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Abstract

On this thesis work, an analysis of lip region characterization techniques used to model

lip dynamics was performed. To carry out the analysis a video sequence database of Span-

ish alphabet was built and used to train a visual speech recognition system with several

feature extraction methodologies. The aim of the experiment is to evaluate the ability of

each feature set to model accurately lip movement. Appearance-based, shape-based and

spatiotemporal-based feature extraction methodologies were tested. Reported results let

choose the spatiotemporal features as the best descriptors for visual speech dynamics.

Keywords: Visual Speech Recognition, Visual Feature Extraction, Lip Movement

Modeling, Image Processing, Stochastic Modeling, Pattern Recognition

Resumen

En este trabajo de tesis se analizaron diferentes técnicas de caraterización de la región

labial, usadas para modelar la dinámica labial. Para llevar a cabo este análisis, se con-

struyó una base de datos de secuencias de video de la pronunciación del alfabeto español.

Esta base de datos se utilizó para entrenar un sistema de reconocimiento visual del habla

usando diferentes metodoloǵıas de extracción de caracteŕısticas. El objetivo del experi-

mento es evaluar la habilidad de cada conjunto de caracteŕısticas para modelar adecuada-

mente el movimiento labial. Se probaron metodoloǵıas basadas en apariencia, forma y una

representación espacio-temporal. Los resultados reportados permiten seleccionar las carac-

teŕısticas espacio-temporales como los mejores descriptores, dentro de los evaluados, de la

dinámica visual del habla.

Palabras clave: Reconocimiento visual del habla, Extracción visual de caracteŕısticas,

Modelado del movimiento labial, Procesamiento de imágenes, Modelado estocástico,

Reconocimiento de patrones.
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1 Preliminaries

1.1 Introduction

Automatic speech recognition (ASR) is currently an important research field, since wide

range of applications can be deployed by means of it. Mainly, human-computer interfaces

are being developed with ASR systems, that is because speech is the natural human com-

munication channel. Although current speech based tasks, such as dictation and automatic

translation, have been improved in recent years, their performance is strongly determined by

variables as the speaker dependence and the environment noise. Some state-of-the-art ASR

systems present high performance on “clean” environments, but under hard environment

conditions their performance is reduced drastically[1]. To overcome those issues some ap-

proaches propose the use of another channel of information to complement the audio signal

and make ASR systems robust enough to be deployable in field applications. Clearly, visual

speech is the first candidate to be a noise-robust source of information. The benefit of the use

of visual information on speech recognition tasks has been demonstrated [2]. Furthermore,

bimodal integration of audio and visual stimuli in perceiving speech has been demonstrated

by the McGurk effect [3]: when, for example, the spoken sound /ga/ is superimposed on

the video of a person uttering /ba/, most people perceive the speaker as uttering the sound

/da/. In addition, visual speech is of particular importance to the hearing impaired: mouth

movement is known to play an important role in both sign language and simultaneous com-

munication between the deaf.

There are three key reasons why vision benefits human speech perception [4]: it helps the

speaker localization (audio source), it contains speech segmental information that supple-

ments the audio, and it provides complimentary information about the place of articulation.

The latter is due to the partial visibility of articulators, such as the tongue, teeth, and lips,

which can help disambiguate some phonemes sets. For example, the unvoiced consonants

/p/ (a bilabial) and /k/ (a velar), the voiced consonant pair /b/ and /d/ (a bilabial and

alveolar, respectively), and the nasal /m/ (a bilabial) from the nasal alveolar /n/, all three

pairs are highly confusable based on acoustics alone. These facts have motivated significant

interest in automatic recognition of visual speech, formally known as automatic lipreading or

speechreading. Works in this field aims at improving ASR by exploiting the visual modality

of the speaker’s mouth region in addition to the traditional audio modality, leading to Visual

Speech Recognition (VSR) and Audiovisual Speech Recognition (AVSR) systems.

Compared to audio-only speech recognition, AVSR introduces new tasks on video signals,
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which are shown in Figure 1-1. First, a face detection, as well as a mouth or lips detection

are required to locate the informative area. Then, visual features must be extracted from

the Region of Interest in video recording. Finally, a combination strategy of audio and visual

features is needed aiming to improve the performance of the two single modality recognizers.

The last two issues, namely, visual feature extraction and audiovisual fusion, are important

research fields in the scientific community.

Input Recording

Audio Signal

Video Sequence

Transcription

Audio Feature
Extraction

Visual Feature
Extraction

Feature
Integration

Recognition
System

Figure 1-1: General AVSR system

The first automatic speechreading system was reported by Petajan [5] on 1984. Since then,

a lot of works have been introduced. Most of them deal with recognition tasks of speaker

(authentication) [6], isolated words [5–8], isolated digits [9, 10], letters [9, 11] and closed-

set sentences [12, 13], mostly in English. The wide range of applications and strategies to

perform AVSR tasks make those works hard to compare.

The main goal of this thesis work is to compare and select mouth region feature extraction

techniques by means of their performance on a VSR task. First, a mouth region segmenta-

tion and a lip contour extraction algorithms are presented as the initial stage of the VSR

system. Then, the set of visual feature extraction techniques used are presented. Finally,

each technique is used to develop a recognition system for isolated Spanish alphabet digits

by using a classical HMM-based classifier.

1.2 State of the art

The interest in facial image processing is leaded by the wide range of applications designed

to decode, read and recognize these images. Some applications are:

• Automatic face recognition systems.

• Gesture and face pose detection systems.

• Automatic speech recognition systems.
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Automatic face recognition is, probably, the first field which takes advantage of the informa-

tion on photographic images and video sequences to recognize facial structures. Specialized

classification algorithms, such as EigenFaces [14], allow an adequate recognition on a small

set of subjects on isolated images. In Takimoto et al. [15] and Bao et al. [16] several ap-

proaches to face contour detection are shown. They aim to locate the face and facial struc-

tures on photographic images of groups of people. These algorithms have a simple design

and are straightforward, although they loose accuracy on the facial structure location and

their segmentation.

On the other hand, there are applications which aim to detect face gestures. The main objec-

tive on this approaches is to achieve a high quality segmentation and structure parametriza-

tion, no matter the computational cost required to perform it. This applications are common

on virtual character generation, in which the most realistic representation of the face move-

ment is required. [17].

