
An Extension to Pre-conceptual Schemas
for Refining Event Representation and

Mathematical Notation

Paola Andrea Noreña Cardona

Universidad Nacional de Colombia

Facultad de Minas, Departamento de Ciencias de la Computación y la Decisión

Medelĺın, Colombia

2020

An Extension to Pre-conceptual Schemas
for Refining Event Representation and

Mathematical Notation

Una extensión a los esquemas preconceptuales
para el refinamiento en la representación de eventos

y la notación matemática

Paola Andrea Noreña Cardona

Thesis presented as requirement for obtaining the title of:

Doctor en Ingenieŕıa-Sistemas e Informática

Advisor:

Carlos Mario Zapata Jaramillo, Ph.D.

Jurors:

Luz Marcela Ruiz Carmona, Ph.D. Zurich University of Applied Sciences, Switzerland.

Óscar Pastor, Ph.D. Universidad Politécnica de Valencia, Spain.

Fernán Villa Garzón, Ph.D. Universidad Nacional de Colombia-Medelĺın Campus, Colombia.

Research Line:

Software Engineering

Research Group:

Computing Languages

Universidad Nacional de Colombia

Facultad de Minas, Departamento de Ciencias de la Computación y la Decisión

Medelĺın, Colombia

2020

Dedication

This Ph.D. Thesis is dedicated with immense

love: to God for being my strength every day

and giving me wisdom, knowledge, creativity,

inspiration, and understanding; to my husband

Luis Fernando for his patient, love, time, and

courage; to my Mom for her support, help,

advice, and confidence; and to my family for

their hope to this work.

iv

Acknowledgments

We must find time for stopping and thanking the people who make a difference in our lives.
—John F. Kennedy

Some people and institutions have contributed for constructing this Ph.D.Thesis.

I am very grateful to Minciencias (Ministry of Science, Technology, and Innovation) at

Colombia in the National Ph.D. Student program, bid 727 of 2015 for sponsoring this

Ph.D. Thesis during four years. Thanks to the Computing Languages research group,

Departamento de Ciencias de la Computación y la Decisión, and Vicedecanatura de

Investigación y Extensión at Facultad de Minas, Universidad Nacional de Colombia; the

GIISTA (software engineering research group) at Tecnológico de Antioquia, Institución

Universitaria; and the Middleware research group at the University of Toronto via the

International Visiting Graduate Student program for supporting the time and resources to

develop the research projects in the framework of this Thesis.

I am greatly thankful to my Ph.D. Advisor Carlos Mario Zapata Jaramillo who I

admire profoundly for his knowledge, love, and passion to his work and family and who I

consider an example to follow. I really appreciate and value his dedication, effort, patience,

confidence, teaching, and advice.

I also express my sincere thanks the following people:

My jurors Luz Marcela Ruiz Carmona at Zurich University of Applied Sciences, Óscar

Pastor at Universidad Politécnica de Valencia, Fernán Alonso Villa at Universidad

Nacional de Colombia, and Liliana González Palacio at Universidad de Medelĺın for all

their support, time, and orientation in my Ph.D. process. I especially thank Professor

Marcela for accompanying me from the beginning of such a process.

My internship supervisor Arno-Hans Jacobsen at the University of Toronto for giving

me the opportunity to work in the Middleware research group, teaching me his

simplicity, and guiding me in my immersion and new knowledge of the complex event

processing. Middleware research group members: Bogdan Scaunasu, Geoffrey Elliott,

Fei Pan, and Edward Zhang for their helpful, knowledge, explanation, and correction

in my Internship Project and my English progress; and professor Patricia Vilain for

her suggestions in my internship presentation and validation. Erika Londoño, Maria

Eugenia Restrepo, and their family for their hospitality, help, and company in Canada.

v

Professors: Luca Cernuzzi at Universidad Católica de Asunción for their

recommendations and questions to the Ph.D. Thesis proposal; Bell Manrique at

Universidad de Medelĺın for being an example to my doctorate and guiding me in

the experimental validation in software engineering; Gloria Gasca at Universidad de

Medelĺın for her suggestions in contributions and findings; and Albeiro Espinosa at

Universidad Nacional de Colombia for his help and advice.

My university partners: Johnathan Calle for his effort for working with me in

the mathematical notation refinement of the pre-conceptual schemas, reading, and

reviewing my advances of this document; Steven Velásquez for representing the oil well

domain and complex mathematical equations in his M.Sc. Thesis by using our proposed

extension and helping me in the form aspects of this document; Sebastián Zapata for his

suggestions in the chemical domain representation and for using such a representation

in his M.Sc. Thesis; and Rubén Sánchez for his explanations and suggestions in the

electrical domain representation. Diana Medina, José David Mosquera, and other

undergraduate students in the course requirements engineering (2017-2) at Universidad

Nacional de Colombia and Carolina Cárdenas and Daniel Bedoya undergraduate

students (2018) at Tecnólogico de Antioquia for representing several events in scientific

software domains, and Aixa Villamizar for allowing me to work in the research project

for the Tecnólogico de Antioquia. Samir Guaŕın for his suggestions in medical and

chemical domains.

All participants of the experimental validation for their suggestions, time, attention,

and interest. I especially thank ABSEL (The Association for Business Simulation

and Experiential learning) members. José David Mosquera for participating in the

validation by using the software development and simulation of a pre-conceptual

schema represented in an industrial domain.

My colleagues and friends: Diana Maria Torres Ricaurte for teaching me about technical

events in interoperability of systems; Claudia Elena Durango Vanegas for teaching me

about natural events in geographic information systems; Grissa Vianney Maturana for

helping me in the event games and class processes; Maria Clara Gómez for playing

my event game and giving me suggestions; Juan Ricardo Cogollo for explaining me

technical concepts; Jesus Insuasti for philosophizing with me, and Wilder Perdomo for

his interest. I highly value their company, support, teaching, explanation, and advice for

me in our Ph.D. process. Fernanda Guidotti (at Universidade de São Paulo) for teaching

me Latex; Ivonne Rodŕıguez, Jenny Rı́os, Laura Ardila, and Jose Daniel Morcillo for

their suggestions and interest. I appreciate the friendship we have constructed.

All the anonymous reviewers of our papers and chapters and the jurors of our

presentations for their comments and feedback.

vi

Abstract

An event is an occurrence within a particular software system or domain. Software and

scientific models are representations of computing and natural systems. Such models

have software and scientific components—domain knowledge elements. Scientists and

business analysts use such models and their components for recognizing a domain, e.g.,

pre-conceptual schemas (PCS) used in software engineering. Scientific software domains

(SSD) comprise fields in engineering and science, which are focused on developing and

simulating scientific software systems for event or phenomenon research. Event-based

software development has increased in scientific domains. Approaches to event-driven

modeling are used from software/scientific modeling. Some advances have emerged in such

approaches for integrating software and scientific components in science and engineering

projects. However, scientists and business analysts lack a computational model for SSD in

order to integrate both components in the same model. PCS notation includes software

components based on structural and dynamic features, which allow for representing events

and mathematical operations. Nonetheless, PCS lack scientific components for representing

events in SSD. In this Ph.D. Thesis, we propose an extension to pre-conceptual schemas

for refining event representation and mathematical notation. Such an extension comprises

scientific components as graphical, linguistic, and mathematical structures for the sake of

such refinement. We validate our proposal by using both an experimental process and a

software application. Extension to PCS is included as a new work product for representing

events in SSD. Therefore, the extended PCS are intended to be computing models for

scientists and business analysts in scientific software development and simulation processes.

Keywords: Computational Science and Engineering projects, Event Representation,

Mathematical notation, Pre-conceptual Schemas, Software Engineering, Software

Modeling, Scientific Software Systems, Scientific Software Domains, Simulation.

vii

Resumen

Un evento es una ocurrencia en un sistema de software o dominio particular. Los modelos

cient́ıficos y de software son representaciones de sistemas informáticos o naturales. Esos

modelos tienen componentes cient́ıficos y de software (elementos del conocimiento del

dominio). Cient́ıficos y analistas de negocio usan estos modelos y sus componentes para

reconocer un dominio. Un ejemplo de esos modelos son los esquemas preconceptuales (EP),

que se usan en ingenieŕıa de software. Los dominios de software cient́ıfico comprenden

áreas en ingenieŕıa y ciencia que se enfocan en el desarrollo y simulación de sistemas

de software cient́ıfico para la investigación de eventos o fenómenos. El desarrollo de

software dirigido por eventos se viene incrementando en dominios cient́ıficos. Enfoques

de modelado basado en eventos se usan desde el modelado cient́ıfico y el modelado de

software. En estos enfoques surgen algunos avances para integrar componentes cient́ıficos

y componentes de software en proyectos de ingenieŕıa y ciencia. Sin embargo, cient́ıficos

y analistas de negocio carecen de un modelo computacional para dominios de software

cient́ıfico que integre ambos componentes en el mismo modelo. La notación de los EP incluye

componentes de software que se basan en caracteŕısticas estructurales y dinámicas, los

cuales permiten representar eventos y operaciones matemáticas. No obstante, los EP carecen

de componentes cient́ıficos para representar eventos en dominios de software cient́ıfico.

En esta Tesis Doctoral se propone una extensión a los esquemas preconceptuales para el

refinamiento en la representación de eventos y la notación matemática. Esta extensión

integra componentes cient́ıficos (estructuras gráficas, lingǘısticas y matemáticas) para lograr

este refinamiento. También, se valida la propuesta mediante un proceso experimental y una

aplicación de software. La extensión a los EP se incluye como un nuevo producto de trabajo

para representar eventos en dominios de software cient́ıfico. Por lo tanto, se pretende que

los EP extendidos sean modelos de computación, para cient́ıficos y analistas de negocio en

procesos de desarrollo y simulación de software cient́ıfico.

Keywords: cient́ıficos, dominios de software cient́ıfico, esquemas preconceptuales,

ingenieŕıa de software, modelado de software, notación matemática, proyectos de

ingenieŕıa y ciencias computacionales, representación de eventos, sistemas de software

cient́ıfico, simulación.

viii

Content

Dedication III

Acknowledgments IV

Abstract VI

Resumen VII

List of Figures X

List of Tables XIII

1 Introduction 1

2 Background 4

2.1 Conceptual Framework . 4

2.1.1 Events . 4

2.1.2 Model . 5

2.1.3 Analyst . 7

2.1.4 Pre-conceptual Schemas (PCS) . 8

2.1.5 Scientific Software Domains . 11

2.2 Ph.D. Thesis Focus . 12

2.3 Methodology . 13

2.3.1 Exploration . 13

2.3.2 Problem Formulation . 14

2.3.3 Solution . 14

2.3.4 Validation . 15

3 Research Problem 16

3.1 Motivation . 16

3.2 State of the Art . 17

3.2.1 Planning Literature Review . 17

3.2.2 Executing Systematic Literature Review 18

3.3 Problem Statement . 38

3.3.1 General Problem . 38

Content ix

3.3.2 Specific Problems . 40

3.4 Research Question . 40

3.5 Hypothesis . 41

3.6 Objectives . 41

3.6.1 General Objective . 41

3.6.2 Specific Objectives . 41

3.7 Justification . 42

4 Extension to PCS 44

4.1 Characterizing Events emerging from SSD 45

4.2 Defining Linguistic and Graphical Structures for Event Representation in PCS 46

4.2.1 Events with Zero Actants . 46

4.2.2 Events with One Actant . 47

4.2.3 Events with Two Actants . 49

4.3 Defining Mathematical and Graphical Structures for Event Representation in

PCS . 50

4.3.1 Characterizing Elements of an Equation 51

4.3.2 Defining Mathematical Notation in PCS 52

4.3.3 Representing Equations in PCS . 55

4.3.4 Representing Events in PCS . 56

4.4 Lab Study . 59

4.5 Events Represented in PCS . 69

5 Validation 70

5.1 Experimental Validation . 70

5.1.1 Planning Experiment . 70

5.1.2 Executing and Analyzing Experiment 71

5.2 Software Application . 79

5.3 Publications . 84

5.4 PCS Templates to Case Tools . 87

6 Conclusions and Challenges 88

6.1 Conclusions . 88

6.2 Challenges . 90

References 92

x

List of Figures

2-1 PCS Notation . 8

2-2 PCS Example . 11

2-3 Conceptual Framework . 12

2-4 Research Methodology . 13

2-5 Exploration Phase . 14

2-6 Problem Formulation Phase . 14

2-7 Solution Phase . 15

2-8 Validation Phase . 15

3-1 Event-driven Trends . 16

3-2 BPMN Process Model . 19

3-3 UML State Machine Diagram . 19

3-4 Event-driven Process Chain . 20

3-5 TEM Model for the Mobile Phone Fraud 21

3-6 CEVO: Comprehensive EVent Ontology . 21

3-7 CEVO: Comprehensive EVent Ontology Verbs 22

3-8 Medi4CEP Model for Representing Complex Events 22

3-9 Pre-conceptual Schema . 23

3-10 Block Diagram . 25

3-11 Petri Net and Block diagram . 26

3-12 Mathematical Models for Representing Events 26

3-13 Event Ontology of Air Pollution . 27

3-14 Event Ontology of Water Pollution . 28

3-15 Event ontology based on SKOS . 28

3-16 Quadruple Anonymity Trajectory Ontology 29

3-17 Translation of UML State Machine Diagram to Finite State Machine 31

3-18 BPMN process model and DRD . 32

3-19 Model based on Event-Triggered Control 33

3-20 DRUMS: Domain-specific Requirements Modeling for Scientists 33

3-21 Mathematical Functions in PCS Defined by Analysts 36

3-22 General Problem . 39

3-23 Specific Problems . 40

3-24 Objectives . 42

List of Figures xi

3-25 Justification . 43

4-1 Proposal Solution . 44

4-2 Event Characterization in SSD . 45

4-3 Graphical Structures for Events with Zero Actants 46

4-4 Graphical Structures for Events with One Actant 47

4-5 Graphical Structures for Events with Two Actants 49

4-6 Equivalent Forms of Event Representation 50

4-7 Functionality of events in PCS . 50

4-8 Context Documentation . 51

4-9 Element Identification . 52

4-10 Parameter . 52

4-11 Independent Variable . 52

4-12 Dependent Arrays . 53

4-13 Independent Arrays . 53

4-14 Initial Conditions . 54

4-15 Mathematical Operators . 54

4-16 Array Operators . 54

4-17 Trigonometric Operators . 55

4-18 Sin Operator . 55

4-19 Equation Symbols in PCS Notation . 55

4-20 Binary Expression Tree . 56

4-21 Equation in PCS Notation . 56

4-22 Event Functionality in PCS Notation . 57

4-23 Timer . 58

4-24 Timer Values . 58

4-25 Event Functionality with Initial Conditions and Timer 59

4-26 Structural View from PCS . 61

4-27 Initial Conditions . 62

4-28 Process in Chemical SSD . 63

4-29 Event: Time Passes . 64

4-30 Event: Mixture Starts . 65

4-31 Event: Mixture Ends . 65

4-32 Event: Substance Concentration Increases 66

4-33 Events in Chemical SSD . 68

5-1 Frequency of the Domain . 73

5-2 Frequency of the PCS Evaluation . 74

5-3 Frequency Round 1 and 2 of Computational Sciences 76

5-4 Frequency Round 1 and 2 to Simulation . 78

5-5 Initial Conditions to Python Code . 79

xii List of Figures

5-6 Timer to Python Code . 80

5-7 Event to Python Code . 80

5-8 Simulation in Python . 81

5-9 PCS applied to CEP . 81

5-10 Event: Concentración de sustancia incrementa 82

5-11 Event to PL/SQL Code . 82

5-12 Event representation in petroleum engineering SSD 83

5-13 C++ code by using PCS . 83

5-14 Templates . 87

6-1 Challenges . 91

xiii

List of Tables

3-1 Study Criteria . 18

3-2 Software Modeling Approaches . 24

3-3 Scientific Modeling Approaches . 30

3-4 Sofware and Scientific Modeling Approaches 34

3-5 PCS Approaches for Event Represention and Mathematical Notation 36

3-6 Synthesis to Linguistic Structures . 37

4-1 Linguistic Structures for Events with Zero Actants 46

4-2 Linguistic Structures for Events with One Actant 48

4-3 Linguistic Structures for Events with Two Actant 49

4-4 Container (Data Base Table) . 62

4-5 Chemical Expert (Data Base Table) . 62

4-6 Mixture (Data Base Table) . 64

4-7 Substance Concentration (Data Base Table) 67

4-8 Events Represented in PCS . 69

5-1 Experiment Planification . 70

5-2 Experiment Sample . 71

5-3 Description of the Domain . 72

5-4 Statistical Analysis of the Domain . 73

5-5 Statistical Analysis of the PCS Evaluation 75

5-6 Sample of Computational sciences . 76

5-7 Qualitative answers of computational sciences 76

5-8 Statistical Analysis: Round 1 of Computational Sciences 77

5-9 Statistical Analysis: Round 2 of Computational Sciences 77

5-10 Sample of Simulation . 77

5-11 Qualitative answers to Simulation . 78

5-12 Statistical Analysis: Round 1 of Simulation 78

5-13 Statistical Analysis: Round 2 of Simulation 79

6-1 Conclusions . 90

1

1 Introduction

I am more and more convinced that our happiness or unhappiness depends far more on the way we meet the events of life,

than on the nature of those events themselves.
—Wilhelm von Humnboldt

Events are something that happens in either the real world and in a software system or

domain, which are also called phenomena (Ravikumar et al., 2016; Liu et al., 2016). Events

are used for driving business and automated processes (Luckham, 2011). The word event

is also used for naming a programming entity or object as an occurrence in a computing

or natural system (Etzion et al., 2011). The event functionality implies its internal logic

conformed by conditions and operations (Vásquez & Sandova, 2017; Wonham et al., 2018).

A trigger is an event used for beginning processes (OMG, 2011, 2015), e.g, volcano erupts,

sensor starts, patient suffers heart attack, and earthquake arrives (Noreña et al., 2018;

Noreña & Zapata, 2018a).

Models are used in science and engineering for providing abstractions of a system (Gomaa,

2011). Software models are used as a central tool in the software engineering process

in computing systems (Gomaa, 2011; Da Silva, 2015). Scientific models are used for

understanding events in natural systems (Gilbert, 2004). Processes, events, concepts, and

structures—graphical, linguistic, and mathematical—are scientific and software components,

domain knowledge elements of a model (Gilbert, 2004; Haas, 1960; Jaramillo & Esteban,

2006). Scientists and business analysts use such models and their components in order

to obtain a better understanding of the knowledge domain (Boubeta-Puig et al., 2015, 2019).

Pre-conceptual schemas (PCS) are models used in software engineering for linguistically and

graphically recognizing a domain. PCS notation is defined by applying the computational

linguistics rules, so analysts and stakeholders easily understand the domain knowledge and

developers can consistently code the software system (Zapata, 2012; Noreña & Zapata,

2018b). Scientific software domains (SSD) include fields in engineering and science for

studying an event or phenomenon. Such studies are obtained by developing software

systems with scientific knowledge based on mathematical models and simulating results

from science and engineering projects (Kelly, 2015; Li, 2015), i.e., chemistry, physics,

biology, mathematics, statistics, environmental sciences, electronics, petroleum engineering,

medicine, geography, meteorology, geology, etc. (Wiese et al., 2019).

2 1 Introduction

Applicability of events in the development of software systems is increasing (Campos-Rebelo

et al., 2015; Luckham, 2011). Computer systems are driven by events and this is a reason for

such applicability (Luckham, 2002). Discrete event simulation languages (domain-specific

languages) and simulators (Johanson & Hasselbring, 2018; Li, 2015), network development,

active databases, middleware, event-driven architecture (EDA), and strategic management

(event-driven modeling, business intelligence, and complex event processing) are event-driven

trends (Luckham, 2011).

Event applicability motivates our review about event-driven modeling from

software/scientific modeling. Business process model notation (BPMN), unified modeling

language (UML) activity, state machine, and sequence diagrams, Medit4CEP tool, etc.

are software modeling approaches used for analyzing the structural or behavioral view

of a system (OMG, 2011, 2014a, 2015; Chonoles, 2017; Boubeta-Puig et al., 2015, 2019;

Haisjackl et al., 2018). Petri net, finite automaton, Markov model, block diagram, etc. are

scientific modeling approaches used for analyzing mathematical models of an event (Chen

et al., 2017; Liu & Zhao, 2016; Luo & Zhou, 2016; Sarno et al., 2015; Wang et al., 2017,

2018; Zhang & Zhang, 2016; Zhong & He, 2016).

BPMN, UML diagrams, ontologies, frameworks, Petri nets, etc. are used for integrating

software components—concepts (classes, attributes), processes, events, and structures—and

scientific components—mathematical structures, scientific concepts or terminology,

processes, and events—in science and engineering projects (Bazhenova et al., 2019; Bazydlo

et al., 2014; Gao et al., 2014; Li, 2015; Li et al., 2015; Patri et al., 2014; Sahoo et al., 2015;

Xia et al., 2019). Some event representations (Zapata, 2012; Noreña, 2014; Zapata et al.,

2013, 2014) and mathematical notation for organizational domains (Chaverra, 2011) and

scientific software (Calle, 2016) have been proposed in PCS. Some of such approaches also

present advances of linguistic structures for representing events (OMG, 2011, 2014a, 2015;

Boubeta-Puig et al., 2015, 2019; Zapata, 2012).

Such approaches are attempts for addressing the gap between the event-driven software

modeling of software engineering and event-driven scientific modeling of science (Johanson

& Hasselbring, 2018). However, problems still arise since scientific modeling lacks software

components and software modeling lacks scientific components. Thus, both scientists

and business analysts require a computing model with integrated scientific and software

components for event representation and mathematical notation in SSD (Johanson &

Hasselbring, 2018; Kanewala & Bieman, 2014; Wiese et al., 2019; Wilson et al., 2014).

Advances on the PCS notation allow for including software components (processes, events,

concepts, and structures) for representing events and mathematical notation in the same

model (Zapata, 2012; Noreña, 2014; Zapata et al., 2013, 2014; Chaverra, 2011; Calle, 2016).

3

However, PCS lack scientific components for representing events in SSD, since graphical,

linguistic, and mathematical structures are insufficient for representing events (time

events and others) and their functionality—which is established by integrating scientific

components from SSD. Such a representation is required for the analysis, development, and

simulation of scientific software.

Consequently, in this Ph.D. Thesis we integrate software (processes, events, concepts, and

structures) and scientific components (graphical, linguistic, and mathematical structures)

in the same model, the so-called pre-conceptual schemas. Thus, new structures are defined

as extensions to PCS in order to refine the event representation and mathematical notation

in SSD. Such an extension is achieved by characterizing events emerging from SSD and

defining new mathematical, linguistic, and graphical structures for representing events in

PCS.

Finally, we perform an experimental validation with scientific, software, and simulation

experts for evaluating the understanding about the extended PCS and the mathematical

notation/event notation, and the usability of the PCS. Such validation is performed by

using the experimental process of software engineering: planning, executing, and analyzing

experiment (Wieringa, 2014; Wohlin et al., 2012) and a software application for translating

PCS to code.

This extension to PCS is a work product allowing scientists and business analysts for

representing events/phenomena in SSD by using mathematical notation. The application of

the extended PCS as computing models is intended to produce the following contributions:

(i) structural and dynamic representation of the elements of any SSD; (ii) time and

functionality representation of the events in SSD; (iii) understanding and recognizing of

the processes, events, concepts, and mathematical models present in a SSD; and (iv) PCS

usability for developing and simulating scientific software systems.

This Ph.D. Thesis is structured as follows: in Chapter 2 (background) we present the

conceptual framework, Ph.D. Thesis focus, and methodology; in Chapter 3 (research

problem) we indicate our motivation, state of the art, problem statement, research question,

hypothesis, objectives, and justification; in Chapter 4 (extension to PCS) we propose a

work product for representing events and mathematical notation in SSD by using graphical,

linguistic, and mathematical structures in PCS; in Chapter 5 (validation) we experimentally

evaluate the understanding and usability of our proposal, apply the PCS to a programming

language, and present the publications related to this Ph.D. Thesis, other representations,

and PCS templates to be used in case tools; in Chapter 6 (conclusions and challenges) we

define the contributions and future work.

4

2 Background

Knowledge is having a mental history of past events and wisdom is having the ability for relating those past events to the

present and future.
—Steven Magee

2.1. Conceptual Framework

2.1.1. Events

According to the common-sense meaning in the dictionary, an event is something that

happens (Luckham, 2011). Such an event occurs within a particular system or domain

(Etzion et al., 2011; Ravikumar et al., 2016; Liu et al., 2016). An event is also a programming

entity or object, which represents such an occurrence in the system (Etzion et al., 2011).

Information systems are driven by events (Luckham, 2002). Thus, events are used for driving

business and automated processes (Luckham, 2011) and controlling the system behavior,

since they are responsible for changing the process state. Such changes are produced by

using constraints from the events (Noreña & Zapata, 2018b,c).

Event functionality is the specification of the internal logic of events. Such a logic contains

conditions and mathematical operations for controlling and understanding the behavior of

the system. A change of states in the system occurs when the logic of an event is executed

in a sequence of time. An analyst should define such a logic for modeling a system (Vásquez

& Sandova, 2017; Wonham et al., 2018).

Trigger concept is used for indicating an event generating the start of processes, process

flows, services, and other events, which is commonly used in databases (OMG, 2014a, 2015).

Trigger events are classified as:

A none or statement is an instruction used for activating a trigger, which generates a

process. e.g., when a signal starts, a message or an error emerges.

A conditional is a constraint used for specifying a condition. Such an event is triggered

when an state changes, e.g., temperature above 300◦C is true.

A timer is a specific time or a cycle used for triggering the start of a process, e.g.,

every Monday at 9 am (OMG, 2014a).

2.1 Conceptual Framework 5

Some examples of trigger events are: if someone is working on a laptop in a coffee shop, and

a robbery happens, such a robbery event would disrupt the peaceful atmosphere and compel

people to react (Etzion et al., 2011); a phone rings, an email arrives, an alarm sounds, and

a sensor signal starts are events occurring from devices; a volcano erupts, an earthquake

occurs, a hurricane appears, and noise environmental increases are natural events; a patient

suffers a heart attack and an animal bleeds are chemical events occurring in living beings

(Noreña et al., 2018; Noreña & Zapata, 2018a; Noreña et al., 2019; Durango et al., 2018).

2.1.2. Model

Modeling is a well-known technique adopted by science and engineering fields for providing

abstractions of a system/domain (Da Silva, 2015; Gomaa, 2011). A model is constructed for

analyzing and understanding such abstractions (Boubeta-Puig et al., 2015, 2019). A model

allows for sharing a common vision and knowledge of such a system (Da Silva, 2015), e.g.,

physical, mathematical, biological, and technical models.

