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Abstract

Nowadays, the analysis of a large amount of data has emerged as an issue of great interest

taking increasing place in the scientific community, especially in automation, signal process-

ing, pattern recognition, and machine learning. In this sense, the identification, description,

classification, visualization, and clustering of events or patterns are important problems for

engineering developments and scientific issues, such as biology, medicine, economy, artificial

vision, artificial intelligence, and industrial production. Nonetheless, it is difficult to inter-

pret the available information due to its complexity and a large amount of obtained features.

In addition, the analysis of the input data requires the development of methodologies that

allow to reveal the relevant behaviors of the studied process, particularly, when such signals

contain hidden structures varying over a given domain, e.g., space and/or time. When the

analyzed signal contains such kind of properties, directly applying signal processing and

machine learning procedures without considering a suitable model that deals with both the

statistical distribution and the data structure, can lead in unstable performance results.

Regarding this, kernel functions appear as an alternative approach to address the afore-

mentioned issues by providing flexible mathematical tools that allow enhancing data repre-

sentation for supporting signal processing and machine learning systems. Moreover, kernel-

based methods are powerful tools for developing better-performing solutions by adapting the

kernel to a given problem, instead of learning data relationships from explicit raw vector rep-

resentations. However, building suitable kernels requires some user prior knowledge about

input data, which is not available in most of the practical cases. Furthermore, using the

definitions of traditional kernel methods directly, possess a challenging estimation problem

that often leads to strong simplifications that restrict the kind of representation that we can

use on the data.

In this study, we propose a data representation framework based on kernel methods to

learn automatically relevant sample relationships in learning systems. Namely, the proposed

framework is divided into five kernel-based approaches, which aim to compute relevant data

representations by adapting them according to both the imposed sample relationships con-

straints and the learning scenario (unsupervised or supervised task).

First, we develop a kernel-based representation approach that allows revealing the main

input sample relations by including relevant data structures using graph-based sparse con-

straints. Thus, salient data structures are highlighted aiming to favor further unsupervised

clustering stages. This approach can be viewed as a graph pruning strategy within a spectral

clustering framework which allows enhancing both the local and global data consistencies

for a given input similarity matrix.

Second, we introduce a kernel-based representation methodology that captures meaning-

ful data relations in terms of their statistical distribution. Thus, an information theoretic
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learning (ITL) based penalty function is introduced to estimate a kernel-based similarity

that maximizes the whole information potential variability. So, we seek for a reproducing

kernel Hilbert space (RKHS) that spans the widest information force magnitudes among

data points to support further clustering stages.

Third, an entropy-like functional on positive definite matrices based on Renyi’s definition

is adapted to develop a kernel-based representation approach which considers the statistical

distribution and the salient data structures. Thereby, relevant input patterns are high-

lighted in unsupervised learning tasks. Particularly, the introduced approach is tested as a

tool to encode relevant local and global input data relationships in dimensional reduction

applications.

Fourth, a supervised kernel-based representation is introduced via a metric learning pro-

cedure in RKHS that takes advantage of the user-prior knowledge, when available, regarding

the studied learning task. Such an approach incorporates the proposed ITL-based kernel

functional estimation strategy to adapt automatically the relevant representation using both

the supervised information and the input data statistical distribution. As a result, relevant

sample dependencies are highlighted by weighting the input features that mostly encode the

supervised learning task.

Finally, a new generalized kernel-based measure is proposed by taking advantage of dif-

ferent RKHSs. In this way, relevant dependencies are highlighted automatically by con-

sidering the input data domain-varying behavior and the user-prior knowledge (supervised

information) when available. The proposed measure is an extension of the well-known cross-

correntropy function based on Hilbert space embeddings.

Throughout the study, the proposed kernel-based framework is applied to biosignal and

image data as an alternative to support aided diagnosis systems and image-based object

analysis. Indeed, the introduced kernel-based framework improve, in most of the cases, un-

supervised and supervised learning performances, aiding researchers in their quest to process

and to favor the understanding of complex data.

Keywords: signal processing, machine learning, relevant representation, kernel methods,

information theoretic learning, automatics.
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Resumen

Hoy en d́ıa, el análisis de datos se ha convertido en un tema de gran interés para la co-

munidad cient́ıfica, especialmente en campos como la automatización, el procesamiento de

señales, el reconocimiento de patrones y el aprendizaje de máquina. En este sentido, la iden-

tificación, descripción, clasificación, visualización, y la agrupación de eventos o patrones son

problemas importantes para desarrollos de ingenieŕıa y cuestiones cient́ıficas, tales como: la

bioloǵıa, la medicina, la economı́a, la visión artificial, la inteligencia artificial y la producción

industrial. No obstante, es dif́ıcil interpretar la información disponible debido a su comple-

jidad y la gran cantidad de caracteŕısticas obtenidas. Además, el análisis de los datos de

entrada requiere del desarrollo de metodoloǵıas que permitan revelar los comportamientos

relevantes del proceso estudiado, en particular, cuando tales señales contiene estructuras

ocultas que vaŕıan sobre un dominio dado, por ejemplo, el espacio y/o el tiempo. Cuando la

señal analizada contiene este tipo de propiedades, los rendimientos pueden ser inestables si

se aplican directamente técnicas de procesamiento de señales y aprendizaje automático sin

tener en cuenta la distribución estad́ıstica y la estructura de datos.

Al respecto, las funciones núcleo (kernel) aparecen como un enfoque alternativo para

abordar las limitantes antes mencionadas, proporcionando herramientas matemáticas flex-

ibles que mejoran la representación de los datos de entrada. Por otra parte, los métodos

basados en funciones núcleo son herramientas poderosas para el desarrollo de soluciones de

mejor rendimiento mediante la adaptación del núcleo de acuerdo al problema en estudio. Sin

embargo, la construcción de funciones núcleo apropiadas requieren del conocimiento previo

por parte del usuario sobre los datos de entrada, el cual no está disponible en la mayoŕıa de

los casos prácticos. Por otra parte, amenudo la estimación de las funciones núcleo conllevan

sesgos el modelo, siendo necesario apelar a simplificaciones matemáticas que no siempre son

acordes con la realidad.

En este estudio, se propone un marco de representación basado en métodos núcleo para

resaltar relaciones relevantes entre los datos de forma automática en sistema de aprendizaje

de máquina. A saber, el marco propuesto consta de cinco enfoques núcleo, en aras de adaptar

la representación de acuerdo a las relaciones impuestas sobre las muestras y sobre el escenario

de aprendizaje (sin/con supervisión).

En primer lugar, se desarrolla un enfoque de representación núcleo que permite revelar las

principales relaciones entre muestras de entrada mediante la inclusión de estructuras rele-

vantes utilizando restricciones basadas en modelado por grafos. Por lo tanto, las estructuras

de datos más sobresalientes se destacan con el objetivo de favorecer etapas posteriores de

agrupamiento no supervisado. Este enfoque puede ser visto como una estrategia de depu-

ración de grafos dentro de un marco de agrupamiento espectral que permite mejorar las

consistencias locales y globales de los datos.
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En segundo lugar, presentamos una metodoloǵıa de representación núcleo que captura

relaciones significativas entre muestras en términos de su distribución estad́ıstica. De este

modo, se introduce una funćıón de costo basada en aprendizaje por teoŕıa de la información

para estimar una similitud que maximice la variabilidad del potencial de información de los

datos de entrada. Aśı, se busca un espacio de Hilbert generado por el núcleo que contenga

altas fuerzas de información entre los puntos para favorecer el agrupamiento entre los mismos.

En tercer lugar, se propone un esquema de representación que incluye un funcional de

entroṕıa para matrices definidad positivas a partir de la definición de Renyi. En este sentido,

se pretenden incluir la distribución estad́ıstica de las muestras y sus estructuras relevantes.

Por consiguiente, los patrones de entrada pertinentes se destacan en tareas de aprendizaje

sin supervisión. En particular, el enfoque introducido se prueba como una herramienta para

codificar las relaciones locales y globales de los datos en tareas de reducción de dimensión.

En cuarto lugar, se introduce una metodoloǵıa de representación núcleo supervisada a

través de un aprendizaje de métrica en el espacio de Hilbert generado por una función

núcleo en aras de aprovechar el conocimiento previo del usuario con respecto a la tarea de

aprendizaje. Este enfoque incorpora un funcional por teoŕıa de información que permite

adaptar automáticamente la representación utilizando tanto información supervisada y la

distribución estad́ıstica de los datos de entrada. Como resultado, las dependencias entre las

muestras se resaltan mediante la ponderación de las caracteŕısticas de entrada que codifican

la tarea de aprendizaje supervisado.

Por último, se propone una nueva medida núcleo mediante el aprovechamiento de diferentes

espacios de representación. De este modo, las dependencias más relevantes entre las muestras

se resaltan automáticamente considerando el dominio de interés de los datos de entrada y

el conocimiento previo del usuario (información supervisada). La medida propuesta es una

extensión de la función de cross-correntropia a partir de inmersiones en espacios de Hilbert.

A lo largo del estudio, el esquema propuesto se valida sobre datos relacionados con

bioseñales e imagenes como una alternativa para apoyar sistemas de apoyo diagnóstico y

análisis objetivo basado en imágenes. De hecho, el marco introducido permite mejorar, en

la mayoŕıa de los casos, el rendimiento de sistemas de aprendizaje supervisado y no super-

visado, favoreciendo la precisión de la tarea y la interpretabilidad de los datos.

Palabras clave: procesamiento de señales, aprendizaje de máquina, representación rele-

vante, métodos núcleo, aprendizaje por teoŕıa de información, automatización.
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1. Introduction

1.1. Motivation

Machine learning studies how an automated system can watch the environment, learn to

distinguish patterns, and make decisions. The identification, description, classification, vi-

sualization, and clustering of events or patterns are important problems for engineering

developments and scientific issues, such as: biology, medicine, economy, artificial vision,

artificial intelligence, industrial production, and brain machine interfaces [132, 104, 101].

Therefore, in the last decades, machine learning community has been dedicating enormous

research efforts to develop mathematical tools and methods to unfold the main patterns

of a given process, allowing to the system to learn the relevant properties of the studied

phenomenon.

In a local context, the Signal Processing and Recognition Group (SPRG) of the Univer-

sidad Nacional de Colombia has been working in the analysis of biosignal data, in order to

propose machine learning methodologies to support the development of automatic systems

for diagnostic assistance [35, 134, 2, 98, 111]. Recently, the research group is interested in the

analysis of brain activity to detect cerebral pathologies and to support further rehabilitation

procedures. In fact, worldwide machine learning and medical communities are interested

in the treatment of such kind of diseases by using signal processing and machine learning

tools to allow the user interacting with the environment from the analysis of its own brain

signals [171]. Besides, the SPRG is also interested in the analysis of video and image data to

support motion and biomedical image processing, for both health and interactive purposes,

which are also a local and worldwide topic of interest [6, 4, 24, 154].

Nonetheless, it is difficult to interpret the available information due to its complexity and

a large amount of obtained features. In addition, the analysis of the input data requires

the development of methodologies that allow to unfold the relevant behaviors of the studied

process, specially, when such signals contains different structures varying over the space

and/or the time, e.g., nonstationary process [130, 171, 101]. When the input signals contains

such kind of properties, directly applying signal processing and machine learning procedures

without considering a suitable representation model that deals with both the statistical

distribution and the data structure, could lead in unstable performance results.

From the local and the global context, it is necessary to continue the development of

methodologies that allow to represent the input samples aiming to improve the performance

of those kind of machines in terms of learning performance and data interpretability.
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1.2. Problem statement

A learning system incorporates external information to improve its performance in a particu-

lar task. Commonly, the system tries to infer the rules that govern the studied phenomenon

given a set of examples, e.g., the training set. Such rules can be in the form of a func-

tion that model the relation between input-output pairs or can consist of some observation

about the structure of the spaces where the examples are represented. Thereby, the infor-

mation provided to a machine learning system mainly comes from a set of observed inputs

{xn∈X : n∈[1, N ]}, where X is the input space and N∈N is the number of provided sam-

ples. It is important to note that in a machine learning system the input data can be

directly processed from X , raw data, or in some cases several measures (features) can be

estimated from each provided sample xn aiming to favor further learning procedures. Such

a characterization is commonly known as the feature estimation stage. In addition, in some

applications other sources of information, besides the input samples, may be given depend-

ing upon the task and the context in which the system is put, e.g., a set of output samples

{yn∈Y : n∈[1, N ]}, being Y a given output space.

Bearing this in mind, three learning scenarios can be described [144, 16]: i) The supervised

learning scenario, where the goal is to find a rule of association between pairs {(xn, yn)} of

observed inputs and corresponding targets given an expert. As a result, learning occurs

when the system effectively predicts the correct output for a non previously seen input. ii)

The reinforcement learning scenario in which the system interacts with the environment by

performing actions that feedback to the system in the form of rewards or punishments. In this

case, the observed inputs are called states and the goal of adaptation is to estimate a suitable

set of actions that will maximize the reward over time in terms of the observed state. iii) The

unsupervised learning scenario where we can loosely say that the only available information

is the observed inputs. Hence, the assumption is the presence of some data regularities

since there is a process behind their generation. Then, the goal is to find such regularities

and one motivation for doing so is that expressing the available information in terms of

the underlying causes may favor further learning stages. So, the unsupervised learning view

assumes a generative model for the observed data. However, one cannot argue the actual

causes will be unveiled by the learning process since learning must be always accompanied

by some constraints/assumptions about the input data that may or may not necessarily

agree with the reality. That is, in the absence of assumptions there is no privileged a best

feature representation, and that even the notion between patterns depends implicitly on

assumptions that may or not be correct [39]. Regarding this, it is necessary to exploit the

statistical regularities to encode the observed inputs into more compact representations and

also reduce the effect of some external noise, which in absence of additional information is

assumed to be unstructured, by exploiting the redundancy in the inputs.

On account of the fact that a compact representation is crucial when designing a learning

system aiming to increase the accuracy while reducing the over-fitting, the input features
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can be handcrafted based on the external knowledge about the domain of the application.

Therefore, learning the relevant features by considering both the data regularities and the

external knowledge (supervised information) provides system adaptability across different

domains. Figure 1-1 illustrates the role of a suitable representation stage into a learning

system.

Feature
estimation

Real-world
phenomenon Observed samples

(Training database)

External
noise

Data regularities
constraints

Supervised information
constraints

Relevant feature
representation Learning stage

Figure 1-1.: The problem of learning and the role of a relevant data representation.

As seen, to apply the learning from examples paradigm to the problem of finding a suitable

data representation, it is necessary to address two main issues: i) to assess the effectiveness

of a representation with or without having the results on the subsequent tasks, and ii)

to identify the desirable properties in the representation. So, when designing a learning

system, it must be considered that the available information can be difficult to interpret and

to process due to its complexity and the large amount of obtained features, not mentioning

the noise drawbacks. Therefore, the available information, including the data regularities

(structures) constraints and the user-prior knowledge regarding the studied phenomenon,

must be exploited as well as possible to reveal the relevant properties of the task of interest. In

turn, further learning procedures can be supported, e.g., classification, clustering, regression,

prediction, etc.

1.3. Literature review on data representations

Throughout the literature, the representation problem have been approached from different

perspectives leading to myriad of techniques. Overall, most of the state-of-the-art techniques

overlap in terms of the criteria to assess the representation effectiveness, or in the proper-

ties/constraints that they convey. Thereby, the representation model can be studied from

three main properties: i) the decomposition ability, ii the flexibility, and iii) the complexity.
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Hence, the employed data representation can favor further learning performances with or

without favoring the data interpretability and the whole learning complexity.

Traditional methods exploits solely geometrical properties of the data for clustering re-

gardless of their occurrence. The most prominent approach is the k-means method, that

clusters data points according to their minimal distance to geometrical centroid of point

clouds, however, such methods can lead to inappropriate machine learning performances

[39]. So, before clustering the main data patterns, a variety of methods consider the for-

mation of features from the dimensions. Then, feature selection is the simplest approach as

it consists of an inclusion or exclusion decision for each dimension. Although the relative

importance of a feature is assessed, this information is only used to select the features. In ad-

dition, such a selection is commonly carried out based on a second order measure [35], which

can be not appropriate to model complex data distributions. On the other hand, a simple

feature selection approach is to find how informative each feature is for a given task and then

select a set of informative, but not redundant features [161]. Similarly, a set of features may

be obtained by backward or forward selection algorithms [139, 141]. In addition, heuristic

search strategies have been increasingly used. Nonetheless, such approaches avoid conjec-

tures about the feature interactions and evaluate sets of solutions simultaneously. Also, they

are not prone to getting stuck in local minima [123].

On the other hand, linear projections can be used to find linear combinations of the input

features [164, 113]. Indeed, the correlation or dependence between dimensions can also

be used as features. Then, the well-known Principal component analysis (PCA) algorithm

can reveal relevant patterns based on a variability criteria [75], however, the results from

PCA on may be unsatisfactory, as the directions of largest variance may not contain any

useful information in many real-world applications [84]. Also in the linear case, independent

component analysis (ICA) optimizes a linear projection so the resulting vector has maximally

independent elements [70]. The activity projected along each of these dimensions may be

informative, but unlike the case for PCA, there is not a natural ordering for independent

components, and the user is left to assess which components are meaningful.

In the supervised case, Fisher discriminant analysis (FDA) extensions use sample covari-

ances from each class to form discriminative projections [133]. The optimal projection is a

solution to a generalized eigenvalue problem that maximizes the spread between the means

in different classes while minimizing the spread of samples within the same class. Beyond

linear projections, techniques for multilineal processing exploit the intrinsic organization of

dimensions along multiple modes [29].

Added to that, several data representations strategies have been proposed as nonlinear

dimensionality reduction schemes. Then, the nonlinear dimensionality reduction techniques

differ each other in the type of structure that they preserve, e.g., variance, dot products,

dissimilarities (distances), similarities, or other local/global measures of proximity [87].

Thereby, the variety of the structure that they preserve has lead to the development of

a large number of methods. The basic method is the well-known Classical Multidimensional
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Scaling-(MDS), which maximize the dot product preservation [18]. Subsequently, some vari-

ants of the metric MDS appears, such as: Sammons’s Nonlinear Mapping-(SNM) and the

Curvilinear Component Analysis-(CCA) [64, 127]. These methods are based on notions like

topology and neighborhood preservation, however, their main limitations come from the dis-

tortions between the distances measured in the input space and the distances measured in

the manifold space. Some methods like Curvilinear Distances Analysis (CDA) and Isometric

Mapping-(ISOMAP) [149, 88], are nonlinear methods derived from MDS, which use as met-

ric the curvilinear or geodesic distance. This metric (geodesic distance) can measure good

approximations of the distances along the manifold, without shortcuts as does the Euclidean

distance. Nonetheless, the solution commonly exists as a global minimum, but, when the

problem does not fit the model, its interpretation could be hazardous [89].

Nowadays, more developed methods aimed at preserving the data topology have been pro-

posed from both spectral and divergence-based functions. The spectral approaches are rep-

resented by methods such as: Locally Linear Embedding-(LLE) [125], Laplacian Eigenmaps-

(LEM) [14], Hessian LLE-(HLLE) [38], and Diffusion Maps-(DM) [105]. In LLE each datum

is approximated by a linear combination of its neighbors in the input space and the obtained

coefficients are then used to compute a low dimensional representation. LEM is a geomet-

rically algorithm for constructing a representation for data sampled from a low dimensional

manifold embedded in a higher dimensional space. HLLE achieves linear embedding by min-

imizing the Hessian functional on the manifold where the data set resides. DM is a based

probabilistic interpretation of spectral clustering that use the eigenvectors of the normalized

graph Laplacian. However, all of these methods require each input sample to be associated

with only a single location in the low dimensional representation space.

With regard to the divergence-based methods, they are represented mainly by Stochastic

Neighbor Embedding (SNE) [66] and its variants, i.e., t-SNE [155], and Jensen-Shannon Em-

bedding (JSE) [83]. The main difference between spectral methods and SNE-based variants,

is that SNE matches similarities that are computed both in the input feature space and the

low dimensional representation, while spectral methods directly convert the pair-wise simi-

larities defined in the feature space into inner products. Thus, SNE and its variants are based

on similarity preservation instead of distance preservation and makes them robust against

the phenomenon of norm concentration. Nonetheless, divergence-methods suffer from reach-

ing distorted and overlapped latent spaces, moreover, the user must to tune for each dataset

several parameters in order to obtain suitable representations and embeddings [22, 116].

On top of that, more versatile and powerful methods are related to artificial neural net-

works. Auto-encoders are one instance of artificial neural networks that are designed to solve

non-linear dimensionality reduction problems [68]. Nevertheless, these methods require a pri-

ori selection of the architecture. Also, these models typically require extensive computation

time to adapt parameters and hyper-parameters using non-convex optimization techniques.

In a Bayesian modeling framework, certain models can be formulated only requiring convex

optimization, particularly with certain choices in generalized linear models [117].
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In the last two decades, there has been a growing interest for building different notions of

similarity aiming to outperform the traditional second-order based dependence, e.g., the cor-

relation. Thus, nonlinear notions of similarity have been proposed based on kernel functions.

Indeed, the introduction of the support vector machine algorithm for pattern recognition

rekindled the interest on this topic [132]. One of the major appeals of kernel methods is the

ability to handle nonlinear operations on the data by indirectly computing an underlying

nonlinear mapping to a space (Reproducing Kernel Hilbert Spaces (RKHS)) where linear

operations can be carried out [11]. The linear solution corresponds to an universal approxi-

mation in the input space, and many of the related optimization problems can be posed as

convex (no local minima) with algorithms that are still reasonably easy to compute. In this

regard, powerful data representations can be built by highlighting relevant feature and/or

sample dependencies within a kernel formulation.

Following the success of kernel machines and the ability to define kernels on general spaces,

such as graphs [49], researchers have explored the kernel-based representations for several

machine learning tasks. So, linear algorithms in the Hilbert-space can implement non-linear

processing in the input space [26]. This is especially important for machine learning problems

where the input space does not permit linear operations [112, 114].

Moreover, several approaches have been proposed multiple kernels representations within

the machine learning contexts [82, 122, 55, 150]. Their main goal is to employ different

sources of information to identify the similarities among samples, and then, a combination

of these similarities is calculated by means of statistical kernel learning [132]. In this regard, a

convenient approach is to consider that the calculated multiple kernel (Multi-Kernel Learning

- MKL) is actually a convex combination of a basis kernel [55, 122]. Moreover, in [54] a

Localized multiple kernel learning (LMKL) framework is presented, to extend the MKL

framework to allow combining kernels with different weights in different regions of the input

space by using a gating model. LMKL extracts the relative importance of kernels in each

region whereas MKL gives their relative importance over the whole input space. Nonetheless,

optimizing the MKL and LMKL functionals is not a straightforward tasks, besides, it is

difficult to favor the input feature interpretability. In turn, even more flexibility can be

achieved using kernel-based metric learning approaches [19, 46]. Then, such alternatives

allow the kernel functions themselves to be adapted according to the studied task.

In this way, kernel based frameworks seem to be a suitable alternative to support the devel-

opment of machine learning algorithms from a data representation point of view. Kernels are

flexible tools that can be adapted to decompose the input data aiming to highlight relevant

patterns. Nevertheless, the construction of methodologies that allow to deal with differ-

ent structures requires the development of new automatic strategies, which ensure stable

learning performances. Indeed, it is necessary to built a framework that allow incorporating

different data constraints regarding the studied samples and the learning task to favor the

data interpretability and the system performance.
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1.4. Objectives

1.4.1. General objective

To develop a kernel-based representation framework that allows automatically disclosing

relevant patterns from available input data. The developed framework must process the

samples in a data-dependent manner to exploit their inherent structure and/or statistical

distribution. In addition, such a representation framework must be matched to the type

and complexity of both the signal and the learning task, which includes unsupervised or

supervised scenarios. Thus, the proposed kernel representation must summarize and capture

the main input patterns to support clustering and classification tasks, improving the learning

performance in terms of task accuracy and data interpretability.

1.4.2. Specific objectives

• To develop a kernel-based representation approach to support automatic clustering

aiming to reveal the main input sample relations by including its relevant topological

structures. The proposed approach must highlight salient structures of the input data

by finding the main pair-wise relations among samples to support further unsupervised

clustering stages. In addition, the introduced approach must be tested in terms of both

system accuracy and data interpretability.

• To develop an automatic kernel function estimation strategy to support clustering

tasks based on an RKHS representation that allows including the input data statistical

distribution to extract relevant pair-wise sample relationships. The methodology must

adapt a kernel function to represent the samples in an RKHS favoring the separability

between inherent data clusters.

• To propose a kernel-based representation strategy that consider the statistical dis-

tribution and the salient data structures from information theory-based constraints,

aiming to reveal relevant input patterns in learning tasks. Particularly, the introduced

approach must be useful to process high-dimensional samples by encoding both the

relevant local and global input relationships.

• To develop an automatic clustering methodology based on a kernel representation that

includes the input data statistical distribution and the user prior knowledge regarding

the studied process, e.g., supervised information, to extract relevant pair-wise sample

relationships. The methodology must highlight relevant features in terms of the studied

task to favor the data interpretability and the system accuracy in supervised clustering

tasks.

• To built a kernel-based representation approach that allows incorporating both the

structure and the statistical distribution of the input samples taking advantage of
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different RKHSs. Thus, relevant dependencies must be highlighted automatically by

considering the input data domain-varying behavior and the user prior knowledge when

available. The proposed approach must be tested in terms of both system accuracy

and data interpretability in both unsupervised and supervised clustering tasks.

1.5. Contributions of this work

The present work is done within the kernel-based representation framework. We aim to

provide some kernel strategies to learn automatically relevant data relations in machine

learning systems. With this in mind, the framework can be adapted according to both the

imposed sample relationships constraints and the learning scenario, including supervised and

unsupervised tasks. Following, the main contributions of the work are described:

• A graph pruning approach, called kernel alignment based graph pruning (KAGP), is

proposed within a spectral clustering framework to enhance both local and global

data consistencies for a given input kernel-based similarity matrix. The proposed

KAGP reveals the main input data relations by including both the data statistical

distribution and its relevant structures by imposing graph-based sparse constraints.

Hence, to weak all irrelevant relationships of the input kernel-based similarity matrix,

KAGP quantifies the loss of information during the pruning process in terms of a

kernel alignment-based function. Moreover, we encode the sample similarities using

a compactly supported kernel that allows obtaining a sparse data representation to

favor the graph partitioning problem. As a consequence, KAGP takes advantage of an

initial guess of the relationships among points to identify all relevant connections.

• A new kernel function estimation strategy, termed kernel function estimation based on

information potential variability maximization (KEIVP) is proposed aiming to capture

meaningful data relations in terms of their statistical distribution. To this end, we make

use of the intrinsic information potential variations from a Parzen-based probability

density function estimator within and ITL framework. Namely, we seek for a RKHS

maximizing the whole information potential variability in terms of the reproducing

kernel parameters. In particular, the Gaussian kernel is study and we get a scale

(kernel bandwidth) updating rule as a function of the information forces, which are

induced by the kernel function applied over a finite sample set.

• An entropy-like functional on positive definite matrices based on Renyi’s definition is

employed to built a kernel-based representation that considers the statistical distribu-

tion and the salient data structures from information theory-based constraints. Our

approach, termed kernel-based entropy dimensionality reduction (KEDR), is applied

as a representation tool to measure the mismatch between high-dimensional and low-

dimensional data representation spaces. The KEDR is a data-driven framework for
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ITL based on infinitely divisible kernel functions. Therefore, the proposed approach

employs estimators of entropy-like quantities for Gram matrices that can be computed

by evaluating infinitely divisible kernels on pairs of samples to find a relevant repre-

sentation space.

• A supervised kernel-based representation is introduced as a metric learning approach

in a RKHS. In this way, our approach named supervised kernel-based relevance analysis

(SKRA), is able to take advantage of the user-prior knowledge regarding the studied

learning task. So, proposed SKRA incorporates the aforementioned ITL-based kernel

function estimation strategy (KEIPV) to adapt automatically a relevant representation

using both the supervised information and the input data distribution. As a result,

relevant sample dependencies are highlighted by weighting the input features that

mostly encode the supervised learning task.

• A new generalized kernel-based measure is proposed by representing the input samples

in different RKHSs. As a result, relevant dependencies are highlighted automatically

by considering the input data domain-varying behavior and the user-prior knowledge

(supervised information) when available. Proposed measure, termed generalized cross-

correntropy (GCC), can be viewed as an extension of the well-known cross-correntropy

function by including Hilbert space embeddings. Moreover, the main connections be-

tween GCC and cross-covariance Hilbert space embedding are discussed. In addition, a

dynamic enhancement of GCC is introduced within an adaptive learning scheme. The

GCC approach can be incorporated as similarity function in clustering, classification,

and prediction tasks.

fig. 1-2 describes the proposed kernel-based relevant representation framework in terms

of the adapted approach according to both the imposed sample relationships constraints

and the learning scenario (supervised and unsupervised tasks). Following, the mathematical

preliminaries are presented in Chapter 2. Then, the proposed methodologies of the intro-

duced framework, including the KAGP, KEIVP, KEDR, SKRA, and GCC approaches, are

presented in Chapters 3, 4, 5, 6, and 7, respectively. Afterwards, the conclusion about this

work as well as the possible future work are presented in Chapter 8. Finally, the academic

discussion and the developed products (software prototypes) from the proposals of this thesis

are presented in Chapter 9.
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2. Mathematical preliminaries

In this chapter, we provide a brief account of the introductory concepts of the theory of

kernel functions for representing the input samples in signal processing and machine learn-

ing systems. First, the formal definition and the necessary and sufficient conditions for a

function to be a reproducing kernel are presented. Added to that the main concepts regard-

ing information theoretic learning (ITL) are described, aiming to highlight the connections

between kernel-based representations and information-based functions. The contents of this

chapter are based on the papers and books by Aronszajn [10], Parzen [115], the Scholkopf

and Smola [132], Sanchez [52] and Principe [121].