Besides, visual information transmission and Visual Speech Recognition (VSR) applications

are common [18]. In some cases, detected gestures are used to drive robotic systems, and a

low recognition time is reached, which enables a real time operation of the application.

Several visual features have been proposed on literature. In general, they can be grouped

in two sets, low level and high level features. On the latter, lip contour is extracted from

image sequences and represented by a parametric [19] or statistical [20] model, and the

parameters of the model are used as features; alternatively, geometric features are used

as a complement [21, 22]. On the former approach, full lip region image is considered as

informative and some appropriate transformations can be used as visual features [9, 19, 21–

25]. From feature extraction methodologies used to build databases for training and develop

of automatic recognition systems, most of the signals exhibited a stochastic behavior, which

has important discriminative information. The usual analysis of the feature vectors does not

show this behavior, on the contrary, it hides the information required to identify functional

states. Temporal information of lip movement has been used to develop more robust speech

recognition systems. In this field, the dynamic has been modeled by the inclusion of the first

and second time derivatives of the features. This approach improves the overall performance

of the system, even in noisy environments [26].

1.3 Objectives

1.3.1 General objective

To analyze and develop image feature extraction methodologies to model the lip region on

video sequences, with a representation quality suitable to perform a lip dynamic analysis by

means of stochastic variability modeling.



1.3 Objectives 7

1.3.2 Specific objectives

• To build a set of visual features, by means of artificial vision techniques, which allow

a suitable mouth modeling.

• To build a visual speech recognition system based on the stochastic modeling of the

lip dynamics.

• To test and compare the performance of the methodology against the most common

used feature extraction methodologies.



2 Materials and Methods

2.1 Lip Segmentation

Lip segmentation is one of the most important issues on Visual and Audio/Visual Speech

Recognition (AVSR), since it is the starting point of the recognition task. An accurate

lip detection improves the quality of visual information extracted from the speech video

sequences. Nonetheless, achieving a correct lip extraction has proved to be difficult due to

the weak color contrast and the significant overlap in color features between the lip and

the face regions. Moreover, features as lip shape variation in different people, skin color in

different human races, presence of facial hair and uncontrolled illumination conditions have

negative impact on the performance of lip segmentation algorithms.

Many techniques have been proposed for this task. Active contour algorithm was applied

by Delmas et al. [27] to extract the lip contour. The main drawback on this approach is the

parameter tunning and the algorithm initialization. Active shape methods [28] have also

been used, but they often converge to inaccurate results, when the lip edges are unclear

or lip color is close to face color. Also, these methods need a large training set to extract

lip shapes. Fuzzy c-mean clustering [29–31] techniques and parametric modeling [32, 33]

have been used to segment pixels from various facial structures. Although, those models are

highly dependent of the color contrast among facial structures.

In this chapter, a lip segmentation technique is introduced; the result of this stage will be

called the Region-of-Interest (RoI). Then, the jumping snake technique proposed by Eveno

et al. [34], which is employed to extract the lip contour, is explained. The RoI and the

extracted contour will be used in the visual feature extraction stage.

2.1.1 Pixel-based Mouth Structures Segmentation Techniques

Pixel-based techniques to mouth structure segmentation can be seen as a classifier, which

uses features extracted from each pixel in an image. Usually, pixel features consist of color

values from several color spaces. Since only the information of a single pixel is considered

in pixel-based approaches, the mapping of the pixel features must be robust to achieve

satisfactory results for the whole image segmentation.

Some approaches use standard color spaces, such as L∗a∗b∗, L∗u∗v∗ and Pseudo-hue [35]

(Equation 2-1), as features, which have shown high contrast between skin and lip component
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intensity [29–31, 33].

Ph(x, y) =
Red(x, y)

Red(x, y) +Green(x, y)
(2-1)

Other approaches attempt to find a combination of the standard color maps, aiming to reduce

the number of features, increase the mouth-lip discrimation and increase the accuracy rate

[32, 36]. Common color transformations used for lip segmentation are shown in Figure 2-1.

(a) Original Image

(b) u component (c) v component (d) L component

(e) a component (f) b component (g) Pseudo hue

Figure 2-1: Common color transformations for lip segmentation

The most common pixel classifiers are based on clustering or parametric modeling of the

feature space. K means [36] and Fuzzy C means [29–31] are examples of the former. In the

latter category, the most common model used to estimate the pixel feature distribution is

the Gaussian Mixture Model (GMM)[32, 33], which usually uses the K means algorithm as

an initialization stage. However, it is common to find an overlapping of mouth structures

on the feature space, which reduces the clustering techniques performance.



10 2 Materials and Methods

2.1.2 Texture-based Lip Segmentation Technique

The proposed technique performs a color mapping of a window centered on each pixel, then

a k-nearest neighbor k–nn classifier is used in the new space. The W × W sized window

is always considered odd, so it has a central pixel. The mapping can be achieved through

Principal Component Analysis (PCA) or Linear Discriminant Analysis (LDA). Depending

on the classification accuracy, one of those transformations is chosen. By using the color

information of the pixel neighborhood, the representation distance of near pixels is reduced.

This feature extraction methodology aims to reduce the number of spurious regions.

Given a RGB color image I ∈ R
N×M×3, the feature vector x for each pixel (x, y) on the

image is composed of each element of the window:

x(x, y) = I(x+ wx, y + wy, k) wx, wy ∈

[

−
W − 1

2
,
W − 1

2

]

; k ∈ [1, 3]

such that x ∈ R
d, being d = W ×W × 3. The feature vector building procedure is shown in

Figure 2-2.

{

{

M

M
M

M
M

M
M

M

M
M

M
M

M
M

MW

W

3

Figure 2-2: Texture feature building

On a training set with R elements and C different classes, each sample is a couple (xr, cr),

where cr ∈ [1, C] is the label associated to the feature vector xr. The set of R training

samples is denoted as X = [x1| . . .xr| . . . |xR].

Since PCA and LDA are both a linear transformation, the transformation matrix is needed

for each of them. For PCA, the transformation is given by the matrix WPCA of eigenvectors

of the matrix X. For LDA the transformation is given by the matrix WLDA, which is
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composed of the eigenvectors of the matrix S−1
w Sb, where Sw is the within-class scatter

matrix and Sb is the between-class scatter matrix, shown in Equations 2-2 and 2-3.

