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Abstract 
This paper presents a blind method for speaker identification for audio forensics purposes. It is based on a decision system with fuzzy rules and 
works with the correlation between the cochleagrams of the audio proof and of the audios of the suspects. Our proposed system can give a null 
output, a unique selected suspect or a group of identified suspects. According to several tests, our Overall Accuracy (OA) is 0.97 with agreement 
(κappa index, κ) of 0.75. Additionally, unlike typical systems in which a low false acceptance (FP) implies high false rejection (FN), our system 
can work simultaneously with FN and FP equal to zero (i.e. OA=1; κ=1). Finally, our system works with blind identification, it means, without 
preliminary knowledge of the audio recordings or a training step; an imperative characteristic for audio forensics. 
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Identificación del hablante de forma ciega para fines de audio 
forense 

Resumen 
Este artículo presenta un método ciego para identificación del hablante, con fines de audio forense. Se basa en un sistema de decisión que 
trabajo con reglas difusas y la correlación entre los cocleagramas del audio de prueba y de los audios de los sospechosos. Nuestro sistema 
proporciona salida nula, con único sospechoso o con un grupo de sospechosos. De acuerdo a las pruebas realizadas, el desempeño global 
del sistema (OA) es 0.97 con un valor de concordancia (índice kappa) de 0.75. Adicionalmente, a diferencia de sistemas clásicos en los 
que un bajo valor de selección incorrecta (FP) implica un alto valor de rechazo incorrecto (FN), nuestro sistema puede trabajar con valores 
de FP y FN igual a cero, de forma simultánea.  Finalmente, nuestro sistema trabaja con identificación ciega, es decir, no es necesaria una 
fase de entrenamiento o conocimiento previo de los audios; característica importante para audio forense. 

Palabras clave: Identificación del hablante; cocleagrama; lógica difusa; aceptación correcta; aceptación incorrecta. 

1. Introduction

In audio forensics there are two main scenarios for
treating a suspect: identification and verification of the 
speaker [1]. In the first scenario, there is a specific group of 
suspects, in which the perpetrator of the crime is; the proof 
given as evidence is a voice recording. To identify the 
perpetrator of the crime, the voices of the members of the 
group are compared against the audio proof, and the voice 
that matches the evidence is the villain’s voice. In the second 
scenario, there is only one suspect and the purpose is to 
determine whether s/he participated in an audio recording 

How to cite: Ballesteros Larrota, D. M., Renza Torres, D. and Camacho Vargas, E. A., Blind speaker identification for audio forensic purposes DYNA 84(201), pp. 259-266, 
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given as evidence. 
Speaker identification algorithms can be used for 

authentication purposes or for audio forensics. In the first case, 
the system is trained with some utterances of every speaker and 
then the system should identify the speaker with a new set of 
words. However, in the second case, the identification process is 
a blind task, and there is not preliminary knowledge about the 
owner of the audio recordings.  

Generally, one of the main blocks in any speaker 
identification system is a decision algorithm, which makes a 
choice from the information obtained from the voices 
(feature extraction). Among decision techniques, the 
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artificial intelligence schemes such as neural networks [1], 
fuzzy logic [2,3] or genetic algorithms [4] have been widely 
used. Since these kind of solutions need a training stage, they 
are very useful for authentication but not for audio forensics. 

In the context of audio forensics, one of the main decision 
algorithms for speaker identification used by law 
enforcement agencies is the analysis based on voice 
spectrogram, according to official information reported by 
INTERPOL [5]. This technique is the second most used 
approach around the world, and the first in Asia, Africa, the 
Middle East, South and Central America. In the case of North 
America, the most frequent approaches are the semi-
supervised algorithms which use signal processing methods 
and statistical models; here, the algorithms can use voice 
spectrogram but unlike visual comparison of formant shapes, 
human inspection is replaced by automatic analysis.  

In the literature, another approach suggests carrying out 
voice analysis by means of cochleagrams instead of 
spectrograms. Although spectrograms give useful information 
to analyze a voice signal [6] and to compare two or more 
recordings [7,8], and it has been verified that impostors cannot 
mimic the behavior of target spectrograms [9], they work with 
lineal frequency resolution and are not the best way to analyze 
low frequencies of the signal. On the other hand, cochleagrams 
work with a finer frequency resolution at low frequencies, 
which may be useful for differentiating voice characteristics, 
since its energy is high at low frequencies; therefore, some 
recent studies of audio forensics have used cochleagrams as a 
feature input in speaker identification systems [10-12] 

According to the above, this paper proposes a blind speaker 
identification algorithm that uses cochleagrams for feature 
analysis, and a fuzzy system for classification. With our proposal, 
a training step is not required before the identification task, and 
therefore, it is intended for audio forensics purposes.  