2.1. Reproducing kernel Hilbert spaces

Let X be a set and F be a vector space of functions from X to the field F; in particular,

let F=R. Then, there exits a reproducing kernel Hilbert space (RKHS) H on X over R, if:

• H is a vector subspace of F .

• H is endowed with an inner product, 〈·, ·〉H , and is complete in the metric induced

by it.

• For every x∈X and f∈H , the linear evaluation functional Fx : H → R, defined as

Fx(f) = f(x), is bounded.

From the Riez theorem [79], it is known that for any bounded functional H on a Hilbert

space H , there exists a unique vector h∈H such that: H(f)=〈h, f〉H for all f∈H . In turn,

for each evaluation functionals Fx there exist a corresponding vector κx∈H . The bivariate

function defined by:

κ(x, x′) = κx(x
′) (2-1)

is called a reproducing kernel for H , with x′∈X . So, it can be verified that

κ(x, x′) = 〈κx, κx′〉H (2-2)
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and ‖Fx‖2H =‖κx‖2H = 〈κx, κx′〉H =κ(x, x), where ‖ · ‖ stands for the norm operator.

Let H be a RKHS on the set X with kernel κ. The linear span of {κ(x, ·) : x∈X }
is dense in H . This results from the fact that any function f orthogonal to the span of

{κ(x, ·) : x∈X } must satisfy 〈f, κx〉H , and thus f(x)=0.

Lemma 2.1.1. Let {fn} ⊂ H , being n∈N an index counter. If limn→+∞ ‖fn − f‖H = 0,

then f(x)=limn→+∞ fn(x) for every x∈X .

Proof 2.1.1. This is a simple consequence of the reproducing property and Cauchy-Schwarz

inequality:

|fn(x)− f(x)| = |〈fn − f, κx〉H | ≤ ‖fn − f‖
H

‖κx‖H
→ 0

�

Proposition 2.1.1. Let H1 and H2 be RKHS on X with kernels κ1 and κ2, respectively.

If κ1(x, x
′)=κ2(x, x

′) for all x, x′∈X , then H1=H2 and ‖f‖H1
=‖f‖H2

for every f .

Proof 2.1.2. we can take κ(x, x′)=κ1(x, x
′)=κ2(x, x

′) and thus theMl=span{κx∈Ml : x∈X }
is dense in Hl, and for any f(x)=

∑

n αnκxn
(x) there is no regard about whether f belongs to

eitherM1 orM2. Note that ‖f‖2H1
=
∑

n,n′ αnαn′κ(xn, xn′)=‖f‖2
H2
, and thus ‖f‖H1

=‖f‖H2
for

every f∈M1=M2. If f∈H1, then there is a sequence of functions {fn} ⊂M1 that converge to

f in norm. Since {fn} is Cauchy inM1 is also Cauchy inM2, so by completeness of H2 there

exist g∈H2 such that fn → g. Then, by Lemma 2.1.1 we have that f(x)=limn→+∞ fn(x)=g(x)

for every x∈X , thus every f∈H1 is also in H2 and vice versa, and H1=H2. Finally, we

can extend ‖f‖H1
=‖f‖H2

to all H1 and H2.

�

Thus, two different RKHSs do not have the same reproducing kernel. The following

theorem shows an alternative way to express the reproducing kernel of a RKHS H .

Theorem 2.1.1. Let H have reproducing kernel κ. if {eλ : λ∈Λ} is an orthonormal basis

of H , then:

κ(x, x′) =
∑

λ∈Λ

eλ(x)eλ(x
′), (2-3)

where the series converges point-wise.

Proof 2.1.3. For a fixed {xn} ⊆ X , we have:

N
∑

n,n′=1

αnαn′κ(xn, xn′) =

〈

N
∑

n=1

αnκxn
,

N
∑

n′=1

αn′κx
n′

〉

H

=

∥

∥

∥

∥

∥

N
∑

n=1

αnκxn

∥

∥

∥

∥

∥

H

≥ 0

�
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Added to that, the Moore’s Theorem is introduced, which is the converse to the above

result and provides us a characterization of a positive definite function to be a sufficient

condition for the function to be the reproducing kernel of some RKHS.

Theorem 2.1.2. Let X be a set and κ : X ×X → R be a positive definite function. Then,

there exits a RKHS H of functions on X , such that, κ is the reproducing kernel of H .

Proof 2.1.4. Consider the functions κx(x
′)=κ(x, x′) and the space W spanned by the set

{κx : x∈X }. The following bilinear map B : W ×W → R:

B

(

∑

i

αnκxn
,
∑

n′

βn′κx
n′

)

=
∑

n,n′

αnβn′κ(xn, xn′),

where αnβn′∈R, is well defined onW. To support the above claim, notice that if f(x)=
∑

n

αnκxn
(x)

is zero for all x∈X , then by definition B(f, κx)=0 for all x. Conversely, if B(f, w)=0 for

all w∈W, then by taking w=κx it can be seen that f(x)=0. Then, B is well defined.

Since κ is positive definite B(f, f) ≥ 0 and we see that B(f, f)=0 if and only if B(w, f)=0

for all w∈W, therefore f(x)=0 for all X . Now we have shown that W is a pre-Hilbert space

with inner product B. Let H denote the completion of W, we need to show that every element

of H is function on X . Let h∈H be the limit point of a Cauchy sequence {fn} ⊆ W. By

Cauchy-Schwarz inequality:

|fn(x)− fn′(x)| = |B(fn − fn′, κx)| ≤ ‖fn − fn′‖κ(x, x).

Therefore, the point-wise limit h(x)=limn→+∞ fn(x) is well defined. Concluding, let 〈·, ·〉H be

the inner product on H . Then, we have 〈h, κx〉H =limn→+∞〈fn, κx〉H =limn→+∞B(fn, κx)=h(x).

Thus H is a RHKS with reproducing kernel κ.

�

Combining Proposition 2.1.1 with the Moore’s Theorem (Theorem 2.1.2) shows the cor-

respondence between RKHS’s on the set X and positive definite functions on this set.

2.2. The covariance function

Consider a stochastic process {X(t) : t∈τ}, where X(t) are real random variables defined on

a probability space (Ω,B,P) with bounded second order moments, that is:

Et

{

|X(t)|2
}

=

∫

Ω

|X(t)|2dP <∞, (2-4)
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where E {·} stands for the expectation operator. Without loss of generality, we can consider

random variables with zero mean, Et {X(t)}=0 for all t∈τ. The covariance function is defined

as:

R(t, t′) = Et,t′ {X(t)X(t′)} =

∫

Ω

X(t)X(t′)dP, (2-5)

where t, t′∈τ . It is easy to verify that R : τ × τ → R is a positive definite function and

therefore defines a RKHS of functions on τ. A result originally due to Loeve and presented

by Parzen in [115] showed a congruence map between the RKHS induced by the function R

on L2 space that corresponds to the completion of the span of the set {X(t) : t∈τ} denoted

by L2(X(t) : t∈τ).

Theorem 2.2.1. Let {X(t) : t∈τ} be a random process with covariance kernel R. Then

L2(X(t) : t∈τ) is congruent with the RKHS H with reproducing kernel R. Furthermore,

any linear map φR : H → L2(X(t)) which has the property that for any f∈H and any t∈τ

Et {φR(f)X(t)} = f(t) (2-6)

is the congruence from H onto L2(X(t)), which maps R(t, ·) into X(t).

2.3. Reproducing kernel Hilbert spaces in machine learning

It is universally acknowledged that the study of positive definite kernels is a topic of interest

for the machine learning community as a generalization of a well body of theory that has

been developed for linear models. In this way, a positive definite kernel κ is an implicit

way to represent the samples of the input space X . Owing to there is a correspondence

between κ and a RKHS of functions H , the kernel can be understood as an indirect way to

compute inner products between elements of a Hilbert space that are the result of mapping

the elements of X to H . So, there is a mapping function ϕ : X → H such that:

κ (x, x′) = 〈ϕ(x), ϕ(x′)〉H . (2-7)

Regarding this, the space H can be viewed as a feature space and ϕ is called the feature

map. Consequently, by performing linear operations in H it is possible to perform nonlinear

manipulations in the input space X , however, there is no need to perform any explicit

computations in H (see Figure 2-1).

Note that this idea is completely different to the congruence map introduced in Theo-

rem 2.2.1. Then, an important property associated with the use of positive definite kernels

in machine learning is the so-called representer theorem[77, 132]:
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Figure 2-1.: kernel-based mapping.

Theorem 2.3.1. Let Ω : [0,+∞) → R be a strictly monotonic increasing function, X be a

set, and ǫ : (X ×R2)N → R∪∞ be an arbitrary loss function. Then, each minimizer f∈H

of the regularized risk functional:

ǫ ((x1, y1, f(x1)), . . . , (xN , yN , f(xN))) + Ω
(

‖f‖2H
)

, (2-8)

admits a representation of the form:

f(x) =
N
∑

n=1

αnκ(xn, x), (2-9)

where each yn∈R is a given output associated with the input xn∈X .

Proof 2.3.1. Let S=span{κ(xn, ·) : xn∈X , n∈[1, N ]} denotes the subspace of H spanned

by the N training samples. Consider the solution f∈H , this solution can be written as:

f=fS + fS⊥, where fS∈S, fS⊥∈S⊥, and ⊥ stands for the orthogonal symbol. Consequently,

f(xn)=fS(xn) + fS⊥(xn)=fS(xn) + 0. Now, for the second term of the regularized risk fun-

tional:

Ω
(

‖f‖2H
)

= Ω
(

‖fS‖2H + ‖fS⊥‖2H
)

,

since Ω is strictly monotonic increasing it is possible to see that the minimum will be achieved

for ‖fS⊥‖=0, which implies that fS⊥=0.

�

With this in mind, it is possible to conclude that the representer theorem basically states

that the solution of the minimization of the regularized risk functional can be expressed

in term of the so-called training sample {(xn, yn) : n∈[1, N ]}. Therefore, it allows us to

deal with problems that a first glance appear to be infinite dimensional. Nonetheless, the

regularization does not prevent of having local multiple minima, such a property requires

some extra conditions, namely, convexity.
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representation approaches



3. Localized kernel representation based

on graph pruning: a spectral

clustering approach

In practice, the only presence of unlabeled data forces to develop unsupervised clustering

techniques that search for hidden points of similar entities expressed in terms of a given pat-

tern proximity measure. Regarding this, a suitable data representation is required to find

out hidden patterns from input features. As a promising alternative in some disciplines –like

data mining, pattern recognition, image processing, and machine learning– spectral cluster-

ing has been widely used for data grouping. So, topological restrictions are imposed into an

unsupervised representation scheme aiming to extract relevant data dependencies. Mostly,

these algorithms, which group points using matrix eigenvectors derived from the data, get

better performance on complex datasets with non-convex clusters where traditional methods,

e.g., K-means, frequently fail [28]. In fact, spectral clustering, which has its root in graph

partitioning problems, can handle the optimization problem within the standard linear alge-

bra framework for avoiding the local optima [162]. Also, spectral clustering formulations are

very closed to kernel-based clustering approaches such as Kernel K-means, SOM, and Neural

Gas [43]. Indeed, the objective function of a graph partitioning problem is mathematically

equivalent to the weighted extension of the kernel K-means algorithm [36, 37].

As discussed in [169], spectral clustering approaches focus mainly on two issues: i) the

extraction of an optimal partition and ii) choosing a suitable affinity matrix when building

the graph representation. With respect to the former issue, it can be shown that the second

smallest eigenvalue of the matrix estimated from the circuit netlist provides acceptable cut

approximations. Nevertheless, the size of a graph subset is proportional to its number of

vertices that is not always related to the within-cluster similarity. The following approaches

have been proposed to cope with this drawback: the normalized cut criterion, termed NCut,

measuring the total dissimilarity among groups and the overall one within clusters [135],

the random-walk interpretation of spectral clustering [100], computation of the eigenvectors

using matrix perturbation theory [109], among others. Nonetheless, the choice of a suit-

able affinity matrix for the graph building has received much less attention regardless its

importance on the clustering performance [12]. To encode the pairwise relationships among

samples in the affinity matrix correctly, the corresponding measure should be smooth with

respect to the intrinsic data structure. Thus, samples belonging to the same group should
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have high similarity each other and have enough space consistency. For this purpose, two

assumptions on consistency are proposed in [169]: i) local consistency, meaning that nearby

points in the space should have high similarity, ii) global consistency, meaning that samples

in the same cluster should have high similarity. In spectral clustering, similarity graphs model

the local neighborhood relationships between samples. Even though the choice of any of the

regularly used graph constructions (ǫ-neighborhood, k-nearest graphs, and fully connected

graphs) does not influence the clustering result [157], the similarity graph implementation

requires fixing the ruling parameters. Since this procedure is not easy to automate, the free

parameters of the similarity measure are manually adjusted in practice. Then, their corre-

sponding partition graph matrix cannot be constructed to preserve the above assumptions on

consistency. In particular for the widely-known Gaussian-based similarity, commonly known

as Gaussian kernel, its bandwidth parameter is commonly set as a fraction of the pairwise

distance estimated from the whole data. However, multi-scale datasets cannot be properly

partitioned using a unique bandwidth value because of their local variable data density.

A strategy overcoming this restriction is to adapt the scaling measure according to each

k-neighbor distance related to the local sample density [166]. Due to this approach seeks just

for preservation of the local consistency, it mostly fails when dealing with outliers or noisy

data. Besides, automatic tuning of the k-neighbor size remains an open issue. Clustering

aggregation can be improved based on probability accumulation where the co-association

matrices built fromK-means clustering are weighted by the average pairwise distance of each

cluster [158]. Nevertheless, some imposed constraints regarding the probability distribution

of the data are not always satisfied in practice. More elaborate approaches are also in use

like the locally adaptive similarity measure using neighborhood density information and

the incorporation of the assumption about consistency of the similarity. Even though both

approaches aim to reveal hidden data structures by imposing the density or topological

constraints, each formulation requires a real user prior knowledge about the influence of the

free parameters. This aspect becomes crucial to achieve a suitable trade-off between local

and global consistency preservation.

Here, a graph pruning approach, called Kernel Alignment based Graph Pruning (KAGP),

is proposed within a spectral clustering framework to enhances both the local and global

data consistencies for a given input similarity matrix. Our approach aims to reveal the

salient complex structure of the input data by finding relevant pairwise relationships among

samples. To weak all irrelevant relationships of the input similarity matrix, KAGP quantifies

the loss of information during the pruning process in terms of a kernel alignment-based

function [34, 95]. Moreover, we encode the sample similarities using a compactly supported

kernel that allows obtaining a sparse data representation to support the graph partitioning

problem. As a consequence, KAGP takes advantage of an initial guess of the relationships

among points to identify all relevant connections. Testing that is carried out on synthetic

and real-world datasets shows that the proposed methodology allows enhancing the graph

representation of different state of the art approaches, improving the clustering performance
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in most of the cases. Moreover, KAGP avoids the need for a comprehensive user knowledge

regarding the influence of its free parameters.

3.1. Spectral clustering fundamentals

Let X∈RN×P be an input data matrix holding N samples and P features, where each row

{xn∈RP : n∈[1, N ]} represents a single data point. The goal of clustering is to divide the

data into different clusters, where samples within the same cluster are similar to each other.

To discover the main topological relationships among data points, spectral clustering-based

approaches build from X a weighted graph representation G (X,K) , where each sample

point, x, is a vertex or node and K∈RN×N is a similarity (affinity) matrix encoding all

associations between graph nodes. In turn, each element of the similarity matrix, knn′ ⊆K,

corresponding to the edge weight between xn and xn′, is commonly defined as follows [43]:

knn′ = κ (xn − xn′) , (3-1)

where κ (·)∈R+ is a symmetric kernel [132]. Commonly, the kernel function is fixed as

Gaussian. Among many others available kernels (like Laplacian or polynomial), the Gaussian

function has the advantages of finding Hilbert spaces with universal approximating capability

and its mathematical tractability [94]. Thus, the Gaussian kernel that is defined as:

κG (xn − xn′; σX) = exp

(−‖xn − xn′‖22
2σ2

X

)

, (3-2)

is preferred since it aims to find an RKHS with universal approximating capability and with

a single bandwidth parameter σX∈R+ (‖ · ‖2 stands for the 2-norm operator).

Hence, the clustering task now relies on the statement of the conventional graph cut

problem, where the goal is to partition the set of vertices V ∈X into C∈N disjoint subsets

Vc, so that:

V =∪C
c=1Vc, (3-3)

and

Vc′∩Vc=∅, ∀ c′ 6=c. (3-4)

Since graph-cut approaches require high computational burden, relaxation of the clustering

optimization problem has been developed based on the spectral graph analysis [107]. So,

spectral clustering-based methods decompose the input data X into C disjoint subsets by

using both spectral information and orthogonal transformations ofK. Algorithm 1 describes

the well-known solution of the cut problem (termed NCut) that is based on the Rayleigh-Ritz

theory.
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Algorithm II.1: Basic spectral clustering

Input: X∈RN×D, K∈RN×N , C∈N.
Output: V = {Vc : c=1, . . . , C}.

1 initialization;

2 Compute the diagonal degree matrix W∈RN×N holding elements wnn=
∑

j∈N knn′.

3 Estimate the normalized Laplacian matrix: L=W−
1
2KW−

1
2 .

4 Calculate the eigenvalues{λn∈R+}, and eigenvectors {un∈RN : n∈[1, N ]}, of L and

stack the C eigenvectors corresponding to the first C largest eigenvalues into

XA∈RN×C .

5 Assuming each row of XA as a point of dimension RC , cluster them into C clusters

by using the K-means algorithm.

6 Assign the original point xn to cluster c, if and only if, the n-th row of the matrix

XA is allocated to the cluster c.

3.2. Kernel alignment-based graph pruning (KAGP)

To get available data partitioning, performance of the spectral clustering-based methods pri-

marily resides in the choice of the similarity measure which should be smooth with respect

to the intrinsic structure of the samples [162]. In fact, the quality of the graph represen-

tation, G (, ) directly depends on the estimated similarity matrix K [76]. Moreover, an

adequate similarity measure for clustering should hold the following two kinds of assump-

tions of consistency [169]: i) nearby points in the input space should have high similarity

(local consistency); ii) points belonging to the same cluster should reach high similarity

(global consistency).

Aiming to enhance the local and global consistency of the similarity matrix, we propose

to employ a kernel alignment-based function that is subject to sparse constraints. As a

result, a graph pruning method is developed that takes advantage of the initial guess for

the relationship of the input samples, making possible to extract complex data structures.

Thus, based on the properties of the Gaussian kernel, the following compactly supported

kernel can be constructed [50]:

κφ (xn,xn′; σX) = φ (xn,xn′) κG (xn,xn′; σX) . (3-5)

beingK the similarity matrix encoding the graph structure, G (X,K), and φ :RP×RP →R+,

is a compactly supported radial basis function. To preserve positive definiteness of κφ and to

enhance the local and global data consistency in K, operator φ(, ) is chosen as a sparseness

function [53]:

φ (xn,xn′; b, ν) = (max{1− (‖xn − xn′‖2)/b, 0})ν , (3-6)
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being b∈R+. Notation max{·, 0} stands for the maximum value between the argument and

zero. The power term that rules the degree of smoothness (i.e. differentiability) of φ(, ) is

adjusted as ν≥(P + 1)/2. Therefore, the sparseness function introduces a hard threshold in

eq. (3-6), making all entries having distance ‖xn − xn′‖2 > b to be zero.

Based on the operator φ established in eq. (3-6), a compactly supported kernel-based

matrix Kb,ν∈RN×N can be computed as:

Kb,ν = Sb,ν ◦K, (3-7)

where Sb,ν∈RN×N is a sparse matrix holding elements:

sb,νnn′=φ (xn,xn′; b, ν) , (3-8)

and ◦ stands for the Hadamard product. Nonetheless, the values of the b and ν parameters

must be properly adjusted to reveal the main structures ofX for facilitating further spectral

clustering analysis. Yet, the latter parameter has a negligible effect in comparison with the

former one when building the compactly supported kernel as discussed in [167].

Hence, to achieve a suitable local and global data structure representation, we just tune

the value b by searching the sparse kernel encoding the most relevant node connections. To

this end, we weaken all irrelevant relationships of the input similarity matrix K, but taking

into account the loss of information during the sparsification process in terms of a kernel

alignment-based cost function [34]. Namely, the reciprocal relationship between Kb,ν and

K can be estimated using the correlation index, ρ(b, ν)∈R[0, 1] as:

ρ(b, ν) =

〈

K̄, K̄b,ν
〉

F
√

〈

K̄, K̄
〉

F

〈

K̄b,ν , K̄b,ν
〉

F

, (3-9)

where matrices K̄=HKH and K̄b,ν=HKb,νH are the centralized kernel versions ofK and

Kb,ν , respectively, and the centralization matrix H∈RN×N is defined as H=I − N−111⊤,

where 1∈RN is the all-ones vector and I∈RN×N is the identity matrix. Notation 〈, 〉F stands

for the Frobenius-based matrix inner product.

It is worth noting that centered alignment-based functions have been demonstrated to

correlate better than the uncentered case [32]. As a result, the higher the ρ(b) value the

lower information loss during the sparsifying process. Additionally, an sparsity index that

defines the degree of matrix sparseness is quantified as:

̺(b, ν) = N0/N
2, (3-10)
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with ̺(b, ν)∈R[0, 1] and being N0 the number of zero entries of the matrix Kb,ν. Here, the

higher the ̺(b, ν) value – the higher degree of sparseness. In order to fix the optimal value

of b, for a given fixed ν value, we introduce a regularization-based criterion as to reach a

trade-off between both ρ(b, ν) and ̺(b, ν) measures as follows:

b∗ =argmax
b

(1− γ)(log(ρ(b, ν)))2 + γ(log(̺(b, ν)))2 (3-11)

s.t. min
n,n′

‖xn − xn′‖2<b<max
n,n′

‖xn − xn′‖2

where γ∈R[0, 1] rules the compromise between the local and global consistency terms. As

γ→0, the optimization function in eq. (3-11) heavily penalizes the sparsifying process, that

is, the obtained matrix Kb∗,ν will try to preserve, as well as possible, all data similarities

hold by K. Therefore, matrix Kb,ν will hold mainly global consistencies. On the contrary,

as γ→ 1, the obtained compactly supported matrix will favor those sparse representations

preserving local data consistency. It is worth noting that the imposed constraint in eq. (3-11)

is derived from the definition of the value b, according to eq. (3-6). Thus, if b becomes lower

that the minimum value of all computed input sample distances, the sparsifying function

will always be zero, making useless the derived matrix. In contrast, if b becomes higher,

the sparsifying function will not affect K. Therefore, the provided optimization in eq. (3-

11) takes advantage of the relevant input data information. Thus, the cost function allows

finding the b∗ value that is adequate to extract the main data structures to be encoded

in Kb,ν . This kernel matrix is used to build a suitable input data graph representation

G (X,Kb∗,ν). Then, our approach is named kernel alignment-based graph pruning (KAGP).

3.3. Experimental set-up

Evaluation of the proposed KAGP approach is carried out by performing an unsupervised

clustering task demanding estimation of the graph structure from the underlying data. For

the sake of comparison, KAGP performance is applied on four different spectral clustering

approaches requiring computation of the initial graph representation, namely: Adjusted

Line Segment (ALS) [162], k -Nearest Neighbor Spectral Clustering (k -SC) [166], ǫ-Spectral

Clustering (ǫ-SC) [43], and Common Nearest Neighbors (CNN) [169]. Parameter setting of

these algorithms is as follows:

• The ALS algorithm incorporates a prior assumption about consistency of the similarity

between samples, which means that nearby points and data points on the same struc-

ture are likely to share high similarities [162]. The ALS similarity measure is defined

as:

knn′ = (znn′ + 1)−1, (3-12)
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where znn′R+ is an introduced pair-wise density sensitive distance defined as:

znn′ = min
∑|P

nn′ |

r=n
ι(xr,xr+1). (3-13)

Here, Pnn′={xn,xr, . . . ,xn′ : n ≤ r < n′} is the path and denotes the set of points

connecting from xn to xn′. In turn, the parameter ι(, )∈R+ is an adjustable line segment

length between points xn and xn′ computed as follows:

ι(xn,xn′) = (exp (ζ‖xn − xn′‖2)− 1)1/ζ , (3-14)

where ζ > 1 is a density factor parameter that squeezes distances within high-density

regions while it widens them in low-density regions. The ζ value is heuristically set as

2, providing that the initial graph is built as an ǫ-neighborhood graph fixing ǫ=ξ.

• In the k -SC algorithm, the similarity matrix is estimated as:

knn′ = κG (xn,xn′;
√
σnσn′) , (3-15)

where the local scaling parameters {σn, σn′}∈R+ are computed in terms of the Eu-

clidean distance as σn=‖xn − xK
n ‖2, being xK

n the K-th neighbor of each point xn, so

that each specific scaling parameter allows self-tuning of the point-to-point distances

according to the local statistics of the neighborhoods surrounding points xn and xn′.

To avoid overfitting, the K value is adjusted (taking into account the dataset size) as

K=
⌊√

N
⌉

, where ⌊·⌉ is the operator that computes the rounded value to the closest

integer for its argument.

• Now, in the ǫ-SC approach the similarity is computed as:

knn′ = κG (xn,xn′; σǫ) , (3-16)

where the σǫ∈R+ value encodes the average neighborhood size of the input data. As

suggested in [3], we choose the median operator.

• The pairwise similarity of the CNN algorithm becomes adaptive in dependence to

the neighborhoods of the correlative points, that is, if a couple of points are located

within the same cluster, both points are assumed as belonging to a high density region.

Therefore, the CNN local density adaptive similarity measure can be written as:

knn′=κG
(

xn,xn′; (ςnn′ + 1)1/2σς
)

, (3-17)
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where σς=σǫ, ςnn′∈N is a local density parameter, which is employed to distinguish

points within the same cluster from others located at different clusters as:

ςnn′ = |{r : ‖xn − xr‖ < ξ and ‖xn′ − xr‖ < ξ}| ,

being ξ∈R+ a neighborhood radius parameter that is adjusted experimentally as the

10-percentile of the input data Euclidean distances. Notation |·| denotes the cardinality
operator.

Once the similarity matrix is computed for each method, the proposed KAGP is carried

out to prune all irrelevant pair-wise relationship values, where the optimal value of the

parameter b is computed by solving the cost function in eq. (3-11) using a Particle Swarm

Optimization-based solver. Besides, the regularization parameter γ is heuristically set as

0.5. Lastly, the sparse matrix Kb∗,ν is estimated to perform further the well-known spectral

clustering algorithm [157]. Fig. 4-2 outlines the main sketch of the used spectral clustering

task used for validation of the proposed KAGP approach.

- - - -

X K Kb∗,ν G (X,Kb∗,ν)
Computation of

pairwise-similarity

matrix

Pruning of

pairwise-similarity

matrix

Estimation of

sparse graph

representation

Figure 3-1.: KAGP block scheme

The KAGP method is validated as a suitable tool for pruning graph representations to

improve unsupervised clustering performance. To this end, we employ both, synthetic and

real-world, databases.

In the former case, we have visual insight of the performed clustering for the following well-

known datasets: Bull’s eye 3 circles, Happy face [166], Half moon [72], and Bull’s eye with

outliers. Two main reasons account for selecting these concrete databases: i) they represent

a challenging clustering task due to their complex structures, and ii) each ground-truth is

either known or can be visually inspected.

Regarding the real-world data, a subset of the UCI Machine Learning Repository that is

widely used for quantifying clustering performance [162]. The selected data collection pro-

vides a variety of real-world clustering scenarios with different conditions in terms of number

of features, number of samples, number of clusters, and data distribution complexity. Be-

sides, validation is carried out on a representative subset of 30 images chosen randomly from

the free access Berkeley Segmentation dataset [97]. This data collection provisions hand-

labeled segmentation of every sample, making supervised testing suitable. All testing images

are rescaled at 15% and characterized by five features: RGB color space and the spatial po-

sition of each pixel. Thus, each image is represented by the input matrix X∈R3577×5, where

N=73× 49 is the obtained image resolution after resizing.
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Further, we assess the clustering performance in terms of the following commonly used

indexes of quality [8, 27]:

Adjusted Rand Index (ARI), ρARI∈R[−1, 1]: This index measures the agreement between

two compared partitions, namely, the ground truth (noted as U ) and the estimated by the

tested clustering approach (V ), as follows:

ρARI =
a11 − (a11 + a01)(a11 + a10)/a00

(a11 + a01) + (a11 + a10)/2− (a11 + a01)(a11 + a10)/a00
(3-18)

where a11∈N is the number of sample pairs belonging to the same subset in U and in V , a10
is the number of sample pairs belonging to the same subset in U and to different subsets in

V , a01∈N is the number of sample pairs belonging to different subset in U and to the same

one in V , and a00∈N is the number of sample pairs belonging to different subsets in U and

in V .

Purity Index (PUR) ρPUR∈R[0, 1]: This measure matches the clustering partition V with

the ground truth U as a weighted sum of the maximal precision values for each subset. That

is:

ρPUR =
C
∑

c=1

|Vc|
N

max
c′

ρPRE (Vc,Uc′) ; (3-19)

where ρPRE (Vc,Uj)=|Vc ∩ Uc′|/|Vc|.
Accuracy Index (ACC) ρACC∈R[0, 1]: This index is the total fraction of samples belonging

to the same subset in U and V , and is expressed as:

ρACC =
1

|V |

C
∑

c=1

|Vc ∩ Uc| (3-20)

where |·| is the cardinality operator over a given set.