Modeling is used for designing computing systems before coding them in the software

development process. A software model (also called conceptual model/process model)

plays a role in such a process for fulfillment business functionality, end-user achievement

need, program design, and requirements, before coding the system (OMG, 2011; Gomaa,

2011; Da Silva, 2015). Such models contain software components for recognizing a domain.

Model-driven engineering (MDE)—a software engineering paradigm—includes the use of

models as documentation, work products, and tools in engineering disciplines and any

application domain. Model-driven architecture (MDA) is an approach from MDE for

deriving value from models (OMG, 2014b). Perspective dimension of a model is classified

by MDA as structural, behavioral, and multiple (Da Silva, 2015; Giraldo et al., 2019). A

structural (static) view is used for describing a system from its structural perspective by

using concepts such as classes, objects, nodes, blocks, and respective relationships, e.g.,

ontologies as a comprehensive event ontology (CEVO; Shekarpour et al., 2019), unified

modeling language (UML) class and component diagrams. A behavioral (dynamic) view

is used for describing the behavior of a system by using operations, processes, states, and

events, e.g., event-driven process chain (EPC; Xue et al., 2013). A multiple view is used for

including both static and dynamic views (Da Silva, 2015).

Modeling in science is used for producing, disseminating, and accepting scientific knowledge

from natural systems. Such knowledge is described by using scientific models, which

are based on mathematical models (which are discretized, i.e., process for transferring

continuous to discrete functions) and scientific concepts/terminology. A scientific model is

used for analyzing entities or objects and their relationships, e.g., entities of the organs of

the human body, of an electric motor; complex phenomena/events in a time segment of

6 2 Background

behavior of a system, e.g., a block diagram (Zhong & He, 2016). Design and experimental

practices are based on computing models (Gilbert, 2004). A computing model is used for

analyzing the behavior of a complex system by using computer simulation, i.e., an algorithm,

mathematical or graphical model. A computing model contains numerous variables and an

set of instructions for characterizing the system (Kanewala & Bieman, 2014).

Components

Processes (actions of the system), events (automated processes/phenomena), concepts

(terminology), and structures (symbols) are common software and scientific model

components. The following structure types are identified in such models:

Graphical structures are organized symbol sets used for allowing a visual representation of the

elements of a model, e.g, a hexagon symbol in EPC diagram is used for representing events

(Xue et al., 2013). Usually, the graphical structures should include linguistic/mathematical

structures.

Linguistic structures—also linguistic units—are used for referring to terms of a sentence

and their relationships (Haas, 1960), e.g, “new repair task arrived” is an event in an EPC

diagram (Xue et al., 2013). A verb is a linguistic structure used as the main term of a

sentence, which may be compared to a sort of atom, susceptible to attracting a greater/lesser

number of actants/arguments associated with the verb (Tesnière, 1965), i.e., “arrived.”

A semantic role is a linguistic structure used for conceptually relating the verb and its

arguments (Moreda, 2008; Payne, 1997). Semantic roles allow for analyzing syntactic and

semantic relationships and identifying the function of the verb argument in an event, which

is expressed by using such a verb (Moreda, 2008). Semantic roles are also referred to deep

cases, thematic roles, and theta roles (Payne, 1997). Actants and circumstants are types of

semantic roles, the immediate subordinates of the verb (Tesnière, 1965).

Actants are arguments necessarily used for completing the meaning of a given full verb.

They are the beings/things (nouns) which participate in the process, performing/receiving

the action. According to Tesnière (1965) a given verb is: avalent, a verb for denoting a

meteorological phenomena without actants, e.g., it rained; monovalent, a verb for expressing

an action which only a single person or thing participates, e.g., Amy slept; divalent, a verb

with two actants for expressing an action which two people or things participate, e.g., Amy

met Paola; and trivalent, a verb with three actants for expressing an action which three

people or things take part, e.g., Amy gave Paola a chocolate. Fillmore (1977) and Gruber

(1965) define actant type-semantic roles as agent, who performs the action, e.g., engineers

select nearest engineer (Xue et al., 2013); experiencer, which experiments an action or

event, e.g., new repair task arrived (Xue et al., 2013), an airplane falls; patient, who suffers

2.1 Conceptual Framework 7

the event effect, e.g., the baby (first actant, patient) suffers dizziness (second actant); and

beneficiary, who receive the benefit of an action, e.g., the professor teaches the student;

in this sentence, the professor is an agent and the student is a beneficiary (Noreña et al.,

2018).

Circumstants are adjuncts, circumstancial complements, and adverbial functions used for

extending the meaning of the verb. Circumstants can express the circumstances in which

a process takes place (Tesnière, 1965). Gruber (1965) define circumstant type-semantic

roles as strength, whose origin is unknown and produced by an event, e.g., rock melts; and

cause, situation generated by an event, e.g., the baby suffers dizziness. We can perceive the

articulation of a real-life experience with linguistic structures by understanding a sentence

with a verb as a node and its connections with both actants and circumstants, so the event

is structured by using the language. Such an experience, i.e., a process/event, actors, and

circumstances can be transferred to structural syntax, and then applied by using a verb, its

actants, and circumstants (Tesnière, 1965).

Mathematical structures are sets of related mathematical objects as concepts, operators,

relationships, and rules expressed in equations for solving operations (Jaramillo & Esteban,

2006). Mathematical operators can be: logical when they are used in conditions for joining

relational operators, i.e., and, or, xor; relational when they are used in conditions, i.e., less

than (<), greater than (>) , equal (=), not equal (!=), etc; basic when they are used in

arithmetic operators, i.e., plus (+), minus (-), multiplication (*), division (/); and complex

operators used in complex equations, i.e., trigonometric functions as sine (sin) and cosine

(cos), exponential function (Exp, e), logarithmic function (log, ln), etc.

2.1.3. Analyst

A scientist can make predictions with the simulation results about what could happen in

the real system for finding the solution to the problem, e.g., if a building lacks the right

concrete mix, a disaster can occur. Scientists use scientific models for analyzing whether

the system is properly working and what events are emerging from the system (Kanewala

& Bieman, 2014). Commonly, this is a mathematical analysis for reviewing if the model is

correct according to the studied phenomenon (Kanewala & Bieman, 2014). Scientists also

require such models for developing computing systems, coming from scripts for small-scale

data analysis to complex coupled multiphysics simulations executed on high-end hardware

(Johanson & Hasselbring, 2018).

A business analyst is a role of the software team during analysis and design phases of a

software engineering process. Such a role uses software engineering techniques (Johanson &

Hasselbring, 2018) and models for recognizing a domain and obtaining the requirements of

8 2 Background

a computing system. Analysts identify real-world objects in the problem domain and design

the corresponding objects in the system model (Gomaa, 2011).

2.1.4. Pre-conceptual Schemas (PCS)

A schema is a model used in computational learning theory for understanding a declarative

and procedural knowledge of a domain (Pozo, 2006). Pre-conceptual is a term used in

philosophy and pedagogy; pre-concepts are used for constructing a concept by using

previous knowledge; pre-conceptual phase comprises intuitive interpretations (pre-concepts)

about the world to be used for conceptualizing them (Zapata, 2007). A Pre-conceptual

schema is a graphical and conceptual model used in software engineering (Zapata,

2012; Noreña & Zapata, 2018b). PCS integrate an intuitive and pegagogical nature

(Zapata-Tamayo & Zapata-Jaramillo, 2018), allowing users for understanding the main

software components—concepts, processes, events, and structures—belonging to a domain

(Zapata, 2012; Noreña & Zapata, 2018b). PCS also involve dynamic and structural features

for creating complete and consistent view of a model (Zapata, 2012).

PCS Notation

PCS notation contains the following software components (see Figure 2-1) organized in four

groups (Zapata, 2012):

CLASS
LEAF

CONCEPT

CLASS
LEAF

CONCEPT

{

}

NODES

CONCEPT CONDITIONAL REFERENCE OPERATOR CONCEPT-CLASS

RELATIONSHIPS

STRUCTURAL DYNAMIC ACHIEVEMENT EVENTUAL

LINKS

CONNECTION IMPLICATION CONCEPT-NOTE OPERATOR JOINT/FORK

GATHERERS

FRAME NOTE-VALUE SPECIFICATION CONSTRAINT EVENT

Figure 2-1 PCS Notation. The Authors based on Zapata (2012)

2.1 Conceptual Framework 9

Nodes

A concept is used for representing a class concept and a leaf concept/attribute, e.g.,

seismologist, sensor, medical history.

A conditional is used for defining an instruction, e.g., if alarm = on.

A reference is used for relating a distant node by using a number.

An operator is used for representing mathematical operations. Operators can be: logical

(AND,OR); basic (+,−, ∗, /); and relational (<,<=, >,>=,=).

A concept-class is used for representing a class with its leaf concept e.g., biology code.

Relationships

A structural relationship is used for relating a class concept and its leaf concepts by

using the verb “has,” e.g., biology has code, and defining an inheritance by using the

verb “is,” e.g., user is scientist, user is business analyst.

A dynamic relationship is used for representing a process/activity/service, e.g., doctor

reviews medical history, sound engineer measures noise.

An achievement relationship is used for representing objectives, e.g., improving

security, looking door.

An eventual relationship is used for representing events with a concept/noun and an

eventual verb, e.g., file arrives (Noreña, 2014).

Links

A connection is used for relating nodes and relationships.

An implication is used for relating dynamic relationships, conditionals, and events.

A concept-note is used for relating values, specifications, and constraints.

An operator is used for relating operators, concepts, and values.

A joint/fork is used for relating implication links.

Gatherers

A frame is commonly associated with reports.

A note-value is an assignation value of nodes.

10 2 Background

A specification is used for including values and operations without conditions.

A constraint is used for including values and operations with conditions.

An event is used for triggering dynamic relationships and other events (Zapata, 2012;

Noreña et al., 2018).

PCS notation is defined by applying rules based on computational linguistics (discipline

focused on formalizing the computer language from the language the natural) allowing

analysts and stakeholders for understanding the main elements of the domain knowledge

and developers for consistently coding a software system (Zapata, 2012; Noreña & Zapata,

2018b). Some linguistic rules are:

(i) Subjects and objects are nouns, then a concept structure should be used for

representing them, e.g., cow and milker in Figure 2-2.

(ii) Every complete sentence contains a subject and a predicate (an object with a verb

and another object), then every dynamic and structural relationship should have a triad

including a concept, a relationship, and another concept, e.g., cow has name (structural

relationship) and milker collects milk (dynamic relationship, see Figure 2-2).

(iii) Concepts should be used in a singular form, e.g., milker and seller in Figure 2-2.

(iv) Semantic roles allow for classifying a verb (verb categories, i.e., state,

activity/process, event, achievement), which are used for defining every relationship,

then an agent-semantic role should be used in the first concept for representing a

dynamic relationship, e.g., milker collects milk (milker is the agent role) while an

eventual relationship should lack an agent-semantic role, since is different to a process,

but an eventual verb should have from zero to one actants, e.g., customer arrives in

Figure 2-2 (Noreña, 2014).

Some graphical rules are:

(i) Concepts and relationships should be linked to the connection link, e.g., connection

link between the concept cow and the dynamic relationship produces (see Figure 2-2).

(ii) A process flow, an event flow, an event/a conditional related to a dynamic

relationships should be linked to the implication (gray color) link and achievement

flow with the implication (black color) link, e.g., implication link between the event

customer arrives and the dynamic relationship seller sells milk (see Figure 2-2).

(iii) An operator node, a note-value (possible values of a concept), a specification, a

constraint, and an achievement relationship should linked to the concept-note link, e.g.,

the note-value related to the concept amount (see Figure 2-2).

2.1 Conceptual Framework 11

(iv) Mathematical operations (concepts and note-values) should be linked to the

operator link (Zapata, 2007), e.g., the operator links used in the conditional

milk.amount >= 30 Liters (see Figure 2-2).

COW

HAS

ID

NAME

MILKER

MILK

HAS

AMOUNT

PRODUCES COLLECTS

MILK
AMOUNT

>=

30 Liters SELLS

SELLER

CUSTOMER

ARRIVES

-30 Liters
-50 Liters
-100 Liters

Figure 2-2 PCS Example. The Authors based on Zapata-Tamayo & Zapata-Jaramillo

(2018)

2.1.5. Scientific Software Domains

Scientific software domains (SSD) include fields for developing scientific software systems

(Kelly, 2015), e.g., chemistry, physics, mathematics, statistics, economy, industry,

environment, geography, science, biology, bacteriology, geology, vulcanology, meteorology,

electronics, mechanics, medicine, and others (Wiese et al., 2019). Scientific software systems

are created by scientists and engineers (Heaton & Carver, 2015; Howison et al., 2015;

Johanson & Hasselbring, 2018; Wilson et al., 2014) in science and engineering projects (Li

et al., 2015). Such systems are mainly developed for solving problems and research questions

(Nanthaamornphong & Carver, 2017), improving the understanding of the behavior

(Howison et al., 2015), making predictions, increasing the knowledge about real-world

processes and events/phenomena, and supporting critical decision making (Kanewala &

Bieman, 2014; Kelly, 2015), i.e., weather forecasting, global climate change, genomics,

human health, etc. (Nanthaamornphong & Carver, 2017).

Some key features of the scientific software are (i) dynamic requirements

(Nanthaamornphong & Carver, 2017), (ii) mathematical models, numerical methods,

and physical phenomena, and (iii) domain experts, since scientists often develop scientific

12 2 Background

software themselves (Kanewala & Bieman, 2014) due to the complexity of the domain and

the system (Calle, 2016; Kelly, 2015). Some examples of software systems are: software for

studying the safe operation of nuclear plants, tracking paths of hurricanes, locating satellites

in telescope images, checking mineshafts for rock faults, modeling medical procedures for

cancer treatment, and studying ocean currents for ecological impact (Kelly, 2015).

Event types found in scientific software domains are: natural events, which happpen in

natural systems, e.g., enviromental noise increases (Durango et al., 2018; Noreña et al., 2018);

discrete events, which happen in a specific time in dynamic system, e.g., an alarm sounds

every day 5am; deterministic events, which happen in predictable values, e.g., signal emerges;

and non-deterministic events, which happen randomly, e.g., customer arrives (Noreña &

Zapata, 2018a). Such event types are classified as trigger events.

2.2. Ph.D. Thesis Focus

We relate the conceptual framework and the Ph.D. Thesis focus in Figure 2-3 by using a PCS.

This Ph.D. Thesis is focused on event-driven modeling by integrating two fields: science and

software engineering. We specifically work on the software analysis (core process of software

engineering) where the analyst, i.e., a business analyst in software fields or a scientist in

science fields uses a model for recognizing a domain (understanding its elements).

COMPONENT

MODEL
PRE-CONCEPTUAL

SCHEMA

DOMAIN

ANALYZES

SOFTWARE
PROJECT

ARISES

RECOGNIZES

SOFTWARE
SYSTEM

SCIENTIFIC
SOFTWARE DOMAIN

HAS

USES

EVENT

HAS

PROCESS

STRUCTURE

TYPE

-SOFTWARE

-SCIENTIFIC

- STRUCTURAL
- BEHAVIORAL

- GRAPHICAL
- LINGUISTIC

-MATHEMATICAL

- LOGICAL
-RELATIONAL
-BASIC
-COMPLEX

- VERB
- SEMANTIC ROLE

TYPE

-TRIGGER

- NONE OR STATEMENT
- CONDITIONAL
-TIMER HAS

ANALYST

TYPE

HAS

-SCIENTIST

-BUSINESS

-ENGINEERING
-SCIENCE

-SOFTWARE
-ADMINISTRATION

CONCEPTFUNCTIONALITY

Figure 2-3 Conceptual framework. The Authors

2.3 Methodology 13

In this Ph.D. Thesis we use pre-conceptual schemas as models. Perspective type is a

multiple view (structural and behavioral), abstraction level is logical (models of the way the

components of a system interact with each other and with people) according to the MDA

(OMG, 2014b), and the domain used is the scientific software domain. Our research is aimed

at the refinement of the event representation and mathematical notation in PCS. Thus, an

extension to PCS is proposed by using graphical, linguistic, and mathematical structures for

representing SSD (science and engineering fields) where trigger events are predominant.

2.3. Methodology

We define four phases by using the empirically-based technology transfer methodology (see

Figure 2-4) supported by the experimentation in software engineering (Wohlin et al., 2012).

Such a methodology is applied for sharing knowledge, new tools, technology, and methods

between Academia and Industry.

In Academia, the problems are observed from the Industry. Solutions are proposed for both

parts. Finally, we apply the experimentation in the software engineering process (Wohlin

et al., 2012) for validating the solution. This process is also considered in the design science

methodology for information systems and software engineering (Wieringa, 2014).

Exploration
<phase>

Exploration
<phase>

Solution
<phase>
Solution
<phase>

Validation
<phase>

Validation
<phase>

Problem
Formulation

<phase>

Exploration
<phase>

Solution
<phase>

Validation
<phase>

Problem
Formulation

<phase>

Figure 2-4 Research Methodology. The Authors

2.3.1. Exploration

A systematic literature review is carried out for synthesizing and analyzing the available

evidence related to the research in a scientific and rigorous way (Wohlin et al., 2012). Such

a review is based on the guidelines for software engineering proposed by Kitchenham and

Charters and supported by the experimentation process in software engineering (Wohlin

et al., 2012). Planning literature review and executing systematic literature review activities

are developed for obtaining the review protocol, background, primary studies, list of studies,

and study analysis (see Figure 2-5).

14 2 Background

Exploration
<phase>

Exploration
<phase>

Planning
literature review

Executing
systematic
literature review

Review protocolReview protocol

ContainsContains Ph.D Student
<role>

Ph.D Student
<role>

Works
on

Guidelines for performing systematic
literature reviews in software engineering of
Kitchenham & Charter (Wohlin et al., 2012)

Guidelines for performing systematic
literature reviews in software engineering of
Kitchenham & Charter (Wohlin et al., 2012)

Primary studies

Background

List of studies

Study Analysis

Explore
possibilities

Exploration
<phase>

Planning
literature review

Executing
systematic
literature review

Review protocol

Contains Ph.D Student
<role>

Works
on

Guidelines for performing systematic
literature reviews in software engineering of
Kitchenham & Charter (Wohlin et al., 2012)

Primary studies

Background

List of studies

Study Analysis

Explore
possibilitiesContains

Works
on

Figure 2-5 Exploration Phase. The Authors

2.3.2. Problem Formulation

A general problem and a set of specific problems are found based on the exploration phase.

Specifying problem statement, formulating research question, and formulating hypothesis

activities are performed for obtaining the problem statement, research question, and

hypothesis and for defining the objectives (see Figure 2-6).

Explore
possibilities

Problem
Formulation

<phase>

Formulating
research
question

Specifying
problem
statement

Problem
statement

Works
on

Contains

Empirically-Based Technology Transfer
(adapted from Wohlin et al., 2012)

Empirically-Based Technology Transfer
(adapted from Wohlin et al., 2012)

Research
question

Ph.D Student
<role>

Ph.D Student
<role>

Formulating
Hypothesis

Hypothesis

Contains
Works

on

Figure 2-6 Problem Formulation Phase. The Authors

2.3.3. Solution

A solution is proposed for refining event representation and mathematical notation in an

extension to pre-conceptual schemas in SSD. Characterizing events, defining linguistic,

mathematical, and graphical structures, and including extension to PCS are activities

executed for producing an event report, the linguistic, mathematical, and graphical structures,

and the extension to PCS (see Figure 2-7).

2.3 Methodology 15

Defining
mathematical
structures

Defining
linguistic
structures

Defining graphical
structures

Works
on

Solution
<phase>
Solution
<phase>

Implement
the solution

ContainsContains

Including
extension to PCS

Ph.D Student <role>

Event
report

Mathematical structures

Linguistic structures

Extension to PCS

Graphical structures

Characterizing
events

Empirically-Based Technology Transfer
(adapted from Wohlin et al., 2012)

Contains
Works

on

Figure 2-7 Solution Phase. The Authors

2.3.4. Validation

An experiment is applied to several contexts for evaluating the amount of understanding of

the proposed structures in the extended PCS. Planning experiment, executing experiment,

experiment data, and analyzing experiment are activities developed for producing an

experiment design, experiment data, and experiment report (see Figure 2-8). Scientific papers

are also produced in the different phases.

Validation
<phase>

Validation
<phase>

ContainsContains

Executing
experiment

Works
on

Scientific paperScientific paper

Planning
experiment

Experiment
design

Experiment reportExperiment report
Analyzing
experiment

Test the
solution

Ph.D Student
<role>

Experiment data

Empirically-Based Technology
Transfer (adapted from Wohlin et al.,

2012)

Experimental Process
(Wieringa, 2014;
Wohlin et al., 2012)

Experimental Process
(Wieringa, 2014;
Wohlin et al., 2012)

Contains

Works
on

Figure 2-8 Validation Phase. The Authors

16

3 Research Problem

It is often interesting, in retrospect, for considering the causes that led to great events.
— Patricia Moyes

3.1. Motivation

Applicability of events in the development of software systems is an increasing trend

(Campos-Rebelo et al., 2015; Luckham, 2011). According to Luckham (2002) “there is a

fundamental reason for this broad applicability. It is simply because information systems

are all driven by events.” Such applicability allows for developing complex systems

(Campos-Rebelo et al., 2015) in scientific domains (Kelly, 2015), e.g., software for studying

earthquakes and other natural events, medical software for detecting heart attacks, cancer,

and other diseases, sensor system for ecological impact in environmental noise, pollution,

air quality, climatic changes, etc., simulation software for detecting failures in chemical

mixtures in a construction, and other automated and computer systems.

Event-driven trends have emerged from 1960 until today with a future perspective for event

application (Luckham, 2011), as we show in Figure 3-1.

Strategic Management
2002. Event-driven modeling

complex event processing (CEP)

Middleware/EDA
1992. Event driven architecture

Active Databases
1986.

Network Development
1976.

Discrete Event Simulation Languages and Simulators

1960. Domain-specific Languages (DSL) SSD

1960 1970 1980 1990 2000 2010 2020

(Johanson & Hasselbring, 2018, Li, 2015)

A consistency mechanism in trigger
and result events for UNC-Method
artifacts (Noreña, 2014)

Figure 3-1 Event-driven Trends. The Authors based on Luckham (2011)

3.2 State of the Art 17

Events are used in: discrete event simulation for predicting the behavior of a system by

using simulators and languages, e.g., domain-specific languages (DSL) for programming

a particular domain (Johanson & Hasselbring, 2018; Li, 2015), simulators with input and

output events; network development for establishing communications (interoperability) and

messages between systems (Noreña et al., 2017); active databases for evaluating conditions

when a new data arrives, e.g., on event if Boolean-condition then action; middleware for

communicating and transmitting messages; event-driven architecture (EDA) for developing

publish/subscribe applications, receiving, and publishing events among interface services

(Noreña & Zapata, 2018b); strategic management, i.e., event-driven modeling, business

intelligence (events trigger processes), and complex event processing (CEP, a set of

techniques and tools for detecting events in real-time and reacting to them, which are also

related to data; Luckham, 2002, 2011). This Ph.D. Thesis is motivated by this trend of

applicability of events.

Noreña (2014) propose a consistency mechanism in the trigger and result events for

UNC-Method artifacts, M.Sc. Thesis from the event-driven modeling trend. UNC-Method is a

software development method of the Universidad Nacional de Colombia (Zapata, 2012). This

M.Sc. Thesis is proposed for generating consistency in the events from the artifacts of such a

method, i.e., controlled dialogue, elicitation cards, pre-conceptual schema, process diagram,

process diagram explanatory table, event interaction graph, and state machine diagram.

Our Ph.D. Thesis is promoted and motivated by such a proposal from the continuity in the

event work, especially in the analysis of verbs related to eventual relationships and event

representation.

3.2. State of the Art

3.2.1. Planning Literature Review

Review protocol includes the study criteria, which are presented in the Table 3-1 for

developing the systematic literature review (Wohlin et al., 2012). A primary study

(Haisjackl et al., 2018) allows for defining our research questions (RQ) to be used in

the literature review. According to Haisjackl et al. (2018), syntactic errors are generally

identified in the processes while other problems remain unattended, i.e., syntactic errors

related to events. Also, they propose an exploration of other challenges in modeling notation

when a process is created. Consequently, we suggest the questions RQ1 and RQ2. After,

we find mathematical models in scientific modeling for representing events (Mezerins, 2014;

Sarno et al., 2015), and then we propose the questions RQ3 to RQ7.

Conforming to the study criteria (see Table 3-1) the reviewed studies are grouped into

four approach categories (list of studies and study analysis): software modeling, scientific

18 3 Research Problem

modeling, software and scientific modeling, and PCS approaches. Finally, we identify

approaches including linguistic structures for events from such categories.

Table 3-1 Study criteria. The Authors

Inclusion criteria

Search criteria

(i) Approach types—diagram (D), framework (F), graph (G),

method (Me), model (M), and tool (T)

(ii) Event-driven modeling

(iii) Software modeling approaches including event representation

(iv) Scientific modeling approaches including event representation

(vi) PCS approaches related to events and mathematical notation

Search sources

ACM (especially, ACM International Conference on Distributed

Event-Based Systems), IEEE Explore, Scient Direct, Springer Books,

Springer Links, Scopus, Google Scholar, OMG webpage

Keywords

“event,” “event driven,” “event-driven,” “event based,” “event-based,”

“event modeling,” “event modelling,” “event representation,”

“software modelling,” “software & modeling,” “business process,”

“scientific software,” “scientific application,”, “science software,”

“scientific software domain,” “engineering software for science,”

and “event simulation”

Literature Paper, chapter, book, thesis, and technical document

Exclusion criteria

(i) Software modeling approaches without event representation

(ii) Scientific modeling approaches without event representation

(iii) Methods, heuristic rules, and languages of programming (e.g., DSL)

and testing based on models or events

Research questions

RQ1. What structures are used for representing events in scientific

and software modeling (view)?

RQ2. What linguistic errors are detected in events from models?

RQ3. What models include mathematical notation for representing

events in scientific software domains?

RQ4. What mathematical structures are used?

RQ5. What models include the time by using events?

RQ6. What is used the model for?

RQ7. What models include event functionality?

3.2.2. Executing Systematic Literature Review

Software Modeling Approaches

Some event-driven modeling approaches from software engineering are used for representing

the behavioral view of a system. Business process model notation (BPMN) and unified

modeling language (UML) are the most used notations. BPMN process model (Haisjackl

et al., 2018; OMG, 2014a) is used for representing some event types—none, timer, message,

conditional, signal, error, etc. Time (two weeks, one week) and message events (hold book,

decline hold) are shown in Figure 3-2. UML activity (OMG, 2011), state machine (Chonoles,

2017), and sequence diagrams (OMG, 2015) are only used for representing none or statement

events.

