example concerns a methodology designed to account for this aspect of network

vulnerability.

* * *

Example 3.3 (Klamt and Gilles (2004)). The characterization of vulnerability pre-

sented on the previous example is quite incomplete. As we argue at the end, vertices

with very low out-degree and average degree vulnerability can be indispensable for the

connectivity of a network. An example of such situation is shown in Figure 3.6. A more

thorough characterization of vulnerability then has to look at the path structure of

the network, which is the ultimate responsible of signal transmission between different

nodes.

In the case of reaction networks, a path is intended to represent a sequence of

reactions that allow the transformation of an initial set of reactants into a final set of

products. Regardless of what graph model we choose, paths are unable to achieve this

goal, as for any given reaction they suppose the possibility of obtaining just one out of

several reaction products from just one out of several reactants. A hyperdigraph model

is the very minimum required in order to understand the path structure of a reaction

network.

Figure 3.6: Vertex a with degree 3 and D(a) = 1/3 is arguably a greater vulnerability than any

of the vertices with high degree and high degree vulnerability in the network. Note that, despite

its low degree and degree vulnerability, a huge number of paths go through this vertex. As a

consequence, it is the lone member of the graph’s smallest cut set.

Vulnerability in a graph can be characterized in terms of its paths by means of cut

sets. A cut set is a set of vertices whose removal ensures a disconnection of the graph.

Clearly, this means that at least one vertex has been removed from each path connecting

those parts, and that vertices in small cut sets represent remarkable vulnerabilities (see

Figure 3.6). Klamt and Gilles (2004) have generalized the definition of cut set to a

hyperdigraph model of chemical reaction networks. First, an Elementary flux Mode



64 3 A network model of chemical activity

(EM) is defined as a subset of reactions (i.e. hyperarcs in AH) that describe a feasible

and balanced flux distribution through a reaction network that is minimal with respect

to utilized reactions. Minimal Cut Sets (MCS), then, are defined as minimal sets of

reactions that must be blocked in order to ensure dysfunction of a target reaction. This

means that no EM including the target reaction must remain viable after the removal

of an MCS.

The size of MCSs involving some given reaction is an index of its importance for

the integrity of the network. For instance, “if a reaction is predominately part of larger

MCSs, then a malfunction of this reaction will be less crucial for the operation of the

objective reaction”(Klamt & Gilles, 2004, p. 232). Thus, the inverse of the average size

of all MCSs including a reaction a ∈ AH is an index of its vulnerability. The authors call

this index the fragility coefficient, Fa. The minimal value of zero is achieved when the

reaction is not part of any MCS, and the maximum value of 1 is achieved for essential

reactions. Furthermore, the network fragility coefficient F, defined as the average of

the fragility coefficient over all reactions in the network, offers a global descriptor of

network vulnerability.

F =
∑
a∈AH

Fa
|AH |

(3.11)

The authors computed this index for the glucose metabolism network of E. coli. They

found a value of 0.643, showing that this network has a considerable amount of vulner-

abilities that remain hidden when we only look at its degree distribution.

* * *

Graphs are the most familiar, better characterized, and widely spread image of var-

ious networks. This does not mean, however, that they should be expected to offer

an adequate mathematical representation of reaction networks. Through the previous

examples we have shown that, when used as a model of chemical reaction networks, the

inability of graphs to capture ‘and’ relations among reactants and products promotes an

inaccurate appreciation of the network-theoretical identity of substances. This identity,

which in network analysis is described by invariants such as vertex degree and paths,

is determined in category theory by the family of morphisms that define the category

of reaction networks. These morphisms constitute the key tool of our proposal of a

model of chemical activity, as they are the primary inducers of classifications, and thus

of properties and concepts. In consequence, though the category Graphs offers the ad-

vantages of an extensively characterized mathematical construction that has (indirectly)

been successfully used in many different network models, we deem it an inappropriate

basis for a model of chemical activity. Directed hypergraphs, on the other hand, are

proving that they can offer a more faithful image of chemical reaction networks, over-

coming the main limitations of graphs. In light of these considerations, we decided to
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use a category of hyperdigraphs as the necessary basis for defining the classification

system that lays at the hearth of our model.

3.2 Role assignments and role models

Following the argument of the previous section, we decided to take directed hypergraphs

as the mathematical representation of chemical reaction networks in our model. The

next thing we have to do is define the morphisms of our hyperdigraph category.

On the last section we introduced the category HyperD, whose objects are di-

rected hypergraphs and whose morphisms are defined as an adaptation of the concept

of adjacency preserving mapping to hyperdigraphs. Now, recall that mappings always

induce disjoint classifications; so restricting ourselves to a category whose morphisms

are mappings would prevent us from taking advantage of the richer conceptual struc-

tures induced by general binary relations. Thus, we will instead define the morphisms of

our category of hyperdigraphs as adjacency preserving relations between hyperdigraphs,

which we named role assignments.

Definition 3.4 (Role assignment). Let H and B be two hyperdigraphs. A role assign-

ment is a vertex relation r ∈ VH×VB such that for each ({u1, . . . , um}, {v1, . . . , vm}) ∈
AH, there are (u1, a1), . . . , (um, am), (v1, b1), . . . , (vn, bn) ∈ r such that ({a1, . . . , am},
{b1, . . . , bn}) ∈ AB.

Proposition 3.5. Composition of role assignments in Rel is a role assignment.

Proof. Let H1, H2, H3 be three hyperdigraphs, and r : VH1 → VH2 and s : VH2 →
VH3 be two role assignments. Since r : VH1 → VH2 is a role assignment, for each

hyperarc ({u1, . . . , um}, {v1, . . . , vn}) ∈ AH1 , there are (u1, w1), . . . , (vn, xn) ∈ r such

that ({w1, . . . , wm}, {x1, . . . , xn}) ∈ AH2 . In the same way, since s : VH2 → VH3 is a role

assignment, there are (w1, y1), . . . , (xn, zn) ∈ s such that ({y1, . . . , ym}, {z1, . . . , zn}) ∈
AH3 . By construction, this means that (u1, y1), . . . ,

(vn, zn) ∈ s ◦ r, so we conclude that s ◦ r is a role assignment with domain in VH1 and

codomain in VH3 .

Proposition 3.6. The collection of directed hypergraphs and role assignments conforms

a category. To avoid a proliferation of terms, from now on we will refer to this category

as HyperD.

Proof. For hyperdigraphsH1, H2, H3 and role assignments r ⊂ VH1×VH2 , s ⊂ VH2×VH3 ,

and t ⊂ VH2 × VH1 :

i) Dom(r) = H1 and Cod(r) = H2
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ii) composition of role assignments s ◦ r is defined as in Rel. By Proposition 3.5,

composition of role assignments is a role assignment.

iii) composition in Rel is associative

iv) the identity mapping 1VH1
: VH1 → VH1 is an identity in Rel and a role assign-

ment, and thus an identity in HyperD.

As we saw in Example 2.14, regular role assignments can be seen as adjacency

preserving mappings from a graph onto its corresponding block model. Then, in Ex-

ample 2.18 we showed that adjacency preserving relations between graphs generalize

regular role assignments to allow for non-disjoint classifications. The previous definition

further extends this approach from role analysis to networks modeled as directed hy-

pergraphs. That is why we borrowed the name ‘role assignments’ to refer to morphisms

in HyperD: given an r : H1 → H2 ∈ HyperD1, each v ∈ VH2 can be interpreted as

a role that any substance in ker r(v) can perform in its reactions, as long as it meets

the appropriate partners. Just as regular role assignments formalize the sociological

intuition that ‘similar actors relate to similar actors’, our generalized role assignments

formalize the chemical principle of ‘similar substances react with similar substances’.

Role assignments allow us to tell what roles a substance is able to play in a given

reaction network. Chemists, however, are capable of more: they are not only able

to determine the full set of roles that a substances is capable of playing in different

chemical reactions (e.g. that of an acid, an ester, an alcohol...), but they can also

tell precisely what role a substance plays in any specific reaction. In order to match

their skill, our model should allow us to tell, for any given classification ker r with

r : H1 → H2 ∈ HyperD1, what role in VH2 is performed by each substance in VH1 in

each reaction in AH1 . This comports the identification of each hyperarc a ∈ AH1 with

an hyperarc b ∈ AH2 , and the introduction of a bijective mapping from a to b . Here

we formalize this construction through the definition of role model, and show that role

models and role assignments are consistent in the sense that role models induce unique

role assignments.

Definition 3.7 (Role model). Let H1 and H2 be hyperdigraphs, and α : AH1 →
AH2 , for directed hypergraphs H1, H2 such that |tail(a)| = |tail(α(a))| and |head(a)| =
|head(α(a))| for each a ∈ AH1 . Let F be the family of all bijections fa : a → α(a)∀a ∈
AH1 such that fα(tail(a)) = tail(α(a)). A role model is a mapping β : AH1 → F such

that for each a ∈ AH1 , Dom(β(a)) = a.

A role assignment gives us a substance classification properly by relating each role

with a set of substances, that is, by telling us what substances constitute each of the
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substance classes. On the other hand, a role model gives us additional information, by

telling us what particular role a substance performs in a given reaction, in accordance

with a chosen reaction partition α. The constraints β(a) : a → α(a) and fα(tail(a)) =

tail(α(a)) give a consistency condition, by warranting that there exists a bijective vertex-

mapping for each reaction, and that it maps reactants into reactant classes and products

into products classes. This condition warrants structure-preservation in the same sense

demanded by a role assignment, as we prove now.

Proposition 3.8. Let β be a role model for H1, H2. The relation rβ = ∪a∈AH1
β(a) is

a role assignment of H1 onto H2. We call this relation the role assignment induced by

β.

Proof. For each a ∈ AH1 , β(a) provides the subset of rβ that fulfils the defining property

of a role assignment.

Example 3.9 (Organic functions). Recall Laurent’s answer to the question of the

definition of ether, that we quoted on Chapter 1: “an ether is a body obtained by

the reaction of an acid upon an alcohol, with an elimination of water, and that under

certain circumstances that ether can be divided, either by regenerating the alcohol

and acid which gave it birth, or by forming products which belong to the families of the

alcohol and of the acid”. This definition, that is still important in contemporary organic

chemistry, can be summarized into a set of directed hyperarcs in a hyperdigraph whose

vertices are organic functions4:

acid + alcohol→ ester + water (3.12)

ester + water→ acid + alcohol

...

Any other organic function is defined on the same terms. In the end, we get a hyperdi-

graph O that determines the abstract chemistry of organic functions. This abstraction

is linked to the ‘reality’ of chemical reactions by means of a relation r : H → O whose

domain is the hyperdigraph representing the actual network of chemical reactions of

organic compounds. Elements of this relation are determined by identifying a chemical

reaction in AH with a hyperarc in AO, and then constructing a bijective mapping from

the head and tail of the former into the head and tail of the later. For example, the

reaction

CH3COOH + CH3OH → CH3COOCH3 +H2O (3.13)

4Laurent’s ethers are now known as esters.
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is identified with (3.12). Then, each term of the reaction is mapped into a unique term

of (3.12):

CH3COOH → acid

CH3OH → alcohol

CH3COOCH3 → ester

H2O → water.

(3.14)

The union of all such mappings conforms the relation r : H → O, so that for any o ∈ O,

ker r(o) gives the class of substances associated with the corresponding organic function.

In other words we have just built a role model and used it to induce a role assignment,

thus showing that the classification of organic compounds in organic functions can be

formalized as a role assignment.

