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Abstract
Electroencephalography Source Imaging (ESI) techniques have become the most attractive

alternative to support the estimation of neuronal activity through the mapping of electrical

potentials measured over the scalp. It takes advantage of the low implementation cost, the

high temporal resolution, and non-invasiveness in the patient. ESI techniques require a volu-

metric conductor model (commonly named Electroencephalography (EEG) Forward Model),

including information about the physiological and geometrical properties of the head, and

modeling the electromagnetic field propagation of the neuronal activity throughout the head

tissues to reach the scalp. In this regard, the accuracy of ESI solutions depends partially

on the capabilities of the forward model to correctly describe the structural information

provided by a Magnetic Resonance Image (MRI). However, acquiring MRIs for generating

personalized head models is expensive, slow, and in some cases unpractical. In this work,

we investigate how the head model influences the source reconstruction based on EEG when

progressively including different levels of prior structural information. Hence, we evaluate

two approaches to enhance the model of brain structure in the EEG forward problem for-

mulation. First, the incorporation of different brain tissue morphology, mainly, based on a

Generic MRI, based on a target population Atlas, or based on a patient-specific MRI. Se-

cond, the variation of the tissue model complexity in the number of segmented brain layers.

All the head models are build using the Finite Difference Reciprocity Method (FDRM).

Model comparison is carried out under a Parametric Empirical Bayesian (PEB) framework

using Event-Related Potentials (ERPs) taken from the studied population. Obtained results

show that the more realistic and subject dependent model, the better performance of the

ESI solution.

Keywords: EEG, Forward model, ESI, BMS.
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Resumen
Las técnicas de reconstrucción de fuentes basadas en Electroencefalograf́ıa (ESI) son la al-

ternativa más interesante para la estimación de fuentes mediante los potenciales eléctricos

medidos sobre el cuero cabelludo, aprovechando el bajo costo de implementación, la alta

resolución temporal, y la poca invasión que requiere en el paciente. Es por esto, que estas

técnicas requieren un modelo de conducción volumétrico (comúnmente llamado modelo di-

recto), que incluye información de las propiedades f́ısicas y geométricas de la cabeza, ademÃ¡s

de modelar la propagación del campo electromagnético generado por la actividad neuronal

a través de los diferentes tejidos de la cabeza hasta alcanzar el cuero cabelludo. En este

sentido, el correcto desempeño de las técnicas ESI depende directamente de las capacidades

del modelo directo para describir de manera apropiada la información estructural aportada

por una Imagen por Resonancia Magnética (MRI). Sin embargo, adquirir MRIs para generar

modelos de la cabeza personalizados, es costoso, lento, y en algunos casos poco práctico. En

este trabajo, se investiga la manera en que el modelo directo influencia la tarea de recons-

trucción de fuentes basada en EEG, incluyendo de manera progresiva diferentes niveles de

información estructural relacionada al paciente. Aśı, se evaluan dos enfoques espećıficos para

mejorar el modelo de la estructura cerebral en la formulación del problema directo de EEG.

El primer enfoque está relacionado con la incorporación de diferentes morfoloǵıas de tejido

cerebral, principalmente, basadas en un MRI genérico, un atlas de la población estudiada,

ó en el MRI espećıfico del paciente. El segundo enfoque es la variación de la complejidad

del modelo en términos de el número de tejidos segmentados en el cerebro. En este trabajo

el modelo directo se soluciona usando el Método de Diferencias Finitas con Reciprocidad

(FDRM). La comparación de modelos se realiza bajo un framework Bayesiano Emṕırico Pa-

ramétrico (PEB), que permite contrastar los diferentes enfoques del modelo directo, usando

datos reales. En general, los resultados obtenidos muestran que usar modelos más realistas

y más dependientes de la población de estudio, mejora significativamente el desempeño de

las técnicas ESI.

Palabras clave: EEG, Modelo directo, ESI, BMS.
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1 Preliminaries

1.1. Introduction

The neuroscience arises from the brain study, making the complete understanding of brain

functioning of great interest in applications as treatment of some brain diseases or inter-

pretation of the human cognitive processes. However, one of the most limiting problems

is the detection and extraction of functional information related to the brain. Hence, non-

invasive techniques have been developed to extract information about brain functions, based

on the measurement of electrophysiological, hemodynamic, metabolic and neurochemical

processes caused by the functioning of the human brain [3]. Most representative methods

include Positron Emission Tomography (PET), functional Magnetic Resonance Imaging (fM-

RI), functional Near-Infrared Spectroscopy (fNIRS), among others. These techniques offer

an excellent spatial resolution, favoring the precise identification of active areas related to

particular brain states [60]. Nonetheless, such methods are expensive and, mostly, offer a

poor temporal resolution, reducing the possibility of analyzing temporal dynamics in the

brain.