The other sections of the paper are structured as follows: 
Section 2 explains the auditory features used in our proposal. 
Section 3 presents the proposed method. Section 4 shows the 
implementation and validation of the method. Section 5 
presents the conclusions. 

 
2.  Auditory features 

 
As discussed previously, in traditional approaches of 

audio forensics the spectrogram has been widely used as a 
tool for auditory feature extraction. A spectrogram is a 
graphic representation of a one-dimensional signal into a 
two-dimensional time-frequency display. In the case of the 
spectrogram of a voice signal, a linear frequency scale from 
0 Hz to 8 KHz (or 4 KHz depending of the frequency 
sampling of the voice signal) is used. This linear 
characteristic is not adequate for speaker identification 
purposes, since there are little differences in the voice 
features for people with similar timbre and pitch. Therefore, 
these differences could not be detected through 
methodologies using spectrograms. On the other hand, the 
cochleagram is a two-dimensional representation of sound 
signals, but unlike the spectrogram, it uses a bank of 
gammatone filters. The result has a finer frequency resolution 
at low frequencies respect to high frequencies and its main 
consequence is a better contrast around the features [13]. 

 

 
Figure 1. Spectrograms of the word “gato”. Speaker1 and speaker2. 
Source: The authors 

 
 

 

 
Figure 2. Cochleagrams of the word “gato”. Speaker1 and speaker2. 
Source: The authors 
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In order to illustrate the representation of a voice signal 
using spectrograms and cochleagrams, Figs. 1, 2 show an 
example of a voice signal with the pronunciation of the word 
“gato” (Spanish for “cat”) for two different speakers. Here, 
white represents high values of energy and black represents 
low values (or mute).  

According to the above graphics, dissimilarity between 
the plots of the same figure is more noticeable in the case of 
Fig. 2. In that instance, there are (visually) remarkable 
differences in the region between 602 Hz and 1190 Hz. 

In most cases, these differences can be enough to reject a 
suspect as the source of an audio proof. However, to enhance 
the performance of the system, the comparison can be done 
quantitatively through mathematical operations. Here, the 
aim is to obtain a value of similarity/dissimilarity that can be 
used by a classification block. One way to make the 
comparison is through Normalized Correlation (NC) between 
two cochleagrams. If the NC value is close to 1, it implies 
that the behavior (in time-frequency) is highly correlated 
between them, and therefore it is highly probable that the 
suspect is the source of the audio proof. Otherwise, if the NC 
value is close to 0, it means that the suspect is not. The 
challenge of deciding a positive coincidence relies on cases 
of middle values of NC. According to several tests, in some 
cases of the same speaker and in some cases of different 
speakers, middle values of NC are achieved. Therefore, 
datasets of high similarity and low similarity are not 
exclusive, meaning that some region of NC values 
simultaneously belong to high similarity and low similarity. 
This is the reason for selecting fuzzy logic within the analysis 
of positive or negative coincidence between the suspect and 
the audio proof. 

 
3.  Proposed speaker identification method 

 
Our proposal can be discriminated in three main parts: 

feature analysis of speech recordings based on cochleagrams, 
fuzzy system, and selection. Fig. 3 shows a general outline of 
the proposed speaker identification method. Each of these 
three blocks is described in detail below. 

 

 
Figure 3. Block diagram of the proposed method. 
Source: The authors. 

3.1.  Feature Analysis of speech recordings based on 
cochleagrams 

 
For audio forensics purposes, short utterances are selected 

for speaker identification in our proposal. Forensics extract 
five words of the audio proof (ref) and ask the specific group 
of suspects (i.e. spk1 to spkN) to pronounce the selected words 
(i.e. w1 to wM). These signals are the input of the block 
Feature Analysis (see Fig. 4). 

Being N the number of suspects, it will be (N+1)*5 voice 
recordings corresponding to the five words pronounced by 
each suspect and the recordings of the five words extracted 
from the audio proof. Then, the cochleagram of each 
recording is calculated, and stored as cref_wi for the case of 
the recordings extracted from the audio proof, or cspkj_wi, for 
the case of voice recordings pronounced by each suspect 
(where i is the number of the word, j is the number of the 
suspect). 

