
 

 

 

MULTI-OBJECTIVE STOCHASTIC PATH PLANNING 

 

 

A Thesis 

by 

SUMANTRA DASGUPTA  

 

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

 

May 2008 

 

 

Major Subject: Industrial Engineering 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&amp;M Repository

https://core.ac.uk/display/4276879?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

MULTI-OBJECTIVE STOCHASTIC PATH PLANNING 

 

A Thesis 

by 

SUMANTRA DASGUPTA  

 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of  

MASTER OF SCIENCE 

 

Approved by: 

Chair of Committee,  Amarnath Banerjee 

Committee Members, Guy L. Curry 
 Lewis Ntaimo 
 Faming Liang 
Head of Department, Brett A. Peters 

 

May 2008 

 

Major Subject: Industrial Engineering 



                                                                                                                                                 iii 
 
 

ABSTRACT 
 

Multi-Objective Stochastic Path Planning. (May 2008) 

Sumantra Dasgupta, B.E., Birla Institute of Technology, Mesra, India; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Amarnath Banerjee 

 

The present research formulates the path planning as an optimization problem 

with multiple objectives and stochastic edge parameters. The first section introduces 

different variants of the PP problem and discusses existing solutions to the problem. The 

next section introduces and solves various versions of the PP model within the scope of 

this research. The first three versions describe a single entity traveling from a single 

source to a single destination node. In the first version, the entity has a single objective 

and abides by multiple constraints. The second version deals with an entity traveling 

with multiple objectives and multiple constraints. The third version is a modification of 

the second version where the actual probability distributions of travel times along edges 

are known. The fourth and final version deals with multiple heterogeneous entities 

routed from multiple sources (supply nodes) to multiple destinations (demand nodes) 

along capacitated edges. Each of these formulations is solved by using either exact 

algorithms or heuristics developed in this research. The performance of each 

algorithm/heuristic is discussed in the final section. The main contributions of this 

research are: 



                                                                                                                                                 iv 
 
 

1. Provide a framework for analyzing PP in presence of multiple objectives and 

stochastic edge parameters. 

2. Identify candidate constraints where clustering based multi-level programming 

can be applied to eliminate infeasible edges. 

3. Provide an exact O (V.E) algorithm for building redundant shortest paths. 

4. Provide an O (V.E+C
2) heuristic for generating Pareto optimal shortest paths in 

presence of multiple objectives where C is the upper bound for path length. The 

complexity can be further reduced to O (V.E) by using graphical read-out of the 

Pareto frontier. 

5. Provide a cost structure which can capture multiple key probability distribution 

parameters of edge variables. This is in contrast with usual techniques which just 

capture single parameters like the mean or the variance of distributions. 

6. Provide a MIP formulation to a multi-commodity transportation problem with 

multiple decision variables, stochastic demands and uncertain edge/route 

capacities.  

7. Provide an alternate formulation to the classic binary facility selection problem. 

 

 

 

 

 

 



                                                                                                                                                 v 
 
 

DEDICATION 
 

 

 

 

 

 

 

 

 

                                             To my parents 

 

 

 



                                                                                                                                                 vi 
 
 

ACKNOWLEDGEMENTS 

 

I would like to thank my committee chair, Dr. Amarnath Banerjee, and my 

committee members, Dr. Curry, Dr. Ntaimo and Dr. Liang for their guidance and 

support throughout the course of this research.  

I would also like to thank Dr Amarnath Banerjee and Dr. James A. Wall for the 

constant monetary support they provided me throughout my MS career.  

Thanks also go to my friends and colleagues and the department faculty and staff 

for making my time at Texas A&M University a great experience. 

Thanks to Adwitiya for standing by me and supporting me through thick and 

thin. 

Finally, thanks to my mother and father for their constant love and 

encouragement. 

 

 



                                                                                                                                                 vii 
 
 

NOMENCLATURE 

 

E Set of edges in a graph 

G (V, E) Graph with vertices in set V and edges in set E 

MIP Mixed Integer Programming 

NP Non Polynomial time   

O (Q) Order of Q run-time complexity 

OL                             Observability Limit 

P(event)                      Probability of event happening (cdf) 

PP Path Planning 

SDP                           Stochastic Dynamic Programming 

SL                               Safety Limit 

V Set of vertices in a graph                                    

 



                                                                                                                                                 viii 
 
 

TABLE OF CONTENTS 

 

              Page 

ABSTRACT ..............................................................................................................  iii 

DEDICATION ..........................................................................................................  v 

ACKNOWLEDGEMENTS ......................................................................................  vi 

NOMENCLATURE..................................................................................................  vii 

TABLE OF CONTENTS ..........................................................................................  viii 

LIST OF FIGURES...................................................................................................  x 

LIST OF TABLES ....................................................................................................  xi 

1. INTRODUCTION: THE PROBLEM AND PREVIOUS WORK .....................  1 

2. PATH PLANNING MODELS AND SOLUTIONS...........................................  7 

  2.1 Single Objective, Multiple Probabilistic Constraints ...........................  7 
    2.1.1 Problem Formulation..........................................................  7
    2.1.2 Solution ..............................................................................  9 
    2.1.3 Building Robust Solutions .................................................  11 
  2.2 Multiple Objectives, Multiple Constraints ...........................................  14 
    2.2.1 Problem Formulation..........................................................  14 
    2.2.2 Solution ..............................................................................  14 
            2.3 Probabilistic Travel-time Distributions................................................  18 
    2.3.1 Problem Formulation..........................................................  18 
    2.3.2 Solution ..............................................................................  19 
  2.4 Multiple Source/Destination/Entity Path Planning ..............................  20 
    2.4.1 Problem Formulation..........................................................  20 
    2.4.2 Solution ..............................................................................  24 
 
3. RESULTS AND CONCLUSIONS.....................................................................  25 

  3.1 Single Entity.........................................................................................  25 
            3.2 Multiple Entity .....................................................................................  30 
  3.3 Conclusions ..........................................................................................  41 



                                                                                                                                                 ix 
 
 

Page 

REFERENCES..........................................................................................................  44 

APPENDIX A ...........................................................................................................  47 

APPENDIX B ...........................................................................................................  60 

VITA .........................................................................................................................  65 



                                                                                                                                                 x 
 
 

LIST OF FIGURES 

 

FIGURE                                                                                                                        Page 

 1 Mesh model of search space and it’s projection on the horizontal plane...   8 
 
 2 Feasible region shrinking as the number of constraints increases .............   9 
 
 3 Grid model used for PP ..............................................................................   10 
 
 4  Redundant paths for Example 1 .................................................................   13 
 
      5       Grid Model .................................................................................................   26 
 
 6 Shortest Path...............................................................................................  26 
 
 7 Safest Path ..................................................................................................  27 
 
 8 Redundant Paths .........................................................................................  28 
 
 9 Delay and distance feasible paths from source to destination....................  29 
 
  



                                                                                                                                                 xi 
 
 

LIST OF TABLES 

 

TABLE                                                                                                                          Page 
 
 1 The length and delay values of Pareto optimal paths.................................  29 
 
 2 Make, Inv variables for Case A..................................................................  32 
 
 3 expan variable for Case A ..........................................................................  34 
 
 4 Trans variable for Case A...........................................................................  35 
 
 5 Arc limits in scenarios 1 and 2 ...................................................................  35 
 
 6 Demand fulfillment in Case A ...................................................................  36 
 
 7 Make, Inv variables for Case B..................................................................  37 
 
 8 expan variable for Case B ..........................................................................  39 
 
 9 exces variable for Case B ...........................................................................  40 



                                                                                                                                                 1 
 
 

1. INTRODUCTION: THE PROBLEM AND PREVIOUS WORK 

 

Path-planning problems appear in various applications. Robotics, VR walk-

through, video-game, terrain-navigation, traffic modeling, routing of data packets in a 

telecom network, protein transport are just a few areas where path planning is the central 

problem. This wide application of path planning makes it an intensely researched 

subject. Various researchers and practitioners have come up with various formulations of 

the path-planning problem and various ways of solving them. 

The basic problem can be stated as follows: 

P1. Unconstrained Deterministic Path Planning: Given a graph G(V,E) where V is the 

set of nodes and E is the set of edges, a set of edge weights cij , with i, j being the end 

points of edges in E, a single source node s, a single destination node d and a single 

entity e, what is the minimum-weight path from s to d for entity e? 

One can define a family of variants to the basic path-planning problem. 

P2. Constrained Deterministic Path Planning: Given a graph G (V, E) where V is the set 

of nodes and E is the set of edges, a set of edge weights cij, with i, j being the end points 

of edges in E, a single source node s, a single destination node d, a single entity e and an 

upper-bound on the total allowed path weight, C, what is the minimum-weight path from 

s to d for entity e? 

P3. Multi-Constrained Deterministic Path Planning: Given a graph G (V, E) where V  

is the set of nodes and E is the set of edges, a set of edge weights cij and edge delays dij,  

__________________________ 
This thesis follows the style of IEEE Transactions on Systems, Man and Cybernetics. 



                                                                                                                                                 2 
 
 

with i, j being the end points of edges in E, a single source node s, a single destination 

node d, a single entity e, upper-bounds on the total allowed path weight (C) and on the 

total allowed path delay (D), what is the minimum-weight path from s to d for entity e? 

Each of the problems P0, P1 or P2 can have multiple-objective formulations where one 

needs to enumerate all the non-dominated solutions (in the Edgeworth-Pareto sense) to 

the path planning problem with more than one objective (e.g. minimize path delay and 

path cost). 

Also, each of the above mentioned problems can have their stochastic 

equivalents where the edge parameters (e.g. weights and delays) are known only in 

distribution. 

In practical situations, one usually works on networks with multiple sources (or 

supply nodes), multiple destinations (or demand nodes), multiple commodity flow and 

capacitated edges with multiple edge parameters. Such problems often fall into the 

multiple-objective, multiple-constraint framework. Stochasticity can appear in the form 

of probabilistic edge parameters and probabilistic demands. 

Till now, it has been assumed that the graph G (V, E) is known. If G is not 

known in advance then one has to generate it before any path planning can be done. The 

graph generating techniques can be broadly classified into two categories: 

1. Sampling Based: The search space is randomly sampled and the sampled points 

are joined to form a graph. e.g. Probabilistic Road Maps (PRM). 



                                                                                                                                                 3 
 
 

2. Tree Based: Edges are grown from the center of the search space to various 

directions until the whole search space is covered. e.g. Rapidly exploring 

Random Trees (RRT). 

Usually, when a graph is not given, the search space (for path planning) has 

obstacles embedded in it. One can have a new formulation to the path planning problem. 

P4. Obstacle Avoidance based Path Planning: Given a search space S with a set of static 

obstacles O, a source s and a destination d, what is the shortest path that an entity can 

follow from source to destination without running into obstacles? 

This problem can again have variants with mobile obstacles and multiple entities.  

