
Bogotá, de 0000

Bayesian Beta Regression with the Bayesianbetareg R-Package

Edilberto Cepeda-Cuervoa, Daniel Jaimesb, Margarita Maŕınc, Javier Rojasd
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Resumen

In this paper we summarize the main points of beta regression models under Bayesian perspective,
including a presentation of the Bayesianbetareg R-package, used to fit the beta regression models
under a Bayesian approach. Finally, beta regression models are fitted to a reading score database
using, respectively, the Bayesianbetareg and betareg R-Packages for Bayesian and classic perspectives.
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1. Introduction

In this paper we analyze situations where the variable of interest can be assumed to have a beta
distribution. The beta B(p, q) distribution function, can be re-parameterized as a function of the mean
and dispersion parameters, µ and φ = p + q, respectively. With this this re-parameterization, the beta
regression models with regression structures in both mean and dispersion parameters were initially pro-
posed by Cepeda-Cuervo (2001), p. 63, in the framework of the regression modeling in the biparametric
exponential family of distributions. To fit this class of models, Cepeda-Cuervo (2001) proposed a Bayesian
method, as a generalization of the Bayesian method proposed by Gamerman (1997), to fit generalized
linear models.

Further papers have been published investigating beta regression models in recent years. Ferrari &
Cribari-Neto (2004) proposed classic beta regression models, assuming that the dispersion parameter is
constant through the range of the explanatory variables; Smithson & Verkuilen (2006) proposed mean
and precision beta regression models under a classic method; Simas et al. (2010) proposed a general-
ization of beta regression models, including nonlinear regression structures in the mean and precision
parameters, also proposed by Cuervo & Achcar (2010) in the context of double generalized nonlinear
models; Gamerman & Cepeda-Cuervo (2013) proposed spatial beta regression models, with applications
to land concentration and postnatal period screening analysis; and Rocha & Cribari-Neto (2009) proposed
a beta autoregressive moving average process, including exogenous variables in the dynamics. Mixed beta
regression models were proposed in Figueroa-Zuniga et al. (2013), under the Bayesian approach, and were
subsequently extended by Bonat & Zeviani (2013) under a classic method. In the current literature, this
regression has been applied in multiple fields of knowledge, to model multiple variables such as: ischemic
stroke lesion volume (Swearingen et al. 2011), Gini index (Atkinson 1970), distance between body parts
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(Branscum et al. 2007), reading accuracy (Cribari-Neto & Zeileis 2010), election results (Chan 2006),
among others. The present paper presents a new way to find consistent estimations for these inference
problems.

In the Bayesian method proposed by Cepeda-Cuervo (2001) to fit the beta regression models, samples
of the posterior distribution are obtained from the posterior conditional distributions of two blocks of
parameters, one for the mean parameters and other for the dispersion parameter, assuming normal prior
distributions for the mean and dispersion regression parameters (Cepeda & Gamerman 2005). These
conditional posterior distributions are unknown and analytically intractable. Thus, two normal transitions
kernel are built to apply a Metropolis Hastings algorithm to obtain the posterior samples.

With the purpose of making method more used-friendly along with the explanation of the key features
of the models, we introduce the use of the Bayesianbetareg R-package, an R-code developed by us that
contains all the necessary algorithms and customizable options for simulations - for the estimation of
the beta regression model where both, mean and precision parameters are modeled. With the estimated
parameters, standard deviations and credibility intervals, we present the residual analysis, the criteria for
comparison (AIC-BIC) and the diagnostic for this model as useful alternative outputs for the researcher.

This paper is divided into five sections, including this introduction. Section 2 presents the beta dis-
tribution function and the beta regression models proposed in Cepeda-Cuervo (2001) and Cepeda &
Gamerman (2005). Section 3 present the Bayeian method and applies it to fit beta regression models.
Section 4 presentes the Bayesian betareg R-package. Section 5 presents the results of the Gini and per
capita GDP databases, using the proposed R-package. Finally, Section 6 contains our concluding remarks.