Sw =

C
∑

c=1

Nc
∑

r=1

(xc
r − µc)(x

c
r − µc)

T (2-2)

Sb =

C
∑

c=1

(µc − µ)(µc − µ)T (2-3)

Finally, the new feature vector is defined by y(x, y) = W Tx(x, y)

2.1.3 Lip Contour Extraction

Once the RoI is detected, the segmentation result can be used as the initialization procedure

for the lip contour extraction stage. This task can be achieved by fitting a snake to lip

boundaries. A snake is an elastic curve represented by a set of control points, and it is used

to detect important visual features, such as lines, edges, or contours. The snake control point

coordinates are iteratively updated, converging towards a minimum of an energy function

defined on basis of curve smoothness constraints and a matching criterion to desired features

of an image.

A kind of a snake, Jumping Snake originally proposed by Eveno et al. [34] and improved

by Gómez-Mendoza et al. [37], is specially designed to detect lip boundaries. The Jumping

Snake is a simplified form of active contour that properly approximates the outer lip contour

in color images. Pseudo-Hue (ph) and luminance (L) color components are used to compute

the gradient flow that controls the snake evolution. N Points are added on each iteration

at both left and right side of the seed incrementally, preserving a horizontal distance (∆)

and aiming to maximize the normalized gradient flow (ϕ) of ph − L passing through each

generated line segment. At the end of the iteration, vertical seed position is re-computed as

the mean vertical position of the N added points that led the creation of the line segments

with highest gradient flows.

Associated gradient flow for each upper and lower lip snake point (pi) are computed as given

in Equations 2-4 and 2-5, respectively, where dn− and dn+ are the normalized gradient

vectors perpendicular to line segments conformed by the points located at left or right side

of the seed with the seed itself, and ∇{·} stands for gradient operator.

ϕi =

∫

pi−1pi

∇{ph− L} · dn−

|pi−1pi|
+

∫

pipi+1

∇{ph− L} · dn+

|pipi+1|
(2-4)
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ϕi =



















∫

pipi+1

∇{ph} · dn+

|pipi+1|
i ∈ [1, N ]

∫

pi−1pi

∇{ph} · dn−

|pi−1pi|
i ∈ [N + 2, 2N + 1]

(2-5)

Image gradient estimation is computed by convolving the image with the Scharr operators.

The 3× 3 horizontal ∇x and vertical ∇y Scharr operators used are given by:

∇x =





−3 0 3

−10 0 10

−3 0 3



 ∇y =





−3 −10 −3

0 0 0

3 10 3



 (2-6)

2.2 Visual Feature Extraction

The most important issue in speech/speaker recognition using visual signals is the feature

extraction stage. Visual features have to be informative, discriminative and robust, aiming

to model the speech dynamic, to make each class distinguishable, and to be accurately

extracted under different scene conditions, respectively.

Since most of the visual speech information is located in mouth region, the feature extrac-

tion techniques aim to model the mouth shape and/or appearance as the RoI. There are

approaches which model the mouth appearance, known as low-level or appearance-based

techniques. A second group of approaches introduce a way to extract and/or model the

mouth contour, these features are known as high-level or shape-based features. Other ap-

proaches have proposed the use of both appearance and shape features to model the mouth.

Finally, there is a set of approaches which add temporal information to the feature space by

extracting features from the partial derivative of the video sequence respect the time.

2.2.1 Low-level Features

These approaches assume that each pixel on the ROI can be used as a mouth modeling

feature. Bearing this in mind, the first approach should be the use of the same ROI as the

feature set. But, the drawback on this technique is the curse of dimensionality, which means,

the high feature space dimensionality makes mouth’s dynamic statistically unable of being

modeled, for instance, by a Hidden Markov Model. As an example, if the ROI is 32 × 32

size, the feature space dimension is D = 1024. To overcome the curse of dimensionality, the

authors propose dimension reduction by means of image transformations, mainly Principal

Component Analysis (PCA) [11, 23, 38], Discrete Cosine Transform (DCT) [6, 23, 38], Linear

Discriminant Analysis [1, 23], Discrete Wavelet Transform (DWT) [38, 39]. The next sections

introduce two representative transformations, PCA and DCT, the later ones have similar

structures.
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EigenLips

EigenLips is the given name to the PCA-based image transformation for mouth RoI, intro-

duced by [11]. Let an image be reshaped as a vector x = {xρ ∈ R : ρ ∈ [1, p]}, p = n×m, and

an input training sequence Xr =
[

x1| · · · |xt| · · · |xTr
]

, Xr ∈ R
p×Tr . The assembly of image

sequences can be rewritten as the centered matrix X = [X1| · · · |Xr| · · · |XR],X ∈ R
p×T , T =

∑

r Tr, i.e., E {X} = 0.

Conventional projection by PCA states that there will be a couple of ortonormal matrices,

UTU = VTV = Ip, plus a diagonal matrix Σ, such as the simple linear decomposition

takes place, that is, X = UΣVT, V ∈ R
T×T ,U ∈ R

p×p, where matrix Σ ∈ R
T×p holds

first descend–ordered q ≤ p as the largest eigenvalues of matrix X, ν1 > ν2, . . . ,> νq >

νq+1, . . . ,> νp > 0, p = rank(X).

The matrix V = [v1| · · · |vk| · · · |vp] defines the basis vectors of a new space, such that each

“eigenlip” component of an image xt
r is determined by:

ytkr = vT

kx
t
r (2-7)

Discrete Cosine Transform

The DCT has been widely used in image processing due to its energy compaction properties

higher than DFT. Given an image x(i, j), its DCT is given by the Equation 2-8. As most

of the energy is located on the first coefficients, the feature vector is assembled by a zig-zag

scan of the DCT, as shown in Figure 2.3(a). Usually the DCT is estimated is as large as the

image, but only a subset of coefficients is selected as the final feature set. This selection is

performed by means a relevance criterion or the classification performance.

D(u, v) =

n
∑

i=1

m
∑

j=1

x(i, j) cos

(

(2i+ 1)uπ

n

)

cos

(

(2j + 1)vπ

m

)

(2-8)

(a) DCT coef-

ficients zig-zag

scan

(b) Original Image (c) 8×8 first DCT

coefficients

Figure 2-3: Discrete Cosine Transform Representation
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2.2.2 High-level Features

High-level feature extraction assumes that most of the speech information can be extracted

from speaker lip contour, either the outer and/or inner one. The above implies a lip shape

modeling and its tracking over a video sequence, this is why these set of features are so

called shape-based features. There are two main ways of lip modeling, geometric-based and

model-based.