The present work aims to create a framework where one can study the path 

planning problem on an underlying mesh (the graph G is not explicitly given but has to 

be generated from the mesh). It is assumed that the mesh has a set of static obstacles and 

that the parameters of each grid on the mesh are known either deterministically, in 

distribution or as a discrete histogram of scenarios. The majority of the research assumes 

that the path planning is for a single entity traveling from a given source to a given 

destination along un-capacitated edges. The final part of the research deals with a 

generalization of the path planning problem to multiple homogeneous entities routed 

from multiple sources (supply nodes) to multiple destinations (demand nodes) along 

capacitated edges. 

Previous work in this field can be categorized as follows: 
 
A. Extensions of Dijkstra’s Algorithm: A* algorithm [1] was developed by Nilsson in 

1980. By adding a simple heuristic to the distance function (an underestimate of the 



                                                                                                                                                 4 
 
 

distance of the current point from the destination node), it is better adapted to single 

source, single destination cases. People have worked on various modifications of A*[2, 

3, 4]. D* [2] is a popular modification of A* for a dynamically changing environment. 

B. Multi-criteria path planning: Routing under multiple constraints has been shown to be 

NP-Complete [5]. Various pseudo-polynomial time algorithms and approximate 

algorithms have been reported for routing under multiple constraints [6, 7]. Genetic 

Algorithms have been applied to generate the non-dominated Pareto optimal set in multi-

criteria path planning [8]. Potential and value-function approaches have been reported 

for multi-criteria path planning in [9, 10]. 

C. Stochastic path planning: Interval based path planning has been reported by [11, 12]. 

It has been proved to be NP-hard in [12]. Distribution based path planning has been 

reported by [13, 14]. Apart from a few special cases, most distribution based path 

planning formulations are NP-hard [14]. Mean-Variance formulations have been 

reported by [8]. Two-stage stochastic programming formulations have been reported by 

[15]. A Dynamic Programming approach suited for stochastic scenarios (better known as 

SDP) has been used in [16] to develop optimal policies. 

D. Graph Generation: The graph generation techniques can broadly be categorized as 

point based or tree based. The most well known point-based algorithm is the 

Probabilistic Road Maps (PRM) [17]. Many further extensions and novel point-based 

algorithms have been reported in [17]. Rapidly exploring Random Trees (RRT) [17] is a 

very well known tree based graph building algorithm. Further tree-based algorithms can 

be found in [17]. 



                                                                                                                                                 5 
 
 

The main contributions of this research are: 

1. Provide a framework for analyzing PP in presence of multiple objectives and 

stochastic edge parameters. 

2. Identify candidate constraints where clustering based multi-level programming 

can be applied to eliminate infeasible edges. 

3. Provide an exact O (V.E) algorithm for building redundant shortest paths. 

4. Provide an O (V.E+C
2) heuristic for generating Pareto optimal shortest paths in 

presence of multiple objectives where C is the upper bound for path length. The 

complexity can be further reduced to O (V.E) by using graphical read-out of the 

Pareto frontier. 

5. Provide a cost structure which can capture multiple key probability distribution 

parameters of edge variables. This is in contrast with usual techniques which just 

capture single parameters like the mean or the variance of edge distributions. 

6. Provide a MIP formulation to a multi-commodity transportation problem with 

multiple decision variables, stochastic demands and uncertain edge/route 

capacities.  

7. Provide an alternate formulation to the classic binary facility selection problem. 

The research is organized as follows. Section 2 describes path planning models 

and their solutions. Section 2.1 defines the general model for PP to be used in sections 

2.1-2.3. It describes the multilevel programming approach for feasibility analysis, an 

approach for solving the single objective shortest path and an approach for building 

redundancy into the shortest path solution in case of edge failures. Section 2.2 extends 



                                                                                                                                                 6 
 
 

section 2.1 for solving multi-objective shortest path problems. Section 2.3 indicates 

ways of capturing multiple key probability distribution parameters of edge variables. 

Section 2.4 extends the concept of a single entity PP between a given source and 

destination to multiple heterogeneous entities routed from multiple sources to multiple 

demand nodes. It formulates the problem as a MIP which can be solved using a MIP 

solver like CPLEX. Section 3 discusses results, conclusions and future work. These 

sections are followed by reference and appendices. Appendix A provides computer 

codes for all the algorithms described in the paper. Appendix B provides extensive 

results from the solution of an instance of the problem described in section 2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                                 7 
 
 

2. PATH PLANNING MODELS AND SOLUTIONS 

 

2.1. SINGLE OBJECTIVE, MULTIPLE PROBABILISTIC CONSTRAINTS 

2.1.1. PROBLEM FORMULATION 

To start with, the path-planning problem is formulated as a single objective 

multi-constrained problem for a single entity (given source s and destination d) 

Min edge Є shortest-path ∑ length (edge) 
 
s.t. 
      P (obstacle avoidance) = 1 

      Min edge Є shortest-path P (safety (edge)) >= SL 

      Min edge Є shortest-path P (observability (edge)) >= OL 

 
As mentioned previously, it is assumed that a mesh for the search space is given. 

The mesh consists of uniformly sampled grids (with square projections on the horizontal 

plane) as shown in Fig. 1. Each grid is characterized by: 

1. Average height field. 

2. Horizontal projection dimensions (same for uniform sampling). 

3. Vegetation type. (best: forest, average: tall-grass, worst: barren). 

The PP problem is bound to have some constraints which need to fulfilled as the 

entity moves along the path. The current research concentrates on the constraints 

mentioned below: 

1. Obstacle: If the average height field of a particular grid is above a particular 

threshold, it is marked as an obstacle grid. 



                                                                                                                                                 8 
 
 

2. Safety: In the scope of this research, safety is assumed to be solely dependent on 

vegetation type. Forest cover provides maximum safety (SL=1) while barren 

ground provides no safety (SL=0). 

3. Observability: If the average height of the grid is more than the average height of 

it’s neighbors, it’s observability factor is improved. Compared to it’s effect on 

safety, vegetation has an inverse effect on observability. The value of the limit, 

OL, is scaled between 0 and 1. 

Caveat: In most cases, either safety or observability is included as a constraint because if 

they are both active simultaneously, the total search space becomes infeasible. 

 

 

 

    

    

    

 
 
Fig. 1.  Mesh model of search space and it’s projection on the horizontal plane 
 
 
 



                                                                                                                                                 9 
 
 

2.1.2. SOLUTION 

A. Feasibility Analysis 

The approach employed in finding the feasible region is similar to multi-level 

programming. 

Level 1: Obstacles are avoided at any cost.  

Level 2: The user is given a chance to choose between safety and observability. 

At each level, the clustering algorithm is run to cluster out infeasible grids and to form a 

progressively diminishing feasible region as shown in fig. 2. 

 

 

Fig. 2.  Feasible region shrinking as the number of constraints increases 

 

B. Optimality Analysis 

The procedure begins with a connectivity check between source and destination. 

If the feasible region doesn’t contain both the source and the destination nodes in a 

continuous stretch, then the problem is infeasible. Assuming that the feasible region has 

source and the destination nodes in it’s interior, a graph is built connecting the grids in 

the feasible region. For the scope of the current research, graph building is simplified by 

assuming a simple rule of motion mentioned below. 



                                                                                                                                                 10 
 
 

Rule of Motion: The entity moves from the center of each grid to the center of it’s 

neighboring grids. 

Going by this simple rule, one can join the center of each feasible grid to the 

center of it’s immediate feasible neighbors (a maximum of 8 neighbors) and form a 

graph (not a di-graph). Once the graph is formed, Dijkstra’s algorithm is employed to 

find the shortest path.  

Fig. 3 shows a small example of the grid model used for this section. It shows an 

8x8 grid with 2 parameters per grid, source node, s and destination node, d. The first 

parameter is the average height (normalized) of the grid and the second parameter is the 

type of vegetation in the terrain. To be navigable, the average normalized height is set to 

3. The vegetation can be of three types, namely forest (F), grassland (G) and barren (B) 

with covertness/safety ranging from maximum in F, medium in G and minimum in B.  

 

5,B 5,B 5,B 1,F 1,F 1,F 1,F 1,F 
s 

5,B 5,B 1,F 5,B 5,B 1,G 5,B 1,B 

5,B 1,F 1,G 1,G 1,G 1,B 5,B 1,B 

1,F 1,B 1,G 5,B 5,B 5,B 1,B 1,B 

1,F 5,B 1,B 5,B 5,B 1,B 1,B 1,B 

1,F 5,B 1,B 1,B 1,B 1,B 1,B 1,B 

1,F 1,G 1,B 1,B 1,B 1,B 1,B 1,B 

1,F 
d 

1,G 1,B 1,B 1,B 1,B 1,B 1,B 

 

Fig.3. Grid model used for PP 

 



                                                                                                                                                 11 
 
 

2.1.3. BUILDING ROBUST SOLUTIONS 

In the previous section, the shortest path is pre-calculated in the sense that the 

entity knows the shortest path before it sets out on it’s journey. While actually following 

the path, it may so happen that one of the edges included in the shortest path becomes 

suddenly unavailable. To address such emergency situations, redundant paths can be pre-

built into the solution. The rule followed for finding alternate paths is stated below. 

Rule for Re-routing: While the entity follows the minimum distance path from source to 

destination, it has two options at each node: 

1. It follows the minimum distance path if the next edge on that path is available. 

2. It follows the pre-computed next best path. 

The algorithm for building redundancy into the solution (of minimum path) is 

similar to Dijkstra’s algorithm. It is named Redundant Dijkstra because it adds 

redundancy to the shortest path problem. The pseudo-code (table on page 29) is given 

below: 

 

Code 1: Redundant_Dijkstra (G:graph, c:edge cost matrix, d:destination_node) 
 
 
1 INITIALIZE-SINGLE-SOURCE (G, d) 

2 S←Ø, Q←V [G] 

3 while Q ≠ Ø 

4      do u ← EXTRACT-MIN (Q) 

5           S ← Union (S, {u}) 

6           for each vertex v Є Adj[u] //re-compute 2 shortest distances for each neighbor 



                                                                                                                                                 12 
 
 

Code 1: Continued 
 
 
7                do RELAX-MINIMUM (u, v, c) and RELAX-SECOND-MINIMUM (u, v, c) 

 

The above algorithm has the same order of complexity as Dijkstra’s algorithm. It 

has more storage requirements. It is to be noted that the actual algorithm has been solved 

with the destination node instead of the source node. This is done so that each node 

(other than the destination node) has two paths leading to it’s neighborhood and 

subsequently to the destination node. The first path is the optimal path. The second path 

is a sub optimal path where (in the absence of the first arc of the optimal path) the entity 

takes the second best arc from it’s current node to one of it’s neighbors and follows an 

optimal path subsequently (if there are no further disruptions). 

Example 1: This example (Fig. 4) shows the working of Redundant_Dijkstra on a 

4x4 grid. Grid 3 is the destination node (d) and the problem has been solved with grid 3 

as the source. Every other grid has two arrows pointing into it from it’s neighbors. The 

blue arrow is in the minimum distance path while the black arrow is in the second best 

path. Following blue arrows from any grid to the destination will derive the minimum 

distance path and should be availed whenever it is available. Only when the blue arrow 

edge is disrupted does one take a black arrow edge (but return to blue arrows as soon as 

possible). 