* * *

It is important to note that role models are consistent with but not necessarily

equivalent to role assignments. The later would suppose the existence of a category

equivalent to HyperD whose morphisms are role models or are uniquely determined by

role models. So far, we cannot tell that such category exists: we have proven that role

models induce unique role assignments, but we have not proven that role assignments

induce unique role models; much less that the implicit mappings are inverses. Though

we cannot warrant that any arbitrary role assignment has an associated role model,

in the following section we will see that we can prove the existence of associated role

models for our preferential role assignments.

3.3 Predictive power and optimal role assign-

ments

Given a role assignment r : H1 → H2 and a substance u ∈ VH1 , the set ru = {v ∈ VH2 :

(u, v) ∈ r} of all roles that this substance can perform in different chemical reactions

completely characterizes its chemical activity under this particular morphic represen-

tation. In this way, by considering all morphisms with domain on H1 we can express

everything there is to say about the activity of substances in the corresponding reaction

network. But chemists are constantly producing new compounds, so no matter how

large H1 is, it can never comprise all substances known to chemistry. This observation

takes us to one of the basic demands posed on a scientific model: it has to be able to

predict unobserved empirical phenomena.

In principle, any newly synthesized substance v would send us back to square one:

we would have to run all possible reaction tests involving v and any u ∈ VH to built a
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new hyperdigraph H1∪{v} with vertex set VH ∪ {v} and hyperarc set determined by the

results of the tests run, and look into morphisms with domain in this hyperdigraph to

characterize the new set of substances. This is a very grim perspective: role assignments

seem to lack predictive power, so we would be forced to start over after each new

synthesis.

Closer examination reveals that things are not always that bad. Recall that a role

assignment r : H1 → H2 defines a formal context were concepts related to chemical ac-

tivity of substances in VH can be defined. These concepts are completely characterized

by the corresponding concept lattice. Now, note that the set rv that completely char-

acterizes v under r is equal to vr, the intent of the smallest concept containing v. This

means that even if we introduce new substances in VH and modify AH in accordance

to their activity, as long as the concept lattice does not change, the model remains

ultimately untouched. Of course, it is impossible to determine whether this happens or

not until we have run all the corresponding reactivity tests, which is exactly what we

want to avoid. Thus, in order to give predictive power to a role assignment, we require

a principle of induction: when VH1 is sufficiently large, we hypothesize that the concept

lattice already includes all possible concepts, so it will not change any more. In this way,

the problem turns into that of positioning the new substance into the concept lattice,

which can be done with fewer reaction tests: we just need to determine vr, a problem

bounded by the size of the largest concept intent in the lattice. Once we have done this,

we can predict the results of any untested reaction involving the new substance5.

Now that we have found a way to endow role assignments with predictive power,

we want to optimize their ability to make predictions. Clearly, the smaller vr is, the

fewer reaction tests are needed in order to predict the activity of v with respect to any

untested reaction. Also, the smaller r is, the smaller the expected value of vr becomes.

In consequence, we propose to use the cardinal of r as a measure of its optimality.

Definition 3.10 (Minimum role assignment). Let r : H1 → H2 be a role assign-

ment. We say that r is minimum if |r| is minimum over all role assignments in

HomHyperD(H1, H2).

In other words, while HyperD determines our classification system for the charac-

terization of chemical activity, the measure function m(r) = |r| determines a classifica-

tion problem whose solutions are classifications with maximum predictive power.

Last, recall that though we know that a role model induces an unique role assignment

(see Proposition 3.8), we cannot assert that each role assignment has an associated

role model. However, we can prove that any minimum role assignment has this property.

Proposition 3.11. Let r : H1 → H2 be a minimum role assignment. Then there exists

a role model β such that r = rβ.

5Presently, this can only be done when we also have a role model; but we will soon see that

this limitation can be easily overcome.
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Proof. Since r is a role assignment, for each a ∈ AH1 there is a subset of r that is a

bijective mapping from a into some b ∈ AH1 and maps heads into heads and tails into

tails (Definition 3.4). We define each β(a) as such a mapping. We now prove that

rβ = r. As rβ = ∪a∈AH1
β(a) and β(a) ⊂ r for all a ∈ AH , it follows that rβ ⊂ r. But

since r is a minimum role model, this necessarily means that r = rβ, which completes

the proof.

That is, for any given optimal role assignment we can always choose a consistent role

model. The existence of a role model allows us determine exactly what role any given

substance plays in any given reaction. The previous result proves that we can always

count with this possibility for the most relevant case of classifications with optimal

predictive power.

The following example tests the adequacy of the model developed so far by using

it to reconstruct some elements of chemical knowledge on acid-base behavior. First,

the pertinence of our criterion of optimality is supported by the agreement between an

optimal role assignment and the accepted classification of a small set of chemical sub-

stances as acids and bases. Then, the emergence of the concept of amphoteric substances

is presented as an argument supporting the importance of non-disjoint classifications in

chemical thought, which justifies our insistence in the use of general binary relations as

classification inducers. Last, we sketch how other elements of acid-base theory can be

derived from further developments built upon the basis of our model.

Example 3.12 (Acids and bases). The concepts of acid and base are among the oldest

constructs of chemistry. These concepts have been transformed several times during

the history of chemistry, and even today different definitions coexist (e.g. the concepts

of Brønsted-Lowry acid/base and of Lewis acid/base). We believe that the common

element that unifies all different conceptualizations of acid and basic substances is given

by a principle of complementarity: acids and bases always come in opposing pairs, each

element of the pair being characterized with respect to its behavior in front of the other.

The current example intends to reconstruct this broader definition of the concepts of

acid and base by means of a classification in HyperD.

Consider a family of substances involved in acid-base reactions, represented by the

hyperdigraph H1. In general, an acid-base reaction may be defined as a reaction of

the type A+ B → A+ B. This means that we are putting the corresponding reaction

network in the context of a role model, where each element of the reaction set belongs

to the A + B → A + B reaction class, A being the ‘acid’ role and B being the ‘base’

role. Then, we expect the chemical classification of substances as acids and bases to be

given by an optimal role assignment r : H1 → H2, where H2 is the hyperdigraph with

a single hyperarc ({A,B}, {A,B}).
To test this hypothesis, we built a network of 26 substances involved in 104 acid-

base reactions (see Figure 3.7). These reactions were reconstructed from the acidity
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constants in aqueous solution of the corresponding substances. Ka values were taken

from Williams (2010) and are reported in column 3 of Table 3.1. To give a directionality

to the reactions, we assumed that a reaction takes place in the direction of Ka > 1. For

instance, for HBr we have Ka = 1.00× 109, corresponding to the equilibrium constant

of

HBr +H2O � H3O
+ +Br−; (3.15)

and for NH+
4 we have Ka = 6.17× 10−10, corresponding to

NH+
4 +H2O � H3O

+ +NH3 (3.16)

In the first case Ka > 1, so we include the reaction

HBr +H2O → H3O
+ +Br− (3.17)

into the network; on the second case Ka < 1, so we take instead the inverse reaction:

H3O
+ +NH3 → NH+

4 +H2O (3.18)

Furthermore, by combining the last two expressions we get another reaction,

HBr +NH3 → NH+
4 +Br− (3.19)

which also has an equilibrium constant K > 1, so it is was introduced in the network

as well. We repeated this process for all substances in Table 3.1, thus generating the

full network of acid-base reactions pictured in Figure 3.7.

Our purpose is to find an optimal role assignment r : H1 → H2, where H1 is the

hyperdigraph representation of the reaction network just constructed and H2 is the

hyperdigraph with only one hyperarc ({A,B}, {A,B}), and to contrast the resulting

classification with contemporary knowledge regarding acidity and basicity of substances

in VH1 . In general, the role assignment optimization problem is NP -hard, as proven by

the fact that the graph homomorphism problem, which is NP -complete, is reducible to

the associate role assignment decision problem. In consequence, computing an optimal

role assignment even for two relatively small hyperdigraphs such as H1 and H2 may

demand significant computation time. Fortunately, the specific instance of the role as-

signment optimization problem considered here allows for a simplification that achieves

a significant reduction in the number of operations necessary for computing an optimal

role assignment.

First, note that for any viable solution r : H1 → H2, we can partition VH1 in three

sets: the set of substances that behave exclusively as acids,

rA = {v ∈ VH : (v,A) ∈ r, (v,B) 6∈ r}, (3.20)
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Figure 3.7: A network of acid-base reactions, depicted as a bipartite digraph. Vertices in blue

represent substances (26 in total), vertices in red represent reactions (106 in total).

the set of substances that behave exclusively as bases,

rB = {v ∈ VH : (v,A) 6∈ r, (v,B) ∈ r}, (3.21)

and the set of substances that can behave as both,

rAB = {v ∈ VH : (v,A) ∈ r and (v,B) ∈ r}, (3.22)

so that these three sets completely determine r. Clearly,

rAB = VH1 \ (rA ∪ rB) (3.23)

and the optimality parameter |r| is given by

|r| = |rA|+ |rB|+ 2|rAB|, . (3.24)

From (3.23) and since rA ∩ rB = ∅ we have |rAB| = |VH | − (|rA|+ |rB|), and thus

|r| = 2|VH1 | − (|rA|+ |rB|). (3.25)

Equation (3.23) shows that rA and rB completely determine a role assignment and

equation (3.25) shows that by maximizing the sum |rA| + |rB| we find the optimum.
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These two sets are the sets of vertices that can be mapped into a single role in such a

way that they never appear in a hyperarc tail or head with a vertex of the same role. We

could then regard the tails and heads of the hyperarcs as edges in a graph with vertex

set VH , so that rA∪rB induces a bipartite subgraph of that graph. The role assignment

optimization problem would thus, in this particular case, turn out to be equivalent to

the maximum induced bipartite subgraph problem. Since the minimum induced bipartite

subgraph of any graph with at least one edge is the two-vertex graph with a single edge,

this observation produces an interesting result:

Proposition 3.13. In any acid-base classification there is always at least one ‘pure’

acid and at least one ‘pure’ base.

The maximum induced bipartite subgraph problem is an NP-hard problem as well.

However, a brute-force algorithm for solving it scales better than the general role as-

signment optimization problem: let k be the number of vertices in a maximum induced

bipartite subgraph of G. In order to find such a maximum induced bipartite subgraph

we would have to test at most
|VG|∑
m=k

(
|VG|
m

)
(3.26)

subgraphs for bipartiteness. Each of these tests can be decided by depth-first search, so

that the sum of binomial coefficients would be the dominant factor in the scaling of the

algorithm. On the other hand, there are 4|AH | potential different role models on a given

directed hypergraph6. This would be the amount of computations of |rβ| required to

find an optimal role assignment in the brute force approach. Since in the present case

(an probably in most cases of chemical relevance) |AH | > |VH |, we have

4|AH | < 4|VH | = 22|VH |; (3.27)

and since
n∑
k=o

(
n

k

)
= 2n, (3.28)

whenever VH = VG we get

4|AH | >

|VG|∑
m=k

(
|VG|
m

)
, (3.29)

proving that the maximum induced bipartite graph algorithm scales better. In conclu-

sion, by formulating the acid-base role assignment optimization problem as a maximum

induced bipartite subgraph problem, we now have an easy method for solving it for a

reasonably small data set.