3.2 State of the Art 19

Figure 3-2 BPMN process model (OMG, 2014a)

UML state machine diagram includes the event notation trigger event [guard condition]

action in a transition—connection arrow between states and activities, see such events ([No

Reserve], BorrowRequest[isCircBook], etc.) in a system of book reservation in Figure 3-3.

Event-driven process chain (EPC) diagram (Amjad et al., 2017; Xia et al., 2014; Xue et al.,

2013) and event interaction graph (EIG) in the UNC-Mehod (Zapata et al., 2014) are used

for representing the flow among events and processes. Events (new repair task arrived, if no

engineers are free) in an EPC for a system of requests to engineers are shown in Figure 3-4.

Notation of the system modeling language (SysML) state machine diagram (Baouya et al.,

2015) includes conditional events, e.g., [sunny=true].

Figure 3-3 UML state machine diagram (OMG, 2014b)

20 3 Research Problem

Figure 3-4 EPC (Xue et al., 2013)

Some approaches are used for representing the structural view of a system. The event model

(TEM, see Figure 3-5) is used for modeling event-driven applications targeted to business

users. TEM event logic/functionality is expressed by using TEM tables, whose detected

event is long call at night in a system for detecting mobile phone fraud (Etzion et al., 2016).

Comprehensive event ontology (CEVO) is designed for recognizing and equating relationships

from both textual data sources and knowledge bases (Shekarpour et al., 2019), as we show

in Figure 3-6. CEVO has a hierarchy of communication, where several verbs are proposed

for transfering message events, as we show in Figure 3-7. Medit4CEP (Boubeta-Puig et al.,

2015, 2019) is a model-driven approach for CEP, which contains a tool for editing the model

(see Figure 3-8) with mathematical operators.

3.2 State of the Art 21

Figure 3-5 TEM model and TEM table for the mobile phone fraud (Etzion et al., 2016)

owl: Thing

Event

grooming and
bodily care

contact touch

throwing
social

interaction
sending/
carrying

change of
possession

cutting weather

predicative
complements

weekend lodge
combing

and attaching

assuming
a position

removing

involving the
body

concealment learn perception

desire putting

existence measure
predictive

comp l eme nt s
body internal

mo t ion

ingesting avoid

sounds made
by animals

engender

learn

appearance
disappearance

emission image creation

poke

motion

change of state

exerting
force push/pull

calve searching

destroy

judgment

assessmentkilling

separating and
disassembling

psychological
state

Aspectual

creation and
transformation

Figure 3-6 CEVO ontology (Shekarpour et al., 2019)

22 3 Research Problem

owl: Thing

explicate

preach

Transfer of a message

relay

Event

writerdf:type

Sub Class

Communication

ask

explain

narrate

show

teach readpose

quote

tell only

tell

cite

dictate demonstrate

recite

set of
verbs

Figure 3-7 Verbs associated with message events in CEVO (Shekarpour et al., 2019)

Figure 3-8 Medi4CEP diagram for representing complex events (Boubeta-Puig et al., 2015)

Pre-conceptual schemas (PCS) are models used for modeling any domain (PCS are part of

UNC-Method). PCS include notation for representing none/statement trigger events e.g.,

file arises, user arises, image arises ; conditional, e.g., description right = admin AND

description right = files ; and basic mathematical operations (see Figure 3-9) in a multiple

view, which allows a complete representation of the domain (Zapata, 2012). EIG is based on

the PCS notation (Noreña, 2014).

3.2 State of the Art 23

Eventual Relationship

Arrive-Come-Emerge-Tinkle-Fly-Go by

Sit-Arise-Sleep-Sneeze-Die-Boil-Melt

USER CALCULATES VALUE

VALUE

=

VALUE

AMOUNT PRICE

*

+

Figure 3-9 Pre-conceptual schema, mathematical operations, and eventual relationships

(Zapata, 2012; Chaverra, 2011)

We synthesize the software modeling approaches (11) in Table 3-2 for partially answering

the research questions (see Table 3-1) of the literature review.

The answer to RQ1 is the following: commonly, events are graphically and linguistically

represented in the behavioral view of a system from software modeling (9 out of 11). All

of the reviewed approaches use graphical and linguistic structures. BPMN process model,

24 3 Research Problem

EPC, Medit4CEP, and PCS present mathematical structures (4 out of 11); however, BPMN

process model and EPC lack a structural view. Medit4CEP and PCS are used for representing

a multiple view of the system. Medit4CEP is only used in applications for complex event

processing in event patterns and data generation (see Figure 3-8) while PCS is used in

applications of any domain (see Figure 3-9).

Table 3-2 Software modeling approaches. The Authors

>=

Authors Approaches

Pr
im

a
ry

St
ud

ie
s

Software modeling Usability Events Mathematical
notation

Ti
m

e
 fr

o
m

e

ve
nt

s

Ty
p

e

St
ru

c
tu

ra
l

vi
e

w

Be
ha

vi
o

ra
l

vi
e

w

D
o

m
a

in

kn
o

w
le

d
g

e

So
ftw

a
re

d

e
ve

lo
p

m
e

nt

Si
m

ul
a

tio
n

G
ra

p
hi

c
a

l
st

ru
c

tu
re

s

Li
ng

ui
st

ic
st

ru
c

tu
re

s

M
a

th
e

m
a

tic
a

l
st

ru
c

tu
re

s

Fu
nc

tio
na

lit
y

Lo
g

ic
a

l

Re
la

tio
na

l

Ba
si

c

C
o

m
p

le
x

Haisjackl et al., 2018
BPMN X M X X X X X X X X X

OMG, 2014a

OMG, 2015
UML (Activity diagram X D X X X X X X X XOMG, 2011

Chonoles, 2017 State Machine
diagram X D X X X X X X X XOMG, 2015

OMG, 2015 Sequence diagram) X D X X X X X
Amjad et al., 2017

Event-driven Process
Chain (EPC) X D X X X X X X XXia et al., 2014

Xue et al., 2013

Zapata et al., 2014
Event Interaction
Graph X G X X X X X X

Shekarpour et al., 2019
Comprehensive event
ontology (CEVO) x M X X X X X X

Etzion et al., 2016 The Event Model
(TEM) M X X X X X X

Bauoya et al., 2015 SysML State Machine D X X X X X
Boubeta-Puig et al.,
2015; 2019 Medit4CEP T/M X X X X X X X X X X X

Noreña, 2014 Pre-conceptual
Schemas (PCS) X M X X X X X X X X X X

Zapata, 2012

The answer to RQ3 and RQ4 is the following: some approaches include logical operators

(6 out of 11) in the mathematical notation, but they lack other mathematical notation:

relational (4 out of 11), basic (2 out of 11), and complex (2 out of 11) operations. Medit4CEP

include logical, relational, and basic operators for relating conditions in complex events (see

Figure 3-8) while PCS include such operators in mathematical equations (see Figure 3-9).

The answer to RQ5 and RQ7 is the following: most approaches lack representation of

the time from events (5 out of 11), and event functionality (2 out of 11). UML state

machine diagram includes the event funcionality by using the structure trigger event [guard

condition] action and TEM includes the event functionality by using tables related to data

events (see Figure 3-5).

The answer to RQ6 is the following: most approaches are used for representing the domain

knowledge (10 out of 11) and the system in software development (11 out of 11), but they

lack scientific components to be used in the development and simulation of scientific domains

(1 out of 11).

3.2 State of the Art 25

Scientific Modeling Approaches

Some event-driven modeling approaches from science are used for analyzing

phenomena/events by using the behavioral view of the system. Commonly, systems

are discretely modeled for calculating output values in a discrete set of instants. A block

diagram is used for representing an event-triggered controller system (see Figure 3-10),

which allow for representing the system, processes, and events by using concepts and

mathematical notation, whose events are input and output data from sensors (Zhong & He,

2016).

Figure 3-10 Block diagram in event-triggered controller (Zhong & He, 2016)

A Petri net is used for partially controlling discrete event systems (see Figure 3-11; Petri

net is used for representing the state changes in the system and the block diagram is used

for representing the state-feedback control system for Petri nets). An example of a maze as

the discrete event system with sensors and actuators is carried out (Luo & Zhou, 2016). In

this example, a cat and a mouse are in the maze, and the system objective is preventing

the cat from eating the mouse by controlling the gates for being opened or closed when the

cat and mouse change room (events). A Petri net is used for simulating processes formed

by conditionals (AND parallel, OR), which allow for discovering relationships contained in

event logs (Sarno et al., 2015).

A finite automaton (a model based on mathematical foundations for analyzing state

transitions) is used for controlling networks by obtaining deterministic outputs from initial

states/inputs (Zhang & Zhang, 2016). A finite state machine (FSM, a model for representing

state transitions) is used for modeling pattern matching queries for scalable complex event

processing (Balkesen et al., 2013). A Markov model (a discretized mathematical model for

event occurrence probability) is used for estimating the event-triggered sensor data, which is

26 3 Research Problem

applied to a monitoring system in the manufacturing industry for detecting failures (events)

in a soft-drink filling machine during routine operation (Chen et al., 2017).

Figure 3-11 Petri net and block diagram (Luo & Zhou, 2016)

Markov model in Figure 3-12 (a) is used for modeling the randomness of actuator failures

in control systems (Wang et al., 2017). Event-triggered control in Figure 3-12 (b) is used

for controlling the states of a system by using sensor-controller communication constraints

(Xue & El-Farra, 2016). Pollution event model in Figure 3-12 (c) is used for monitoring the

dangerous and harmful chemical emissions in the enterprises and city infrastructure (Koltsov

et al., 2018). Event timer model in Figure 3-12 (d) is used for representing signals in the

digital domain, based on timing (Sudars et al., 2015). Event timer model in Figure 3-12 (e)

is used in experimental studies for increasing the performance of an analog signal digitizing

hardware (Event Timer A033-ET; Mezerins, 2014).

Figure 3-12 Mathematical models for representing events, (a) Markov model to reliable

event-triggered (Wang et al., 2017), (b) ETC (Xue & El-Farra, 2016), (c)

Pollution event model (Koltsov et al., 2018), (d) and (e) Event timer (Sudars

et al., 2015; Mezerins, 2014)

3.2 State of the Art 27

A Timing-idea graph is used for analyzing time event patterns (Wang et al., 2016). A

causal network is a graphical model used for designing complex representations of mental

states by using sensors (Treur, 2016). Bayesian networks (graphical models, which contain

mathematical models and algorithms in a separate way) are used for predicting complex

events by using two dimensions: event type and time when new data arrives (Wang et al.,

2018). Neural networks are used for predicting clinical events (medical conditions or

diagnosis of a patient) in electronic health records (Choi et al., 2016). Event-based hybrid

state estimation is an mathematical model for estimating states in the stochastic hybrid

system, e.g., sensors only transmit their measurements to an estimator when predefined

events happen (Lee & Hwang, 2015).

Some event-driven modeling approaches from science are used for analyzing events by using

the structural view of the system. Ontology-based vaccine and drug adverse event (acute

and chronic thyroiditis, influenza vaccine, etc.) representation is an approach for relating

entities and concepts in a specific biomedical domain. It also has conditions in the reactions

i.e., fever >= 10 %, redness >= 20 %, etc. (He, 2016). An ontology pattern for emergency

event modeling is used for reusing existing emergency terminology. Two applied examples

are: an event ontology of air pollution (see Figure 3-13), which causes other events as

death of residents, nausea, cough, etc; and an event ontology of water pollution (see Figure

3-14) caused by vehicle chemical leakage, producing diarrhea, nausea, etc. (Liu et al., 2016).

Process-oriented event model (PoEM) ontology is used for relating real-world entities and

their properties and detecting events by interpreting of their instantaneous status, e.g., pump

and well failure events in oil and gas industry (Patri et al., 2014).

Figure 3-13 Event Ontology of Air Pollution (Zhang et al., 2015)

28 3 Research Problem

Figure 3-14 Event ontology of water pollution (Zhang et al., 2015)

An event ontology based on the simple knowledge organization system (SKOS, a data model

for sharing and linking knowledge organization systems via the Web) is shown in Figure

3-15. Such an ontology is used for capturing the event-based knowledge by using static

(place, language, objects) and dynamic aspects of an application domain (action and status)

elements (Zhang et al., 2015).

Figure 3-15 Event ontology based on SKOS (Zhang et al., 2015)

3.2 State of the Art 29

Quadruple (contexts, events, relationships, rules) anonymity trajectory (QAT) ontology

is used for representing contexts with location information about trajectory, geographical

environment, etc. Such an ontology is shown in Figure 3-16, including static (environment,

i.e., physical, meteorology) and dynamic aspects (status, i.e., move and stop, action) for

query events, and the semantic role agent for the actor (Zhu, 2018).

Figure 3-16 QAT ontology (Zhu, 2018)

We summarize the scientific modeling approaches (19) in Table 3-3 for partially answering

the research questions (see Table 3-1) of the literature review.

The answer to RQ1 is the following: commonly, events are mathematically represented in

the behavioral view of a system in scientific modeling (16 out of 19). Several mathematical

structures are used (13 out of 18), but the graphical (8 out of 18) and linguistic structures

are also used (5 out of 19). A block diagram is a graphical approach widely used where

mathematical structures are represented in the same diagram (see Figures 3-10). However,

such a diagram also lacks components of a structural view of software modeling. Event

ontology based on SKOS (Zhang et al., 2015) and QAT ontology (Zhu, 2018) are structural

approaches, which include dynamic elements as status and action (see Figure 3-16).

However, they lack components as processes and event functionality from a behavioral view.

The answer to RQ3 and RQ4 is the following: most approaches include complex

mathematical notation (14 out of 19) and scientific concepts.

The answer to RQ5 is the following: several approaches include the time from events (11

out of 19).

30 3 Research Problem

Table 3-3 Scientific modeling approaches. The Authors

>=

Authors Approaches

Pr
im

a
ry

St
ud

ie
s

Scientific modeling Usability Events Mathematical
notation

Ti
m

e
 fr

o
m

e

ve
nt

s

Ty
p

e

St
ru

c
tu

ra
l

vi
e

w

Be
ha

vi
o

ra
l

vi
e

w

D
o

m
a

in

kn
o

w
le

d
g

e

So
ftw

a
re

d

e
ve

lo
p

m
e

nt

si
m

ul
a

tio
n

G
ra

p
hi

c
a

l
st

ru
c

tu
re

s

Li
ng

ui
st

ic
st

ru
c

tu
re

s

M
a

th
e

m
a

tic
a

l
st

ru
c

tu
re

s

Fu
nc

tio
na

lit
y

Lo
g

ic
a

l

Re
la

tio
na

l

Ba
si

c

C
o

m
p

le
x

Zhong & He, 2016 Block diagram D X X X X X X X X X X X

Luo & Zhou, 2016 Petri Net X M X X X X X X X X X XSarno et al., 2015

Zhang & Zhang, 2016 Finite Automaton M X X X X X X X X X

Balkesen, et al., 2013 Finite State
Machine M X X X X X X X X

Chen et al., 2017
Markov model M X X X X X XWang et al., 2017

Xue & El-Farra, 2016 Event-triggered
control (ETC) M X X X X X X X

Kolsov et al., 2018 Pollution event model M X X X X X X X
Sudars et al., 2015 Event Timing X M X X X X X X X X XMezerins, 2014
Wang et al., 2016 Timing-Idea Graph G X X X X X X X X
Treur, 2016 Causal network M X X X X X X X X
Wang et al., 2018 Bayesian network M X X X X X X X X X
Choi et al., 2016 Neuronal network M X X X X X X X

Lee & Hwang, 2015
Event-based hybrid
state estimation M X X X X X X

He, 2016

Event Ontology M X X X X X X X

Liu et al., 2016

Patri et al., 2014 X
Zhang et al., 2015 X
Zhu, 2018

The answer to RQ6 is the following: all of the reviewed approaches are used for simulating

systems, representing the system in software development (15 out of 19), and domain

knowledge (14 out 19), since commonly, algorithms and simulations are present in scientific

modeling for analyzing a phenomenon.

The answer to ARQ7 is the following: most approaches include the event funcionality in a

mathematical model (14 out of 19, see Figure 3-12).

Software and Scientific Modeling Approaches

A UML state machine diagram and a finite state machine (FSM) are used for representing

the occurrence of an event in programs of logic controllers (Bazydlo et al., 2014); such an

approach is shown in Figure 3-17. A BPMN process model and Petri nets are used for

translating from process models to event structures, a formalism of behavioral relationships

by expressing dependencies among events (Armas-Cervantes et al., 2016). Such models are

also used for formalizing event processing networks in simulators (Reinartz et al., 2015).

BPMN process models and a common information model (CIM) ontology are used for

representing events (timer, message transactions) and chronology of tasks in the power

system, a case study of energy scheduling business process in the indian power grid context

(Ravikumar et al., 2016). BPMN process models and decision requirement diagram (DRD)

are used for representing diagnosis and treatment of patients affected by chronic obstructive

pulmonary disease (see Figure 3-18).

3.2 State of the Art 31

Such a disease is caused by smoking tobacco and exposing to polluted environments;

the system is focused on monitoring and reducing the patient symptoms, whose severity

determines which is the stage of the illness (Bazhenova et al., 2019). UML class, sequence,

and activity diagrams, annotations of the modeling and analysis real-time, and embedded

systems (MARTE) are used in the UML/MARTE timeliness modeling method for describing

time properties and constraints of the system, i.e., a radar in the air traffic control center

for detecting meteorological conditions (Xia et al., 2019). A UML class diagram and finite

automata are used for identifying event streams by using complex event patterns (Dávid

et al., 2018).

Figure 3-17 Translation of UML state machine diagram to FSM (Bazydlo et al., 2014)

32 3 Research Problem

Figure 3-18 BPMN process model and DRD for diagnosing patients with chronic

obstructive pulmonary disease (Bazhenova et al., 2019)

An ontology and a syntax tree (a diagram with nodes and edges) in the event service

model are used for generating event patterns and describing event service requests (Gao

et al., 2014). A block diagram, a flow diagram, and a mathematical model are used in the

model based on event-triggered control (MBETC). Such a model is described in the context

of reduced event sampled communication by using event-trigger conditions, as we show

in Figure 3-19 (Sahoo et al., 2015). Domain-specific requirements modeling for scientists

(DRUMS) is a framework for describing requirements in the scientific domain and tool

support (Li, 2015; Li et al., 2015), as we show in Figure 3-20.

3.2 State of the Art 33

Figure 3-19 MBETC (Sahoo et al., 2015)

Figure 3-20 DRUMS (Li, 2015; Li et al., 2015)

34 3 Research Problem

We synthesize the software and scientific modeling approaches used for representing events

(10) in Table 3-4 according to the research questions (see Table 3-1) of the literature review.

Table 3-4 Sofware and scientific modeling approaches. The Authors

>=

Authors Approaches

Pr
im

a
ry

St
ud

ie
s

Software and
Scientific Modeling Usability Events Mathematical

notation

Ti
m

e
 fr

o
m

e

ve
nt

s

Ty
p

e

St
ru

c
tu

ra
l

vi
e

w

Be
ha

vi
o

ra
l

vi
e

w

D
o

m
a

in

kn
o

w
le

d
g

e

So
ftw

a
re

d

e
ve

lo
p

m
e

nt

Ss
im

ul
a

tio
n

G
ra

p
hi

c
a

l
st

ru
c

tu
re

s

Li
ng

ui
st

ic
st

ru
c

tu
re

s

M
a

th
e

m
a

tic
a

l s
tru

c
tu

re
s

Fu
nc

tio
na

lit
y

Lo
g

ic
a

l

Re
la

tio
na

l

Ba
si

c

C
o

m
p

le
x

Bazydlo, et al.,2014
UML state machine
diagram/ Finite State
Machine

D X X X X

Armas-Cervantes
et al., 2016

BPMN/Petri Nets

M X X X X X X X X

Reinartz, et al., 2015 M X X X X X X X

Ravikumar et al., 2016 BPMN/Ontology X M X X X X X X X X X X

Bazhenova et al., 2019 BPMN/Decision
requirement diagram M X X X X X X X

Xia et al., 2019 UML/MARTE method Me X X X X X X X

Dávid et al., 2018
UML class diagram/ Finite
Automata D X X X X X X X X X X

Gao et al., 2014 Ontology/ Syntax tree D X X X X X X X X X X X X X

Sahoo et al., 2015

MBETC (Model based on
ETC)
Flow diagram/block
diagram/ mathematical
model

D/M X X X X X X X X X X X X X

Li, 2015 DRUMS (Domain-specific
Requirements Modeling)
for scientists

F X X X
X

(concep
tually)Li et al., 2015

The answer to RQ1 is the following: commonly, events are represented by using graphical (9

out of 10), linguistic (9 out of 10), and mathematical (7 out of 10) structures in behavioral

(9 out of 10) and structural (5 out of 10) views of a system in software in scientific modeling.

BPMN/ontology (Ravikumar et al., 2016), UML/MARTE method (Xia et al., 2019),

UML class diagram/finite automata (Dávid et al., 2018), ontology/syntax tree (Gao et al.,

2014), and DRUMS (Li, 2015) present behavioral and structural views, but such views are

separated into two and more models.

The answer to RQ3 is the following: most approaches include mathematical notation (8 out

of 10) and scientific concepts.

The answer to RQ4 is the following: some approaches include logical (7 out of 10), relational

(3 out of 10), basic (2 out of 10), and complex (4 out of 10) operators.

The answer to RQ5 is the following: some approaches include time from events (4 out of

10).

The answer to RQ6 is the following: most approaches are used for representing the domain

knowledge (10 out of 10) and the system in software development (5 out of 10) and

3.2 State of the Art 35

simulation (6 out of 10).

The answer to RQ7 is the following: some approaches include the event functionality in a

mathematical model (3 out of 10).

Such approaches are intended to address the gap between event-driven software modeling

and event-driven scientific modeling in science and engineering projects; however, they lack

a model for integrating scientific concepts/terminology consistently (without abbreviations,

with complete names of concepts and variables) in order to understanding components of

a domain in software engineering. The closest approach is DRUMS (Li, 2015), which is

directly focused on requirements modeling for scientists from an architecture level (see Figure

3-20); however, DRUMS lacks event representation and functionality (internal logic). The

flow diagram in the MBETC model (Sahoo et al., 2015) integrates into the same diagram

a mathematical notation in events and processes in a behavioral view (see Figure 3-19);

however, such a model lacks concepts and relationships in a structural view of the system

for analyzing the domain.

PCS Approaches

Pre-conceptual schemas are used for solving communication problems between analysts

and stakeholders in software engineering (Zapata, 2007). Some generations of software

engineers, which recognize schemas include structures for representing knowledge related to

any domain (Zapata-Tamayo & Zapata-Jaramillo, 2018). Undergraduate, M.Sc., and Ph.D.

students have proposed approaches by using PCS. However, we only focus on approaches

including event representation and mathematical notation. Basic mathematical equations

are proposed for specifying dynamic relationships (see Figure 3-9) in order to automatically

generate functional prototypes by using PCS (Chaverra, 2011).

UNC-Method is a problem-based software development method, which is focused on

describing a domain knowledge for a future software system, which is generated as a solution

to the domain problem (Zapata, 2012). The event representation in PCS is incorporated

in UNC-Method for giving consistency to other work products like the process diagram.

Such a representation contains graphical and linguistic structures (eventual relationships,

see Figure 3-9).

A consistency mechanism is defined for representing events in the UNC-Method work

products, which is based on event structures proposed in UNC-Method (Noreña, 2014).

Event interaction graph (EIG) is used for representing event sequence by using PCS notation

(Zapata et al., 2013, 2014). Programming design patterns are defined in PCS to scientific

software (Calle, 2016), which include mathematical functions defined by analysts (see Figure

36 3 Research Problem

3-21).

Function

Return

=

ReturnValue

Figure 3-21 Mathematical functions in PCS defined by analysts (Calle, 2016)

We synthesize the PCS approaches for event represention and mathematical notation (5) in

Table 3-4 according to the research questions (see Table 3-1) of the literature review.

Table 3-5 PCS approaches for event represention and mathematical notation. The Authors

>=Authors Approaches in PCS

Pr
im

a
ry

St
ud

ie
s

Modeling Usability Events Mathematical notation

Ti
m

e
 fr

o
m

e

ve
nt

s

Ty
p

e

St
ru

c
tu

ra
l

vi
e

w

Be
ha

vi
o

ra
l

vi
e

w

D
o

m
a

in

kn
o

w
le

d
g

e

So
ftw

a
re

d

e
ve

lo
p

m
e

nt

si
m

ul
a

tio
n

G
ra

p
hi

c
a

l
st

ru
c

tu
re

s

Li
ng

ui
st

ic
st

ru
c

tu
re

s

M
a

th
e

m
a

tic
a

l
st

ru
c

tu
re

s

Fu
nc

rti
o

na
lit

y

Lo
g

ic
a

l

Re
la

tio
na

l

Ba
si

c

C
o

m
p

le
x

Chaverra, 2011

Generación
automática de
prototipos funcionales
a partir de PCS

X M X X X X X X X

Zapata, 2012
UNC-Method X Me X X X X X X X X X X

Noreña, 2014

Un mecanismo de
consistencia para
representar eventos
disparadores y de
resultado en UNC-
Method

X Me X X X X X X X X X

Zapata et al., 2013 Event Interaction
Graph X D X X X X X X X

Zapata et al., 2014

Calle, 2016 Programming design
pattern in PCS for SSD X M X X X X X X X

The answer to RQ1 is the following: commonly, events are represented in PCS approaches

(3 out of 5) by using graphical, linguistic and mathematical structures in a multiple view of

the system.

The answer to RQ3 and RQ4 is the following: All reviewed PCS approaches include

logical, relational, and basic operators, and an approach includes complex operators for

patterns; however, it lacks complex mathematical notation for representing events. Basic

mathematical operations are involved by automated generation of prototypes (Chaverra,

2011) and UNC-Method (Zapata, 2012; 2 out of 5); however, such operations are only used

in dynamic relationships.

3.2 State of the Art 37

The answer to RQ5 and RQ7 is the following: PCS lack time events and event functionality.

The answer to RQ6 is the following: some approaches (4 out of 5) use the software

components of the PCS for representing the domain knowledge and the logic system in

software development; however, such schemas lack scientific components to be used in a

simulation.

We summarize approaches from the reviewed four categories, whose notation includes

linguistic structures for representing events in Table 3-6 for answering the RQ2 (see Table

3-1) of the literature review.