 

 

 



                                                                                                                                                 13 
 
 

 
 
 
Fig. 4. Redundant paths for Example 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                                                                 14 
 
 

2.2. MULTIPLE OBJECTIVES, MULTIPLE CONSTRAINTS 

2.2.1. PROBLEM FORMULATION 
 

The path-planning problem is now formulated as a bi-objective multi-constrained 

problem for a single entity (given source s and destination d) 

Min edge Є shortest-path ∑ length (edge), ∑ delay (edge) 

s.t. 

      P (obstacle avoidance) = 1 

      Min edge Є shortest-path P (safety (edge)) >= SL 

      Min edge Є shortest-path P (observability (edge)) >= OL 

      ∑ edge Є shortest-path length (edge) <=C 

      ∑ edge Є shortest-path delay (edge) <=D 

The last two constraints are deterministic constraints. C is the upper bound on path 

length and D is the upper bound on path delay. 

2.2.2. SOLUTION 
 
A. Feasibility Analysis 
 

The probabilistic constraints are dealt with as before (multi-level clustering). The 

deterministic constraints cannot be dealt with in the same way because they are path 

constraints. The whole path is either feasible or infeasible w.r.t one or both the 

deterministic constraints. One cannot separate them into edge constraints. Infact, it has 

been proven in literature that multi-criteria deterministic path planning is NP-Complete 

[18]. If we notice carefully, the approach in section 2.1.2 worked because the constraints 



                                                                                                                                                 15 
 
 

in section 2.1.1 were path constraints which could be separated into individual edge 

constraints.  

So, the multi-level programming with clustering method addresses the obstacle 

and safety/observability constraints. The length and delay constraints cannot be 

addressed in the feasibility analysis. They are addressed later while generating the actual 

non-dominated solutions (in the Pareto sense) to the bi-objective problem. 

B. Optimality Analysis 

In order to characterize the optimal solution in presence of multiple objectives, 

the definition of a non-dominated or Pareto set is necessary. 

Definition: Non-dominated solution or Pareto Set: The set of solutions/n-tuples to a 

multiple-objective (n objectives, n>1) optimization problem having the properties: 

1. No single solution is the best in all the objective values. 

2. No single solution is worse in all the objective values than any existing solution 

in the set. 

The optimality analysis involves generating a set of non-dominated solutions of 

[length, delay] tuples from source to destination. While generating the set, the infeasible 

combinations are discarded (the length and delay constraints are satisfied). 

The algorithm used for generating the multiple non-dominating solutions is given 

below.  The formulation can be easily extended to problems with more than two 

objectives. 

 

 



                                                                                                                                                 16 
 
 

Code 2: Non_Dom (G:graph, C: ub on length of path, D: ub on delay of path, D,  
 
s:source , d:destination, c:edge cost matrix, del: edge delay matrix) 
 
 
1 INITIALIZE-SINGLE-SOURCE (G, s) 

2 S←Ø, Q←V [G] 

3 while Q ≠ Ø 

4      do u ← EXTRACT-MIN (Q) // min is extracted based on shortest path length value 

5           S ← Union(S,{u}) and mark u as fathomed 

6           for each vertex v Є Adj[u] which is not fathomed yet 

7                add to v all paths coming through u; // generates alternative path set for v 

8                update cost and delay values;  

9                mark u as parent for all those paths; 

10     for destination node d 

11              intialize Pareto set P = Ø 

12              remove infeasible paths from alternative paths set, A of destination (based -         

13               - on C, D) 

14               sort A 

15              Add non-dominating paths from A to P 

 

The above algorithm has an order of complexity of O (V.E+C
2 ) where V is the 

number of vertices in the graph, E is the number of edges in the graph and C is the upper 

bound on length of feasible paths. The algorithm is very similar to Dijkstra’s algorithm. 

Each node stores multiple paths to the source nodes. The paths stored for the destination 



                                                                                                                                                 17 
 
 

node (set A) are chosen for investigation from line 10 onward. Line 12 restricts A 

population only to feasible paths (both length and delay feasible). Line 14 sorts the 

feasible solutions in ascending order of path length. Before insertion of a new path from 

set A to the Pareto set P, line 14 compares each feasible path in A with those in P as 

follows: 

1. Both the length and delay values of a feasible path in A are larger than those of a 

path in Pt: Discard the feasible solution. 

2. The length/delay of a feasible path in Ais smaller than that of a path which 

already exists in P but it’s delay/length value is larger than that of the path in P: 

Add the feasible solution to the Pareto set. 

3. Both the length and delay values of a feasible path in A are smaller than those of 

a path R which already exists in P: Add the feasible solution to P, discard the 

path R from P. 

The complexity of the algorithm can be brought down to O (VE) if one uses a graphical 

approach to choose the efficient frontier/Pareto set. In this method, the user chooses the 

Pareto set manually after the set A has been generated (lines 1-9). 

 

 

 

 

 

 



                                                                                                                                                 18 
 
 

2.3. PROBABILISTIC TRAVEL-TIME DISTRIBUTIONS 

2.3.1. PROBLEM FORMULATION 

The path-planning problem is now formulated as a bi-objective multi-constrained 

problem for a single entity (given source s and destination d). 

Min edge Є shortest-path ∑ length (edge), ∑ E (cost (delay (edge))) 

s.t. 

      P (obstacle avoidance) = 1 

      Min edge Є shortest-path P (safety (edge)) >= SL 

      Min edge Є shortest-path P (observability (edge)) >= OL 

      ∑ edge Є shortest-path length (edge) <=C       where C is the upper-bound on path length 

Here, the delay parameter of an edge is known only in distribution. It is assumed that the 

delays of edges are i.i.d. random variables. 

Let an edge e have a random travel time Y with density f(.), mean µ and variance 

σ
2. If we define a quadratic travel time cost given by C (t) =t

2, we have, 

E(C (delay for path)) = ∑ edge Є shortest-path (µ
2+ σ

2) 

It is to be noted that the cost structure is defined in such a way that the 

expectation of the path cost is expressed as a sum of the expectations of the individual 

edge costs, that is, the path cost function is linear (in edge costs). Such a cost function 

imposes an optimal substructure on the problem which is required for the solution 

(proposed in the next sub-section) to work. 

In the present setting, mean and variance parameters have been chosen to be 

representative of the underlying probability distribution. Although this is sufficient for 



                                                                                                                                                 19 
 
 

most practical situations, one might encounter edge distributions which need higher 

order moments (besides mean and variance) to describe them with a proper level of 

accuracy. In that case, one can define a higher order cost structure incorporating enough 

moments (of the underlying distribution) to model the uncertainty. Thus the model 

becomes more ‘informed’ about the uncertainty in edge parameters.  

The concept can be easily extended to other probabilistic edge variables whose 

distributions are i.i.d. 

2.3.2. SOLUTION 

The solution techniques are same as that used in section 2.2.2 if the deterministic 

travel times for edges (in section 2.2.1) are replaced by the mean-square + variance of 

random travel times for edges  (in section 2.3.1).  So, a deterministic equivalent of the 

probabilistic travel time is used in which multiple key probability distribution parameters 

of edge variables are captured. 

 

 

 

 

 

 

 

 

 



                                                                                                                                                 20 
 
 

2.4. MULTIPLE SOURCE/DESTINATION/ENTITY PATH PLANNING 

2.4.1. PROBLEM FORMULATION 

To better illustrate how the path planning problem might appeal to an industrial 

engineer, this section extends the single source, single destination, and single entity 

problems discussed previously to negotiate multiple source nodes, multiple destination 

nodes and multiple entities (heterogeneous).  

A formulation is given for a multi-period production scheduling problem with 

transportation through capacitated arcs. The multi-objective flavor of the problem is 

given by multiple decision variables concerning production, inventory management, 

facility expansion/selection and transportation. Stochasticity is incorporated in the form 

of uncertainty in arc capacity and demand uncertainty. Uncertainty is captured in a 

scenario based fashion which implies the existence of a discrete number of scenarios that 

the demands and arc capacities conform to. This has been done to keep the problem 

tractable.  

The problem parameters are defined below: 

Parameters 

ORIG - set of origin nodes 

DEST- set of destination nodes 

PROD – set of finished products to be transported  

T – number of stages of production (maybe weeks/months) 

S – number of scenarios 

prob{1..S} –  probability of scenario in 1..S 



                                                                                                                                                 21 
 
 

rate{PROD} – the rate at which a product in PROD can be produced (tons/hr) 

inv0{ORIG,PROD} – initial inventory of different products at the origins (unit tons) 

exc0{DEST,PROD} – initial consignment stock of different products at different 

destination locations (unit tons) 

avail{1..T} – usual hours of operation available in each stage t in 1..T 

demand{DEST,PROD,1..T,1..S} – demand for products at different destinations in 

various stages (1..T) under various scenarios (1..S) (unit tons) 

limit{ORIG,DEST,1..S} – the capacity of the arcs connecting the ORIG nodes to the 

DEST nodes under different scenarios (1..S) (unit is in total tonnage shipped) 

prodcost{PROD} – cost per ton of product produced 

inv{PROD} – cost per ton of product inventoried 

trans_cost{ORIG,DEST,PROD} – shipping cost per ton in the arcs connecting the ORIG 

nodes to the DEST nodes 

expan_cost{ORIG} – cost incurred in expansion of hours of operation at the facilities 

(cost is given per hour of expansion) 

exces_cost{PROD} – cost per ton of product held as consignment stock 

Decision variables 

Make{ORIG,PROD,1..T,1..S} – tons of each product manufactured at each facility in 

each stage under each scenario 

Inv{ORIG,PROD,0..T,1..S} – tons of each product inventoried at each facility in each 

stage under each scenario 



                                                                                                                                                 22 
 
 

Trans{ORIG,DEST,PROD,1..T,1..S} – tons of each product shipped from each origin to 

each demand node in each stage under each scenario 

exces{DEST,PROD,0..T,1..S} – tons of each product inventoried at each demand site in 

each stage under each scenario 

expan{ORIG,1..T,1..S} – hours of expansion needed at each facility in each stage under 

each scenario 

The first four set of decision variables are integral.  

The problem is defined below: 

The objective function is given below. 

minimize Total_Cost: 

)),,,(*)(cos_

),,(exp*)(cos_exp

),,,,(*),,(cos_

)),,,(*)(cos),,,(*)(cos((*)(

..1

..1

..1

..1 ..1

∑ ∑ ∑

∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∈ ∈ ∈

∈ ∈

∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

+

+

+

+

DESTj PRODp Tt

ORIGi Tt

ORIGi DESTj PRODp Tt

Ss ORIGi PRODp Tt

stpjexcesptexces

stianitan

stpjiTranspjittrans

stpiInvptinvstpiMakeptprodsprob

  

 

The various constraints are given below: 

Constraints on production time: In each stage, the total number of products made at each 

facility is less than the available work hours plus the expansion needed. 

),,(exp)()(/),,,( stiantavailpratestpiMake
PRODp

+≤∑
∈

           i in ORIG, t in 1..T, s in 1..S 

Initial inventory: Initialization for inventory. 