6For any given reaction a + b → c + d there are 4 different ways of bijectively mapping its

substances into the vertices of A+B → A+B
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Label Substance Ka Roles Acid strength

(Nout(u,A))

1 HBr 1.00× 109 Acid 14

2 HCl 1× 107 Acid 13

3 H2SO4 1.0× 103 Acid 11

4 HNO3 20 Acid 11

5 H3O
+ 1 Acid 9

6 HSO−4 1.02× 10−2 Acid and Base 9

7 H2S 1.00× 10−7 Acid 7

8 NH+
3 (CH2)3NH

+
3 2.57× 10−9 Acid 6

9 NH+
4 6.17× 10−10 Acid 6

10 C6H6OH 1.12× 10−10 Acid 5

11 CH3NH
+
3 2.291× 10−11 Acid 4

12 NH2(CH2)3NH
+
3 2.239× 10−11 Acid and Base 3

13 HS− 1.202× 10−13 Acid and Base 2

14 H2O 1× 10−14 Acid and Base 1

15 CH3CH2OH 2.884× 10−16 Acid 0

16 OH− – Base 0

17 Cl− – Base 0

18 Br− – Base 0

19 NH3 – Base 0

20 S2− – Base 0

21 NO−3 – Base 0

22 C6H6O
− – Base 0

23 CH3NH2 – Base 0

24 NH2(CH2)3NH2 – Base 0

25 CH3CH2O
− – Base 0

26 SO2−
4 – Base 0

Table 3.1: Summary of the optimal acid-base role assignment of a network comprising 26 sub-

stances.
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The fourth column of Table 3.1 summarizes the optimal role assignment computed

by this method, while Figure 3.8 depicts the corresponding concept lattice. The results

perfectly match the accepted chemical classification of the data set in acids and bases.

The emergence of amphoteric substances is particularly remarkable. They appear not

as a separate class different from those of acids and bases, but as the extent of a concept

characterized by both the acid and base properties, which arguably comes closer to the

way amphoteric substances have been conceptualized in chemistry. Beyond the fact that

Table 3.1 shows a successful recognition of the acid and basic substances among a small

collection of compounds, we want to emphasize the agreement between our approach

and the logic of chemical thought: the characterization of amphoteric substances as

entities with mixt behavior is made possible by the use of general binary relations as

morphisms in the classification system, allowing for the existence of classifications in

non-disjoint classes –a feature that we have intently included into our model.

Though this may seem as a subtle and ultimately irrelevant detail, we shall argue

that it actually makes a big difference in the simplicity and cognitive value of the the-

ory. Indeed, suppose that we had required role assignments to be adjacency preserving

mappings, forcing us to fit the reaction network to a partition in disjoint classes of

equivalence. Since we found four substances that are both acids and bases (H2O, HS−,

NH2(CH2)3NH
+
3 , and HSO−4 ) in a role assignment that minimizes the occurrence of

such substances, it is clear that, had we demanded role assignments to be mappings,

there would be no role assignment for this network with codomain on H2. To get a

suitable substitute for H2, we would have to introduce at least one new vertex X in VH2

to represent the class of amphoteric substances. Furthermore, since these substances

react with both acids, bases, and among themselves, and also appear as accompany-

ing products of all kinds of substances, we would need to introduce a lot of additional

hyperarcs in AH2 to obtain a viable fit:

({A,X}, {A,B})
({X,B}, {A,B})
({A,B}, {A,X})
({A,B}, {X,B})
({A,X}, {A,X})
({A,X}, {X,B})
({X,B}, {A,X})
({X,B}, {X,B})
({X,X}, {A,B})
({X,X}, {A,X})

...
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We see how the demand for disjointness significantly increases the size of the codomain of

a viable role assignment. As a result, a model that allows for restricted role multiplicity

turns out to be more concise than one that plainly discards it. Even more: while

the concept lattice of Figure 3.8 contains two non-trivial pairs of comparable concepts,

we know that in the concept lattice of a disjoint classification any pair of non-trivial

concepts are incomparable (see Figure 2.5). Thus, despite being more concise, the

non-disjoint classification arguably contains more information.

Figure 3.8: The concept lattice of an acid-base role assignment. Extents are written using the

labels of Table 3.1.

Further analyses of the classification of Table 3.1 allow us to expand our knowledge

on the phenomenon of acidity-basicity. For instance, note that each vertex u ∈ VH1 is

completely described by its neighborhoods,

Nin(u) = {a ∈ AH1 : u ∈ head(a)},
Nout(u) = {a ∈ AH1 : u ∈ tail(a)}.

(3.30)

These sets can then be taken as the broadest descriptors of the activity of a substance.

In particular, |Nout(u)| is equal to the number of reactions where u takes part as a

reactant, i.e. it gives a measure of the reactivity of u. In the same way, for any given

role model β, the sets

Nin(u, v) = {a ∈ AH1 : u ∈ head(a) and β(a)(u) = v}
Nout(u, v) = {a ∈ AH1 : u ∈ tail(a) and β(a)(u) = v}

(3.31)

describe the activity of u relative to property v. In particular, Nout(u,A) is a descriptor

of u’s acid activity, and |Nout(v,A)| measures its reactivity as an acid, that is, its acid

strength. This central concept of chemistry can thus be attached to an invariant of the

role assignment determining an acid-base classification.

Column 5 of Table 3.1 presents the values of |Nout(u,A)| for the 26 substances in the

role model induced by the optimal role assignment built. As expected, |Nout(u,A)| is

correlated with Ka, the measure of acid strength in the theory of chemical equilibrium.

In the same way, |Nout(v,B)| gives a measure of the basic strength of a substance.
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The concept lattice tells us that it is possible to determine the acid-base properties

of an uncharacterized substance with as few as two reaction tests –one to determine if

it has the property A, and another to determine if it has the property B. The scale of

acid/basic strength help us attain this minimum, as the probability that an unknown

acid/base will react with the strongest acid in the network is highest. Thus, by using

the strongest acid/base in the reaction tests, we optimize our chances of characterizing

an unknown substance in as few steps as possible. This high probability is turned

into certainty by an interesting property of the role model: for any hyperarc a =

({u, v}, {x, y}) we have

|Nout(u, β(a)(u))|+ |Nout(v, β(a)(v))| ≥ |Nout(x, β(a)(x))|+ |Nout(y, β(a)(y))|, (3.32)

which means that each acid-base reaction proceeds with an overall decrease of acid-

basic strength, a well-known fact that naturally emerges from the role model. This

fact warrants that a substance that reacts with a weaker acid/base will also react with

a stronger acid/base, turning the scale of acid/base strength into a straightforward

determinant of acid-base activity.

* * *

Of course, there is nothing new in the results derived in the previous example. But

our point, precisely, is that there is nothing new with chemical activity: if anything, we

have endeavored to show that it is one of the oldest approaches in chemical research.

The novelty that we are proposing is a mathematical formulation of this approach.

Having reproduced a relevant piece of chemical knowledge by means of our model raises

our hopes that we are heading in a right direction.

3.4 From reaction networks to structural formu-

las

Structural formulas are one of the most recognizable trademarks of chemistry, and

also one of the most interesting. In the historical development of chemical theory,

structural formulas were primarily constructed from the examination of the network

of chemical reactions and thus owed to be absolutely consistent with it. Then, at

some point they gain the ability to suggest concepts, patterns, and new routes for

empirical research that are not evident in the sole structure of the chemical reaction

network. As Klein notes, “the manipulations of formulas on paper and the visual

display of possible recombinations of signs had the suggestive power of introducing

new significances, which chemists attempted to match up with experimental traces”

(Klein, 2003, p. 3). In other words, structural formulas strongly inhabit that twilight
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zone between chemical structure and chemical activity, constituting ideal subjects for

examining the matter of the relation between activity and structure theory. In this

section we use the mathematical language developed thus far to discuss how structural

formulas can be derived from empirically constructed reaction networks, and how they

may claim independence from their absolute domain afterwards.

A reaction network is represented by a hyperdigraph H ∈ HyperD0. In turn, each

substance in the network is represented by a vertex in VH . At the moment, these vertices

are devoid of any structure; they are just “anchor points for relations”. But recall that

H is not the unique valid representation of the network. Equivalent representations are

given by

• an element of HyperD that is isomorphic to H,

• the image of H under an equivalence of categories7.

Note that no demand is posed on the nature and constitution of an equivalent represen-

tation. That is, it does not matter whether it is another hyperdigraph, or a group, or a

POSET; plus, it does not matter whether its elements are points, or graphs, or whatever

we may please: all that matters is that it is isomorphic (up to isomorphism) to the orig-

inal hyperdigraph. This observation allows us to see in what sense structural formulas

are determined by reaction networks: in our model, that statement translates into the

statement that there is an equivalent representation of the network whose elements are

structural formulas.

Finding an equivalent representation in terms of structural formulas of a large reac-

tion network, covering a reasonably complete fraction of empirical knowledge regarding

substance reactivity, is a hard enterprise that we will not aboard here. There are some

promising proposals on this regard, such as Benkö et al.’s toy model based on graph

grammars (Benkö et al. , 2003) that we hope to test in future developments. Meanwhile,

7Two cases are listed for the sake of clarity, but it is worth noting that actually the second

includes the first: given an isomorphism i : A → B in a category C, the functor F : C → C

defined by

FA = B

FB = A

FX = X for X 6= A, X 6= B

(3.33)

F (i) = i−1

F (i−1) = i

F (f) = f for f 6= i, f 6= i−1
(3.34)

is faithful, full, and essentially surjective, so it defines an equivalence of categories that maps A

into an isomorphic object B.
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we think that a restricted example using a small reaction network will be enough to

show how this problem can be solved.

Example 3.14 (The structure of benzene). Consider the network of chlorine substitu-

tions on benzene. All reactions are of the type

ϕ− Cln + Cl2 → ϕ− Cln+1 +HCl (3.35)

where ϕ−Cln is an n-chlorine substituted derivative of benzene. Following our general

approach, this network should be represented by means of a hyperdigraph. However,

since one reactant (Cl2) and one product (HCl) are common to all reactions, we can

remove them from all hyperarcs without losing information. As a result, we obtain a

digraph H pictured in Figure 3.9 (a).

According to our proposal, equivalent models of this reaction network are given ex-

clusively by images of H under an equivalence of categories. For instance, Ivanciuc et

al. (2005) have noted that the network of chlorine-substitution reactions on benzene

can be regarded as a POSET P with Hasse diagram H. The identification of H with P ,

however, is not a strict change of representation: since Hasse diagrams are not arbitrary

digraphs but only those that correspond to the transitive interior of a POSET, we would

be regarding H as an object in the category Hasse ⊂ Digraphs of Hasse diagrams and

adjacency-preserving mappings. The transformation proposed by the authors, then,

would be given by a functor F : Hasse → Pos that maps Hasse diagrams into their

corresponding POSETs (i.e. into their respective transitive closures). No functor sat-

isfying this property can be an equivalence of categories: on one hand any adjacency-

preserving map f : H1 → H2 ∈ Hasse is a monotone map f : FH1 → FH2. Indeed,

since AHi is the transitive interior of ≤FHi we have AHi ⊂≤FHi , so that (u, v) ∈ AH1

implies u ≤FH1 v; and since in that case (f(u), f(v)) ∈ AH2 , we have f(u) ≤FH2 f(v).

Furthermore, since FHi is the transitive closure of Hi, monotonicity in all remaining

ordered pairs is warranted by transitivity. On the other hand, not every monotone map

is adjacency preserving –linear extensions provide a quick counterexample. Thus, F

cannot be full.