Additionally, other methods can also be used to study the brain functioning, among them,

Magnetoencephalography (MEG) and Electroencephalography (EEG) [27]. These techniques

offer a high temporal resolution, allowing the characterization of brain activity with millise-

conds time resolution [41]. EEG is most used than MEG and the methods mentioned above,

primarily because of the lower implementation cost. For this reason, the EEG signals are

widely used in applications that require a better temporal resolution for monitoring the brain

dynamics. Nevertheless, EEG recordings indirectly provide spatial information due to they

are measured by electrodes disposed on the scalp. Thus, when EEG data are combined with

structural information, as the provided by the Magnetic Resonance Images (MRI), it opens

the possibility of determining the location of activity sources in the brain. This process is

referred to as EEG source imaging (ESI).

ESI Solutions in general needs two different components working together. First, a volume-

tric conductivity model (commonly known as EEG forward model or head model) including

information about the physical and geometrical properties of the head for describing the elec-

tromagnetic field propagation of the neuronal activity throughout the head tissues to reach

the scalp [58]. Second, a source localization technique (also known as the inverse solution),

that takes advantage of the information provided by the forward model and estimates the

possible current sources within the brain associated with the sensor measurements. Thus,
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the acquired EEG recordings and the defined head model are used to reconstruct the sources

of neuronal activity [19]. Regarding this, estimation of the current sources in the brain is an

ill-posed problem, i.e., small variations in the measured data lead to significant changes in the

result, generating non-uniqueness of solutions. This unstable behavior is due to the number

of electrodes measuring the electrical activity is relatively small respect to the discretized

brain activity sources, additionally to the lousy signal to noise ratio in the EEG. To deal

with this effect of non-uniqueness is necessary to include more information about the head

structure and the temporal dynamics to constraint the result to a unique and optimal so-

lution [19]. Thus, the head model generation should be influenced by information reflecting

anatomical and physical properties of the head compartments (the named prior informa-

tion). Consequently, the accuracy of ESI solutions depends partially on the capabilities of

the forward model to correctly describe the structural information provided by an MRI or a

Computerized Tomography (CT). Nevertheless, acquiring MRIs for generating personalized

head models is expensive, and in some cases unpractical. In consequence, a template MRI

is used when patient-specific anatomical images are not available. As a result, head models

are commonly constructed based on the anatomy of an arbitrary subject not belonging to

the patient or population under study (template head models) [63]. However, diverse works

have shown that source localization is enhanced in ESI when the physical properties of the

head are modeled with the information provided by the patient-specific MRI [22, 56, 10].

Regarding the Forward Model computation, an analytical solution is only possible for par-

ticular cases whit a highly symmetrical head geometry. For more general cases, numerical

methods are required, allowing to solve volume conductor head models with free form and

enabling the estimation of the electrical potentials at any location in the volume. There

are several numerical methods to obtain a forward solution, among them spherical models,

Boundary Finite Elements (BEM), Finite Elements Method (FEM), Finite Difference Met-

hod (FDM), Finite Difference Reciprocity Method (FDRM) and Finite Volume Method

(FVM) [9, 42, 20, 16]. For a basic head modeling, a 3-Layers template head volume made

with boundary element method (BEM) is often used, including scalp, skull and brain com-

partments [58]. However, these models usually do not include cerebrospinal fluid (CSF) and

white matter (WM), which affect the current-flow between sources and electrodes. Besides,

BEM solves the forward potentials only for the interfaces between two neighbor tissues. As a

result, BEM interpolates the potential in the scalp induced by a dipole inside the GM. In this

work, we used FDRM since MRI data is usually acquired in regular formats of digitalization,

that can be adapted to a regular grid.

This work is focused on one of the principal topics on ESI, specifically, the forward model

of the EEG data. We investigate how the head model influences the source reconstruction

based on EEG when we progressively include different levels of prior structural information.