Inv(i,p,0,s) = inv0(i,p)                                                        i in ORIG, p in PROD, s in 1..S   



                                                                                                                                                 23 
 
 

Initial consignment stock: Initialization for consignment stock. 

exces(j,p,0,s) = exc0(j,p)                                                    j in DEST, p in PROD, s in 1..S   

Production, inventory, shipping balance: In each stage, the total of each product 

transported from each facility to all the destinations is equal to the total production of 

that product at the facility minus the change in inventory level for that particular product. 

),1,,(),,,(),,,(),,,,( stpiInvstpiInvstpiMakestpjiTrans
DESTj

−−+=∑
∈

 

                                                                             i in ORIG, p in PROD, t in 1..T, s in 1..S 

Demand fulfillment: In each stage, the total of each product transported to each demand 

node is greater than or equal to the demand for that product at the node plus the change 

in consignment stock level for that particular product. 

),1,,(),,,(),,,(),,,,( stpjexcesstpjexcesstpjdemandstpjiTrans
ORIGi

−−+≥∑
∈

 

                                                                              j in DEST, p in PROD, t in 1..T, s in 1..S 

Arc constraints: In each stage, the total tons of products transported are less than the arc 

limit for each arc. 

),,(lim),,,,( sjiitstpjiTrans
PRODp

≤∑
∈

                      i in ORIG, j in DEST, t in 1..T, s in 1..S 

Non-negativity constraints: 

Make(i,p,t,s), Inv(i,p,t,s), exces(j,p,t,s), Trans(i,j,p,t,s) >=0 

                                                           i in ORIG,  j in DEST, p in PROD, t in 1..T, s in 1..S 

Free variable: 

expan(i,t,s)                                                                              i in ORIG,  t in 1..T, s in 1..S 

 



                                                                                                                                                 24 
 
 

Integral constraints: 

Make(i,p,t,s), Inv(i,p,t,s), exces(j,p,t,s), Trans(i,j,p,t,s)  

                                                           i in ORIG,  j in DEST, p in PROD, t in 1..T, s in 1..S 

Non-anticipativity constraints: First stage decisions are same over all scenarios. 

Make(i,p1,s) = Make(i,p,1,s+1)                                                                            s in 1..S-1 

Inv(i,p1,s) = Inv(i,p,1,s+1)                                                                                   s in 1..S-1 

exces(j,p1,s) = exces(j,p,1,s+1)                                                                            s in 1..S-1 

Trans(i,j,p1,s) = Trans(i,j,p,1,s+1)                                                                      s in 1..S-1 

expan(i,1,s) = expan(i,1,s+1)                                                                                s in 1..S-1 

                                                                                        i in ORIG,  j in DEST, p in PROD 

2.4.2. SOLUTION 

The above problem is formulated as a MIP. Though such problems are NP hard, 

various MIP solvers exist which can give solutions to such problems. The next section 

provides an instance of the above problem formulated using AMPL [19] and solved 

using CPLEX [19]. 

Notes on the free variable: The expansion variable has been kept free so that it 

can indicate potential capacity reduction at one or more inefficient facilities at the cost of 

capacity expansion at one or more efficient units. This is in line with lean manufacturing 

and it reduces the overall production-transportation-inventory cost. It can also be viewed 

as a heuristic for the well-known facility selection problem which is usually done using 

binary decision variables. 

 



                                                                                                                                                 25 
 
 

3. RESULTS AND CONCLUSIONS 

 

3.1. SINGLE ENTITY  

The results given below are based on the theory provided in sections 2.1 to 2.3. 

The path planning problem is set on a grid based model from which the graph of paths 

(nodes and edges) is derived as discussed in section 2.1.2. 

Fig. 5 shows a small example of the grid model used for this section. It shows an 

8x8 grid with 4 parameters per grid, source node, s and destination node, d. The first two 

parameters are explicitly shown on the grid. They are average height (normalized) of the 

grid and the type of vegetation in the terrain. To be navigable, the average normalized 

height is set to 3. The vegetation can be of three types, namely forest (F), grassland (G) 

and barren (B) with covertness/safety ranging from maximum in F, medium in G and 

minimum in B. The other two parameters are defined as follows. The entity travels from 

the center of a grid to the center of one of it’s neighboring grids (feasible). The third 

parameter, the distance traveled (arc length) in between neighboring cells is either 1 unit 

or √2 units depending on whether it is a horizontal/vertical travel or diagonal travel. The 

fourth parameter, the delay is 3 seconds for diagonal arcs and 1 second for 

horizontal/vertical arcs.  

 

 

 

 



                                                                                                                                                 26 
 
 

5,B 5,B 5,B 1,F 1,F 1,F 1,F 1,F 
s 

5,B 5,B 1,F 5,B 5,B 1,G 5,B 1,B 

5,B 1,F 1,G 1,G 1,G 1,B 5,B 1,B 

1,F 1,B 1,G 5,B 5,B 5,B 1,B 1,B 

1,F 5,B 1,B 5,B 5,B 1,B 1,B 1,B 

1,F 5,B 1,B 1,B 1,B 1,B 1,B 1,B 

1,F 1,G 1,B 1,B 1,B 1,B 1,B 1,B 

1,F 
d 

1,G 1,B 1,B 1,B 1,B 1,B 1,B 

 

Fig. 5. Grid Model 

 

To find the shortest path on this grid, the algorithm in Section 2.1.2 is used. The 

MATLAB implementation of the code (dijkstra.m) is provided in appendix A. The path 

given by the algorithm is 8-7-14-21-20-27-35-43-50-57. It has a length of 11.071 units. 

It is the left yellow path shown in fig. 6. 

 

5,B 5,B 5,B 1,F 1,F 1,F 1,F 1,F 
s 

5,B 5,B 1,F 5,B 5,B 1,G 5,B 1,B 

5,B 1,F 1,G 1,G 1,G 1,B 5,B 1,B 

1,F 1,B 1,G 5,B 5,B 5,B 1,B 1,B 

1,F 5,B 1,B 5,B 5,B 1,B 1,B 1,B 

1,F 5,B 1,B 1,B 1,B 1,B 1,B 1,B 

1,F 1,G 1,B 1,B 1,B 1,B 1,B 1,B 

1,F 
d 

1,G 1,B 1,B 1,B 1,B 1,B 1,B 

 

Fig. 6. Shortest Path 



                                                                                                                                                 27 
 
 

To find the safest/maximum-covertness path on the grid, the algorithm in Section 

2.1.2 is used once again. The path given by the algorithm is 8-7-6-5-4-11-18-25-33-41-

49-57. It has a length of 12.243 units. So, this is the path which is the shortest path out of 

all the safest paths. The path is shown in green in fig. 7. 

 

5,B 5,B 5,B 1,F 1,F 1,F 1,F 1,F 
s  

5,B 5,B 1,F 5,B 5,B 1,G 5,B 1,B 

5,B 1,F 1,G 1,G 1,G 1,B 5,B 1,B 

1,F 1,B 1,G 5,B 5,B 5,B 1,B 1,B 

1,F 5,B 1,B 5,B 5,B 1,B 1,B 1,B 

1,F 5,B 1,B 1,B 1,B 1,B 1,B 1,B 

1,F 1,G 1,B 1,B 1,B 1,B 1,B 1,B 

1,F 
d 

1,G 1,B 1,B 1,B 1,B 1,B 1,B 

 

Fig. 7. Safest Path 

 

To solve the shortest path problem with redundancy, the algorithm in Section 

2.1.3 is used. The MATLAB implementation of the code (redundant_dijkstra.m) is 

provided in appendix A. The shortest and the redundant paths are shown in Fig. 8. Every 

feasible grid other than the destination grid has two arrows pointing into it from it’s 

neighbors. The blue arrow belongs to the minimum distance path while the black arrow 

is in the second best path. Following blue arrows from any grid to the destination will 

derive the minimum distance path and should be availed whenever possible. Only when 



                                                                                                                                                 28 
 
 

the blue arrow edge is disrupted does one take a black arrow edge (but return to blue 

arrows as soon as possible). 

 

5,B 5,B 5,B 1, F 1,F 1,F 1,F 1,F s 

5,B 5,B 1,F 5,B 5,B 1,G 5,B 1,B 

5,B 1,F 1,G 1,G 1,G 1,B 5,B 1,B 

1,F 1,B 1,G 5,B 5,B 5,B 1,B 1,B 

1,F 5,B 1,B 5,B 5,B 1,B 1,B 1,B 

1,F 5,B 1,B 1,B 1,B 1,B 1,B 1,B 

1,F 1,G 1,B 1,B 1,B 1,B 1,B 1,B 

1,F 
d 

1,G 1,B 1,B 1,B 1,B 1,B 1,B 

 

Fig. 8. Redundant Paths 

 

To solve the joint shortest path problem with length, delay tuples, the algorithm 

described in section 2.2.2 is used. The MATLAB implementation of the code (multi.m) 

is provided in appendix A. Fig. 9 shows the distance and delay values of all the feasible 

paths. The Pareto frontier is given by the lower left diagonal line. It consists of 6 paths 

with path-length from 11-14 units and delay from 14-19 seconds. The shortest path 

(11.071 units) found previously has the maximum delay (19 seconds). Table 1, 

enumerates the lengths and delay values of the paths in the Pareto set. 



                                                                                                                                                 29 
 
 

 

 
Fig. 9.  Delay and distance feasible paths from source to destination 
 
 
 
Table 1: The length and delay values of Pareto optimal paths 
 
 

Length (# of sides of square block used in 

grid model) 

Delay (in sec) 

11.07 19 

11.67 18.03 

12.25 17.01 

12.82 15.9 

13.42 15.07 

14 14.1 



                                                                                                                                                 30 
 
 

3.2. MULTIPLE ENTITY 

In this section an instance of the problem formulation given in section 2.4.1 is 

solved using the well-known MIP solver AMPL. The model and data files used for this 

section  (steelTptstoch1.mod, steelpTstoch1.dat) are given in appendix A.  

There are 3 production sites, 7 demand sites and 2 kinds of products to be 

transported (bands and coils). There are 2 stages of production and there are 2 

probabilistic scenarios (which affect the arc-capacities and demands). Each production 

site is capable of producing both bands and coils and transporting it directly to all 

demand sites. The production sites might have initial inventory while the demand sites 

might have initial consignment stock (inventory belonging to supplier stored at demand 

site). Each production site can operate for a maximum number of hours (different in each 

stage). The production limit applies uniformly to all products. Each product can be 

produced at a fixed rate. The cost of production of a particular product is constant. So 

are the costs of inventorying a particular product at the facility or at the demand sites. 

The transportation costs (between factories and demand sites) are different for each 

edge/arc. The arc limits for transportation are also different for each arc under each 

scenario. The arc limit applies uniformly to all products. The demands are different for 

each demand node for each period under each scenario. The data has been derived 

mainly from [18]. Stochastic scenarios have been generated by empirically perturbing 

data around usual values. 

Expansion cost(of unit work hours) at the three facilities have been calculated. 

