622.3381 \$43L

LECTURAS SOBRE LODOS DE PERFORACIÓN

Miguel Angel Sierra Baena
I. P.; M.S. en Ciencia y Técnica del Carbón;
M.S. en Educación, con Enfasis en Docencia Universitaria.

Universidad Nacional de Colombia

Sede Medellín

FACULTAD DE MINAS DEPARTAMENTO DE RECURSOS MINERALES

LECTURAS SOBRE LODOS DE PERFORACIÓN

Per il profesor Oscor flesson S.

Miguel Angel Sierra Baena

I. P.; M.S. en Ciencia y Técnica del Carbón; M.S. en Educación, con Enfasis en Docencia Universitaria.

Universidad Nacional de Colombia

Sede Medellín

FACULTAD DE MINAS
DEPARTAMENTO DE RECURSOS MINERALES

Medellin,2000

Preparación Editorial:

Miguel Angel Sierra Baena

Herbert Alonso Ramírez F.

Impresión:

Ecográficas Ltda.

Número de Ejemplares: 150

Portada y Fotografías

de secciones:

Adaptación y Modificación de Revistas JPT y SPEDE

Impreso en Medellin, Colombia, Enero del 2000

Permitida su reproducción exclusivamente para fines académicos, citando la fuente y el autor

543L

"Siempre hay seres humanos detrás de nuestras acciones" Fernando González

> lch liebe Dich für immer.

A mis estudiantes de la Facultad de Minas; a los profesores de esta Dependencia.

A mi madre, quien me enseñó las primeras lecturas.

A Lucia y a Miguel Alejandro, quienes mejor han soportado mis lecturas.

A DIVAMI, con quien empiezan las lecturas de este siglo, iluminándolas con sus significados.

		ρ
	LISTADO DE FIGURAS LISTADO DE TABLAS LISTADO DE SIMBOLOS Y ABREVIATURAS	. vii
	PRESENTACIÓN	. 15
1.	DEFINICIÓN Y FUNCIONES PRINCIPALES DE UN LODO DE PERFORACIÓN	. 17
2.	PRUEBAS FUNDAMENTALES EN LODOS DE PERFORACIÓN	. 23
2.1.	Peso del Lodo (densidad)	. 25
2.2.	Viscosidad y fuerza gel	. 28
2.3.	Filtrado y torta	. 32
2.4.	Agua, aceite y sólidos	. 39
2.5.	Contenido de arena	. 43
2.6.	Capacidad de azul de metileno	. 44
2.7.	Alcalinidad	. 47
3.	COMPOSICIÓN DE LOS PRINCIPALES LODOS DE PERFORACIÓN	. 51
4.	CLASIFICACIÓN, SEGÚN COMPOSICIÓN, DE LOS PRINCIPALES LODOS DE PERFORACIÓN	. 57
4.1.	Lodos no dispersos.	. 59
	Lodos cálcicos.	
4.3.	Lodos dispersos	60
4.4.	Lodos bajos en sólidos.	62
4.5.	Lodos saturados con sal.	63
4.6.	Lodos cuya fase continua es aceite.	64
4.7.	Lodos con materiales poliméricos.	65
4.8.	Lodos cuya fase continua es "material sintético	
	(producido por síntesis química)"	
4.9.	Últimos lodos propuestos como alternativa a los fluidos neumáticos	66
5.	IMPACTO AMBIENTAL DE LOS PRINCIPALES LODOS DE PERFORACIÓN	67

5.1.	Lodos de perforación y políticas ambientales en el mundo	69
5.2.	Los materiales poliméricos y su importancia en las operaciones	
	de perforación. Lodos base agua y materiales poliméricos contra	
	lodos cuya fase continua es aceite	
5.3.	La importancia de la reducción de los volúmenes de desechos	76
6.	INTRODUCCIÓN AL TRABAJO CON MODELOS REOLÓGICOS	
	Y SU APLICACIÓN EN LA PERFORACIÓN DE POZOS	79
6.1.	Leyes básicas de flujo de fluidos	81
6.2.	Regimenes de flujo	85
6.3.	Clasificación de fluidos	86
6.3.1	Fluidos Newtonianos y no Newtonianos	86
6.3.2	Modelos reológicos para lodos de perforación	88
6.4.	Flujo de líquidos Newtonianos en tuberías	95
6.5.	Flujo de líquidos Newtonianos en el anular	99
6.6.	Flujo en tuberías de fluidos plásticos tipo Bingham 1	05
6.7.	Flujo anular de fluidos plásticos tipo Bingham 1	112
6.8.	Hidráulica de la perforación rotatoria	115