In this regard, we evaluate two approaches to enhance the model of brain structure in the

EEG forward problem formulation. First, the progressive incorporation of the brain tissue

morphology, mainly, based on a Generic MRI, based on a target population Atlas, or based on
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a patient-specific MRI. Second, the variation of the tissue model complexity by augmenting

the number of segmented brain layers. The mixing of the aforementioned levels of model

complexity and the different anatomic structure priors give a set of nine testing scenarios.

The scenarios comparison is made regarding the achieved ESI precision. We use a Bayesian

approach to invert the forward model. Concretely, we use Multiple Sparse Priors (MSP) and

Low-Resolution Tomography (LOR) techniques, which provide an alternative for testing

forward models using real data. The measuring of performance is made with the model

evidence corresponding to each scenario. We evaluated the testing scenarios using real-world

data of 25 subjects. Obtained results prove that more accurate and realistic forward models

will lead to more precise ESI solutions.

1.2. Objectives

Based on the previously mentioned open issues, we develop this work around one general

objective, which is divided into three specific objectives, as follows:

1.2.1. General Objective

To develop a methodology for generating realistic and personalized conductivity head mo-

dels, that includes the geometry of different brain structures (gray matter, white matter,

CSF, skull, scalp). Head models should improve the performance of Electroencephalograp-

hic Source Imaging on Event Related Potentials (ERPs) data.

1.2.2. Specific Objectives

1. To propose a methodology for generating personalized forward models, allowing the

inclusion of prior structural information and different levels of model complexity.

2. To develop a methodology for estimating a neural source space using patient-specific

structural information.

3. To evaluate and compare the performance of forward models in the EEG source re-

construction task.

1.3. Outline

The present research work is divided into three more chapters and can be read as follows:

In chapter 2 a review of the main topics behind the ESI techniques are given to put in

perspective the focus of this work. In the first section, considering that the neuroimaging
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arises from the brain study, we briefly describe the anatomy and physiology of the brain.

In the second part, we introduce the EEG concept and summarize the recording process

and relevant applications. The third section is fixed to describe the principles of EEG for-

ward modeling. Thus, we establish the current dipole as source simplification and define the

reason why is necessary a representation of the electromagnetic and geometrical properties

of the head, modeling the field propagation of the current dipoles to the electrodes. Hence,

we introduce the algebraic representation of the forward model and provide the numerical

framework employed for the solution. A pipeline description of the proposed methodology

for head model estimation is provided at the end. The final section is destined to present

the Bayesian Framework to solve the inverse problem in the ESI task, as well as define tools

for the measure, evaluation and comparison of the head models performance. We start by

describing the Bayes’ theorem and follow introducing the Bayesian formulation of the EEG

inverse problem. Next, we describe an approach to add multiple priors concerning covariance

components, as well as the free energy cost function optimized to obtain a unique solution.

By last, we set the free energy as an approximation of the model evidence and explain why

it can be employed to compare the performance of different forward models using realistic

EEG data.

In the chapter 3 we present a methodology for generating personalized head models, as well

as an evaluation of their performance in the reconstruction of neuronal source activity from

event-related potentials (ERPs). We evaluate two approaches to enhance the model of brain

structure in the EEG forward problem formulation, mainly, the progressive incorporation of

closer knowledge of the brain tissue morphology concerning each patient, and the variation

of tissue model complexity by augmenting the number of segmented brain layers. Initially,

we describe the patient-specific data used in the forward model generation and validation of

the proposed methodology. Starting from this, we present a set of testing scenarios, which in-

cludes the combination of different levels of model complexity and different prior anatomical

structures. The model comparison is made using the Bayesian Model Selection (BMS) fra-

mework presented in chapter 2, allowing to evaluate the enhancement of ESI in the different

testing scenarios. The last section of this chapter is destined to the discussion of obtained

results.

Finally, conclusions and possibilities for future research work are given in chapter 4.

1.4. Academic Discussion

Journal papers

Céspedes-Villar, Y. R., Mart́ınez-Vargas, J. D., Cuartas-Morales, E., & Castellanos-Dominguez,

C. (2017, October). Enhanced EEG source imaging using realistic patient-specific head mo-

dels. Accepted for revision.
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Céspedes-Villar, Y.R., Alvarez-Meza, A. M., & Castellanos-Dominguez, G. (2016, April).

Relevant feature extraction for motor imagery discrimination - REMI.