The previous result questions the rigor of representing the benzene chlorine-substitution

reaction network as a POSET. However, we can attain strict category

equivalence with the digraph image of the network by considering only cover relations

in H: for each x, y ∈ P , we say that x covers y (noted xl y) if and only if y ≤ x and

there is no z 6= y ∈ P such that y ≤ z ≤ x. Let P be the category of POSETs and

mappings f : P → Q such that xly implies f(x)lf(y)8. Clearly, there is a one-to-one

8Note that these mappings are analogous to monotone functions, except that the defining

condition is now introduced with respect to cover rather than order relations. This means that

objects in P0 are no longer our ‘usual’ POSETS, in the same sense that objects in BipartiteD

are no longer our usual digraphs (see Section 3.1).
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Figure 3.9: (a) Network of chlorine-substitution reactions on benzene represented as a directed

graph. Each dot represents a chlorine-substituted derivative, all other reactants/products were

omitted (i.e. Cl2 andHCl), arrows point from reactants to products. The upper point represents

benzene, each point v below it represent an n-substituted derivative, where n is the length of the

shortest path going from benzene to v. (b) Hasse diagram of the POSET of structural formulas

of benzene chlorine-substituted derivatives ordered by the subgraph relation.

correspondence between cover relations in a POSET and arcs in its Hasse diagram, so

F : Hasse→ P defined by

{
FH = P iff P is the transitive closure of H

F (f : H1 → H2) = f
(3.36)

is an equivalence of categories, proving that FH is an equivalent representation of H9.

9Its worth noting that this transformation is consistent with the QSSAR methodology in-

troduced by Ivanciuc et al. (2005), where properties of a compound are interpolated from the

properties of the elements of its cover. This shows that the authors are also focusing on cover

rather than order relations, so they would actually be equating the digraph of the reaction

network with an object in P.
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The Hasse diagram H ∈ Hasse0 of Figure 3.9 (b) provides the primary represen-

tation of empirical knowledge on the network of chlorine-substitution reactions. The

collection of morphisms with domain on H completely characterizes the structure of

this Hasse diagram. In consequence, any image of H under an equivalence of cate-

gories provides an equivalent representation of the network that is consistent with the

same collection of empirical facts –such is the case of FH ∈ P0. In the same way,

equivalences of categories also give the consistency condition that structural formulas

of chloro-benzenes must fulfil: they must span a mathematical structure that is also

the image of H under an equivalence of categories, as only the existence of such func-

tor warrants that the new model is coherent with the empirical phenomena it accounts

for. Clearly, any isomorphic image of FH satisfies this condition. Such is the case of

the POSET S of structural graphs of Figure 3.9 (b), also introduced by Ivanciuc et al.

(2005). In this POSET order relations are defined as subgraph relations, i.e. G1 ≤ G2

if and only if G1 is a subgraph of G2. For the sake of consistency, we could also define

this POSET by means of cover relations, stating that G1 l G2 if G1 is a maximum

subgraph of G2, so that S ∈ P0. From the picture of its Hasse diagram, it is clear that

S ' FH ' H, proving that S is, indeed, an equivalent model of the reaction network

being considered.

The value of the criterion of categorical equivalence as a link between activity and

structure theory is demonstrated by its ability to distinguish what nineteenth century

chemists considered viable structural formulas from the ones they considered inadequate.

As we have just shown, the hexagonal kekulean structure determines a POSET that is

equivalent to the substitution reaction network H. Furthermore, rejected candidate

formulas for benzene that agree with the rules of valence such as those considered in

Figures 3.10 (a) and (b) conform POSETs that are not equivalent to H. Last and

most notably, Landenburg’s prismane structure spans a POSET that is equivalent to

H (Figure 3.10 (c)). This remarkable structure achieved significant popularity, despite

its apparent deviation from the already well recieved hexagonal structure proposed by

Kekulé (Rocke, 1985). While it is hard to see any similarity between the formulas

themselves, the corresponding POSETs of structural graphs immediately revealed their

equivalence.

Interestingly, Rocke has argued from a historical perspective that Ladenburg’s pris-

mane structure should be regarded as a “modification rather than a rejection” of

Kekulé’s theory, since both chemists worked close to each other in the development

of their respective proposals, using the same criterion when choosing a viable structural

formula: that it matched the counts of the number of known isomeric n-substituted

derivatives of benzene (Rocke, 1985). From a contemporary perspective, these isomer

counts are determined by the collection of paths in the chlorine-substitution reaction

network, which in turn is a graph-theoretical invariant. This means that Kekulé’s cri-

terion was nothing but an invariant of that network up to isomorphism in Graphs;
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Figure 3.10: Alternatives to the hexagonal formula of benzene. (a) A failed candidate. Three

carbon atoms conform a core with all but two valences saturated (labeled C3 in the picture),

that is bounded to two methyl groups (labeled C). The corresponding POSET of structural

graphs ordered by the subgraph relations is not equivalent to that of Figure 3.9 (a), which is

first revealed by the fact that the counts of di-substituted derivatives do not match. (b) Another

failed candidate. Two carbon atoms conform a core with three free valences (labeled C2), that

are saturated by three methylene groups (labeled C). The corresponding POSET of structural

graphs is isomorphic to that of (a), so this structural formula is discarded on the same grounds.

(c) Ladenburg’s prismane structure induces a POSET that is isomorphic to that of Figure 3.9

(a), and is thus a suitable structural formula.
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so we could say, if we are allowed the anachronism, that he was ultimately demand-

ing, just as we did here, that structural formulas conformed an object that was related

to the substitution reaction network by an equivalence of categories. In this sense, the

methodology we followed to derive the structure of benzene is consistent with the actual

historical process that lead to the currently accepted structure.

* * *

Unlike vertices in the hyperdigraph of a reaction network, structural formulas have

properties of their own. These properties allow for the definition of a category equivalent

to that of reaction networks, as we showed above. This fact grants them meaning and

legitimacy, so that after equivalence is proven properties of the structural graphs become

the main focus of attention. At this point, an inversion in the direction of analogy

occurs: structural graphs are no longer seen as determined by reaction networks but

as determinants of reaction networks, thus gaining the ability to shape the model that

gave them birth.

Example 3.15 (Organic functions revisited). In contemporary chemistry, the isomeri-

sation of glucose into the cyclic glucopiranose form,

is seen as a nucleophilic addition of an alcohol on an aldehyde, producing a hemiacetal:

Aldehyde + Alcohol→ Hemiacetal. (3.37)

The acyclic form of glucose then has the aldehyde and alcohol properties, while its

cyclic glucopyranose form has the hemiacetal property. But this classification is clearly

impossible in HyperD: consider the hyperdigraph H of chemical reactions and the

hyperdigraph O of organic functions introduced in Example 3.9. On that model

glucose isomerisation is represented by a hyperarc a ∈ H, while hemiacetal formation

is represented by a hyperarc b ∈ O. In turn, the family of organic functions of acyclic

glucose is determined by its image under the kernel of a role assignment r : H → O.

Last, the role of glucose in a is determined by its image under β(a), where β is the role

model induced by r. In consequence, a role assignment that successfully reproduces the

contemporary classification of glucose isomerisation as hemiacetal formation and thus
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characterizes cyclic glucose as a hemiacetal should be such that β(a) : a→ b. But since

|tail(a)| = 1 and |tail(b)| = 2, there is no role assignment r : H → O satisfying this

property.

The previous observation shows that, opposing what we said in Example 3.9, the

modern concept of organic function (even when understood only in terms of chemical

activity theory) goes beyond the reach of our current version of the activity model.

The innovation identified in this example may have been promoted by the influence of

structure theory: when we induce structural formulas from a reaction network through

a change of representation and use them to characterize the entities, they become more

than “anchor points for relations”; they acquire a rich structure, properties of their

own, and thus gain an additional operability. In the present case, organic functions

become attached to certain motifs in the structural graphs. Reaction classes then start

to be seen as abstract operations between those motifs, so that we can define a pseudo-

reaction between organic functions in the same compound. This possibility may be seen

as a hypothesis generated by the structural model that is to be contrasted by experiment

(see below), or it may be seen as a novel classificatory approach inspired by that model.

Either way, it eventually induces a change in the activity theory that incorporates the

innovation. In terms of our model, this change concerns a redefinition of the morphisms

comprised in the reaction network category in order to allow for the novel classificatory

structures.

* * *

The previous example illustrates how the analysis of the properties of structural

formulas may suggest changes on the category of reaction networks. It is interesting to

analyze this interaction between structural formulas (structure theory) and categories

of reaction networks (activity theory) in epistemological terms. Reaction networks are

constructed by incorporating data collected by experiment. These data are embedded

in a category designed to preserve its relational structure, and knowledge on chemical

activity is obtained by means of morphisms in that category. Any statement that may

be produced regarding unobserved empirical phenomena within activity theory (e.g. on

whether some substances react with each other or not) relies on a pattern revealed by

the codomain of a structure-preserving transformation, whose domain is an empirically

constructed network10. In this way, that pattern is supported by empirical evidence.

Predictions in activity theory, thus, are inductive inferences relying on observed empir-

ical phenomena an a suitable principle of induction.

Structural formulas are able to produce all those inductive inferences, as they span

an equivalent image of the empirical reaction network. But they are also expected

10On this regard, recall the connection between formal contexts and morphisms in a clas-

sification system considered on Section 2.3, and the possibility of producing inferences by

examination of a concept lattice illustrated in Example 2.23.
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to produce new statements that would not be possible by the sole examination of the

classificatory structure induced by morphisms on the category of reaction networks. It is

interesting to realize that, to do this, one has to drop the demand for category-theoretical

equivalence. Indeed, as long as we only consider properties of structural formulas that

determine an equivalent image of the original reaction network, we are constrained to

work within the reach of the corresponding classification system, so we would not be

able to express anything that cannot be expressed via its morphisms. To go beyond the

reach of activity theory we have to consider properties of chemical structures that are

not related to the underlying category of reaction networks. But this means that novel

predictions given by the analysis of structural formulas are unsupported by empirical

evidence!

To produce new statements within structure theory, the metaphor (i.e. a structural

formula) has to take prevalence over its referent (i.e. a chemical reaction network).

We must examine properties of structural formulas that are not category-theoretical

invariants in the equivalent image of the reaction network that they conform. These

properties are thus not linked to morphisms in that category, and are not grounded on

the empirical evidence collected in the network. They are not supported by experiment,

and thus cannot be taken as inferences of any kind. Instead, they are hypotheses

pending corroboration. Furthermore, these hypotheses accomplish the popperian ideal

of high empirical content: being given by generalized properties of structural graphs,

they refer, in principle, to the whole family of chemical substances being researched.

In this way, structural formulas constitute systematic tools for generating hypotheses.

Their strength comes not from their ability to ‘hit bulls-eye’ with every single prediction,

but from the large amount of hypotheses with significant empirical content that they are

able to suggest. It is expected that most of these hypotheses are bound to be refuted,

as high empirical content is necessarily accompanied by high refutability; but then,

whenever one such hypothesis gets corroborated, it allows a big leap in the development

of chemical knowledge.

It may be that this constant presence of refuted hypotheses in chemistry has pro-

moted the mistrustful feeling that structural formulas are useless as predictive tools,

being merely able to offer explanations of already known phenomena11; a feeling that

promotes the image of chemistry as a weak an incipient science when compared e.g.

to physics. This, we believe, is an unfair appreciation. Hypotheses formulation is a

key element in scientific research; arguably the hardest to systematize and thus the one

requiring the most creativity. Structural formulas are hypotheses-generating tools of

unmatched power that assist the creativity of chemists. This feature of chemical struc-

11For instance, Gay (1977) has noted that this feeling was particularly strong up to the mid-

twentieth century, when even chemists overlooked the predictions of structure theory regarding

the activity of noble gases, but accepted them as the natural explanation of noble gas compounds

once they were synthesized.
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ture theory should be considered an extraordinary theoretical strength rather than a

weakness.