Geometric Features

Geometric features are composed by a set of measurements made on the extracted lip contour.

Some of those measurements have a shape meaning which can be easily read, such as contour

perimeter, area, length and width. Other measurements extracted from lip contour are image

moments and Fourier descriptors, which are invariant to affine transformations, although

they have no a direct reading on the image. Such features contain significant visual speech

information and their properties made them useful in speech/speaker identification tasks

[7, 13, 40].

Invariant image moments Let an image I ∈ R
N×M . The two-dimensional (p+q)–th order

moment is defined as

mpq =

N
∑

x=1

M
∑

y=1

xpyqI(x, y) ∀p, q ∈ Z
+ (2-9)

The central moments are defined in the Equation 2-11, where x̄ = m10

m00
and ȳ = m01

m00
are the

image centroid coordinates.

µpq =
N
∑

x=1

M
∑

y=1

(x− x̄)p (y − ȳ)q I(x, y) ∀p, q ∈ Z
+ (2-10)

(2-11)

By dividing each central moment by its correspondent scaled (00)–th moment (Equation

2-12), the scale invariant moment version can be constructed.

ηpq =
µij

µ
1+

i+j

2

00

∀p, q ∈ Z
+ (2-12)

The non-orthogonal centralized moments are translation invariant and can be normalized

with respect to changes in scale. However, to enable invariance to rotation they require
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reformulation. Hu [41] derived a set of nonlinear centralized moment expressions from alge-

braic invariants applied to the moment generating function under a rotation transformation.

The proposed set is absolute orthogonal and can be used for scale, position, and rotation

invariant pattern identification. These were used in a simple pattern recognition experi-

ment to successfully identify various typed characters. They are computed from normalized

centralized moments up to order three and are shown below,

M1 =η20 + η02 (2-13)

M2 =(η20 − η02)
2 + (2η11)

2 (2-14)

M3 =(η30 − 3η12)
2 + (3η21 − η03)

2 (2-15)

M4 =(η30 + η12)
2 + (η21 + η03)

2 (2-16)

M5 =(η30 − η12)(η30 + η12)
[

(η30 + η12)
2 − 3(η21 + η03)

2
]

+ (2-17)

(3η21 − η03)(η21 + η03)
[

3(η30 + η12)
2 − (η21 + η03)

2
]

(2-18)

M6 =(η20 − η02)
[

(η30 + η12)
2 − (η21 + η03)

2
]

+ 4η11(n30 + η12)(n21 + η03) (2-19)

M7 =(3η21 − η03)(η30 + η12)
[

(η30 + η12)
2 − 3(η21 + η03)

2
]

+ (2-20)

(η30 − 3η12)(η21 + η03)
[

3(η30 + η12)
2 − (η21 + η03)

2
]

(2-21)

Model-based Features

In the model-based approach, feature vectors are extracted from a parametric or statistical

model of the lip contour, which can be obtained as discussed in Section 2.1.3. In the para-

metric approach, the snake’s points or its radial vectors, can be directly employed as visual

speech features. Similarly, Active Shape Models (ASMs) can be used as visual features by

applying the model PCA on the vector of point coordinates of the estimated lip contour [28].

2.3 Hidden Markov Models

A Hidden Markov Model (HMM) is a model for double random processes, which is composed

of two layers. The first layer models the temporal feature evolution, i.e., the inner dynamic

of the process; this layer is known as hidden layer and has a finite number of states. The

second one, known as observable layer, models the occurrence of a random event on each

state. HMMs have been widely used on applications with signals with a non-evident dynamic,

since it is able to disconnect the time evolution process from the event occurrence process.

2.3.1 HMM Parameter Description

A HMM consists of a set of N nodes (states), each of which is associated with an observation

model. The parameters of the model include [42]:
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1. An initial state probability distribution π with elements {πi}, to represent the likeli-

hood of i–th state in the first state of the sequence s1, πi = P (s1 = i); i ∈ [1, N ], such

that the Equation 2-22 is satisfied.

N
∑

n=1

πn = 1 (2-22)

2. A state transition probability distribution A = {aij}; i, j ∈ [1, N ] for the transition

probability to node j given that the HMM is currently in state i, aij = P (sk + 1 =

j|sk = i). As a probability distribution, the matrix A has to meet the restrictions in

Equation 2-23.

aij ≥ 0

N
∑

j=1

aij = 1; ∀i (2-23)

3. An observation probability set for each state in the model B = {bj(·)}. According to

how B is chosen, the HMM will be either discrete or continuous.

Former case allows only discrete observations of a fixed codebook, where the output

distribution in each emitting state i consists of a separate discrete probability bim for

each observation symbol m. For discrete HMM, the observation probability set can be

written as a matrix B ∈ R
N×M , constrained to the Equation 2-24.

M
∑

m=1

bim = 1; ∀i (2-24)

Latter case uses parametric distributions of a predetermined form that usually are

based on weighted sums (mixtures) of multivariate Gaussian densities. The probability

density function (pdf) of a mixture with M components is given by the Equation

2-25, where PB(x|m) is the conditional probability function of the mixture given the

component m.

PB(x) =
M
∑

m=1

pmPB(x|m)
M
∑

m=1

pm = 1 (2-25)

For a multivariate Gaussian the pdf is defined by the Equation 2-26.

PB(x|m) = N (x|µm,Σm); ∀m ∈ [1,M ]

N (x|µm,Σm) = (2π)−
D
2 |Σm|

−
1

2 exp

[

−
1

2
(x− µm)

TΣ−1

m (x− µm)

]

(2-26)

And B comprises all combination weights, mean vectors and covariance matrices, as

the parameter set of the Gaussian mixture,

B = {p;µ1, . . . ,µM ;Σ1, . . . ,ΣM}

Finally, the parameter set of a HMM will be denoted as λ = {π,A,B}.
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2.3.2 HMM Training

Let the input training data set,

X = {(Xr, cr) : Xr ∈ R
p×Tr , cr ∈ Z, r ∈ [1, R]}

composed of R observations, where cr is the class label of the sample Xr. Each sample r is

represented by a feature vector sequence of length Tr, Xr = {xt
ρr : t ∈ [1, Tr], ρ ∈ [1, p]}.