Jaccard Index (JAC), ρJAC∈R[0, 1]: This index matches the similarity among two sets, U

and V , as follows:

ρJAC =
a11

a11 + a10 + a01
(3-21)

Probabilistic Rand Index (NPR), ρNPR∈R[0, 1]: This measure allows comparing the per-

formed partition under testing V against T available ground truths, Ψ={U t : t∈[1, T ]},
through an introduced soft nonuniform weighting of all sample pairs as function of the

ground truth variability. We assume that each U t is the t-th partition of X according to

the t-th expert, so that U t=∪C
c=1U

t
c , being U t

c a disjoint subset in U t and U t
c′ ∩U t

c =∅,
∀ c′ 6=c. Therefore, the NPR, is defined as [153, 102]:
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ρNPR =
1

T
(

N
2

)

T
∑

t=1

N
∑

n,n′=1

[

δ
(

lVn =l
V

n′

)

δ
(

lU
t

n =lU
t

n′

)

+ (3-22)

δ
(

lVn 6= lVn′

)

δ
(

lUt

n 6= lUt

n′

)]

where lVn ={c : xn∈Vc}, lU t

n ={c : xn∈U t
c }, and notation δ(·, ·) stands for the delta function.

To evaluate the proposed pruning method, we firstly carry out the visual inspection of the

performed data grouping for all tested databases. However, the indexes of quality above-

explained are used depending on the available information. Thus, the ρNPR index is the only

one estimated for the Berkeley dataset due to the hand-labeled segmentation is for every

testing image. Otherwise, we calculate the ρACC , ρPUR, and ρARI indexes in the remaining

databases.

3.4. Results and discussion

fig. 3-2 shows the accomplished grouping results on the synthetic datasets before and after

applying the proposed KAGP method to each compared spectral clustering technique. The

first method we compare is the ALS that aims to reveal complex data structures by encoding

topological and density properties of neighboring samples. And yet, the use of a unique

density parameter does not allow squeezing properly the distances among points. Moreover,

the plain ALS (i.e. without the proposed graph pruning) gets the worst connectivity graphs

on every single dataset (see fig. 3.3a, fig. 3.3i, fig. 3.3q, and fig. 3.3y), giving rise to poor

splitting data. Still, the use of the proposed KAGP method remarkably improves clustering

performance on all databases (fig. 3.2e, fig. 3.2m, and fig. 3.2ac) except for the Half moon

dataset that is the one having the simpler structure (fig. 3.2u).

The following clustering method, k -SC technique, handles correctly on Bull’s eye 3 circles

and Happy face data collections as seen in fig. 3.2b and fig. 3.2j, respectively. However,

the clusters are wrongly split in the Half moon (fig. 3.2r) and the Bull’s eye with outliers

(fig. 3.2z) datasets. This drawback is explained since the k -SC method mainly seeks just

for local consistency preservation, making some global connections supply wrong clusters

mostly at handling complex circumstances, e.g., a multi-scale data set [166]. In fact, the

estimated connectivity graphs show that the plain k -SC graphs incorrectly assign some

pairwise connections, namely, when both moons get close enough to each other (see fig. 3.3r)

or when dealing with outliers (fig. 3.3z) that are mistakenly assigned to the structure of the

inner rings. Conversely, the proposed KAGP algorithm performs better clustering since it

produces graphs (fig. 3.3v and fig. 3.3ad) that evidently prune irrelevant connections from

the k -SC similarity matrix, but jointly preserving both the local and global consistencies.
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The improved version, ǫ-SC, is assumed to better describe local relationships through

an introduced ǫ value that rules the size of neighboring vicinities within the connectivity

graph estimation framework. Nonetheless, this strategy may be not enough to tackle the

problem inasmuch as the ruling ǫ parameter barely handles multi-scale, noisy or complex

structures, yielding connection graphs (see fig. 3.3c-to-fig. 3.3ae) that are quite similar to

the ones estimated by the k -SC method. As a result, the ǫ-SC reaches the same clustering

performance as the k -SC does, that is, the method does not benefit from the KAGP algorithm

in the cases of Bull’s eye 3 circles (see fig. 3.2c and fig. 3.2g) and Happy face (fig. 3.2k

and fig. 3.2o) while the pruning method improves performance on the Half moon (fig. 3.2s

and fig. 3.2w) and the Bull’s eye with outliers (fig. 3.2aa and fig. 3.2ae) datasets.

Lastly, the compared CNN method provides a more elaborate strategy to improve char-

acterization of local neighborhoods by adapting the pairwise edge weight between points,

allowing to handle more information about multi-scale data. Detailed inspection of the

CNN graphs shows that the use of the KAGP method removes more accurately irrelevant

connections (see fig. 3.3l vs fig. 3.3p and fig. 3.3t vs fig. 3.3x). Thus, the CNN method

reaches almost the same performance in either case of preprocessing consideration as seen

in fig. 3.2d-to-fig. 3.2af.

table 3-1 displays the clustering quality assessments estimated on the examined synthetic

datasets. As perceived, the proposed KAGP approach allows improving all considered indices

of clustering quality. In particular, KAGP-based graph pruning remarkably enhances the

clustering quality of the ALS, k-SC and ǫ-SC techniques in all tested synthetic data. Yet,

the KAGP does not exhibit a notable quality enhancement of the CNN algorithm, though

it does not decrease the system performance.

Table 3-1.: Clustering quality assessment results (synthetic datasets).
Dataset Method ALS k -SC ǫ-SC CNN

Measure No KAGP KAGP No KAGP KAGP No KAGP KAGP No KAGP KAGP

be3 ARI 0.31 1.00 1.00 1.00 0.51 1.00 0.51 0.51

N = 299 Purity 0.61 1.00 1.00 1.00 0.84 1.00 0.84 0.84

D = 2 Accuracy 0.61 1.00 1.00 1.00 0.64 1.00 0.63 0.63

C = 3 Jaccard 0.39 1.00 1.00 1.00 0.56 1.00 0.56 0.56

happy ARI 1.00 1.00 1.00 1.00 0.85 1.00 1.00 1.00

N = 266 Purity 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00

D = 2 Accuracy 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00

C = 3 Jaccard 1.00 1.00 1.00 1.00 0.83 1.00 1.00 1.00

hm2 ARI -0.08 0.01 0.37 1.00 0.59 1.00 0.97 0.98

N = 373 Purity 0.80 0.66 0.81 1.00 0.89 1.00 0.99 0.99

D = 2 Accuracy 0.54 0.60 0.81 1.00 0.89 1.00 0.99 0.99

C = 2 Jaccard 0.44 0.41 0.56 1.00 0.70 1.00 0.97 0.98

tar ARI 0.38 1.00 0.38 1.00 1.00 1.00 1.00 1.00

N = 770 Purity 0.40 1.00 0.40 1.00 1.00 1.00 1.00 1.00

D = 2 Accuracy 0.40 1.00 0.40 1.00 1.00 1.00 1.00 1.00

C = 6 Jaccard 0.38 1.00 0.38 1.00 1.00 1.00 1.00 1.00

Average ARI 0.40 0.75 0.69 1.00 0.74 1.00 0.87 0.87

Purity 0.70 0.92 0.80 1.00 0.92 1.00 0.96 0.96

Accuracy 0.64 0.90 0.80 1.00 0.87 1.00 0.91 0.91

Jaccard 0.55 0.85 0.74 1.00 0.77 1.00 0.88 0.89
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Figure 3-2.: Clustering results carried out on synthetic data sets.
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Figure 3-3.: Graph representation for synthetic data sets.
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As seen intable 3-2 showing the quality assessments calculated for the UCI repository real-

world datasets, the proposed KAGP enhances (at least, does not degrade) the performed

clustering. In particular, KAGP remarkably enhances the purity index for the k-SC, the ǫ-

SC, and the CNN algorithms. Thus, pruning of irrelevant connections using KAGP favors the

clustering robustness against noisy and/or complex data distributions. Concerning the ARI,

the Accuracy, and the Jaccard indexes, KAGP achieves comparable results in comparison

to the benchmark approaches.

The image segmentation results are shown in fig. 3-4, where it is clear how the proposed

KAGP enhances the segmentation performance. Particularly, as seen in figs. 3.4b to 3.4al,

it is possible to notice how after applying KAGP over the k-SC similarity matrix facilitates

the discrimination among objects into the scene. Alike, KAGP is able to enhance the ǫ-SC-

based graph representation for facilitating the image clustering, e.g., see figs. 3.4c to 3.4am.

Regarding this, only considering local consistencies for computing the relationships among

pixels, e.g., k-SC and ǫ-SC algorithms, leads to noisy segmentation results. Moreover, it is

remarkably how the image segmentation results for CNN and ALS approaches are improved

after carrying out the proposed KAGP (see figs. 3.4d to 3.4an, and figs. 3.4a to 3.4ak).

Even though CNN and ALS approaches estimate pair-wise similarities by considering local

neighborhood properties complex data structures related to object textures and shapes are

not suitable highlighted. In terms of clustering assessment, fig. 3-5 shows the corresponding

boxplots obtained for the tested images. As seen, the use of the KAPG makes more stable

the estimated clustering performance since it makes the results be less variable with less

outliers. Consequently, the KAGP is able to find a trade-off between local and global consis-

tency preservation to build a graph representation without irrelevant pair-wise connections,

favoring the clustering robustness against outliers, noisy data, and overlapped groups.

Sensitivity analysis of free parameters. Due to all compared spectral clustering approaches

have free parameters to be specified manually, we evaluate their influence on the estimation

of the initial pairwise-similarity matrix, K. Thus, the following free parameters are studied:

i) The k -th neighboring value for k -SC, ii) the average neighborhood size value σǫ for the

ǫ-SC approach, iii) the neighborhood radius parameter ξ for the CNN approach, and iv)

the density factor parameter ζ for ALS. Thereby, the synthetic and the Berkeley image

segmentation datasets are studied. Thus, the ARI and the NPR indexes are analyzed,

respectively. fig. 3-6 shows the results of evaluation that is carried out in terms of the

ARI measure before and after the KAGP operation. As seen in figs. 3.6a to 3.6c for ALS

method, the lack of the proposed pruning makes worse the achieved validation ARI measure

regardless the fixed value of the ruling ζ parameter, except, again, for the Half moon. In the

cases of associated k -SC and ǫ-SC methods (see figs. 3.6e to 3.6g figs. 3.6i to 3.6k, figs. 3.7a

to 3.7c), their plain versions perform clustering that rapidly worsens as the corresponding

free parameter slightly varies. In contrast, the use of the KAPG-based pruning makes both

techniques improve the validation outcomes over all tested data sets.

With respect to the CNN method, its plain version is the one that holds clustering perfor-
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mance within the longest interval of the ξ parameter variation in comparison with the other

plain versions. Yet, its provided clustering sharply decreases, at the moment of parameter

imbalance, and becomes the worst as seen in figs. 3.6m to 3.6o and figs. 3.7d to 3.7f. By

contrast, the insertion of the pruning operation significantly compensates for this negative

effect, extending the range within the free parameter can change.

3.5. Summary

We propose a graph pruning approach, termed KAGP, that makes use of a kernel function

to support grouping tasks based on spectral clustering. Here, the kernel matrix learning is

based on an introduced alignment function to measure the similarity between two kernel ma-

trices, enhancing their local and global consistencies. So, our approach takes advantage of an

initial guess of the relationships between points to identify relevant connections by encoding

then by means of a compactly supported kernel function. Besides, a regularization-based

criterion is introduced as to reach a trade-off between the local and the global consistency

preservation during the graph pruning process. For the sake of comparison, KAGP is val-

idated on synthetic and real-world datasets using visual inspection and clustering quality

measures. Performance is contrasted with four competitive graph-based spectral clustering

approaches, namely: k -SC, ǫ-SC, CNN, and ALS. So, once the initial graph representation

is computed for each method, the proposed KAGP is carried out before clustering the data

to prune irrelevant pair-wise relationships. Obtained results of quality show that KAGP can

handle complex data structures, yielding better clustering performance in comparison to the

baselines. Moreover, the KAGP promotes clustering performance less sensitive to outliers,

noisy data, and overlapped groups.

Due to all compared spectral clustering approaches have free parameters that commonly

are to be specified manually, we also evaluate experimentally their influence during the graph

pruning process. Attained results demonstrate that the insertion of KAGP significantly

compensates adverse effects when the corresponding free parameter is not fixed correctly

for each clustering approach. Moreover, in most of the cases, KAGP allows extending the

range within the free parameter can change. Therefore, proposed approach is a suitable

alternative to support clustering tasks related to graph representations, achieving appropri-

ate performances while avoiding the need for a comprehensive user knowledge regarding the

influence of its free parameters. As future work, the authors plan to validate KAGP on other

different machine learning tasks as dimensionality reduction, classification, and regression.

Furthermore, an extension of KAGP to support kernel-based clustering approaches will be

studied. Finally, it would be of benefit to include alternatives to measure the local and global

consistency preservation, i.e., information theory.
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Table 3-2.: Clustering quality assessment results (UCI repository datasets).
Dataset Method ALS k -SC ǫ-SC CNN

Measure No KAGP KAGP No KAGP KAGP No KAGP KAGP No KAGP KAGP

iris ARI 0.47 0.47 0.44 0.55 0.63 0.55 0.63 0.56

N = 150 Purity 0.91 0.91 0.87 0.97 0.84 0.97 0.84 0.98

D = 4 Accuracy 0.58 0.57 0.53 0.68 0.84 0.68 0.84 0.69

C = 3 Jaccard 0.52 0.51 0.50 0.58 0.60 0.58 0.60 0.59

wine ARI 0.03 0.10 0.93 0.43 0.93 0.43 0.90 0.43

N = 178 Purity 0.57 0.54 0.98 0.94 0.98 0.94 0.97 0.94

D = 13 Accuracy 0.44 0.46 0.98 0.62 0.98 0.62 0.97 0.62

C = 3 Jaccard 0.24 0.27 0.91 0.50 0.91 0.50 0.87 0.50

sonar ARI -0.00 0.03 0.02 0.00 0.00 0.01 -0.00 0.01

N = 208 Purity 0.97 0.92 0.57 0.86 0.55 0.84 0.57 0.84

D = 60 Accuracy 0.50 0.60 0.57 0.55 0.54 0.56 0.52 0.56

C = 2 Jaccard 0.48 0.47 0.34 0.43 0.34 0.42 0.34 0.43

biomed ARI 0.04 -0.00 0.47 0.11 0.09 0.10 0.09 0.09

N = 194 Purity 0.60 0.53 0.85 0.93 0.95 0.94 0.95 0.94

D = 5 Accuracy 0.60 0.51 0.85 0.71 0.70 0.71 0.70 0.70

C = 2 Jaccard 0.37 0.35 0.60 0.55 0.55 0.55 0.55 0.55

diabetes ARI -0.00 -0.00 0.16 0.01 0.16 0.00 0.01 -0.00

N = 768 Purity 0.99 0.99 0.70 0.99 0.70 0.99 0.95 0.99

D = 8 Accuracy 0.64 0.64 0.70 0.65 0.70 0.65 0.65 0.65

C = 2 Jaccard 0.54 0.54 0.43 0.54 0.43 0.54 0.52 0.54

glass ARI 0.08 0.02 0.17 0.16 0.16 0.16 0.16 0.16

N = 214 Purity 0.42 0.41 0.51 0.89 0.87 0.89 0.87 0.89

D = 9 Accuracy 0.42 0.38 0.46 0.49 0.50 0.50 0.50 0.50

C = 4 Jaccard 0.20 0.18 0.25 0.34 0.33 0.34 0.34 0.34

x80 ARI 0.00 0.00 0.63 0.01 0.36 0.01 0.31 0.01

N = 45 Purity 0.96 0.96 0.87 0.87 0.76 0.89 0.71 0.89

D = 8 Accuracy 0.36 0.36 0.87 0.42 0.58 0.40 0.58 0.40

C = 3 Jaccard 0.31 0.31 0.60 0.29 0.42 0.30 0.38 0.30

ecoli ARI 0.40 0.69 0.37 0.57 0.48 0.72 0.57 0.71

N = 336 Purity 0.63 0.75 0.56 0.72 0.66 0.80 0.71 0.77

D = 7 Accuracy 0.54 0.75 0.55 0.72 0.66 0.79 0.71 0.77

C = 8 Jaccard 0.36 0.62 0.32 0.51 0.42 0.66 0.50 0.65

heart ARI -0.00 0.00 0.31 0.02 0.37 0.41 0.39 0.02

N = 297 Purity 1.00 1.00 0.78 0.93 0.80 0.82 0.81 0.95

D = 13 Accuracy 0.54 0.54 0.78 0.58 0.80 0.82 0.81 0.59

C = 2 Jaccard 0.50 0.50 0.49 0.47 0.52 0.55 0.54 0.48

liver ARI 0.03 0.02 -0.00 -0.01 -0.01 -0.01 -0.01 -0.01

N = 345 Purity 0.59 0.59 0.65 0.94 0.98 0.95 0.97 0.97

D = 6 Accuracy 0.59 0.58 0.52 0.56 0.57 0.56 0.57 0.56

C = 2 Jaccard 0.35 0.35 0.36 0.48 0.50 0.48 0.50 0.49

ionosphere ARI -0.00 -0.00 0.15 0.35 0.13 0.28 0.12 0.27

N = 351 Purity 1.00 1.00 0.70 0.83 0.68 0.86 0.68 0.87

D = 34 Accuracy 0.64 0.64 0.70 0.81 0.68 0.78 0.68 0.77

C = 2 Jaccard 0.54 0.54 0.44 0.60 0.41 0.58 0.41 0.58

soybean2 ARI 0.28 0.27 0.56 0.28 0.29 0.26 0.30 0.28

N = 136 Purity 0.77 0.75 0.82 0.76 0.78 0.76 0.79 0.77

D = 35 Accuracy 0.58 0.57 0.82 0.57 0.59 0.57 0.60 0.58

C = 4 Jaccard 0.35 0.34 0.52 0.35 0.36 0.34 0.36 0.35

Average ARI 0.11 0.13 0.35 0.21 0.30 0.24 0.29 0.21

Purity 0.78 0.78 0.74 0.89 0.80 0.89 0.82 0.90

Accuracy 0.54 0.55 0.69 0.61 0.68 0.64 0.68 0.61

Jaccard 0.40 0.42 0.48 0.47 0.48 0.49 0.49 0.48
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Figure 3-4.: Clustering results for the Berkeley Segmentation dataset.
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Figure 3-5.: Berkeley Segmentation dataset results (statistical analysis of the NPR).
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Figure 3-6.: Free parameter analysis over synthetic datsets based on the ARI measure.

— No KAGP — after applying KAGP.
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Figure 3-7.: ǫ-SC and CNN free parameter analysis over Berkeley image dataset based on

the NPR measure. — No KAGP — after applying KAGP.



4. Relevant data representation based

on information theoretic learning: a

kernel function estimation approach

Kernel functions allow enhancing random data representation for supporting machine learn-

ing systems. Moreover, kernel-based methods are powerful tools for developing better per-

forming solutions by adapting the kernel to a given problem, instead of learning data re-

lationships from explicit raw vector representations. The kernel function is a very flexible

container to express knowledge about the problem as well as to capture meaningful data re-

lationships [13]. However, building suitable kernels requires some user prior knowledge about

input data, which is not available in most of the practical cases; this situation becomes worse

when handling unsupervised inferring tasks.

Among many feasible kernels, the Gaussian function is preferred since it aims to find an

RKHS with universal approximating capability [94]. However, its use highly relies on the

appropriate selection of the kernel parameters that are not easy to fix when dealing with

complex data structures. In fact, the Gaussian Kernel bandwidth (scale) must be accurately

tuned as to estimate an RKHS that should hold the main data relationships; otherwise, an

unappropriate scale value leads to distinct RKHS not fulfilling the learning task. To cope

with this issue and specifically devoted to unsupervised tasks, authors in [166, 169] propose

to adjust the kernel parameter by making use of local scales instead of a global one allowing

to exploit the spatial-varying data properties. Yet, these methods do not guarantee the

Mercer’s properties required for building kernel functions [118].

Nonetheless, most of of kernel estimation approaches are limited to the conventional con-

cepts of second order statistics (mainly L2 distances). Instead, some information theoretic

learning (ITL) frameworks have been developed based on information theoretic underpin-

nings, which more generally quantify data uncertainty. In fact, information-based approaches

can improve interpretation of random data structures, making salient connections between

information measures and RKHS [128]. In ITL methods, the kernel building task reduces

to estimation of the probability density function (pdf) that is rarely known due to the only

available information comes from data samples at hand. Here, the kernel estimator involves

a symmetrical window sliding along a sequence with its weighted values being smoothed

inside. In particular, author in [121] proposes to estimate the pdf using the Renyi’s entropy

along with a Gaussian kernel Parzen estimator. However, both the pdf estimation success
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and the learning performance are highly dependent on the kernel parameter, namely, the

bandwidth value. Some ITL-based approaches have been also proposed to fix the kernel scale

value by optimizing information quantities [103, 138, 170], nevertheless, supervised data is

required.

In this chapter, we propose a new kernel function estimation strategy to build a suit-

able Gaussian kernel-based RKHS oriented towards clustering. To this end, we make use of

the intrinsic information potential variations from a Parzen-based pdf estimator. Namely,

we seek for an RKHS maximizing the whole information potential variability in terms of

the global kernel parameter. As a result, we get a scale updating rule as a function of

the information forces, which are induced by a kernel function applied over a finite sample

set. Thus, our approach allows revealing relevant sample relationships into an unsupervised

kernel-based strategy. We provide testing of our proposal on two classical machine learning

tasks (clustering and classification) using both synthetic and real data. Obtained results

show that presented approach allows building an RKHS kernel favoring data groups separa-

bility and reaching suitable clustering performance in comparison with other state-of-the-art

algorithms.

4.1. Gaussian-based Renyi’s information metrics

fundamentals

The basis of the ITL framework is the Renyi’s information quadratic metric. A method to

estimate the well-known Renyi’s entropy directly from a sample set X={xn∈X : ∀n∈[1, N ]},
being X a given representation space, can be achieved by using the Parzen’s nonparametric

pdf estimation for x, defined as:

p(x) ≈ pX(x|σX) = En {κ (x− xn)} , (4-1)

where κ (·)∈R+ is a symmetric kernel function and notation E {·} stands for averaging op-

erator. Though there are many feasible functions, the Gaussian is commonly preferred. In

this case, the Gaussian kernel can be defined for the input domain X as:

κG (x− x′; σX) = exp

(−‖x− x′‖2
X

2σ2
X

)

, (4-2)

where ‖ · ‖X is a given norm in X ).

Provided the observation set X and based on the Parzen’s estimation of eq. (4-1), we get

the following estimator of the Renyi’s α-order entropy [121]:
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Hα (X) =
1

1− α
log
(

Ex

{

p(x)α−1
})

≈ Ĥα (X|σ)

=
1

1− α
log (Vα (X|σ)),

where the so termed information potential (IP) Vα(X|σ) of the set X is defined as follows:

Vα(X|σ) = En {vα (xn|σX)} , (4-3)

being vα (xn|σ) the IP of the sample xn, which can be computed as:

vα (xn|σX) =
1

Nα−1

N
∑

n′=1

(κG (xn − xn′ ; σX))
α−1. (4-4)

4.2. Kernel function estimation from information potential

variability - (KEIPV)

From eq. (4-4) we can infer that the IP yields an entropy estimate that is based on the sum-

mation of pairwise sample interactions through the Gaussian kernel function [103]. Also, the

Information Force (IF), Fn∈X , is defined as the force acting on particle xn due to all other

particles in X and is given by the derivative of the IP with respect to xn. Particularly, for

the case of α=2, the well-known quadratic Renyi’s entropy leads to the following estimation

of the IF:

Fn =
∂

∂xn
V2(X|σX) = −(NσX)

−2
∑

x
n′∈X

κG (xn − xn′ ; σX) (xn − xn′)

= En′ {F (xn|xn′)} , (4-5)

where

F (xn|xn′) = (Nσ2
X)

−1κ (xn − xn′ ; σX) (xn − xn′) (4-6)

corresponds to the conditional IF acting on xn due to xn′. Generally, the IFs can be inter-

preted in light of inner products in a high dimensional feature space [74]. Some important

facts have to be highlighted from eq. (4-5):

• On one hand, given that X is fixed and the factor (xn − xn′) points towards xn, all IF

directions are also fixed and attracting-natured.
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• On the other hand, since Fn turns out to be dependent on the free parameter σX , the

IP and all IF magnitudes become functions of the Gaussian kernel bandwidth. In fact,

the IP follows a monotonically decreasing behavior over σX .

• At the same time, the conditional IF magnitude tends to zero as σX goes either to zero

or infinite and reaching its maximum at some value in R+.

Hence, the importance of an adequate Gaussian kernel bandwidth tuning becomes clear.

In this sense, we seek for an RKHS maximizing the overall IP variability with respect to the

kernel bandwidth parameter so that all IF magnitudes spread the most widely on X . To

this end, the variability of the estimated IP is maximized in terms of the kernel bandwidth

parameter as follows:

σ∗
X = argmax

σX

var {v2(x|σX)}, (4-7)

where

var {v2(x|σX)} = Ex

{

(var {v2(x|σX)} − Ex {var {v2(x|σX)}})2
}

. (4-8)

Deriving with respect to σX , the optimal parameter value can be rewritten in terms of the

before introduced Gaussian-based Renyi’s Information Metrics as follows:

d

dσX
var {v2(x|σX)} =

2

N2σ3
X

(

1 +
1

N

)

(

N
∑

n,n′=1

κ2G (xn − xn′ ; σX) ‖xn − xn′‖2X

−
(

N
∑

n,n′=1

κG (xn − xn′; σX)

)(

N
∑

n,n′=1

κG (xn − xn′; σX) ‖xn − xn′‖2X

))

,

=
2(N2 +N)

σX

(

σ2
X

N
∑

n,n′=1

F 2(xn|xn′)− V2(X)

N
∑

n,n′=1

(F (xn|xn′))⊤(xn − xn′)

)

Lastly, equating the above equation to zero, a fixed point or a gradient descent update

rule can be employed to find a suitable σX value. As a result, we get a scale updating rule

as a function of the IFs, which are induced by a kernel function applied over a finite sample

set. Thereby, a Gaussian kernel-based RKHS coding the most spread out IF magnitudes can

be estimated using the introduced approach, termed as: Kernel Function Estimation from

Information Potential Variability - KEIPV.
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4.3. Experimental set-up

Given an input representation sample matrix X∈X ⊂RN×P , being N and P the number

of provided samples and features, respectively, we test the proposed KEIVP approach as

a tool to find relevant data relationships. For the concrete case, a clustering task is con-

sidered. Thus, both synthetic and real-world datasets are studied. The former is a toy

set holding two multivariate Gaussian distributions (see fig. 4.1a): f1 (x)=N(µ1,Σ1) and

f2 (x)=N(µ2,Σ2), with parameters µ1=0, µ2=1, Σ1=0.5I and Σ2=0.25I, with µ1,µ2∈R2

and being I∈R2×2 the identity matrix. To get the input sample set X∈R200×2, one hundred

samples are randomly drawn from each of both simulated pdfs.

Also, to provide visual inspection on unsupervised clustering, three well-known synthetic

databases are used that represent challenging clustering tasks due to their complex struc-

tures: Bull’s eyes, Circle with squares, and Noisy squares (see fig. 4-2 rows one, two, and

three, respectively). Here, three baseline approaches for estimating the Gaussian kernel

bandwidth parameter are considered:

• The Sylverman’s rule criterion that computes the scale value as:

σS = σX
(

4N−1(2P + 1)−1
)1/(P+4)

, (4-9)

with σX=
∑

n∈N snn and being snn the diagonal elements of the sample covariance

matrix [137].

• The Self-Tuning Spectral Clustering (STSC) estimator that calculates a local scale

parameter for each pair of row sample vectors (xn,xn′∈RP ), n 6= n′, by considering

nearest neighbor distances as:

σnn′

sc = ‖xn − xK
n ‖2‖xn′ − xK

n′‖2, (4-10)

being xn
K the K-th nearest neighbor of xn in terms of the Euclidean distance and ‖ · ‖2

stands for the 2-norm [166].

• The local density adaptive band-width is also tested, which computes a local scale

parameter as function of Common Near Neighbors (CNN) between points (xn,xn′),

n 6= n′, as:

σnn′

cnn = σo (γ (xn,xn′) + 1)1/2 , (4-11)

where σo∈R+ and γ (xn,xn′)=|Γn ∩ Γn′|, being Γn={xk
n : k=1, . . . , K} the set holding

the K nearest neighbors of xn according to the Euclidean distance and | · | stands for
the cardinality operator [169]. Here, σo=median{σn,n′

sc }, n < n′.
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For each of above introduced bandwidth selection approaches, namely Sylverman, STSC,

CNN, and KEIVP, the resulting Gaussian kernel is employed to perform the unsupervised

clustering learning by means of the well-known Spectral Clustering technique [110]. Addi-

tionally, the number of neighbors is fixed as K=
√
N in cases of STSC and CNN. For concrete

testing, the number of groups C∈N is fixed as three, three, and five, respectively. Further-

more, for fair comparison purposes, the KEIVP approach is calculated only considering data

relationships (distances) belonging to connected samples according to a K-nearest graph.

Finally, the real-world databases from the Machine Learning UCI Repository 1 are tested

as supervised clustering task (see table 4-1). In this case, each computed kernel is used

as similarity representation to learn a classification boundary based on the well-known k-

nearest-neighbors classifier. A 10-folds-cross-validation strategy is carry out to validate the

stability of each kernel function estimation approach. Furthermore, the k parameter is fixed

from the set {1, 3, 5, 7, 9, 11} according to the training error.

4.4. Results and discussion

As seen in figs. 4.1b to 4.1h, the IP variability cost function allows identifying different IF

configurations in the two multivariate Gaussian distributions dataset. Particularly, for a

narrow bandwidth value, particles are forced to apart each other due to the kernel func-

tion strongly reduces the scaling of the Euclidean-based distance between particles. Hence,

low similarities between pair-wise samples and low magnitude IFs are estimated, as shown

in figs. 4.1c and 4.1f. In contrast, employing a wide bandwidth value yields to an RKHS

where all particles are attracted each other. Namely, the Euclidean distance scaling is

strongly increased, which leads to a data representation space where all samples are closed

similar, as seen in fig. 4.1e. Such a fact is shown in the IF distribution in fig. 4.1h, where

red cluster particles are more attracted to the green particle. Note that low IP variability

values are achieved for both narrow and wide bandwidths because, in either case, all the

IFs tend to share the same magnitude regardless their direction. Therefore, the proposed

KEIVP finds an RKHS where data samples share widely spread IF magnitudes, that is, close

particles according to the Euclidean distance get high pairwise similarities and IFs while far

ones have low similarities and IFs (see figs. 4.1d and 4.1g).