3.5 Summarizing

Graphs are an inadequate mathematical representation of reaction networks, as they are

unable to recover the most basic characteristics of their logical structures. Directed hy-

pergraphs properly model reactant-reactant, product-product, and reactants-products

relations coded in chemical reactions, and thus constitute a suitable alternative. If

hyperdigraphs conform the collection of objects of a classification system for the de-

scription of chemical activity, role assignments conform the collection of morphisms

of that category. The later appear as an adaptation of the definition of adjacency-

preserving relation to the case of directed hypergraphs, thus extending the criterion of

structure-preservation of the standard category of graphs, Graphs.

The assumption that the concept lattice associated with a role assignment con-

verges to a stable configuration as the network grows allows the use of this classificatory

structure to predict unobserved phenomena. Role assignments with minimum cardinal

minimize the average number of reaction tests needed to determine the position of new

substances in the limit concept lattice, so they are optimal regarding their ability to

predict their behavior. Furthermore, in that case the existence of an associated role

model is proven, granting the possibility of determining the precise role played by each

substance in each specific chemical reaction.

Last, we have sketched a formulation of the link between reaction networks and

chemical structures in mathematical terms. At first, chemical structures are introduced

by means of a change of representation that warrants consistency with the collection

of knowledge on substance activity embodied in a reaction network. Then, properties

of structural formulas that are not determined by equivalence with that reaction net-

work suggest chemical phenomena that exceeds the reach of activity theory. However,

since these predictions are not connected to empirical evidence, they cannot be taken as

anything but hypotheses that have to be verified by experiment. If they happen to be

corroborated, structural formulas motivate a change on the network structure of chem-

ical knowledge, thus promoting a transformation of the activity model that engendered

them. This appreciation of the structure-activity relationship significantly deviates from

the orthodox picture, and grants deeper insight into these two epistemic approaches of

chemistry: predictions in activity theory are better understood through the inductivist

picture of laws supported on increasing accumulations of empirical facts, while those of

structure theory approach the popperian ideal of a science advancing by proposing and

corroborating hypotheses with large empirical content.



Chapter 4

Concept categories

“Why do you labor so hard just to keep to the pattern? I mean, is homogeneity all that

terrific?”

–Goran Vlaovich

On Section 2.3 we introduced the Concept Lattice as an extension of our category-

theoretical formalism of classification that exploits its affinity with Formal Concept

Analysis (FCA). On this chapter we draw inspiration on this construction to propose one

last element of our mathematical model of chemical classification: Concept Categories

(which we also call Classification Categories) that characterize relations among concepts

induced by a classification in a Classification System.

The central idea is that the concept lattice can be regarded as a particular instance

of a further category-theoretical characterization of classifications in a Classification

System by means of a category whose objects are morphisms in the Classification Sys-

tem (Section 4.1). In the particular case of Concept Lattices we deal with an algebraic

description of classifications embedded in a subcategory of Pos. But then, different cri-

teria of structure-preservation between morphisms in a Classification System may induce

topological, geometrical, etc. descriptions of its classifications that rely on appropriate

Classification Categories.

The remaining sections consider the case of one such Classification Category, in-

spired by the topological study of the periodic system developed by Restrepo and col-

laborators. First, on Section 4.2 we show that their chemotopological method can be

regarded as a proposal of a Classification Category where classifications in the category

T of dendrograms and dendrogram cuts are endowed with the structure of a topological

space. Then, we show that this approach can be generalized to arbitrary Classification

Systems. In this way, while Concept Lattices gives algebraic descriptions of morphisms

in a Classification System C by associating them with a category of lattices, our gen-

eralization of the chemotopological method gives topological descriptions of the same
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morphisms by associating them with a category of topological spaces, which we call

τR(C).

On Section 4.3 we characterize several topological invariants in τR(C). We propose

that invariants such as closure, interior, and boundary are related to similarities and

dissimilarities between the entities being studied, unveiled by the properties induced

by a given classification. Also, we prove that closed sets can always be expressed as

unions of concept extents in the corresponding classification, and that the interior of a

concept extent is determined by is intent. In this way, τR(C) constructs a topological

characterization of concepts induced by classifications in C.

Along the chapter we will elaborate two chemical examples. The first deals with

the topology of chemical elements published by Restrepo et al. On a first moment

we will show how the authors resorted to topological invariants in order to describe

the similarities among chemical elements, comprising and transcending the patterns

found in Mendeleev’s periodic table. Then, on a second moment we will show that

their restricted formulation, that starts from a disjoint classification constructed by a

specific clustering methodology, severely weakens the reach of their methodology and

puts some of their strongest results on doubt. Last, we argue that our generalized

formulation of the chemotopological method lets us avoid these issues. To illustrate this

argument we contrast the status of topological invariants in the topology of the chemical

elements with the corresponding invariants in the topology induced by the non-disjoint

classification of substances as acids and bases introduced on the previous chapter.

4.1 Beyond the Concept Lattice

On Section 2.3 we noted that each morphism f : A → B in a Classification System

determines a formal context, allowing us to link our proposal to the formalism of FCA.

This link puts a vast set of theoretical tools at our disposal. Indeed, though we have

just dipped into the possibilities that FCA opens, the Concept Lattice has already

allowed us to generalize the notion of position in network analysis (Example 2.24),

to define a criterion of optimality for chemical activity classifications (Section 3.3)

and to formalize and understand the value of the concept of amphoteric substance

(Example 3.12). However, the Concept Lattice is still, in certain way, a foreigner.

Unlike classifications and properties, that were introduced using the language of objects

and morphisms and thus incorporated into the logic of our category-theoretical model,

concepts were just ‘pasted’ at one end of the formalism. We now look back into this

matter, and determine the position that the Concept Lattice occupies in our proposal

of a mathematized theory of internal relations.

FCA entered into our proposal through an analogy between classification-inducing

morphisms and formal contexts. First, the correspondence between binary relations
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and formal contexts allowed us to associate each morphism in a Classification System

with a unique formal context. Then, the correspondence between formal contexts and

Concept Lattices allowed us to characterize the former by means of the later. Now,

since in the first step we are dealing with a one-to-one correspondence, we can skip

the introduction of formal contexts and go straight from a classification to a Concept

Lattice. Prescinding of the mediation of formal context, we realize that we are ultimately

introducing a transformation that maps each classification in a Classification System

into a unique Concept Lattice.

Concept Lattices thus conform a novel mathematical description of classifications,

that can be described within the logic of categories. They are complete lattices and thus

POSETs, which in category theoretical terms means that they conform a subcategory

of Pos. By using the methods of FCA, we establish a link between morphisms in a

Classification System and Concept Lattices in a suitable subcategory of Pos. In other

words, when we build Concept Lattices we are ultimately characterizing the family of

classifications on a Classification System by means of a category whose objects are,

naturally, the morphisms of that system.

This is a very powerful realization. It allows us to incorporate the tools of FCA to

the core of the mathematical model that we have been developing. Most important,

it motivates the exploration of other alternatives for achieving the same goal that the

Concept Lattice attains. This lattice offers a particular characterization of a classifi-

cation, attached to the mathematics of order; but we may explore different criteria of

structure-preservation on the morphisms of a Classification System, producing multiple

categories that offer varied descriptions of its classifications. This is what we call a

Classification Category.

The next section will be devoted to the elaboration of a topological Classification

Category, motivated by the work of Restrepo et al. (2004). We will show that their

chemotopological method can be formulated as a topological Classification Category

linked to the Classification System of hierarchical clustering. Then, by noticing that

open sets in a topological representation of a classification in this category are related

to formal concepts, we gain a clearer understanding of the limitations of Restrepo’s

formulation of the chemotopological method, and realize how a broader formulation

allows us to transcend these limitations.

4.2 Generalized chemotopological method

In Restrepo et al. (2004), the authors introduced a topological description of the pe-

riodic system. Their work relies on a novel methodological approach known as the
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“chemotopological method”1. The objective of this methodology is to construct a topo-

logical description of similarity within a set of entities described by some measurable

properties. It starts from a representation of the data set by means of a vector space

Rn. Each object is represented by a vector v = (v1, . . . , vn) ∈ Rn, where vi is the value

of the ith property of object v. Similarity regarding these properties is described by

means of a metric d : Rn×Rn → R. The set is then partitioned in classes of equivalence

according to their similarities, by using a hierarchical clustering method to generate a

dendrogram and then selecting a cut of the dendrogram that optimizes the parameter

of Equation (2.21) (Mesa & Restrepo, 2008).

Up to this point, the chemotopological method just follows a standard approach of

cluster analysis. The key innovation comes from the acknowledgement that these classes

conform a basis for a topology on the data set (Restrepo et al. , 2004). Similarity thus

becomes linked to topological neighborhood, allowing for a more sophisticate description

of similarity relations contained in the classification by means of topological invariants

such as boundaries and closures.

Example 4.1 (Restrepo et al. (2004)). Restrepo et al. applied the chemotopological

method to a set of 72 chemical elements, characterized by 31 physico-chemical proper-

ties. They used the single-linkage clustering method and a dendrogram cut in clusters

of up to 5 elements to obtain the following partition B of the element set:

B =



{Sc, Sr,Mg,Ca}, {Ni,Cd}, {Y,La}, {Zr,Hf, T i, V }, {Fe,Co, In},
{Sn, Pb, Zn,Ga}, {Sb, Te,Bi,As, Se}, {Po,At}, {Cr,Mn}, {Ir, P t},
{Nb,Mo,W,Ru, Ta}, {Os}, {Rh,Au}, {Cu,Ag, Pd,Hg, T l}, {Ba},
{Tc,Re}, {B}, {Ge}, {P, S}, {C}, {Be,Al, Si}, {N}, {O}, {He},
{Kr,Xe,Rn,Ne,Ar}, {K,Rb,Cs, Li,Na}, {Br, I, Cl}, {F}, {H}


(4.1)

Then, they constructed the topology induced by the basis set B. Following are some of

their observations:

• Robust chemical families that are strongly differentiated from all other elements,

such as alkali metals, conform perfect sets in the topological space; that is, sets

that are equal to their derived set (see Figure 4.1). In topological terms, these

sets are closed sets that contain no isolated points i.e. each neighborhood of a

point in the perfect set contains at least another point in the perfect set and

no point satisfying this property is left out. According to the authors, this fact

means that no elements other than alkali metals are such that their neighborhoods

1The authors gave this name to their method in accordance to the purpose they designed it

for. The name is misleading, however, as the scope of the method is not constrained to appli-

cations of chemistry. Still, in order to set up a common language, we stick to the denomination

chosen by the authors.
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contain elements strongly related to those of this family. At the same time, this

indicates that alkali metals conform a robust group with little relationship to

other elements.

Figure 4.1: Topological properties of the alkali metals. Reproduced from Restrepo et al (2004).

• In contrast, elements of group 16 do not conform a perfect set in the topology.

Their closure incorporates elements from the nitrogen and fluorine groups (15 and

17 respectively), but neither nitrogen nor fluorine themselves (see Figure 4.2).