LISTADO DE FIGURAS

FIC	FIGURA.		
1.	Tipos de fluidos de perforación	. 20	
2.	Formato API para informe del lodo	. 26	
3.	Balanza convencional de lodo y su estuche	27	
4.	Balanza de lodo, tamaño boisillo	27	
5.	Embudo Marsh y su taza graduada	29	
6.	Algunos tipos de viscosímetros rotacionales aprobados por API	. 32	
7.	Filtro-prensa para pruebas a temperatura y presión bajas:		
	a) unidades simples; b) unidad múltiple	34	
8.	Filtro prensa para pruebas a temperatura y presión altas:		
	a) con fuente separada de presurización con CO ₂ ;		
	b) Con presurización dual mediante N ₂	36	
9.	Retorta: a) patrón; b) con termostato	40	
10.	Arenímetro	44	
11.	Punto final de la titulación en la prueba "capacidad de azul		
	de metileno"	46	
12.	Procedimiento para la prueba de supervivencia de camarones tipo		
	Mysidopsis Bahía	70	
13.	Ejemplo de un sistema para control de sólidos con circulación		
	cerrada	77	
14.	Sistema general de flujo	82	
15.	Cizalladura horizontal de un fluido		
16.	Curva de consistencia de un fluido newtoniano	87	
17.	Curvas de consistencia para fluidos seudoplásticos(a)		
	y dilatantes (b)		
18.	Curva de consistencia para un fluido de Bingham	90	
19.	Gráfica doblemente logarítmica para fluidos que sigan la ley		
	potencial de Ostwald-deWaele	91	
20.			
	A. Bingham, B. Ostwald-deWaele, C. Robertson-Stiff,	0.0	
	D. Herschel-Bulkley, E. Newtoniano.	93	

21.	Curvas de consistencia para lodos preparados con bentonita (20.6 g/l) y varias concentraciones de CMC	93
22	Comparación de modelos reológicos con curva de consistencia	
	experimental de un lodo cuya fase continua es aceite	94
23.	Perfil de velocidad para flujo laminar en tuberías de sección	
	circular	96
24.	Perfil de velocidad para flujo turbulento en tuberías de sección	
	circular	96
25.	Factor de fricción de Fanning para tuberías de acero limpias	98
26.	Longitudes equivalentes de válvulas y accesorios	100
27.	Coeficiente para flujo anular	102
28.	Perfil de esfuerzo para flujo laminar en tuberías de sección	
	circular	105
29.	Flujo rectilíneo entre láminas paralelas y fijas	112
	LISTADO DE TABLAS	
TAE	BLA	p.
1.	Contrapresión mínima recomendada para determinación	2.5
_	de filtrado y costra a temperatura y presión altas	
2.	Concentraciones, en mg/l, de iones en el lodo	
3.	Grados de toxicidad	69

3.

4.

5

6.

LISTADO DE SIMBOLOS Y ABREVIATURAS

α : Parámetro adimensional de la geometría anular, definido como di/do

γ : Rata de cizalladura

μ : Viscosidad, lbm/(pie-seg)

 μ_a : Viscosidad aparente

μ. : Viscosidad de Casson

 μ_{N} : Viscosidad absoluta

μ_n : Viscosidad plástica

ρ : Densidad, lbm/pies³

ρ_o : Densidad de aceite

ρ_b : Densidad de material densificante

 $\rho_{\rm f}$: Densidad de filtrado

 ρ_{lg} : Densidad de sólidos de baja gravedad

τ : Esfuerzo de cizalladura

τ_o : Esfuerzo de cedencia

 τ_v : Punto de cedencia

A : Area seccional de flujo, pulgadas²

(A) : Area seccional de flujo, pies²

AIME : The American Institute of Mining, Metallurgical, and

Petroleum Engineers.