Regarding the other synthetic datasets, figs. 4.2b to 4.2d show that both local scaling-

based strategies (STSC and CNN) as well as the proposed KEIPV are able to deal with

the Bull’s eyes structure. Such approaches also correctly perform grouping of the Noisy

squares dataset, as seen in figs. 4.2j to 4.2l. That is, local scaling-based techniques are able

to approximate nonlinear structures from linear analysis over each sample neighborhood.

Nonetheless, STSC performs wrong clustering for the Circle with squares (see fig. 4.2f).

These results can be explained by the fact that local scaling approximations lead to wrong

1http://archive.ics.uci.edu/ml/
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a b

c σ=6.13× 10−3 d σ=6.13× 10−1 e σ=6.13× 10

f σ=6.13× 10−3 g σ=6.13× 10−1 h σ=6.13× 10

Figure 4-1.: KEIVP illustrative example. a) Multivariate Gaussian toy set. b) log of IP

variability versus bandwidth. 2nd row: Gaussian kernel for the toy set. 3rd

row: IFs acting on a fixed particle (green). Narrow (1st column), KEIVP

(2nd column) and wide (3rd column) bandwidth values.

cluster connections when dealing with data structures with highly varying densities. Simi-

larly, CNN suffers of the same drawback, but the σo parameter can deal with it if properly

fixed. Nonetheless, finding a suitable neighborhood size is a difficult task for the user, not

mentioning that using different bandwidth values for each pair-wise sample similarity when

estimating a Gaussian kernel does not guarantee a positive definite kernel function, violat-



44
4 Relevant data representation based on information theoretic learning: a kernel function

estimation approach

ing the Mercer’s conditions [118]. Regarding to the Sylverman-based estimation results, this

method generally yields a biased RKHS due to its statistical assumptions, resulting in wrong

clustering performances (see figs. 4.2a, 4.2e and 4.2i). In turn, KEIPV is able to find an

RKHS coding widely spread IF magnitudes, allowing to close samples belonging to a similar

structure while repelling distant points (see fourth column of fig. 4-2).

a b c d

e f g h

i j k l

Figure 4-2.: Synthetic datasets clustering results. 1st row: Bull’s eyes. 2nd row: Circle

with squares. 3rd row: Noisy squares. 1st column: Sylverman’s rule. 2nd

column: STSC. 3rd column: CNN. 4rd column: KEIPV.

Finally, with respect to the real-world databases, as seen in fig. 4-3, the proposed KEIPV

allows to compute an RKHS favoring the cluster separability. STSC and CNN algorithms

get competitive results in terms of classification accuracy. Nonetheless, they need a suitable

graph representation, which practically can be difficult to estimate. Moreover, their local

scaling approximation of the Gaussian kernel can not be correct theoretically as mentioned

before. Again, the Sylverman’s rule estimation suffers of biased kernel representations, par-

ticularly, when the input dimensionality P is considerably high (see obtained results by the

mnist and orl datasets).

Table 4-1.: Employed UCI dataset description
Dataset iris sonar mnist orl diabetes breast arrhythmia ionosphere heart wine glass

N 150 208 1000 400 768 699 420 351 303 178 214

P 4 60 784 10304 8 9 278 34 13 13 9

C 3 2 10 40 2 2 13 2 2 3 4
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Figure 4-3.: Classification results using the fourth bandwidth selection approaches.

4.5. Summary

In this study, a new kernel function estimation based on an information potential variability

framework is presented. Our approach, termed KEIPV, aims to estimate an RKHS to span

the most widely information force magnitudes among data points. Particularly, KEIPV

relates different kernel functions with the intrinsic information potential variations in Parzen-

based pdf estimations [121]. Thereby, we seek for an RKHS that maximizes the overall

information potential variability with respect to the global kernel parameter. In this sense,

an automatic kernel-based relevant representation is computed by including the input data

statistical distribution within an ITL framework. As a case of interest, an updating rule for

estimating the Gaussian kernel bandwidth parameter is proposed as a function of the forces

induced by the distances among samples. Proposed strategy is tested on both unsupervised

and supervised clustering tasks. Performed results show that the presented approach allows

computing RKHS’s favoring data groups separability in comparison with other state-of-the-

art alternatives.



5. Kernel representation based on

information theoretic learning for

Gramm matrices: a dimensionality

reduction approach

The world is essentially described and represented by multidimensional data which reside

in High-Dimensional -(HD) spaces, e.g., image and video, neural activity, biological signals,

weather forecasting, economy, etc. Regarding this, methods of Dimensionality Reduction-

(DR) provide a way to understand and visualize the structure of HD [84]. So, DR aims

at producing meaningful representations of the input HD data to a Low-Dimensional-(LD)

space. Regarding this, the general intuition that drives DR is that close or similar data

items should be represented near each other, whereas dissimilar ones should be represented

far from each other [83]. Namely, DR preserves as much of the relevant structure of the HD

data as possible in the LD representation. Hence, the successful of the DR approach resides

in two main issues: defining a notion of pair-wise relations in both the HD and the LD

spaces, and measuring the mismatch between HD and LD spaces according to the imposed

data relations.

Several DR techniques have been proposed, which differ each other in the type of structure

that they preserve, e.g., variance, dot products, dissimilarities (distances), similarities, or

other local/global measures of proximity [87]. Thereby, the variety of the structure that they

preserve has lead to the development of a large number of methods. The well-known Princi-

pal Component Analysis-(PCA) algorithm can be considered as the oldest DR method [84].

PCA finds a linear projection of the original data which captures as much variance as possi-

ble. In other words, new features are generated by linear combinations of the original ones by

optimizing a maximum/minimum loss of information criterion. Another linear DR method

is the Classical Multidimensional Scaling-(MDS), which maximize the dot product preser-

vation [18]. Nonlinear variants of the metric MDS appears, such as: Sammons’s Nonlinear

Mapping-(SNM) [127] and the Curvilinear Component Analysis-(CCA) [64]. These methods

are based on notions like topology and neighborhood preservation, however, their main lim-

itations come from the distortions between the distances measured in the input space and

the distances measured in the manifold space, leading to a biased mismatch between the HD

and the LD data relations.
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Additionally, some methods like Curvilinear Distances Analysis (CDA) [88], and Isometric

Mapping-(ISOMAP) [149], are nonlinear methods derived from MDS, which use as metric

the curvilinear or geodesic distance. This metric (geodesic distance) can measure good ap-

proximations of the distances along the manifold, without shortcuts as does the Euclidean

distance. The goal of the geodesic distance on these algorithms consists in computing dis-

tance along an object making possible the projection of nonlinear manifolds. A difference

between CDA and ISOMAP is that while ISOMAP relies on algebraical methods resulting

from the reformulation of the PCA problem as a distance preservation problem, CDA works

by optimizing a criterion that explicitly measures the preservation of the pair-wise distances.

One of the main advantages of a global approach like ISOMAP, is that a solution always

exists for any problem in the framework of the considered model. However, to price to pay

is often unrealistic or too constraining model. In other words, the solution always exists as a

global minimum, but, when the problem does not fit the model, its interpretation could be

hazardous [89]. On the contrary, a local approach like CDA does not offer any theoretical

guarantee. Even when the problem perfectly fits the model, an unexperienced user might

badly parameterize the algorithm. Lastly, another disadvantage is that several parameters

need to be tuned as well for ISOMAP as for CDA.

Nowadays, more developed methods aimed at preserving the data topology have been

proposed from both spectral and divergence-based functions. On the one hand, the spectral

approaches are represented by methods such as: Locally Linear Embedding-(LLE) [125],

Laplacian Eigenmaps-(LEM) [14], Hessian LLE -(HLLE) [38], and Diffusion Maps-(DM)

[105]. In LLE each datum is approximated by a linear combination of its neighbors in

the HD space and the obtained coefficients are then used to compute its LD coordinates.

In other words, LLE attempts to preserve the local geometry. LEM is a geometrically

algorithm for constructing a representation for data sampled from a low dimensional manifold

embedded in a higher dimensional space. The algorithm provides a computationally efficient

approach to nonlinear dimensionality reduction that has locality preserving properties and

a natural connection to clustering. HLLE achieves linear embedding by minimizing the

Hessian functional on the manifold where the data set resides. Furthermore, the conceptual

HLLE may be viewed as a modification of the LEM framework. Finally, DM is a based

probabilistic interpretation of spectral clustering and DR algorithms that use the eigenvectors

of the normalized graph Laplacian. All of these methods, however, require each HD object

to be associated with only a single location in the LD space. This makes it difficult to

unfold ”many-to-one” mappings in which a single ambiguous object really belongs in several

disparate locations in the LD space [66].

On the other hand, the divergence-based methods, are represented mainly by Stochastic

Neighbor Embedding (SNE) [66] and its variants, i.e, t-SNE [155], Jensen-Shannon Embed-

ding (JSE) [83], among others. The main difference between spectral methods and SNE-

based variants, is that SNE matches similarities that are computed both in the HD and the

LD space, while spectral methods directly convert the pair-wise similarities defined in the HD
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space into inner products . Thus, SNE and its variants are based on similarity preservation

instead of distance preservation and makes them robust against the phenomenon of norm

concentration. Nonetheless, divergence-methods suffer from reaching distorted and over-

lapped latent spaces, moreover, the user must to tune for each dataset several parameters in

order to obtain suitable representations and embeddings [22, 116].

Recently, ITL-based quantities have been employed in machine learning as descriptors

of the data distributions that go beyond second order statistics. The use of information

theoretic quantities as descriptors of data requires the development of suitable probability

law estimators. Regarding this, ITL and kernel-based methods have been studied in or-

der to connect each other as tool to introduce useful high-order statics in a data-driven

way [121]. Namely, previous approaches define estimators of a conventional information

theoretic quantity, such as Shannon entropy, to build quantities from the data that satisfies

similar axiomatic properties to those of well establish definitions such as Renyi’s definition

of entropy [128]. In particular, Gram matrix obtained from evaluating a positive definite

kernel on samples can be used to define a quantity based on the data with properties similar

to those of an entropy without assuming that the probability density is being estimated [52].

In this study, we introduce a kernel-based representation that considers the statistical

distribution and the salient data structures from information theory-based constraints. For

such a purpose, an entropy-like functional on positive definite matrices based on Renyi’s

definition is employed to discover relevant data regularities. Due to the connections with

topology-based and divergence-based DR techniques, our approach, termed kernel-based en-

tropy dimensionality reduction (KEDR), is applied as a representation tool to measure the

mismatch between HD and LD data representation spaces. Therefore, the proposed approach

employs estimators of entropy-like quantities for Gram matrices that can be computed by

evaluating infinitely divisible kernels on pairs of samples to find a relevant representation

space. Testing is carried out on synthetic and real-world datasets in terms of both visual

inspection and neighborhood preservation (rank-based criteria). Overall, the introduced

KEDR is competitive in comparison to the state-of-the-art methods, being able to encode

HD data relationships by computing LD representations where the local and the global

structures are preserved.

5.1. Gram matrix estimation of Renyi’s α-entropy

ITL uses the conventional learning and adaptation methodologies of adaptive filters, neu-

ral networks, and kernel learning. Instead of the commonly used Shannon definition, this

framework expresses the optimality criteria in terms of the following Renyi’s entropy-like

functional [121]:

Hα (X) =
1

1− α
log

(
∫

X

pα(x)dx

)

, (5-1)
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where p(x) is the probability density function (pdf) of a random variable X∈X , X is the

support, x∈X is a given sample, and α∈R+ is a parameter providing a family of entropy

functionals, where the conventional Shannon’s entropy is the asymptotical case of α→ 1.

Provided {xn∈X : n∈[1, N ]} as an i.i.d. sample of N realizations of X , an effective plug-

in estimator of eq. (5-1) can be derived for α=2 using the Parzen window approximation,

p̂(xn)=Enn′ {κ(xn, xn′) : ∀n, n′∈[1, N ]} , as follows:

Ĥ2 (X) = − log (Enn′ {h(xn, xn′)}) ≈ − log

(

1

N2

N
∑

n,n′=1

h(xn, xn′)

)

, (5-2)

For a given Gram matrix A∈RN×N with elements aij=κ (xn, xn′), with ann′∈R+, then,

eq. (5-2) can be rewritten as:

Ĥ2 (X) = − log
(

tr (AA)/N2
)

+ cκ, (5-3)

where cκ∈R+ is a constant that accounts for the normalization factor of the Parzen window

and notation tr (·) stands for the matrix trace. As a result, the entropy estimator in eq. (5-3)

can be related to the norm of the Gram matrix A, i.e., ‖A‖2=tr (AA).

Recently, a generalized entropy functional for a given Gram matrix set, M={Ak∈RN×N},
arises as a new information-theoretic interpretation that can be employed as objective func-

tions of ITL [52]. Regarding this, let f(Ak)=A
α
k be a continuous scalar-valued matrix func-

tion defined over all the positive definite matrices Ak∈M (tr (Ak)≤1) based on the spectral

decomposition theorem [69]. So, a matrix-based functional analogue to Renyi’s α-entropy

can be defined as [129]:

Sα(Ak) =
1

1− α
log (tr (Aα

k )) , (5-4)

where it holds that tr (Ak)=tr (Al)=1, ∀k 6= l.
For α 6=1, the functional Sα(Ak) satisfies some properties attributed to entropy under the

following conditions [52]:

• Sα(cAk) is a continuous function for 0 < c ≤ 1.

• Sα(AlAkA
∗
l )=Sα(Ak) for any orthonormal matrix Al∈M .

• Sα(Ak) ≤ Sα (IN/N)=log (N), where IN∈RN×N is the identity matrix.

• Sα(Ak ⊗Al)=Sα(Ak) + Sα(Al), where ⊗ stands for the tensor product operator [91].
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• If AkAl=AlAk=0N , then for the strictly monotonic continuous function g(x)=2(α−1)x

it holds that:

Sα(cAk + (1− c)Al)=g
−1 (cg(Sα(Ak))) + (1− c)g(Sα(Al)).

• If the rank of Ak, ρ(Ak), is equal to 1, then the entropy Sα(Ak)=0 for any α 6=0.

Additionally, from the functional in Eq. (5-4), the Gramm matrix estimation of joint

entropy, conditional entropy, and mutual information can be defined as follows:

– Joint entropy:

Sα (Ak,Al) = Sα

(

Ak ◦Al

tr (Ak ◦Al)

)

, (5-5)

where both Ak and Al are assumed to be positive-definite matrices with unit-trace

and nonnegative entries, and ◦ stands for the Hadamard product operator. Since the

following inequality must be satisfied (see eqs. (5-4) and (5-5)): Sα (Ak,Al)≥Sα(Ar),

with r={k, l}, the joint entropy should never be smaller than any of the constituent

entropies.

– Conditional entropy [147]:

Sα(Ak|Al) = Sα (Ak,Al)− Sα(Al), (5-6)

where the conditional entropy in eq. (5-6) is nonnegative and upper bounded as:

Sα(Ak|Al) = Sα (Ak,Al)− Sα(Al) ≤ Sα(Ak).

– Mutual information:

Iα(Ak;Al) = Sα(Ak) + Sα(Al)− Sα (Ak,Al) , (5-7)

where I(Ak;Al)≥0 and Sα(Ak)≥Iα(Ak;Ak).

For all provided Renyi’s α-entropy functionals, the imposed normalization is an important

property of the involved matrices. Namely, if Ak and Al are normalized to have unit trace,

then, for α∈[0, 1] the product A◦α
k ◦A◦(1−α)

l is also normalized, where A◦α
k denotes the entry-

wise α-th power of Ak. However, it is not always true that the resulting matrix is positive

definite. Indeed, this product can be seen as a weighted geometric average for which the

resulting matrix will give more emphasis to either one of the matrices. Consequently, Ak and

Al must be infinitely divisible kernels to guarantee the product to be positive definite [52].
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5.2. Kernel-based entropy dimensionality reduction

(KEDR)

LetX={xn∈RP : n∈[1, N ]}, be a High-Dimensional -(HD) finite sample set, and letK∈RN×N

be a kernel matrix with unit trace coding non-linear data relations in RP as:

knn′ = κX (xn,xn′) , (5-8)

where κX : RP × RP → R is a positive-definite and infinitely divisible kernel function.

Now, let Y ={yn∈RM : n∈[1, N ]} be a Low-Dimensional -(LD) representation of X (M ≤
P ), the corresponding elements of the LD similarity matrix L∈RN×N can be computed as:

lnn′ = κY (yn,yn′) , (5-9)

being κY : RM × RM → R a positive-definite and infinitely divisible kernel function. Based

on the Gaussian kernel, the HD similarities are estimated as follows:

κX (xn,xn′; σX) = exp

(−‖xn − xn′‖22
2σ2

X

)

, (5-10)

where σX∈R+ is the kernel bandwidth. Similarly, the kernel function κY in LD space can

be estimated as:

κY (yn,yn′; σY ) = exp

(−‖yn − yn′‖22
2σ2

Y

)

, (5-11)

where σY ∈R+.

Taking into account that the Shannon entropy corresponds to a particular case of the

Renyi’s α-entropy functional, and exploiting the ITL-based extension of the entropy mea-

sures for Gram matrices (see eq. (5-4)), here, we introduce a DR framework by means of

a matrix-based Renyi’s α-entropy. Particularly, due to the probabilistic interpretation of

the similarities between HD and LD samples encoded in matrices K and L, respectively,

the entropy-like functional on positive definite matrices based on α-Renyi’s axiomatic is

employed to quantify the DR mismatch.

In this sense, we introduced a Kernel-based Entropy Dimensionality Reduction-(KEDR)

approach, where the mismatch between the HD and the LD similarities are quantified as:

J(Y ) = Sα(K|L) = Sα (K,L)− Sα(L). (5-12)
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Thereby, the KEDR optimization problem can be written as:

Y ∗ = argmin
Y

J(Y ).

According to the KEDR formulation in Eq (5-12), the term Sα(L)≤Sα

(

1
N
I
)

encourages a

sparse LD-space representation while Sα(K,L) aims to match the pair-wise relationships kij
and lij . Thereby, the sparsity and the pair-wise relationships matching are equally penalized

in KEDR. Furthermore, based on the analogy between Shannon and Renyi’s α-entropies,

different extensions of the KEDR cost function introduced in Eq. (5-12) can be aimed out

to build entropy-based functionals for Gram matrices that leads to flexible penalties in DR

mapping. In consequence, such functionals are described as follows:

i) Type 1 mixture of Renyi’s α-conditional entropies-KEDR-(T1KEDR). In this case, the

KEDR functional can be extended as a mixture of two conditional entropies as follows:

J(Y ) = (1− γ)Sα(K|L) + γSα(L|K), (5-13)

where γ∈[0, 1]. Then, writing eq. (5-13) in terms of marginal and joint entropies yields:

J(Y ) =(1− γ) (Sα(K,L)− Sα(L)) + γ (Sα(K,L)− Sα(K))

=Sα(K,L)− (1− γ)Sα(L)− γSα(K). (5-14)

As seen in eq. (5-14) the higher the γ value (γ→1) the higher the tendency of the DR

algorithm for preserving the input space entropy encoded into the HD kernel matrixK,

that is, the embedding only cares about keeping, as well as possible, the relationships

between pair-wise elements lnn′ and knn′ in Sα(K,L). Moreover, as γ→ 0, T1KEDR

approximates the KEDR solution. Hence, T1KEDR can be seen as a regularized

version of KEDR, where the trade-off between sparsity and pair-wise relationships

matching is controlled by the γ parameter value.

ii) Type 2 mixture of Renyi’s α-conditional entropies-KEDR-(T2KEDR). Based on the

Jensen-Shannon divergence, the KEDR formulation can be also computed as:

J(Y ) = γSα(K|Z) + (1− γ)Sα(L|Z), (5-15)

where Z∈RN×N is a positive-definite kernel matrix with elements:

znn′ = γknn′ + (1− γ)lnn′. (5-16)
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Rewriting in terms of marginal and joint entropies:

J(Y ) =γ (Sα(K,Z)− Sα(Z)) + (1− γ) (Sα(L,Z)− Sα(Z))

=(1− γ)Sα(L,Z) + γSα(K,Z)− Sα(Z). (5-17)

T2KEDR also looks for a trade-off between sparsity and pair-wise relationships match-

ing as a function of γ. However, the variable change znn′ gives extra information about

the matching between knn′ and lnn′ as a weighting average between the similarities in

HD and LD spaces.

Gradient descend-based optimization of KEDR and variants. By definition, the matrix

entropy function presented in eq. (5-4) fall into the family of matrix functions known as

spectral functions. Therefore, these functions only depend on the matrix eigenvalues [45].

Accordingly, the derivative of the kernel-based Renyi’s α–entropy in eq. (5-4) at A gives:

∇Sα(A) =
α

(1− α)tr (Aα)
Aα−1, (5-18)

where A=U∆U ∗. Thus, the derivative of both the T1KEDR and the T2KEDR schemes

will be studied by keeping in mind that the T1KEDR strategy approximates the KEDR

algorithm when γ=0.

Regarding this, the derivative of J(Y ) in T1KEDR and T2KEDR approaches at yn yields:

∂J(Y )

∂yn
=

N
∑

nn′=1

∂J(Y )

∂κY (yn,yn′)

∂κY (yn,yn′)

∂ dY (yn,yn′)

∂ dY (yn,yn′)

∂yn
. (5-19)

where dY (yn,yn′) = ‖yn − yn′‖2.
Based on eq. (5-18), let us define the matrix G∈RN×N holding elements:

gnn′ =
∂J(Y )

∂κY (yn,yn′)

∂κY (yn,yn′)

∂ dY (yn,yn′)
. (5-20)

In particular, for the T1KEDR framework the G can be calculated as follows:

G =
1

2
L ◦

( ∇Sα(L)

(1− γ)−1
− K

tr (K ◦L) ◦ ∇Sα

(

K ◦L
tr (K ◦L)

))

. (5-21)

Alike, for the T2KEDR approach:
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G =
γ − 1

2
L ◦

(

((1− γ)L+Z)

tr (L ◦Z)
◦ ∇Sα

(

L ◦Z
tr (L ◦Z)

)

+

γK

tr (K ◦Z)
◦ ∇Sα

(

K ◦Z
tr (K ◦Z)

)

−∇Sα (Z)

)

,

Additionally:

∂dY (yn,yn′)

∂yn
= 2 (yn − yn′) , (5-22)

yielding:

∂J(Y )

∂yn
= 2

N
∑

n′=1

gnn′ (yn − yn′), (5-23)

where gnn′ = gn′n.

The partial derivative in eq. (5-23) provides a search direction that can be plugged in many

gradient-based optimization algorithms. Therefore, a generic update for the LD coordinates,

given an initial guess y
(0)
n , can be written as:

y(t+1)
n = y(t)

n − µ(t)
n

∂J(Y )

∂yn
, (5-24)

where µ
(t)
n ∈R+ is a step size. To accelerate convergence, µ

(t)
n should be a quotient of a gain

factor divided by the magnitude of the second derivative ∂2J(Y )/∂y2
n.

5.3. KEDR as a kernel enhancement of stochastic-based

dimensionality reduction

Since the Renyi’s α-entropy tends to the Shannon entropy in the limit case when α→ 1,

the well-known Stochastic Neighbor Embedding-(SNE) DR algorithm and its variants can be

viewed as particular cases of the introduced KEDR and extensions. Namely, in the SNE

technique a shift-invariant softmax HD similarity is defined as:

knn′ =
exp

(

−dX(xn,xn′)/(2σ2
xn
)
)

∑

r,r 6=n exp
(

−dX(xn,xr)/(2σ2
xn
)
) . (5-25)

where dX(xn,xn′) = ‖xn − xn′‖2.
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Since the similarity in eq. (5-25) is Gaussian, each local bandwidth σxn
∈R+ can be seen

as a soft neighborhood radius. Similarly, for a the LD space Y , the corresponding elements

of the LD similarity matrix are estimated as follows:

lnn′ =
exp

(

−dY (yn,yn′)/(2σ2
yn)
)

∑

r,r 6=n exp
(

−dY (yn,yr)/(2σ2
yn)
) , (5-26)

where σyn∈R+.

In a more elaborate version of the SNE algorithm, the t-distributed SNE (t-SNE), the

LD similarities differ from the HD space by introducing an unnormalized probability mass

function of a Student t distribution with δ degrees of freedom as follow:

lnn′ =
(1 + dY (yn,yn′)2/δ)

−(δ+1)/2

∑

r,r 6=n (1 + dY (yn,yr)2/δ)
−(δ+1)/2

. (5-27)

As compared to the Gaussian case, the heavier tail of the Student t function the more

prominent exponential transformation is induced between both spaces. In other words, the

longer the distance in the HD space – the stronger the LD space stretches [86].

Due to the positive and normalization properties of the similarity vectors

kn={knn′ : n′∈[1, N ]} (5-28)

and

ln={lnn′ : n′∈[1, N ]}, (5-29)

they can be seen as discrete probability distributions. Moreover, the SNE algorithm and

most of its variants (SNE, t-SNE, Neighbor Retrieval Visualizer -(NeRV) [156], and Jensen

Shannon Embedding-(JSE) [83]) make use of the Kullback-Leibler-based divergences to quan-

tify the mismatch between both similarity vectors. Consequently, their cost function can be

generalized in the form:

J(Y ) =

N
∑

n=1

ξ(kn) + ψ(ln;kn). (5-30)

For SNE and t-SNE approaches, it holds that:

ξ(kn) = −ĤS(kn) (5-31)

ψ(ln;kn) = ĤS(kn, ln) (5-32)
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where

ĤS(k)=−
∑

n′
kn′ log (kn′) (5-33)

and

ĤS(k, l)=−
∑

n′
kn′ log (ln′) (5-34)

are the empirical estimators of the Shannon’s entropy and the Shannon’s joint entropy,

respectively. Now, regarding the NeRV algorithm, each term of cost function in eq. (5-30)

can be rewritten as:

ξ(kn) = −(1 − γ)ĤS(kn) (5-35)

ψ(ln;kn) = (1− γ)ĤS(kn, ln) + γ
(

ĤS(ln,kn)− ĤS(ln)
)

, (5-36)

Finally, with respect to JSE algorithm, the terms in eq. (5-30) can be rewritten as:

ξ(kn) = −γĤS(kn) (5-37)

ψ(ln;kn) = −(1 − γ)ĤS(ln) + ĤS(zn), (5-38)

with zn=γkn + (1− γ)ln.

As seen, the introduced KEDR and variants are close to the SNE-based formulations.

Nonetheless, this assertion must be interpreted only in terms of the DR cost functional. In

fact, the main difference between SNE variants and the introduced KEDR lies in the nature

of the employed HD and LD similarities. As stated above, SNE similarities are shift-invariant

functions based on the well-known Gaussian distribution. However, due to its normalization,

SNE similarity is not symmetric (see eqs. (5-25) and (5-26)). Therefore, computed matrices

can be negative definitive. So, SNE similarity matrices are not well-defined kernels and

cannot be directly employed into the KEDR functional.

5.4. Experimental set-up

In order to validate the introduced KEDR as a relevant data representation approach, a

dimensionality reduction scheme is studied. Namely, the proposed KEDR and its variants

are tested some synthetic and real-world datasets are used.

Three datasets are used in our experiments: i) Swiss-Roll : 3D synthetic dataset with

500 samples sharing nonlinear structures, which allows obtaining an input space with D=3

and N=500 (see fig. 5-1). The goal is to re-embed the two dimensional manifold in a two-

dimensional space, however, the challenge here lies in how to cut the manifold in the most
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appropriate way to reveal the main nonlinear data structures. ii) Object Image Library

(COIL-100) [108]: It contains 72 RGB-color images of size 128×128 for 20 objects in PNG

format. Pictures are taken while the object is rotated 360 degrees in intervals of 5 degrees.

The images are transformed to gray scale, obtaining an input space with P=16384 and

N=1440 (see fig. 5.2a). The two most prominent characteristics of this dataset are its

very high-dimensionality and the presence of 20 one-dimensional manifolds [21]. iii) Olivetti

faces [126]: It contains 400 intensity-value pictures of 40 individuals with small variations

in view point, large variation in expression, and occasional addition of glasses. The dataset

contains 10 images per person of size 112 × 92 (see fig. 5.2b). So, an input with P=10304

and N=400 is obtained.
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Figure 5-1.: Synthetic dataset (Swiss-Roll).

To assess the quality of the embeddings a criterion that evaluates the preservation of K-ary

neighborhoods is employed [85]. In this sense, the rank of xn with respect to xn′ in the HD

space is computed as:

ρRANK (xn,xn′) = |{r : τnr<τnn′ or (τnr=τnn′ and 1≤r<n′≤N)}| , (5-39)

where

τnn′ = dX(xn,xn′) (5-40)

and denotes the cardinality operator. Equivalently, the rank of yn with respect to yn′ in the

LD space is estimated as:

πnn′=|{r : ζnr<ζnn′ or (ζnr=ζnn′ and 1≤r<n′≤N)}| , (5-41)
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a COIL-100 images b Olivetti faces

Figure 5-2.: Exemplary of the real-world datasets.

where ζnn′=dY (yn,yn′).