Then, the NC between the cochleagrams of the recordings 
extracted from the audio proof and each voice recording 
pronounced by each suspect (NCj,i) is computed. According to 
the above, there will be five values of NC per suspect (i.e.NCj,1 
to NCj,5). These values are the inputs of the fuzzy system. 

With the same example of Fig. 2, the visual similarity 
between the cochleagrams is very low, which is confirmed 
mathematically by an NC equal to 0.0376. 

However, full certainty is not guaranteed regarding about the 
individual pointed by the evidence with a unique comparison. For 
this reason, the comparison of five different words with 
subsequent selection using a fuzzy system is proposed. 

 
3.2.  Fuzzy system 

 
The aim of this system is to determine the degree of match 

between the recordings of each suspect and the recordings 
extracted from the audio proof. The selection of fuzzy system 

 

 
Figure 4. Internal process of the “Feature Analysis” block. 
Source: The authors. 
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obeys the following reason: the NC between two recordings of 
the same word and the source is expected to be close to 1, and for 
the case of different individuals is expected to be close to 0; 
however, in some cases, people with similar voice patterns (e.g. 
timbre, pitch) can have high values of NC, and in other cases, 
recordings of the same word from the same speaker cannot have 
a high value of NC (e.g. if the quality of the recordings is not 
good). Hence, it is necessary to classify the degree of matching 
in two fuzzy groups (high-similarity and low-similarity), if they 
are overlapped in a region of NC. This means that a given value 
of NC will have a certain degree of membership to the low-
similarity set and a certain degree of membership to the high-
similarity set. For example, an NC value of 0.4 has a degree of 
membership to the low-similarity set of 0.8 and a degree of 
membership to the high-similarity of 0.2. Therefore, these 
coincidence values suggest the probability of belonging to the 
high- similarity set.   

The fuzzy system block is divided in three parts: fuzzy 
input, fuzzy operator and implication operator as showed in 
Fig. 5. The Inputs of the fuzzy system are the scalar values 
(NC) of the output of the previous block (i.e.  NCj,1 to NCj,5 
for every jth suspect). The output of this block is 1 or 0. 
Below, the three parts of the fuzzy system are explained. 

 
3.2.1.   Fuzzy input 

 
The fuzzy input works with two fuzzy sets:  high- similarity and 

low-similarity. The level of “truth value” of a particular 
membership function is named µ. The trapezoidal function was 
selected as the membership function because it has a flat top with 
belonging equal to 1 and a break-point which decreases linearly to 
0. This condition allows that the sum of µ in both sets of the same 
NC value to be always 1, and therefore, the challenge is to determine 
the break-point of each membership function. After several tests 
(with words of different phonetic characteristics), we find the NC 
values shown in Fig. 6a, where each box contains the 95% of the 
results. These graphs show that the NC value for the cochleagram 
of two voice recordings of the same person (saved under different 
conditions) ranges around 0.7, while the corresponding NC value 
for two different people ranges around 0.3. From these results, the 
membership functions of Fig. 6b were proposed. 

Summarizing, in the fuzzification process, the NCj,i values 
are mapped by the membership functions showed in Fig. 6b. 
The output of the process correspond to the truth values µj,i 
(where i is the number of the word, j is the number of the 
suspect). Since there are five words for analysis, there are five 
values of NC and therefore five values of µ per suspect. 

 

Figure 5. Proposed fuzzy system. 
Source: The authors 

 
Figure 6. NC of inter and intra-speakers: a) range of confidence of several 
tests, b) proposed membership. 
Source: The authors 

 
 

3.2.2.  Fuzzy operator 
 
Once the five values of µ per suspect have been calculated in 

the previous block, the following step consists in determining a 
unique value per suspect related to the global similarity between 
him(her) and the audio proof. According to preliminary tests, it 
was found that a good operator among values of µj,i (for the same 
suspect) is the min function. However, it is neccesary to take into 
account that audio recordings with bad quailty can give low 
values of NC and then low values of µ. A solution is to calculate 
the second-lowest value (min2) of µj,i, for i [1 to 5] and j as the 
number of suspect. Therefore, output of this block is the global 
similarity (µg), calculated as follows: 

 
𝜇𝜇𝜇𝜇 = 𝑚𝑚𝑚𝑚𝑚𝑚2(µ𝑗𝑗,1,µ𝑗𝑗,2, …µ𝑗𝑗 ,5)   (1) 

 
For example, suppose that the probabilities of the first suspect are 

µ1,1=0.79, µ1,2=0.72, µ1,3=0.75, µ1,4=0.5, and µ1,5=0.81, then the result 
of this blocks is µg = min2(0.79, 0.72, 0.75, 0.5,0.81) = 0.72. 
The above result is the global degree of similarity of the suspect with 
respect to the audio proof. 