2. Bayesian beta regression models

2.1. Beta distribution

A random variable Y follows a beta distribution if its probability density function is given by

f(y|p, q) =
Γ(p+ q)

Γ(p)Γ(q)
yp−1(1 − y)1−qI(0,1)(y), (1)

where p, q > 0 and Γ(.) denotes the gamma function. Additional, I(0; 1)(y) = 1, if y ∈ (0; 1), and zero
otherwise. With the re-parameterization of the beta distribution as a function of the mean, µ = E(Y ),
and the precision parameters, φ = p+ q, as proposed in Jorgensen (1997) or Cepeda-Cuervo (2001), the
beta density function can be written as

f(y|φ, µ) =
Γ(φ)

Γ(µφ)Γ((1 − µ)φ)
yµφ−1(1− y)(1−µ)φ−1I0,1(y) (2)

where, µ = p/(p+ q) (Ferrari & Cribari-Neto 2004). In this re-parameterization p = µφ, q = φ(1−µ) and

σ2 =
µ(1 − µ)

φ+ 1
. (3)

From this re-parameterization of the beta distribution, the joint mean and precision beta regression were
proposed in Cepeda-Cuervo (2001), as presented in the next section.

2.2. Beta regression models

With the re-parameterization of the beta distribution as a function of µ and φ, in this section the
joint mean and precision beta regression models are defined as in Cepeda-Cuervo (2001). Under a general
framework, a random sample Yi ∼ Beta(pi, qi), i = 1, 2, . . . , n, is assumed, where the mean and precision
parameters are modeled respectively as functions of explanatory variables by

g(µi) = x′

iβ and (4)

h(φi) = z′iγ (5)
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where g and h are appropriate real functions, β = (β0, ..., βk) and γ = (γ0, ..., γk) are respectively the
mean and precision parameter vectors, and xi and zi are respectively the mean and precision explanatory
variables for the i-th observation. In the proposal developed by Cepeda-Cuervo (2001), g is the logit
function and h the exponential function, but other link function can be assumed. Other link functions
are: probit g(µ) = φ−1(µ), where φ(.) is the standard normal distribution function; complementary loglog
g(µ) = −log(−log(1−µ)); log-log g(µ) = log(−log(µ)); and Cauchy g(µ) = tan(π(µ− 0.5)). See Cribari-
Neto & Zeileis (2010).

The beta regression model is naturally heteroscedastic. However in the joint mean and dispersion beta
regression models, the variance results in complex and not easily interpretable expressions. In particular,
if g is the logit function and h the exponential function, the variance is given by (6), which it is not easy
to interpret in a practical framework.

V ar(Yi) =
2 + exp(xiβ) + exp(−xiβ)

exp(ziγ)
. (6)

Sometimes it is possible to assume joint mean and variance models, sampling the regression parameters
under a restricted subspace.

3. Bayesian method to fit beta regression models

In this section, we present the Bayesian method and the MCMC algorithm proposed in Cepeda-Cuervo
(2001) and Cepeda et al. (2005), in the framework of double generalized regression model used to fit the
beta regression model. As in these works, to implement a Bayesian approach to estimate the parameters
of the joint beta regression model, we need to specify a prior distribution for the parameters. Thus, if
L(Θ| data) denotes the likelihood function and p(Θ) the joint prior distribution, where Θ = (β,γ), the
posterior distribution is given by π(Θ| data) ∝ L(Θ)p(Θ). However, given that when assuming normal
prior distributions for the parameters, the posterior distribution π(Θ| data) is analytically intractable,
Cepeda-Cuervo (2001) proposed to get samples of Θ using an alternative iterative algorithm, by sampling
β and γ from the posterior conditional distributions π(β|γ, data) and π(γ|β, data), for which it is
necessary to build normal transition kernels q1 and q2, given that also these conditional distributions are
analytically intractable.

To build the kernel transition functions we need to define working observation variables to approximate
h(µi) and g(φi) around the current values of µ and φ, respectively. They are defined as first order Taylor
approximations of the real functions h(t1) and g(t2), where t1 and t2 are appropriate random variables
such that E(t1) = µ and E(t2) = φ. Thus, given that E(t1) = µ for t1 = Y , if the mean model is given
by (4), the working observational variable is defined by

ỹi = x
′

iβ
(c) +

yi − µ
(c)
i

(µ
(c)
i )(1 − µ

(c)
i )