Hence, the K-ary neighborhoods of xn and yn can be defined as:

νKi = {n′ : 1≤ρRANK (xn,xn′)≤K} (5-42)

ηKn = {n′ : 1≤πnn′ ≤K}. (5-43)
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Then, a performance index can be written as:

QNX (K) =

N
∑

n=1

∣

∣νKn
⋂

ηKn
∣

∣

KN
, (5-44)

where QNX (K)∈[0, 1] measures the average normalized agreement between corresponding

K-ary neighborhoods in the HD and LD spaces. Moreover, a normalized criterion with

respect to a random embedding can be obtained as:

RNX (K) =
(N − 1)QNX (K)−K

N − 1−K
, (5-45)

for 1≤K≤N−2. In this case, RNX (K)=0 in eq. (5-45) corresponds to a random embedding

with QNX (K) ≈ K/(N − 1), whereas RNX (K)=1 means a perfect K-ary neighborhood

agreement (QNX (K)=1).

Eight state-of-the-art DR algorithms are compared in our experiments. The first one is

the well-known Principal Component Analysis-(PCA), which is equivalent to the Torgerson-

Gower classical metric Multidimensional Scaling-(MDS) [39]. Namely, the linear projection

along the principal directions are found by spectral decomposition of the covariance matrix

or the Gram matrix in classical MDS. The second approach is the Shepard-Kruskal non-

metric MDS -(NMDS) [80], which combines gradient descent and isotonic regression during

the optimization procedure. Moreover, the KPCA algorithm is also tested, which aims to

find the LD coordinates based on a variability analysis in a RKHS [132]. In addition, the

Laplacian Eigenmaps-(LEM) technique is employed as comparison method, which is based

on preserving the intrinsic geometric structure of the input data by assuming that it can

be modeled as a manifold [14]. The last four methods are based on similarity preservation:

SNE, t-SNE, NeRV [156], and JSE [83].

With regard to the free parameters setting, the size of the LD matrix Y is fixed as N×2,

M=2, for visualization purposes. Moreover, the perplexity value for SNE, t-SNE, NeRV, and

JSE algorithms is fixed as N/20=25 for the Swiss-Roll, N/20=72 for the COIL-100 images

(the cluster size is aim at 36), and N/40=10 for the Olivetti faces (the cluster size is aim at

5), as suggested in [83].

Furthermore, in KEDR, LEM, and KPCA algorithms, the HD kernel bandwidth value is

estimated by means of the introduced Kernel Function Estimation from Information Poten-

tial Variability-(KEIPV) in Chapter 2. In addition, for all considered algorithms based on

similarity preservation, the LD kernel bandwidth is fixed to one to constrain the scale of the

LD space [67].
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5.5. Results and discussion

First, the KEDR approach is tested over the Swiss-Roll 3D dataset. Our aim is to test the

KEDR performance while varying the Renyi’s α-entropy order. So, provided the input data

matrix X, a HD kernel is computed as in eq. (5-10) by fixing the kernel bandwidth value

based on the KEIPV stratagy. For concrete testing, different KEDR mappings are computed

for each α∈{0.5, 1.01, 2, 5, 10, 20}. Note that α 6=1 is a KEDR constraint so that we choose

a near value to emulate the Shanon’s entropy case (α=1.01). figs. 5-3 and 5-4 show the

computed HD kernels and the LD embeddings for the Swiss-Roll dataset according to each

provided α value, respectively.

As seen in fig. 5-3, the computed HD kernel matrix describes mainly the global struc-

ture of the data, where some high similarities are exhibited among far away points into

the Swiss-Roll. Since the HD relationships are estimated in an RKHS spanning the most

widely information force magnitudes among data points local data structures are lost. In

addition, it can be quoted how KEDR aims to conserve global data properties for high α

values. Nonetheless, due to KEDR is based on a geometric averaging formulation, computed

kernels tends to accentuate low similarities relationships. Moreover, according to fig. 5-4, at-

tained LD representations for α∈{0.5, 1.01, 2} seem to preserve both the local and the global

structures of the Swiss-Roll. In contrast, the higher the α-entropy value more intrusions are

exhibited in the LD space due to the employed α-entropy value highlights strong similari-

ties, that is, the RKHS is deformed by collapsing all samples. Then, KEDR will retain local

and/or global data structures depending of the employed α value, which can be interpreted

as an α-norm in probability space. Aforementioned statements can be corroborated by the

rank-based quality assessment results shown in fig. 5.4g. Note how fixing α=1.01 allows find-

ing an embedding that suitable preserves both small and global neighborhoods. Similarly,

by setting α=0.5 and α=2, KEDR is able to find acceptable embeddings according to the

employed assessment. On the other hand, for α> 2, KEDR mappings only preserves large

neighborhoods, which can be explained by the fact that the higher the entropy order, the

more prone the algorithm is to find unimodal solutions [129].

Following, the T1KEDR approach is tested over the Swiss-Roll dataset with varying the

trade-off parameter value γ in eq. (5-13). Again, the HD kernel is computed as based on the

introduced KEIPV approach. For concrete testing, the entropy order is fixed as α=1.01 and

different T1KEDR mappings are computed for each γ∈{0, 0.2, 0.4, 0.6, 0.8, 0.99}. In fig. 5-5

the obtained T1KEDR LD kernel matrices are presented for the Swiss-Roll dataset. It is

remarkable how for high γ values (γ→1), the T1KEDR approach aims to minimize the joint

entropy leading to RKHSs where samples are collapsed (see fig. 5-6). In contrast, when

a low γ value is used (γ → 0), the T1KEDR approach approximates the KEDR solution,

which aims to minimize the joint entropy while maximizing the LD marginal entropy, that

is, T1KEDR favors sparse solutions by separating the samples in Y .

Aforementioned behavior can be corroborated by the rank-based quality criterion. As
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Figure 5-3.: HD and LD KEDR kernel matrices with varying the Renyi’s α-entropy order

value (Swiss-Roll dataset).

seen in fig. 5.6g the T1KEDR embedding with low γ values subserve the preservation of

small neighborhoods. On the other hand, when γ → 1 the computed embeddings exhibit

overlapped mappings where the input data structure is poorly preserved.

Then, the T2KEDR approach is tested over the Swiss-Roll data with varying the trade-

off parameter value γ∈{0, 0.2, 0.4, 0.6, 0.8, 0.99} in eq. (5-17). The HD kernel is computed

as in eq. (5-10) by fixing the kernel bandwidth value based on the KEIPV. For concrete

testing, the α-entropy order is fixed as α=1.01. As seen in fig. 5-7, for 0 ≤ γ ≤ 0.6 the

introduced T2KEDR approach estimates LD spaces where neither the local nor the global

data structures are well-preserved. Indeed, samples in closed neighborhoods are collapsed

to a unique point in the LD space according to the block structures of the LD kernels

(see figs. 5-7 and 5-8). The latter can be explained by the noise that can encoded the

initial guess about Y . So, such a bias are propagated in T2KEDR due to the combined

representation matrix Z. In contrast, for 0.8 ≤ γ < 1, the T2KEDR algorithm aims to

reveal the main Swiss-Roll structure. Regarding this, when γ → 1 the T2KEDR approach

avoids the influence of the joint entropy between the LD and the combined data relationships

(see eq. (5-17)). Consequently, the noise of the initial guess about Y is diminished during the

mapping. Aforementioned results can be corroborated by the rank-based quality criterion

presented in fig. 5.8g.

In turn, all considered DR methods and all studied databases are tested. Figure fig. 5-9

presents the 2D embeddings of the Swiss-Roll dataset. A quick glance shows that PCA,
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Figure 5-4.: KEDR Swiss-Roll 3D results with varying the Renyi’s α-entropy order value.
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Figure 5-5.: HD and LD T1KEDR kernel matrices with varying the trade-off parameter

value γ (Swiss-Roll dataset).

NMDS, and KPCA squash the Swiss-Roll onto a plane. Above behavior can be explained by

the norm and the distance concentration drawbacks of the spectral methods. Consequently,

those methods are not able to conserve small neighborhoods according to the employed

rank-based measure (see fig. 5.9l). In turn, LEM, t-SNE, and JSE approaches aim to cut the

Swiss-Roll and unfold it. Nonetheless, LEM embedding does not suitable conserve neither

the local nor the global neighborhoods as seen in fig. 5.9l, which can be explained again by

the norm concentration issue for the spectral methods. With regard to the t-SNE and the

JSE results, it can be quoted how these approaches favor significantly the preservation of

local neighborhoods in terms of the employed rank-based assessment. However, the global

relationships among samples are not preserved, computing LD spaces where the main struc-

ture of the Swiss-Roll is lost (see fig. 5.9l). Indeed, t-SNE stretches the distances in LD

because of its Student t similarity, highlighting mainly local data structures. Likewise, JSE

stands out local similarities based on its mixture of divergences that favors sparse relation-

ships matching. Since the rank-based assessment is computed in log scale not preserving

small neighborhoods is stronger penalized than not preserving the global ones. Now, with

respect to the SNE result it can be noted how it tries to conserve both the local and global

neighborhoods, however, the attained projection exhibits overlapped samples which dete-

riorates the embedding quality. That is, as seen in fig. 5.9l, the SNE algorithm does not

reveal properly both the local and the global data properties due to the lack of a suitable

framework that allows to regularize the neighborhood preservation when unfolding the man-
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Figure 5-6.: T1KEDR Swiss-Roll results with varying the trade-off parameter value γ.
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Figure 5-7.: HD and LD T2KEDR kernel matrices with varying the trade-off parameter

value γ (Swiss-Roll dataset).

ifold. Regarding the KEDR, the T1KEDR, and the T2KEDR embeddings it is possible to

notice how these approaches are able to unfold the manifold by preserving both the local and

the global structures. Indeed, the KEDR and the T1KEDR algorithms achieve the highest

rank-based quality values.

Now, with respect to the Olivetti and COIL-20 images results, it is important to note

that they are much more difficult problems than the Swiss-Roll due to the very high-

dimensionality of the vectorized images and the presence of clusters. Again, spectral-based

embeddings, i.e., PCA, NMDS, KPCA, and LEM, are not able to reveal the main structures

of the input data as seen in figs. 5.10a to 5.10c, and fig. 5.10d, and figs. 5.11a to 5.11c,

and fig. 5.11d. In fact, cluttered LD embeddings are calculated in most of the cases where

different clusters are overlapped each other. In turn, SNE-based algorithms obtain better

embeddings than the spectral-based approaches. Thereby, the t-SNE and JSE results pre-

serves the local data structures encoded in the different clusters, while the SNE and the

NeRV embeddings are more prominent to overlap different clusters (see figs. 5.10e to 5.10g,

and fig. 5.10h and figs. 5.11e to 5.11g, and fig. 5.11h). Finally, the introduced KEDR-based

approaches achieve competitive results in terms of visual inspection and rank-based quality

(see figs. 5.10i to 5.10k, and figs. 5.11i to 5.11k). In particular, KEDR and T1KEDR are able

find LD spaces where both the local cluster structure and the relationships among different

clusters are preserved. In this sense, the proposed T1KEDR can lead with the inter-cluster

relationships by fixing a suitable trade-off parameter value that encoded a compromise be-
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Figure 5-8.: T2KEDR Swiss-Roll results with varying the trade-off parameter value γ.
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tween sparsity (local structures) and kernel-based similarity matching between HD and LD

spaces. Overall, SNE-based and KEDR-based DR approaches are able to achieve competitive

performance in terms of the rank-based criteria as seen in figs. 5.10l and 5.11l.

5.6. Summary

We introduce a kernel-based representation strategy that consider both the statistical dis-

tribution and the salient data structures form an ITL-based functional for Gramm matrices.

Namely, our approach, termed KEDR, is based on a Gram matrix estimation of Renyi’s

α-entropy. The introduced strategy is a data-driven framework for ITL based on infinitely

divisible matrices. In this sense, we employ estimators of entropy-like quantities for Gram

matrices that can be computed by evaluating infinitely divisible kernels on pairs of samples

to measure the DR mismatch. Our approach do not assume that the density of the data has

been estimated, which can be advantageous to develop flexible DR approaches where even

defining a density is not feasible. Furthermore, the proposed KEDR is extended by switching

from Renyi’s-based entropies to parameterized mixtures of divergences aiming to improve

the preservation of both the local and the global data structures. KEDR is tested as a rep-

resentation tool to support DR tasks. Thus, provided scheme provides a flexible alternative

to deal with complex structures from data driven estimations of ITL for Gram matrices.

Moreover, the main relations between the well-known SNE algorithm and the introduced

KEDR are presented. Regarding this, our approach can be viewed as a generalized version

of the SNE algorithm and variants from an ITL prospective in terms of the DR mismatch

cost functional.

Our DR proposal is tested on both synthetic and real-world datasets. Several state-of-

the-art algorithms are employed as baselines, including spectral methods and SNE-based

techniques, and the DR performances are validated in terms of both visual inspection and

neighborhood preservation (rank-based criteria). Overall, the introduced approach is com-

petitive in comparison to the state-of-the-art methods, being able to encode HD data re-

lationships by computing LD representations where the local and the global structures are

preserved.
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Figure 5-9.: Swiss-Roll embedding results (all methods).
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Figure 5-10.: Olivetti embedding results (all methods).
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Figure 5-11.: Coil-100 embedding results (all methods).
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6. Kernel-based data representation

incorporating prior user knowledge: a

supervised relevance analysis strategy

The choice of relevant features is one of the key steps in the design of learning algorithms.

In most of the cases, such a choice is typically left to the user and represents his prior

knowledge. For this, a poor choice makes learning challenging while a better choice makes it

more likely to be successful. Furthermore, the input feature space provides a huge number

of features and a limited number of samples, being difficult to the user to choice a relevant

representation that encodes the studied phenomenon. Hence, reduction dimension appears

as an important stage to dealing with large dimensions.

Generally speaking, reduction dimension can be divided in two main strategies: feature

selection and feature embedding [39]. Feature selection aims to determine the most compact

set of relevant input features that encode the main information of the studied phenomenon so

that further distinction of data patterns can be performed with suitable accuracy. Since the

selected features are not transformed from the input space, the assessed economical repre-

sentation keeps the meaningful feature sense and favors the interpretation of the underlying

application. In practice, the majority of the feature selection methods assumes the interac-

tions between features, usually, through an introduced distance. The relationship complexity

ranges from the basic principal component analysis [164], Fisher Criterion [113], Mutual In-

formation [163], to algorithms employing weighted distances adapted by learning [73]. On

the other hand, heuristic search strategies have been increasingly used. Nonetheless, such

approaches avoid conjectures about the feature interactions and evaluate sets of solutions

simultaneously. Also, they are not prone to getting stuck in local minima [123].

Despite the extensive research on feature selection, the following issues remain for iden-

tification of relevant patterns: i) Most of the selected feature sets with the smallest size

suffer from low accuracy, resulting in a high rate of false alarms and missed detections. This

situation hinders a solid interpretation of the mechanisms underlying the problem [47]. ii)

Their computational burden is a strong constraint due to the huge processing time and the

necessity of parameter tuning (mainly in heuristic methods). In fact, there is a need for iden-

tifying the most discriminating features by finding a trade-off between system complexity

and accuracy [15].

One of the approaches to overcoming the difficulties mentioned above is to have a low-
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dimensional space where it is easier to gauge the relevant information content according to

the experimental condition. So, the optimized representation of the inputs is useful for visual-

izing the similarity between input feature vectors to similar conditions for both unsupervised

and supervised scenarios [30, 20]. For this exploratory analysis, linear and nonlinear strate-

gies can be employed. The former approaches extract the relevant information from sample

covariances, but regardless of including their unsupervised or supervised estimations they

lead to unsatisfactory results [33]. Instead, the latter approaches aim to preserve the similar-

ity structure between samples in a low-dimensional representation through more elaborate

approaches of reduction dimension like embedding, kernel analysis, or manifold learning.

Nonetheless, the adaptation of the nonlinear strategies to the complex data relationships

is far from being easy, especially, when taking advantage of the supervised information.

Moreover, a direct interpretability from a nonlinear-based mapping is not always possible.

In this study, we propose a supervised kernel-based approach of feature relevance analysis

(termed supervised data representation based on kernel alignment (SKRA)) to enhance the

automatic identification of relevant input patterns. SKRA incorporates two kernel functions

to take advantage of the actual joint information associating the available labels to the cor-

responding input samples to a certain condition/label. Particularly, we employ the Centered

Kernel Alignment (CKA) strategy to learn a linear projection encoding discriminative in-

put features, capitalizing the nonlinear notion of similarity behind the studied kernels [32].

Also, an iterative gradient descent optimization is introduced to compute both the SRKA

projection matrix and the required kernel free parameters. In this sense, the kernel free

parameters are fixed based on the introduce KEIVP strategy. Therefore, SRKA can be car-

ried out carried out either as feature selection or a feature embedding tool. As a result, we

provide a feature relevance analysis strategy that allows enhancing the system performance

while favoring the data interpretability. The proposed SRKA is validated on two well-known

tasks: motor imagery discrimination and epileptic seizure detection. Attained results show

that SRKA allows finding a relevant feature representation space by ensuring a suitable

identification of brain activity patterns while favoring the physiological interpretation of the

studied phenomenon.

6.1. Supervised data representation based on kernel

alignment (SRKA)

Kernel functions are bivariate measures of similarity based on the inner product between

samples embedded in a Hilbert space. For a given domain X containing the input feature

estimation of a given machine learning task, a kernel κX :X×X →R is assumed to be a

positive-definite function, which defines an implicit mapping φX :X →HX that embeds any

element x∈X into the element φX(x)∈HX of some RKHS noted as HX .

Also, we set a positive definite kernel κL:L×L 7→over a target space L related to the user
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prior knowledge, e.g., the label space. Then, the RKHS HL defines the implicit mapping

φL:L 7→HL, which maps any element l∈L into the element φL(l)∈HL.

As a consequence, we apply two kernel-based functions sequentially to assess the joint

information between the input feature space to a certain target and the corresponding labels,

where each kernel reflects different notion of similarity. Therefore, we must still evaluate how

well the kernel function, κX , aligns to the target kernel of targets, κL. To this end, we employ

a kernel target alignment to measure the similarity between the couple of characterizing

kernel functions. That is, we employ the inner product of both kernel functions to estimate

the dependence between jointly sampled data [57]. Thus, the statistical alignment between

κX and κL is computed from the expected value of their normalized inner product across all

pairs of realizations, termed the Centered Kernel Alignment (CKA) [32]:

ρCKA (κX , κL) =
Exx′,l,l′ {κ̄X (x, x′) κ̄L (l, l

′)}
√

Exx′ {κ̄2X (x, x′)}Ell′ {κ̄2L (l, l′)}
, (6-1)

where the centered versions of κX (x, x′) and κL (l, l
′) are estimated as follows, respectively:

κ̄X (x, x′) = κX (x, x′)− Ex′ {κX (x, x′)} − Ex {κX (x, x′)}+ Exx′ {κX (x, x′)} , (6-2a)

κ̄L (l, l
′) = κL (l, l

′)− El′ {κL (ll′)} − El {κL (l, l′)}+ Ell′ {κL (l, l′)} . (6-2b)

Notation Ex {·} stands for the expected value operator calculated over the random variable

x⊂X . Therefore, ρCKA∈[0, 1] is an estimate of the statistical dependence between X and

L spaces. So, the larger the similar pairs between interspace variables, the higher the value

of CKA.

In practice, we are given an input representation set X∈RN×P (X ⊂R
P ) and a target

sample vector, e.g., label, l∈ZN (L⊂Z), from which we extract the characterizing kernel

matrices: KX∈RN×N and Kl∈RN×N , respectively. The former matrix holds elements:

kXnn′ = κX (xn,x
′
n) (6-3)

with xn,xn′∈X and the latter matrix has elements:

klnn′ = κL (ln, l
′
n) , (6-4)

with ln, ln′∈l (n, n′∈[1, N ]). Hence, the empirical estimate of the CKA is computed in

accordance to [19]:

ρ̂CKA

(

K̄X , K̄l

)

=
〈K̄X , K̄l〉F

√

〈K̄X , K̄X〉F〈K̄l, K̄l〉F
, (6-5)
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where 〈·, ·〉F is the matrix-based Frobenius norm. Notation K̄ stands for the centered versions

of the kernel matrixK calculated as K̄=ĨKĨ. Ĩ=I−1⊤1/N is the empirical centering matrix,

I∈RN×N is the identity matrix, and 1∈RN is the all-ones vector.

Further, we rely on the Mahalanobis distance to carry out the pairwise comparison between

samples xn and xn′ by fixing κX as a Gaussian kernel. Namely, the distance function in X

is fixed as:

d2
A(xn,xn′) = (xn − xn′)AA⊤ (xn − xn′)⊤ (6-6)

where matrix A∈RP×M holds the linear projection:

yn = xnA, (6-7)

with yn∈RM , M≤P, and AA⊤ is the corresponding inverse covariance matrix of the intro-

duced Mahalanobis distance in the input feature space.

To compute the projection matrixA, the formulation of the CKA-based function in eq. (6-

5) can be integrated into the following kernel-based learner:

Â = argmax
A

log
(

ρ̂CKA

(

K̄X , K̄l;A
))

, (6-8)

where the logarithm function is used for mathematical convenience. fig. 6-1 describes the

introduced SRKA from an RKHS perspective.

Gradient descend-based optimization of SRKA. The explicit objective function of the

empirical CKA in eq. (6-5) yields [19]:

ρ̂CKA (KX ,Kl) = log
(

tr
(

KX(A, σ)ĨKlĨ
))

− 1
2
log
(

tr
(

KX(A, σ)ĨKX(A, σ)Ĩ
))

+ρ0,

(6-9)

where ρ0∈R is a constant that we assume does not depend on A.

Consequently, the optimizing approach in eq. (6-8), besides learning the optimal projection

matrix Â, also demands tuning of the Gaussian kernel bandwidth σX . To deal with the

joint parameter estimation, we propose to optimize iteratively one variable at a time while

the other variable is fixed. Moreover, we employ the gradient descent approach to solve

iteratively the optimizing KRA task.

In terms of the maximizing parameter A and fixed σX , the gradient function of the ob-

jective function in eq. (6-9) results in the form:

∇A (ρ̂CKA (KX ,Kl)) = −4X⊤ ((G ◦KX(A, σ)) −diag
(

1⊤ (G ◦KX(A, σ))
))

XA, (6-10)
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Figure 6-1.: Diagrama of the proposed SRKA approach.

where notations diag(·) and ◦ denote the diagonal operator and the Hadamard product,

respectively. G∈RN×N is the gradient of the objective function with respect to KX(A, σ),

calculated as follows:

G = ∇KX(A,σ) (ρ̂CKA (KX ,Kl))=
ĨKlĨ

tr
(

KX(A, σ)ĨKlĨ
) − ĨKX(A, σ)Ĩ

tr
(

KX(A, σ)ĨKX(A, σ)Ĩ
) .

(6-11)

For updating the estimation of A, we use the standard stochastic gradient descent update

rule, provided the initial guess Ao, as follows:

At+1 = At − µt
A∇At (ρ̂CKA (KX ,Kl)) (6-12)

where µt
A∈R+ is the step size of the learning rule. At and σt are the samples we use at the

time step t.

Since the kernel bandwidth allows scaling all pairwise distances on the projected space

Y t=XAt, we estimate σt through the introduced he introduced Kernel Function Estimation

from Information Potential Variability-(KEIPV) in Chapter 2. Thus, we maximize the
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overall variability of the so termed information potential of all samples over Y t with respect

to the kernel bandwidth parameter so that all information force magnitudes spread more

widely.

6.2. SRKA as feature selection/embedding approach

Once the projection matrix Â is estimated, we can estimate the relevant feature matrix

Y ∈RN×M holding row vectors yn to encode the linear combination of discriminative input

features according to the prior knowledge considered in Kl.

In turn, we introduce a feature relevance vector index, noted as ̺∈RP , that is devote to

measuring the contribution of each input feature for building the projection matrix Â as:

̺p =

M
∑

m=1

|apm|; ∀p∈P, (6-13)

with apm∈A. The main assumption behind the introduced relevance index is that the largest

values of ̺p should point out to better input attributes since they exhibit higher overall

dependencies to the estimated metric based on the CKA principle. As a result, the calculated

relevance vector ̺ can be employed to rank the original features.

In addition, aiming to estimate a representation space encoding discriminant input pat-

terns, we compute the matrix XS∈RN×MS (MS≤P ) holding the features in X satisfying the

following condition:

̺p≥Ep {̺p} . (6-14)

Lastly, the embedding matrix YS∈RN×ME is calculated as:

YS=XSAE, (6-15)

where AE∈RMS×ME is a rotation matrix which is computed from XS using eq. (6-8), where

MS≤ME .

6.3. Experimental set-up

The validation of the proposed SRKA approach as a suitable tool to support data discrimina-

tion patterns includes the following main stages: i) Feature estimation from the preprocessed

datasets, ii) Relevance analysis of the estimated feature set, and iii) Discrimination learning

among different labels. fig. 6-2 summarizes the main scheme of the proposed data discrimi-

nation approach based on SRKA.
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Database SRKA relevant representation Learning stageFeature estimation

Figure 6-2.: Diagrama of the proposed SRKA approach as a tool to support classification

tasks.

The validating experiments are carried out on two databases reflecting different brain

activity tasks:

Motor Imagery Database (MIDB) [146]. Dataset 1 used in the BCI competition IV

2008. This electroencephalogram (EEG) collection is widely used in motor imagery (MI)

tasks and holds seven subjects with EEG signals recorded from 59 channels. All recordings

are submitted firstly to a bandpass filter with bandwidth ranging from 0.05 to 200Hz, and

then to a 10-order low-pass Chebyshev II filter with stop-band ripple of 50 dB down and

stop-band edge frequency of 49Hz. All recordings are further digitized at 1000Hz and

down-sampled to supply the sampling frequency at 100Hz. The whole session is performed

without feedback and 100 repetitions are recorded for each MI class per person. The section

of interest is 4 s during when the subject is instructed to perform the MI task indicated by

a pointing arrow on a screen. These periods lasting 2 s are interleaved with a blank screen

and a fixation cross in the screen center. As the preprocessing stage, a 5-order band-pass

Butterworth filter is implemented with bandwidth ranging from 8 to 30Hz. Then, we carry

out a data-driven supervised decomposition of the EEG multi-channel data based on the

Common Spatial Patterns (CSP) algorithm. Both strategies are applied aiming to extract

adaptively components carrying MI information [62].

“Klinik für Epileptology” database (KEDB) [9]. This dataset is widely used in the

automated detection of epileptic seizures and contains five subsets noted as A, B, C, D, and E.

Each subset is composed of 100 single channel EEG segments of 23.6 s duration. The subsets

A and B are acquired from five healthy subjects with eyes opened and closed, respectively.

All signals from subsets C, D and E come from five epileptic subjects. Subsets C and D

include seizures-free interictal signals measured on the epileptic zone and on the hemisphere

opposite to the hippocampal formation of the brain. Set E contains epileptic signals recorded

from each aforementioned location during an ictal seizure. Subsets C, D and E were recorded

intracranially. Besides, all provided EEG signals in KEDB were digitized at 173.61Hz and

12 - bit resolution. To retain relevant EEG information related to the studied normal and

epileptic conditions, all signals were filtered through a low-pass filter with a 40Hz cutoff

frequency. For the validation purpose, this data is tested on three problems, according

to the medical interest [151]: Bi-class (2C), normal (A-type) and seizure (E-type) labeled
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recordings are distinguished; Three-class (3C), closely represents real medical applications,

including three categories: normal (A-type EEG segments), seizure-free interictal (D-type

EEG segments), and seizure (E-type EEG segments); Five-class (5C), all five classes are

investigated: normal (Types A and B), interictal (Types C and D) and seizure (Type E).

Feature set estimated from MIDB . Let {Ψn∈RCh×T} (n∈[1, N ]) be a set of N EEG

raw data trials for a given subject of MIDB, where Ch and T∈N are the number of EEG

channels and the amount of time samples, respectively. Depending on the used principle of

extraction, the following short-time features are computed for each EEG trial Ψn to carry

out discrimination of the MI paradigm [5]:

• Spectral parameters : For each row channel vector ψc
n∈Ψn (ch∈[1, Ch]), the vector

r∈RRs is computed using the Power Spectral Density (PSD), where Rs=⌊Fs/2⌋ is

the number of frequency bins and Fs∈R+ is the sampling frequency. Then, ψc
n is split

into TJ∈N overlapped segments of length J∈N and a piecewise stationary assumption

is imposed by means of a smooth time weighting window w∈RL [31]. Hence, the win-

dowed segments vtJ∈RJ (tJ∈[1, TJ ]) are extracted. The modified periodogram vector

u={uf∈R+:f∈[1, Rs]}, u∈RRs is computed by using the Discrete Fourier Transform

and each PSD element is further calculated as:

rf =
uf
TJν

, (6-16)

where ν=Ej {|wj|2 : ∀j∈[1, J ]} .

• Hjorth parameters : Three time-domain based parameters are estimated from each

windowed segment vtJ .

– Activity: ς2
v
∈RTJ , that holds elements:

ς2tJ = var
{

vtJ
}

. (6-17)

– Mobility: λv∈RTJ , that measures the signal mean frequency as:

λtJ =

√

var {∂vtJ}
var {vtJ} , (6-18)

being ∂v the derivative of v.
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– Complexity: ϑv∈RTJ , measuring frequency variations as the deviation of the

signal from the sine shape as:

ϑtJ =
∂ιtJ
ιtJ

, (6-19)

where ∂ιtJ is the derivative of ιtJ [124]. For concrete testing, the segment length

value L needed during calculation of the PSD and the Hjorth parameters is ad-

justed as L>Fr/Fs, where Fs=100Hz and Fr=8Hz [148].