 
3.2.2.  Implication operator 

 
Finally, a value of coincidence (Cj) is given according to 

the value of µg and a fixed threshold, calculated through eq. 
(2). This result is calculated by each suspect (j).  

 

𝐶𝐶𝑗𝑗 = �1 𝜇𝜇𝜇𝜇 ≥ 0.7
0 𝜇𝜇𝜇𝜇 < 0.7   (2) 

 
3.3.  Selection 

 
According to preliminary results, a unique set of five 

words is not enough to determine if a suspect is the author of 
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the audio proof. Therefore, it is necessary to work with many 
trials (T). In each trial (t), five new words are selected, and 
the above steps (feature analysis and fuzzy system) are run 
again. For every trial, the suspect has a value of coincidence 
(Ctj). Then, the total score of coincidence (Sj) of the T trials 
is calculated, as follows: 

 
Sj = ∑ CtjT     (3) 

 
If a speaker has a score of coincidence equal to or higher 

than 8/10, the system selects the speaker; otherwise, the 
system gives a null identification. The aim of this condition 
is to prevent false acceptance, which means selecting a wrong 
suspect. 

 
4.  Implementation and evaluation of the method 

 
The purpose of this phase is to validate the proposed 

scheme in terms of the accuracy of the identification process. 
To evaluate the performance of the proposed system, we 
work with databases of 28 suspects. Also, there is an audio 
proof, from which five words have been extracted. Each 
suspect has pronounced the five selected words ten times (i.e. 
T=10) and their recordings are compared to the recordings 
extracted from the audio proof. If the total number of 
coincidences is at least 8/10 (of the total trials), the suspect is 
identified as positive (whole evaluation). This procedure is 
repeated for all suspects.  

 
4.1.  Evaluation measures 

 
To measure the accuracy of the identification process, the 

following metrics are selected: overall accuracy (OA) and 
Kappa (κ) index. OA ranges from 0 to 1, being the latter the 
ideal value (i.e. all sources and not sources of the audio proof 
are correctly identified). On the other hand, κ ranges from -1 
to 1, where -1 means perfect disagreement, 1 means perfect 
agreement, and 0 means a random level of 
agreement/disagreement. 

Knowing the recordings that correspond to the same speaker 
and those that are not the source of the audio proof, it is possible 
to compute the true positives (TP), the true negatives (TN), the 
false positives (FP), and the false negatives (FN). TP is the 
number of sources of audio proofs identified by the system as 
positive coincidence (correct identification); TN is the number of 
suspects that are not the source of audio proofs and were 
identified by the system as negative coincidence (correct 
rejection); FN is the number of sources of audio proofs identified 
by the system as negative coincidence (incorrect rejection); FP is 
the number of suspects that are not the source of audio proofs but 
were identified by the system as positive coincidence (incorrect 
identification).  

With the above metrics OA is calculated, as follows: 
 

𝑂𝑂𝑂𝑂 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

   (4) 
 
And the kappa index is obtained according to: 
 

κ   =  𝑂𝑂𝑂𝑂−𝑃𝑃𝑒𝑒
1−𝑃𝑃𝑒𝑒

    (5) 

Where Pe is defined as: 
 

𝑃𝑃𝑒𝑒 = {𝑃𝑃1 ∗ 𝑃𝑃2} + {(1 − 𝑃𝑃1) ∗ (1 − 𝑃𝑃2)} (6) 
 
P1 is the number of suspects identified as positive 

coincidence divided by the total number of suspects (i.e. 
P1=(TP+FP)/(TP+TN+FP+FN)); P2 is the real number of 
sources of the audio proofs divided by the total number of 
suspects (i.e. P2=(TP+FN)/ TP+TN+FP+FN)). 