Now the decision maker is faced with the devising an optimal production, inventory 



                                                                                                                                                 31 
 
 

management expansion and transportation strategy which will bring down the overall 

cost incurred by the suppliers (all the supply nodes). 

The problem is modeled in AMPL and solved using CPLEX. The resulting MIP 

problem has 324 variables and 287 constraints. There is only one objective which 

encapsulates the multiple decision variables. The solution has two cases: 

CASE A: The expansion variable is free: As noted earlier it can indicate potential 

capacity reduction at one or more inefficient units at the cost of capacity expansion at 

one or more efficient units. This is in line with lean manufacturing and it reduces the 

overall production-transportation-inventory cost. It can also be viewed as a heuristic for 

the well-known facility location problem which is usually done using binary decision 

variables. 

Detailed results are shown in appendix B. In this section some key figures are 

discussed which confirm the validity of the model. 

Table 2 shows the various amounts of the two products manufactured and 

inventoried at the 3 facility location. The first stage decisions are the same over all 

scenarios. So, the decision maker can take an unique decision inspite of multiple 

probabilistic scenarios. 

 

 

 

 

 



                                                                                                                                                 32 
 
 

Table 2: Make, Inv variables for Case A 
 
 

Facility Item Stage Scenario Make Inv 

CLEV bands 0 1  0 

CLEV bands 0 2  0 

CLEV bands 1 1 1250 0 

CLEV bands 1 2 1250 0 

CLEV bands 2 1 2310 0 

CLEV bands 2 2 1100 0 

CLEV coils 0 1  0 

CLEV coils 0 2  0 

CLEV coils 1 1 1150 0 

CLEV coils 1 2 1150 0 

CLEV coils 2 1 450 0 

CLEV coils 2 2 1050 0 

GARY bands 0 1  0 

GARY bands 0 2  0 

GARY bands 1 1 225 0 

GARY bands 1 2 225 0 

GARY bands 2 1 350 0 

GARY bands 2 2 175 0 

GARY coils 0 1  0 



                                                                                                                                                 33 
 
 

Table 2: Continued 
 
 

Facility Item Stage Scenario Make Inv 

GARY coils 0 2  0 

GARY coils 1 1 3250 0 

GARY coils 1 2 3250 0 

GARY coils 2 1 4300 0 

GARY coils 2 2 3050 0 

PITT bands 0 1  100 

PITT bands 0 2  100 

PITT bands 1 1 525 0 

PITT bands 1 2 525 0 

PITT bands 2 1 50 0 

PITT bands 2 2 555 0 

PITT coils 0 1  0 

PITT coils 0 2  0 

PITT coils 1 1 0 0 

PITT coils 1 2 0 0 

PITT coils 2 1 0 0 

PITT coils 2 2 0 0 

 

 



                                                                                                                                                 34 
 
 

Table 3 shows the values of the expansion variable (expan). As expected the 

expan variable indicates both facility expansion and reduction. Inventory and 

consignment stock values are mostly zero (except the initial inventory at PITT and some 

consignment stock at LAN). 

 

Table 3: expan variable for Case A 
 
 

Facility Stage Scenario expan 

CLEV 1 1 -0.5 

CLEV 1 2 -0.5 

CLEV 2 1 9.8 

CLEV 2 2 8 

GARY 1 1 9.3 

GARY 1 2 9.3 

GARY 2 1 27.5 

GARY 2 2 17.7 

PITT 1 1 -12.4 

PITT 1 2 -12.4 

PITT 2 1 -4.8 

PITT 2 2 -2.2 

 



                                                                                                                                                 35 
 
 

Table 4 shows total transportation decisions for each arc in stage 1 (under 

scenarios 1 and 2). Table 5 shows the corresponding arc capacities under the two 

scenarios. It is to be noted that the arc capacities are fulfilled for both scenarios. The 

combined decision is bounded from above by the minimum of the two arc capacities. 

Total product transported in a particular arc < = Min (arc limits for that arc under 

the two scenarios) 

 

Table 4: Trans variable for Case A. Stage: 1, Scenario: 1 and 2; b-bands; c-coils 
 
 
 FRA DET LAN WIN STL FRE LAF 

Product b c b c b c b c b c b c b c 

GARY 0 550 0 550 150 400 75 250 0 500 0 550 0 450 

CLEV 350 50 300 200 0 0 0 0 100 450 150 400 350 50 

PITT 0 0 0 0 0 0 0 0 550 0 75 0 0 0 

 

 

Table 5:  Arc limits in scenarios 1 and 2 
 
 
 FRA DET LAN WIN STL FRE LAF 

 1 2 1 2 1 2 1 2 1 2 1 2 1 2 

GARY 650 550 650 550 650 550 650 550 750 500 650 550 650 450 

CLEV 650 550 650 550 650 550 650 550 650 550 650 550 650 450 

PITT 650 550 650 550 650 550 650 550 650 550 650 550 650 450 

 



                                                                                                                                                 36 
 
 

Table 6 shows actual stage 1 demand fulfillment for bands and coils. It shows the 

demand and the total of received items per demand site. ). It is to be noted that the 

demands are fulfilled for both scenarios. The unique derived decision (total of each 

product transported to a particular demand site) is bounded from below by the maximum 

of the two demand (in the two scenarios). 

Total of any product transported to a particular demand site > = Max (demands 

under the two scenarios for that product at that particular site) 

 

Table 6: Demand fulfillment in Case A 
 
 

Stage:1 Demand Demand Received Demand Demand Received 

Product Bands Bands Bands Coils Coils Coils 

Scenario 1 2 1 or 2 1 2 1 or 2 

FRA 300 350 350 500 600 600 

DET 300 200 300 750 700 750 

LAN 100 110 150 400 300 400 

WIN 75 55 75 250 200 250 

STL 650 600 650 950 950 950 

FRE 225 205 225 850 950 950 

LAF 250 350 350 500 400 500 

 



                                                                                                                                                 37 
 
 

CASE B: The expansion variable is non-negative: It can only indicate potential capacity 

expansion at one or more efficient units. Tables 7, 8 and 9 show some decision results. 

Since the expansion variable is non-negative only, the problem loses some degree of 

freedom (compared with case A). In such a case, the inventory and consignment 

inventory variables play more active roles as shown by more non-zero table entries for 

Inv and exces variables. 

 

Table 7: Make, Inv variables for Case B 
 
 

Facility Item Stage Scenario Make Inv 

CLEV bands 0 1  0 

CLEV bands 0 2  0 

CLEV bands 1 1 2071 702 

CLEV bands 1 2 2071 702 

CLEV bands 2 1 515 0 

CLEV bands 2 2 0 0 

CLEV coils 0 1  0 

CLEV coils 0 2  0 

CLEV coils 1 1 650 0 

CLEV coils 1 2 650 0 

CLEV coils 2 1 339 0 

CLEV coils 2 2 700 0 



                                                                                                                                                 38 
 
 

Table 7: Continued 
 
 

Facility Item Stage Scenario Make Inv 

GARY bands 0 1  0 

GARY bands 0 2  0 

GARY bands 1 1 325 0 

GARY bands 1 2 325 0 

GARY bands 2 1 313 0 

GARY bands 2 2 175 0 

GARY coils 0 1  0 

GARY coils 0 2  0 

GARY coils 1 1 2600 0 

GARY coils 1 2 2600 0 

GARY coils 2 1 3800 0 

GARY coils 2 2 2631 0 

PITT bands 0 1  100 

PITT bands 0 2  100 

PITT bands 1 1 1258 528 

PITT bands 1 2 1258 528 

PITT bands 2 1 226 0 

PITT bands 2 2 0 0 

PITT coils 0 1  0 



                                                                                                                                                 39 
 
 

Table 7: Continued 
 
 

Facility Item Stage Scenario Make Inv 

PITT coils 0 2  0 

PITT coils 1 1 1219 69 

PITT coils 1 2 1219 69 

PITT coils 2 1 541 0 

PITT coils 2 2 700 0 

 
 
 
Table 8: expan variable for Case B 
 
 

Facility Stage Scenario expan 

CLEV 1 1 0 

CLEV 1 2 0 

CLEV 2 1 0 

CLEV 2 2 0 

GARY 1 1 5.2 

GARY 1 2 5.2 

GARY 2 1 23.7 

GARY 2 2 14.7 

PITT 1 1 0 

PITT 1 2 0 



                                                                                                                                                 40 
 
 

Table 8: Continued 
 
 

Facility Stage Scenario expan 

PITT 2 1 0 

PITT 2 2 0 

 
 
 
Table 9: exces variable for Case B 
 
 

Item: bands 

Stage 

0 1 2 

DET 0 50 0 

FRA 0 119 0 

FRE 0 205 0 

LAF 0 50 0 

LAN 0 40 0 

STL 0 0 0 

WIN 0 0 0 

 
 

So, the results in this section show: 

1. The decision maker can take unique decisions and still maintain feasibility under 

multiple probabilistic scenarios affecting arc capacities and demands. The 



                                                                                                                                                 41 
 
 

decisions are automatically bounded by the worst limit of relevant stochastic 

variables (upper/lower) over all scenarios. 

2. Expansion when used as a free variable can points towards possible production 

expansion/reduction decisions at the supply facilities, which will reduce the 

overall cost of the manufacturer. This depends on the costs of expansion. 

3. Expansion can serve as substitute for inventorying. This again depends on how 

the expansion costs compare with the inventory management costs. 

3.3. CONCLUSIONS 

The present research provides a framework for multi-objective stochastic path 

planning and describes various algorithms for addressing such problems. The solution is 

initiated by reformulating the multi-objective problem as a multi-constrained problem. 

The feasible region of the multi-constrained problem is derived using clustering based 

multi-level programming. If the multi-constrained formulation has a single objective 

then the solution is a version of the single source shortest path problem over the feasible 

set. If the multi-constrained problem has more than one objective, then the non-

dominated set of objectives (Pareto set) is derived. Robustness of PP is considered by 

generating alternate paths in case of arc failures. It is also shown how higher order cost 

structures can be used to incorporate key parameters of the probability distribution (of 

path parameters) into the multi-objective framework.  

The single entity, single source, single destination path planning problem is 

extended to multiple entities routed from multiple supply nodes to multiple demand 

nodes. If the supply nodes are production nodes, production and inventory management 



                                                                                                                                                 42 
 
 

(both at supplier and demand sites) become important decisions along with 

transportation decisions. The problem is further complicated by considering potential 

facility expansion/reduction decisions. An MIP formulation of such a problem is 

proposed and solved using AMPL/CPLEX. Multiple decisions are incorporated into a 

single objective by considering the combined cost of such decisions. Stochasticity 

(mainly of arc capacities and demands) is incorporated into the model using discrete 

scenarios. 

The main contributions of this research are: 

1. Provide a framework for analyzing PP in presence of multiple objectives and 

stochastic edge parameters. 

2. Identify candidate constraints where clustering based multi-level programming 

can be applied to eliminate infeasible edges. 