, i = 1, 2, ..., n, (7)

where µ(c) and β(c) are the current values of µ and β. Thus, assuming that ỹi, i = 1, . . . , n, has a normal
distribution and assuming conditional normal prior distribution β|γ ∼ N(b, B), the kernel transition
function q1 is given by the posterior distribution obtained from the combination of the prior distribution
with the working observation model ỹi ∼ N(x

′

iβ, σ̃
2
i ), where σ̃

2
i = Var(ỹi). That is, by

q1(β|β
(c),γ(c)) = N(b∗ ,B∗), (8)

where

b∗ = B∗(B−1b+X
′

Σ−1Ỹ )

B∗ = (B−1 +X
′

Σ−1X)−1
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and where Σ is a diagonal matrix with diagonal entries σ̃2
i , i = 1, 2, ..., n, (see Cepeda and Gamerman,

2001, 2005). Thus, the values of β from the posterior distribution sample of π(β,γ) are proposed from
the transition kernel defined in equation (8).

As the full conditional distribution π(γ|β) is also analytically intractable and it is not easy to generate
samples from it, we need to build a kernel transition q2 to propose the values of γ from the posterior

distribution of Θ. Given that E(ti) = φi for ti = (pi+qi)
2

pi

Y i, if the dispersion model is given by (5),

the working observational variable (9) is obtained from the first order Taylor approximation around the
current value of φi, given by the current values of the dispersion regression parameters γ(c), in turn given
by

ỹi = z
′

iγ
(c) +

yi
µi

− 1, i = 1, 2, ..., n. (9)

Thus, assuming that the observational working variable (9) has a normal distribution and since that
the conditional prior distribution is given by γ|β ∼ N(g,G), the normal transition kernel q2 is given
by the posterior distribution obtained from the combination of the prior distribution with the working
observational model ỹi ∼ N(z

′

iγ, σ̃
2), where σ̃2

i = Var(ỹi). That is,

q2(γ|γ
(c),β(c)) = N(g∗ ,G∗), (10)

where

g∗ = G∗(G−1g+ Z
′

Ψ−1Ỹ ),

G∗ = (G−1 + Z
′

Ψ−1Z)−1.

and Ψ is a diagonal matrix with entries σ̃2
i for i = 1, 2, ..., n. Samples of γ from the posterior distribution

π(β,γ), are obtained from the transition kernel function q2.

With the transition kernels given by (8) and (10), the components β and γ of (β,γ)
′

are updated as
follows:

1. Begin the chain interaction counter at j = 1 and set initial values (β0,γ0) to (β,γ)
′

.

2. Move the vector β to a new value ψ generated from the proposed density q1(β
(j−1), .).

3. Calculate the acceptance probability of movement, α(β(j−1), ψ) . If the movement is accepted, then

β(j) = ψ. If it is not accepted, then β(j) = β(j−1).

4. Move the vector γ to a new value ψ, generated from the proposed density q2(γ
j−1, .).

5. Calculate the acceptance probability of movement, α(γ(j−1), ψ). If the movement is accepted, then
γ(j) = ψ. If it is not accepted, then γ(j) = γ(j−1).

6. Finally, change the counter from j to j + 1 and go to 2 until convergence is reached.

As an assessment tool for the fit of the model, some types of residual are included. One is Pearson
residuals, defined by

rPi
=

Yi − µ̂i
√

V̂ ar(Yi)
(11)

where v̂ar(Yi) = µ̂i(1 − µ̂i)/(1 + φ̂i), µ̂i = g−1(x′

iβ̂) and φ̂i = h−1(z′iγ̂). Another is a standardized
weighted residual, defined as

rwi =
y∗i − µ̃∗

i
√

vi(1− hii)
(12)
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where

y∗i = log(
yi

1− yi
) (13)

µ̃∗

i = ψ(µiφ) − ψ((1− µi)φ) (14)

vi = ψ′(µiφ) + ψ′((1 − µi)φ) (15)

and hii is the i-th diagonal element of the matrix H = W̃ 1/2X(X ′W̃X)X ′W̃ 1/2, where W is a diagonal
matrix with elements wi = φvi[1/{g

′(µi}
2]. Among interesting properties of residual (12), is the fact

that its distribution can be well approximated by a standard normal distribution when compared to
the Pearson standardized residuals. In addition, given that it incorporates the observations leverage, it
can more clearly identify influential observations for the parameters related to the linear predictor (See
(Espinheira et al. 2008)).