 
4.2.  Results and discussion 

 
When evaluating the accuracy of the proposed method, 

10 different cases were detected. Table 1 shows the meaning 
of each case in terms of κ and OA.  According to the results, 
OA and κ are equal to 1 if and only if the performance of the 
system is perfect (1st case); it means the system identifies 
only the correct source of the audio proof. If the system 
identifies two suspects positively, i.e. the correct source and 
one incorrect source of the audio proof (i.e. the 2nd case), 
values of OA and κ are 0.96 and 0.65, respectively.  

 
Table 1. 
Meaning of parameters κ and OA 

Case κ OA Meaning 

1st 1.00 1.00 

TP=1; TN=27; FP=0; FN=0 
Only one suspect is positively 
identified and s/he is the source of the 
audio proof 

2nd 0.65 0.96 

TP=1; TN=26; FP=1; FN=0 
Two suspects are positively identified 
and one of them is the source of the 
audio proof 

3rd 0.47 0.92 

TP=1; TN=25; FP=2 FN=0 
Three suspects are positively identified 
and one of them is the source of the 
audio proof 

4th 0.36 0.89 

TP=1; TN=24; FP=3; FN=0 
Four suspects are positively identified 
and one of them is the source of the 
audio proof 

5th 0.29 0.85 

TP=1; TN=23; FP=4; FN=0 
Five suspects are positively identified 
and one of them is the source of the 
audio proof 

6th 0 0.96 
TP=0; TN=27; FP=0; FN=1 
No suspect is positively identified 

7th -0.037 0.92 

TP=0; TN=26; FP=1; FN=1 
Only one suspect is positively 
identified and s/he is not the source of 
the audio proof 

8th -0.05 0.89 

TP=0; TN=25; FP=2; FN=1 
Two suspects are positively identified 
and none of them is the source of the 
audio proof 

9th  -0.056 0.85 

TP=0; TN=24; FP=3; FN=1 
Three suspects are positively identified 
and none of them is the source of the 
audio proof 

10th  -0.06 0.82 

TP=0; TN=24; FP=3; FN=1 
Four suspects are positively identified 
and none of them is the source of the 
audio proof 

Source: The authors 
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Table 2. 
Average of the results by database 

Database OA κ 
1 0.97 0.66 
2 0.98 0.78 
3 0.97 0.76 
4 0.97 0.70 
5 0.97 0.79 
6 0.97 0.67 
7 0.98 0.83 
8 0.97 0.76 
9 0.98 0.82 

10 0.97 0.69 
Average 0.974 0.752 

Source: The authors 
 
 

 
Figure 7. Radial plot of OA for 280 tests.  
Source: The authors. 

 
 
But if none of the two identified suspects are the source 

of the audio proof (i.e. the 8th case), OA is 0.89 and κ is -
0.05. It is worth noting that in the case of four positive 
identifications with one of them as correct (i.e. the 4th case), 
the value of OA is the same of the above situation (ie. equal 
to 0.89), but the value of κ is 0.36. It means, for the parameter 
κ, having a higher number of positive identifications with one 
of them as the correct is better than having a lower number 
of positively identifications without the correct source of the 
audio proof. In terms of OA, identifying a correct suspect is 
as important as rejecting a false source of the audio proof. 

For an extensive validation, we work with 10 mini-databases 
each one with 28 suspects and 28 audio proofs. Every audio proof 
is compared with the 28 suspects of the database. At the end, there 
are 28 results by database, with a total of 280 tests. Table 2 shows 
the average of the validation parameters by database.  

According to the results of Table 2 (i.e. κaverage=0.752; 
OAaverage=0.974), the system is expected to mostly work 
between the 1st and the 2nd  cases of Table 1.  

Figs. 7 and 8 show the radar charts for the results of the 
280 tests (OA and κ, respectively). 

It is noteworthy that all results of Fig. 7 are higher than 
0.8 and most of them are on the unit circle (ideal value). This 
means that all results are classified in some of the ten cases 
of Table 1.  

 
Figure 8. Radial plot of κ for 280 tests.  
Source: The authors. 

 
 

 
Figure 9. Normalized histogram of κ for the 280 tests. 
Source: The authors. 

 
 
Throughout the entire circumference of Fig. 8, there are a 

lot of values of κ equal to 1, which means that in some tests 
of each database, the performance is perfect (only one 
identified suspect as the source of the audio proof). However, 
it is necessary to count the cases in which the result is not the 
ideal. Then, the number of results by each value of κ is 
divided by the number of tests (280), obtaining a normalized 
histogram (sum of ocurrences equal to 100%). 