3. Provide an exact O (V.E) algorithm for building redundant shortest paths. 

4. Provide an O (V.E+C
2 ) heuristic for generating Pareto optimal shortest paths in 

presence of multiple objectives where C is the upper bound for path length. The 

complexity can be further reduced to O (V.E) by using graphical read-out of the 

Pareto frontier. 

5. Provide a cost structure which can capture multiple key probability distribution 

parameters of edge variables. This is in contrast with usual techniques which just 

capture single parameters like the mean or the variance of edge distributions. 



                                                                                                                                                 43 
 
 

6. Provide a MIP formulation to a multi-commodity transportation problem with 

multiple decision variables, stochastic demands and uncertain edge/route 

capacities.  

7. Provide an alternate formulation to the classic binary facility selection problem 

and demonstrate that if cost structures are conducive, selective facility expansion 

can be a cheaper alternative to inventory management (both at supplier and 

demand locations). 

Future work will aim at developing better algorithms (in matters of running time-

complexity) for path planning along with better simulation modeling and visualization of 

path following. 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                                 44 
 
 

REFERENCES 

 
1. N. J. Nilsson, Principles of Artificial Intelligence, San Francisco, CA: Morgan 

Kaufmann Publishers Inc., 1980, pp. 72-88. 

2. A. Stentz, “Optimal and efficient path planning for partially-known 

environments,” in Proceedings of the IEEE International Conference on 

Robotics and Automation, San Diego, CA, May 1994, pp. 3310-3317. 

3. A. Stentz, “The focused D* algorithm for real-time replanning,” in Proceedings 

of the International Joint Conference on Artificial Intelligence, Montreal, 

Quebec, Canada, Aug. 1995, pp.1652-1659. 

4. D. Ferguson and A. Stentz, “The delayed D* algorithm for efficient path 

replanning,” in Proceedings of the IEEE International Conference on Robotics 

and Automation, Barcelona, Spain, Apr. 2005, pp. 2045-2050. 

5. Z. Wang and J. Crowcroft, “Quality-of-service routing for supporting multimedia 

applications,” IEEE Journal on Selected Areas in Communications, vol. 14, no. 

7, pp. 1228-1234, Sept. 1996. 

6. R. Hassin, “Approximation schemes for the restricted shortest path problem,” 

Mathematics of Operations Research, vol. 17, no. 1, pp. 36-42, Feb. 1992. 

7. J. .M. Jaffe, “Algorithms for finding paths with multiple constraints,” Networks, 

vol. 14, no. 1, pp. 95-116, 1984. 

8. Z. Ji, A. Chen and K. Subprasom, “Finding multi-objective paths in stochastic 

networks: a simulation-based genetic algorithm approach,” in Proceedings of the 



                                                                                                                                                 45 
 
 

2004 Congress of Evolutionary Computation, Portland, Oregon, USA, June 

2004, vol. 1, pp. 174-180. 

9. O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” 

International Journal of Robotics Research, vol.5, no. 1, pp. 90-98, 1986. 

10.   J. Barraquand, B. Langlois and J. C. Latombe, “Numerical potential field 

techniques for robot path planning,” IEEE Transactions on Systems, Man and 

Cybernetics, vol. 22, no. 2, pp. 224-241, Mar/Apr 1992. 

11. O.E. Karasan, M.C. Pinar and H. Yaman, “The robust shortest path problem with 

interval data,” Department of Industrial Engineering, Bilkent University, Ankara, 

Turkey, Tech. Rep., Aug. 2002. 

12. P. Zielinski, “The computational complexity of the relative robust shortest path 

problem with interval data,” European Journal of Operational Research, vol. 

558, pp. 570-576, 2004. 

13. E. Nikolova, J. Kelner, M Brand and M. Mitzenmacher, “Stochastic shortest 

paths via quasi-convex maximization,” in Proceedings of 2006 European 

Symposium of Algorithms (ESA’06), Zurich, Switzerland, Sept. 2006. 

14. E. Nikolova, M. Brand and D. Karger, “Optimal route planning under 

uncertainty,” in Proceedings of 2006 International Conference on Automated 

Planning & Scheduling (ICAPS 2006), Lake District, England, June 2006. 

15. G. Barbarosoglu and Y. Arda, “A two-stage stochastic programming framework 

for transportation planning in disaster response,” Journal of the Operational 

Research Society, vol. 55, no. 1, pp. 43-53, Jan. 2004. 



                                                                                                                                                 46 
 
 

16.  M..P. Wellman, K.  Larson, M.  Ford and P. R. Wurman, “Path planning under 

time-dependent uncertainty,” in Proceedings of the Eleventh Conference on 

Uncertainty in Artificial Intelligence, Montreal, Quebec, Canada, Aug. 1995, pp. 

532-539. 

17. S. M. LaValle, Planning Algorithms.  1st Ed, New York, NY: Cambridge 

University Press, 2006. 

18. A. Puri and S. Tripakis, “Algorithms for routing with multiple constraints,” Tech. 

Rep. No. UCB/ERL M01/7, 2001. 

19. R. Fourer, D.M. Gay and B.W. Kernighan, AMPL, A Modeling language for 

Mathematical Programming. 2nd Ed, Toronto, Canada: Thomson Books/Cole, 

2003. 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                                                                 47 
 
 

APPENDIX A 
 

 
 
MATLAB code for dijkstra.m 

%dijkstra 
%define a set of nodes/grids 
%movement---center to center of grid 
%figure out some easy way to generate node lists 
%assume uniformly sampled square grids 
x_grids=8; 
y_grids=8; 
nodes=zeros(y_grids*x_grids,2); 
for i=1:y_grids 
    for j=1:x_grids 
        index=j+x_grids*(i-1); 
        nodes(index,1)=i-1; 
        nodes(index,2)=j-1; 
    end 
end  
h=[5 5 5 1 1 1 1 1; 
   5 5 1 5 5 1 5 1; 
   5 1 1 1 1 1 5 1; 
   1 1 1 5 5 5 1 1; 
   1 5 1 5 5 1 1 1; 
   1 5 1 1 1 1 1 1; 
   1 1 1 1 1 1 1 1; 
   1 1 1 1 1 1 1 1]; 
%nodes=[0 0; 0 1; 0 2; 1 0; 1 1; 1 2; 2 0; 2 1; 2 2]; 
n=size(nodes,1); 
%give source 
s=8; 
dest=57; 
%define feasible grids 
feasible=ones(1,n); 
infeasible=zeros(1,n); 
%do feasibility analysis 
% %for now use random  
for i=1:n 
%     r=rand(1,1); 
     if h(ceil(i/8),rem(i,8))>3 
         feasible(i)=0; 
     end 
 end 



                                                                                                                                                 48 
 
 

% %if source is infeasible problem is unsolvable 
% %so make source grid feasible 
% feasible(s)=1;         
% infeasible=ones(1,n)-feasible; 
% %define edges and associated cost 
%define fathomed node set 
fathomed=zeros(1,n); %initially none of the nodes are visited 
%define parent node 
parent=zeros(1,n); 
%define min-priority set 
min_pr_q=[1:n]; 
%define distance matrix 
dist=zeros(1,n); 
%define cost-matrix 
cost_m=zeros(n,n); 
%initialize min-priority queue 
dist(1:n)=inf; 
dist(s)=0; 
%main loop begins 
for i=1:n 
    %pop min unfathomed and feasible node 
    temp=dist+100000*fathomed+100000*infeasible; 
    [a b]=min(temp); 
    %mark as visited 
    fathomed(b)=1; 
    %relax neighbors and update parent 
    for j=1:n 
        %check only unfathomed and feasible nodes 
        if fathomed(j)==0 & feasible(j)==1 
            %check if neighbors 
            d=((nodes(b,1)-nodes(j,1))^2+(nodes(b,2)-nodes(j,2))^2)^0.5; 
            % 1 neighbor 
            if d==1 
                if dist(j)>dist(b)+d 
                    dist(j)=dist(b)+d; 
                    parent(j)=b;%the path from source to j goes through b 
                end 
            end 
            % 2 neighbor 
            if d==2^0.5 
                if dist(j)>dist(b)+d 
                    dist(j)=dist(b)+d; 
                    parent(j)=b;%the path from source to j goes through b 
                end 



                                                                                                                                                 49 
 
 

            end 
        end 
    end 
end 
%trace path; maybe modify to A* 
%diagram 
 
 
MATLAB code for redundant_dijkstra.m 

 
%dijkstra 
%define a set of nodes/grids 
%movement---center to center of grid 
%figure out some easy way to generate node lists 
%assume uniformly sampled square grids 
x_grids=8; 
y_grids=8; 
nodes=zeros(y_grids*x_grids,2); 
for i=1:y_grids 
    for j=1:x_grids 
        index=j+x_grids*(i-1); 
        nodes(index,1)=i-1; 
        nodes(index,2)=j-1; 
    end 
end    
%nodes=[0 0; 0 1; 0 2; 1 0; 1 1; 1 2; 2 0; 2 1; 2 2]; 
n=size(nodes,1); 
h=[5 5 5 1 1 1 1 1; 
   5 5 1 5 5 1 5 1; 
   5 1 1 1 1 1 5 1; 
   1 1 1 5 5 5 1 1; 
   1 5 1 5 5 1 1 1; 
   1 5 1 1 1 1 1 1; 
   1 1 1 1 1 1 1 1; 
   1 1 1 1 1 1 1 1]; 
%give source 
s=8; 
%give destination 
dest=57; 
%make destination as source and run redundant Dijkstra 
sou=s; 
s=dest; 
%define feasible grids 
feasible=ones(1,n); 



                                                                                                                                                 50 
 
 

infeasible=zeros(1,n); 
%do feasibility analysis 
%for now use random 
for i=1:n 
%     r=rand(1,1); 
     if h(ceil(i/8),rem(i,8))>3 
         feasible(i)=0; 
     end 
 end 
% for i=1:n 
%     r=rand(1,1); 
%     if r<0.5 
%         feasible(i)=0; 
%     end 
% end 
% %if source is infeasible problem is unsolvable 
% %so make source grid feasible 
% feasible(s)=1;         
% infeasible=ones(1,n)-feasible; 
%define edges and associated cost 
%define fathomed node set 
fathomed=zeros(1,n); %initially none of the nodes are visited 
%define parent node 
parent=zeros(2,n); 
%define min-priority set 
min_pr_q=[1:n]; 
%define distance matrix 
dist=zeros(2,n); 
%define cost-matrix 
cost_m=zeros(n,n); 
%initialize min-priority queue 
dist(1:2,1:n)=inf; 
dist(1:2,s)=0; 
%main loop begins 
for i=1:n 
    %pop min unfathomed and feasible node 
    temp=dist(1,1:n)+100000*fathomed+100000*infeasible; 
    [a b]=min(temp); 
    %mark as visited 
    fathomed(b)=1; 
    %relax neighbors and update parent 
    for j=1:n 
        %check only unfathomed and feasible nodes 
        %if fathomed(j)==0 & feasible(j)==1 