4. Bayesianbetareg R-package

The Bayesianbetareg R-package has the computational implementation of the Bayesian method de-
fined in Section 3. The main function of this package is the Bayestianbetareg(), which allows the user
to calculate the mean and dispersion regression parameters in a beta regression model under Bayesian
perspective. The general formula for this function is

Bayesianbetareg(Y,X,Z, nsim, bpri, Bpri, gpri, Gpri, burn, jump, graph1 = T, graph2 = T ), (16)

where Y is a vector whit the dependent variable, X is a matrix of the explanatory variables of the mean,
Z is a matrix of the explanatory variables of the dispersion, nsim is the number of iterations, bpri is
the mean of the prior distribution of β, Bpri is the variance-covariance matrix of the prior distribution
of β, gpri is the mean of the prior distribution of γ, Gpri is the variance-covariance matrix of the prior
distribution of γ, burn is a number that indicates the proportion of iterations for burn-in at the beginning
of the chains, jump is a number that indicate the distance (number of iterations) between samples and
graph is a indicator to present or not the graphic representations of the chains.

The returned fitted-model object of the Byesianbetareg class provides to the user the regression
parameter estimates, β̂ and γ̂, and their standard deviations. It also provides the fitted values of Y , the
residuals, variance and a matrix with the posterior samples.

The Bayesianbetareg R-package also has nine other functions which allow the user, among other
things, to obtain AIC, BIC and deviance criterion values, plots of four types of residuals and residual
diagnostic plots for beta regression models. The functions of this package are described in the Table 1.

5. An application of the Bayesianbetareg code

Here we carry out a brief example of the capabilities of this package using the dyslexia data set
presented in Smithson & Verkuilen (2006), in which the response variable represents the scores obtained
by 44 children in a reading accuracy test. The explanatory variables correspond to the dyslexia or lack of
status (coded as 0 or 1 respectively), the standardized non-verbal IQ and their interaction. This database
is available in the betareg package.

We plot reading score versus dyslexia (left plot), reading score versus non-verbal intelligence (center
plot) and the reading score versus interaction between dyslexia and reading score (right plot), to explore
the relationship between the variable of interest and regression variables.

(0000)
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Tabla 1: Bayesianbetareg functions

Function Description

Bayesianbetareg estimates the media and dispersion regression pa-
rameters

betaresiduals calculates the Deviance, Pearson and Standarized
Pearson residuals

criteria calculates the AIC, BIC and Deviance information
criteria for comparison of Bayesian beta regression
models

diagnostics allows to plot different residuals diagnostics (like the
cook distance and the leverage)

dpostb gives a value of the mean regression parameters, β,
from the posterior distribution

dpostg gives a value for the dispersion parameter, γ, from
the posterior distribution

gammakernel calculates the likelihood function at a value of γ,
given the current values of β

gammaproposal provides parameter values from the proposal of γ

parameter vector

mukernel calculates likelihood function at a β, given the cur-
rent value of γ

muproposal provides parameter values from the proposal of β

parameter vector

plotresiduals allows to plot the residuals calculated whit the
betaresiduals function

print.Bayesianbetareg prints the estimates coefficients and the credibility
intervals of a bayesian beta regression

print.summary. Bayesian-
betareg

prints the summary of a bayesian beta regression

summary.Bayesianbetareg is the standard regression output (coefficient esti-
mates, standard errors, criterions); returns an ob-
ject of class “summary.bayesianbetareg” containing
the relevant summary statistics (which has a print()
method)
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Figure 1: Plot (reading score vs variables)

5.1. Beta regression models with constant precision

To illustrate the use of the Bayesianbetareg package, we first fit a regression assuming a constant
dispersion parameter, assuming the reparameterization φ = exp(γ0).