Since there is no an analytical solution for HMM parameter estimation, iterative and gra-

dient training techniques have been used to estimate a suboptimal parameter set. Among

the former, the predominant training technique is Maximum Likelihood Estimation (MLE),

which maximizes the likelihood of the training data observations:

fMLE(ΛΛΛ) =

R
∑

r=1

logP (Xr|λcr) (2-27)

where P is the likelihood of the observation sequence Xr given the model λcr of the correct

transcription class cr.

2.3.3 HMM-based Classifier

Given a sequence of observations X = [x1| . . . |xt| . . . |xT ], a label ĉ has to be assigned. Since

each class is modeled by a HMM, the whole set of HMM parameters comprises C models,

Λ = {λc : c ∈ [1, C]}, with λc denoting the parameter set of the c–th class. The classification

rule is given by the Equation 2-28.

ĉ = argmaxc(PΛ(X|c)) (2-28)

The direct calculation of PΛ(X|c) implies a likelihood sum of all possible paths, which

represents a high computational cost. Due to the above, the forward-backward algorithm is

used as a more efficient estimation procedure.



3 Experimental Setup

The general methodology for VSR follows these stages:

1. Preprocessing. Initial step on VSR systems. In this stage the RoI search area is reduced

and the image is “cleaned” by filtering.

2. Lip segmentation. In this stage, RoI is extracted from the detected face image. Then,

the segmentation result is used as the initialization of lip contour detection.

3. Feature extraction. Each feature extraction methodology introduced in 2.2 is used to

characterize the RoI. Also, a dimension reduction is incorporated in some strategies,

aiming to avoid the curse of dimension on the classifier training.

4. Recognition system. A conventional HMM-based classifier is implemented as the recog-

nition system. One HMM is trained to model one class dynamic. HMM parameter

tunning is performed by classification performance.

Figure 3-1 shows the experimental outline of the methodology used in this work.

Preprocessing

- Face detection

- Image filtering

Lip Segmentation

- Window size tuning

- Dimension reduction

- Contour detection

Visual Feature

Extraction

- Appearance-based

- Shape-based

- Spatiotemporal

Recognition

System

- HMM classifier

- Speaker dependent

validation

Figure 3-1: Methodology outline

3.1 Database Description

All feature extraction techniques were applied on a video database built at Universidad

Nacional de Colombia (Manizales). The database is composed of 14 subjects, 8 male and

6 female, which have various skin complexions with no particular lipstick. Each recording

include full frontal face color video sequences of each person, with the pronunciation of

the Spanish alphabet (26 letters). Speaker’s utterances were recorded three times. Images
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were captured with a Basler Scout scA 640-70fc industrial camera. Acquisition parameters,

such as ISO, exposure, aperture and white balance, were kept along the recoding session.

Also, three light sources were used to control illumination conditions, two of them located

at left and right side of the camera and the third one was a ceil lamp. Sequences were

recorded as ppm-formated images with a resolution of 658 × 492 pixels and a frame rate of

50 frame/second. Some image samples from database are shown in Figure 3-2.

Figure 3-2: Database image samples of 4 subjects

3.2 Preprocessing

As said above, two task are performed on the preprocessing stage. First, the face is located

to reduce the mouth search area. Second, the image is filtered to reduce noise and smooth

the face. This stage aims to improve the segmentation and feature extraction stages.
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3.2.1 Face Detection

Since speaker’s face and background have a high contrast, a hue-based segmentation strategy

is suitable as a face detector. First the image hue map is estimated. Then, a threshold is

calculated by Otsu’s method [43], to segment the pixels in two groups, namely, skin and

background. Finally, the column-wise average hue is thresholded to find the skin region

on the image. Figure 3.3(a) shows the hue map of a test image (top) and its histogram

(bottom). The red line is located on the Otsu’s threshold level. Figure 3.3(b) shows the

original image and the boundaries detected for skin region (top), and the average hue for

each column (bottom).
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(b) Face boundaries

Figure 3-3: Hue-thresholding-based face detection

3.2.2 Image Filtering

Image filtering procedure is used as a “cleaning” strategy. To smooth the face region an

median filter is used, since it has the behavior of a low pass filter and, additionally, it keeps

the boundaries location well defined. Median filter in given by the Equation 3-1, where W

is the size of the analysis window.

IMed(x, y) = Median{I(x+ wx, y + wy)} wx, wy ∈

[

−
W − 1

2
,
W − 1

2

]

(3-1)

Different window sizes were tested to tune W . The appropriate window was selected by

visual inspection. From Figure 3-4, it can be seen that for a size of W = 11 each face

structure is enough smooth and boundary definition level is kept.
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(a) Original image

(b) W = 3× 3 (c) W = 7× 7 (d) W = 11× 11

Figure 3-4: Image smoothing by median filter for different window sizes

3.3 Lip Segmentation

Pixel classification and contour extraction procedures are performed on this stage. To train

the pixel classifier a subset of 14 images from the image database is selected, one for each

speaker. A 300 × 200 pixels window centered on the mouth is extracted from each image.

Five structures are manually segmented on each window, lip, teeth, tongue, skin and dark

(low illumination) pixels. The image database was split in two sets, 16 images for tuning

and two images for testing. From the former, a set of 100.000 labeled pixels was randomly

selected.

3.3.1 Pixel Lip Segmentation

The cross-validation strategy used to tune the segmentation methodology. Cross-validation

consists on the division of each database into ten folds containing different records. nine of

these folds are used for training and the remaining one for validation purposes. Transforma-

tion matrices and a classifier is obtained from training set. Then, an incremental training,

from the first to the last component, is used to classify validation pixels. The procedure is

repeated changing the training and validation folds, until the ten folds are used to validate

the classifier. The parameter tuning is performed by means of the overall accuracy of a k-nn

classifier.
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In this stage, a dimension reduction technique has to be selected. Additionally, the neigh-

borhood size and the number of components is tuned. Figures 3.5(a) and 3.5(b) show the

performance of the k–nn (k = 1) classifier for PCA and LDA. Window sizes of [1, 3, 5, 7, 9, 11]

were tested on the experiment. Average classification accuracy and its standard deviation

is reported for each configuration.
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(a) Principal Component Analysis
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(b) Linear Discriminant Analysis

Figure 3-5: k–nn classifier accuracy vs. the number of representation components.