According to the authors, the fact that elements of these groups are adherent (in

topological terms) to elements of the group 16 means that there are significant

similarities in the properties of their respective elements. Then, since nitrogen and

flourine are not in the closure of group 16, they do not share the similarities that

other elements of their groups have with those of group 16. This difference singles

out nitrogen and flourine as exceptional members of their respective families, a

fact that the authors take as topological evidence of the singularity principle

(elements of the second period behave differently from those of other periods).

Figure 4.2: Topological properties of the group 16 elements. Reproduced from Restrepo et al

(2004).
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• The boundary of metals comprises metalloids such as At, As, Se, and Sb (see

Figure 4.3). In topological terms, the boundary of a set A is conformed by

points x such that each neighborhood of x contains points both in A and on

its complement. It is thus very fitting that the boundary of metals comprises

metalloids, as they are intuitively similar to both metals and non metals.

Figure 4.3: Topological properties of the metallic elements. Reproduced from Restrepo et al

(2004).

* * *

Consider now the chemotopological method from the point of view of our model

of chemical activity. The first steps of the method follow the approach of hierarchical

clustering and have already been translated to the formalism of Classification Systems:

the use of a metric space representation puts us in the context of the category M

(see Example 2.12); afterwards, M is mapped into a dendrogram in T, a procedure

that, as we showed, comports some loss of information (see Example 2.25); last, T is

taken as a Classification System and a classification is induced by means of one of its

morphisms. In turn, the innovative step where a topological space is introduced can be

understood as the proposal of Classification Category: by transforming dendrogram cuts

into topological spaces, we are characterizing T1 by means of a Classification Category

that is a subcategory of Top. Objects of this category are classifications in T, and its

morphisms are continuous functions.

The first important consequence of this realization is that we are not forced to follow

any of the steps of the methodology of Restrepo et al. that precede the appearance of a

topological basis. We may completely forgo the introduction of a property vector, and

start from a set of internally related entities. We are not constrained to T, but may

take any arbitrary subcategory or Rel as our Classification System. And, of course, we

are not forced to take the problematic step that takes us from M to T. In the end, we

are abstracting the key innovation of the chemotopological method from the standard

methodology of cluster analysis it was attached to, and embedding it into the more
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general formulation of Classification Systems. We summarize this generalization in the

following definition.

Definition 4.2. Let C be a subcategory or Rel. For each r : X → Y ∈ C1, the r-

topology on X is the topology τr induced by the subbase {ker r(y)}y∈Y . In that case we

also say that (X, τr) is an r-topological space, and define τr(C) as the category comprising

the collection of r-topological spaces with r ∈ C1 as objects, and continuous functions

as morphisms.

There is a close link between τr(C) and FCA, given by a correspondence between

open sets in τr and concepts in (X,Y, r) for r : X → Y ∈ C1.

Proposition 4.3. Let C be a subcategory of Rel and r : X → Y ∈ C1. A set O ⊂ X is

the extent of a concept in (X,Y, r) if and only if O =
⋂
y∈A ker r(y), for some A ⊂ Y .

Proof. Recall that ker r(y) = {x ∈ X : (x, y) ∈ r}. Then,
⋂
y∈A ker r(y) is the set of

objects that have all properties in A –that is, Ar (see Definition 2.20). In consequence,

→ for a given set O =
⋂
y∈A ker r(y), we have (O,Or) = (Ar, Arr); and since Arrr =

Ar, this pair is a concept with extent O.

← for a given concept (O,A) in (X,Y, r), since O = Ar (see Definition 2.20), then

O =
⋂
y∈A ker r(y).

Corolary 4.4. The collection of concept extents in (X,Y, r) is a basis for τr.

The connection between concepts in a formal context and basic open sets in τr(C)

just proven bears some interesting consequences concerning the current status of the

methodology proposed by Restrepo and collaborators. Their original formulation is con-

strained to τr(T), which comprises disjoint classifications exclusively. We know, from

an analysis of the Concept Lattice, that concepts in a disjoint classification conform a

relatively straightforward structure that under-exploits the potential of FCA (see Ex-

ample 2.28). It is expected, given the close relation between chemotopology and FCA

revealed by the previous result, that this limitation persists in Restrepo’s topological

characterization of the chemical elements. In fact, as we show in the following example,

a deeper look reveals that the results summarized in Example 4.1 are not as strong as

they appear at first.

Example 4.5. In Example 4.1 we saw that robust chemical families in the periodic

chart are given by perfect sets in a topological space (X, τr) ∈ τr(T)0. But it is proven

that τr(T) is conformed by those topological spaces whose open sets are clopen, due to

the fact that the basis used to induce τr is a partition of the space(Mesa & Restrepo,

2008). This means that the perfect sets of (X, τr) are given by unions non-unitary open

sets, as we prove now.
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Proposition 4.6. Let X ∈ τr(T)0. A set A ⊂ X is perfect if and only if it is an union

of non-unitary open sets.

Proof.

→ Suppose that A is perfect, then A is closed, so it is also open, and thus an union of

open sets. If any of these sets where unitary, then it would contain a single isolated

point in A, so A must be an union of non-unitary open sets.

← Suppose that A is an open set that contains no unitary open sets. Then, for any

x ∈ A, the smallest open set containing x is a subset of A and it contains at least

another point y ∈ A, so that any neighborhood of x contains a point of A other than

x. Thus, A is perfect.

In other words, perfect sets are immediately determined by non-unitary classes in the

dendrogram cut. A straightforward computation determines robust chemical families

directly from the dendrogram cut, so that one may wonder what is being gained with

the introduction of a topological space.

Though this observation leaves a bitter taste, the greatest issue concerns the sec-

ond result outlined in Example 4.1. Finding that metalloids are in the boundary of

metals is a valuable consequence of the model only as long as metals themselves are a

consequence of the model. But the set of metals does not have any remarkable property

in this formulation that motivates a closer examination of its topological properties. In

short: it is not a concept.

Metalloids are interesting because they have both metallic properties and non-

metallic properties. From the point of view of FCA, these properties should be defined

by reference to the intents of a ‘metal’ concept and a ‘non-metal’ concept respectively.

Neither of those makes its appearance here, as evidenced by the fact that the set of

metallic elements of Figure 4.3 cannot be expressed as an union of elements of the topo-

logical basis of equation (4.1). The authors chose to analyze the topological properties

of this set motivated by external knowledge that not only was not given by their model,

but that even ran counter to it. In face of the absence of the concept of metallic element,

metalloids being in the boundary of metals turns out to be mostly an artifact of the

method.

In fact, metalloids are an impossibility under the methodology of Restrepo et al.!

Suppose that we choose an appropriate set of properties on a family of chemical ele-

ments, define an adequate metric describing their similarity, run a suitable hierarchical

clustering algorithm, cut the resulting dendrogram, and find that metallic elements are

a concept in the resulting classification. This means that metals are a clopen set M

in the corresponding topological space X ∈ τ(T). In turn, this implies that X \M is

also clopen and thus the extent of a concept, which would naturally be associated with

non-metals. Metalloids, then, would be the elements in the boundary of metals. But as
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M and X \M are disjoint closed sets, the boundary of metals is ∅, meaning that there

would be no metalloids in the sense proposed by the authors.

* * *

Just as happens with the Concept Lattice, the chemotopological method does not

work well with disjoint classifications. It’s not that the method breaks down, but that

there is not much to be gained from its greater degree of sophistication. On the other

hand, there is plenty to be learned from the analysis of topological images of non-disjoint

classifications in the broader frame of τr(Rel), as we will see in the next section.

There is one last consideration that we deem necessary before we move on. So far,

we have followed the original proposal of Restrepo et al.(2004), and regarded classes in

a classification as open sets. As proven in Corollary 4.4, this implies that the extents

of the corresponding concepts are open sets. However, the fact that concepts are defined

by means of the closure operator rr suggests that it is more natural to regard them as

closed sets, as we do in the following construction.

Definition 4.7. Let C be a Classification System. For each r : X → Y ∈ C1, we

define the R-topology on X as the topology τR induced by the closed sets subbase

{ker r(y)}y∈Y ; that is, the smallest topology on X where each ker r(y)|y∈Y is a closed

set. We also say that (X, τR) is an R-topological space, and define τR(C) as the category

of R-topological spaces and continuous functions.

It follows immediately from Proposition 4.3 that concept extents in (X,Y, r) are

closed sets in (X, τR), as desired. This motivates a closer connection between the closure

operator rr induced by a morphism r : X → Y and closures in its corresponding

topological representation, allowing for an easier interpretation of topological invariants

in terms of the conceptual structure induced by the classification. In light of this

advantage, we change our framework from τr(C) to τR(C).

This change has no effect in our appreciation of the restricted formulation of the

chemotopological method proposed by Restrepo and collaborators, as r is a disjoint

classification if and only if all open sets in τr are clopen (Mesa & Restrepo, 2008), which

implies that those sets are also clopen sets in τR. In other words, the classifications

considered by these authors are characterized by τr = τR, so they belong to both

Classification Categories proposed in this section.

4.3 The topology of chemical concepts

In general, τR(C) constitutes a Classification Category that provides a topological char-

acterization of classifications in a given Classification System C. Proposition 4.3

shows that this category is also closely related to concepts in the context defined by
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that classification–which is to be expected, given the equivalence between morphisms

in a Classification System and formal contexts in FCA. Thus, just as a Concept Lattice

describes an algebra of concepts in a classification, a topological space in τR(C) describes

the topology of those concepts. Due to the natural emergence of formal concepts within

the frame of τR(C), along with the expectation that the same thing will happen in other

similar constructions, we also refer to Classification Categories as Concept Categories.

This section explores the potential of τR(C) as a Concept Category, by means of a char-

acterization of several topological invariants in R-topological spaces in terms of concepts

in their associated contexts (X,Y, r).2.

The following result from FCA analysis will be used repeatedly in this section:

Proposition 4.8. Let (X,Y, r) be a formal context. Then, for any u, v ∈ X, urr ⊂ vrr

if and only if vr ⊂ ur.

The proof of this proposition is straightforward an sufficiently known to be omitted.

Closed sets

It is known that closed sets in the topology induced by a closed sets subbase C are

intersections of unions of elements of C. Since we are dealing with finite sets, C is a

finite collection of sets, so that closed sets can also be expressed as unions of intersections

of elements of C, as a consequence of the distribution law

A ∩ (B ∪ C) = (A ∩B) ∪ (B ∩ C). (4.2)

An R-topology is induced by the closed sets subbase {ker r(y)}y∈Y , where r : X → Y .

Thus, according to Proposition 4.3, this means that closed sets in τR are unions of

concepts in the corresponding classification.

Proposition 4.9. Let C be a Classification System, and r : X → Y ∈ C. A set K ∈ X
is a closed set in (X, τR) if and only if it is an union of concepts in (X,Y, r).

Closed sets, then, obey to a notion of closure that is related to the rr operator, but

is slightly and significantly different.

Closure

The closure Ā of a subset A of a topological space is the smallest closed set containing

A. In the case of R-topological spaces, this set can be characterized in terms of the

concepts defined by the properties of the elements of A.

2In the following, when there is no place to ambiguity, we will refer to concept extents plainly

as concepts.
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Proposition 4.10. Let C be a Classification System and A ∈ (X, τR) ∈ τR(C); then

Ā = ∪x∈Axrr.

Proof. xrr is the smallest concept containing x. The union of those concepts over all

x ∈ A gives the smallest closed set containing A.