> library(betareg)

> data(ReadingSkills)

> Y <- as.matrix(ReadingSkills[,1])

> n <- length(Y)

> X1 <- as.matrix(ReadingSkills[,2])

> for(i in 1:length(X1)){

+ X1 <- replace(X1,X1=="yes",1)

+ X1 <- replace(X1,X1=="no",0)

+ }

> X0 <- rep(1, times=n)

> X1 <- as.numeric(X1)

> X2 <- as.matrix(ReadingSkills[,3])

> X3 <- X1*X2

> X <- cbind(X0,X1,X2,X3)

> Z0 <- X0

> Z <- cbind(X0,X1,X2)

>

> burn <- 0.2

> jump <- 30

> nsim <- 100000

>

> b_pri <- c(0,0,0,0)

> B_pri <- diag(100,nrow=ncol(X),ncol=ncol(X))

> g_pri <- c(0)

> G_pri <- diag(10,nrow=ncol(Z0),ncol=ncol(Z0))

>

> reading_skills<- Bayesianbetareg (Y,X,Z0,nsim,b_pri,B_pri,g_pri,G_pri,

burn,jump,graph1=T, graph2=T )

In the results, the credibility intervals show that the estimates have a 95% probability of being different
from zero.

> summary(reading_skills)

################################################################

### Bayesian Beta Regression ###

################################################################
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Call:

Bayesianbetareg.default(Y = Y, X = X, Z = Z0, nsim = nsim, b_pri = b_pri,

B_pri = B_pri, g_pri = g_pri, G_pri = G_pri, burn = burn,

jump = jump, graph1 = T, graph2=T)

Estimate Est.Error L.CredIntv U.CredIntv

beta.X0 2.0863 0.1276 1.8338 2.335

beta.X1 -1.7041 0.1709 -2.0309 -1.358

beta.X2 0.5202 0.1463 0.2321 0.799

beta.X3 -0.5786 0.1824 -0.9396 -0.219

gamma.X0 2.1975 0.1533 1.8905 2.486

Deviance:

[1] 180.3878

AIC:

[1] 188.3878

BIC:

[1] 195.5246

Using the Coda package, we tests the convergence of the chains. In all of the cases, the chains pass the
three test of convergence (the geeks diagnostic, rafters diagnostic and Heidelberger and Welch diagnostic),
showing the performance of the Bayesian method in fitting the model to the data originally presented in
Heidelberger & Welch (1981)

library (coda)

> geweke.diag(reading_skills$beta.mcmc, frac1=0.1,frac2=0.5)

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

Series 1 Series 2 Series 3 Series 4

-0.1890 1.8223 0.2704 1.0401

>

> raftery.diag(reading_skills$beta.mcmc, q = 0.025, r = 0.005, s = 0.95)

Quantile (q) = 0.025

Accuracy (r) = +/- 0.005

Probability (s) = 0.95

Burn-in Total Lower bound Dependence

(M) (N) (Nmin) factor (I)

Series X0 14 14554 3746 3.89

Series X1 21 22911 3746 6.12

Series X2 17 18600 3746 4.97

Series X3 13 14382 3746 3.84
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>

> heidel.diag(reading_skills$beta.mcmc)

Stationarity start p-value

test iteration

Series X0 passed 1 0.878

Series X1 passed 1 0.571

Series X2 passed 1 0.242

Series X3 passed 1 0.412

Halfwidth Mean Halfwidth

test

Series X0 passed 2.084 0.00147

Series X1 passed -1.705 0.00250

Series X2 passed 0.522 0.00249

Series X3 passed -0.583 0.00314

>

> geweke.diag(reading_skills$gamma.mcmc, frac1=0.1,frac2=0.5)

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

Series 1

-0.3239

>

> raftery.diag(reading_skills$gamma.mcmc, q = 0.025, r = 0.005, s = 0.95)

Quantile (q) = 0.025

Accuracy (r) = +/- 0.005

Probability (s) = 0.95

Burn-in Total Lower bound Dependence

(M) (N) (Nmin) factor (I)

Series Z0 120 132240 3746 35.3

>

> heidel.diag(reading_skills$gamma.mcmc)

Stationarity start p-value

test iteration

Series Z0 passed 1 0.301

Halfwidth Mean Halfwidth

test

Series 1 passed 2.2 0.0126

>

>

> geweke.diag(reading_skills$beta.mcmc.short, frac1=0.1,frac2=0.5)

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5
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Series X0 Series X1 Series X2 Series X3

1.0552 -0.6642 -0.1377 0.1387

>

> raftery.diag(reading_skills$beta.mcmc.short, q = 0.025, r = 0.005, s = 0.95)