Table 3-6 Synthesis to linguistic structures. The Authors

Authors Approaches

Linguistic structures
Consistency in

verbs for events

Consistency in
linguistic

representation

List of verbs for
events/

linguistic rules
Logical

Eventual
verb

Semantic
role

Noun

Haisjackl et al., 2018 BPMN X XOMG, 2014a
OMG, 2015 UML Activity diagram X XOMG, 2011
Chonoles, 2017

UML State Machine diagram X X XOMG, 2015
OMG, 2015 UML Sequence diagram X X
Amjad et al., 2017

EPC X X XXia et al., 2014
Xue et al., 2013
Zapata et al., 2014 EIG X X X X X
Shekarpour et al., 2019 CEVO X X X N/A X X
Etzion et al., 2016 TEM X N/A X
Bauoya et al., 2015 SysML State Machine X N/A X
Boubeta-Puig et al., 2015; 2019 Medit4CEP X N/A X
Noreña, 2014 PCS X X X X XZapata, 2012
He, 2016 Ontology-based vaccine and drug adverse event X N/A X
Liu et al., 2016 Ontology pattern for emergency event modeling X N/A X
Patri et al., 2014 The process oriented event model (PoeM) ontology X N/A X

Zhang et al., 2015 Event ontology based on simple knowledge organization
system (SKOS) X X N/A X

Zhu, 2018 Quadruple anonymity trajectory (QAT) ontology X N/A X
Bazydlo et al., 2014 UML state machine/finite state machine X A letter X X
Armas-Cervantes et al., 2016;
Reinartz et al., 2015 BPMN/Petri nets A letter N/A

Ravikumar et al., 2016 BPMN/ontology X X
Bazhenova et al., 2019 BPMN/decisión requirement diagram (DRD) X N/A X

Xia et al., 2019 BPMN/modeling and analysis real-time, and embedded
systems (MARTE) X X X

Dávid et al., 2018 UML class diagram/finite automata X N/A
Gao et al., 2014 Ontology/syntax tree X X X

The answer to RQ2 is the following: some approaches contains eventual verbs and semantic

roles for linguistically representing events, e.g., hold book in BPMN (Haisjackl et al.,

2018), new repair task arrived in EPC (Xue et al., 2013), send entitlements, publish

in website, prepare schedule, revise schedule, duration for revise, send revisions, etc. in

BPMN/ontology (Ravikumar et al., 2016). However, the verbs and representation are

inconsistent, since sometimes the events are represented as objects (e.g., EPC, UML,

BPMN) while other events include verbs in the representation. Also, the events can be

confused with processes/activities because they are represented with action verbs.

Also, some approaches include nouns for representing an event: “long call at night” (with

a time preposition) in TEM (Etzion et al., 2016); “body internal motion,” “measure,”

38 3 Research Problem

“weather,” etc. in CEVO (Shekarpour et al., 2019); diseases as “thyroiditis,” “influenza

vaccine,” etc. in the ontology-based vaccine and drug adverse event (He, 2016); “death of

residents,” “nausea,” “cough,” etc. in the ontology pattern for emergency event modeling

(Liu et al., 2016); and “pump” and “well failure” in PoEM ontology (Patri et al., 2014).

However, such nouns lack a verb/semantic role for completing what happen with such an

event and who/what is affected by the event.

In addition, a list of verbs is proposed in CEVO for representing events message (ask, explain,

teach, write, etc; see Figure 3-6), but such verbs are action verbs, which are should have a

semantic role agent, e.g., the boss writes a message. List of events of PCS (arrive, emerge,

arise, etc; see Figure 3-9) is used with a semantic role experiencer (linguistic rule), e.g.,

message emerges, such an event allows for knowing what happen by using a phrase, which

contains both a noun and a verb. EIG is based on PCS notation (Zapata et al., 2014). UML

state machine diagram includes a linguistic rule with three elements trigger event [guard

condition] action for representing an event, but it is inconsistently used, since only one/two

elements are used, e.g., [no reserve], [reserveOpen], returned (action), ReservePickup (trigger

event), BorrowRequest[isCircBook] (see Figure 3-3). Also, the linguistic form for naming an

event is by using the same action verb of a state e.g., BorrowRequest (trigger event) and

Borrowed book (state, see Figure 3-3).

3.3. Problem Statement

3.3.1. General Problem

Computer scientists have challenges for abstracting the problem as much as possible when

their solutions should be used in several domains (Howison et al., 2015). A gap between

science and software engineering is cross-cutting to the scientific software development

process in scientific software domains (Johanson & Hasselbring, 2018; Kanewala & Bieman,

2014; Wiese et al., 2019; Wilson et al., 2014).

According to the literature review, such a gap persists between event-driven software

modeling and event-driven scientific modeling, due to the complexity of scientific software

and the required specialized domain knowledge. Scientists often continue developing

their scientific software (Kanewala & Bieman, 2014; Wilson et al., 2014; Wiese et al.,

2019) for analyzing and simulating phenomena/events in a system. Such events are

modeled by using scientific modeling approaches, which are based on mathematical

models (commonly, such models are discretized) and terminology, but they lack software

components—concepts, processes, events, and structures—of the domain knowledge in

the same model, since scientists apply informal and non-standard software engineering

practices in the implementation phase. Their science and engineering projects lack software

3.3 Problem Statement 39

documentation and requirements analysis processes and they reuse few models and code

pieces (Johanson & Hasselbring, 2018; Wiese et al., 2019). Scientific concepts (terminology)

are inconsistent in the domain, since several names of variables, abbreviations, and quantities

without units increase the difficulty for understanding the domain.

Business analysts use software modeling approaches in the analysis phase by applying

standard software engineering practices. Such approaches include software components,

which allow for representing events and other components of a domain. However, they

lack scientific components—graphical, linguistic, and graphical complex structures—for

representing mathematical equations, events, and event functionality (internal logic).

Analysts also lack specialized domain knowledge. Such needs are unattended from the

software engineering perspective (Johanson & Hasselbring, 2018).

Analysts have attempted to integrate both components in several scientific and software

modeling approaches for analyzing phenomena/events in SSD. However, such integration is

performed by using two and more models, which present inconsistency in domain components

as concepts, quantities, and variables. Therefore, both scientists and business analysts lack a

computing model with integrated scientific and software components for representing events

in SSD from the analysis phase. We define the causes (C) of the general problem in a fishbone

diagram (see Figure 3-22).

Scientists and business analysts lack
a computing model for SSD

C7. Concepts are inconsistent: several names of
variables, abbreviations, and quantities without units

C8. Scientists use two or more models
(scientific and software modeling) for representing domain
elements and mathematical models in a scientific software

C3. Models lack complex structures for representing
events and mathematical equationsC5. Business analysts lack

specialized domain knowledge

C9. Scientists apply informal and non-standard
software engineering practices

C4. Functionality of events is unattended

(Johanson & Hasselbring, 2018; Wiese, et al. 2019)

C11. Scientists reuse few models and code pieces
(Johanson & Hasselbring, 2018)

(Johanson & Hasselbring, 2018; Kanewala & Bieman, 2014)

C6. Needs for computational science are unattended
from the software engineering perspective

(Johanson & Hasselbring, 2018)

(Derivated from the state of the art)

(Derivated from the state of the art)

(Derivated from the state of the art)

(Derivated from the state of the art)

(Johanson & Hasselbring, 2018)

Figure 3-22 General problem. The Authors

40 3 Research Problem

3.3.2. Specific Problems

Pre-conceptual schemas lack scientific components for representing events in scientific

software domains. Such a problem and its causes—event functionality, graphical, linguistic,

and mathematical structures are incomplete—are common among the software modeling

approaches. Nonetheless, PCS notation has advances in the event representation and the

mathematical notation in the same model on opposite to other approaches in software

modeling. A multiple (structural and behavioral) view of the system, notation for basic

mathematical equations, mathematical (logic and relational), graphical, and linguistic

structures (list of verb and semantic roles for events with linguistic rules and consistency

in representation). However, PCS lack graphical, linguistic, and mathematical structures for

representing events and their functionality in SSD. Such a representation is required for the

analysis, development, and simulation process of scientific software. We define a set of causes

of the specific problem according to PCS notation and the PCS approaches in a fishbone

diagram (see Figure 3-23).

PCS lack scientific components
for representing events in SSD

C10. Time events are
absent

C11. PCS lack
tracking process time

C17. Graphical structures are restricted to
trigger (none and conditional) and

result events in organizational domains C12. Eventual relationships are Insufficient
for event types emerging in SSD

C13. PCS lack linguistic structures
for objects and actors related to events

C7. PCS only have leaf concept
as a data structure type C6. Complex structures for

mathematical equations are missing

C.8. Internal logic of events is
unattended

C9. Automated processes
are unattended

C14. Graphical structures for
mathematical notation are missing

C15. Graphical structures
for linguistic structures are missing

C16. Graphical structures for internal
logic of events are unattended

Figure 3-23 Specific problems. The Authors

3.4. Research Question

How can we refine event representation and mathematical notation in scientific software

domains by using pre-conceptual schemas?

RQ1. What structures are used for representing events in scientific and software

modeling (view)?

RQ2. What linguistic errors are detected in events from models?

3.5 Hypothesis 41

RQ3. What models include mathematical notation for representing events in scientific

software domains?

RQ4. What mathematical structures are used?

RQ5. What models include the time by using events?

RQ6. What is used the model for?

RQ7. What models include event functionality?

3.5. Hypothesis

An extension to pre-conceptual schemas by using graphical, linguistic, and mathematical

structures can be used for refining event representation and mathematical notation in SSD.

3.6. Objectives

3.6.1. General Objective

Refining event representation and mathematical notation by using an extension to

pre-conceptual schemas.

3.6.2. Specific Objectives

Characterizing events emerging from scientific software domains.

Defining graphical, linguistic, and mathematical structures for event representation in

PCS.

Proposing an extension to PCS for the sake of event representation and mathematical

notation refinement by using graphical, linguistic, and mathematical structures for

representing events in scientific software domains.

Validating the extension to PCS in an experiment in order to analyze the proposed

structures understanding level.

We graphically summarize the objectives of this Ph.D. Thesis in Figure 3-24.

42 3 Research Problem

MODEL

EXTENSION TO PCS

CHARACTERIZING DEFINING PROPOSING VALIDATING

REFINING
PRE-CONCEPTUAL

SCHEMA

DOMAIN
SCIENTIFIC

SOFTWARE DOMAIN

EVENT

HAS

STRUCTURE - GRAPHICAL
- NEW GRAPHICAL
- LINGUISTIC
- NEW LINGUISTIC

- MATHEMATICAL
-NEW MATHEMATICAL

- LOGICAL
-RELATIONAL
-BASIC
-COMPLEX

- VERB
- SEMANTIC ROLE

HAS

UNDERSTANDABLE

Figure 3-24 Objectives. The Authors

3.7. Justification

According to the design science methodology for information systems and software

engineering, a work product is produced by designing an improvement to a problem;

the social context contains the possible users of the work product; the knowledge context

consists of existing theories from science and engineering, specifications of currently known

designs, useful facts about currently available products, and lessons learned from the

experience of researchers (Wieringa, 2014). In this Ph.D. Thesis, the work product performed

is an extension to PCS ; businesss analysts, scientists, and students integrate the social

context, who can use the extended PCS as computing models in scientific software domains

(knowledge context). Some key reasons for justifying the importance of this Ph.D. Thesis

are:

Both software engineering and science fields are integrated in this Ph.D. Thesis.

Extended PCS allow for integrating scientific and software components and reducing

the gap between both fields.

PCS extension allows for refining event representation and mathematical notation in

SSD.

PCS extension allows for representing time, event functionality, and structural and

dynamic view of the elements of any SSD; understanding and recognizing of the

processes, events, and mathematical models in a SSD.

3.7 Justification 43

Business analysts, scientists, and students can use the extended PCS as computing

models for representing SSD and its elements in development and simulation processes.

We graphically summarize the justification in Figure 3-25.

ANALYZES

SOCIAL CONTEXT

WORK PRODUCT:
EXTENSION TO PCS

MODEL
PRE-CONCEPTUAL

SCHEMA

KNOWLEDGE CONTEXT: DOMAIN

SCIENTIFIC
SOFTWARE DOMAIN

EVENT

HAS

STRUCTURE - GRAPHICAL
- NEW GRAPHICAL
- LINGUISTIC
- NEW LINGUISTIC

- MATHEMATICAL
-NEW MATHEMATICAL

- LOGICAL
-RELATIONAL
-BASIC
-COMPLEX

- VERB
- SEMANTIC ROLE

HAS

SOFTWARE
PROJECT

ARISES

RECOGNIZES

USES

TYPE

-TRIGGER

- NONE OR STATEMENT
- CONDITIONAL
-TIMER

HAS

ANALYST

TYPE

HAS

-SCIENTIFIC

-BUSINESS

-STUDENT

-ENGINEERING
-SCIENCES

-SOFTWARE
-ADMINISTRATION

FUNCTIONALITY

Figure 3-25 Justification. The Authors

44

4 Extension to PCS

Passion is an event that happens when both discipline and love are mixed for achieving better results.
—Paola Noreña

Pre-conceptual schemas include software components for representing a domain: processes,

concepts, events, and structures—graphical, linguistic, and mathematical—which are

domain knowledge elements used for understanding the system logic, analyzing requirements

analysis, documentating the system, and code it. Computational linguistics rules are included

in the PCS notation, which are focused on a relationship representation form, e.g., a concept,

and an eventual relationship for events. Analysts and stakeholders can easily understand

the main components of the domain knowledge and developers can consistently code the

software system (Zapata, 2012; Noreña & Zapata, 2018b).

Such components also allow for representing notation from scientific modeling: graphical,

linguistic (eventual verbs and semantic roles for events with linguistic rules and consistency

in the representation), and mathematical structures are used for representing events (Noreña,

2014); a multiple (structural and behavioral) view of the system; and a notation for basic

mathematical equations as mathematical and graphical operators (logic, relational, and

basic) and concepts.

Figure 4-1 Proposal Solution. The Authors

4.1 Characterizing Events emerging from SSD 45

An extension to PCS is proposed in this Ph.D. Thesis (see Figure 4-1, see complete PCS

in Figure 3-9) for the sake of event representation and mathematical notation refinement

in scientific software domains. Such refinement is performed for integrating scientific

components: new linguistic structures from computational linguistics and scientific modeling,

new mathematical structures from scientific modeling, and graphical structures from the PCS

notation. Therefore, pre-conceptual schemas can be used as computing models with software

and scientific components integrated into the same model for representing events (timer

and other trigger events) and their functionality (internal logic) in SSD (see Figure 4-1).

We propose such an extension according to the research methodology in four steps: (i) we

characterize events emerging from SSD, (ii) we define linguistic and graphical structures, (iii)

we define mathematical and graphical structures for representing events in PCS, and (iv) we

represent events in a SSD as lab study. Finally, we relate events represented in several SSD

by using the extended PCS.

4.1. Characterizing Events emerging from SSD

We characterize events by using the following criteria: event in SSD and eventual verbs

selected by linguists or philologists/eventual verbs used in SSD with semantic role different

to an agent. Then, We identify expressions/phrases indicating an event in scientific and

linguistic papers/books. We classify the eventual verbs by using semantic roles related to

events—between zero to two actants, actants type experiencer (which experiment an event)

and patient (who suffers the event effect) according to Fillmore (1977) and Gruber (1965);

circumstant type strengh (whose origin is unknown and is produced by an event), and cause

(situation generated by an event) according to Tesnière (1965) and Gruber (1965); such rules

are defined from computational linguistics. Some examples for identifying and classifying

eventual verbs are presented in Figure 4-2. Event characterization is performed according

to such a classification.

Figure 4-2 Event characterization in SSD. The Authors

46 4 Extension to PCS

4.2. Defining Linguistic and Graphical Structures for

Event Representation in PCS

We define linguistic structures for extending event representation in a list of 38 eventual

relationships. Such a definition and characterization with their semantic roles, and an

example of events are presented into three categories: events with zero actants, events with

one actant, and events with two actants. We define graphical structures for representing

events by using the PCS notation and the found linguistic structures for each category.

4.2.1. Events with Zero Actants

Commonly, eventual verbs with zero actants are used for indicating natural events in scientific

software domains as meteorology and climatology. We propose eventual relationships for such

events in Table 4-1 (Noreña et al., 2018), which do not require actants because the same verb

has a complete meaning for expressing what happens e.g., “rains” is the eventual relationship.

Natural events are caused by weather changes or cycles and they can generate other events.

Circumstant type of such events is a cause.

Table 4-1 Linguistic structures for events with zero actants (Noreña et al., 2018)

Eventual
Relationship

Author
Example
of event

Scientific software
domain

Semantic Role
Actant CircumstantQuantity Type

1. Rain Tesnière, 1965 It rains

Meteorological,
Climatological

0
Not

required
Cause

2. Thunder Dayeh et al., 2015 It thunders

3. Hail Burcea et al., 2016 It hails

4. Snow Zapata, 2012 It snows

We define a graphical representation by using an eventual relationship (without a concept)

in a circle consistently with the linguistic structures for this event category. We show some

examples in Figure 4-3.

EVENTUAL
RELATIONSHIP

THUNDERS RAINS HAILS

Figure 4-3 Graphical structures for events with zero actants (Noreña et al., 2018)

4.2 Defining Linguistic and Graphical Structures for Event Representation in PCS 47

4.2.2. Events with One Actant

Most events are linguistically represented by using an eventual verb accompanied by an

actant for expressing their meaning in SSD. Circumstants of events with one actant are

strength and cause since they can be generated by other events; however, the origin is

unknown and also cause, other events (Gruber, 1965). We identify several events in this

category: discrete events (e.g., sensor alarm sounds, time passes), deterministic events (e.g.,

measure appears), and non-deterministic events (e.g., new data arrives, customer arrives).

Nouns are also used for representing natural events (e.g., earthquake, environmental noise)

and diseases (e.g., cancer), or symptoms (e.g., vomit, nausea, headache). When an event is

identified as a noun, e.g. pollution, such an event needs a verb for completing its meaning

i.e., pollution increases; the noun “pollution” is used as an actant with the eventual

relationship “increases” for indicating what happened.

We propose eventual relationships for events with one actant in Table 4-2, e.g., voltage rises,

“voltage” is an actant type experiencer and “rises” is the eventual relationship (Noreña

et al., 2018); such an event has circumstant types strength and cause because a strength

could generate and cause other events (e.g., electric current increases).

We define a graphical representation with three concept types for events with one actant

according to the actant types experiencer and patient : a concept (e.g., volcano erupts), a

class concept (e.g., sensor alarm sounds, “sensor” is a class and “alarm” is its leaf concept

(attribute) and a variable (e.g., time passes, “time” is an independent variable) for being

used with an eventual relationship as we show in Figure 4-4.

VOLCANO
ACTANT

EVENTUAL
RELATIONSHIP

ACTANT

EVENTUAL
RELATIONSHIP

VOLCANO

ERUPS

VOLCANO

ERUPS PASSES

TIMETIME
VOLCANO

SOUNDS

VOLCANO

SOUNDS

SENSOR
ALARM

Figure 4-4 Graphical structure for events with one actant (Noreña et al., 2018)

48 4 Extension to PCS

Table 4-2 Linguistic structures for events with one actant (Noreña et al., 2018)

Eventual
Relationship

Author
Example
of event

Scientific software
domian

Semantic Role
Actant

Circumstant
Quantity Type

5. Rise
Molaei &

Keyvanpour, 2015
Stock price rises;

Voltage rises
Industrial
Electronic

1

Experiencer

Strength,
cause

6. Increase
Wu et al., 2014;

Beltrán, 2015

Blood pressure
increases;

Dollar price
increases

Medical
Economic

7. Grow Merkens et al. 2016 Population grows Statistical

8. Decrease Beltrán, 2015
Dollar price
decreases

Economic

9. Drop
Garrudo, 1990; Molaei
& Keyvanpour, 2015 Sale drops Industrial

Cause

10. Sneeze Zapata, 2012 Patient sneezes Medical

Patient

11. Bleed
Paddock & Chapin,

2016
Patient bleeds Medical

12. Convulse Taiwe et al., 2016 Patient convulses Medical

13. Die
Fillmore, 1977;
Zapata, 2012

Animal dies Biological

14. Sleep
Gruber, 1965;
Zapata, 2012

Patient sleeps Medical

15. Tinkle Zapata, 2012 Cellphone tinkles Electronic

1 Experiencer Cause

16. Sound Dayeh et al., 2015 Thunder sounds Physical

17. Ring Tarun et al., 2017 Alarm rings Industrial

18. Fly
Garrudo, 1990;
Zapata, 2012

African bee flies Biological

19. Fall
Gruber, 1965;
Tesnière, 1965

Lightning falls Meteorological

20. Arrive
Dayeh et al., 2015

Zapata, 2012
Wave arrives;

Cholesterol arrives
Physical

Chemical

21. Emerge Zapata, 2012 Bacteria emerges Bacteriological

22. Come Zapata, 2012 Signal comes
Electronic

23. Appear
Kuznetsov & Merzlikin,

2019
Electric wave

appears
24. Arise Zapata, 2012 Customer arises Industrial

25. Erupt
White & McCausland,

2016
Volcano erupts

Vulcanological

1 Experiencer

Strength,
cause

Cause

26. Melt Fillmore, 1977 Lava melts

27. Boil Zapata, 2012 Water boils Geological

28. Expire Baouya et al., 2015 Product expires
Industrial

29. Start Herzberg et al., 2013 Service starts

30. Pass Zapata, 2012 Time passes Meteorological

31. Happen
Fillmore, 1971;

Meng et al., 2014
Hurricane happens

Geological
32. Occur

Fillmore, 1971;
Lukham, 2011

Earthquake occurs

33. Change
(increase and
decrease)

Vose et al., 2017
Temperature air

conditioner
changes

Electronic

4.2 Defining Linguistic and Graphical Structures for Event Representation in PCS 49

4.2.3. Events with Two Actants

We identify events linguistically represented for an eventual verb accompanied by two

actants for expressing their meaning in SSD. Such events are predominant in the medical

domain.

We propose eventual relationships for events with two actants in Table 4-3, e.g., patient

suffers heart attack “patient” is an actant type patient, “suffers” is the eventual relationship,

and “heart attack” is a second actant, which is used for completing the meaning about what

happened to the patient. We also identify in this category, the eventual relationships increases

and decreases (which also is in the category events with one actant), e.g., temperature

increases water pressure; “water pressure” is an actant type experiencer.

Table 4-3 Linguistic structures for events with two actants (Noreña et al., 2018)

Eventual
Relationship

Author
Example
of event

Scientific software
domain

Semantic Role
Actant

Circumstant
Quantity Type

34. Suffer Gruber, 1965
Patient suffers
hemorrhage

Medical

2

Patient

Cause

35. Present Drăghici et al., 2018
Patient presents
abdominal pain

36. Block Zhao et al., 2017 Lipid blocks vein

Increase/
Decrease

Wu et al., 2014;
Beltrán, 2015

Temperature
increases water

pressure
Hydraulic Experiencer

37. Loss Obi et al., 2018 Patient loses weight Medical
Patient

38. Gain
Obi et al., 2018 Patient gains weight;

Dollar gains price
Medical

Economic
Patient

Experiencer

We propose a graphical representation of events with two actants and present some examples

in Figure 4-5. Some events are represented in this category, which include prepositions in, on,

at, to in the eventual relationship, e.g., epidemy arrives at city. In this case, the preposition

should be used with the eventual relationship (see such an event in Figure 4-5).

ACTANT 1

EVENTUAL
RELATIONSHIP

ACTANT 2

ACTANT 1

EVENTUAL
RELATIONSHIP

ACTANT 2

PATIENT

LOSES

WEIGHT

PATIENT

LOSES

WEIGHT

DOLLAR

GAINS

PRICE

DOLLAR

GAINS

PRICE

EPIDEMY

ARRIVES AT

CITY

EPIDEMY

ARRIVES AT

CITY

Figure 4-5 Graphical structures for events with two actants (Noreña et al., 2018)

50 4 Extension to PCS

An event can be graphically and linguistically represented in equivalent forms according

the perspective of an analyst business/scientist and related to linguistic rules for events in

PCS. e.g., the event patient suffers hemorrhage can be also represented as patient bleeds and

hemorrhage appears (see Figure 4-6).

PATIENT

SUFFERS

HEMORRHAGE

PATIENT

SUFFERS

HEMORRHAGE

PATIENT

BLEEDS

PATIENT

BLEEDS

HEMORRHAGE

APPEARS

HEMORRHAGE

APPEARS

Figure 4-6 Equivalent forms of event representation (Noreña et al., 2018)

4.3. Defining Mathematical and Graphical Structures for

Event Representation in PCS

Event functionality contains the internal logic, which is formulated by using mathematical

equations and conditions in a system in order to analyze a phenomenon and its behavior. We

propose a representation of the event functionality by using a specification or a constraint

(from PCS notation, see Figure 2-1) linked to an event as we show in Figure 4-7. Specification

or constraint related to an event should contain such elements and the domain knowledge

should be in the same model for a better understanding the context. We define the

mathematical notation and event representation in four steps for integrating such scientific

elements: (i) we characterize the elements of equations used in the internal logic of events

identified in scientific modeling; (ii) we define mathematical and graphical structures by using

the PCS notation for representing mathematical equations; (iii) we represent mathematical

equations in PCS; and (iv) we represent events from SSD with proposed notation.

EVENT

HAPPENS

EVENT

HAPPENS

Figure 4-7 Functionality of events in PCS. The Authors

4.3 Defining Mathematical and Graphical Structures for Event Representation in PCS 51

4.3.1. Characterizing Elements of an Equation

Mathematical equations are self-contained, i.e., the equations integrate elements of a

context/domain in the operation. Element understanding should be obtained from either

the context documentation or previous knowledge acquired by a scientist (Noreña & Zapata,

2018a).

Translating from Equation Symbols to Conceptual Form

We select as an example the Malthus growth law presented in the Equation 4-1, which is

applied to the scientific domain statistics according to the text in Figure 4-8.

y(t) = y0. er(t−t0) (4-1)

We search the meaning of every element (symbol) of the equation in the context

documentation, which is used for finding concepts related to the elements, e.g., the element

y(t) is Population Value according to the text in Figure 4-8. We translate the original form

of the equation (see Equation 4-1) to a conceptual form (see Equation 4-2). Commonly,

initial conditions are also defined in the context documentation.

Population V alue = Initial Population. egrowth rate(time−start time) (4-2)

Let y (t) be the human population value of the earth at time t. It is estimated that the population of the earth
increases with an annual growth rate of 2% during the period 1960-1970. At the beginning of the middle of

the decade, on January 1, 1965, when the Department of Commerce of the United States government
estimated the population value at 3.34 million of people, then t0 = 1965; y0 = 3.34 × 107 and r = 0.02.
What was the value of the population in 1980?