                                                                                                                                                 51 
 
 

        if feasible(j)==1 
            %check if neighbors 
            d=((nodes(b,1)-nodes(j,1))^2+(nodes(b,2)-nodes(j,2))^2)^0.5; 
            % 1 neighbor 
            if d==1 
                if dist(1,j)>dist(1,b)+d 
                    dist(2,j)=dist(1,j); 
                    dist(1,j)=dist(1,b)+d; 
                    parent(2,j)=parent(1,j); 
                    parent(1,j)=b; 
%                     parent(j)=b;%the path from source to j goes through b 
                elseif dist(2,j)>dist(1,b)+d 
                    %dist(2,j)=dist(1,j); 
                    dist(2,j)=dist(1,b)+d; 
                    %parent(2,j)=parent(1,j); 
                    parent(2,j)=b; 
%                     parent(j)=b;%the path from source to j goes through b 
                end 
            end 
            % 2 neighbor 
            if d==2^0.5 
                if dist(1,j)>dist(1,b)+d 
                    dist(2,j)=dist(1,j); 
                    dist(1,j)=dist(1,b)+d; 
                    parent(2,j)=parent(1,j); 
                    parent(1,j)=b; 
%                     parent(j)=b;%the path from source to j goes through b 
                elseif dist(2,j)>dist(1,b)+d 
                    %dist(2,j)=dist(1,j); 
                    dist(2,j)=dist(1,b)+d; 
                    %parent(2,j)=parent(1,j); 
                    parent(2,j)=b; 
%                     parent(j)=b;%the path from source to j goes through b 
                end 
            end 
        end 
    end 
end 
%trace path; maybe modify to A* 
%diagram 
 
 
 
 



                                                                                                                                                 52 
 
 

MATLAB code for multi.m 

 
 
%dijkstra 
%define a set of nodes/grids 
%movement---center to center of grid 
%figure out some easy way to generate node lists 
%assume uniformly sampled square grids 
x_grids=8; 
y_grids=8; 
nodes=zeros(y_grids*x_grids,2); 
for i=1:y_grids 
    for j=1:x_grids 
        index=j+x_grids*(i-1); 
        nodes(index,1)=i-1; 
        nodes(index,2)=j-1; 
    end 
end  
h=[5 5 5 1 1 1 1 1; 
   5 5 1 5 5 1 5 1; 
   5 1 1 1 1 1 5 1; 
   1 1 1 5 5 5 1 1; 
   1 5 1 5 5 1 1 1; 
   1 5 1 1 1 1 1 1; 
   1 1 1 1 1 1 1 1; 
   1 1 1 1 1 1 1 1]; 
%nodes=[0 0; 0 1; 0 2; 1 0; 1 1; 1 2; 2 0; 2 1; 2 2]; 
pareto=zeros(50,3); 
n=size(nodes,1); 
%give source 
s=8; 
dest=57; 
%define feasible grids 
feasible=ones(1,n); 
infeasible=zeros(1,n); 
for i=1:n 
%     r=rand(1,1); 
     if h(ceil(i/8),rem(i,8))>3 
         feasible(i)=0; 
     end 
 end 
%do feasibility analysis 
% %for now use random  
% for i=1:n 



                                                                                                                                                 53 
 
 

%     r=rand(1,1); 
%     if r<0.5 
%         feasible(i)=0; 
%     end 
% end 
% %if source is infeasible problem is unsolvable 
% %so make source grid feasible 
% feasible(s)=1;         
% infeasible=ones(1,n)-feasible; 
% %define edges and associated cost 
%define fathomed node set 
fathomed=zeros(1,n); %initially none of the nodes are visited 
%define parent node 
parent=zeros(100,n); 
%define min-priority set 
min_pr_q=[1:n]; 
%define distance matrix 
dist=zeros(100,n); 
delay=zeros(100,n); 
nneb=zeros(1,n); 
%define cost-matrix 
cost_m=zeros(n,n); 
%initialize min-priority queue 
dist(1:100,1:n)=inf; 
delay(1:100,1:n)=inf; 
dist(1:100,s)=0; 
delay(1:100,s)=0; 
cou=zeros(1,n); 
cou(s)=1; 
%main loop begins 
for i=1:n 
    %pop min unfathomed and feasible node 
    %temp=dist+100000*fathomed+100000*infeasible; 
    temp=delay(1,1:n)+100000*fathomed+100000*infeasible; 
    [a b]=min(temp); 
    %mark as visited 
    fathomed(b)=1; 
    %relax neighbors and update parent 
    for j=1:n 
        %check only unfathomed and feasible nodes 
        if feasible(j)==1 & fathomed(j)==0 
            %check if neighbors 
            d=((nodes(b,1)-nodes(j,1))^2+(nodes(b,2)-nodes(j,2))^2)^0.5; 
            % 1 neighbor 



                                                                                                                                                 54 
 
 

            if d==1 
                %if dist(1,j)>dist(1,b)+d  
                    de=1; 
                    delay(cou(j)+1:cou(j)+cou(b),j)=delay(1:cou(b), b)+de; 
                    dist(cou(j)+1:cou(j)+cou(b),j)=dist(1:cou(b), b)+d; 
                    parent(cou(j)+1:cou(j)+cou(b),j)=b;%the path from source to j goes through 
b 
                    cou(j)=cou(j)+cou(b); 
                    % end 
            end 
            % 2 neighbor 
            if d==2^0.5 
                %if dist(1,j)>dist(1,b)+d  
                    de=3; 
                    delay(cou(j)+1:cou(j)+cou(b),j)=delay(1:cou(b), b)+de; 
                    dist(cou(j)+1:cou(j)+cou(b),j)=dist(1:cou(b), b)+d; 
                    parent(cou(j)+1:cou(j)+cou(b),j)=b;%the path from source to j goes through 
b 
                    cou(j)=cou(j)+cou(b); 
                    %end 
            end 
        end 
    end 
end 
 
             
AMPL model file (steetTptstoch1.mod) 
 
#given set of origin and destination nodes 
#given products 
#given a transportation network with arc capacity 
#given demands 
#given stages 
#given scenarios and their probabilities 
#given initial inventory 
#given hours available at each facility 
#given rate of production 
#given production,inventory,transportation,expansion cost 
 
#decide how much to manufacture 
#decide how much to inventory 
#decide how much to transport 
#decide how much to expand/reduce (hours available) 
 



                                                                                                                                                 55 
 
 

set ORIG;     # origins  
set DEST;     # destinations 
set PROD;     # products 
 
param T > 0;  # number of weeks/stages 
param S > 0;  # number of scenarios 
 
param prob {1..S} >=0; 
param rate {PROD} > 0;          # tons per hour produced 
param inv0 {ORIG,PROD} >= 0;    # initial inventory 
param exc0 {DEST,PROD} >=0;     # initial consignment stock 
param avail {1..T} >= 0;        # hours available in week 
param demand {DEST,PROD,1..T,1..S} >= 0;  # demand in destination per week 
param limit {ORIG,DEST,1..S} >=0; #arc capacity 
 
param prodcost {PROD} >= 0;     # cost per ton produced 
param invcost {PROD} >= 0;      # carrying cost/ton of inventory 
 
#param revenue {PROD,1..T,1..S} >= 0; # revenue per ton sold 
param trans_cost {ORIG,DEST,PROD} >= 0;  # shipping cost/ton 
#param shortcost {PROD} >= 0;     #shortage cost/ton of inventory 
param expan_cost {ORIG} >= 0;     #possible expansion at each origin 
param exces_cost {PROD} >= 0; 
 
var Make {ORIG,PROD,1..T,1..S} >= 0 integer;      # tons produced 
var Inv {ORIG,PROD,0..T,1..S} >= 0 integer;       # tons inventoried 
var Trans {ORIG,DEST,PROD, t in 1..T,1..S} >= 0 integer; # tons transported 
var expan {ORIG,1..T,1..S}>=0; #expansion 
var exces {DEST,PROD,0..T,1..S} >=0 integer; #consignment stock 
 
minimize Total_Cost: 
 sum {s in 1..S} prob[s] * 
   (sum {i in ORIG,p in PROD, t in 1..T} ( prodcost[p]*Make[i,p,t,s] +  
      invcost[p]*Inv[i,p,t,s])+sum {i in ORIG, j in DEST, p in PROD, t in 1..T} 
   trans_cost[i,j,p] * Trans[i,j,p,t,s]+ 
                      sum {i in ORIG, t in 1..T} expan[i,t,s]*expan_cost[i]+ 
                      sum {j in DEST, p in PROD, t in 1..T} exces[j,p,t,s]*exces_cost[p]); 
         
 
subject to Time {i in ORIG, t in 1..T, s in 1..S}: 
   sum {p in PROD} (1/rate[p]) * Make[i,p,t,s] <= avail[t]+expan[i,t,s]; 
 
               # Total of hours used by all products 
               # may not exceed hours available, in each week 



                                                                                                                                                 56 
 
 

subject to Init_Inv {i in ORIG, p in PROD, s in 1..S}:  Inv[i,p,0,s] = inv0[i,p]; 
 
subject to Init_con_stock {j in DEST, p in PROD, s in 1..S}: exces[j,p,0,s] = exc0[j,p]; 
 
               # Initial inventory must equal given value 
subject to Balance {i in ORIG, p in PROD, t in 1..T, s in 1..S}: 
   sum {j in DEST} Trans[i,j,p,t,s] = Make[i,p,t,s]+Inv[i,p,t-1,s]-Inv[i,p,t,s];  
#balance of products 
 
subject to Demandd {j in DEST, p in PROD, t in 1..T, s in 1..S}: 
   sum {i in ORIG} Trans[i,j,p,t,s] >= -exces[j,p,t-1,s]+exces[j,p,t,s]+demand [j,p,t,s]; 
#demand fulfilment 
 
subject to Multi {i in ORIG, j in DEST, t in 1..T, s in 1..S}: 
   sum {p in PROD} Trans[i,j,p,t,s] <= limit[i,j,s]; #arc capacity, assumed constant here 
    
 
#subject to Balance {p in PROD, t in 1..T, s in 1..S}: 
#   Make[p,t,s] + Inv[p,t-1,s] = Sell[p,t,s] + Inv[p,t,s]; 
 
               # Tons produced and taken from inventory 
               # must equal tons sold and put into inventory 
#nonanticipativity constraints: the first week's decision is same over all the scenarios 
 
subject to Make_na {i in ORIG, p in PROD, s in 1..S-1}: 
   Make[i,p,1,s] = Make[i,p,1,s+1]; 
 
subject to Inv_na {i in ORIG, p in PROD, s in 1..S-1}: 
   Inv[i,p,1,s] = Inv[i,p,1,s+1]; 
 
subject to Trans_na {i in ORIG, j in DEST, p in PROD, s in 1..S-1}: 
   Trans[i,j,p,1,s] = Trans[i,j,p,1,s+1]; 
 
subject to Expand_na {i in ORIG, s in 1..S-1}: 
   expan[i,1,s] = expan[i,1,s+1]; 
 
subject to Exces_na {j in DEST, p in PROD, s in 1..S-1}: 
   exces[j,p,1,s] = exces[j,p,1,s+1]; 
 