From results reported, the first 5 components of PCA representation for a window size

of W = 9 is chosen as the configuration for the segmentation algorithm. Figures 3.6(a)

and 3.6(b) show the representation of the tunning set on the 2 first components for both

transformations, PCA and LDA, respectively.
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(b) Linear Discriminant Analysis

Figure 3-6: Representation of tuning set on the 2 first components for W = 9.
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To test the algorithm, an image from the test was automatically segmented. Results are

shown in Figure 3-7.

(a) Ground-truth labeled image (b) Segmentation result

(c) Original image (d) Segmented lip contour

Figure 3-7: Methodology segmentation results for a test image.

3.3.2 Lip Contour Extraction

Lip contour extraction was performed by using the methodology introduced in 2.1.3. Gra-

dient maps were estimated from the filtered face image. Seeds for upper and lower snakes

were calculated as follows:

Centroid

Upper Seed

Lower SeedLower SeedLower Seed

Upper Seed

Centroid

Figure 3-8: Lip contour initialization

seeds

1. Lip binary map is selected from segmenta-

tion image.

2. Image centroid is calculated.

3. The upper and lower seeds are located

marginally above and under the first and

last lip pixel along the centroid y axis, re-

spectively.
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Figures 3.9(a) and 3.9(b) show the gradient vector flow for ph−L and ph components, which

are used as objective function by the Jumping-Snake algorithm. 3.9(c) show the gradient

vector flow and the snake adjustment on a test image, respectively.

(a) Gradient vector flow of ph− L component (b) Gradient vector flow of ph component

(c) Jumping-Snake adjustment

Figure 3-9: Lip contour extraction

3.4 Visual Feature Extraction

In this section, each feature extraction methodology is used to characterize the image se-

quence database. Additionally, parameters of the methodologies are tuned and results of

them, as image features, are shown.
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3.4.1 EigenLips Representation

EigenLips representation is the result of a dimension reduction of the gray level image pixels.

To estimate the transformation matrix V a set of N images is randomly selected from the

database and arranged on a matrix X ∈ R
p×N , where p is the number of pixels per image and

N is the number of images. In this work, N = 1000 images were selected and each image was

scaled to p = 48 × 59 = 2832. Figure 3-10 shows the normalized accumulated eigenvalues

of the matrix X. To reduce the space dimension, a certain amount of variance has to be

selected. For selected dataset, 90% of the total variance is achieved at 20 components.
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Figure 3-10: Normalized accumulated eigenvalues of dataset for eigenlips representation

The average image of the reconstruction using 20 PCA components is shown in Figure

3.11(b), and the images of ±3 standard deviation are shown in Figures 3.11(a) and 3.11(c).

It can be seen that each of the three images attempt to explain a mouth pose.

(a) µ− 3σ (b) µ (c) µ+ 3σ

Figure 3-11: Image reconstruction using 20 PCA components
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3.4.2 Active Shape Model

This feature set is built from the PCA transformation of the coordinates of the contour

points. As EigenLips representation, a reduced number of components is chosen based on

the amount of explained variability. The first seven components are chosen since they explain

90% of the full variability (Figure 3.12(a)), they are chosen to build the new space. Figure

3.12(b) shows the mean shape ±3 standard deviation of the dataset reconstructed from the

ASM representation.
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(a) Normalized accumulated eigenvalues for lip

contour points

 

 
µ−3σ
µ
µ+3σ

(b) Average contour represented on 7 components

and its standard deviation

Figure 3-12: ASM representation of lip contour

3.4.3 Spatiotemporal Representation

Final feature extraction methodology is composed of appearance, shape and temporal infor-

mation. Feature vector of an input sequence on the original space, at time instant k is built

as:

x(k) =

[

x(k)|Cx(k)|Cy(k)|
∂x

∂t
(k)

]

(3-2)

where, x is the image RoI reshaped as introduced in 2.2.1, Cx and Cy are the coordinates

x and y of the lip contour, and ∂x
∂t
(k) is the partial time derivative of the sequence at time

k. As in methodologies above, a space dimension reduction has to be performed. Figure

3-13 shows the eigenvalues for PCA decomposition of the training dataset. It can be seen

that a high number of features is required to explain 90% of the total variance. Hence, in

classification tasks only 70% of variance will be assumed, which is achieved at 33 components.
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Figure 3-13: Normalized accumulated eigenvalues of dataset for spatiotemporal

representation

Figure 3-14 shows the mean shape and appearance ±3 standard deviation of the dataset

reconstructed from the spatiotemporal representation.

(a) µ− 3σ (b) µ (c) µ+ 3σ

Figure 3-14: Active appearance representation for selected components

3.5 Recognition System

On a speech recognition system, speaker dependent and speaker independent validation

methodologies are commonly used. In the former, the speaker is included in training and

validation sets, while in the latter, each speaker belongs to just one set. In this work, speaker

dependent tests are performed to tune the system and the speaker independent test is used

to evaluate the performance of the selected topology.

After obtaining the visual feature vector for each feature extraction methodology, a HMM-

based classifier is trained and its performance is evaluated against the validation data. Since
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the database contains three repetitions for each speaker, system validation is carried out

by 3-fold cross-validation methodology. That is, the experiments are repeated 3 times, on

each fold 2 repetitions are used as train set and the remaining one as validation set. From

accuracy results, the best feature extraction methodology and the optimum HMM parameter

configuration are selected.

A flexible left to right HMM topology has been adopted, which allows to have different

number of states for each class. This number has to be proportional to the average class

length T̄c, that is, nS = fT̄c, being f a scalar factor. HMM topologies were tested for

f = [1, 1
2
, 1
4
, 1
8
] and nG = [1, 2, 4, 8].