Figure 4-8 Context documentation. The Authors translated from Navas (2017)

Identifying Elements of an Equation

We analyze the element type from the translated equation (see Equation 4-2) and compare

them with elements of the PCS notation. Then, we identify what elements are required for

integrating them in such a notation as we show in Figure 4-9, we identify class (population),

leaf concept (value), assignment, multiplication, and subtraction operator as elements present

in the PCS notation while such a notation lacks parameters (initial population, growth rate,

and start time), exponential function operator, and an independent variable. Other identified

elements are initial conditions, arrays (vector, matrix, independent), mathematical, arrays,

and trigonometric operators.

52 4 Extension to PCS

Figure 4-9 Element Identification. The Authors

4.3.2. Defining Mathematical Notation in PCS

We define a set of mathematical structures identified in equations from SSD and propose

graphical structures for representing such elements in PCS notation.

Nodes

We extend nodes from PCS notation based on the element concept (see Figure 2-1) for

representing the terminology used in scientific software domains.

Parameter is used for representing a constant value of an equation/function. We define

a hexagon-shaped structure for representing a parameter in PCS notation (see Figure

4-10). Such a parameter from PCS should have a constant value in any time of the

system/simulation (Noreña & Zapata, 2018a; Calle et al., in process). e.g., Pi number

equal to 3.1415 in Figure 4-10.

PARAMETER PI

=

3.1415

Figure 4-10 Parameter. The Authors

Independent variable is a non-dependent value of other variables and it is used for

controlling dependent variables (which can be represented with the element concept) in

a domain. We define a parallelogram-shaped structure for representing an independent

variable (see Figure 4-11). An independent variable from PCS should have a specific

name and be used for controlling other variables in the system (Noreña & Zapata,

2018a; Calle et al., in process). e.g., a variable valve whose values are “closed” and

“open” for controlling a liquid flow.

INDEPENDENT
VARIABLE VALVE

=

“Closed”

Figure 4-11 Independent variable. The Authors

4.3 Defining Mathematical and Graphical Structures for Event Representation in PCS 53

Arrays are structures used for storing several values of a variable. Usually, arrays are

used in the systems as a data structure for storing values in memory. We define two

types of arrays:

Dependent array is a vector or matrix related to a class. We define an element

concept from the PCS notation and add from one to two rectangles in its upper

corner with a term value for representing a dependent array (see vector and matrix

in Figure 4-12). e.g., class measure has a vector value and a matrix block in Figure

4-12.

VECTOR

TERM

MATRIX

TERM1 TERM2

VALUE
TERMX

MEASURE

BLOCK

TERMX TERMY
HAS

Figure 4-12 Dependent arrays. The Authors

Independent array is a non-dependent array of a class. We define the independent

variable by using a parallelogram accompanied by one to two terms in its upper

corner (see Figure 4-13). e.g., vector space in Figure 4-12.

VECTOR

TERM

VECTOR

TERM

SPACE
TERM

SPACE
TERM

Figure 4-13 Independent arrays. The Authors

Term is used for defining the position of each element into the array and size step of the

array. A vector should have one dimension and a matrix should have two dimensions,

then a vector also requires one term and a matrix requires two terms respectively

(Calle et al., in process).

Gatherer

We extend the gatherers for completing start values used in software development and

simulation process.

Initial Conditions are specifications including variables and parameters for beginning

the simulation of a system. We define initial conditions by using the element

specification from the PCS notation (see Figure 2-1) accompanied by the name

initial conditions (see Figure 4-14). Such a specification should include variables,

parameters, and functions of such variables and parameters (Noreña & Zapata, 2018a;

54 4 Extension to PCS

Calle et al., in process). e.g., the parameter Pi and variable valve inside of initial

conditions in Figure 4-14.

INITIAL CONDITIONS

PI

=

3.1415 VALVE

=

“Closed”

Figure 4-14 Initial conditions. The Authors

Operators

We extend the element operator of PCS notation (see Figure 2-1) by including a set of new

mathematical, trigonometrical, and array operators, which are predefined and commonly

used in mathematical models. Operators are used with a value as argument, which should

be a concept, a note-value, and a parameter (Calle et al., in process).

Mathematical operators are elements used in complex equations (see Figure 4-15). Sqrt

operator is defined for representing the square root operation. Exp operator is defined

for representing the exponential function. Log operator is proposed for representing the

logarithm mathematical function. Abs operator is proposed for returning the absolute

value of either a concept or a parameter (Calle et al., in process).

Abs

SQUARE EXPONENTIAL ABSOLUTE
ROOT FUNCTION

LOGARITHM
VALUE

Sqrt Exp Log

FUNCTION

Figure 4-15 Mathematical Operators (Calle et al., in process)

Array operators are used for inserting (Push) and for removing (Pop) values (see

Figure 4-16) into the last position of dependent and independent arrays (Calle et al.,

in process).

Push Pop

PUSH POP

Figure 4-16 Array Operators (Calle et al., in process)

4.3 Defining Mathematical and Graphical Structures for Event Representation in PCS 55

Trigonometric operators are Sin, Cos, Tan, Csc, Ctg, and Sec operators (see Figure

4-17), which are proposed for representing the trigonometric function sine, cosine,

tangent, cosecant, cotangent, and secant respectively (Calle et al., in process).

Sin Cos Tan Csc Ctg Sec

SINE COSINE TANGENT COSECANT CONTANGENT SECANT

Figure 4-17 Trigonometric Operators (Calle et al., in process)

We show an example in Figure 4-18 for observing how an operator should be

represented, a sin operator is related to a concept (amplitude) and with other operator

(multiplication).

Sin

AMPLITUDE
AMPLITUDE2

*

Sin

Figure 4-18 Sin operator. The Authors

4.3.3. Representing Equations in PCS

We follow the example of Equation 4-2 translated from Equation 4-1. We use the extended

new mathematical structures for representing the equation in PCS notation (see Figure

4-19, the color are used for explaining and guiding the traceability and consistency of the

elements).

Figure 4-19 Equation symbols in PCS notation. The Authors

We use the binary expression tree, commonly used for representing algebraic and Boolean

expressions, e.g., a binary expression tree for the polynomial 2y + w2z + wx + wy + wz in

56 4 Extension to PCS

Figure 4-20 (Kuipers et al., 2015). Such a tree is also used in basic mathematical operations

from PCS (Chaverra, 2011). Mathematical structures are related to the link operator (see

Figure 2-1) and the equation is completed in Figure 4-21. Result values in an equation

should have a unit for saving consistency.

Figure 4-20 Binary expression tree (Kuipers et al., 2015)

Population

Value

=

Initial Population

Exp

*

-

*

Growth Rate

TimeTime Start Time

Figure 4-21 Equation in PCS notation. The Authors based on Calle et al. (in process)

4.3.4. Representing Events in PCS

Event Functionality

We extend the event representation in PCS by using the gatherers specification and constraint

(see Figure 2-1), which should be linked (link concept-note) to an event for representing

the event functionality and analyzing its internal logic in SSD as we show in Figure 4-7.

Such gatherers should contain at least a dynamic operation—read, insert, update, delete—in

either data bases or data structures—vectors and matrices. Operations are represented by

using the dynamic relationship symbol without an agent (semantic role, since it should

express an automated process/phenomenon) exclusively when it is inside the specification

4.3 Defining Mathematical and Graphical Structures for Event Representation in PCS 57

(without conditions) and constraint (with conditions) of an event. Equations are included

by using another specification/constraint linked to the dynamic operation (according to the

notation used in basic mathematical operations), e.g., the event population.value increases

is represented with a dynamic operation inserts population.value in Figure 4-22—linked to

the equation represented in Figure 4-21—for analyzing the values each year according to

the context documentation in Figure 4-8.

Population

Value

=

Initial Population

Exp

*

-

*

Growth Rate

TimeTime Start Time

IncreasesIncreases

Population

Value

INSERTS
Population

Value

Figure 4-22 Event functionality in PCS notation. The Authors

Timer

Timer is a time event, which is required in the event functionality for simulating the system

in a SSD and tracking its phenomena and processes. We represent a timer by using a cycle

with the operator sum for increasing the time value (See Figure 4-23), which can have

conditions according to the domain. Commonly, parameters and variables are used in the

internal logic of the timer, e.g., time = 0 weeks in order to know the start time and end

time = 244 weeks for ending the time in Figure 4-23. When a specific date is required, e.g.,

open time = 9:00, close time = 17:00, they should be represented as parameters in initial

conditions and they can be used in conditions of the system e.g., if close time = 17:00 then

door state = closed, in the event time passes if time >= open time and time <= close time.

Time value can have digital format and time units—hours, minutes, seconds, weeks, years,

etc. If the time expression is a specific value, e.g., 1965 according to Figure 4-8, it does not

require units. Incremental value can be used according to the domain from 1 to 1 as we

show for a value without units, e.g., if time = 1965, time = time + 1 and values with units,

58 4 Extension to PCS

e.g., if time = 0 seconds, time= time + 1 seconds in Figure 4-24. Incremental value can be

also used from other incremental values, e.g., from 100 to 100, if time= 400 years, time =

time + 100 years as we show in Figure 4-23.

We include a timestamp for controlling the arrival time of an event and obtaining the change

states of the system (Luckham, 2002). We propose a timestamp as a variable, which has

two states “next” and “stop” allowing to stop and continue the time of the system, e.g.,

timestamp used in time passes and initial conditions in Figure 4-23.

{

}

=
TIMETIME

TIME

+

=
TIME

TIME

+

1 Weeks

INITIAL CONDITIONS

TIMETIME

=
0

Weeks

TIMESTAMP “Next”

=<=

END TIME

TIME

AND

TIME

TIMESTAMP “Next”

=

END TIME 244
Weeks

=

PASSES

TIMESTAMP “Stop”

=

Figure 4-23 Timer. The Authors

=
TIMETIME

TIME

+

=
TIME

TIME

+

1

=
TIMETIME

TIME

+

=
TIME

TIME

+

1 Seconds

=
TIMETIME

TIME

+

=
TIME

TIME

+

100 Years

Figure 4-24 Timer values. The Authors

We integrate initial conditions, timer, and other events about phenomena for assuring the

completeness of the event functionality in a simulation of the system. We follow the example

4.4 Lab Study 59

of the statistics domain in Figure 4-8 and include its representation of Figure 4-22; the

initial conditions and timer are added in Figure 4-25.

Population

Value

=

Initial Population

Exp

*

-

*

Growth Rate

TimeTime Start Time

INSERTS
Population

Value

INITIAL CONDITIONS

Initial
Population

=

3'3400.000 Growth Rate

=

0.02 Start Time

=

1965

{

}

=
+

=
+Time

Time

<=

End Time

AND

=

Timestamp

“Next”

Timestamp

=

“Stop”

1

Time

PassesPasses

PopulationTimeTime

Timestamp

=

“Next”Time

=

Start Time

Timestamp

=

“Next”

Increases

Population

Value

Increases

Population

Value

Figure 4-25 Event functionality with initial conditions and timer. The Authors based on

Calle et al., in process

Parameters initial population, growth rate, start time, and variable time are required by the

functionality of the equation, which are represented in the initial conditions ; timer time

passes allows for increasing the time and triggers the event population.value increases, since

population.value is dependent on the time for increasing such a value.

Variable timestamp is used for controlling the system, when the time changes, timestamp is

equal to “stop” for inserting a new population.value. After the insertion, timestamp changes

to “next” for going on the simulation.

4.4. Lab Study

We apply the extended PCS by using a lab study in the chemical SSD (see Figure 4-33).

Level of detail of the model is focused on the analysis of chemical events of mixture and

concentration of substances in a software development and simulation process. We select the

following context documentation, which is translated from Navas (2017):

A container of 300 liters is full in two thirds of its capacity and contains 50 Kg of salt.

Valves are opened in time t = 0 minutes. A salt solution is added with a concentration

60 4 Extension to PCS

of one third of a kilo per liter to container with a velocity of 3 liters per minutes. If

the mixture is extracted from the container with a velocity of 2 liters per minutes. How

many kilograms of salt are found in the container?

Let y (t) be the amount of salt in the container in the minute t. The reason for

changing in every minute y’(t), it will be equal to the amount of salt entering to the

container, minus the amount of salt coming out in the same minute. Entry velocity of

salt is 1/3 Kg/Liters x 3 liters/minutes = 1Kg/minutes. Exit velocity is calculated by

the following: for the minute t, y(t) is 200 + t liters of water. It is 2y(t)/(t + 200)

kilograms of salt in 2 liters. Consequently:

y′(t) = 1− 2

t+ 200
y(t), it is a differential equation y′(t) + 1

2

t+ 200
y(t) = 1,

its integrating factor is µ(t) = e

∫
2

t+ 200
dt = e2ln(t+200) = (t+ 200)2

integrating (t+ 200)2y =
(t+ 200)3

3
+ C ⇒ y(t) =

t+ 200

3
+

C

(t+ 200)2

(4-3)

The particular interest is the initial condition y(0) = 50.

Replacing in the equation: 50 =
200

3
+

C

(200)2
⇒ C =

−50

3
2002

the solution required is y(t) =
t+ 200

3
− 50(200)2

3(t+ 200)

(4-4)

Finally, the amount of salt in the container can be known when it is filled. Therefore,

the elapsed time should also be known. The amount of water increases 1 liter every

minute and initially it was 200 liters, 100 minutes are the time necessary for filling

the container in.

Several domain knowledge elements are identified: container, mixture (also called solution),

concentration of mixture,amount of water, amount of salt y(t), capacity of container, entry

velocity of salt. Such elements are represented as classes and leaf concepts in the structural

view of the PCS (see Figure 4-26), which also allows for relating the tables of the data base.

Class container has number, and capacity, which are stored in a table of the data base (see

Table 4-4, the information context capacity of container = 300 liters is used). Container is

also structurally related to the class chemical expert (class added as fictional information to

real data in order to complete the simulation). Chemical expert has code and name, which has

a table in the data base with his/her information (see Table 4-5). Container is structurally

4.4 Lab Study 61

related to the class mixture by using the triad container has mixture. Mixture has code,

liquid substance (leaf concept added for representing the water and other liquid substances:

oil, solvent, alcohol, vinegar), soluble substance (leaf concept added for representing the salt

and other soluble substances: sugar, sodium bicarbonate), liquid substance entry velocity,

liquid substance exit velocity, soluble substance entry velocity, soluble substance exit velocity,

and mininum velocity (leaf concept used for representing the velocity of the mixture).

Mixture is structurally related to the class substance concentration by using the triad

mixture has substance concentration for representing the concentration of mixture. Substance

concentration has code, local time, liquid substance amount (leaf concept for representing the

amount of water), liquid substance minimum amount (leaf concept conformed by velocity

and time in the same value of t in Equation 4-4. A implicit value in the context), and soluble

substance amount. Mixture and substance concentration also have tables in the data base,

which are stored in the dynamic view of the PCS.

CAPACITY

LIQUID SUBSTANCE

LIQUID SUBSTANCE
EXIT VELOCITY

LIQUID SUBSTANCE
ENTRY VELOCITY

SOLUBLE SUBSTANCE
EXIT VELOCITY

SOLUBLE SUBSTANCE
ENTRY VELOCITY

NUMBER

SUBSTANCE
CONCENTRATION

LIQUID SUBSTANCE
AMOUNT

CODE

CHEMICAL
EXPERT CODE

NAME

SOLUBLE SUBSTANCE
AMOUNT

CODE

LIQUID SUBSTANCE
MINIMUM AMOUNT

HAS

HAS

CONTAINER

MIXTURE

HAS
SOLUBLE SUBSTANCE

HAS

-Salt
-Sugar
-Sodium Bicarbonate

-Water
-Oil
-Solvent
-Alcohol
-Vinegar

MINIMUM VELOCITY

LOCAL TIME

Figure 4-26 Structural view from PCS. The Authors based on Noreña et al. (2019)

62 4 Extension to PCS

Table 4-4 Container (Noreña et al., 2019)

CONTAINER
NUMBER CAPACITY

(liters)
CHEMICAL_EXPERT

CODE

234 300 45

Table 4-5 Chemical Expert (Noreña et al., 2019)

CHEMICAL_EXPERT
CODE NAME

45 Samir Guarín

Dynamic view from PCS comprises initial conditions, processes, and events. Initial

conditions (see Figure 4-27) are variable time = 0 minutes, parameter simulation time

= 360 minutes (time and simulation time are added as fictional information to real data

in order to complete the simulation in other possible mixtures), variable mixture time =

0 minutes (t = 0 minutes), parameters mixture end time = 100 minutes, liquid substance

initial amount (amount of water = 200 liters), and soluble substance initial amount (y(0) =

50 Kg of salt).

INITIAL CONDITIONS

0 minutes

=

TIME “Closed”VALVEVALVE

=
LIQUID SUBSTANCE
INITIAL QUANTITY

SOLUBLE SUBSTANCE
INITIAL AMOUNT

MIXTURE
END TIME

=

100 minutes

360 minutesSIMULATION
TIME

=

CONCENTRATION

200 Liters

=

50 Kg

=

1/3 Kg/Liters

=

0 minutes

=
MIXTURE

TIME

=

“Stop”TIMESTAMPTIMESTAMP

=
COEFFICIENT OF

VARIATION

-

*

^

2

LIQUID SUBSTANCE
INITIAL AMOUNT

SOLUBLE SUBSTANCE
INITIAL AMOUNT

CONCENTRATION

*

Figure 4-27 Initial conditions (Noreña et al., 2019)

Timestamp = “stop” or “next” (variable added for controlling the time), concentration =

1/3 Kg/Liters (concentration of mixture), valve = “open” (and “closed” by inference), and

coefficient of variation (which is obtained from Equation 4-4 and conceptually translated to

4.4 Lab Study 63

Equation 4-5).

Coefficient of variation with units is C =
−50Kg

3liters
2002liters2 from Equation 4-4.

Translating to conceptual form: Coefficient of variation =

(−soluble substance initial amount ∗ concentration)∗
(liquid substance initial amount)2

(4-5)

Chemical expert inserts mixture is a process represented in the SSD (see Figure 4-28).

Before starting the simulation, chemical expert selects container.number, mixture.liquid

substance, and mixture.soluble substance and inserts mixture.liquid substance entry velocity

and mixture.liquid substance exit velocity.

=
/

*

=
MIXTURE

SOLUBLE SUBSTANCE
ENTRY VELOCITY

*

MIXTURE
LIQUID SUBSTANCE
ENTRY VELOCITY

=

MIXTURE
LIQUID SUBSTANCE

EXIT VELOCITY

-

MIXTURE
LIQUID SUBSTANCE

ENTRY VELOCITY

MIXTURE
SOLUBLE SUBSTANCE

EXIT VELOCITY

MIXTURE
LIQUID SUBSTANCE

EXIT VELOCITY

INSERTS

SOLUBLE SUBSTANCE
INITIAL AMOUNT

SOLUBLE
SUBSTANCE INITIAL

AMOUNT

0 minutesTIME

MIXTURE

MINIMUM
VELOCITY

CONCENTRATION

OR

0 minutes

MIXTURE
TIME

=
=

=

MIXTURE

CODE

+

MIXTURE

CODE

1

CHEMICAL
EXPERT

SELECTS
CONTAINER

NUMBER

SELECTS

MIXTURE
LIQUID SUBSTANCE

SOLUBLE SUBSTANCE

INSERTS

MIXTURE
LIQUID SUBSTANCE
ENTRY VELOCITY

LIQUID SUBSTANCE
EXIT VELOCITY

TIMESTAMP “Next”

=

MAX

INSERTS
SUBSTANCE CONCENTRATION

CODE

SELECTS
SUBSTANCE CONCENTRATION

MIXTURE CODE

SUSTANCE CONCENTRATION

MIXTURE CODE
MIXTURE TIME

=

SUSTANCE CONCENTRATION

LIQUID SUBSTANCE
MINIMUM AMOUNT

LIQUID SUBSTANCE
AMOUNT

SOLUBLE SUBSTANCE
AMOUNT

INSERTS

CHEMICAL
EXPERT

CHEMICAL
EXPERT MIXTURE

Figure 4-28 Process in chemical SSD (Noreña et al., 2019)

Equations inside the specification of chemical expert inserts mixture are represented

according to the context: mixture.soluble substance entry velocity (from “entry velocity of

salt is 1/3 Kg/liters x 3 liters/minutes = 1Kg/minutes”), mixture.soluble substance exit

velocity (from 2y(t)/(t + 200 liters), it is 2 liters/min * 50 Kg / 200 liters, mixture.minimum

velocity (from “the reason for changing in every minute y’(t), it will be equal to the amount

of salt entering to the container, minus the amount of salt coming out in the same minute”,

since the liquid substance contains the soluble substance). The results of such equations are

derived attributes of the values selected and inserted by the chemical expert. Values used

64 4 Extension to PCS

in the table Mixture (see Table 4-6) are also related to the context: liquid substance entry

velocity = 3 liters/minutes, liquid substance exit velocity = 2 liters/minutes, soluble substance

entry velocity = 1 Kg/minutes. After, chemical expert inserts the first registry of the Table

4-7 by using the actions chemical expert inserts substance concentration, selects substance

concentration.mixture code, substance concentration.local time = mixture time, and inserts

liquid substance minimum amount, liquid substance amount, and soluble substance amount.

Finally, timestamp = “next” for starting the simulation.

Table 4-6 Mixture (Noreña et al., 2019)

MIXTURE

C
O

D
E

C
O

N
TA

IN
ER

N

U
M

BE
R

LI
Q

U
ID

SU

BS
TA

N
C

E

SO
LU

BL
E

SU
BS

TA
N

C
E

LI
Q

U
ID

SU

BS
TA

N
C

E
EN

TR
Y

_V
EL

O
C

IT
Y

(li
te
rs
/m
in
ut
e
s)

SO
LU

BL
E

SU
BS

TA
N

C
E

EN
TR

Y
_V

EL
O

C
IT

Y

(K
g
/m
in
ut
e
s)

LI
Q

U
ID

SU
BS

TA
N

C
E

EX
IT

_V
EL

O
C

IT
Y

(li
te
rs
/m
in
ut
e
s)

SO
LU

BL
E

SU
BS

TA
N

C
E

EX
IT

_V
EL

O
C

IT
Y

(K
g
/m
in
ut
e
s)

M
IN

IM
U

M

V
EL

O
C

IT
Y

(li
te
rs
/m
in
ut
e
s)

1 234 Water Salt 3 1 2 ½ 1

Time passes, mixture starts, mixture ends (see Figure 4-29, 4-30, and 4-31), and substance

concentration increases (see Figure 4-32) are events represented in chemical SSD. Time

passes is the event used for controlling the simulation time and mixture time (see Figure

4-29). Time increases every minute according to the context. Several mixtures can be

performed in the simulation time.

{

}

{

}

1 minutes

=

+

1 minutes

=

+TIME

TIME

TIMESTAMP “Next”

=

1 minutes

=

+

1 minutes

=

+
MIXTURE

TIME

MIXTURE
TIME

<=

MIXTURE
END TIME YesMIXTURE

TIME

<=

SIMULATION
TIME

TIME

AND

No

0 minutes

=
MIXTURE

TIME
TIMESTAMP “Stop”

=

TIME

PASSES

Figure 4-29 Event: time passes. The Authors based on Noreña et al. (2019)

Mixture starts is the event used for opening the valve related to the elements of the

4.4 Lab Study 65

condition: mixture time, container.capacity, and timestamp in “next” (See Figure 4-30).

Mixture ends is the event added for closing the valve related to the elements of the condition:

mixture time and time (See Figure 4-31).

{

}

=

“Open”VALVEVALVE

STARTS

<=

MIXTURE
TIME

MIXTURE
END TIME

TIMESTAMP

“Next”

=

AND

<=

CONTAINER
CAPACITY

SUBSTANCE
CONCENTRATION

LIQUID SUBSTANCE
AMOUNT

AND

MIXTURE

Figure 4-30 Event: mixture starts. The Authors based on Noreña et al. (2019)

{

}

=

“Closed”VALVEVALVE

>=

MIXTURE
TIME

MIXTURE
END TIME

=

OR

TIME

SIMULATION
TIME

MIXTURE

ENDS

Figure 4-31 Event: mixture ends. The Authors based on Noreña et al. (2019)

66 4 Extension to PCS

Substance concentration increases (see Figure 4-32) is the event for automatically inserting

the values of the class susbstance concentration in Table 4-7. Such values are code, mixture

code, local time, liquid substance minimum amount (from the value conformed by velocity

and time in the same value of t in Equation 4-4), liquid substance amount (from the context:

the amount of water increases 1 liter every minute), and soluble substance amount (from

Equation 4-6). Variable timestamp is used for stopping the time when a value is inserted.

{

}

=
*

=

+

SUBSTANCE
CONCENTRATION

LIQUID SUBSTANCE
MINIMUM AMOUNT

SUBSTANCE
CONCENTRATION

LIQUID SUBSTANCE
AMOUNT

MIXTURE
MINIMUM
VELOCITY

INCREASES

SUBSTANCE
CONCENTRATION

SUBSTANCE
CONCENTRATION

LOCAL TIME

=

MIXTURE
TIME

LIQUID SUBSTANCE
INITIAL AMOUNT

INSERTS

=

“Stop”TIMESTAMPTIMESTAMP

=

“Stop”TIMESTAMP

=

“Next”TIMESTAMPTIMESTAMP

MIXTURE
MINIMUM
VELOCITY

SUBSTANCE
CONCENTRATION

CODE SUBSTANCE
CONCENTRATION

CODE

=

1

+

=

“Closed”VALVEVALVE

=

“Open”

VALVEVALVE

AND

SUBSTANCE
CONCENTRATION

SUBSTANCE
CONCENTRATION

MIXTURE CODE

=

MIXTURE

CODE

MAX

=

+

*

/

^

2

COEFFICIENT OF
VARIATION

SUBSTANCE
CONCENTRATION

SOLUBLE
SUBSTANCE AMOUNT

+

LIQUID SUBSTANCE
INITIAL AMOUNT

CONCENTRATION

*

MIXTURE

MINIMUM
VELOCITY

MIXTURE
TIME

MIXTURE

MINIMUM
VELOCITY

MIXTURE
TIME

*

LIQUID SUBSTANCE
INITIAL AMOUNT

+

MIXTURE
TIME

*

MIXTURE
TIME

Figure 4-32 Event: substance concentration increases. The Authors based on Noreña et al.