 
#display {s in 1..S} 
   #sum {p in PROD, t in 1..T} (revenue[p,t,s]*Sell[p,t,s] - 
      #prodcost[p]*Make[p,t,s] - invcost[p]*Inv[p,t,s]);    
 



                                                                                                                                                 57 
 
 

AMPL data file (steetTptstoch1.dat) 
 
data; 
param S := 2; 
param T := 2; 
 
set PROD := bands coils; 
set ORIG := GARY CLEV PITT ; 
set DEST := FRA DET LAN WIN STL FRE LAF ; 
 
param prob := 1 0.45 2 0.55; # 3 0.2 
#param prob := 1 0.0001 2 0.0001 3 0.9998; 
 
param avail :=  1 15  2 5  ; #3 32  4 40 ; 
 
param rate :=  bands 200   coils 140 ; 
param inv0 :  bands   coils := 
       GARY   0      0 
       CLEV   0      0 
       PITT   100      0 ; 
 
param exc0 :  bands   coils := 
       FRA    0      0 
       DET    0      0 
       LAN    0      0  
       WIN    0      0 
       STL    0      0 
       FRE    0      0  
       LAF    0      0 ; 
 
param prodcost :=  bands 10    coils  11 ; 
param invcost  :=  bands  1.5  coils   3 ; 
param exces_cost := bands 1.5  coils   3 ; 
#param shortcost := bands  5    coils   6 ; 
 
#param limit default 1000 ; 
 
param limit :=  
 [*,*,1]:  FRA  DET  LAN  WIN  STL  FRE  LAF := 
    GARY   650  650  650  650  750  650  650 
    CLEV   650  650  650  650  650  650  650 
    PITT   650  650  650  650  650  650  650  
 
 [*,*,2]:  FRA  DET  LAN  WIN  STL  FRE  LAF := 



                                                                                                                                                 58 
 
 

    GARY   550  550  550  550  500  550  450 
    CLEV   550  550  550  550  550  550  450 
    PITT   550  550  550  550  550  550  450 ;  
 
param expan_cost := GARY 10000 CLEV 20000 PITT 30000 ; 
 
param demand := 
    
 [*,*,1,1] (tr):   FRA   DET   LAN   WIN   STL   FRE   LAF := 
          bands    300   300   100    75   650   225   250 
          coils    500   750   400   250   950   850   500 
  
 [*,*,2,1] (tr):   FRA   DET   LAN   WIN   STL   FRE   LAF := 
          bands    500   500   150   150   700   350   400 
          coils    500   750   600   500   750   950   700   
 
 #[*,*,3,1] (tr):   FRA   DET   LAN   WIN   STL   FRE   LAF := 
 #         bands    300   300   100    75   650   225   250 
 #         coils    500   750   400   250   950   850   500  
  
 #[*,*,4,1] (tr):   FRA   DET   LAN   WIN   STL   FRE   LAF := 
 #         bands    300   300   100    75   650   225   250 
 #         coils    500   750   400   250   950   850   500   
 
 [*,*,1,2] (tr):   FRA   DET   LAN   WIN   STL   FRE   LAF := 
          bands    350   200   110    55   600   205   350 
          coils    600   700   300   200   950   950   400 
  
 [*,*,2,2] (tr):   FRA   DET   LAN   WIN   STL   FRE   LAF := 
          bands    350   200   110    55   600   205   350 
          coils    600   700   300   200   950   950   400  ; 
 
 #[*,*,3,2] (tr):   FRA   DET   LAN   WIN   STL   FRE   LAF := 
 #         bands    350   200   110    55   600   205   350 
 #         coils    600   700   300   200   950   950   400  
  
 #[*,*,4,2] (tr):   FRA   DET   LAN   WIN   STL   FRE   LAF := 
 #         bands    350   200   110    55   600   205   350 
 #         coils    600   700   300   200   950   950   400   
 
 
#param revenue:  1   2   3 := 
#       bands 1  25  23  21 
#       bands 2  26  24  27 



                                                                                                                                                 59 
 
 

#       bands 3  27  25  33 
#       bands 4  27  25  35 
#       coils 1  30  30  30 
#       coils 2  35  33  32 
#       coils 3  37  35  33 
#       coils 4  39  36  33 ; 
 
param trans_cost := 
 
 [*,*,bands]:  FRA  DET  LAN  WIN  STL  FRE  LAF := 
        GARY    30   10    8   10   11   71    6 
        CLEV    22    7   10    7   21   82   13 
        PITT    19   11   12   10   25   83   15 
 
 [*,*,coils]:  FRA  DET  LAN  WIN  STL  FRE  LAF := 
        GARY    39   14   11   14   16   82    8 
        CLEV    27    9   12    9   26   95   17 
        PITT    24   14   17   13   28   99   20 ; 
 
  
        
 
            
           
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
     



                                                                                                                                                 60 
 
 

APPENDIX B 
 
 
 

Results from CASE A in section 3.2 
 
184 iterations, objective 543236.6071 
ampl: display Make, Inv 
 
:                            Make             Inv         := 
CLEV bands 0 1          .               0 
CLEV bands 0 2          .               0 
CLEV bands 1 1   1250               0 
CLEV bands 1 2   1250               0 
CLEV bands 2 1   2310               0 
CLEV bands 2 2   1100               0 
CLEV coils 0 1          .                 0 
CLEV coils 0 2          .                 0 
CLEV coils 1 1   1150                 0 
CLEV coils 1 2   1150                 0 
CLEV coils 2 1     450                 0 
CLEV coils 2 2   1050                 0 
GARY bands 0 1          .              0 
GARY bands 0 2          .              0 
GARY bands 1 1    225               0 
GARY bands 1 2    225               0 
GARY bands 2 1    350               0 
GARY bands 2 2    175               0 
GARY coils 0 1          .                0 
GARY coils 0 2          .                0 
GARY coils 1 1   3250                0 
GARY coils 1 2   3250                0 
GARY coils 2 1   4300                0 
GARY coils 2 2   3050                0 
PITT bands 0 1          .             100 
PITT bands 0 2          .             100 
PITT bands 1 1    525                   0 
PITT bands 1 2    525                   0 
PITT bands 2 1     50                    0 
PITT bands 2 2    555                   0 
PITT coils 0 1          .                    0 
PITT coils 0 2          .                    0 
PITT coils 1 1      0                       0  
PITT coils 1 2      0                       0 



                                                                                                                                                 61 
 
 

PITT coils 2 1      0                       0 
PITT coils 2 2      0                       0 
ampl: display exces; 
exces [*,bands,*,1] 
:     0        1         2    := 
DET    0     0             0 
FRA    0     0             0 
FRE     0     0             0 
LAF     0     0             0 
LAN    0    40            0 
STL     0     0             0 
WIN    0     0             0 
 
 [*,bands,*,2] 
:     0        1         2    := 
DET   0    0             0 
FRA   0    0             0 
FRE    0    0             0 
LAF    0   0              0 
LAN   0   40            0 
STL    0    0             0 
WIN   0    0             0 
 
 [*,coils,*,1] 
:     0       1        2    := 
DET   0   0            0 
FRA   0   0            0 
FRE   0    0            0 
LAF   0    0            0 
LAN   0   0            0 
STL    0   0            0 
WIN   0   0            0 
 
 [*,coils,*,2] 
:     0        1        2    := 
DET   0   0             0 
FRA   0   0             0 
FRE   0    0             0 
LAF   0   0             0 
LAN   0   0            0 
STL    0   0             0 
WIN   0   0             0 
; 
 



                                                                                                                                                 62 
 
 

ampl: display expan; 
expan := 
CLEV  1 1    -0.535714 
CLEV  1 2    -0.535714 
CLEV  2 1     9.76429 
CLEV  2 2     8 
GARY 1 1     9.33929 
GARY 1 2     9.33929 
GARY 2 1    27.4643 
GARY 2 2    17.6607 
PITT    1 1    -12.375 
PITT    1 2    -12.375 
PITT    2 1    -4.75 
PITT    2 2    -2.225 
; 
 
ampl: display Trans; 
Trans [*,*,bands,1,1] (tr) 
:    CLEV       GARY       PITT    := 
DET   300     0               0 
FRA   350     0               0 
FRE   150      0               75 
LAF   350      0               0 
LAN      0      150            0 
STL    100      0               550 
WIN       0      75             0 
 
 [*,*,bands,1,2] (tr) 
:         CLEV           GARY       PITT    := 
DET   300              0               0 
FRA   350              0               0 
FRE    150              0              75 
LAF    350              0              0 
LAN       0              150          0 
STL     100              0              550 
WIN        0              75            0 
 
 [*,*,bands,2,1] (tr) 
:    CLEV       GARY      PITT    := 
DET   500    0                 0 
FRA   350   150              0 
FRE   350    0                  0 
LAF   400    0                  0 
LAN    60    50                0 



                                                                                                                                                 63 
 
 

STL   650    0                  50 
WIN     0     150               0 
 [*,*,bands,2,2] (tr) 
:    CLEV       GARY      PITT    := 
DET   200       0              0 
FRA   350       0              0 
FRE   150        0             55 
LAF   300       50            0 
LAN     0        70            0 
STL   100        0             500 
WIN     0        55            0 
 
 [*,*,coils,1,1] (tr) 
:    CLEV  GARY PITT    := 
DET   200    550   0 
FRA    50     550   0 
FRE   400    550   0 
LAF    50     450   0 
LAN     0     400   0 
STL   450    500   0 
WIN     0     250   0 
 
 [*,*,coils,1,2] (tr) 
:    CLEV  GARY PITT    := 
DET   200    550   0 
FRA    50     550   0 
FRE   400    550   0 
LAF    50     450   0 
LAN     0     400   0 
STL   450    500   0 
WIN     0     250   0 
 
 [*,*,coils,2,1] (tr) 
:    CLEV  GARY PITT    := 
DET   100   650   0 
FRA     0     500   0 
FRE   300    650   0 
LAF    50     650   0 
LAN     0     600   0 
STL      0     750   0 
WIN     0     500   0 
 
 [*,*,coils,2,2] (tr) 
:    CLEV  GARY PITT    := 



                                                                                                                                                 64 
 
 

DET   150   550   0 
FRA    50   550   0 
FRE   400   550   0 
LAF       0   400   0 
LAN      0   300   0 
STL    450   500   0 
WIN       0   200   0 
; 



                                                                                                                                                 65 
 
 

VITA 

 

Sumantra Dasgupta received his Bachelor of Engineering degree in electrical & 

electronics engineering from Birla Institute of Technology, Mesra, India in August 2000. 

He entered the electrical engineering program at Texas A&M University in August 2000 

and received his Master of Science degree in May 2003. His research interests include 

large scale optimization, simulation based optimization, optimal & robust control, design 

of control systems for manufacturing, signal processing, data-mining, AI and 

visualization. 

 Mr. Dasgupta may be reached at 8B, Burnpur Road, 1st Floor, PO-Chelidanga, 

Asansol South, Dist: Burdwan, W.B., India 713304, ph: 011913463261551(India)/ 

9792291390(US). His email is sumantrad@gmail.com. 

 