Quantile (q) = 0.025

Accuracy (r) = +/- 0.005

Probability (s) = 0.95

You need a sample size of at least 3746 with these values of q, r and s

>

> heidel.diag(reading_skills$beta.mcmc.short)

Stationarity start p-value

test iteration

Series X0 passed 1 0.834

Series X1 passed 1 0.920

Series X2 passed 1 0.875

Series X3 passed 1 0.378

Halfwidth Mean Halfwidth

test

Series X0 passed 2.086 0.00426

Series X1 passed -1.704 0.00591

Series X2 passed 0.520 0.00593

Series X3 passed -0.579 0.00760

>

> geweke.diag(reading_skills$gamma.mcmc.short, frac1=0.1,frac2=0.5)

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

Series 1

0.9876

>

> raftery.diag(reading_skills$gamma.mcmc.short, q = 0.025, r = 0.005, s = 0.95)

Quantile (q) = 0.025

Accuracy (r) = +/- 0.005

Probability (s) = 0.95

You need a sample size of at least 3746 with these values of q, r and s

>

> heidel.diag(reading_skills$gamma.mcmc.short)

Stationarity start p-value

test iteration

Series Z0 passed 1 0.202

Halfwidth Mean Halfwidth

test
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Series Z0 passed 2.2 0.014

Finally, here we use the Bayesianbetareg package to plot the chains of the posterior parameter sam-
ples. Figures 4 and 5 shows a very small transient period giving a strongly intuitive indication of the
convergence, agreeing with the theoretical result of convergence.
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Figure 2: Plot - Chain of the posterior parameter samples of the β parameter.
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Figure 3: Plot - Chain of the posterior samples of γ0.

5.2. Joint mean and dispersion beta regression models

Cribari-Neto & Zeileis (2010) fitted beta regression models to this score data set, applying the classic
method, using the scores on the test as dependent variables and the other three variables as independent
variables for the mean and the precision parameters. The results obtained by Cribari-Neto & Zeileis
(2010) are:

> rs_beta <- betareg(accuracy ~ dyslexia * iq | dyslexia + iq, data = ReadingSkills,

hessian = TRUE)

> summary (rs_beta)

Call:

betareg(formula = accuracy ~ dyslexia * iq | dyslexia + iq, data = ReadingSkills,

hessian = TRUE)

Standardized weighted residuals 2:
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Min 1Q Median 3Q Max

-2.3900 -0.6416 0.1572 0.8524 1.6446

Coefficients (mean model with logit link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.1232 0.1509 7.444 9.76e-14 ***

dyslexia -0.7416 0.1515 -4.897 9.74e-07 ***

Iq 0.4864 0.1671 2.911 0.003603 **

dyslexia:iq -0.5813 0.1726 -3.368 0.000757 ***

Phi coefficients (precision model with log link):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.3044 0.2265 14.589 < 2e-16 ***

dyslexia 1.7466 0.2940 5.941 2.83e-09 ***

Iq 1.2291 0.4596 2.674 0.00749 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Type of estimator: ML (maximum likelihood)

Log-likelihood: 65.9 on 7 Df

Pseudo R-squared: 0.5756

Number of iterations in BFGS optimization: 25

5.3. Bayesian joint mean and precision beta regression models

A beta regression model, where the mean is a function of the dyslexia status, non-verbal IQ and their
interaction, and the dispersion parameter is modeled as a function of the dyslexia status and non-verbal
IQ, was fitted to the score data using the Bayesianbetareg function. The model assumes a logit link
function for the mean and a logarithm function for the precision, including the intercepts, in order to
compare the result obtained using the Bayesian method proposed by Cepeda-Cuervo(2001) with the result
obtained under the classic method.