(2019)

4.4 Lab Study 67

Table 4-7 Substance concentration. The Authors based on Noreña et al. (2019)

SUBSTANCE_CONCENTRATION
C

O
D

E

M
IX

TU
RE

C
O

D
E

LO
C

A
L

TI
M

E
(m

in
ut

e
s)

LI
Q

U
ID

SU

BS
TA

N
C

E
M

IN
IM

U
M

A

M
O

U
N

T
(li

te
rs

)

LI
Q

U
ID

SU

BS
TA

N
C

E
A

M
O

U
N

T
(li

te
rs

)

SO
LU

BL
E

SU
BS

TA
N

C
E

A
M

O
U

N
T

(K
g

)

500 1 0 0 200 50

501 1 1 1 201 50,4

502 1 2 2 202 51

…600 1 …100 …100 …300 …92,6

Soluble substance amount with units is y(t) =

(200liters+ t minutes ∗ liters/minutes)1Kg
3liters

+
−50Kg(200liters)2

3liters(200liters+ t minutes ∗ liters/minutes)
from Equation 4-4.

Translating to conceptual form: Soluble substance amount =

liquid substance initial amount +mixture.minimum velocity ∗mixture time
∗concentration

+
coefficient of variation

(liquid substance initial amount +mixture.minimum velocity ∗mixture time)2

(4-6)

We show the complete PCS in Figure 4-33, which includes the flow of the whole system

guided by the implication link, which start when a conditional event triggers the process

chemical expert inserts mixture. After, the events time passes and mixture starts trigger the

event substance concentration increases. Finally, mixture ends in the indicated time.

68 4 Extension to PCS

{

}

{

}

{

}

{

}

INITIAL CONDITIONS

CAPACITY

=
*

LIQUID SUBSTANCE

=
/

*

=

COEFFICIENT OF
VARIATION

-

*

LIQUID SUBSTANCE
EXIT VELOCITY

LIQUID SUBSTANCE
ENTRY VELOCITY

=
MIXTURE

SOLUBLE SUBSTANCE
ENTRY VELOCITY

*

MIXTURE
LIQUID SUBSTANCE
ENTRY VELOCITY

^

2

SOLUBLE SUBSTANCE
EXIT VELOCITY

SOLUBLE SUBSTANCE
ENTRY VELOCITY

1 minutes

=

+

1 minutes

=

+

NUMBER

SUBSTANCE
CONCENTRATION

LIQUID SUBSTANCE
AMOUNT

CODE

CHEMICAL
EXPERT CODE

NAME

SOLUBLE SUBSTANCE
AMOUNT

CODE

0 minutes

=

MIXTURE
LIQUID SUBSTANCE

EXIT VELOCITY

-

MIXTURE
LIQUID SUBSTANCE

ENTRY VELOCITY

=

+

LIQUID SUBSTANCE
MINIMUM AMOUNT

HAS

HAS

CONTAINER

MIXTURE

HAS SOLUBLE SUBSTANCE

HAS

TIME

TIME

SUBSTANCE
CONCENTRATION

LIQUID SUBSTANCE
MINIMUM AMOUNT

SUBSTANCE
CONCENTRATION

LIQUID SUBSTANCE
AMOUNT

MIXTURE
MINIMUM
VELOCITY

=

TIME

MIXTURE
SOLUBLE SUBSTANCE

EXIT VELOCITY

MIXTURE
LIQUID SUBSTANCE

EXIT VELOCITY

=

“Open”

INCREASESINCREASES

SUBSTANCE
CONCENTRATION

PASSES

TIMETIME

PASSES

TIME

“Closed”VALVEVALVE

=

VALVEVALVE

SUBSTANCE
CONCENTRATION

LOCAL TIME

=

MIXTURE
TIME

INSERTS -Salt
-Sugar
-Sodium Bicarbonate

-Water
-Oil
-Solvent
-Alcohol
-Vinegar

LIQUID SUBSTANCE
INITIAL AMOUNT

SOLUBLE SUBSTANCE
INITIAL AMOUNT

LIQUID SUBSTANCE
INITIAL AMOUNT

MIXTURE

STARTS

MIXTURE

STARTS

MIXTURE
END TIME

=

100 minutes

{

}

=

“Closed”VALVEVALVE

MIXTURE

ENDS

MIXTURE

ENDS

LIQUID SUBSTANCE
INITIAL AMOUNT

SOLUBLE SUBSTANCE
INITIAL AMOUNT

LIQUID SUBSTANCE
INITIAL AMOUNT

INSERTS

=

“Stop”TIMESTAMPTIMESTAMP

=

“Stop”TIMESTAMP

TIMESTAMP “Next”

=

360 minutesSIMULATION
TIME

=

0 minutesTIME

MIXTURE

MINIMUM
VELOCITY

CONCENTRATION

CONCENTRATION

200 Liters

=
1/3 Kg/Liters

=

=

“Next”TIMESTAMPTIMESTAMP

<=

MIXTURE
TIME

MIXTURE
END TIME

MINIMUM VELOCITY

MIXTURE

MINIMUM
VELOCITY

CONCENTRATION

1 minutes

=

+

1 minutes

=

+
MIXTURE

TIME

MIXTURE
TIME

<=

MIXTURE
END TIME YesMIXTURE

TIME

OR

0 minutes

MIXTURE
TIME

0 minutes

=
MIXTURE

TIME

=
=

<=

SIMULATION
TIME

TIME

AND

No

SUBSTANCE
CONCENTRATION

CODE

=

MIXTURE

CODE

+

MIXTURE

CODE

1

CHEMICAL
EXPERT

SELECTS
CONTAINER

NUMBER

SELECTS

MIXTURE
LIQUID SUBSTANCE

SOLUBLE SUBSTANCE

INSERTS

MIXTURE
LIQUID SUBSTANCE

ENTRY VELOCITY

LIQUID SUBSTANCE
EXIT VELOCITY

SUBSTANCE
CONCENTRATION

CODE

=

1

+

=
“Closed”VALVEVALVE

TIMESTAMP

“Next”

=

AND

>=

MIXTURE
TIME

MIXTURE
END TIME

=

OR

TIME

SIMULATION
TIME

=
“Stop”TIMESTAMPTIMESTAMP

<=

CONTAINER

CAPACITY

SUBSTANCE
CONCENTRATION

LIQUID SUBSTANCE
AMOUNT

=

“Open”

VALVEVALVE

AND

TIMESTAMP “Next”

=

AND

0 minutes

=
MIXTURE

TIME

SUBSTANCE
CONCENTRATION

MAX

SUBSTANCE
CONCENTRATION

MIXTURE CODE

=

MIXTURE

CODE

MAX

TIMESTAMP “Stop”

=

LOCAL TIME

INSERTS
SUBSTANCE CONCENTRATION

CODE

SELECTS
SUBSTANCE CONCENTRATION

MIXTURE CODE

SUSTANCE CONCENTRATION

LOCAL TIME
MIXTURE TIME

=

SUSTANCE CONCENTRATION

LIQUID SUBSTANCE
MINIMUM AMOUNT

LIQUID SUBSTANCE
AMOUNT

SOLUBLE SUBSTANCE
AMOUNT

INSERTS

=

+

*

/

^

2

COEFFICIENT
OF VARIATION

SUBSTANCE
CONCENTRATION

SOLUBLE
SUBSTANCE AMOUNT

+

LIQUID SUBSTANCE
INITIAL AMOUNT

CONCENTRATION

*

MIXTURE

MINIMUM
VELOCITY

MIXTURE
TIME

MIXTURE

MINIMUM
VELOCITY

MIXTURE
TIME

* LIQUID SUBSTANCE
INITIAL AMOUNT

+

MIXTURE
TIME

*

MIXTURE
TIME

*

Figure 4-33 Events in chemical SSD. The Authors translated from Noreña et al. (2019)

4.5 Events Represented in PCS 69

4.5. Events Represented in PCS

We summarize the events represented by using the extended PCS in Table 4-8.

Table 4-8 Events represented in PCS. The Authors

Event Scientific software domain Reference

Population value increases Statistics Calle, Noreña, & Zapata, in process

Mixture starts Chemistry Noreña, Zapata, & Villamizar, 2019

Substance concentration increases

Earthquake arrives Seismology (real study) Noreña & Zapata, in process

Volcano erupts Geology, Metereology Noreña et al., 2018

Well pression increases Petroleum Engineering Velásquez, 2019

Epidemy increases, patient quantity
grows

Medicine Noreña & Zapata, 2018b; Noreña, 2018;
Zapata et al., in process

Environmental noise emerges Environmental engineering (real
study)

Durango, Noreña, & Zapata, 2018

Bacteria quantity grows Biology Noreña & Zapata, 2018 (poster)

Freezing happens Simulation Noreña & Zapata, 2019

Call starts
Signal emerges (deterministic and
random signal events)

Electronic Noreña & Zapata, 2018a

Seafood arrives to warehouse
(monitoring system)
Message event appears
Temperature changes

Industrial domain Noreña et al., in process

Sensor starts Environmental engineering Noreña & Zapata, 2018c

Time passes All All

Thersmistor measure starts Automatic systems (lab study) Tutoring Students

Production volumen arises
Inflaction rate increases, decreases
Well blowout ocurrs
victim suffers violent death

Economy

Petroleum Engineering
Legal medicine

Students in Requirements engineering
course

70

5 Validation

The universe must not be narrowed down to the limit of our understanding, but our understanding must be stretched and

enlarged for taking in the image of the universe as it is discovered.
—Francis Bacon

5.1. Experimental Validation

5.1.1. Planning Experiment

We select the experimental validation method: expert opinion; the design of a PCS is

submitted to a panel of experts, who should understand how such a model interacts with

problem domains. Such a method is supported by the design science methodology for

information systems and software engineering (Wieringa, 2014). We select the experimental

process supported by the experimentation in software engineering (Wohlin et al., 2012).

Table 5-1 Experiment planification. The Authors

Goal Hypotheses Variables Questions

Analyze
the extended PCS
for the purpose of
evaluation
with respect to
understandability and
usability
from the point of view
of scientists and
software analysts
in the context of
students, professors,
and professionals in
the area

In
d

e
p

e
nd

e
nt Expert profile (professor,

professional in the area, and
student)/area/experience years
range

Profile type and
performance area/
experience years

H10. the PCS is unintelligible
H11. the PCS is understandable

D
e

p
e

nd
e

nt

Domain/ PCS understandability Q1. Could you
understand the PCS?

H20. the event and mathematical
notation is unintelligible
H21. the Event and mathematical
notation is understandable

Event/mathematical notation
understandability

Q2. Could you
understand the
events/mathematical
notation?

H30. The PCS is unusable for
representing events in SSD
H31. The PCS can be used for
representing events in SSD

PCS Usability Q3. Could the PCS be
used in SSD?

S. Supported
R. Refuted

Hypotheses, research questions, and variables are selected in Table 5-1. Experimental design

is especially quantitive but also it has qualitative aspects.We use statistical analysis with the

techniques of mean (average), median (central value), mode (most repeated value), standard

5.1 Experimental Validation 71

deviation (SD, fluctuation arithmetic average from the mean), coefficient of variation (CV,

relationship between the size of the mean and the variability of the variable), interquartile

range (IQR, measure of variability when the measure of central position is the median,

which results of higher quartile Q - lower Q, such opinions are selected for quantity and

experience years), and average percent of majority opinions (APMO, from Equation 5-1)

for a scale of 5 points (Likert). Chi-squared of Pearson (hypothesis test for comparing the

observed distribution to an expected distribution of the data), contingency coefficient (CC,

relationship between two and more variables), and frequency for a escale of two points

(nominal). Consensus criteria for a significance level are defined according to the measures

indicated for questionnaires (Heiko, 2012; Holey et al., 2007), which are presented in every

statistical analysis. Results are analized from the SPSS Statistics program (except the

APMO).

APMO =
majority agreements+majority disagreements

total opinion expressed
x 100 % (5-1)

5.1.2. Executing and Analyzing Experiment

Experiment data and report are generated from a survey (descriptive research instrument

selected for collecting data) performed to scientific, computing, and simulation experts.

Scientific Experts

We carry out an experiment by using the PCS presented to chemical SSD in the lab study

(see Figure 4-33). Such an experiment allows for analyzing the level of understanding of

chemical experts about the proposed model. Sample size is 36 experts (professionals in the

area, professors, and students) from universities with programs in chemistry and companies

in the chemical field in Colombia within 30 days (see Table 5-2).

Table 5-2 Experiment sample (Noreña et al., 2019)
SAMPLE

EXPERT
PROFILE

QUANTITY PERCENTAGE EXPERIENCE
YEARS RANGE

Professional
In the area

18 50% 2-18

Professor 8 22% 3-18

Student 10 28% 0-3
TOTAL 36 100% 0-18

Experiment is performed in three steps:

Intutive recognition of the PCS, the chemical experts have not prior knowledge of the

PCS notation (both the notation in Figure 2-1 and the extension to PCS). Pre-conceptual

72 5 Validation

schema of the lab study (see Figure 4-33) is presented without explanation of the context

for achieving an intuitive recognition, which consists of understanding the domain and its

elements by using the PCS notation (Noreña et al., 2019).

Description of the domain, the chemical experts interpret the chemical processes and events

represented in the PCS and textually and qualitatively describe them in the survey by

using the question: please relate in your own words what is the process/theme/approach

represented in the pre-conceptual schema? corresponding to the variable domain. We

translate the performed description to answers in nominal dichotomous scale Yes/No for

validating the description of the domain. Yes is the answer used for descriptions, including

the concepts: mixture, substance, and concentration for the specific affirmation it is a mixture

process. No is the answer used for all descriptions different according to such an affirmation

(Noreña et al., 2019). Some descriptions and answers are presented in Table 5-3.

Table 5-3 Description of the domain. The Authors based on (Noreña et al., 2019)
ANSWER DESCRIPTION

Yes Substance mixture

Yes Mixture process between a liquid substance and a soluble substance

Yes Mixture process, input and ouput variables, and criteria for controlling the system

Yes Variable definition and control in a mixture process

Yes Preparation of chemical concentration

Yes Preparation of a solution by using substance mixture pure into a container

Yes Preparation of a product from a solvent and n soluble substances

Yes Realization of a mixture
Yes Protocol of a mixture of two substances
Yes An attempt for obtaining a mixture from immiscible substances
Yes Simulation of a mixture between a liquid substance and a soluble substance

Yes Simulation of a control system of mixture of liquid and soluble substances

Yes Description of concentration and mixture time by the expert, the program runs a
simulation of the mixture, which fulfills the time after the valve opens,
downloading a solution

No I do not know the concepts of the schema

No Dissolution

No Obtainment of a chemical product

No A schema with initial conditions
No A process with its respective operations is represented in the schema. Apparently,

there is no chemical reaction but only physical changes, which are intended to
establish a control system over the operations

No Analysis in decision making for the possibilities in a laboratory

We use the techniques selected for a scale of two points, which are used for statistically

analyzing the answers in the description of the domain. Obtained results for the variable

domain (see Table 5-4) are at a significance level according to the consensus criteria. Since,

the value of chi-squared of Pearson is in an acceptation zone, the value of CC presents a

correlation between experts and the description of the domain, and the value of the frequency

is 81 % for the answer yes (See Figure 5-1) in the concepts used in the description. Such

values indicate the experts understand the model without prior knowledge of the domain

and the PCS notation. Results contribute to support the hypothesis H11 (see Table 5-1).

5.1 Experimental Validation 73

Table 5-4 Statistical analysis of the domain. The Authors

STATISTICAL ANALYSIS

VARIABLE Domain
CONSENSUS

CRITERIA
N Valid 36

Lost
0,0

Chi-squared of
Pearson 3,719 <5

Contingency
Coefficient 0,306 <1

Frequency
81%

>67%
(Significance)

Hypothesis H11: S

9; 19%

27; 81%

Domain: It is a mixture process

No Yes

Figure 5-1 Frequency of the description of the domain. The Authors

Evaluation of the PCS, the chemical experts evaluate the model. Such an evaluation is

performed by using three questions: (i) evaluating the understanding level of PCS (Likert

scale: from 1 to 5, 1 is the lowest value and 5 the highest) corresponding to the variable

PCS understanding, (ii) could you understand the mathematical notation? corresponding

to the variable mathematical notation understandability, and (iii) do you consider as an

expert in your domain that the PCS can be usable for understanding events/phenomena

and processes, e.g., in a simulation/software development process? corresponding to the

variable PCS usability (Likert scale: strongly disagree, disagree, neutral, agree, strongly

agree; see Figure 5-2). We use the selected techniques for a scale of 5 points, which are used

for statistically analyzing the answers in the evaluation to PCS (see Table 5-5).

Most chemical experts (25) evaluate the PCS understandability between assessment levels 3

and 5 (see PCS understandability in Figure 5-2), for indicating the PCS is understandable

without prior knowledge of the PCS and their notation. The same frequency of professionals

in the area (5), can be observed for the three assessment levels 1, 3, and 4. However, most

answers is at levels 3 and 4 with a frequency of 10, to this value is added 1 at level 5,

74 5 Validation

indicating a majority. Most professors evaluate such a variable in the level 4.

0

1

2

3

4

5

6

1 2 3 4 5

PCS Understandability

Professional in area Professor Student

0

1

2

3

4

5

6

Strongly
disagree

Disagree Neutral Agree Strongly agree

Mathematical Notation
Understandability

Professional in area Professor Student

0

1

2

3

4

5

6

7

Strongly
disagree

Disagree Neutral Agree Strongly agree

PCS Usability

Professional in area Professor Student

Figure 5-2 Frequency of the PCS evaluation. The Authors based on Noreña et al. (2019)

Three profile experts also agree on the mathematical notation is understandable and the PCS

can be usable for understanding events/phenomena and processes in a simulation/software

development process (see mathematical notation understandability and PCS usability in

Figure 5-2).

Obtained results (see Table 5-5) in the mean, median, mode, SD, CV, IQR, and APMO

(see Equations 5-2) indicate a significance level according to the consensus criteria, which

contribute to support the hypothesess H11, H21, and H31 (see Table 5-1).

APMO =
25 + 11

36
x 100 % = 80, 4 % for PCS understandability

APMO =
17 + 10

36
x 100 % = 75, 0 % for Mathematical Notation understandability

APMO =
16 + 11

36
x 100 % = 75, 0 % for PCS usability

(5-2)

5.1 Experimental Validation 75

Table 5-5 Statistical analysis of the PCS evaluation. The Authors

STATISTICAL ANALYSIS

VARIABLES PC
S

U
nd

e
rs

ta
nd

a
b

ili
ty

M
a

th
e

m
a

tic
a

l
N

o
ta

tio
n

U
nd

e
rs

ta
nd

a
b

ili
ty

PC
S

U
sa

b
ill

ity

C
O

N
SE

N
SU

S
C

RI
TE

RI
A

N Valid
36 36 36

Lost 0,0 0,0 0,0

Mean 3,0 3,1 3,1 <=5

Median 3,0 3,0 3,0 <=5

Mode 3,0 4,0 4,0 >=3

Standard Deviation
1,1 1,2 1,2 ±1,0

Coefficient of Variation
0,4 0,4 0,4 <=0,5

Quartile

Lower 3,0 3,0 3,0 >=3

Higher 4,0 4,0 4,0 5

Interquartile range IQR
1,0 1,0 1,0 <=1

Average percent of
majority opinions APMO 80,4 75,0 75, 0 >69,7%

Hypothesis H11: S H21: S H31: S

Computing and Simulation Experts

We carry out another experiment by using several PCS in SSD e.g., electronic (Noreña &

Zapata, 2018a), geology (Durango et al., 2018), epidemiology, (Noreña & Zapata, 2018b;

Noreña, 2018), and industry (Noreña & Zapata, 2019). Such an experiment allows for

analyzing the level of understanding of computing experts (19) and simulation experts (20)

from international universities and companies in computational sciences and simulation

about the proposed model. The experiment is performed in two steps:

Recognition of the PCS, the experts have an explanation of the PCS notation (both the

notation in Figure 2-1 and the extension to PCS) and the SSD representation.

Evaluation of the PCS, the experts evaluate the model. Such an evaluation is performed by

using three questions: (i) Could you understand the PCS? corresponding to the variable

PCS understanding, (ii) Could you understand the event notation? corresponding to the

variable event notation understandability, and (iii) do you consider as an expert in your

domain PCS can be usable in SSD? corresponding to the variable PCS usability, with

answers in nominal dichotomous scale Yes/No and a qualitatively answer in every question

Why? for extending their answers.

76 5 Validation

Experiment to computing experts (professors, students, and professional in the area) is

developed in two rounds. The sample for such rounds is presented in Table 5-6.

Table 5-6 Sample of computational sciences. The Authors
SAMPLE (Round 1. Computational sciences)

EXPERT
PROFILE

QUANTITY PERCENTAGE PLACE

Professor (Ph.D.) 4 66,6% Argentina
Spain
Paraguay

Ph.D. student 2 33, 4% Argentina
Colombia

TOTAL 6 100%

SAMPLE (Round 2. Computational sciences)
EXPERT PROFILE QUANTITY PERCENTAGE PLACE

Professor (Ph.D.) 3 23, 1%

Mexico
Undergraduate

student
4 30, 7%

Graduate student 3 23, 1%
Professional in the

area
3 23, 1%

TOTAL 13 100%

We use the techniques selected for a scale of two points, which are used for statistically

analyzing the answers. Some qualitative answers are presented in Table 5-7. Most experts

confirm the variables PCS understandability, event understandability, and PCS usability (see

Figure 5-3 and Tables 5-8 and 5-9).

0

1

1

2

2

3

3

4

4

5

Yes No Yes No Yes No

PCS Understanding Event understanding PCS Usability

Round 1. Computational sciences

Professor (Ph.D) Graduate student

0
1
1
2
2
3
3
4
4
5

Yes No Yes No Yes No

PCS Understanding Event Understanding PCS Usability

Round 2. Computational Sciences

Professor (Ph.D.) Undergraduate student

graduate student Professional in the area

Figure 5-3 Frequency Round 1 and 2 of computational sciences. The Authors

Table 5-7 Qualitative answers of computational sciences. The Authors
Questions Qualitative Answers

Could you understand the
PCS? Why?

PCS allowed me to perceive the understanding of the logic-model (professor
Ph.D.)
PCS is easy to visualize (professor Ph.D.)
Not sure (professor Ph.D.)
I do not know the meaning pre-conceptual schema (professor Ph.D.)

Could you understand the
event notation? Why?

PCS allowed me to understand information structures embbed in the events
I can see results (professor Ph.D.)

Could the PCS be used in
SSD? Why?

PCS can be applied to any decision-making or information systems
Seems useful (professor Ph.D.)
It is a visualization of a model/algorithm
Not sure (professor Ph.D.)

5.1 Experimental Validation 77

Table 5-8 Statistical Analysis: Round 1 of computational sciences. The Authors

STATISTICAL ANALYSIS

VARIABLE
PCS

Understanding
Event

Understanding
PCS Usability

CONSENSUS
CRITERIA

N Valid 6 6 6
Lost

0,0 0,0 0,0

Chi-squared
of Pearson 2,4 2,4 0,0 <5

Contingency
Coefficient 0,535 0, 535 0,0 <1

Frequency (5) 83,3% (5) 83,3% (6) 100%
>67%

(Significance)

Hypothesis H11: S H21: S H31: S

Table 5-9 Statistical Analysis: Round 2 of computational sciences. The Authors
STATISTICAL ANALYSIS

VARIABLE
PCS

Understanding
Event

Understanding
PCS Usability

CONSENSUS
CRITERIA

N Valid 13 13 13
Lost 0,0 0,0 0,0

Chi-squared of
Pearson 1,264 0,90 2,758 <5

Contingency
Coefficient 0,298 0, 083 0,418 <1

Frequency (10) 76,9% (9) 69,3% (11) 84, 6 %
>67%

(Significance)

Hypothesis H11: S H21: S H31: S

Experiment of simulation experts (professors and professional in the area) is developed in

two rounds. Sample for such rounds is presented in Table 5-10.

Table 5-10 Sample of simulation. The Authors
SAMPLE (Round 1. Simulation)

EXPERT PROFILE QUANTITY PERCENTAGE PLACE

Professional in
the area

2 18,2% Canada,
China

Professor (Ph.D.) 9 81, 8% US
TOTAL 11 100%

SAMPLE (Round 2. Simulation)
EXPERT PROFILE QUANTITY PERCENTAGE PLACE

Professional in
the area

2 22,3%
US

Professor (Ph.D.) 7 77, 7%
TOTAL 9 100%

We use the techniques selected for a scale of two points, which are used for statistically

analyzing the answers. Some qualitative answers to the questions are presented in Table

5-11. Most experts confirm the variables PCS understandability, event understandability,

and PCS usability (see Figure 5-4 and Tables 5-12 and 5-13).

78 5 Validation

Table 5-11 Qualitative answers to simulation. The Authors
Questions Qualitative Answers

Could you understand the
PCS? Why?

It is very clear (Professional in the area)
It is very interesting (graduate student)

Could you understand the
event notation? Why?

Figures used allows for understanding it (Professional in the area)
Concepts are unknown (undergraduate student and professional in the area)

Could the PCS be used in
SSD? Why?

The component extension allows for extending the capability for representing
mathematical components (Professional in the area)

0
1
2
3
4
5
6
7
8
9

10

Yes No Yes No Yes No

PCS Understanding Event Understanding PCS Usability

Round 1. Simulation

Professor (Ph.D) Professional in the area

0

1

2

3

4

5

6

7

Yes No Yes No Yes No

PCS Understanding Event Understanding PCS Usability

Round 2. Simulation

Professor (Ph.D.) Professional in the area

Figure 5-4 Frequency Round 1 and 2 to Simulation. The Authors

Table 5-12 Statistical Analysis: Round 1 of simulation. The Authors
STATISTICAL ANALYSIS

VARIABLE
PCS

Understanding
Event

Understanding
PCS Usability

CONSENSUS
CRITERIA

N Valid 11 11 11
Lost 0,0 0,0 0,0

Chi-squared of
Pearson 2,44 0,0 2,44 <5

Contingency
Coefficient 0,147 0,0 0,147 <1

Frequency (10) 91% (11) 100% (10) 91%
>67%

(Significance)

Hypothesis H11: S H21: S H31: S

Obtained results to both computing and simulation experts are at a significance level

(answers Yes) according to the consensus criteria. Since, the value of chi-squared of Pearson

in an acceptation zone, the value of CC presenting a correlation between the experts and the

PCS understandability (see Figure 5-1), and the frequency indicate the experts understand

the model and the PCS notation. Results contribute to support the hypotheses H11, H21,

and H31 (see Tables 5-8, 5-9, 5-12, and 5-13).

5.2 Software Application 79

Table 5-13 Statistical Analysis: Round 2 of simulation. The Authors

STATISTICAL ANALYSIS

VARIABLE
PCS

Understanding
Event

Understanding
PCS Usability

CONSENSUS
CRITERIA

N Valid 9 9 9
Lost

0,0 0,0 0,0

Chi-squared of
Pearson 0,321 0,321 0,321 <5

Contingency
Coefficient 0,186 0,186 0,186 <1

Frequency (8) 88,8% (8) 88,8% (8) 88,8%
>67%

(Significance)

Hypothesis H11:S H21: S H31: S

5.2. Software Application

Python Code

A model is defined by using PCS for representing applications of complex event processing.