2 EEG Source Imaging

2.1. Introduction

Electroencephalographic Source Imaging (ESI) techniques allow the estimation of neuronal

activity through the electrical potentials measured over the scalp. EEG is commonly used in

the task of source reconstruction because of their advantages in implementation cost, high

temporal resolution, and non-invasiveness in the patient. Brain source reconstruction requires

three components. First, a recording of the Electroencephalographic (EEG) signals. Second,

a correct modeling of the conduction and morphology of the different head compartments.

Third, a technique for inverse mapping of the measured activity from electrodes to the

sources. In this regard, the accuracy of ESI solutions directly depends on the capabilities

of the forward model to properly describe the information provided by individual structural

Magnetic Resonance Image (MRI).

This chapter gives a brief review of the aforementioned main topics around the ESI techni-

ques. In the first part, we focus on describing the brain anatomy, beginning with the neuron

as a primary component, and generalizing in the description of the brain structures and their

functions. In the second part, we summarize the EEG activity recording process, explaining

its origin, primary stages, and significant applications. The next section is dedicated to pre-

sent the head modeling methods employed in this work. Thus, a pipeline description of the

methodology for forward model computing is provided. The final section is dedicated to the

solution to ESI task under a Bayesian Framework, as well as a method to assess the obtained

performance of the estimated head model.

2.2. The brain

The brain is found within the head, covered by several layers of tissues. It is the most complex

organ in the human body and serves as the center of the nervous system. Neuroimaging

arises from the brain study, being of great importance the knowledge of its basic anatomic

components and how they work synergistically. In this sense, to understand the functioning

of the brain, it is first necessary to describe its main component, the neuron cell. Briefly, the

job of neuron cells consists of receive and transmit information through electric impulses in a

complex neuronal network. The communication between two neurons is called synapses [54].

In a human, cerebral cortex contains approximately 100 billion neurons [2, 45, 44, 12, 62,
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29, 43, 23], each one connected by synapses to several thousand other neurons. The neurons

present typical morphologic features (see Figure 2-1) [28]:

Dendrite

Nucleus

Axon

Cell body

Myeline sheat

Axon terminal

Figure 2-1: neuron Structure: -Cell body: Also named perikaryon or soma. It contends

the nucleus and all the components of any eukaryotic cell. -Nucleus: Located

at cell body. It contents the information that drives the neuron in his general

functioning.-Dendrites: Are prolongations that originate in the cell body. His

function is to receive the impulses of others neurons and send it to the cell

body.-Axon: It drives the impulses from the cell body towards other neurons.

In this section appears the synapses.

Brain structure

As a consequence of biological evolution different anatomical brain structures can be dis-

tinguished, mainly characterized by the typical arrangement of their neurons. The oldest

part of the brain is known as the brain stem and is responsible for basic vital life functions

such as breathing, heartbeat, and blood pressure. Attached to the rear of the brain stem

is found the cerebellum, meaning ”little brain”. It is assumed to be much older than the

cerebrum, and its structure is associated with regulation and coordination of movement,

posture, and balance. It has two hemispheres and has a highly folded surface. Next, is loca-

ted the youngest part of the human brain, the cerebrum, which is divided into the left and

right hemisphere. The cerebrum or cortex is the largest part of the human brain, associated

with higher brain functions such as thought and action. The inner layer of the cerebrum is

the white matter, which contains the myelinated axons, also called tracts. The outermost

layer of the cerebrum is the cerebral cortex or gray matter, which contain the neurons’ cell

bodies and dendrites. It is heavily folded resulting in a much greater surface area inside the

skull volume. Additionally, the brain is covered by the scalp, skull, cerebrospinal fluid (CSF),

among others, which acts as a protective layer for the cerebral cortex. Especially, the CSF

serves as a transport conduit for nutrients to the brain and waste from the brain. All these

structures can be distinguished in the Figure 2-2.
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Scalp
Skull

Cerebrospinal
fluid (CSF)

Gray
matter

White

matter

Cerebellum

Brain Stem

Figure 2-2: Human Head anatomy.