> data(ReadingSkills)

>

>

> Y <- as.matrix(ReadingSkills[,1])

> n <- length(Y)

> X1 <- as.matrix(ReadingSkills[,2])

> for(i in 1:length(X1)){

+ X1 <- replace(X1,X1=="yes",1)

+ X1 <- replace(X1,X1=="no",0)

+ }

> X0 <- rep(1, times=n)

> X1 <- as.numeric(X1)

> X2 <- as.matrix(ReadingSkills[,3])

> X3 <- X1*X2

> X <- cbind(X0,X1,X2,X3)

> Z0 <- X0

> Z <- cbind(X0,X1,X2)

>

> burn <- 0.3
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> jump <- 30

> nsim <- 300000

>

> plot(X1,Y, main="Accuracy vs Dislexy", xlab="Dislexy", ylab="Accuracy")

> plot(X2,Y, main="Accuracy vs IQ", xlab="IQ", ylab="Accuracy")

> plot(X3,Y, main="Accuracy vs Interaction", xlab="Interaction", ylab="Accuracy")

>

> plot(Y, main="Accuracy")

>

> b_pri <- c(0,0,0,0)

> B_pri <- diag(100,nrow=ncol(X),ncol=ncol(X))

> g_pri <- c(0,0,0)

> G_pri <- diag(10,nrow=ncol(Z),ncol=ncol(Z))

>

> reading_skills<- Bayesianbetareg (Y,X,Z,nsim,b_pri,B_pri,g_pri,G_pri,

burn,jump,graph1=T, graph2=T)

Just like for the previous beta regression models, the 95% credibility intervals show that the mean
and dispersion regression parameters are different from zero.

> summary(reading_skills)

################################################################

### Bayesian Beta Regression ###

################################################################

Call:

Bayesianbetareg.default(Y = Y, X = X, Z = Z, nsim = nsim, b_pri = b_pri,

B_pri = B_pri, g_pri = g_pri, G_pri = G_pri, burn = burn,

jump = jump, graph = T)

Estimate Est.Error L.CredIntv U.CredIntv

beta.X0 1.44213 0.15216 1.15326 1.743

beta.X1 -1.10655 0.15438 -1.41132 -0.810

beta.X2 1.77584 0.10673 1.56610 1.979

beta.X3 -1.82596 0.10920 -2.03789 -1.618

gamma.Z0 1.16032 0.13011 0.89799 1.409

gamma.Z1 4.14779 0.34107 3.43596 4.780

gamma.Z2 3.29898 0.07004 3.16263 3.443

Deviance:

[1] 528.5511

AIC:

[1] 536.5511

BIC:

[1] 543.6878

In all the cases, we obtained the same positive/negative sign for the estimated coefficients, and values
close to the results reported by Cribari-Neto & Zeileis (2010).
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Figura 4: Plot - Chain of beta parameter
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The posterior chains seem to show good behavior, a small transient period and small standard devia-
tions. Results of the Geweke, Heidelberger & Welch and Rifter & Lewis test indicate convergence of the
chains for the mean regression parameters, at a level of 95%. For precision regression parameters, the
tests indicate convergence, except for the parameter associated with dyslexia.

The chains were cleaned using a burn in process excluding the first 30% of the sample and a jump of
30 steps for recollect the final posterior samples. The results were:

> library (coda)

> geweke.diag(reading_skills$beta.mcmc.short, frac1=0.1,frac2=0.5)

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

Series 1 Series 2 Series 3 Series 4

1.25697 -1.09921 -0.18970 0.06014

>

> raftery.diag(reading_skills$beta.mcmc.short, q = 0.025, r = 0.005, s = 0.95)

Quantile (q) = 0.025

Accuracy (r) = +/- 0.005

Probability (s) = 0.95

You need a sample size of at least 3746 with these values of q, r and s

>

> heidel.diag(reading_skills$beta.mcmc.short)

Stationarity start p-value
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test iteration

Series X0 passed 1 0.622

Series X1 passed 1 0.558

Series X2 passed 1 0.935

Series X3 passed 1 0.907

Halfwidth Mean Halfwidth

test

Series X0 passed 1.44 0.00632

Series X1 passed -1.11 0.00658

Series X2 passed 1.78 0.00411

Series X3 passed -1.83 0.00442

>

> geweke.diag(reading_skills$gamma.mcmc.short, frac1=0.1,frac2=0.5)

Fraction in 1st window = 0.1

Fraction in 2nd window = 0.5

Series 1 Series 2 Series 3

-0.5886 -0.8054 0.4717

>

> raftery.diag(reading_skills$gamma.mcmc.short, q = 0.025, r = 0.005, s = 0.95)

Quantile (q) = 0.025

Accuracy (r) = +/- 0.005

Probability (s) = 0.95

You need a sample size of at least 3746 with these values of q, r and s

>

> heidel.diag(reading_skills$gamma.mcmc.short)

Stationarity start p-value

test iteration

Series Z0 passed 1 0.1892

Series Z1 passed 801 0.0715

Series Z2 passed 1 0.4600

Halfwidth Mean Halfwidth

test

Series Z0 passed 1.16 0.01934

Series Z1 passed 4.23 0.07621

Series Z2 passed 3.30 0.00913

In the case of the short chains of β and γ, all pass the three tests of convergence.