SIMULATION
TIME

=

30 days THRESHOLD

=

0,7

=

MINUTE 0
minutes

=

DAY 0 days

=

NextTIMESTAMP RANDOM
VALUE

=

0,0

OCURRENCE Inactive

=

THERMOMETER
STATE Off

=

RFID STATE Off

=

INITIAL CONDITIONS

Figure 5-5 Initial conditions to Python code (Noreña et al., in process)

Such a model is applied to a monitoring system of seafood in a warehouse in the industrial

domain (Noreña & Zapata, 2019). Such PCS is translated into Python code (see Figures

5-5, 5-6, and 5-7) and is also simulated in Python (in 30 days, see Figure 5-8, the events

are filtered and published to subscribers). The model is performed during the internship at

the University of Toronto. A part of the applied PCS is presented in Figure 5-9.

80 5 Validation

Figure 5-6 Timer to Python code (Noreña et al., in process)

SEAFOOD

ARRIVES TO

WAREHOUSE

{ RFID

}

=
RAND

>=
No

THRESHOLD

=

Inactive

RANDOM
VALUE

=

Active

Yes

RANDOM
VALUE

OCURRENCE

OCURRENCE

<=

DAY

TIME
SIMULATION

TIMESTAMP

Next

=

AND

=

StopTIMESTAMP

RFID
STATE On

=

RFID STATE Off

=

Push

SEAFOOD

AMOUNT

INPUT

VALUE 0

=

INSERTS

SEAFOOD

AMOUNT

ID

TIME

PRICE

TOTAL AMOUNT

TOTAL PRICE

SEAFOOD
TOTAL

AMOUNT

INPUT

VALUE 1

=

SEAFOOD

PRICE

INPUT

VALUE 2

=

SEAFOOD

TOTAL PRICE

INPUT

VALUE 3

=

SEAFOOD

TIME

INPUT

VALUE 4

=

INPUT

VALUE
TermI

=

NextTIMESTAMPRANDOM
VALUE

=

0,0

Figure 5-7 Event to Python code (Noreña et al., in process)

5.2 Software Application 81

Figure 5-8 Simulation in Python. (Noreña et al., in process)

{ THERMOMETER

}

{ RFID

}

EVENT

ATTRIBUTE

HAS

TermI

VALUE

ID

NAME

PUBLISHER

HAS

SUBSCRIPTION

HAS

EVENT

SUBSCRIBER

HAS

ID

NAME

CREATES

{ TIMER

}

=
+

1
minutes

MINUTEMINUTE

MINUTEMINUTE

=

1440
minutes

MINUTEMINUTE

=
+

1 days

DAYDAY

DAYDAY

PASSES

TIMETIME

THERMOMETER
STATE

THERMOMETER
STATE “On”

=

Yes

THERMOMETER
STATE

THERMOMETER
STATE “Off”

=

No

<=

DAYDAY

SIMULATION
TIME

TEMPERATURE

EMERGES

=
RAND

>=
No

THRESHOLD

=

“Inactive”

RANDOM
VALUE

RANDOM
VALUE

=

“Active”

Yes

RANDOM
VALUE

RANDOM
VALUE

OCURRENCEOCURRENCE

OCURRENCEOCURRENCE

<=

DAYDAY

TIME
SIMULATION

TIMESTAMPTIMESTAMP

“Next”

=

AND

=

“Stop”TIMESTAMPTIMESTAMP

RFID
STATE
RFID
STATE “On”

=

RFID STATERFID STATE “Off”

=

SEAFOOD

ARRIVES TO

WAREHOUSE

SEAFOOD

ARRIVES TO

WAREHOUSE

INITIAL CONDITIONS

Push

SEAFOOD

AMOUNT

INPUT

VALUE 0

=

INSERTS

SEAFOOD

AMOUNT

ID

TIME

PRICE

TOTAL AMOUNT

TOTAL PRICE

SEAFOOD
TOTAL

AMOUNT

INPUT

VALUE 1

=

SEAFOOD

PRICE

INPUT

VALUE 2

=

SEAFOOD

TOTAL PRICE

INPUT

VALUE 3

=

SEAFOOD

TIME

INPUT

VALUE 4

=

INPUT

VALUE
TermI

Push

TEMPERATURE

VALUE

INPUT

VALUE 5

=

INSERTS TEMPERATURE

TIME

INPUT

VALUE 6

=

TEMPERATURE

VALUE

TIME

=

“Next”TIMESTAMPTIMESTAMP

TIMESTAMPTIMESTAMP “Next”

=
AND

=

“Next”TIMESTAMPTIMESTAMP

=

“Stop”TIMESTAMPTIMESTAMP

=

0
minutesMINUTEMINUTE

{

}

<

1440
minutesMINUTEMINUTE

{

}

AMOUNT

SEAFOOD

HAS

PRICE

ID

TEMPERATURE

VALUE

HAS

TIME

TIME

{

}
TIME

=

DAYDAY

TOTAL
AMOUNT

TOTAL PRICE

=
SEAFOOD

TOTAL
AMOUNT

+

MAX SEAFOOD

AMOUNT

SEAFOOD
TOTAL

AMOUNT

{

}

=
SEAFOOD

TOTAL
PRICE

+

MAX SEAFOOD

PRICE

SEAFOOD
TOTAL
PRICE

SUBSCRIPTION

FILTER

PREDICATE

BLOCK
TermB

OUTPUT

INPUT

IS

IS

{

}
TIME

=

DAYDAY

INPUT

VALUE
TermI

TermP

TermF

TermS

TermI

TermI

TermI

TermI

TermI

Subscription Reference

SUBSCRIPTION

SUBSCRIPTION{

}

Seafood.amount
Seafood.total_amount
Seafood.price

Seafood.total_price
Seafood.time
Temperature.value
Temperature.time

SUBSCRIPTION

PREDICATE
0

PREDICATE
2

PREDICATE
1

PREDICATE
3

SUBSCRIPTION

SUBSCRIPTION
TermS

<
>
=
!=
<=
<=

SUBSCRIPTION

FILTER
TermF

TermFTermF 1

= +
=

SUBSCRIPTION

PREDICATE
0

SUBSCRIPTION

SUBSCRIPTION
TermS

=
SUBSCRIPTION

FILTER 0

TermSTermS 1

= +
TermSTermS

SELECTS

SUBSCRIBER

INSERTS

SUBSCRIPTION

SUBSCRIPTION
0

FILTER
TermF

SUBSCRIPTION

FILTER
0

{

}

NEW
PREDICATE

STATE

NEW
PREDICATE

STATE

=
“Yes”

NEW FILTER
STATE

NEW FILTER
STATE

=

“Yes”

BLOCK
TermB

=

SUBSCRIPTION

SUBSCRIPTION
0

TermBTermB
1

=
+

TermBTermB

TermFTermF

Push

Push

Push

Push

SUBSCRIPTION

BLOCK
TermB

Push

SUBSCRIPTION

SUBSCRIPTION

0

TermBTermB
1

= -
TermBTermB

SUBSCRIPTION

BLOCK
TermB

= +

1

Filter reference

SUBSCRIPTION

FILTER 0

TermSTermS
1

= -
TermSTermS

SUBSCRIPTION

SUBSCRIPTION
TermS

= +

1

Predicate reference

SUBSCRIPTION

PREDICATE
0

1

= -
TermFTermF

SUBSCRIPTION

FILTER
TermF

= +

1

TermFTermF

RANDOM
VALUE

RANDOM
VALUE

=

0,0

<=

DAYDAY

TIME
SIMULATION

TIMESTAMPTIMESTAMP

“Next”

=

AND

SIMULATION
TIME

=

30 days

=

MINUTEMINUTE 0
minutes

RANDOM
VALUE

RANDOM
VALUE

=

0,0

THRESHOLD

=

“Next”TIMESTAMPTIMESTAMP

=

0,7

OCURRENCEOCURRENCE “Inactive”

=

THERMOMETER
STATE

THERMOMETER
STATE “Off”

=

RFID STATERFID STATE “Off”

==

DAYDAY 0 days

INPUT
ATTRIBUTE 0

=

“Seafood.amount”

INPUT
ATTRIBUTE 1

=

“Seafood.total_amount”

INPUT
ATTRIBUTE 3

=

“Seafood.total_price”

INPUT
ATTRIBUTE 2

=

“Seafood.price”

INPUT
ATTRIBUTE 4

=

“Seafood.time”

INPUT
ATTRIBUTE 5

=

“Temperature.value”

INPUT
ATTRIBUTE 6

=

“Temperature.time
”

FILTER
RESULT
FILTER
RESULT

=

“False”

SUBSCRIPTION

BLOCK
0

=

0

TermBTermB

=

0

NEW PREDICATE
STATE

NEW PREDICATE
STATE

=

-Yes
-No

NEW FILTER
STATE

NEW FILTER
STATE

=
-Yes
-No

TermFTermF

=
1

TermSTermS

=

1

NEW PREDICATE
STATE

NEW PREDICATE
STATESELECTSSUBSCRIBER

NEW STATE
FILTER

NEW STATE
FILTERSELECTSSUBSCRIBER

Figure 5-9 PCS applied to CEP (Noreña et al., in process)

82 5 Validation

PL/SQL Code

PCS used in the lab study (in chemical domain, see Figure 4-33) is translated into PL/SQL

code (see event: concentración de sustancia incrementa in Figure 5-10 and Figure 4-32 in

an English version). Such a translation is performed by Zapata-Tamayo (2019).

{

}

=

+

*

/

^

2

COEFICIENTE
DE VARIACIÓN

CONCENTRACIÓN DE
SUSTANCIA

CANTIDAD DE
SUSTANCIA SOLUBLE

+

INCREMENTAINCREMENTA

CONCENTRACIÓN
DE SUSTANCIA

CONCENTRACIÓN DE
SUSTANCIA

CÓDIGO MEZCLA

CANTIDAD INICIAL
SUSTANCIA LÍQUIDA

INSERTA

=

“Pare”
MARCA DE

TIEMPO
MARCA DE

TIEMPO

=

“Pare”
MARCA DE

TIEMPO

=

“Siga”MARCA DE
TIEMPO

MARCA DE
TIEMPO

CONCENTRACIÓN DE
SUSTANCIA

CÓDIGO

CONCENTRACIÓN DE
SUSTANCIA

CÓDIGO

=

1

+

=
“Cerrada”VÁLVULAVÁLVULA

=

“Abierta”

VÁLVULAVÁLVULA

AND

CONCENTRACIÓN
DE SUSTANCIA

MAX

=

MEZCLA

CÓDIGO

CONCENTRACIÓN

*

MEZCLA

VELOCIDAD
MÍNIMA

TIEMPO
MEZCLA

MEZCLA

VELOCIDAD
MÍNIMA

TIEMPO
MEZCLA

*

CONCENTRACIÓN DE
SUSTANCIA

TIEMPO LOCAL

=

TIEMPO
MEZCLA

CANTIDAD INICIAL
SUSTANCIA LÍQUIDA

+

=
*

=

+

CONCENTRACIÓN DE
SUSTANCIA

CANTIDAD MÍNIMA
DE SUSTANCIA LÍQUIDA

CONCENTRACIÓN DE
SUSTANCIA

CANTIDAD DE
SUSTANCIA LÍQUIDA

CANTIDAD INICIAL
SUSTANCIA LÍQUIDA

MEZCLA

VELOCIDAD
MÍNIMA

TIEMPO
MEZCLA

*
MEZCLA

VELOCIDAD
MÍNIMA

TIEMPO
MEZCLA

Figure 5-10 Event: concentración de sustancia incrementa (Noreña et al., 2019)

Figure 5-11 Event to PL/SQL Code (Zapata-Tamayo, 2019)

C++ Code

A model based on the extended PCS is constructed in the petroleum engineering domain.

Such a model includes complex mathematical notation and event representation, which were

represented by using PCS (see some events in Figure 5-12). The model is translated into

5.2 Software Application 83

C++ code and simulated in a literature case (see code of the event: mesh appears in Figure

5-13). Such a translation is performed by Velásquez (2019).

Figure 5-12 Event representation in petroleum engineering SSD (Velásquez, 2019)

Figure 5-13 C++ code by using PCS (Velásquez, 2019)

84 5 Validation

5.3. Publications

Research Projects

Representación de eventos en esquemas preconceptuales mediante roles semánticos

y ecuaciones matemáticas. Tecnológico de Antioquia, Institución Universitaria and

Universidad Nacional de Colombia (Hermes code 39365), 2017-2018.

Una extensión al esquema preconceptual para el refinamiento en la representación de

eventos y la notación matemática. Universidad Nacional de Colombia (Hermes code

39886), 2017-2020.

Complex Event Processing by Using Pre-conceptual Schemas. University of Toronto,

2019.

Tutoring

Carolina Cárdenas & Daniel Bedoya. Mathematical Structures Integration in Software

Engineering for Representing Events in Automatic Systems by using Pre-conceptual

Schemas. Degree Project, Tecnológico de Antioquia. Institución Universitaria, 2018.

Research Internship

Middleware Systems Research Group, Department of Electrical and Computer

Engineering, University of Toronto, Canada. Supervisor Arno-Hans Jacobsen. From

January to April 2019.

Book Chapters

Noreña, P. A., Torres, D. M., & Zapata C. M. (2017). “Interoperabilidad dinámica entre

sistemas basados en internet de las cosas: una representación a partir de esquemas

preconceptuales”, Industria 4.0 Escenarios e impactos. Medelĺın: Universidad de

Medelĺın, 159–173.

Noreña, P. A. Zapata, C. M., & Villamizar, A. (2018). “Representación de eventos a

partir de estructuras lingǘısticas basadas en roles semánticos: una extensión al esquema

preconceptual”. Investigación e Innovación en Ingenieŕıa de Software 2, Medelĺın:

Publicar T, Sello editorial TdeA, 69–79.

5.3 Publications 85

Book

Zapata-Jaramillo, C. M., Noreña, P. A. & Zapata-Tamayo, S. Especificación de

las caracteŕısticas estructurales, dinámicas, télicas y eventuales de los esquemas

preconceptuales. Medelĺın: Universidad Nacional de Colombia, in process.

Journal Papers

Noreña, P. A., Zapata, C. M., & Villamizar, A. (2019). Representing Chemical Events

by using Mathematical Notation from Pre-conceptual Schemas. IEEE Latin American

Transactions, 17(01), 46–53.

Noreña, P. A. & Zapata, C. M. (2019). Business Simulation by using Events from

Pre-conceptual-Schemas. Development in Business Simulation and Experiential

Learning, 46, 258-263.

Noreña, P. A. & Zapata, C. M. (2018). Una representación basada en esquemas

preconceptuales de eventos determińısticos y aleatorios tipo señal desde dominios de

software cient́ıfico. Research in Computing Science, 147(6), 207–220.

Durango, C., Noreña, P. A., & Zapata, C. M. (2018). Representación de eventos de

ruido ambiental a partir de esquemas preconceptuales y buenas prácticas de educción

geoespacial de requisitos. Research in Computing Science, 147(6), 327–341.

Noreña, P. A. & Zapata, C. M. (2018). A Game for Learning Event-Driven

Architecture: Pre-conceptual-Schema-based Pedagogical Strategy. Development in

Business Simulation and Experiential Learning, 45, 312–31.

Calle, J. Noreña, P. A., & Zapata, C. M. Extension to Pre-conceptual Schemas: A

Set of New Mathematical Structures for Scientific Software Domain Representation.

Ingeniare, in process.

Zapata-Jaramillo, C. M., Zapata-Tamayo, S., & Noreña, P. A. Conversión de eventos

desde esquemas preconceptuales en código PL/pgSQL: simulación de software en la

cuarta revolución industrial. Revista Ibérica de Sistemas e Tecnologias de Informação,

in process.

86 5 Validation

Noreña, P. A. & Zapata, C. M. Simulating Events in Requirements Engineering by

using Pre-conceptual-Schema-based Components from Scientific Software Domain

Representation. IET Software, in process.

Noreña, P. A., Scaunasu, B. Elliott, G., Jacobsen A. H., Zapata, C. M. & Mosquera, J.

D. Complex Event Processing by Using Pre-conceptual Schemas. IEEE Transactions

on Services Computing, in process.

Conferences

Noreña, P. A. & Zapata, C. M. (2017). Una extensión al esquema preconceptual para

el refinamiento en la representación de eventos y la notación matemática. In Latin

American Software Engineering (LASES 2017), Medelĺın, Colombia. (Poster).

Noreña, P. A. Zapata, C. M., & Villamizar, A. (2018). Estructuras lingǘısticas

basadas en roles semánticos para la representación de eventos a partir del esquema

preconceptual. In Seminario Internacional de Investigación en Ingenieŕıa de software

(SEIIIS 2017), Medelĺın, Colombia.

Noreña, P. A. (2018). Una extensión al esquema preconceptual para el refinamiento

en la representación de eventos y la notación matemática. In XXI Ibero-American

Conference on Software (CIbSE 2018), Bogotá, Colombia, 589–596. (Conference

paper).

Noreña, P. A. & Zapata. (2018). A Pre-conceptual-Schema-based Representation

of Time Events Coming from Scientific Software Domain. In 22nd World

Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI 2018),

Orlando, US, 53–58. (Conference paper).

Noreña, P. A. (2018). Una extensión al esquema preconceptual para el refinamiento

en la representación de eventos y la notación matemática. In Tesis en Tres Minutos

(3MT). Universidad Nacional de Colombia, Bogotá campus, Colombia.

Software Application

Noreña, P. A., Zapata, C. M., & Mosquera J. D. (2019). Software for CEP from PCS.

Intellectual property registration: 13-75-118.

5.4 PCS Templates to Case Tools 87

5.4. PCS Templates to Case Tools

PCS templates to case tools: Draw.ioTM and Microsoft VisioTM are constructed

as value added (see Figure 5-14) for easy creating a PCS. The templates

are files (on English and Spanish), which can be downloaded from the link

https://github.com/panorenac/PCS-Templates.git.

PCS template to Draw.xml can be used by selecting the option file from the menu, selecting

the option open Library from (selecting the location of downloaded file from the device/a

website i.e., Google drive, GitHub, etc.), and selecting the button open. Then, the template

should appear in the shapes (symbol place on the left side of the main screen; see Figure

5-14 a).

PCS template to VISIO.vss can be used by selecting from the shapes (left side of the main

screen), the option more shapes, selecting the option open symbol gallery, searching the

downloaded file in the location, and selecting the button open. Then, the template should

appear in the shapes (see Figure 5-14 b).

(a)
(b)

Figure 5-14 Templates to Draw.io (a) and Microsoft Visio (b). The Authors

https://github.com/panorenac/PCS-Templates.git

88

6 Conclusions and Challenges

Challenges are an opportunity to test you and rise to the next level.
—Angelica Montrose

6.1. Conclusions

The refinement of event representation and mathematical notation by using an extension

to pre-conceptual schemas is proposed in this Ph.D. Thesis, which is achieved by obtaining

the following contributions:

Related to characterizing events

Events were characterized by searching events emerging in SSD.

An eventual verb list (report) was constructed by using semantic roles (actants and

circumstants) for events from computational linguistics and scientific modeling.

Related to defining structures

New scientific components are added to PCS notation.

New linguistic structures for PCS extension are based on the events characterized and

38 eventual verbs found.

New graphical structures for representing events (with zero to two actants) are defined

according to the proposed linguistic structures.

New mathematical structures for PCS extension are extracted from mathematical

models (complex equations) used in SSD. New graphical structures as: nodes

(parameter, variable, vectors, and matrices), gatherers (initial condition and array

table) and complex operators (mathematical, arrays, and trigonometrics) are defined

for the mathematical structures by following the elements from the PCS notation.

Related to proposing an extension to PCS

An extension to PCS is proposed for refining event representation and mathematical

notation in SSD.

6.1 Conclusions 89

Several SSD were represented in PCS by involving expert guidance.

PCS extension integrates scientific components; allows for representing the time and

functionality of the events and structural and dynamic view of the elements of any SSD;

understanding and recognition of the processes, events, and mathematical models in a

SSD.

Business analysts, scientists, and students can use the PCS as computing models for

representing SSD and their elements in software development and simulation.

Both software engineering and science fields are integrated in this Ph.D. Thesis. The

extended PCS allows for integrating scientific and software components and reducing

the gap between both fields.

Related to validating the extended PCS

An experiment with 36 scientist experts was carried out from universities and

companies at Colombia in chemical domain for evaluating the understandability and

usability of the proposed solution.

An experiment with 39 computing and simulation experts was carried out from

universities and companies at Colombia, US, Mexico, Argentina, España, Paraguay,

and China. Geology, electrical, and industrial domains were used for evaluating the

understandability and usability of the proposed solution.

A software application for CEP from PCS is developed for evaluating the

understandability and completeness of the proposed solution in the internship.

Validation results according to the statistical analysis were obtained from the consensus

criteria by indicating the experts recognize and understand the extended PCS, its

elements, and notation.

Experts also consider events, and mathematical notation are understandable. Experts

also indicate the PCS can be used for representing SSD.

Research projects (3), tutoring (1), research internship (1), book chapters (2), journal

papers (9), conferences (5), and software application (1) were performed as result

publications of this Ph.D. Thesis.

We relate such conclusions with the methodology phases (solution and validation) and their

activities and work products in Table 6-1.

90 6 Conclusions and Challenges

Table 6-1 Conclusions. The Authors
Methodology/

objectives
Activities Work product:

Finding
Conclusions: Contributions

Solution
<phase>

✓ Events were characterized by searching events emerging in SSD.
✓ An eventual verb list was constructed by using semantic roles (actants

and circumstants) for events from computational linguistics and
scientific modeling.

✓ New scientific components are added to PCS notation. New linguistic
structures for PCS extension: 38 eventual verbs found.

✓ New mathematical structures for PCS extension are extracted from
mathematical models (complex equations) used in SSD.

✓ New graphical structures for representing events (with 0 to 2 actants)
are defined according to the proposed linguistic structures.

✓ New graphical structures as nodes (parameters, variables, vectors, and
matrices), gatherer (initial conditions), and complex operators
(mathematical, array, and trigonometric) are defined by following the
elements from the PCS notation.

✓ A PCS extension is proposed for refining event representation and
mathematical notation in SSD.

✓ Several SSD were represented in PCS by involving expert guidance.
✓ PCS extension integrates scientific components; allows for representing

time and functionality of the events and a structural and dynamic
view; understanding and recognition of the processes, events,
concepts, and mathematical models in a SSD.

✓ Business analysts, scientists, and students can use the PCS as
computing model for representing SSD and their elements in software
development and simulation.

Extension to PCS

Characterizing
events

Defining
mathematical
structures

Defining linguistic
structures

Defining graphical
structures

Event report
Eventual Verb List

Linguistic
structures

Mathematical
structures

Graphical
structures

CHARACTERIZING

DEFINING

PROPOSING
Including
extension to PCS

Work : Conclusions: Contributions✓ Both software engineering and science fields are integrated in this
Ph.D. Thesis. The extended PCS allows for integrating scientific and
software components and reducing the gap between both fields.

Validation
<phase>

✓ An experiment with 36 scientist experts was carried out from
universities and companies at Colombia in the chemical domain for
evaluating the understandability and usability of the proposed
solution.

✓ An experiment with 39 computing and simulation experts was
carried out from universities and companies in Colombia, US,
Mexico, Argentina, España, Paraguay, and China in geology,
electrical, and industrial domains for evaluating the
understandability and usability of the proposed solution.

✓ A software app for CEP from PCS is developed in the internship.

✓ Validation results according to the statistical analysis were obtained
from the consensus criteria by indicating the experts recognize and
understand the extended PCS, its elements, and notation.

✓ Experts also consider events and mathematical notation are
understandable.

✓ Finally, experts also indicate the PCS can be used for representing
SSD.

Experiment

Software
Application

VALIDATING Executing
experiment

Analyzing
experiment

Experimental
reports

6.2. Challenges

The following challenges are identified as future work from this Ph.D. Thesis:

PCS usability in industry, some students and analysts have presented and used PCS in

software development from the industry. However, PCS are mostly used in academia.

Analysts and scientists in industry can take advantage of the benefits of the PCS.

Requirements engineering of SSD, requirements engineering for events, needs from software

6.2 Challenges 91

engineering continue emerging. Therefore, best practices, methods, patterns, etc. can be

assisted by modeling with PCS in the development process for SSD and event approaches,

especially in requirements engineering, since this phase contains the problem solution. Such

challenges would continue reducing the gap between science and software engineering fields.

Representation and simulation of other domains, other equations, several models, languages,

and tools in modeling and simulation can be explored from PCS.

CEP applications modeling by using PCS, a first approach was performed in the internship,

which can be improved according to data generation and event filtering techniques.

Event patterns, architectures Pub/Sub, architectures based on models, architectures based on

events, and distributed event-based systems can be also represented by using PCS.

Events, conditions, and data can be modeled in Databases from PCS.

PCS exploration from Neural networks and artificial Intelligence, e.g., machine learning and

automated processes can be perfomed based on PCS.

Mathematical teaching by using PCS, a complete domain of a mathematical operation can be

graphically represented in PCS. Then, PCS can be used as a tool in mathematical teaching

processes.

Neural networks,
Artificial Intelligence

Requirements engineering
of SSD, requirements
engineering for events

Event patterns,
Architectures Pub/Sub

Architectures based on
models/events, Distributed
Event-Based Systems

CEP applicationsPCS usability in industry Databases

Representation and
simulation: other domains
other equations

Mathematical teaching by
using PCS

Figure 6-1 Challenges. The Authors

92

References

Amjad, A., Azam, F., Anwar, M. W., & Butt, W. H. (2017). Verification of Event-Driven

Process Chain with Timed Automata and Time Petri Nets. In 9th IEEE-GCC Conference

and Exhibition (GCCCE). IEEE. Manama, Bahrain, 1–6.

Armas-Cervantes, A., Baldan, P., Dumas, M., & Garcia-Bañuelos, L. (2016). Diagnosing

Behavioral Differences between Business Process Models: An Approach based on Event

Structures. Information Systems, 56:304–325.

Balkesen, C., Dindar, N., Wetter, M., & Tatbul, N. (2013). RIP: Run-based Itra-query

Parallelism for Scalable Complex Event Processing. In 7th ACM International Conference

on Distributed Event-based Systems. ACM. Texas, US, 3–14.

Baouya, A., Bennouar, D., Mohamed, O. A., & Ouchani, S. (2015). A Probabilistic and

Timed Verification Approach of SysML State Machine Diagram. In 12th International

Symposium on Programming and Systems (ISPS). IEEE. Algiers, Algeria, 1–9.