According to Fig. 9, most of the results of κ (62.8%) 
correspond to the ideal performance, and in the second place 
(12.5%) two suspects are identified with one of them as the source 
of the audio proof. The percentage of results in which one of the 
identified suspects is the correct one (1st case to 5th case of Table 
1) is 86.7%. 

 
4.3.  Other parameter of validation 

 
One of measure in speaker recognition/identification 

systems is the DET or ROC curve [14], which consists in the 
plot of the false acceptance (i.e. FP) vs false rejection (i.e. 
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false negative). The AUC (area under the curve) is very 
useful to compare the behavior of two or more models, in 
which the best model is the one with the highest AUC [15]. 
Typically, a zero value of FP needs a high value of FP and 
vice versa.  Then, it is very common that the plot starts in a 
high value of FN and it decreases as the value of FN 
increases.  

However, with our proposal, the above behavior is not the 
rule.  For example, our system works simultaneously with 
FN=0 and FP=0 in the 62.8% of the cases.  It corresponds to 
the cases with κ equal to 1.  Therefore, this parameter is not 
used in our project as a measure of the performance of the 
proposed system. 

 
5.  Comparison to related works 

 
In this section, some related works are analyzed in terms 

of the selected features, the method of identification and the 
findings. In Avci’s proposal, the speaker identification 
system is based on a genetic algorithm and a fuzzy inference 
system. Inputs of the system are 25 Turkish words by suspect. 
Its correct classification rate ranges from 87.7% to 91.04%. 
In Almaadeed’s work, neural networks and wavelet analysis 
are used to identify the speaker. Several sentences are used 
to extract the features and results depend on the number and 
the kind of selected features; its performance accuracy ranges 
from 84% to 99%. Finally, in Daqroup’s work, the features 
are five formants and seven Shannon entropies extracted 
from vowels which are used as the inputs of a feed-forward 
neural network. In this proposal, recognition rate is 90.09%. 
In all three methods above, it is mandatory to train the system 
prior to the identification task; this means the system needs 
to know the correct answer in advance. Therefore, these 
systems are useful in applications of security and 
authentication in which a training phase is feasible. 

In the context of audio forensics, the audio proof is not 
known by the system in advance, and then, the identification 
process is a ‘blind’ task. For this reason, a good way of 
identifying the suspect is through the similarity between the 
suspect’s voice and the voice in the audio proof. Unlike 
speaker identification for authentication, in which the output 
is a unique identified suspect, our output is one of three cases: 
null, a unique identified suspect, or with multiple 
identifications. Due to the above reasons, a quantitative 
comparison among our proposal and other methods for 
authentication is not feasible, and only a qualitative analysis 
can be performed. 

In the specific area of speaker identification for audio 
forensics, it is remarkable that in Central and South America, 
identification is based on voice spectrogram (visual 
comparison). With our proposal, we select a fine time-
frequency representation of the speech/voice signal at low 
frequencies (i.e. the cochleagram), as well as performing the 
comparison through a mathematical parameter (i.e 
Normalized Correlation). 

 
6.  Conclusions 

 
In this paper a method for speaker identification is 

presented. The method is based on the normalized correlation 

between the Cochleagram of the suspect’s voice and the 
Cochleagram of the voice in the audio proof; then, the NC 
value enters a fuzzy system. Cochleagrams are selected 
because they can represent the time-frequency behavior of 
the sound in the low frequencies in a better manner, and the 
value of similarity/dissimilarity is closest to the perpectual 
assessment.   

The significance of this proposal is that the system works 
without a training phase, which means it is not necessary to 
have a knowledge of the suspects in advance. Furthermore, 
the five words extracted from the recordings can be selected 
by forensics every time.  

The proposed method was validated in terms of overall 
acuracy (OA) and kappa (k) index.  According to 280 tests 
(every one with 28 suspects and one audio proof), averages 
are 97.4% and 75.2%, respectively. For the fisrt parameter 
(OA), selecting the source of the audio proof is as important 
as rejecting the other suspects. For the second parameter (k), 
it is better  to have a higher number of positive identifications 
with one of them as the source of the audio proof, than having 
a lower number of positive identifications all of them 
incorrect. As a result, our proposal has a good trade-off 
between correct identification, correct rejection and number 
of identified suspects. 
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