• Time-Frequency parameters. The Continuous Wavelet Transform (CWT) vector ςg∈CT

is extracted from channel ψc
n at scale g∈R as:

ςgt =
∑T

τ=1
ψch
nτγ

∗ ((τ−t)ζt/g), (6-20)

where γ(·) is the mother wavelet function, ζt∈R is a time spacing, and (∗) denotes the

complex conjugate. Both procedures of Wavelet scaling g and translating through the

localized time index t are used to model amplitude time variations. Also, the Discrete

Wavelet Transform (DWT) is considered by computing the detail vector dj∈C at level

j as follows:

djt=
∑

k∈Z
℘jkψjk(t), (6-21)

where ℘jk=
∑

t∈T ψ
ch
nthjk(t); ℘jk∈C, and being hjk(t)∈C the impulse response of a given

wavelet filter. The DWT of ψch
n is computed for a given mother wavelet ̟ (·) as:

ψc
nt =

∑

j∈Z

∑

k∈Z
℘jk̟jk(t). (6-22)

For computation of the WT-based feature subset, the Morlet wavelet is employed

because its wave shape and EEG signals. Thus, we derive the short-time instanta-

neous CWT amplitudes using a couple of Morlet wavelets; one centered at 10Hz and

another at 22Hz, aiming to extract the αB and βB rhythms during the MI task, re-

spectively [90]. Likewise, we employ for the DWT the Symlet wavelet (Sym-7) that

is closely associated with the electrical brain activity and proved to be appropriate

in similar applications [23]. For the tested MIDB EEG data, we compute the detail

coefficient vector as to include the α and β rhythms, resulting in the second and third

levels of decomposition.
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Once we calculate all the above short-time parameters, several of their statistical measures

are further considered to extract the input feature matrix X∈RN×P . Namely, the mean, the

variance, and the maximum values are estimated. Consequently, the row vector xn∈RP

(P=C×Q) concatenates all features extracted from each n-th MI trial per channel, being

Q∈N the number of provided features. Thus, 27 features are obtained for each EEG channel.

So, the size of the concatenated feature vector is P=59×27, and the number of samples is

N=200.

Feature set estimated from KEDB. The rhythms carrying out clinical and physiological

interest fall primarily within the following four frequency sub-bands: Delta denoted as δb
with frequencies f<4Hz, Theta (θB, f∈[4, 8])Hz, Alpha (αB, f∈[8, 13]Hz ), and Beta rhythms

(βB, f∈[14, 30]Hz ). Then, we select the linear filter bank for representation of EEG signals

because they may more accurately refined to each rhythm frequency bandwidth. Therefore,

we use five cepstral coefficients associated with δB, θB, αB, and βB rhythms, extracted as

dynamic features as in [41]. As a result, instead of a widely used scalar-valued parameter set

extracted from the EEG signal, neural activities relating to epileptic seizures are detected

by using a vector set of short-time rhythms.

We carry out the validation of the proposed SRKA method for two scenarios of training:

i) SRKA as a feature selection tool to provide better understanding of the salient aspects

of the input feature set, facilitating the physiological interpretation task. ii) SRKA as a

feature embedding tool that generates, by feature transformation, new composites of the

input feature set with the goal of improving overall data discrimination performance.

In the former scenario, the relevance vector ̺ ranks the original feature set of X. We

calculate the performed accuracy curve of the brain activity classification through the 10-

fold cross-validation scheme, adding one by one the features ranked by the amplitude of ̺.

For the purpose of comparison in terms of physiological interpretation, the proposed SRKA

is contrasted with a baseline variance-based relevance analysis (termed VRA) that ranks

the input short-time features grounded on a variability criterion. Namely, VRA computes a

relevance vector based on a linear transformation of the input representation space. Thus,

VRA estimates the covariance among input features and the projection matrix maximiz-

ing the embedded space variability is fixed to computed such a linear transformation [35].

Therefore, provided a set of features Ξ={ξξξp : p∈[1, P ]}, where ξξξp∈RN corresponds to each

column of the input data matrix X, the relevance of ξξξp can be measured by computing the

following variability vector ρρρ∈RP [111]:

ρρρ = Ep {|χpwp| : ∀p∈M ≤ P} , (6-23)

where χp∈R+ and wp∈RP are respectively the eigenvalues and eigenvectors of the covari-

ance matrix estimated as X⊤X/P. The main assumption behind the relevance measure

introduced in eq. (6-23) is that the largest values of λp should point out to the better input
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attributes since they exhibit higher overall correlations to the estimated principal compo-

nents.

In the latter scenario of training, we aim to estimate a feature representation space that

encodes discriminant patterns through the embedding matrix YS. Furthermore, the other

aspect of training to consider is the tuning of the SKRA free parameters. To this end, we

calculate the number of embedded dimensions MS and ME as to maintain 95% of the vari-

ance explained. Besides, the number of nearest neighbors of the applied k-nearest neighbor

classifier is fixed as the one reaching the best accuracy within the following testing range

{1, 3, 5, 7, 9, 11}.

6.4. Results and discussion

By the above-described validation stage, firstly we examine the carried out relevance analysis

as a feature selection tool. So, fig. 6-3 shows the obtained relevance planes averaged over all

subjects for both compared algorithms, SRKA and VRA. While the vertical axis holds the

number assigned to each of 27 feature estimation principles, horizontal axis stands for the

cardinal number of each one of the 59 channels labeled with the international 10-20 electrode

location montage.

As seen in fig. 6.3a showing the performed relevance by the VRA algorithm, there are three

spatially distinguished channel groups of relevance, meaning that the performed relevance

analysis allows differing the contribution of every single electrode position. To quantify the

difference, the top plot of the relevance plane in fig. 6.3a displays the marginal relevance

per channel that is averaged over all used features. As noted, the first labeled 13 channels

that are placed over the association cortex have the strongest influence with the lowest

dispersion. Then, the positions with labels ranging from 34 to 59, which collect the neural

activity in the anterior parts of the anterior parietal cortex, supply lower relevance values.

Lastly, the electrode positions 14 to 33 produce the lowest relevance having even the highest

variance. This electrode set is positioned on the precentral gyrus (14-28) and the dorsal

lateral premotor area (29-34). Although the distinguished groups remain the above, the

SRKA algorithm performs distinct relevance values for each channel as seen in the top plot

of fig. 6.3b. The marginal profile shows that the positions from 14 to 32 now become the

most important succeeded by the group 33 to 59. The channels 1-13 perform the worst in

contrast to the VRA approach.

With regard to the principle of feature extraction, the studied features do not cluster so

distinctly for either selection algorithm, though most of the characteristics behave differ-

ently depending on the electrode position of measurement (see right-side plots of figs. 6.3a

and 6.3b). However, the chosen statistical measure used for characterizing all short-time

parameters plays a significant role.

For the sake of visual representation, we rearrange each plane so that the relevance es-

timates are now valued ranked in decreasing order on the channel and extraction principle
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Figure 6-3.: Performed MIDB relevance analysis: VRA - left column, SRKA - right column. Top

row: computed planes of relevance averaged over all subjects. Plot on the top shows

the marginal relevance per channel. right-side plot: averaged marginal relevance

for all considered features. middle row: computed planes in decreasing relevance.

Bottom row shows the feature relevance channel distribution.
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axes. So, the features that do not contribute to 95% of the variance explained are zero-valued.

Inspection of figs. 6.3c and 6.3d reinforces the finding that either relevance estimator asso-

ciates the input training set in a different way. Overall, the baseline VRA algorithm produces

higher values of the relevance marginal (see top and right-side plots of each plane) in com-

parison to the proposed SRKA, suggesting that the latter approach encodes the whole brain

activity task into a lower number of features. This advantage of SRKA can be explained by

the following two facts: i) the use of the MI label information to reveal features, which must

be salient in terms of the studied paradigm. Thus, the brain activity patterns are better

localized. ii) Representation through enhanced RKHS allows dealing with complex neigh-

boring data dependencies, rejecting more efficiently redundant features. In contrast, VRA

mainly explains the relevance in terms of its energy-based cost functional that emphasizes

the brain regions with strong activity, which are activated during the time the stimuli goes.

Yet, this assumption does not necessarily hold for MI paradigms.

To further explore the physiological interpretation of the carried out feature selection, all

computed relevance values are arranged in the 10-20 channel montage as displayed in the

bottom row of fig. 6-3. It is worth noting that we will describe the MI brain activity per-

formed by a hypothetical medium person due to the estimated relevance planes are averaged

over all subjects. So, VRA produces the highest contribution of relevance for the middle

frontal gyrus represented by channels F5, F3, F4, and F6 as shown in fig. 6.3e. But, the

middle frontal gyrus should not be related to any imagery stimulation [58]. Rather, this

brain area activates as a response to body movements, e.g., powerful EEG artifacts. In

other words, the presence of EEG channels with high-energy disturbances may mislead the

VRA estimator, identifying wrongly MI patterns.

On the other hand, SRKA assigns the bigger values of relevance to the EEG channels

placed over two brain areas that are commonly related to MI tasks. Namely (see fig. 6.3f),

the posterior superior parietal cortex (P3, P1, PZ, and P2), and the left precentral sulcus

at the level of the middle frontal gyrus (CFC5, C3, CFC3, C1, and CFC1). Furthermore,

the middle frontal gyrus has the lowest contribution, weakening the influence of movement

artifacts.
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Figure 6-4.: Selected training set for MI discrimination.
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Figure 6-5.: Contribution of the selected feature set to the MI discrimination performance.

The following training scenario of validation is the discrimination of the contemplated MI

tasks. In this case, we assume the selected training set as the one containing the minimum

amount of features to reach the maximum classification accuracy. To this end, the k-nearest

neighbor classifier is fed by adding one by one the relevant features ranked in decreasing order

so that we have the plots shown in fig. 6-4, where the classification accuracy is performed

through the 10-fold cross-validation scheme.

As seen in fig. 6.4a, VRA performs an accuracy close to ∼85.16±3.88% and definitely

falls behind the SRKA algorithm that reaches ∼95.71±3.01% (see fig. 6.4b) averaged for all

subjects. Hence, fig. 6.4c display the number of selected training features estimated for each

subject by the VRA and SRKA algorithms.

Along with the MI discrimination performance, another important aspect to explain is

the number of selected training features from the whole input set (1593). As displayed

in fig. 6.4c, VRA chooses about 1410 features, but SRKA does only 275 features. Conse-

quently, a dimension reduction is close to one and 5.8, respectively, averaged for all subjects.

Therefore, SRKA is as much as five times more efficient than the contrasted baseline esti-

mator, regarding the reduction dimension processing.

A detailed analysis of both selected features set gives the following findings:

– The Hjorth principle of extraction clearly supplies the features with the highest rele-
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vance, contributing the most to the discrimination of MI classes regardless of the used

estimator of relevance (see figs. 6.5a and 6.5b). The remaining spectral characteristics

have a comparable contribution though some differences apply for SRKA.

– As seen in figs. 6.5c and 6.5d displaying the proportion of features encoding MI in-

formation (the superior parietal plus middle frontal gyrus), SRKA produces a higher

number of salient features.

– As one of the major challenges in BCI research, it is worth mentioning the inter-

subject variability with respect to spatial patterns and spectrotemporal characteristics

of brain signals [17]. In the contemplated MI task, some subjects might not focus

their gaze in the proper direction, and thus the EEG recordings will not be reliable

for interpretation. From the comparison plots of relevance in fig. 6-5, it follows that

KRA better adapts the BCI system for each particular subject, at least, in terms of

revealing the most discriminating features.

As shown in table 6-1 for all subjects, we compare the suggested Kernel-based relevance

analysis for feature selection and feature embedding (noted as SRKA∗) in terms of the

classifier accuracy achieved for the contemplated MI task. In the former training scenario,

SRKA reaches an averaged accuracy 95.71± 03.01 and outperforms the contrasted baseline

VRA that produces 92.86 ± 03.77. For the sake of comparison of the latter scenario, we

include the accuracy estimated by the approach submitted in [168] that selects an extracted

spatiotemporal feature set, from which a non-linear regression for predicting the time-series of

class labels is applied. Also, the work in [62] that uses an adaptive frequency band selection

of the spatial preprocessed features that feed an SVM classifier. Lastly, we consider the

approach in [65] involving common space-time-frequency patterns to design certain time-

windows adopted for the MI task, as well as, the LDA classifier. All referred approaches of

training underperform the proposed SRKA method.

With respect to the KEDB results, in the beginning, we test both, VRA and SRKA,

approaches as a feature selection tool of the spectral coefficients extracted from the phys-

iological rhythms (δB, θB, αB, and βB). Since the KEDB dataset only has one-channel

EEG recordings, the physiological interpretation of the selected feature set only covers the

influence of the physiological waveforms on the three available challenges of epileptic seizure

detection. The selected feature set is calculated as in fig. 6-4 for which the accuracy of the

k-nearest neighbor classifier is also performed through the 10-fold cross-validation scheme.

As seen in figs. 6.6a and 6.6b, either comparative approach of feature selection attains

the highest accuracy (100%) for the bi-class task. Further, SRKA betters the baseline VRA

for the tasks of three-classes (99.67 versus 90.78%, respectively) and five-classes (89 versus

77.2%). Regarding the number of selected training features, once again the SRKA approach

outperforms VRA in all tasks (see fig. 6.7a). It is useful to note that the VRA classification

accuracy increases as the number of features grows, requiring the whole input feature set
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Table 6-1.: Performed classification accuracy for MI discrimination (average ± standard

deviation [%]). Notation (-) stands for Not provided. Note that the accuracy of

SRKA and VRA is estimated as the highest value performed in fig. 6.4b for each

tested subject.

Subject VRA [5] SRKA He [62] Zhang [168] Higashi [65] SRKA∗

# 1 91.50 ± 05.29 94.16±05.30 67.70 ± 02.20 77.20 ± 00.03 92.30 ± 02.50 96.00 ± 03.94

# 2 96.50 ± 03.37 90.16±05.88 70.70 ± 01.20 70.80 ± 00.02 90.60 ± 7.20 96.50 ± 06.25

# 3 91.50 ± 04.74 98.50±08.57 83.90 ± 01.30 - - 98.00 ± 04.83

# 4 87.00 ± 06.32 94.50±07.01 93.00 ± 01.20 - - 100 ± 00.00

# 5 91.50 ± 07.47 98.50±04.60 93.20 ±01.20 - - 100 ± 00.00

# 6 98.50 ± 02.42 97.66±04.82 - 76.80 ± 00.03 93.30 ± 03.60 100 ± 00.00

# 7 93.50 ± 07.09 96.50±03.45 - 80.00 ± 00.03 94.10 ± 04.10 96.00 ± 02.10

Average 92.86 ± 03.77 95.71±03.01 81.70 ± 12.06 76.20 ± 03.87 92.58 ± 01.51 98.07 ± 01.92
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Figure 6-6.: Performed accuracy for epileptic seizure detection

to reach the maximum performance. Meanwhile, the addition of more features drops the

performance once the SRKA approach gets the highest accuracy, indicating that the inclusion

of other features may be redundant. As a result, the dimension reduction is two, three, and

five times bigger than the one obtained by VRA for the 2C,3C, and 5C tasks, respectively.

This aspect can be of benefit for reliable on-line monitoring of traces of interictal/ictal states

of epilepsy since the demanded time-window of EEG analysis may be remarkably shortened.

fig. 6-7 shows the normalized relevance values that are estimated for each rhythm. By

VRA (see fig. 6.7b), the selected features make the αB and βB waveforms the most relevant for

all considered tasks. At the same time, low-frequency rhythms (δB, θB) exhibit modest values

of relevance. Although SRKA infers a similar contribution of the rhythms, the relationship

between the high to low-frequency rhythms decreases as the number of classes increases

as shown in fig. 6.7c. This result indicates on the energy redistribution happening as the

complexity of the task increases and has been also explained in similar works [40].

For the sake of comparison, the SRKA approach is tested against some recent approaches

using KEDB. Although this comparison may not be entirely fair due to different details on
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Figure 6-7.: Relevant rhytms in terms of MI discrimination performance

the testing procedures [81, 165], it seems to be the best possible option. table 6-2 shows the

best classification accuracy for each considered problem. The obtained results indicate high

classification ability in the epileptic seizure detection. For the first (Bi-class) and second

(Three-class) classification problems almost all benchmark approaches present high classifi-

cation accuracy, i.e., from 99.5% to 100% for Bi-class problem, and from 90.78% to 100%

for Three-class. Concerning the third classification problem (Five-class), the discrimination

performance varies from 77.2% to 99.2%. In this case, authors in [152] perform the best

classification accuracy.

6.5. Summary

We discuss a novel supervised kernel-based representation approach for feature relevance

analysis to enhance the automatic identification of relevant patterns. To this end, the pro-

posed relevance analysis, termed SRKA, incorporates two kernel functions to take advantage

of the available joint information associating the input features to a certain condition with

the corresponding labels. Then, a kernel alignment functional learns all relevant patterns

from the input space. Validation of the proposed approach is carried out in two scenarios of

training: feature selection and feature embedding. In particular, two tasks of brain activity

identification are studied: motor imagery discrimination and epileptic seizure detection.

From the obtained results of validation of real EEG data, the following observations deserve

close attention:

The need for handling a couple of kernels encoding different notions of similarity encour-

ages the use of the well-known kernel alignment to unify both tasks into a single optimization

framework. However, selection of the distances implementing each aligned kernel as well as

the same alignment mostly determines the affectivity of the kernel-based approach for a

given application. In the particular case of brain activity identification, we rely on the

Mahalanobis distance to carry out the pairwise comparison between samples based on the

Gaussian kernel. Thus, a linear projection is further learned from the employed CKA-based
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Table 6-2.: Accomplished classification results for KEDB

Problem Authors Features/Classifier Accuracy

2-class

[142] t-f analysis/RNN 99.6

[48] WT/PNN 99.99

[120] PCA FFT/AIRS 100

[71] CC+PSD/vot. rule 100

[99] TFR-2DPCA/k-nn 100

[151] t-f analysis/ANN 100

[41] short-time /k-nn 99.5

Proposal SRKA 100

Proposal SRKA∗ 100

3-class

[51] PCA-RBF/ANN 96.60

[106] EV/MLP NN 97.50

[145] PSD+CLZ/SVMA 98.72

[99] TFR-2DPCA/k-nn 98.80

[151] t-f analysis/ANN 100

[41] short-time /k-nn 100

Proposal SRKA 90.78

Proposal SRKA∗ 99.67

5-class

[152] (WT+eig)/SVM 99.20

[99] TFR-2DPCA/k-nn 94.40

[151] t-f analysis/ANN 89.00

[41] short-time /k-nn 95.78

Proposal SRKA 77.20

Proposal SRKA∗ 89
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functional as an alternative to highlight the salient input features, taking advantage of the

nonlinear notion of similarity behind the studied kernels. For the sake of simplicity, the

iterative gradient descent optimization is employed to calculate the projection matrix and

the Gaussian kernel free parameter.

For the purpose of implementing SRKA as a feature selection tool, we introduce a fea-

ture relevance vector index devoted to measuring the contribution of each input feature for

building the projecting CKA matrix. By ranking this contribution, we assess the selected

feature set that satisfies a given stopping criteria (here, we fix the proportion of explained

variance). Thus, the feature selection by SRKA demands small feature sets with the benefit

of providing better interpretation of the space brain activity distribution and the princi-

ple of employed feature extraction. Besides, the SRKA-based ranking separates redundant

features, which usually tend to drop the system accuracy. As another advantage, SRKA

adapts the relevance analysis to the inter-subject variability that remains one of the most

challenging issues of training for BCI systems. Therefore, SRKA as a feature selection tool

can reach a suitable classification accuracy with a remarkable dimension reduction factor,

providing better physiological interpretation of the brain activity patterns.

For the another training scenario of feature embedding, we use the relevance index vector

to estimate the representation space that optimizes a trade-off between separability and no

redundancy of the available neural patterns. As a result, our proposal outperforms those

compared approaches that carry out the multivariate feature selection and/or embedding.

Indeed, the SRKA-based embedding spaces handle the brain activity complexity to support

further classification stages in terms of system accuracy and reliability.



7. Relevant data representation from

different kernel spaces: a generalized

cross-correntropy measure

Nowadays, there is a need to process a large amount of information, high-dimensional-(HD)

data, for supporting automatic learning procedures, such as classification, prediction, and

dimensionality reduction. Regarding this, natural processes of interest for engineering are

composed of two basic characteristics: statistical distribution of amplitudes and data domain-

varying behavior, for instance, the time structure. On one hand, there are widely used

measures that quantify the time structure like the autocorrelation function. On the other

hand, there are a number of methods that are solely based on the statistical distribution,

ignoring the data domain-varying behavior [130]. Then, a single measure that includes both

of these important characteristics could greatly enhance the performance of machine learning

systems when dealing with complex data relations.

Keeping in mind aforementioned needs, authors in [93] proposed a new measure of sim-

ilarity termed cross-correntropy as a localized similarity based on ITL. Therefore, cross-

correntropy contains higher order moments of the pdf but is much simpler to estimate di-

rectly from samples and bypasses the need for conventional moment expansions. In addition,

cross-correntropy are closed related to kernel methods and RKHS from a covariance function

perspective [10]. Thereby, cross-correntropy is a generalized correlation function in terms

of inner products of vectors in a kernel feature space. Since inner products are a measure

of similarity, this function in effect measures the pairwise interaction of the feature vectors.

Besides, from an ITL point of view, this measure quantifies the shape and size of the group

of points in feature space, which gives the information of the statistical distribution in the

input space. In addition, cross-correntropy is directly related to Renyi’s quadratic entropy

estimate of data using Parzen windowing. Therefore, cross-correntropy allows extracting

more information from the data structure for the adaptation process in machine learning

applications, yielding solutions that are more accurate than traditional mean square error

methods, specially, for non-Gaussian process [60, 59, 61, 96].

With an abundance of tools based on kernel methods and ITL, cross-correntropy appears

as a flexible alternative to find pair-wise sample relations taking advantage of relevant local

dependencies. Nonetheless, there are some limitations regarding this measure: i) There is

still a lack regarding the required free parameters, namely, the kernel parameters. ii) It is
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not clear how to reveal relevant input features from correntropy-based measures aiming to

support the data interpretability, iii) such a localized measure employs a unique RKHS to

encode data dependencies, which can be not appropriate when dealing with different data

structures/dynamics, e.g., nonstationary processes, and iv) the user prior knowledge can not

be directly incorporated when computing the data similarities.

In this work, a new generalized similarity measure, termed Generalized cross-Correntropy-

(GCC), is introduced to reveal relevant dependencies among HD samples. Our approach is

a data-driven kernel-based measure that includes both the distribution and the structure

of the input process by representing the samples using different RKHSs. In addition, a

relevant feature ranking criteria is described based on GCC to highlight each input feature

contribution into the studied process. Furthermore, an adaptive learning constraint is im-

posed in GCC to incorporate the domain-varying behavior of the HD data, when available.

The proposed GCC is an extension of the well-known cross-Correntropy measure based on

Hilbert space embeddings. So, it is shown how GCC can be interpreted from kernel methods

as well as from an information theoretic points of view. To test the capability of the pro-

posed approach, two main learning tasks are studied in our experiments: HD data clustering

and multi-channel time-series prediction. Attained results demonstrate that GCC supports

the performance of further learning stages, e.g., clustering and prediction, in terms of both

system accuracy and data interpretability.

7.1. The cross-correntropy measure

The cross-correntropy is a generalized similarity measure between two arbitrary scalar ran-

dom variables X and Y, with domain X , defined by [130]:

ξ (X, Y ) = Exy {κξ (x, y)} , (7-1)

where x∈X, y∈Y and

κξ (x, y) = 〈ψ(x), ψ(y)〉C (7-2)

is a symmetric positive definite kernel, commonly assumed as Gaussian, associated to the

nonlinear mapping ψ : X → C to the RKHS C [132].

In practice, the joint pdf pXY (x, y) is unknown and only a set of finite data {xn∈X, yn∈Y :

n∈[1, N ]} is available, leading to the sample estimator of cross-correntropy as follows:

ξ̂ (X, Y ; {σn}) =
1

N

N
∑

n=1

κG (xn − yn; σn), (7-3)
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where σn∈R+ is the Gaussian kernel bandwidth for the n-th pair of samples (commonly

σ1=σ2=. . .=σN=σ) and κG is the well-known Gaussian kernel defined as:

κG (xn − yn; σn) = exp

(−‖xn − yn‖22
2σ2

n

)

. (7-4)

If X and Y are very close to each other, their cross-correntropy value yields the 2-norm

distance, while it asymptotically evolves to the 1-norm distance when the variables tend

to get apart. Furthermore, cross-correntropy falls to the zero-norm as given variables be-

come very far apart. Among the cross-correntropy properties, the following are the most

important [93]:

– Bounded positive definiteness, that is, 0≤ξ (X, Y )≤1 when using a normalized kernel,

reaching its maximum at X=Y.

– The existence of all even moments estimated from the cross-correntropy difference

when using the Gaussian kernel:

ξ̂ (X, Y ; σ) =
1√
2πσ

∞
∑

q=0

(−1)q

2qq!
Exy

{

(x− y)2q /σ2q
}

,

since the high-order values decay when σ increases, the second order moment domi-

nates.

– Given the joint pdf pXY (x, y) of an i.i.d. data sample {xn∈X, yn∈Y }, the value ξ̂ (X, Y )

tends to the Parzen estimation of the pdf p̂E, at e=0 (e∈E) , where E=X−Y is termed

the error.

– Since the cross-correntropy depends on the kernel bandwidth σ, it is strictly concave

within the range E∈[−σ, σ].

Moreover, based on the Hilbert space embeddings framework [143, 160], the cross-correntropy

functional described in eq. (7-1) can be analyzed as a mean operator in C . Thus, from the

expectation operator definition, eq. (7-1) can be rewritten as follows:

ξ (X, Y ) =

∫∫

κξ (x, y) pXY (x, y)dxdy. (7-5)

In addition, from the Representer theorem [131]:

f(x) = 〈f, ψ(x)〉C , (7-6)



94
7 Relevant data representation from different kernel spaces: a generalized

cross-correntropy measure

where f∈C , we can define in C the mean operator of the joint space as:

〈µxy, f〉C = Exy {f(x)} . (7-7)

So, we can clearly see that:

ξ (X, Y ) = 〈µxy, κξ (x, y)〉C . (7-8)

This type of operation is normally not done when we are interested in input data, but it

can be important when operating with kernel functions. Then, from eqs. (7-7) and (7-8), we

can compute the value of the mean operator µxy at any point in the domain X as:

µxy(y) = Exy {κξ (X, Y=y)} . (7-9)

7.2. Generalized cross-correntropy measure (GCC)

Note that the cross-correntropy in eq. (7-1) measures the similarity between X and Y by

mapping both of them to the same RKHS C . However, it would be interesting to define a

cross-correntropy-based function that allows to relate the random variables X and Y when

each of them is mapped to a different RKHS. In this sense, let us denote X and Y as

two random variables with domain X and Y , respectively. Likewise, let ϕ :X →F and

φ :Y →G be two nonlinear mapping functions associated to the positive definite kernels κX
and κY , respectively, such that:

kXxx′ = 〈ϕ(x), ϕ(x′)〉F (7-10)

kYyy′ = 〈φ(y), φ(y′)〉G . (7-11)

Here, a Generalized cross-correntropy-(GCC) measure between the random variables X

and Y is introduced as follows:

Ξ(X, Y ) = Exy,x′y′
{

κΨ
(

kXxx′, kYyy′
)}

, (7-12)

where κΨ is a positive definite kernel associated to the nonlinear mapping Ψ : (F×F )×(G ×
G ) → A , (A is a RKHS). Furthermore, given a set of finite data {xn∈X, yn∈Y : n∈[1, N ]}
and employing the well-known Gaussian kernel, a sample estimator of the GCC yields:

Ξ̂ (X, Y ; {σnn′}) = 1

N2

N
∑

n=1

N
∑

n′=1

κG
(

kXnn′ − kYnn′; σnn′

)

, (7-13)
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where

kXnn′ = κG (xn − x′n; σX) (7-14)

kYnn′ = κG (yn − y′n; σY ) , (7-15)

and σX , σY , σnn′∈R+.

Therefore, the localized similarity described in eq. (7-13) allows revealing the main rela-

tions between X and Y taking advantage of different RKHS-based representations. Indeed,

the higher the GCC value, the higher the similarity between the mappings of the random

variables in F and G .

As aforementioned, the cross-correntropy measure can be interpreted as a mean operator

in C (see eq. (7-8)). So, it would be interesting to find a similar interpretation for the

introduced GCC. Regarding this, given f∈F , g∈G and based on the Representer theorem,

the expectation of f(x)g(y) can be expressed as an inner product:

Exy {f(x)g(y)} = Exy {〈f, ϕ(x)〉F 〈g, φ(y)〉G} = Exy {〈f ⊗ g, ϕ(x)⊗ φ(y)〉F⊗G} , (7-16)

where ⊗ stands for the tensor product operator and F ⊗ G is also a RKHS. Moreover,

eq. (7-16) can be rewritten as follows:

Exy {f(X)g(Y )} = 〈f ⊗ g, CXY 〉F⊗G , (7-17)

where the term

CXY = Exy {ϕ(x)⊗ φ(y)} (7-18)

is the uncentered cross-covariance operator [46, 140]. Since the uncentered cross-covariance

operator is only determined by the joint probability distribution pXY (x, y) on X × Y , it

can be treated as the joint distribution embedding in F ⊗ G .

Moreover, the norm of CXY can be defined as:

‖CXY ‖2F⊗G
= Exy,x′y′ {〈ϕ(x)⊗ φ(y), ϕ(x′)⊗ φ(y′)〉F⊗G } , (7-19)

based on tensor product properties:

‖CXY ‖2F⊗G
= Exy,x′y′ {〈ϕ(x), ϕ(x′)〉F 〈φ(y), φ(y′)〉G } . (7-20)

As seen in eqs. (7-12) and (7-20) the introduced GCC is very close to the cross-covariance

norm. In fact, when the Gaussian kernel is avoided to computed the relations between x, x′
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and y, y′ in eq. (7-12), and the basic tensor product is applied, the GCC measure yields to

the cross-covariance norm described in eq. (7-20). Thereby:

κΨ (〈ϕ(x), ϕ(x′)〉F , 〈φ(y), φ(y′)〉G ) = 〈ϕ(x), ϕ(x′)〉F 〈φ(y), φ(y′)〉G . (7-21)

fig. 7-1 describes the introduced GCC from different RKHSs and its relation with the

cross-covariance embedding norm. As seen, the introduced GCC is a localized enhancement

of the cross-covariance embedding norm based on the cross-correntropy foundations.
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Figure 7-1.: Connection between GCC and cross-covariance operator.