Thus, Ā determines a minimum collection of concepts that covers A. This means

that the closure of A consists of elements that are similar to members of A in that they

share all their properties. In formal terms,

Proposition 4.11. Let C be a Classification System and A ∈ (X, τR) ∈ τR(C). For any

u ∈ X, u ∈ Ā if and only if there is a v ∈ A such that vr ⊂ ur.

Proof.

→By Proposition 4.10 u ∈ Ā implies u ∈ vrr for some v ∈ A. Since urr is the

smallest concept containing u, this means that urr ⊂ vrr, which in turn implies vr ⊂ ur

by Proposition 4.8.

← By Proposition 4.8 vr ⊂ ur implies urr ⊂ vrr. Since u ∈ urr and by Proposition

4.10 vrr ⊂ Ā, then u ∈ Ā.

The closure of a set is also characterized as the set of its adherent points. A point x

is adherent to a subset A of a topological space if all neighborhoods of x contain points

of A. Intuitively, this means that any region around x intersects A, so x is ‘adhered’ to

that set. The previous proposition let us see how points in the closure of a subset S of

an R-topological space are adhered to it: for any u ∈ S̄ there is a point v ∈ S such that

u is in all concepts containing v, which intuitively means that u is ‘closely attached to

v’ in terms of their similarity with respect to the properties induced by r.

Open sets

Let C be a Classification System and O be an open set in (X, τR) ∈ τR(C)0, with

r : X → Y . Since closed sets are unions of concepts and open sets are the complements

of closed sets, by Proposition 4.3 we can express O as

O = X \

⋃
A∈A

⋂
y∈A

ker r(y)

 ,

=
⋂
A∈A

X \ ⋂
y∈A

ker r(y)

 ,

=
⋂
A∈A

⋃
y∈A

X \ ker r(y),

(4.3)
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which, since {ker r(y)}y∈Y is a finite collections of sets, may also be expressed as

O =
⋃

A′∈A′

⋂
y∈A′

X \ ker r(y). (4.4)

The inner intersection in this expression bears a strong resemblance with that of

Proposition 4.3, that characterizes concepts in terms of ker r. While a concept ex-

tent, given by
⋂
y∈A′ ker r(y), comprises all elements that have all properties in A′, each

intersection of class complements
⋂
y∈A′ X \ker r(y) appearing in the previous equation

comprises all elements that do not have any property y ∈ A′. These sets are character-

ized by the dual of (X,Y, r), that is, by the context (X,Y,R) where R = X × Y \ r.

Proposition 4.12. Let C be a Classification System, r : X → Y ∈ C, and R = X×Y \r.
A set O ⊂ X is the extent of a concept in (X,Y,R) if and only if

O =
⋂
y∈A

X \ ker r(y) (4.5)

for some A ⊂ Y .

Proof. By Proposition 4.3, O is a concept in (X,Y,R) if and only ifO =
⋂
y∈A kerR(y)

for some A ⊂ Y ; and since by construction kerR(y) = X \ ker r(y), we find O =⋂
y∈AX \ ker r(y).

In this way, just as closed sets in τR are unions of concepts in (X,Y, r), characterized

with respect to the properties they have, open sets in τR are unions of concepts in its

dual context, characterized with respect to the properties they lack.

Interior

The interior A◦ of a set A is the largest open set that is a subset of A. Of course, this

means that A◦ is the union of all concepts in (X,Y,R) contained in it. This observation

immediately produces the following simple, yet useful result:

Proposition 4.13. Let C be a Classification System. For any A ⊂ (X, τR) ∈ τR(C) and

x ∈ X, x ∈ A◦ if and only if xRR ⊂ A.

Proof. This is a direct consequence of the fact that xRR is the smallest open set con-

taining x.

Furthermore, following we introduce a proposition that characterizes A◦ in terms of

concepts in (X,Y, r).

Proposition 4.14. Let C be a Classification System. For any A ⊂ (X, τR) ∈ τR(C) and

x ∈ X, x ∈ A◦ if and only if for any v 6∈ A, vr \ xr 6= ∅.
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Proof.

→ By Proposition 4.13 we now that x ∈ A◦ implies xRR ⊂ A. In that case, X\xRR is a

closed set containing any v 6∈ A, which by Proposition 4.10 means that vrr ⊂ X \xRR.

In turn, this implies x 6∈ vrr and then xrr 6⊂ vrr, which by Proposition 4.8 implies

vr 6⊂ xr, or equivalently, vr \ xr 6= ∅.

← Let x ∈ X such that v 6∈ A implies vr \ xr 6= ∅. Then xR \ vR 6= ∅, or equivalently,

xR 6⊂ vR, which by Proposition 4.8 implies vRR 6⊂ xRR, and then v 6∈ xRR. Since v is

an arbitrary element of X \ A, we conclude that xRR ⊂ A, and by Proposition 4.13

x ∈ A◦.

The previous proposition shows that it is possible to distinguish any x ∈ A◦ from

any v in its complement by a property that v has and x doesn’t. We may then say

that the interior of a set conforms a strong core of that set, comprising those elements

that are ‘separated’ from its complement by significant dissimilarity in their properties.

This may be easier to understand if we note that when we compute the interior of A we

remove any element of A that is in the closure of its complement, and is thus ‘adhered’

to elements of X \A. The interior of A then consists of all remaining points, which are

not adherent to those outside of A and can be ‘separated’ from the rest of the space.

The interior of a concept turns out to be particularly interesting. When defining

a concept, we are closing a subset of X that is described by a collection of properties

that exclusively characterize its elements. Then, when computing its interior, we are

separating a strong core of the concept that is further characterized by the properties

that distinguish it from the rest of the space. This observation suggests a connection

between the lack of those properties absent from the interior and the presence of those

properties characteristic of the concept. Following we introduce a proposition that

formalizes this intuition in a useful principle of inference.

Proposition 4.15. Let C be a Classification System, r : X → Y ∈ C1, and O ∈ X be a

concept extent in (X,Y, r). Then u ∈ O◦ if and only if for any x ∈ X, uR ⊂ xR implies

Or ⊂ xr.

Proof.

→ By Proposition 4.13 we now that u ∈ O◦ implies uRR ⊂ O. Now let x ∈ X, and

suppose uR ⊂ xR, which by Proposition 4.8 implies xRR ⊂ uRR, and then x ∈ uRR

(Proposition 4.10). Since uRR ⊂ O, this also implies x ∈ O. Now, O is a concept

and thus a closed set, so by Proposition 4.10 x ∈ O implies xrr ⊂ O, which by

Proposition 4.8 implies Or ⊂ xr. We conclude then that uR ⊂ xR implies Or ⊂ xr.

← Let u ∈ X such that uR ⊂ xR implies Or ⊂ xr for any x ∈ X. By Proposition 4.8

uR ⊂ xR means xRR ⊂ uRR which is equivalent to x ∈ uRR (Proposition 4.10). By

hypothesis, in that case Or ⊂ xr, which means xrr ⊂ Orr = O, and thus x ∈ O. Since
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x is an arbitrary element of uRR we conclude uRR ⊂ O, which by Proposition 4.13

implies u ∈ O◦.

In other words: for any u ∈ O◦, if x lacks all the properties that u lacks, then x has

the properties Or characteristic of the concept O.

Exterior

The exterior of a set A is the interior of its complement. Mirroring the same analysis

carried on A◦, we can say that X \A comprises elements that are significantly dissimilar

from those of A, being ‘sepparable’ from its adherent points.

Boundary

The boundary FrA of a set A comprises the elements of X that are neither in the interior,

nor in the exterior of A. Since both A◦ and (X \A)◦ are open sets, the boundary of A is

a closed set. In fact, it is proven that FrA = Ā ∩X \A. This allows us to characterize

the boundary of A in terms of the concepts whose intents comprise both properties

characteristic of A and properties characteristic of its complement. To do so, we need

the following result from FCA:

Proposition 4.16. Let (X,Y, r) be a context, and A ⊂ P(Y ). Then,(⋃
A∈A

A

)r
=
⋂
A∈A

Ar. (4.6)

Proposition 4.17. Let C be a Classification System and A ∈ (X, τR) ∈ τR(C). For any

v ∈ X, v ∈ FrA if and only if there are u ∈ A and w ∈ X \A such that ur ∪ wr ⊂ vr.

Proof. The boundary of A is given by

FrA = Ā ∩X \A (4.7)

by Proposition 4.10 we have

FrA =
⋃
x∈A

xrr ∩
⋃

x∈X\A

xrr,

=
⋃
u∈A

⋃
w∈X\A

urr ∩ wrr.
(4.8)

Last, by Proposition 4.16 we conclude

FrA =
⋃
u∈A

⋃
w∈X\A

(ur ∪ wr)r. (4.9)
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The dominant theme in all previously analyzed topological invariants is similarity

regarding the properties associated by r to the elements of its domain. Closures locate

entities that are closely related to those of a given set by their common properties.

Interiors single a nuclear component of a set characterized by strong similarity among

its elements. On the contrary, exteriors comprise elements that are clearly separated

from those of a given set by dissimilarity on their properties. Last, boundaries contain

those elements that are similar to both the strong core of a set (i.e. its interior) and to

its most dissimilar counterpart (i.e. its exterior).

R-topological spaces thus give a topological description of similarities among el-

ements of a set relative to properties induced by a specific classification. As these

similarities are contingent on the classification chosen, it has a heavy impact on the

wealth of the information that can be provided by the corresponding R-topology. The

following example illustrates this point, by comparing topological invariants on the

R-topological spaces induced by two different classifications: the acid-base model of

Example 3.12, and the classification of chemical elements of Example 4.1. At the

same time, it exemplifies the meaning of topological invariants in τR(C) for a case of

chemical relevance.

Example 4.18. Let us compute the topological invariants alluded in this section for

the R-topological space associated with the acid-base model of Example 3.12. From

now on, we well use A,B, and F to refer to the concepts of acid, basic, and amphoteric

substance respectively, and X refers to the whole substance set.

The closure of a set S is given by

i) A if all substances in S have the acid property and at least one substance in S

lacks the base property

ii) B if all substances in S have the base property and at least one substance in S

lacks the base property

iii) F if all substances in S have both the base and acid properties.

iv) X otherwise.

In case i) all elements of S have the acid property, so any substance with that property

is present in all concepts containing S, and is thus adherent to it. In consequence, the

closure of S in this case is given by the concept of acid substance. In the same way, in

case ii) any substance with the base property is adherent to S, so that its closures is the

concept of basic substance. In case iii), on the other hand, substances in S have both

the acid and base properties. Exclusively acid/basic substances are excluded from the

concept of amphoteric substance that contains S; they can thus be ‘separated’ from S

and are not part of its closure. In consequence, we have S̄ = F. Last, in case iv) there
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are both exclusively acid and exclusively basic substances in S; any substance having

either of these properties is adherent to the set, so that its closure extends over the

whole space. In this way, the closure of a set tell us what substances are significantly

similar to those of the set regarding their acid-base behavior.

Regarding interiors, we find that the interior of A is the set of ‘pure acids’, that is,

it comprises substances that behave exclusively as acids. This set represents the most

restricted materialization of the concept of acid: substances whose properties are fully

contained in the intent of this concept. In the same way, the interior of B is the set

of ‘pure bases’, which expresses a similar fact. Proposition 4.15 gives us the (in this

case somewhat trivial) inference rules “not acid then base” and “not base then acid”.