3.5.1 Low Level Features

Results for HMM tested topologies using 2D-DCT and EigenLips feature extraction method-

ologies are shown in Tables 3-1 and 3-2. On all topologies, EigenLips has an accuracy around

5% higher than 2D-DCT results, that makes the variance representation more informative

on classification task than the spectral content of each image.

nG

1 2 4 8

f

1

8
17.00± 0.74 17.30± 0.90 17.79± 1.63 16.61± 1.12

1

4
17.79± 0.45 17.50± 1.40 17.30± 0.62 17.40± 1.29

1

2
17.99± 0.51 17.40± 1.29 16.51± 1.80 18.09± 2.81

1 16.71± 1.68 16.71± 0.95 17.79± 3.08 17.40± 3.33

Table 3-1: HMM parameter tuning for 2D-DCT

nG

1 2 4 8

f

1

8
21.40± 1.46 25.84± 0.17 28.21± 4.49 24.65± 4.31

1

4
21.01± 2.23 28.60± 3.75 29.19± 3.91 24.95± 4.88

1

2
22.58± 3.27 26.43± 3.75 25.64± 3.57 22.09± 2.24

1 23.37± 2.42 28.80± 2.80 28.21± 3.57 23.37± 2.82

Table 3-2: HMM parameter tuning for EigenLips

Bearing in mind the results above, the EigenLips methodology is chosen as the appearance

descriptor for further experiments. Confusion matrix (Figure 3.15(a)) was computed as the

sum of each fold confusion matrix. Class specificity and sensitivity are shown in Figure

3.15(b), mean and standard deviation of each fold are plotted.
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Lips representation
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Figure 3-15: HMM-based classifier performance on validation datasets for EigenLips

representation

3.5.2 High Level Features

HMM tuning results for representation based on invariant moments and Active Shape Models

are shown in Tables 3-3 and 3-4, respectively. The former is a geometric-based represen-

tation, while the latter is a model-based feature extraction methodology. They both aim

to model the shape of the lip region. From the two tested high-level feature extraction

methodologies, the best performance was obtained by using ASM. Therefore, the selected

shape descriptor employed is next experiments is the Active Shape Model.

nG

1 2 4 8

f

1

8
10.78± 1.73 13.64± 1.12 14.43± 0.59 13.83± 1.07

1

4
12.16± 2.10 15.02± 0.00 15.12± 1.49 14.43± 0.78

1

2
10.68± 3.02 13.14± 0.62 13.83± 1.94 13.54± 2.23

1 11.27± 2.14 14.62± 1.63 15.81± 0.90 16.30± 0.62

Table 3-3: HMM parameter tuning for invariant moments
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nG

1 2 4 8

f

1

8
18.09± 1.33 18.28± 3.09 21.74± 2.41 20.45± 3.25

1

4
19.96± 3.77 18.88± 1.54 20.06± 1.18 19.96± 2.41

1

2
19.47± 2.31 21.44± 4.02 20.55± 1.88 19.66± 0.45

1 19.47± 2.42 20.36± 2.13 19.86± 1.23 19.76± 0.78

Table 3-4: HMM parameter tuning for ASM

Figures 3.16(a) and 3.17(a) show the confusion matrix obtained from the evaluation of valida-

tion samples on the trained classifier, using invariant moment descriptor and ASM features,

respectively. Also, average class specificity and sensitivity and its standard deviation are

plotted for both representations (Figures 3.16(b) and 3.17(b)).
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Figure 3-16: HMM-based classifier performance on validation datasets for invariant mo-

ments descriptors



3.5 Recognition System 31

C
or

re
ct

 T
ra

ns
cr

ip
tio

n

Recognized Transcription
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

(a) Confusion matrix of validation sets for ASM

representation

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

10

20

30

40

Transcription

S
en

si
tiv

ity

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

90

92

94

96

98

100

Transcription

S
pe

ci
fic

ity

(b) Specificity and Sensitivity of each class for

ASM representation

Figure 3-17: HMM-based classifier performance on validation datasets for ASM

representation

3.5.3 Spatiotemporal Representation

The spatiotemporal representation is built from the appearance and shape descriptors chosen

in previous experiments, namely EigenLips and ASM. Additionally, time derivative of the

image sequence is included to provide information about mouth dynamics. The mixture of

features from different nature can improve system performance since each of them aims to

model a different kind of information contained on the mouth and their combination can

lead to a better RoI representation.

Classifier accuracy for tested topologies, using the spatiotemporal representation, is shown

in Table 3-5. Full set of results for the best configuration is shown in Figure 3-18.

nG

1 2 4 8

f

1

8
21.85± 2.37 28.65± 2.75 34.57± 2.67 31.61± 2.68

1

4
21.16± 2.42 30.63± 4.17 32.99± 4.19 31.02± 3.70

1

2
24.41± 3.98 29.74± 1.36 34.36± 4.27 30.04± 1.36

1 25.20± 0.45 30.92± 2.35 31.85± 4.04 28.75± 3.30

Table 3-5: HMM parameter tuning for spatiotemporal representation
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Figure 3-18: HMM-based classifier performance on validation datasets for spatiotemporal

representation

3.5.4 Comparative results

First, the best results from each methodology (Figure 3-6) are analyzed based on its average

accuracy, specificity and sensitivity.

Accuracy Specificity Sensitivity

F
ea
tu
re

S
et

EigenLips 29.19± 3.91 97.16± 2.87 30.96± 19.54

ASM 21.74± 2.41 96.46± 2.40 14.20± 9.11

Spatiotemporal 34.36± 4.27 97.27± 2.23 32.84± 20.99

Table 3-6: Average performance of visual feature extraction methodologies

As a final result, the best lip representation and the best HMM topology are used to train a

classifier using the speaker independent validation strategy, that is, a 14-fold cross-validation

methodology. On each repetition a different speaker is leaved out to use it as validation

data and the other 13 speakers are used to train the system. Average results of the system

performance for the validation samples are shown in Figure 3-19 and a comparison of speaker

dependent and speaker independent results is presented in Table 3-7
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(a) Confusion matrix for speaker independent test

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

10

20

30

40

50

60

70

Transcription

S
en

si
tiv

ity
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

92

94

96

98

100

Transcription

S
pe

ci
fic

ity

(b) Class specificity and sensitivity for speaker in-

dependent test

Figure 3-19: Visual speech recognition system performance for speaker independent test

Accuracy [%] Specificity [%] Sensitivity [%]

Speaker
34.36± 4.27 97.27± 2.23 32.84± 20.99

Dependent

Speaker
31.21± 2.07 97.22± 1.46 31.85± 13.43

Independent

Table 3-7: Recognition system performance using two different training strategies



4 Discussion

About lip segmentation methodology, the texture-based feature extraction showed an ac-

curate segmentation of facial structures. Since each window is transformed by a matrix

estimated from annotated data, the need of a standard color map able to differentiate lip

and skin regions, is overcome. Moreover, the use of a k-nn classifier improved classification

accuracy. This is due to the better modeling skills on overlapped regions of the k-nn, which

made it a proper classifier selection for this task. The main drawback about the use of the

k-nn is the time required to perform a single pixel labeling.