7.3. Relevant data representation based on GCC

Let X∈RN×P be a High-Dimensional-(HD) input matrix holding N subject observations

and P features. Aiming to capture hidden dependencies among features from each provided

subject vector xn∈RP in X (n∈[1, N ]), the embedding matrix Zn∈RL×J is calculated using

an embedding function as follows:

Zn=ϑ (xn) , (7-22)

where ϑ : RP → RL×J and L× J ≥ P.

To find a relevant data representation, each l-th row vector zln∈RJ , l∈[1, L], can be seen as

the l-th embedded feature containing the prior user knowledge about all feature relationships.

Moreover, to encode the main dynamics in each embedding representation matrix Zn, let us

assume that each zln∈Zn is a sample datum of the random variable Zn ⊂ RJ . Besides, let

ϕn : Zn → Fn be a nonlinear mapping function to the RKHS Fn, which is associated to the

positive definite kernel κFn
. In this way, the similarity between Zn and Zn′ (n, n′∈[1, N ]) is

computed based on the introduced GCC measure as follows:

Ξ(Zn,Zn′) = Ell′

{

κΨ

(

kFn

ll′ − k
F

n′

ll′

)}

, (7-23)
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where l, l′∈[1, L] and

kFn

ll′ =
〈

ϕn

(

zln
)

, ϕn

(

zl
′

n

)〉

Fn

(7-24)

k
F

n′

ll′ =
〈

ϕn′

(

zln′

)

, ϕn′

(

zl
′

n′

)〉

F
n′

. (7-25)

Furthermore, employing the Gaussian kernel and the sample estimator to calculate GCC

yields:

Ξ̂ (Zn,Zn′ ; {σll′}) =
L
∑

l=1

L
∑

l′=1

κG

(

sll
′

n − sll
′

n′ ; σll′
)

, (7-26)

where

sll
′

n =κG

(

zln − zl
′

n′ ; σZn

)

, (7-27)

and σll′ , σZn
∈R+. Regarding this, the GCC-based pair-wise representation in eq. (7-26) allows

extracting salient information from the HD subject set.

In most of the cases, there is a need to rank the input feature set in terms of the contri-

bution of each provided feature in the studied process [159, 15]. To this end, each feature

contribution is measured in terms of its stochastic variability extracted from the pair-wise

dependencies in each RKHS Fn. Therefore, we carry out a variability-based relevance anal-

ysis based on a subspace framework that searches for a projection maximally bearing input

information while preserving only those data that contribute most to the GCC measure.

Specifically, let S∈RN×M , be a feature representation matrix, with M=L(L− 1)/2, holding

row vectors:

sn = {sll′n l, l′∈1, L; l < l′}. (7-28)

The stochastic feature set S can be written as a linear combination ofM ′<M independent

basis functions where the minimum mean squared-based error is assumed as the evaluation

measure of the subspace-based linear transformation. Thus, a set of orthogonal vectors is

estimated so that the M ′ resulting components can approximate each input feature of S, in

such a way, that the pair-wise embedded data information is maximally preserved.

Hence, provided the set of features {ςm : m∈[1,M ]}, where ςm∈RN corresponds to each

column of the matrix S, the relevance of every ςm can be measured by computing the

following variability vector ρ∈RM [5, 111]:

ρ = Em {|vmλm|} , (7-29)
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where vm∈R+ and λm∈RM are respectively the eigenvectors and eigenvalues of the relevant

feature covariance matrix estimated as: S⊤S/M.

The main assumption behind the relevance measure expressed in eq. (7-29) is that the

largest values of ρm should point out to the better input attributes since they exhibit higher

overall correlations to the estimated principal components. The M ′ value is fixed as the

number of dimensions needed to preserve some percentage of the input data variability. As a

result, the calculated relevance vector ρ is employed to rank the pair-wise embedded features

dependencies in S.

Consequently, we estimate the embedded feature relevance vector ρ∗∈RL from ρ as the

contribution of each embedded feature over all provided pair-wise feature variability encoded

in ρ as follows:

ρ∗l = El′ {rll′ : ∀l′ ∈ [1, L]} , ρ∗l ⊂ ρ (7-30)

where rll′ =

{

ρm, ∀m=(l − 1)L+ l′

0, l=l′.
.

7.4. Dynamical enhancement of GCC

In practice, the similarity between all feature set may vary throughout a particular domain,

e.g., when dealing with spatial and/or time-varying data. In order to include the domain-

varying behavior, we can constraint the estimation of the GCC between Zn and Zn′ by using

an adaptive learning scheme, resulting in the so-called Dynamical GCC-(DGCC) measure.

In other words, we undertake the problem of function estimation upon the online learning

framework [78].

So, let {(Zn, dn);n∈[1, N ]} be a sequence of input-output pairs where dn∈R is a given

output signal that is related to the interactions immersed in Zn, the main goal of adap-

tive learning systems is to compute the continuous mapping dn=υ(Zn) based on the risk

minimization analysis, υ : RL×J → R.

Grounded in the introduced GCC approach, the all possible hypothesis υ∈A , where A

is a RKHS equipped with the inner product 〈·, ·〉A . Consequently, based on the Representer

theorem the following properties take place:

- The reproducing property: υ (Zn)=〈υ, κΨ (Zn, ·)〉A .

- A is the closure of the span of all κΨ (Zn, ·), that is, all υ∈A are linear combinations

of kernel functions.

From the aforementioned properties, the problem of estimating the hypothesis online can

be viewed as an adaptive filtering task that is a sequential estimator of υ, such that its
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domain-variant version υn is updated on the basis of the last estimate υn−1 and the current

input-output pair {Zn, dn}. In order to deal with the nonlinear relationships between the

embedding samples Zn, we may use the kernel adaptive filtering approach (termed Kernel

Least Mean Square –KLMS) that aims to exploit the kernel mapping from an input space

to a RKHS as follows [92]:















υ1 = 0

en = dn − υn−1(Zn)

υn = υn−1 + ηenΞ(Zn, ·)
(7-31)

where 0 < η < 1 is the filter step size and

en=dn − υn−1(Zn) (7-32)

is termed the error. In addition, the continuous mapping is estimated based on the introduced

GCC measure described in eq. (7-23) as:

d̂n = υn−1(Zn)=
∑n−1

j=1
ωjΞ̂(Zn,Zj; {σll′}), (7-33)

being ωj=ηej the j-th element of the vector ω∈RTn, where Tn is the filter size at the n-th

instant.

Nonetheless, KLMS in eq. (7-31) uses all learned observations to estimate the output of

a new input, resulting in a complex function that may lead to over-fitting (not mentioning

its high computational load). To cope with this issue, the quantized version of KLMS

(termed QKLMS) is considered to get an adequate trade-off between system complexity

and accuracy performance [171]. The QKLMS approach aims to discover the main model

structure by computing the Euclidean distance on the original input space between a given

sample and the codebook. As an alternative, we propose to estimate the similarity between

a new sample and the system model taking advantage of the RKHS.

So, assuming that Cn−1={Zj : j∈[1, Tn]} is the QKLMS system codebook at the n − 1

iteration with network size Tn, the quantization value Υ∈R+ for a new embeded sample Zn

is estimated in the form:

Υ(Zn,Ct−1) = max
j

Ξ̂(Zn,Zj; {σll′}), (7-34)

for all Zj∈Cn−1, termed the j-th codeword in Cn−1.

Then, each Zn is either merged or not into Cn−1 in dependence on the yielded comparison

to the threshold parameter Υ(, ) ≷ γ∈R+. Algorithm 1 develops the proposed DGCC.
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Algorithm 1 Dynamical enhancement of GCC

Input: Zn∈RL×J , dn∈R, 0 < η < 1, {σll′∈R+}, ∀l, l′∈[1, L], γ ≥ 0

Output: d̂n∈R,Cn,ωn∈RTn

; C1 = {Z1}, ω1 = {ηd1} while {Zn, dn} (n > 1) available do

d̂n =
∑Tn

j=1 ω
j
n−1Ξ̂(Zn,Zj ; {σll′}), ∀Zj∈Cn−1

en = dn − d̂n

j∗ = argmax
j

Ξ̂(Zn,Zj ; {σll′})

if Υ(Zn,Zj) > γ then

Cn = Cn−1; ω
j∗

n−1 = ω
j∗

n−1 + ηen ωn = ωn−1

else

Cn = {Cn−1,Zn}; ωn = {ωn−1, ηen}
return

7.5. Experimental set-up

In order to test the capability of the proposed GCC and DGCC approaches for dealing with

HD data, two main learning tasks are studied: data clustering and multi-channel time-series

prediction. Regarding this, the GCC is employed to extract relevant data representations

according to either studied task by fixing the embedding function ϑ (·) based on the prior

user’s knowledge. For all provided Gaussian kernel functions, the kernel bandwidth value is

fixed based on the introduced KEIPV. fig. 7-2 displays the outline of the proposed GCC-

based HD data analysis approach.

Database

Preprocessing
-Embedding data
representation

Learning
stage

Feature ranking

Generalized
cross-Correntropy

measure

Figure 7-2.: GCC-based HD data analysis main scheme.

For concrete testing, the following three real-world datasets are studied:

– IXI. The IXI dataset is a brain imaging study holding Magnetic Resonance Images

(MRI) from 575 normal subjects that age between 20 and 80 years. Subjects are

provided with T1, T2, PD, DTI and angiogram volumes. The image sequences were

acquired with three different scanners (Philips 1.5T, Philips 3Tm, and a GE 3T),

anonymised and converted to NIFTI format. Additionally, basic demographic infor-

mation for each subject is included (age, gender, ethnicity, among others). The whole



7.6 Results and discussion 101

dataset is freely available online. Here, only the T1 sequences of N=314 subjects (ac-

quired with the GE 3T scanner) were taken into account. T1 sequences are composed

of 256× 256× 150-sized volumes with a voxel size of 0.9375× 0.9375× 1.2mm. Thus,

the considered subset is composed of 141 male and 175 female subjects.

– BCI-FTT. The Brain Computer Interface (BCI) Foot Tracking Task (FTT) dataset

from the Brain Science Institute is tested. In this case, some monkeys were trained to

reach for food offered by an experimenter using the hand contralateral to the implanted

hemisphere while the monkey movement was recorded by an optical motion acquisition

system. So, BCI-FTT holds Electrocorticography (ECoG) signals from two Japanese

macaques (conditionally designated as Monkey A and Monkey K ). Both monkeys were

chronically implanted with electrodes in the subdural space. Particularly, 32 electrodes

were implanted in the right hemisphere of Monkey A, and 64 electrodes were used in

the left hemisphere of Monkey K. Brain signals were recorded at 1 kHz while motion

signals were captured at 120Hz [25].

– MoCap. The Motion Capture Database (MoCap) was recorded in a laboratory at

Carnegie Melon University that contains 12 Vicon infrared MX-40 cameras recording

at 120 Hz with 4 megapixel-resolution images. The cameras are placed around a

rectangular area of 3m×8m in the center of the room. Subjects wear a black jumpsuit

with 38 markers taped on while the infra-red cameras see them. The images that

the various cameras pick up are triangulated to get a 3D data representation. The

subjects are asked to perform several human motion activities, which are captured

by the MoCap system. Then, a video in Biovision Hierarchy format (BVH) for each

motion activity by a given subject is recorded.

—————————————————————————————————

7.6. Results and discussion

IXI clustering results. We test the proposed GCC as a suitable feature extraction ap-

proach to support clustering tasks on 3D MRIs. In this regard, two preprocessing steps are

performed over all the IXI dataset images. Initially, each image is registered to the MNI305

template by an affine transform so that the whole dataset is referenced to the Talairach

space [42]. Due to the registering, each volume is re-sampled to 197× 233× 189 size. Then,

an intensity normalization procedure is performed by scaling each voxel value so that the

mean intensity of the white matter is fixed to be 110 [44]. Both preprocessing steps, normal-

ization and registering, are performed with the Freesurfer image analysis suite that is freely

available online1

1http://surfer.nmr.mgh.harvard.edu/
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We explore two similarity-based image representation techniques to find patient patterns

from MRIs. The first one is a baseline where each image voxel is used as feature [1], while the

second one uses the proposed GCC to encode MRI pairwise relationships. As regards the

voxel-wise approach, given the input matrix X∈RN×P (N=314, P=8675289) holding row

vectors xn∈RP after column-based concatenation of each MRI volume, we calculate each

element of the voxel-wise similarity matrix Ko∈RN×N as follows: konn′=κG (xn − x′
n; σv) ,

with n, n′∈[1, N ]. In turn, regarding the GCC-based approach, from each input vector xn

the embedding data representation matrix Zv
n∈RLv×Jv with row vectors zvn∈RJv is computed

according to the considered MRI axis view, namely: Axial, Sagittal, and Coronal, respec-

tively, noted as v∈{a, s, c} and with Lv∈{197, 233, 189} and Jv∈{44037, 37233, 45901}. So,

zlvn is the vector concatenation of the lv∈[1, Lv] slice in the n-th MRI according to the v-th

axis view. Further, we impose smooth variations between adjacent MRI slices to encode

each Inter-Slice Similarity (ISS) along the v-th axis as: κG(z
l
n − zl

′

n ; σZn
). Thus, the matrix

Sv∈RN×Mv with row vectors computed as in eq. (7-28), where Mv∈{19306, 27028, 17766}.
Moreover, a relevant feature ranking is carried. Particularly, the relevance of each MRI slice

is computed as in eq. (7-29) for each provided axis view.

In this way, three relevant ranking vectors ρ̂v∈RLv are computed as in eq. (7-30). figs. 7.5a

to 7.3c show a concrete MRI example illustrating the embedded feature relationships for all

the three views. As seen in figs. 7.5a to 7.5b displaying their corresponding estimated ISS,

the red corner patches keep the MRI edges with no content, i.e., the background. Moreover,

regarding the Sagittal view (see fig. 7.5b) it exhibits symmetry with respect to the anti-

diagonal, being clear that such representation is able to keep the head sagittal symmetry.

Although the latent phenomenon is the same for all ISSs, each of them are providing a

different view of the patient brain structures.

Besides, figs. 7.4a to 7.4c exhibit the attained relevant feature ranking for the studied

MRI data. Therefore, due to the ISS-based kernel shapes and the relevant vectors varies

accordingly to the brain structure distribution, we infer that proposed approach suitably

characterizes head shapes. Aside, note that the introduced ISS allows obtaining a feature

representation space that resides in a lower dimension in comparison with the original voxel-

wise representation (Mv≪P ).

Since the proposed ISS allows representing high-dimensional image information along every

axis, a Marginal Image Similarity (MIS) matrixKv∈R314×314 can be estimated for each axis

v based on the proposed GCC by assuming that each ISS encodes a different RKHS (see

eq. (7-26)). Afterward, to explore joint image similarity matrix K∈RN×N through all axes,

we put forward a joint affinity measure of MIS matrices by introducing the following convex

combination of MIS-based kernels:

knn′ = Ev {kvnn′} v. (7-35)

figs. 7.5a and 7.5b present the attained values of MRI similarity by using both the voxel-
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Figure 7-3.: Embedded relationships of the MRI feature set - ISS.
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Figure 7-4.: Ranking by relevance of the MRI feature set. –Normalized relevant vectors.

wise approach and the introduced GCC-based strategy, respectively. The MRIs are sorted

by gender and age IXI categories. Particularly, four classes are considered: Adult Male

(AM), Senior Male (SM), Adult Female (AF), and Senior Female (SF). The Adult label

corresponds to age values between 20 and 50 years, and the Senior label to age values higher

than 50 years. As seen, the gender and age slots are highlighted for the GCC-based approach

supplying evidence about some possible MRI patterns. Furthermore, to identify visually the

MRI clusters a 3D low-dimensional space is computed from each similarity matrix based on

the well-known Kernel Principal Component Analysis (KPCA) algorithm [132], as seen in

figs. 7.5c and 7.5d. Regarding the age as a demographic category, by visual inspection it can

be seen that the proposed methodology can unfold the age and the gender better than the

baseline decomposition results. Additionally, a larger dispersion is shown in older subjects

than on younger ones. This finding can be due to a larger head shape dispersion on older

humans, which is according to anatomical head knowledge. In fact, it is known that brain

anatomy is steady in middle age humans, while change (gray matter volume diminishes)

faster on older humans [1].

For verifying the above-mentioned statements, a k-nearest neighbor classifier is trained
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KPCA-based embeddings.

using each similarity-based induced distance. Tables 7-1 to 7-2 present the attained confu-

sion matrices for a leave-one-out validation scheme. It can be seen that our proposal attains

higher classification accuracy than the baseline method. Indeed, presented GCC allows to

identify similar brain structures by analyzing the joint axis view relationships. Regarding

voxel-wise approach, it can obtain an acceptable gender discrimination. However, it is not

able to distinguish age categories. So, complex brain structures, e.g., those related to patient

age variations, can not be properly encoded by the HD MRI voxel representation.

BCI-FTT clustering results. We test the proposed GCC approach as a tool to support

neural decoding systems from ECoG signals. So, the considered neural decoding system

based on GCC can be summarized in following three main stages: i) preprocessing of brain

activity signals aiming to avoid the influence of artifacts and to highlight frequency bands of

interest, ii) GCC-based feature extraction stage facilitating the analysis of neural states, and
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Table 7-1.: Voxel-wise-based MRIs discrimination confusion matrix [%]

Category
Adult Senior Adult Senior

Male Male Female Female

Adult
83.33 50.74 06.94 04.85

Male

Senior
04.17 28.36 0 05.82

Male

Adult
08.33 04.48 83.33 28.15

Female

Senior
04.17 16.42 09.72 61.16

Female

Gender accuracy 88.54[%]

Gender-Age accuracy 64.33[%]

iii) the learning stage allowing to find neural patterns that are related to a given stimulation,

e.g., the intention of the movement.

For the concrete testing, the BCI-FTT dataset is considered, and the system performance

is validated in terms of data interpretability. With respect to the preprocessing stage, all

ECoG signals are filtered using a low-pass filter with cutoff frequency of 250Hz and statis-

tically normalized using a common average reference (CAR). Besides, the motion channels

are interpolated to get every ECoG signal lasting the same length. We explicitly consider

the experiment carried out with Monkey A on November 27th, 2008 that is set up with

56 channels. Namely, 32 ECoG signals plus 8 XYZ-dimensional motion channels, e.g., 24

motion signals. Thereby, the time sequence ranges from 400 s to 500 s is studied. Then, to

decode the intention of movement from the brain activity a sliding window of 0.5 s with 90%

of overlapping is applied on each ECoG channel.

Afterward, we explore two different feature representation approaches: The former uses

each ECoG segment as input sample after applying the sliding window. So, we obtain the

input matrix X∈RN×P (N=2084, P=3200) holding row vectors xn∈RP after concatenation

of the channel segments. Then, the Independent Channel Representation (ICR) similarity

matrix Ko∈RN×N is calculated as: konn′=κG (xn − xn′; σ) . The latter approach employs the

introduced GCC strategy to find relevant dependencies among channels for supporting the

neural decoding task. Thus, from each input vector xn the embedding data representation

matrix Zn∈RL×J (L=32, J=125) with row vectors zn∈RJ is computed. Here, the vector

zn is a given ECoG channel segment from the provided sliding window. In addition, inter-

channel dependencies are encoded into the n-th time window as described in eq. (7-28) to

calculate the relevant feature matrix S∈RN×M (M=496).

figs. 7.6a and 7.6b present two relevant feature vectors as inter-channel dependencies for

both movement and resting monkey conditions, respectively. As seen, few channels are
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Table 7-2.: GCC-based MRIs discrimination confusion matrix [%]

Category
Adult Senior Adult Senior

Male Male Female Female

Adult
70.83 17.91 04.17 05.82

Male

Senior
16.67 64.18 0 02.91

Male

Adult
05.56 0 69.44 09.71

Female

Senior
06.94 17.91 26.39 81.55

Female

Gender accuracy 91.08[%]

Gender-Age accuracy 72.61[%]

influenced by the stimulus for the movement condition in comparison with the resting one.

Thus, a particular region of the brain is activated when the monkey focuses on the FTT. The

latter remark can be supported by the estimated relevant channel ranking. In this case, the

relevant vector ρ̂∈RL (L=32) is quantized in four states based on a the well-known kmeans

algorithm: high relevance, moderate relevance, low relevance, and no relevant (see fig. 7-7).

Furthermore, to test the proposed neural decoding system in terms of data interpretability,

we try, from extracted ECoG features, to infer the already known activity, e.g., monkey

motion. To this end, the a GCC-based similarity matrix K∈RN×N is computed based on

Eq. (7-26), and a spectral clustering algorithm is carried out [7]. For the sake of comparison,

the spectral clustering algorithm is also applied to the ICR-similarity matrix. Although

there are some motion activities that may be stated from the provided data collection, we

only consider for the sake of simplicity the visual interpretability of two motion activities:

hand-to-food and hand-to-mouth, thereby, we fix the number of clusters as two.

figs. 7.8a and 7.8b present the attained ECoG similarity matrix by using both the ICR and

the GCC approaches, respectively. In addition, figs. 7.8c and 7.8d both plots show the 3D

movement coordinates of the monkey left hand along the considered time sequence with the

labels obtained from using spectral clustering on the ICR and GCC-based similarity matrices.

As seen, there are mainly two stages: peaks and steady state; each one relating to strong and

smooth changes, respectively. Therefore, we can infer that one cluster is associated to the

hand-to-food activity while another to the hand-to-mouth. Besides, proposed GCC measure

is able to identify better the hand-to-food cluster in comparison to the ICR benchmark.

Hence, the GCC can be validated visually by the estimated clusters in the FTT database.

BCI-FTT prediction results. To test the proposed dynamical enhancement of GCC, termed

DGCC, on neural decoding tasks, we predict the monkey movement position based on the
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Figure 7-6.: Examples of FTT inter-channel dependencies

Figure 7-7.: FTT relevant channels based on GCC. •high relevance, •moderate relevance,

•low relevance, •no relevant.

baseline experiments that are widely carried out for the FTT database [25]. The ECoG

signals are low-pass filtered with the 500Hz cutoff frequency. All recordings holding motion

marker locations are down-sampled to 20Hz. Moreover, both ECoG and motion channels are

centered at CAR. Again, to predict the intention of movement a sliding window is applied to

the ECoG recordings as in the BCI-FTT clustering experiments. Provided the input data,

we try to predict each movement trajectory accomplished by the primate. based on the

proposed DGCC.

For concrete testing, the filter step-size η and the quantization size γ values are empirically

adjusted as 0.81 and 0.6, respectively. For the sake of comparison, the kernel adaptive

filtering approach proposed in [171] (termed Quantized Kernel Least Mean Square- QKLMS)

is also tested by using the ICR-based similarities. Moreover, the step and the quantization

size values are fixed as in DGCC. To perform prediction accuracy, we calculate the relative

error between the observed and the predicted trajectories of 30 randomly selected ECoG
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Figure 7-8.: FTT clustering results. •hand-to-food. •hand-to-mouth.

segments of 100 s each. Particularly, the last 40% of the signals are considered to measure

the prediction accuracy.

figs. 7.9a to 7.9c show the predicted motion channels for the Left Hand (LHND) coor-

dinates. As seen the proposed DGCC can reveal relevant ECoG dynamics properly for

predicting the output signal. In contrast, the QKLMS is not able to estimate the monkey

movement accurately and noisy predictions are obtained. Now, figs. 7.10a and 7.10b present

the statistical analysis regarding the relative error of the studied ECoG segments for both

the QKLMS and the DGCC algorithms, respectively. In this case, the analysis is carried

out for each monkey joint, namely: Left Shoulder (LSHO), Left Elbow (LELB), Left Wrist

(LWRI), Right Shoulder (RSHO), Right Elbow (RELB), Right Wrist (RWRI), Right Hand

(RHND), and LHND. Particularly for each box, the central mark is the median. The edges

of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data
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points not considered outliers, and the outliers are plotted individually.

The results show how our algorithm improves the prediction task for all monkey joints in

comparison to the baseline. This fact can be attributed to the proposed DGCC, since, rele-

vant relationships among cortical regions are encoded properly along time, thereby, DGCC

allows to suitable predict motion trajectories by adapting a filtering model. In addition,

DGCC achieves lower filter complexity in comparison to the QKLMS strategy, in terms of

filter size (see figs. 7.10c and 7.10d). Thus, our approach allows revealing the main multi-

channel time series dynamics using a compact adaptive learning model.
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Figure 7-9.: FTT stimuli prediction (LHND).

MoCap prediction results. In order to test the capability of the proposed approach to

finding the main dynamics of multi-channel time-series, a 3D human pose task is studied in

the MoCap dataset. For the concrete testing, the following activities are studied: walking

(subject 05 video 01), jumping (subject 02 video 04), basketball (subject 06 video 15), and

dancing (subject 05 video 11). Here, the XY Z angles between each joint and the Hips are

considered to model the 3D subject skeleton. Then, we obtain 2D data by projecting from the

3D MoCap input format into 2D. Provided a MoCap video, an input multi-channel matrix

X∈RN×P is obtained by applying a sliding window of size 0.5 s with 90% of overlapping,

where P=38 × 2 × 60=4560 corresponds to the synthesized 2D angle coordinates in the

n-th window and N represents the number of estimated windows. In addition, the third

coordinate is inferred based on the proposed DGCC approach. Regarding this, from each

window xn the embedding data representation matrix Zn∈RL×J (L=76, J=60) is calculated.

Afterward, inter-channel dependencies are encoded as described in eq. (7-28) to estimate the

relevant feature matrix S∈RN×M (M=2850). Besides, the relevant channel ranking is also

computed. Here, a relevance vector ρ̂∈R38 is computed by averaging the 2D coordinates.

Again, the kmeans algorithm is applied over ρ̂ to highlight four categories: high relevance,

moderate relevance, low relevance, and no relevant.

Regarding the DGCC free parameters, the filter step size η and the quantization size γ

values are empirically adjusted as 0.81 and 0.9, respectively. For the sake of comparison,
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Figure 7-10.: FTT stimuli prediction results.

the QKLMS filter is also tested by using the ICR-based similarities as described in the

BCI-FTT experiments. Moreover, the step and the quantization size values are fixed as in

DGCC. To perform prediction accuracy, we calculate the relative error between the observed

and the predicted 3D coordinate in the last 40% of the signals. For evaluating the system

robustness against different testing noise conditions, the input data X is also corrupted

with additive white Gaussian noise to get different Signal to Noise Ratio conditions - SNR,

namely: SNR={2, 5, 10}[dB].

In figs. 7.11a to 7.11l some visual results are shown for the studied videos (free of noise

conditions). As seen in figs. 7.11b, 7.11e, 7.11h and 7.11k the different relationships among

channels for each activity are highlighted. Overall, there are some channels which share high

similarity according to the given human pose, encoding relevant joint dependencies of the

studied movement. Thus, the relevance of each joint varies according to the human dynamics

(see figs. 7.12a to 7.12d). Likewise, temporal relationships are highlighted when analyzing

the GCC-based matrices (see figs. 7.11c, 7.11f, 7.11i and 7.11l).

In this work, after visual inspection of fig. 7.11c, one can notice how the cyclic pattern of

the walking movement is inferred by the proposed approach. Similar behavior is observed in

the jumping video, as seen in fig. 7.11f that shows the temporal relationships among relevant
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channel interactions, e.g., the relevant embedded features. Here, the DGCC discovers two

jumping cycles and one static state at the end of the video since the subject jumps twice

and then just stands for a while. Regarding more complex activities, in fig. 7.11i tree

main functional assemblies can be seen for the basketball video. In this case, after visual

inspection of the GCC-based matrix no cyclic connections (circular shapes) are obtained. In

turn, attained results reveal similar behavior for the dancing video.

On the other hand, in most of the cases, proposed DGCC gets better performance than the

baseline QKLMS in terms of obtained relative error results and final filter size as shown in

figs. 7-13 and 7-14. Particularly, in fig. 7-13 note that, on each box, the central mark is the

median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the

most extreme data points not considered outliers, and the outliers are plotted individually.

Particularly, the studied approaches attain an acceptable performance on the walking video

in terms of the relative error, since this is a smooth activity, not requiring a complex function

to infer it (see figs. 7.13a and 7.13e). Yet, DGCC estimates a suitable learning function

supplying the lowest number of samples, as seen in fig. 7.14a. Similar results are obtained

again for jumping, where DGCC outperforms the QKLMS algorithm in terms of relative

error and final filter size as seen in figs. 7.13b, 7.13f and 7.14b.

In addition, the DGCC outperforms again the baseline algorithm for basket and dancing

videos, as seen in Figs. figs. 7.13c to 7.13c, figs. 7.13g to 7.13h, and figs. 7.14c to 7.14d.

This advantage can be explained based on the proposed relevant representation, which high-

lights the joint relationships as an assembly, before applying the recursive kernel-based filter.

Thus, the temporal structure and the statistical dependencies among channels are suitable

discovered. Furthermore, it is important to note that due to the employed similarity mea-

sure in DGCC, the system performance is notoriously better in comparison to the QKLMS

approach for low SNR conditions.

7.7. Summary

A generalized cross-correntropy measure is introduced to analyze HD samples in learning

systems. The proposed GCC approach is a data-driven measure that reveals relevant depen-

dencies among HD samples, which includes both the distribution and the structure of the

input process by representing the samples using different RKHSs. Besides, a relevant feature

ranking criteria is proposed on GCC to highlight the contribution of each HD feature into

the studied process. Furthermore, aiming to incorporate the user prior knowledge regarding

the domain-varying behavior of the input data, an adaptive learning constraint is imposed

in GCC, yielding the DGCC framework. Also, the required GCC free parameters, e.g., the

kernel parameters, are fixed based on the introduced KEIVP. The proposed GCC is an ex-

tension of the well-known cross-Correntropy measure based on Hilbert space embeddings.