The behavior of exteriors follows the opposing pattern: the exterior of any subset S

of acids/bases is the set of pure bases/acids. Recall that the exterior of S is determined

by the interior of the minimum concept containing X\S, and thus comprises substances

that can be fully characterized by properties different from those of elements of S. In

other words, compounds in the exterior of S share a significant dissimilarity in their

properties with those of that subset, and can thus be ‘separated’ from it. The previous

result, then, tells us that pure acids and pure bases are sufficiently dissimilar to be be

separated from each other –a statement that agrees with our intuition. In the same

way, we find that the exterior of any collection of amphoteric substances is given by

the union of pure acids and pure bases. This reflects the fact that pure acids/bases are

‘separated’ from amphoteric substances by the lack of the base/acid property.

The boundary of acids is the set of amphoteric substances, that have both the acid

property characteristic of this concept (as shown by its interior), and the base property,

characteristic of its complement (as shown by its exterior). Naturally, amphoteric sub-

stances also conform the boundary of bases for an analogous reason, showing that they

lay in the frontier between two completely dissimilar chemical families. We thus see

how the boundary of a set gives a topological image of the notion of a chemical family

whose properties put it half-way between two dissimilar families.

We have overlooked the interior of the concept of amphoteric substance in the pre-

vious analysis. At first sight, the interior of this concept presents a somewhat odd

behavior. Following the idea that concept interiors materialize the hard core of the

concept, we would expect the interior of F to be F itself. Yet, since elements of this

set are adherent to both acids and bases, its interior happens to be empty. This result

makes sense when we take other topological invariants into account. Indeed, consider

the exterior of A◦ ∪B◦, the union of pure acids and pure bases. We expect this exterior

to comprise substances lacking both acid and base properties. As there are no such

substances in the network, it is clear that the exterior of this set has to be empty. Also,

by definition the exterior of this set is

(X \ (A◦ ∪B◦))◦ = F◦, (4.10)
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Figure 4.4: Summary of topological invariants computed on the concepts of acid (a), basic (b),

and amphoteric substance (c).
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that is, the interior of amphoteric substances. We thus see a first rationale for the

interior of F to be empty. Furthermore, since F is the boundary of all remaining non-

universal concepts in the context, our intuition tell us that the core of the concept of

amphoteric substances cannot be isolated from the rest of the space –after all, we are

dealing with compounds whose properties put them at the crossroads of all compounds

in the network. Thus, it is actually very fitting for the interior of amphoteric substances

to be empty.

Most of the previous results are summarized in Figure 4.4, where we depict the

topological properties of the three concepts induced by this classification. Contrast this

image with that of Figure 4.5, where we depict the topological properties of the concept

of alkali metals in the context determined by the classification of equation (4.1). The

concept is closed, of course, and gives the closure of any of its proper subsets. Its interior

is, once more, the concept itself; its exterior is the rest of the space, and its boundary

is empty. All other concepts exhibit the same behavior.

Figure 4.5: Topological properties of the concept of alkali metals in the partition of equation

(4.1).

The key distinction between these two classifications boils down to the kind of mor-

phism that induces it: in the case of the acid-base model (Figure 4.4) the classification

is induced by a general binary relation, while in that of Restrepo et al (Figure 4.5)

it is induced by a mapping. In consequence, in this second case we are dealing with

a partition of the substance space. Figure 4.5 illustrates how, just as happened with

their concept lattices, R-topological spaces associated with partitions have a very simple

structure. Due to the disjointness of the classification, topological invariants such as

closure and interior are just classes of equivalence in the classification itself, while others

such as boundary are universal (i.e., they are the same for any arbitrary partition) and

trivial.

* * *
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4.4 The domain of similarity

In their role as determinants of properties in a theory of internal relations, classifications

induce a conceptual structure on a family of internally related entities. Concept cate-

gories conformed by morphisms in a classification system advance a characterization of

this structure. Chemotopology can be envisioned as an instance of a concept category

τR(C), where emphasis is placed on a description of similarity. Closures identify objects

that are so similar to the elements of a given set that they get ‘adhered’ to it; concept

interiors conform the material core of concepts, constituted by strongly similar elements

with respect to the properties characterizing their intents, that can be isolated from the

rest of the space; and concept boundaries formalize the idea of a class of entities that

share some similarity with two mutually dissimilar families.

Yet, the structure of topological spaces associated with disjoint classifications gives

an odd feeling. It’s not that the results of the analysis of topological invariants in those

spaces are counterintuitive, but that they seem to have little to say about the conceptual

structure induced by the corresponding classifications –for instance, all concepts turn

to be clopen sets and thus identical to their interior, which also makes all concept

boundaries empty. One could suspect that this simplicity reveals the limitations of the

information provided by τR(C). In a certain sense we believe that this is the issue at

hand, but we would rather look at it the other way around: τR(C) has little to say about

disjoint classifications because they give a poor description of the phenomenon that it

characterizes; that is, they are unable to properly account for similarity.

While the kernel of an arbitrary morphism in a classification system is an arbitrary

binary relation, the kernel of a mapping determining a disjoint classification is always an

equivalence relation. Equivalence relations lack one of the defining qualities of similarity:

intransitivity. Indeed, it is possible to move from any given object to a similar object,

then to an object similar to the second and so on, eventually ending up with an object

that is entirely dissimilar from the first; on the other hand, any path moving across

equivalent objects always ends in an object that is equivalent to all those that precede

it. Disjoint classifications are thus unable to capture this feature of similarity, and have

little to gain from the topological description given by τR(C). This is particularly clear

when considering concept boundaries, that relate to the intuition of objects located

‘half-way’ between two dissimilar families. As no such objects exist in a partition, all

concept boundaries in its associated topological space are empty.

Cluster analysis has been used for decades to study chemical similarity by means

of partitions on a metric space representing a set of chemical relevance. Classes in the

resulting partition are intended to characterize families of similar substances; but actu-

ally, what is being done is exactly the opposite: those substances are not described as

similar, but as equivalent. Key information, necessary for a proper account of similar-

ity, is being lost. In consequence, to unleash the full potential of the chemotopological
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method as a tool for the characterization of chemical similarity we require new classifi-

cation methods that produce non-disjoint classifications on a set of chemical substances.

Role assignments are a suitable alternative that, we believe, is worth of being explored.



Final remarks

–“I’m not sure. I’m exceedingly ignorant.”

The young man laughed and bowed. “I am honored!” he said. “I’ve lived here three

years, but haven’t yet acquired enough ignorance to be worth mentioning.”

–Ursula K. LeGuin, The left hand of darkness

The main objective of chemistry is to develop knowledge on the transformations

of substances as they undergo radical change. The basic logical structure of chemical

knowledge is that of a reaction network. We distinguish two epistemic perspectives in

the search of chemistry’s central goal: one where patterns in the relational structure of

reaction networks are used to induce characteristic properties on chemical substances,

and other where the intrinsic qualities of substances are taken as determinants of their

position in reaction networks. The first adscribes to an ontology of internal relations,

and conforms a theoretical body that we identify with chemical activity. The second

adscribes to an ontology of external relations, and we identifiy it with chemical structure.

Internal relation theories follow a classificatory and inductive approach. A system

of internally related entities can be represented by a structured set, i.e. by an object

in a subcategory of Rel. Each morphism in such category determines a classification

that characterizes the elements of its domain with a collection of properties given by its

codomain. On these terms, activity theory deals with structure preserving transforma-

tions with domain in chemical reaction networks. It resorts to classifications in order

to determine patterns that preserve the relational logic of chemical reaction networks,

inducing a conceptual structure on a family of substances, that can be represented by

means of a suitable concept category. Then, relaying on the hypothesis that each classi-

fication on a chemical system converges to a characteristic object in a concept category

as the system grows, activity theory inductively predicts unobserved chemical phenom-

ena involving partially-characterized substances. In turn, structure theory constructs

elaborate images of chemical substances following the demand that their properties de-

termine an equivalent representation of the classificatory logic of activity theory. Then,

additional properties of these structural representations not connected to the underly-

ing reaction network motivate powerful hypotheses that can provoke discrete changes

in chemical activity classifications.
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We thus see that chemistry, even on its most restricted identity, is not just about

structure theory. Chemical activity classifications are not ‘mere’ classifications, fruits

of an encyclopedic rather than scientific effort. Nor are they the logical consequence of

the formalism of structure theory. They conform a theory on their own right, readily

capable of predicting the behavior of chemical substances under unobserved conditions.

Yet, this is not the theory of chemistry either; once more, not even on a most restricted

sense. Structure and activity inhabit a cycle where models arising from one approach

are permanently transforming the shape of those arising from the opposing perspective.

They testify to the value of a pluralist approach where inductivism and hypothetico-

deductivism, essentialism and relationism, atomism and holism, and other seemingly

discordant isms co-exist in the pursuit of an unified goal.

Focusing back on chemical activity, binary relations in a classification system that

are not functions are of particular relevance in the analysis of [chemical] similarity. As

similarity is defined with respect to certain properties of the entities, in a theory of

internal relations it is necessarily contingent on the specific classification being exam-

ined. Since the kernel of a function is always an equivalence relation, classifications

induced by functions describe the entities as equivalent, rather than as similar: if they

are characterized by exactly the same property they are equivalent, else they are entirely

different and nothing else can be said. General binary relations give a more complex

description where entities are characterized by multiple properties, allowing us to break

the transitivity of equivalence relations and thus approach the specific domain of sim-

ilarity. In other words, chemical similarity forces us to embrass a broader concept of

classification where classes superpose with each other, as opposed to the historical focus

of cluster analysis in the generation of disjoint classes.

The previous theses comprise a broad sketch of a classificatory approach to the

study of chemical combination, and of its relation with a complementary, opposing

perspective. Along with that general formulation, we have worked some specific details

of a viable mathematical model of chemical activity. We have proposed a category of

directed hypergraphs as a suitable classification system for the study of chemical change,

and a category of topological spaces as an alternative concept category for the study

of chemical similarity, that ressembles but is not equivalent to the category of concept

lattices. These two proposals give little more than a first approach; there is still plenty

of details to be worked out. For instance, just as we pointed the inadequacies of graph

models of chemical reaction networks, it is not hard to see that chemistry has already

exceeded the limits of the category HyperD. A more faitful model should introduce

stoichiometric coefficients e.g. by means of a hyperarc-weighting on a vector space; try to

account for chemical dynamics and reversibility; and introduce a more flexible criterion

of structure-preservation that encompasses contemporary chemical classifications that

cannot be induced by role assignments. On top of all that, it may be that the finiteness

of the model would face major issues when dealing with chemical phenomena where
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definite proportion laws do not hold.

There is also a lot of work to do regarding the most fundamental elements of the

model. Concept categories, for example, were introduced following on the intuition of

previous developments, so their definition still lacks sufficient mathematical formality.

But most notably, we have merely dipped into the sophisticated formalisms of category

theory and formal concept analysis. We have yet to exploit the potential of logical

inference on a formal context, and of category-theoretical constructs such as limit,

initial and terminal objects, equalizer, adjoint, duality. In particular, Stone duality

could help us advance the characterization of lattice and topological representations of

conceptual systems. Also, chemical restrictions such as mass conservation and product

uniqueness (under a fixed chemical context any set of reactants always yields the same

set of products) may bear important consequences regarding the structure of chemical

reaction networks that simplify the model, or unveil interesting properties under the

light of category-theoretical concepts.

There is plenty of ground to cover in the development of a mathematical theory of

chemical activity. We hope that the foundations that we have laid on this work will

prove fruitful to this enterprise.
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