About the windowing-based feature extraction, learning curves behavior (Figure 3-5) shows

that an optimal window size can be achieved, although the computational load is increased,

due to the initial feature space dimension, that is why a suboptimal size was chosen. Ad-

ditionally, the overall required segmentation allows the use of a smaller window, specially

when accuracy rate for the optimal size is not higher than the chosen size accuracy.

Selection of space reduction methodology for lip segmentation is based on the pixel clas-

sification accuracy. Two techniques were tested, PCA and LDA. Results show that LDA

(Figure 3.5(b)) have a better performance than PCA (Figure 3.5(a)) on lower dimensions.

This fact is supported by the visual inspection of the train set mapping (Figure 3-6), where

classes on LDA representation are less overlapped than in PCA. However, PCA accuracy

surpass LDA’s not only on higher dimensions but also on larger neighborhood windows. This

results make PCA a appropriate dimension reduction strategy for mouth structure segmen-

tation task.

From the two low-level visual features studied, results on Tables 3-1 and3-2 show that

the EigenLips representation outperforms the 2D-DCT representation on the classification

task. Since the main objective of using that kind of feature extraction methodologies is

the space dimension reduction, it can be said that the EigenLips representation holds more

information in a few components than 2D-DCT on the first coefficients. This is because the

former space transformation is built from samples of the database and each component is

the result of the maximization of the variability contained on the train sets, while the latter

transformation is the same for any image. This assumption can be extended for other image

transformations such as DWT. Additionally, Figure 3-11 shows that the modes of variation

of the PCA version for lip images aim to explain a mouth pose, for example, “closed” and
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“open” mouth.

On the high level feature extraction methodologies, the best results were obtained for the

ASM representation, which is an statistical model of the lip shape. The invariant moments

have the lowest performance in terms of accuracy among the feature extraction methodolo-

gies tested. Although the moments have important invariance skills, the quality of the lip

representation is not enough to perform classification tasks of sequences. It must be beard

in mind that, the scale invariance of the moments implies that a shape and its scaled version

have the same descriptor vector. But in some cases that is not suitable; for example, the

pronunciation of /a/ and /o/ letters have the same shape. This fact can be clearly seen on

the confusion matrix in Figure 3.16(a), where no main diagonal pattern can be highlighted,

instead, there are a lot samples from all classes labeled as /p/. About the ASM represen-

tation, results show that this shape descriptor can be used effectively for classification task.

It must be highlighted that only seven components are used in the feature space.

When comparing results between the chosen low-level (EigenLips) and high-level (ASM)

feature extraction methodologies, it can be seen that the former performs significantly bet-

ter than the latter. The superiority of appearance based features is not surprising, since

significant speech information lies within the oral cavity, and such information cannot be

captured by the lip contour. Besides, lip contour estimation errors compromise the recogni-

tion accuracy.

On the last methodology, a feature set using the best low level and high level features

plus the motion information was built. The aim of this combination is to feed the HMM

with different kind of information to better model the lip dynamic of each class. Results

reported in Table 3-6 show that the spatiotemporal feature set outperforms the other repre-

sentations. This means that feature sets are complementary. Moreover, the main mistakes

reported on the confusion matrix (Figure 3.18(a)) are related to letters belonging to same

viseme. For instance, /b/ and /p/ are both produced by a bilabial movement, so it is

common to confuse them. A similar analysis can be maid for /q/ and /u/, which have a

similar visual representation. The above introduces the idea of a clustering of the letters

of the Spanish alphabet. The main consequence of this fact is the improve of the classifier

performance by reducing the number of classes. Moreover, for an online speech recognition

application language rules can be included as restriction for the system. That is, a viseme

classification task is performed initially, then the most likely letter from the viseme set is

chosen depending on the language corpus.

Finally, a speaker independent recognition task was used to test the system. As expected,

this test exhibit classification results lower than the speaker dependent task (Table 3-7).

This is mainly because the inner speaker dynamic is not included in the training samples.
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However, the system is still able to recognize the general class dynamic.



5 Conclusions

• In this thesis work, an analysis of image feature extraction methodologies was per-

formed based on the quality of the representation and its performance on modeling lip

dynamic.

• Multiple image feature extraction methodologies for lip modeling were implemented

and tested on a common classification task. Obtained results allowed to sort the

methodologies by its lip dynamic modeling skills.

• A visual speech recognition system was designed and tested on two different validation

modalities, for speaker dependent and speaker independent speech recognition. As

expected, on the former, the system has a better performance than the latter. Never-

theless, results are enough representative to let the system be used as complementary

information on multimodal speech recognition tasks.

• Recognition results led the feature set selection to the spatiotemporal-based. This

is because this methodology is based on the combination of complementary features,

which individually have shown good performance on visual speech modeling.

• Additionally, the proposed preprocessing and lip segmentation stages showed satisfac-

tory results, which eased extraction of lip features and reduced the recognition errors

due low quality features.

5.1 Future work

Given that a visual feature extraction analysis was performed on this thesis work, the feature

integration of a multimodal speech recognition system can be studied on further works, this

stage is nowadays an important research field. Since, the recognition task performed on

this work deals with isolated digits recognition, a continuous audio-visual speech recognition

system is the next work to deal with aiming to design real-time application. To do it, new

stages have to be implemented, namely, the event occurrence detection and segmentation.

additionally, the work can be extended to other recognition tasks on other interest fields,

such as, anthropometry, to identify reference patterns on visual speech, and medical, for

instance, to analyze lip movement of patients with reconstructive surgeries. In that task,

an assisted diagnose and therapy tool is useful to speech therapists and surgeons. Finally,
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the mouth structure segmentation technique can be improved by using faster algorithms to

solve the nearest neighbor problem, such as kd-tree or quicksort.
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