Finally, assessing the fit of both models, it can be clearly seen that the information criteria suggest
that the best model is the one with constant precision.

With this in mind, we perform a brief inspection of the residuals with the functions beta.residuals,
plotresiduals and diagnostics, as shown above.

\begin{Schunk}
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reading_skills.residuals<- beta.residuals(Y,reading_skills)

plotresiduals(X,Y,reading_skills.residuals,type=5)

diagnostics(Y,reading_skills,reading_skills.residuals)

\end{Schunk}

This reveals that the model that includes beta regression structures in both mean and precision
provides better fit.

Regarding the divergence form the standard normal quartiles, it is important to take into account
the low overall estimated precision in the chosen model. Thus, further inspection is needed of the points
outside of the confidence bands for the errors, since their influence on the mean response may be due to
errors outside of the sampling process.
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6. Conclusions

This paper is introduced the Bayesianbetareg R-package, that can be used to fit beta regression models
applying Bayesian method proposed by Cepeda-Cuervo (2001) and summarize the results. We use the
Dyslexia and IQ Predicting Reading Accuracy database to illustrate the use of the different functions of
this package.

As a suggestions for future works and practical issues is possible introduce two key extensions. One
is the use of alternative link functions that could adjust in a better way for different database and the
second is the formulation of a model that have as target parameter the variance parameter.
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in StatisticsŮSimulation and Computation 39(2), 405–419.

Espinheira, P., Ferrari, S. L. & Cribari-Neto, F. (2008), ‘On beta regression residuals’, Journal of Applied
Statistics 35(4), 407–419.
*http://www.tandfonline.com/doi/abs/10.1080/02664760701834931

Ferrari, S. & Cribari-Neto, F. (2004), ‘Beta regression for modelling rates and proportions’, Journal of
Applied Statistics 31(7), 799–815.

Figueroa-Zuniga, J., Arellano-Valle, R. B. & S.L.P., F. (2013), ‘Beta mixed regression: a bayesian per-
spective.’, Computational Statistics and Data Analysis. 61, 137–147.

Gamerman, D. (1997), ‘Sampling from the posterior distribution in generalized linear mixed models.’,
Statistics and Computing 7(1), 57–68.

Gamerman, D. & Cepeda-Cuervo, E. (2013), Generalized spatial dispersion models, Technical report,
Universidade Federal do Rio de Janeiro.

Heidelberger, P. & Welch, P. D. (1981), ‘A spectral method for confidence interval generation and run
length control in simulations’, Comm. ACM. 24, 233–245.

Rocha, A. V. & Cribari-Neto, F. (2009), ‘Beta autoregressive moving average models.’, Test 18(3), 529–
545.

Simas, A., Barreto-Souza, W. & Rocha, A. (2010), ‘Improved estimators for a general class of beta
regression models.’, Computational Statistics & Data Analysis 54(2), 348–366.

Smithson, M. & Verkuilen, J. (2006), ‘A better lemon squeezer? maximum-likelihood regression with
beta-distributed dependent variables.’, Psychol Methods 1(11), 54–71.

Swearingen, C., Tilley, B., Adams, R., Rumboldt, Z., Nicholas, J., Bandyopadhyay, D. & Robert, F.
(2011), ‘Application of beta regression to analyze ischemic stroke volume in ninds rt-pa clinical
trials’, Neuroepidemiology 37(2), 73–82.

(0000)


	Introduction
	Bayesian beta regression models
	Beta distribution
	Beta regression models

	Bayesian method to fit beta regression models
	Bayesianbetareg R-package
	An application of the Bayesianbetareg code
	Beta regression models with constant precision
	Joint mean and dispersion beta regression models
	Bayesian joint mean and precision beta regression models

	Conclusions