API : American Petroleum Institute

A_p : Constante del modelo de Robertson-Stiff

B : Constante del modelo de Robertson-Stiff

Ba : Bario

bbl : Barril(es)

C : Constante del modelo de Robertson-Stiff

c : Constante

°C : Grados centígrados

CEC : Capacidad total de intercambio de cationes

 C_L : Coeficiente de Lamb, definido como $(1-\alpha^2)\left(1+\alpha^2-\frac{1-\alpha^2}{\ln\frac{1}{\alpha}}\right)$

cm : Centímetro(s)

CMC : Carboximetilcelulosa

CO₂ : Dióxido de carbono

cP : Centipoises

 C_s : Coeficiente anular aproximado, definido como $(1-\alpha)^3(1+\alpha)/1.5$

c_s : Concentración de cloruros

D : Diámetro, pies

d : Diámetro, pulgadas

de : Diámetro equivalente, definido como 4R

D.F. : Distrito Federal

di : Diámetro externo de la tubería interna, pulgadas

do : Diámetro interno de la tubería externa, pulgadas

e : Factor de eficiencia

E : Rugosidad absoluta, pulgadas

E/d : Rugosidad relativa

ECOPETROL : Empresa Colombiana de Petróleos

EPA : U.S. Environmental Protection Agency

°F : Grados Fahrenheit

Fe : Hierro

 $f_{\rm F}$: Factor de fricción de Fanning, adimensional

F_n : Fracción de agua en el lodo

G : Gravedad específica

g : Gramo(s)
gal : Galón(es)

g : Factor de conversión, 32.17 lbm-pie/(lbf-seg²)

H₂S : Acido Sulfhídrico

HEC: Hidroxi-etil-celulosa

IADC : International Association of Drilling Contractors

ICP : Instituto Colombiano del Petróleo

I. P. : Ingeniero de Petróleos

JPT : Journal of Petroleum Technology

K : Indice de consistencia

K₀, K₁ : Constantes del modelo de Casson

Kg : Kilogramo(s)

kPa : Kilopascales

(L) : Longitud, pies

L : Longitud, millas

l : Litros

lbf : Libras fuerza

lbm : Libras-masa

Le : Longitud equivalente, millas

lpc : Libra-fuerza/pulgada cuadrada

lpca : Libra-fuerza/pulgada cuadrada, absoluta

m. : Metros

meq : Miliequivalentes

M_c : Alcalinidad, del filtrado, al anaranjado de metilo

mg : Miligramos

ml : Mililitros

mm : Milímetro(s)

M.S. : Maestro en Ciencias

MWD : Measurement-while-drilling

N : Normal

n : Indice de comportamiento del flujo

No. : Número

N₂ : Nitrógeno

NPDES: National Pollution Discharge Elimination System

N_p : Número de Reynolds, adimensional

N_{Ra} : Número de Reynolds en el anular, adimensional

 $N_{_{\rm I\!P, u}}$: Número de Reynolds equivalente, adimensional

O₂ : Oxígeno

Op.cit. : Obra citada

P Pérdida de presión, debidas a fricción, por unidad de

longitud, lpc/milla

p. : Página

Pa : Pascales

Pb : Plomo

p.e. : Por ejemplo

P_f : Alcalinidad, del filtrado, a la fenolftaleína

 Δ_{p_z} : Pérdidas de presión por fricción, lbf/pie 2 o lbf/pulgada 2

p^H : Potencial de Hidrógeno

P_m : Alcalinidad, del lodo, a la fenolftaleína

pp. : Páginas

Ppm : Partes por millón

P, : Alcalinidad, del filtrado, a la fenolftaleína

pulg. : Pulgada

 $(\stackrel{\circ}{q})$: Rata volumétrica, pies³/segundo

 $\overset{\circ}{q}$: Rata volumétrica, galones/minuto

R : Radio hidráulico

r : Radio correspondiente a la capa de fluido considerada

rpm Revoluciones por minuto

r_w : Radio interno de una tubería de sección circular

SAPP : Pirofosfato ácido de Sodio

seg. : Segundos

SHMP: Hexametafosfato de Sodio

SPE : Society of Petroleum Engineers of AIME

SPEDC: SPE Drilling and Completion

SPEDE: SPE Drilling Engineering

SPEJ : SPE Journal