Regarding this, the GCC measure is interpreted from kernel methods as well as from an ITL

points of view. Our approach is tested as a data representation tool to analyze HD samples.
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Figure 7-11.: MoCap data analysis based on CRR. 1st row: walking. 2nd row: jumping.

3th row: basketball. 4th row: dancing .

Particularly, two learning tasks are studied: data clustering and multi-channel time-series

prediction. Overall, the proposed GCC allows encoding HD data structures and highlights
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a Walking b Jumping c Basketball d Dancing

Figure 7-12.: MoCap relevant joints based on GCC. •high relevance, •moderate relevance,

•low relevance, •no relevant.

2 5 10
0

0.5

1

1.5

2

2.5

3

3.5

4

SNR [dB]

R
el

at
iv

e 
er

ro
r 

[%
]

a Walking

2 5 10
0

0.5

1

1.5

2

2.5

3

3.5

4

SNR [dB]

R
el

at
iv

e 
er

ro
r 

[%
]

b Jumping

2 5 10
0

0.2

0.4

0.6

0.8

1

1.2

SNR [dB]

R
el

at
iv

e 
er

ro
r 

[%
]

c Basketball

2 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

SNR [dB]

R
el

at
iv

e 
er

ro
r 

[%
]

d Dancing

2 5 10
0

0.5

1

1.5

2

2.5

3

3.5

4

SNR [dB]

R
el

at
iv

e 
er

ro
r 

[%
]

e Walking

2 5 10
0

0.5

1

1.5

2

2.5

3

3.5

4

SNR [dB]

R
el

at
iv

e 
er

ro
r 

[%
]

f Jumping

2 5 10
0

0.2

0.4

0.6

0.8

1

1.2

SNR [dB]

R
el

at
iv

e 
er

ro
r 

[%
]

g Basketball

2 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

SNR [dB]

R
el

at
iv

e 
er

ro
r 

[%
]

h Dancing

Figure 7-13.: MoCap data prediction results. 1st row: QKLMS. 2nd row: DGCC.
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Figure 7-14.: MoCap data prediction results - Final filter size. •QKLMS. •DGCC.

relevant feature dependencies to facilitate further learning stages.

With respect to the clustering task, GCC is applied as an image representation approach
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to support 3D MRI analysis. Thus, GCC allows encoding smooth MRI inter-slice variations,

which can be related to the brain structure distribution. Then, joint MRI similarities are cal-

culated for enhancing both data interpretability and separability using patient demographic

information. Taking into account the attained results over a well-known MRI dataset, the

proposed approach proved to find the natural inherent distributions of MRIs, namely, age

and gender categories. In addition, proposed methodology improves data separability in

comparison to the state of the art algorithms based on Voxel-wise MRI representation. So,

our proposal is suitable to support MRI clustering and similarity measurement tasks.

Likewise, GCC is tested as a feature extraction stage in a neural decoding task from ECoG

recordings of macaques. Then, GCC is employed to infer relevant features from multi-channel

time-series. Indeed, each ECoG channel is embedded by using a sliding window to extract

relevant channel dependencies. Further, we encode the motion trajectory of the macaques in

an FTT. The obtained results in terms of data interpretability show how GCC can infer the

main neural state relationships, which are related to motion cyclic patterns: hand-to-food

and hand-to-mouth activities.

Now, regarding the prediction tasks, the introduced DGCC strategy is used to predict the

macaque motion trajectories in the FTT database. Again, each ECoG channel is embedded

by using a sliding window to extract relevant channel dependencies by using the proposed

strategy. Attained prediction results show that our approach outperforms a baseline al-

gorithm in terms of the relative error between the original and the predicted time-series.

Moreover, in most of the cases, the model complexity, i.e., the filter size, is lower than the

benchmark one. Finally, the DGCC approach is also tested on a well-known MoCap database

for tracking 3D human joints, from which some videos are used to track human activities.

According to the attained results, our framework provides an adequate alternative for finding

functional relevant dependencies as an assembly into multi-channel time-series. In this sense,

the system accuracy improves in comparison with the baseline algorithms, which does not

consider directly relevant channel dependencies. It is important to note that even when our

approach can predict a given output time-series, it is also useful to interpret and to analyze

complex relationships into multi-channel time-series visually.
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Final remarks



8. Conclusions and future work

8.1. Conclusions

This dissertation highlighted several specific methodologies within a kernel-based represen-

tation framework. In this sense, five kernel strategies were proposed to learn automatically

relevant data relations in machine learning systems. The introduced approaches naturally

lead to data-dependent processing tuned to the particular samples constraints and to the

considered learning scenario, including supervised and unsupervised tasks. Besides, the

introduced kernel-based relevant data representation framework is tested in some cluster-

ing and classification tasks related to biosignal processing and image analysis applications.

Overall, attained results demonstrated that proposed approaches allow summarizing and

capturing the main input patterns, favoring the learning performance in terms of task ac-

curacy and data interpretability in comparison to state-of-the-art methods. Following, the

main concluding remarks regarding each provided representation strategy are described:

• A kernel-based approach that allows revealing the main input sample relations was

presented. In fact, the introduced strategy, named KAGP, is able to include both the

data statistical distribution and its relevant structures by imposing graph-based sparse

constraints. So, KAGP reveals salient data structures to favor further learning stages.

Namely, KAGP is a kernel-based graph pruning strategy within a spectral clustering

framework which allows enhancing both the local and global data consistencies for

a given input similarity matrix. For such a purpose, KAGP learns a kernel matrix

based on a CKA-based function to measure the similarity between two kernel matri-

ces, enhancing their local and global consistencies. In this way, our approach takes

advantage of an initial guess of the relationships between points to identify relevant

connections by encoding then using a compactly supported kernel function. Besides,

a regularization-based criterion based on information-theory is introduced as to reach

a trade-off between the local and the global consistency preservation during the graph

pruning process. For the sake of comparison, KAGP is tested as relevant data represen-

tation strategy to support clustering tasks. Attained results showed that KAGP can

handle complex data structures, yielding better clustering performance in comparison

to the baselines. Moreover, the KAGP promotes learning performance less sensitive to

outliers, noisy data, and overlapped groups.

• A new kernel function estimation based on ITL was presented to highlight relevant
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pair-wise sample similarities. Our approach, termed KEIPV, estimates a RKHS that

spans the widest information force magnitudes among data points. For such a pur-

pose, KEIPV relates different kernel functions with the intrinsic information potential

variations into a Parzen-based pdf estimation. Thereby, KEIPV find a RKHS that

maximizes the overall information potential variability with respect to the global ker-

nel parameter. As a case of interest, an updating rule for estimating the Gaussian

kernel bandwidth parameter is proposed as a function of the forces induced by the

distances among samples. The introduced KEIPV was tested on two classical machine

learning tasks: classification and clustering, using both synthetic and real-world data.

Obtained results show that KEIPV is able to find a suitable RKHS by imposing a

statistical regularity constraint, the information protectional variability, which favors

data groups separability.

• An entropy-like functional on positive definite matrices based on Renyi’s definition was

adapted to develop a kernel-based approach that considers the statistical distribution

and the salient data structures from information theory-based constraints. Regarding

this, the proposed approach, named KEDR, highlights relevant input pattern from

Gramm matrices using ITL-based functionals. The introduced KEDR is a data-driven

framework for ITL based on infinitely divisible kernel functions. For this, KEDR is

a applied as a representation tool that estimates relevant mismatches between high-

dimensional and low-dimensional spaces. Furthermore, according to our experiments

on both synthetic and real-world datasets, KEDR-based performances are comparable

with DR benchmarks in terms of both visual inspection and neighborhood preservation

(rank-based criteria).

• A supervised kernel-based representation is introduced as a metric learning approach

in a RKHS. In this way, proposed methodology, called SKRA, takes advantage of

both the input samples statistical distribution and the user-prior knowledge regarding

the studied learning task to highlight the relevant data regularities. So, proposed

SKRA incorporates the introduced KEIPV strategy to impose the input data statistical

distributions constraints as well as a centered-kernel alignment functional to adapt a

linear mapping in a RKHS. As a result, relevant sample dependencies are highlighted

by weighting the input features that mostly encode the supervised learning task. The

SKRA is tested as a feature selection/extraction strategy in classification problems.

Attained results show that our supervised representation outperforms, in most of the

cases, state-of-the-art strategies in terms of data interpretability and system accuracy.

• A new generalized cross-correntropy measure named GCC is proposed by taking ad-

vantage of different RKHSs. Accordingly, relevant multidimensional dependencies are

highlighted automatically by considering the input data domain-varying behavior when

available. the GCC measure includes both the distribution and the structure of the
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input process by representing the samples using different RKHSs. Besides, a rele-

vant feature ranking criteria is proposed on GCC to highlight the contribution of each

input feature into the studied process. The GCC incorporates the KEIPV strategy

for imposing the data statistical distributions constraints into each studied RKHS.

Besides, GCC approach was enhanced based on an adaptive learning scheme to deal

with dynamic systems. The introduced GCC measure is an extension of the well-

known cross-correntropy function from a Hilbert space embedding perspective. Our

approach is tested in clustering, classification, and prediction applications. Overall, the

proposed GCC allows encoding input data structures and highlights relevant feature

dependencies to facilitate further learning stages in terms of system accuracy and data

interpretability.

8.2. Future work

We have presented a kernel-based representation framework aiming to reveal relevant pat-

terns in machine learning tasks. However, from the achieved theoretical and experimental

results, there are still many issues that can be addressed to improve the learning performance

in terms of data interpretability and system accuracy. In particular, the following remarks

could be of interest for future work approaches:

• In addition, there is room for improvements of the proposed KAGP methodology,

namely, some information theory measures can be incorporated to deal with the local

and global consistency preservation when dealing with noisy environments. Further-

more, KAGP can be tested as a relevant data representation approach to support

dimensionality reduction, classification, and regression tasks. Also, a feature ranking

score could be formulated from the KAGP representation to deal with feature selection

algorithms [63].

• One important subject for further research is related to the extensions of the proposed

KEIVP for different kernel functions. In particular, the multivariate Gaussian kernel,

the polynomial, the Laplace, etc., can be adapted according to the introduced informa-

tion potential variability criterion. Moreover, other functions, besides the variability,

could be studied to tune a suitable RKHS. In addition, KEIVP can be tested as a tool

to lead with regression and prediction tasks, aiming to reveal the main input regulari-

ties that are correlated with the output signals. In fact, KEIVP can be useful the lead

with kernel-based online learning scenarios due to the RKHS can be properly adapted

within a KEIVP-based strategy [119, 92]. Another research topic of interest is related

to the well-known support vector machine (SVM) classifier [132]. The KEIVP could be

useful to fix the kernel function in such a machine, besides, the main relations between

the kernel-function and the regularization parameter in SVM can be studied into a

KEIVP-based method.
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• Another interesting line of work involve the extension of the introduced KEDR by em-

ploying multi-kernel representations, to deal better with complex data structures [56].

Thus, an ITL-based formulation for Gramm matrices could be proposed from differ-

ent RKHSs. In addition, an enhancement of the KEDR optimization process, e.g., by

taking into account second order derivatives, must be added aiming to deal properly

with the non-convex behavior of the KEDR cost functional. Furthermore, an automatic

selection of the trade-off parameter in T1KEDR and T2KEDR must be developed. Be-

sides, it would be interesting to investigate the possibility of including shift invariant

similarities in KEDR.

• Regarding the SKRA methodology, it would be interesting to develop an automatic

strategy to fix properly the embedding dimension. Owing to the linear transformation

in SKRA encodes the relevant patterns during the centered alignment procedure, it is

necessary to find an embedding space that highlights the whole relevant information

of the given learning task. Furthermore, other kernel function can be studied in SKRA

to test the flexibility of the introduced SKRA. Besides, other kind of learning tasks

can be tested into the SKRA formulation, namely, regression and prediction could be

of interest. Here, an online learning scheme could be considered to reveal the temporal

evolution of the relevant features [78].

• With respect to the GCC proposal it would be interesting to test the proposed rep-

resentation in different machine learning tasks, e.g., dimensionality reduction and re-

gression. Moreover, a feature selection strategy could be developed from GCC. Fi-

nally, information-theory measures can be incorporated into GCC to find relevant re-

lationships among embedded features and to derive new theoretical relations between

cross-correntropy, GCC, Hilbert space embeddings, and ITL functionals for Gramm

matrices [52]. Finally, there is plenty of room of developments regarding the extension

of the GCC for several input space. In this sense, kernel tensor representations could

be analyzed and incorporated into the GCC approach, as new alternative to deal with

multi-modal analysis [136].
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1. Álvarez-Meza, A.M., Garcia-Vega, S., Castellanos-Domı́nguez. G. Identification of

brain activity patterns using kernel-based feature relevance analysis. International

Journal of Neural Systems. (Submitted).

2. Álvarez-Meza, A.M., Castellanos-Domı́nguez. G., Pŕıncipe, J. A generalized cross-

correntropy measure form different reproducing Hilbert spaces. IEEE transactions on

Pattern Analysis and Machine Learning. (Submitted).

3. Álvarez-Meza, A.M., Castro-Ospina, A.E., Castellanos-Domı́nguez, G. Automatic graph

pruning based on kernel alignment for spectral clustering. Pattern Recognition Letters,

Elsevier, (Accepted).

4. Álvarez-Meza, A.M., Molina-Giraldo, S., Castellanos-Domı́nguez, G. Background mod-

eling using object-based selective updating and correntropy adaptation. Image and

vision computing. (Accepted).

5. L. D. Lopez-Rios, L. X. Arias-Mora, Y. Ricardo-Cespedes, L. F. Velasquez-Martinez

A. M. Alvarez-Meza, and G. Castellanos-Dominguez. Kernel-based relevant feature

extraction to support motor imagery classification. In Sympoium of Image, Signal

Processing, and Artificial Vision (STSIVA), 2015.

6. H. D. Insuasti-Ceballos, J. S. Lopez-Villa, S. Molina-Giraldo, A. M. Alvarez-Meza,

and G. Castellanos-Dominguez. Bounding box pruning using background subtraction

for high quality labeling in video-based object classification. In Sympoium of Image,

Signal Processing, and Artificial Vision (STSIVA), 2015.

7. C. E. Arroyave-Gomez, J. F. Montoya-Cardona, S. Molina-Giraldo, A. M. Alvarez-

Meza, and G. Castellanos-Dominguez. People detection in video streams using back-

ground subtraction and spatial-based scene modeling. In Sympoium of Image, Signal

Processing, and Artificial Vision (STSIVA), 2015.

8. Álvarez-Meza, A.M., Velásquez-Mart́ınez, L.F., Castellanos-Domı́nguez. G. ”Time-

series Discrimination using Feature Relevance Analysis in Motor Imagery Classifica-

tion”. Neurocomputing, Elsevier, 151:122-129, 2015.
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9. Bron, E., Smits, M., Cárdenas-Peña, D., Álvarez-Meza, A.M., et. al. ”Standardized

evaluation of algorithms for computer-aided diagnosis of dementia based on structural

MRI: The CADDementia challenge”. NeuroImage, 111:562-579, 2015.

10. L. Velásquez-Mart́ınez, A. Álvarez-Meza, G. Castellanos-Domı́nguez. Connectivity

Analysis of Motor Imagery Paradigm using Short-Time Features and Kernel Similari-

ties. IWINAC, Lecture Notes in Computer Science, 2015.

11. J. Mart́ınez-Vargas, A. Álvarez-Meza, G. Castellanos-Domı́nguez. Single-channel sepa-

ration between stationary and non-stationary signals using relevant information. IbPRIA,

Lecture Notes in Computer Science, 2015.

12. D.F. Collazos-Huertas, A. Álvarez-Meza, N. Gaviria-Gómez, G. Castellanos-Domı́nguez.

Kernel-based feature relevance analysis for ECG beat classification. IbPRIA, Lecture

Notes in Computer Science, 2015.

13. S. Garćıa-Vega, A. Álvarez-Meza, G. Castellanos-Domı́nguez. Time-series prediction

based on kernel adaptive filtering with cyclostationary codebooks. IbPRIA, Lecture

Notes in Computer Science, 2015.

14. Álvarez-Meza, A.M., Molina-Giraldo, S., Castellanos-Domı́nguez, G. Image and video

processing based on kernel representations. LAP Lambert Academic Publishing, 2015.

15. J. Hurtado-Rincon, S. Rojas-Jaramillo, Y. Ricardo-Cespedes, A. M. Alvarez-Meza,

and G. Castellanos-Dominguez. Motor imagery classification using feature relevance

analysis: and Emotiv-based BCI system. In Sympoium of Image, Signal Processing,

and Artificial Vision (STSIVA)-IEEE 1-15, 2014.

16. D. F. Collazos-Huertas, A. F. Giraldo-Forero, D. Cárdenas-Peña A. M. Álvarez-Meza,

and G. Castellanos-Domı́nguez. Functional Protein Prediction Using HMM Based

Feature Representation and Relevance Analysis. CCBCOL, Advances in Intelligent

Systems and Computing, Springer Link, 232:71-76, 2014.

17. A. Álvarez-Meza, S. Molina-Giraldo, G. Castellanos-Dominguez. Correntropy-based

Adaptive Learning to Support Video Surveillance Systems. 22nd International Con-

ference on Patttern Recognition (ICPR), 2590-2595, 2014.

18. D. Cárdenas-Peña, M. Orbes-Arteaga, A. Castro-Ospina, A. Álvarez-Meza, G. Castellanos-

Dominguez. A Kernel-based Representation to Support 3D MRI Unsupervised Clus-

tering. International Conference on Pattern Recognition (ICPR), 3203-3208, 2014.

19. J. Mart́ınez-Vargas, C. Castro-Hoyos, A. Álvarez-Meza, C. Acosta-Medina, G. Castellanos-

Dominguez, Recursive Separation of Stationary Components by Subspace Projection

and Stochastic Constraints. International Conference on Patttern Recognition (ICPR),

3469-3474, 2014.
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20. A. Álvarez-Meza, G. Castellanos-Dominguez, J. Pŕıncipe. Functional Relevant Mul-

tichannel Kernel Adaptive Filter for Human Activity Analysis. IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2014.

21. Álvarez-Meza, A.M., Cárdenas-Peña, D., Castro-Ospina, A., Castellanos-Domı́nguez.

G. Tensor-Product Kernel-based Representation encoding Join MRI View Similarity.

In 36th Annual International Conference of the IEEE Engineering in Medicine & Bi-

ology Society – EMBC, 2014.

22. Álvarez-Meza, A.M., Cárdenas-Peña, D., Castellanos-Domı́nguez. G. MRI Discrim-

ination by inter-slice similarities and kernel-based centered alignment. Bio-inspired

intelligence - IWOBI 2014.

23. Castro-Ospina, A., Álvarez-Meza, A.M., Castellanos-Domı́nguez. G. Compactly sup-

ported graph building for spectral clustering. Bio-inspired intelligence - IWOBI 2014.

24. Garćıa-Vega, S., Álvarez-Meza, A.M., Castellanos-Domı́nguez. G. Neural Decoding

using Kernel-based Functional Representation of ECoG Recordings. CIARP, Lecture

Notes in Computer Science, Springer Link, 8827:247-254, 2014.

25. Cárdenas-Peña, D., Álvarez-Meza, A.M., Castellanos-Domı́nguez. G. Kernel-based Im-

age Representation for Brain MRI Discrimination. CIARP, Lecture Notes in Computer

Science, Springer Link, 8827:343-350, 2014.

26. Álvarez-Meza, A.M., Castro-Ospina, A., Castellanos-Domı́nguez. G. Spectral Cluster-

ing using Compactly Supported Graph Building. CIARP, Lecture Notes in Computer

Science, Springer Link, 8827:327:334, 2014.

27. Álvarez-Meza, A.M., Cárdenas-Peña, D., Castellanos-Domı́nguez. G. Unsupervised

Kernel Function Building using Maximization of Information Potential Variability.

CIARP, Lecture Notes in Computer Science, Springer Link, 8827:335:342, 2014.

28. Garćıa-Vega, S., Álvarez-Meza, A.M., Castellanos-Domı́nguez. G. Estimation of Cy-

clostationary Codebooks for Kernel Adaptive Filtering. CIARP, Lecture Notes in Com-

puter Science, Springer Link, 8827:351:358, 2014.

29. Álvarez-Meza, A. M., Valencia-Aguirre, J., Daza-Santacoloma, G., Acosta-Medina, C.

D., and Castellanos-Domı́nguez, G. Video Analysis based on Multi-Kernel Represen-

tation with Automatic Parameter Choice. Neurocomputing, Elsevier, 100: 117–126,

2013.

30. A. Álvarez-Meza, L. Velasquez-Martinez, G. Castellanos-Domı́nguez. Feature rel-

evance analysis supporting automatic motor imagery discrimination in EEG based

BCI systems. In 35th Annual International Conference of the IEEE Engineering in

Medicine & Biology Society – EMBC, 2013.
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31. L. Velásquez-Mart́ınez, A. Álvarez-Meza, G. Castellanos-Domı́nguez. Motor Imagery

Classification for BCI Using Common Spatial Patterns and Feature Relevance Analysis.

IWINAC, Lecture Notes in Computer Science 7931:365:374, 2013.

32. S. Molina-Giraldo, J. Carvajal, A. Alvarez-Meza, G. Castellanos-Dominguez. Video

Segmentation based on Multi-kernel Learning and Feature Relevance Analysis for Ob-

ject Classification. ICPRAM, SciTePress, 2013.

33. A. Álvarez-Meza, C. Acosta-Medina, G. Castellanos-Dominguez. Automatic Singular

Spectrum Analysis for Time-Series Decomposition. ESANN proceedings, European

Symposium on Artificial Neural Networks, Computational Intelligence and Machine

Learning, 2013.

34. D. Peluffo-Ordóñez, S. Garćıa-Vega, A. Álvarez-Meza, G. Castellanos-Domı́nguez.

Kernel Spectral Clustering for Dynamic Data. CIARP, Lecture Notes in Computer

Science, Springer Link, 8258:238-245, 2013.

35. S. Garćıa-Vega, A. Álvarez-Meza, G. Castellanos-Domı́nguez. MoCap Data Segmen-

tation and Classification Using Kernel Based Multi-channel Analysis. CIARP, Lecture

Notes in Computer Science, Springer Link, 8259:495-502, 2013.

36. A. Castro-Ospina, A. Álvarez-Meza, G. Castellanos-Domı́nguez. Automatic Graph

Building Approach for Spectral Clustering. CIARP, Lecture Notes in Computer Sci-

ence, Springer Link, 8258:190-197, 2013.

37. S. Molina-Giraldo, A. Álvarez-Meza, J. Garćıa-Álvarez, G. Castellanos-Domı́nguez.

Video Segmentation Framework by Dynamic Background Modelling. ICIAP, Lecture

Notes in Computer Science 8156:843:852, 2013.

38. Carvajal-Gonzalez, J., Álvarez-Mesa, A. M., and Castellanos-Domı́nguez, G. Fea-

ture Selection by Relevance Analysis for Abandoned Object Classification. In 17th

Iberoamerican Conference on Pattern Recognition: Progress in Pattern Recognition,

Image Analysis, Computer Vision, and Applications - CIARP, Lecture Notes in Com-

puter Science, Springer Link, 2012.

39. Valencia-Aguirre, J., Álvarez-Mesa, A. M., Daza-Santacoloma, G., Acosta-Medina,

C. D., and Castellanos-Domı́nguez, G. Human Activity Recognition by Class Label

LLE. In 17th Iberoamerican Conference on Pattern Recognition: Progress in Pattern

Recognition, Image Analysis, Computer Vision, and Applications - CIARP, Lecture

Notes in Computer Science, Springer Link, 2012.

40. Álvarez-Mesa, A. M., Daza-Santacoloma, G., and Castellanos-Domı́nguez, G. Biomed-

ical Data Analysis by Supervised Manifold Learning. In 34th Annual International

Conference of the IEEE Engineering in Medicine & Biology Society – EMBC, 2012.
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41. Sepúlveda-Cano, L.M., Álvarez-Mesa, A. M., and Castellanos-Domı́nguez, G. Train-

ing using Short–time Features for OSA Discrimination. In 34th Annual International

Conference of the IEEE Engineering in Medicine & Biology Society – EMBC, 2012.

42. Molina, S., Álvarez, A.M., Peluffo, D., Castellanos, G. Image segmentation based on

multikernel learning and feature relevance analysis. In Advances in Artificial Intelli-

gence – IBERAMIA 2012, Lecture Notes in Computer Science, Springer Link, 2012.

43. Ramı́rez, D., Molina, S., Álvarez, A.M., Daza, G., Castellanos, G. Kernel Based Hand

Gesture Recognition using Kinect Sensor. In Symposium of Image, Signal Processing,

and Artificial Vision (STSIVA), 2012, Medelĺın – Colombia.

9.2. Awarded papers

2012: Geographical World Finalist - Latin America Best Student Paper. ”Biomedical Data

Analysis by Supervised Manifold Learning”. 34th Annual International Conference of

the IEEE Engineering in Medicine Ponencia:Biomedical - EMBC - 2012, San Diego,

USA.

2014: Best award paper. ”Kernel-based image representation for brain MRI discrimination”.

19th Iberoamerican Congress on Pattern Recognition - CIARP, 2014, Puerto Vallarta,

Mexico.

9.3. Software prototypes

• Gait interface. Certificado de registro de soporte logico - software, 13-38-395, Ministerio

del interior (Colombia) 2013.

• EEG signal preprocessing and analysis (Análisis y limpieza de examenes EEG). Certifi-

cado de registro de soporte logico - software, 13-47-297, Ministerio del interior (Colom-

bia) 2015.

• REMI - Relevant feature extraction for motor imagery discrimination: A BCI system.

software registration in progress.

• Kernel-based relevant representation for video-based activity recognition. software

registration in progress.



Bibliography

[1] P. Aljabar, R. Heckemann, A. Hammers, J. Hajnal, and D. Rueckert, “Multi-atlas based

segmentation of brain images: atlas selection and its effect on accuracy.” NeuroImage, vol. 46,

no. 3, pp. 726–38, 2009.
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[6] A. Álvarez-Meza, J. Valencia-Aguirre, G. Daza-Santacoloma, and G. Castellanos-Domı́nguez,

“Global and local choice of the number of nearest neighbors in locally linear embedding,”

Pattern Recognition Letters, vol. 32, pp. 2171 – 2177, 2011.

[7] C. Alzate and J. Suykens, “Multiway spectral clustering with out-of-sample extensions

through weighted kernel PCA,” IEEE Trans. on Pat. Anal. and Mach. Intelligence, vol. 32,

no. 2, pp. 335–347, 2010.

[8] E. Amigo, J. Gonzalo, J. Artiles, and F. Verdejo, “A comparison of extrinsic clustering

evaluation metrics based on formal constraints,” Information retrieval, vol. 12, no. 4, pp.

461–486, 2009.

[9] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E. Elger, “Indications

of nonlinear deterministic and finite-dimensional structures in time series of brain electrical

activity: Dependence on recording region and brain state,” Phys. Rev. E, vol. 64, p. 061907,

Nov 2001. [Online]. Available: http://link.aps.org/doi/10.1103/PhysRevE.64.061907

[10] N. Aronszajn, “Theory of reproducing kernels,” Transactions of the American mathematical

society, pp. 337–404, 1950.

[11] J. Bae, P. Chhatbar, J. Francis, J. Sanchez, and P. Jose, “Reinforcement learning via kernel

temporal difference,” in 33th IEEE Annual International Conference of the EMBS, 2011.

http://link.aps.org/doi/10.1103/PhysRevE.64.061907


126 Bibliography

[12] M. Beauchemin, “A density-based similarity matrix construction for spectral clustering,”

Neurocomputing, vol. 151, pp. 835–844, 2015.

[13] L. Belanche, “Developments in kernel design,” in European Symposium on Artificial Neural

Networks, Computational Intelligence and Machine Learning. ESANN, 2013, pp. 369–378.

[14] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data repre-

sentation,” Neural computation, vol. 15, no. 6, pp. 1373–1396, 2003.

[15] S. Bhattacharyya, A. Sengupta, T. Chakraborti, A. Konar, and D. Tibarewala, “Automatic

feature selection of motor imagery eeg signals using differential evolution and learning au-

tomata,” Medical & biological engineering & computing, vol. 52, no. 2, pp. 131–139, 2014.

[16] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[17] B. Blankertz, G. Dornhege, M. Krauledat, K.-R. MÃ1
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[94] W. Liu, J. C. Pŕıncipe, and S. Haykin, Kernel Adaptive Filtering: A Comprehensive Intro-

duction. John Wiley & Sons, Inc., 2010.

[95] Y. Lu, L. Wang, J. Lu, J. Yang, and C. Shen, “Multiple kernel clustering based on centered

kernel alignment,” Pattern Recognition, 2014.

[96] B. Mao, N. Guan, D. Tao, X. Huang, and Z. Luo, “Correntropy induced metric based graph

regularized non-negative matrix factorization,” in Security, Pattern Analysis, and Cybernetics

(SPAC), 2014 International Conference on. IEEE, 2014, pp. 163–168.

[97] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human segmented natural

images and its application to evaluating segmentation algorithms and measuring ecological

statistics,” in ICCV, vol. 2, July 2001, pp. 416–423.



132 Bibliography

[98] J. D. Mart́ınez, D. Cardenas, and G. Castellanos, “Extraction of stationary components in

biosignal discrimination,” in 34th IEEE EMBS Annual International Conference, 2012.

[99] J. D. Mart́ınez-Vargas, J. I. Godino Llorente et al., “Time–frequency based feature selection

for discrimination of non-stationary biosignals,” EURASIP Journal on Advances in Signal

Processing, vol. 2012, no. 1, pp. 1–18, 2012.

[100] M. Meila and J. Shi, “A random walks view of spectral segmentation,” in AI and STATIS-

TICS, 2001.

[101] P. Metzner, L. Putzig, and I. Horenko, “Analysis of persistent non-stationary time series

and applications,” Accepted for publication in Communications in applied mathematics and

computational science, 2012.
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