Bazhenova, E., Zerbato, F., Oliboni, B., & Weske, M. (2019). From BPMN process models

to DMN decision models. Information Systems, 83:69–88.

Bazydlo, G., Adamski, M., & Stefanowicz, L. (2014). Translation UML diagrams into Verilog.

In 7th International Conference on Human System Interactions (HSI). IEEE. Costa da

Caparica, Portugal, 267–271.

Beltrán-Saavedra, P. A. (2015). Precio del petróleo y el ajuste de las tasas de interés en las

economı́as emergentes. Borradores de Economı́a, 901:1–37.

Boubeta-Puig, J., Dı́az, G., Valero, V., & Ortiz, G. (2019). Medit4CEP-CPN: An Approach

for Complex Event Processing Modeling by Prioritized Colored Petri Nets. Information

Systems, 81:267–289.

Boubeta-Puig, J., Ortiz, G., & Medina-Bulo, I. (2015). Medit4CEP: A Model-Driven Solution

for Real-time Decision Making in SOA 2.0. Knowledge-Based Systems, 89:97–112.

Burcea, S., Cică, R., & Bojariu, R. (2016). Hail Climatology and Trends in Romania:

1961–2014. Monthly Weather Review, 144(11):4289–4299.

References 93

Calle, J. M. (2016). Identificación de patrones de diseño para software cient́ıfico a partir

de esquemas preconceptuales. M.Sc. Thesis, Universidad Nacional de Colombia, Medelĺın

Campus, Colombia.

Calle, J. M., Noreña, P. A., & Zapata, C. M. Extension to Pre-conceptual Schemas: A Set of

New Mathematical Structures for Scientific Software Domain Representation. Ingeniare,

in process.

Campos-Rebelo, R., Costa, A., & Gomes, L. (2015). Event Life Time in Detection of

Sequences of Events. In IEEE International Conference on Industrial Technology (ICIT).

IEEE. Seville, Spain, 3144–3149.

Chaverra, J. J. (2011). Generación automática de prototipos funcionales a partir de esquemas

preconceptuales. M.Sc. Thesis, Universidad Nacional de Colombia, Medelĺın Campus,

Colombia.

Chen, W., Wang, J., Shi, D., & Shi, L. (2017). Event based State Estimation of Hidden

Markov Models through a Gilbert–Elliott Channel. IEEE Transactions on Automatic

Control, 62(7):3626–3633.

Choi, E., Bahadori, M. T., Schuetz, A., Stewart, W. F., & Sun, J. (2016). Doctor ai:

Predicting Clinical Events via Recurrent neural networks. In Machine Learning for

Healthcare Conference. Durham, US, 301–318.

Chonoles, M. J. (2017). “Behavior: State Machine Diagrams.” In OCUP 2 Certification

Guide (313–342). ElSevier: Cambridge.

Da Silva, A. R. (2015). Model-Driven Engineering: A Survey Supported by the Unified

Conceptual Model. Computer Languages, Systems & Structures, 43:139–155.

Dávid, I., Ráth, I., & Varró, D. (2018). Foundations for Streaming Model Transformations

by Complex Event Processing. Software & Systems Modeling, 17(1):135–162.

Dayeh, M., Evans, N., Fuselier, S., Trevino, J., Ramaekers, J., Dwyer, J., Lucia, R., Rassoul,

H., Kotovsky, D., Jordan, D., et al. (2015). First Images of Thunder: Acoustic Imaging of

Triggered Lightning. Geophysical Research Letters, 42(14):6051–6057.

Drăghici, T., Negreanu, L., Bratu, O. G., Tincu, R., Socea, B., Iancu, M. A., Stănescu, A.

M. A., & Diaconu, C. (2018). Liver Abnormalities in Patients with Heart Failure. Archives

of the Balkan Medical Union, 53(1):76–81.

Durango, C. E., Noreña, P. A., & Zapata, C. M. (2018). Representación de eventos de ruido

ambiental a partir de esquemas preconceptuales y buenas prácticas de educción geoespacial

de requisitos. Research in Computing Science, 147(2):327–341.

94 References

Etzion, O., Fournier, F., Skarbovsky, I., & von Halle, B. (2016). A Model Driven Approach

for Event Processing Applications. In 10th ACM International Conference on Distributed

and Event-based Systems. ACM. Irvine, US, 81–92.

Etzion, O., Niblett, P., & Luckham, D. (2011). Event Processing in Action. Stanford:

Manning Publications Co.

Fillmore, C. J. (1971). Some Problems for Case Grammar. Working Papers in Linguistics,

10:245–265.

Fillmore, C. J. (1977). The Case for Case Reopened in Syntax and Semantics. New York:

Academic Press In.

Gao, F., Curry, E., & Bhiri, S. (2014). Complex Event Service Provision and Composition

based on Event Pattern Matchmaking. In 8th ACM International Conference on

Distributed Event-Based Systems. ACM. New York, US, 71–82.

Garrudo, F. (1990). Enlace mediante casos entre inglés y español. Revista española de

lingǘıstica aplicada, 6:9–18.

Gilbert, J. K. (2004). Models and Modelling: Routes to more Authentic Science Education.

International Journal of Science and Mathematics Education, 2(2):115–130.

Giraldo, F. D., España, S., Giraldo, W. J., Pastor, Ó., & Krogstie, J. (2019). A Method to

Evaluate Quality of Modelling Languages based on the Zachman Reference Taxonomy.

Software Quality Journal, 27:1239–1269.

Gomaa, H. (2011). Software Modeling and Design: UML, Use Cases, Patterns, and Software

Architectures. Cambridge: Cambridge University Press.

Gruber, J. S. (1965). Studies in Lexical Relations. Ph.D. Thesis, Massachusetts Institute of

Technology, Boston, US.

Haas, W. (1960). Linguistic Structures. Word, 16(2):251–276.

Haisjackl, C., Soffer, P., Lim, S. Y., & Weber, B. (2018). How do humans inspect BPMN

models: An Exploratory Study. Software & Systems Modeling, 17(2):655–673.

He, Y. (2016). Ontology-based Vaccine and Drug Adverse Event Representation and

Theory-guided Systematic Causal Network Analysis toward Integrative Pharmacovigilance

Research. Current Pharmacology Reports, 2(3):113–128.

Heaton, D. & Carver, J. C. (2015). Claims about the Use of Software Engineering Practices

in Science: A Systematic Literature Review. Information and Software Technology,

67:207–219.

References 95

Heiko, A. (2012). Consensus Measurement in Delphi Studies: Review and Implications for

Future Quality Assurance. Technological Forecasting and Social Change, 79(8):1525–1536.

Herzberg, N., Meyer, A., & Weske, M. (2013). An Event Processing Platform for

Business Process Management. In 17th IEEE International Enterprise Distributed Object

Computing Conference. IEEE. Vancouver, Canada, 107–116.

Holey, E. A., Feeley, J. L., Dixon, J., & Whittaker, V. J. (2007). An Exploration of the Use

of Simple Statistics to Measure Consensus and Stability in Delphi Studies. BMC medical

research methodology, 7(1):52.

Howison, J., Deelman, E., McLennan, M. J., Ferreira da Silva, R., & Herbsleb, J. D. (2015).

Understanding the Scientific Software Ecosystem and its Impact: Current and Future

Measures. Research Evaluation, 24(4):454–470.

Jaramillo, C. M. & Esteban, P. V. (2006). Enseñanza y aprendizaje de las estructuras

matemáticas a partir del modelo de van hiele. Revista Educación y pedagoǵıa, 18:109–118.

Johanson, A. & Hasselbring, W. (2018). Software Engineering for Computational Science:

Past, Present, Future. Computing in Science & Engineering, 20(2):90–109.

Kanewala, U. & Bieman, J. M. (2014). Testing Scientific Software: A Systematic Literature

Review. Information and software technology, 56(10):1219–1232.

Kelly, D. (2015). Scientific Software Development Viewed as Knowledge Acquisition: Towards

Understanding the Development of Risk-averse Scientific Software. Journal of Systems and

Software, 109:50–61.

Koltsov, V. B., Sevryukova, E. A., Yakovenko, D. V., & Kondrutieva, O. V. (2018).

Physical-Chemical Modelling of the Ingredients of Air in the System of Monitoring Modern

Industrial City. In IEEE Conference of Russian Young Researchers in Electrical and

Electronic Engineering (EIConRus). IEEE. Moscow, Russia, 1902–1906.

Kuipers, J., Ueda, T., & Vermaseren, J. (2015). Code Optimization in Form. Computer

Physics Communications, 189:1–19.

Kuznetsov, E. & Merzlikin, A. (2019). The Surface Wave on the Boundary between a

Hyperbolic Magnetooptical Single-axis Metamaterial and an Isotropic Dielectric. Journal

of Communications Technology and Electronics, 64(3):223–228.

Lee, S. & Hwang, I. (2015). Event-based State Estimation for Stochastic Hybrid Systems.

IET Control Theory & Applications, 9(13):1973–1981.

Li, Y. (2015). DRUMS: Domain-specific Requirements Modeling for Scientists. Ph.D. Thesis,

Technische Universität München, München, Germany.

96 References

Li, Y., Guzman, E., Tsiamoura, K., Schneider, F., & Bruegge, B. (2015). Automated

Requirements Extraction for Scientific Software. Procedia Computer Science, 51:582–591.

Liu, F. & Zhao, G. (2016). Monitoring of Software Project Progress base on Automata

Theory. In 2nd Workshop on Advanced Research and Technology in Industry Applications

(WARTIA-16). Atlantis Press. Dalian, China, 404–409

Liu, W., Tan, Y., Ding, N., Zhang, Y., & Liu, Z. (2016). An Ontology Pattern for Emergency

Event Modeling. In IEEE 14th International Conference on Dependable, Autonomic

and Secure Computing (DASC/PiCom/DataCom/CyberSciTech). IEEE. Auckland, New

Zeland, 151–156.

Luckham, D. (2002). The Power of Events. An Introduction to Complex Event Processing in

Distributed Enterprise Systems. Boston: Addison-Wesley.

Luckham, D. (2011). Event Processing for Business: Organizing the Real-time Enterprise.

New Jersey: John Wiley & Sons.

Luo, J. & Zhou, M. (2016). Petri-Net Controller Synthesis for Partially Controllable

and Observable Discrete Event Systems. IEEE Transactions on Automatic Control,

62(3):1301–1313.

Meng, M., Ping, W., Chao-Hsien, C, & Ling, L. (2014). Efficient Multipattern Event

Processing over High-speed Train Data Streams. IEEE Internet of Things Journal,

2(4):295–309.

Merkens, J.-L., Reimann, L., Hinkel, J., & Vafeidis, A. T. (2016). Gridded Population

Projections for the Coastal Zone under the Shared Socioeconomic Pathways. Global and

Planetary Change, 145:57–66.

Mezerins, A. (2014). Experimental Studies of Analog Signal Digital Representing based on

a High Performance Event Timer. In 14th Biennial Baltic Electronic Conference (BEC).

IEEE. Tallinn, Estonia, 169–172.

Molaei, S. M. & Keyvanpour, M. R. (2015). An Analytical Review for Event Prediction

System on Time Series. In 2nd International Conference on Pattern Recognition and

Image Analysis (IPRIA). IEEE. Rasht, Iran, 1–6.

Moreda, P. (2008). Los roles semánticos en la tecnoloǵıa del lenguaje humano: anotación y

aplicación. Ph.D. Thesis, Universidad de Alicante, Alicante, España.

Nanthaamornphong, A. & Carver, J. C. (2017). Test-Driven Development in Scientific

Software: A Survey. Software Quality Journal, 25(2):343–372.

References 97

Navas, J. (2017). Modelos matemáticos discretos en la empresa. España: Universidad de

Jaén.

Noreña, P. A. (2014). Un mecanismo de consistencia en los eventos disparador y de resultado

para los artefactos de UNC-Method. M.Sc. Thesis, Universidad Nacional de Colombia,

Medelĺın Campus, Colombia.

Noreña, P. A. (2018). An Extension to Pre-conceptual Schemas for Refining Event

Representation and Mathematical Notation. In XXI Ibero-American Conference on

Software: CIbSE 2018. Bogotá, Colombia, (45)589–596.

Noreña, P. A., Torres, D. M., & Zapata, C. M. (2017). “Interoperabilidad dinámica entre

sistemas basados en internet de las cosas: una representación a partir de esquemas

preconceptuales”. In Industria 4.0 Escenario e impacto (159–173). Medelĺın: Sello Editorial

Universidad de Medelĺın.

Noreña, P. A. & Zapata, C. M. (2018a). Una representación basada en esquemas

preconceptuales de eventos determińısticos y aleatorios tipo señal desde dominios de

software cient́ıfico. Research in Computing Science, 147(2):207–220.

Noreña, P. A. & Zapata, C. M. (2018b). A Game for Learning Event-driven Architecture:

Pre-conceptual-schema-based Pedagogical Strategy. Developments in Business Simulation

and Experiential Learning, 45:24–37.

Noreña, P. A. & Zapata, C. M. (2018c). A Pre-conceptual-schema-based Representation of

Time Events Coming from Scientific Software Domain. In 22nd World Multi-Conference

on Systemics, Cybernetics and Informatics: WMSCI 2018. Orlando, US, 53–58.

Noreña, P. A., Zapata, C. M., & Villamizar, A. E. (2018). “Representación de eventos a

partir de estructuras lingǘısticas basadas en roles semánticos: una extensión al esquema

preconceptual”. In Investigación e Innovación, v.2 (69–79). Medelĺın: Publicar T, Sello

editorial Tecnológico de Antioquia.

Noreña, P. A. & Zapata, C. M. (2019). Business Simulation by using Events from

Pre-conceptual Schemas. Developments in Business Simulation and Experiential Learning,

46:258–263.

Noreña, P. A., Zapata, C. M., & Villamizar, A. E. (2019). Representing Chemical Events

by using Mathematical Notation from Pre-conceptual Schemas. IEEE Latin America

Transactions, 17(01):46–53.

Noreña, P. A., Scaunasu, B., Elliott, G., Jacobsen, H. A., & Zapata, C. M. Complex Event

Processing by Using Pre-conceptual Schemas. IEEE Transactions on Services Computing,

in process.

98 References

Noreña, P. A. & Zapata, C. M. Simulating Events in Requirements Engineering

by using Pre-conceptual-Schema-based Components from Scientific Software Domain

Representation. Advances in Engineering Software, in process.

Obi, K., Ramsey, M., Hinton, A., Stanich, P., Gray II, D. M., Krishna, S. G., El-Dika,

S., & Hussan, H. (2018). Insights into Insulin Resistance, Lifestyle, and Anthropometric

Measures of Patients with Prior Colorectal Cancer compared to Controls: A National

Health and Nutrition Examination Survey (nhanes) Study. Current Problems in Cancer,

42(2):276–285.

OMG. (2011). Superestructure 2.4.1. OMG, Object Management Group. http://www.omg.

org/spec/UML/2.4.1.

OMG. (2014a). Business Process Model and Notation 2.0. OMG, Object Management Group.

https://www.omg.org/spec/BPMN/About-BPMN/.

OMG. (2014b). Model Driven Architecture (MDA) Guide rev. 2.0. OMG, Object

Management Group. https://www.omg.org/cgi-bin/doc?ormsc/14-06-01.

OMG. (2015). Superstructure 2.5. OMG, Object Management Group. http://www.omg.

org/spec/UML/2.5/.

Paddock, M. & Chapin, J. (2016). Bleeding diatheses: Approach to the Patient who Bleeds

or has Abnormal Coagulation. Primary Care: Clinics in Office Practice, 43(4):637–650.

Patri, O. P., Sorathia, V. S., Panangadan, A. V., & Prasanna, V. (2014). The Process-oriented

Event Model (PoEM): A Conceptual Model for Industrial Events. In 8th ACM

International Conference on Distributed Event-Based Systems. ACM. Mumbai, India,

154–165.

Payne, T. E. (1997). Describing Morphosyntax: A Guide for Field Linguists. Cambridge:

Cambridge University Press.

Pozo, J. I. (2006). Teoŕıas cognitivas del aprendizaje. Madrid: Ediciones Morata.

Ravikumar, G., Khaparde, S. A., & Joshi, R. K. (2016). Integration of Process Model and

CIM to represent Events and Chronology in Power System Processes. IEEE Systems

Journal, 12(1):149–160.

Reinartz, C., Metzger, A., & Pohl, K. (2015). Model-based Verification of Event-driven

Business Processes. In 9th ACM International Conference on Distributed Event-Based

Systems. ACM. Oslo, Norway, 1–9.

http://www.omg.org/spec/UML/2.4.1
http://www.omg.org/spec/UML/2.4.1
https://www.omg.org/spec/BPMN/About-BPMN/
https://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/

References 99

Sahoo, A., Xu, H., & Jagannathan, S. (2015). Adaptive Neural network-based

Event-Triggered Control of Single-input Single-output Nonlinear Discrete-time Systems.

IEEE Transactions on Neural Networks and Learning Systems, 27(1):151–164.

Sarno, R., Wibowo, W. A., Solichah, A., et al. (2015). Time based Discovery of Parallel

Business Processes. In International Conference on Computer, Control, Informatics and

its Applications (IC3INA). IEEE. Bandung, Indonesia, 28–33.

Shekarpour, S., Alshargi, F., Thirunaravan, K., Shalin, V. L., & Sheth, A. (2019). CEVO:

Comprehensive EVent Ontology Enhancing Cognitive Annotation on Relations. In IEEE

13th International Conference on Semantic Computing (ICSC). IEEE. Newport Beach,

US, 385–391.

Sudars, K., Bilinskis, I., Boole, E., & Vedin, V. (2015). Signal Analog-to-event-to-digital

Converting based on Periodic Sampling and Precise Event Timing. In 25th International

Conference Radioelektronika. IEEE. Pardubice, Czech Republic, 133–136.

Taiwe, G., Moto, F., Pale, S., Kandeda, A., Dawe, A., Kouemou, N., Ayissi, E., Ngoupaye,

G., Njapdounke, J., Nkantchoua, G., et al. (2016). Extracts of Feretia Apodanthera

del. demonstrated Anticonvulsant Activities against Seizures induced by Chemicals and

Maximal electroshock. Epilepsy Research, 127:30–39.

Tarun, M., Kumar, V., Kumar, S., Jajoo, M. U., Rahman, S. U., & Sengupta, J. (2017).

GPS and GSM based Rail Signaling and Tracking System. In 4th International Conference

on Control, Decision and Information Technologies (CoDIT). IEEE. Barcelona, Spain,

0500–0504.

Tesnière, L. (1965). Éléments de Syntaxe Structurale. Paris: Klincksieck.

Treur, J. (2016). Dynamic Modeling based on a Temporal–causal Network Modeling

Approach. Biologically Inspired Cognitive Architectures, 16:131–168.

Vásquez, A. S. & Sandova, E. L. (2017). Una comparación cualitativa de la dinámica de

sistemas, la simulación de eventos discretos y la simulación basada en agentes. Ingenieŕıa

Industrial, 35:27–52.

Velásquez, S. (2019). Un modelo ejecutable para la simulación multi-f́ısica de procesos de

recobro mejorado en yacimientos de petróleo basado en esquemas preconceptuales. M.Sc.

Thesis, Universidad Nacional de Colombia, Medelĺın Campus, Colombia.

Vose, R., Easterling, D. R., Kunkel, K., & Wehner, M. (2017). Temperature changes in the

United States. Climate Science Special Report: A Sustained Assessment Activity of the

U.S. Global Change Research Program, 267–300.

100 References

Wang, H., Lu, S., Zhang, C., Wang, Q., & Xu, F. (2016). Timing-IdeaGraph: A directed

Cognition Graph Approach for Decision Making based on Temporal Event Sequences. In

IEEE 20th International Conference on Computer Supported Cooperative Work in Design

(CSCWD). IEEE. Hsinchu, Taiwan, 322–326.

Wang, J., Chen, M., Shen, H., Park, J. H., & Wu, Z.-G. (2017). A Markov Jump Model

Approach to Reliable Event-triggered retarded Dynamic output Feedback H∞ Control for

Networked Systems. Nonlinear Analysis: Hybrid Systems, 26:137–150.

Wang, Y., Gao, H., & Chen, G. (2018). Predictive Complex Event Processing based on

Evolving Bayesian Networks. Pattern Recognition Letters, 105:207–216.

White, R. & McCausland, W. (2016). Volcano-tectonic Earthquakes: A New Tool for

Estimating Intrusive volumes and Forecasting Eruptions. Journal of Volcanology and

Geothermal Research, 309:139–155.

Wieringa, R. J. (2014). Design Science Methodology for Information Systems and Software

Engineering. New York: Springer.

Wiese, I. S., Polato, I., & Pinto, G. (2019). Naming the Pain in Developing Scientific Software.

IEEE Software. DOI: 10.1109/MS.2019.2899838.

Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis, M., Guy, R. T., Haddock,

S. H., Huff, K. D., Mitchell, I. M., Plumbley, M. D., et al. (2014). Best Practices for

Scientific Computing. PLoS biology, 12(1):e1001745.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012).

Experimentation in Software Engineering. New York: Springer.

Wonham, W., Cai, K., & Rudie, K. (2018). Supervisory Control of Discrete-Event Systems:

A Brief History. Annual Reviews in Control, 45:250–256.

Wu, T. H., Pang, G. K.-H., & Kwong, E. W.-Y. (2014). Predicting Systolic Blood Pressure

using Machine Learning. In 7th International Conference on Information and Automation

for Sustainability. IEEE. Colombo, Sri Lanka, 1–6.

Xia, H., Jiao, J., & Dong, J. (2019). Extend UML based Timeliness Modeling Approach for

Complex System. In International Conference on Mathematics, Modeling, Simulation and

Statistics Application (MMSSA 2018). Atlantis Press. Shanghai, China, 1–6.

Xia, W., Junpeng, M., et al. (2014). Research on Flexible Business Process of Bank

Modeling based on EPC. In International Conference on Management of e-Commerce

and e-Government. IEEE. Shanghai, China, 54–60.

References 101

Xue, D. & El-Farra, N. H. (2016). Output Feedback-based event-triggered Control of

distributed Processes with Communication Constraints. In IEEE 55th Conference on

Decision and Control (CDC). IEEE. Las Vegas, US, 4296–4301.

Xue, S., Wu, B., & Chen, J. (2013). LightEPC: A Formal Approach for Modeling personalized

Lightweight Event-Driven Business Process. In IEEE International Conference on Services

Computing. IEEE. Santa Clara, US, 1–8.

Zapata, C. M. (2007). Definición de un esquema preconceptual para la obtención automática

de esquemas conceptuales de UML. Ph.D. Thesis, Universidad Nacional de Colombia,

Medelĺın Campus, Colombia.

Zapata, C. M. (2012). The UNC-Method Revisited: Elements of the New Approach.

Saarbrücken: Lambert Academic Publishing.

Zapata, C. M., Noreña, P. A., & Granados, N. E. (2013). Representación de eventos

disparadores y de resultado en el grafo de interacción de eventos. Ingenieŕıas USBMed,

4(2):23–32.

Zapata, C. M., Noreña, P. A., & Vargas, F. A. (2014). The Event Interaction Game:

Understanding Events in the Software Development Context. Developments in Business

Simulation and Experiential Learning, 41:256–262.

Zapata-Tamayo, J. S. (2019). Generación semiautomática de código PL/SQL a partir

de representaciones de eventos basadas en esquemas preconceptuales. M.Sc. Thesis,

Universidad Nacional de Colombia, Medelĺın Campus, Colombia.

Zapata-Tamayo, J. S. & Zapata-Jaramillo, C. M. (2018). Pre-conceptual schemas: Ten

Years of Lessons Learned about Software Engineering Teaching. Developments in Business

Simulation and Experiential Learning, 45:250–257.

Zapata-Jaramillo, C. M., Zapata-Tamayo, S., & Noreña, P. A. Conversión de eventos desde

esquemas preconceptuales en código PL/pgSQL: simulación de software en la cuarta

revolución industrial. Revista Ibérica de Sistemas e Tecnologias de Informação, in process.

Zhang, K. & Zhang, L. (2016). Observability of Boolean Control Networks: A Unified

Approach based on the Theories of Finite Automata and Formal Languages. IEEE

Transactions on Automatic Control, 61(9):2733–2738.

Zhang, Y., Liu, W., Ding, N., Wang, X., & Tan, Y. (2015). An Event Ontology Description

Framework based on SKOS. In IEEE 12th International Conference on Ubiquitous

Intelligence and Computing. IEEE. Bali, Indonesia, 1774–1779.

102 References

Zhao, X.-J., Yang, Y.-Z., Zheng, Y.-J., Wang, S.-C., Gu, H.-M., Pan, Y., Wang, S.-J.,

Xu, H.-J., & Kong, L.-D. (2017). Magnesium isoglycyrrhizinate blocks Fructose-induced

hepatic NF-κb/NLRP3 Inflammasome Activation and Lipid metabolism disorder.

European Journal of Pharmacology, 809:141–150.

Zhong, X. & He, H. (2016). An Event-triggered ADP Control Approach for Continuous-time

System with Unknown Internal States. IEEE transactions on cybernetics, 47(3):683–694.

Zhu, L. (2018). Ontology Pattern of Trajectory Anonymity for Query events. In International

Conference on Sensor Networks and Signal Processing (SNSP). IEEE. Xi‘an, China,

457–461.

	Dedication
	Acknowledgments
	Abstract
	Resumen
	List of Figures
	List of Tables
	Introduction
	Background
	Conceptual Framework
	Events
	Model
	Analyst
	Pre-conceptual Schemas (PCS)
	Scientific Software Domains

	Ph.D. Thesis Focus
	Methodology
	Exploration
	Problem Formulation
	Solution
	Validation

	Research Problem
	Motivation
	State of the Art
	Planning Literature Review
	Executing Systematic Literature Review

	Problem Statement
	General Problem
	Specific Problems

	Research Question
	Hypothesis
	Objectives
	General Objective
	Specific Objectives

	Justification

	Extension to PCS
	Characterizing Events emerging from SSD
	Defining Linguistic and Graphical Structures for Event Representation in PCS
	Events with Zero Actants
	Events with One Actant
	Events with Two Actants

	Defining Mathematical and Graphical Structures for Event Representation in PCS
	Characterizing Elements of an Equation
	Defining Mathematical Notation in PCS
	Representing Equations in PCS
	Representing Events in PCS

	Lab Study
	Events Represented in PCS

	Validation
	Experimental Validation
	Planning Experiment
	Executing and Analyzing Experiment

	Software Application
	Publications
	PCS Templates to Case Tools

	Conclusions and Challenges
	Conclusions
	Challenges

	References