Functional brain regions

The cerebral cortex is divided into four sections, called ”lobes”: the frontal lobe, parietal lobe,

occipital lobe, and temporal lobe. The frontal lobe is associated with reasoning, planning,

parts of speech, movement, emotions, and problem-solving. The parietal lobe is associated

with movement, orientation, recognition, and stimuli perception. The occipital lobe is related

to visual processing. The temporal lobe is associated with perception and recognition of

auditory stimuli, memory, and speech. A visual representation of the cortex division is shown

in Figure 2-3. There are different histological structure and organization of neurons, which

Parietal

lobe

Occipital 

lobe

Temporal

lobe

Frontal

lobe

Figure 2-3: Brain division in lobes.

makes each of them special for certain functions. This is how different neocortical regions,
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known as the Brodmann areas [17], can be distinguished. Brodmann areas are defined using

the neuronal organization and have been correlated closely to diverse cortical functions.

2.3. The Electroencephalography

A set of experiments showing the possibility of measuring and visualizing the electrical

activity of the human brain was shown in 1929 by [5]. They were done by the arrangement of

electrodes along the scalp, a posterior amplification of the obtained signal, and the graphing

over a period. This process was named as Electroencephalography (EEG). Each part of the

brain shows a mixture of rhythmic and nonrhythmic activity, which may vary according

to behavioral states, making EEG signals ideal for studying brain activity during cognitive

processes.

Given that EEG is a relatively cheap and easy applicable technique to record brain activity,

it can be applied to various fields: medicine, research, brain-computer interfaces, neuromar-

keting, among others. For example, EEG is most often used to diagnose epilepsy, which

causes abnormalities in EEG readings [59]. It is also used to diagnose sleep disorders, depth

of anesthesia, coma, encephalopathies, and brain death. Furthermore, EEG is a first-line

method of diagnosis of tumors, stroke and other focal brain disorders [8].

2.3.1. Event Related Potentials (ERPs)

Working with EEG signals is a challenge because they contain the mixed activity of con-

glomerations from thousands of neuronal sources, making hard the isolation of individual

neurocognitive processes. However, it is possible to extract neuronal responses associated

with specific sensory, cognitive and motor events embedded within the EEG [37]. These spe-

cific responses are known as Event-Related Potentials (ERPs) to denote the fact that there

are electrical potentials associated with specific events. The study of the brain in this way

provides a noninvasive method for evaluating brain functioning.

The EEG contains thousands of simultaneously ongoing brain processes, i.e., the brain res-

ponse to an event of interest is not usually visible in the EEG recording of a single trial. To

obtain the brain’s response to a specific event is necessary to record the EEG for a stimulus

several times to average them together, causing random brain activity to be averaged and

the response to the specific event to remain.

Ensemble averaging (EA) method has been widely used to extract the ERPs from a noisy

background. The method makes two critical assumptions: i) Assumes that on-going back-

ground EEG activity is a statistically random process, and will, therefore, be canceled out by

averaging over a large number of trials, leaving the non-random ERPs signals. ii) Assumes

that ERPs signal is the same or similar for each trial included in the average. An illustrative

example of this process is shown in Figure 2-4. The figure can be read as follows: First, A

EEG recording is performed to the subject while a set of stimulus (Target or non-Target)
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is presented. Stimuli are marked on the EEG signal, for segmentation purposes. Next, EEG

segments are averaged individually for each stimulus. As a result, ERPs are extracted. Fi-

gure 2-4 shows the process for the Pz channel but is reproducible for all others.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000Time (ms)
non-Target non-Target Target Target non-Target non-TargetEEG recorded on Pz Electrode +20 V- µ µ 

Recording and marking of stimulus 

non-Target

non- Tar get

Target

Target

non- Tar get

non-Target

0 200 400 600 800
-+Average of 80 non-Target Stimulus

Average of 20 Target Stimulus

Time (ms)

20 VEEG segmentation for
each stimulus

P1N1P2N2P3P1N1 P2 N2 P3Segmentation and averaging of stimulus

0 100 200 300 400 500-3+3
P1

P2

N1

N2

P3

Time after stimulus (ms)Potential (V) µ

Extracted ERP

Figure 2-4: Common stages in the extraction of Event Related Potentials

Unfortunately, ERPs signals have variational dynamics across stimulus trials during an ex-

periment. Such variations may be associated with fluctuating attention levels, adoption to

stimuli, fatigue, or other unknown factors. Thus EA methods may fail to track trial-to-trial

variations both in latency and amplitude. For this reason, different models to extract the

relevant information had been employed during past years, including Wiener filter, Adaptive

filter, Maximum-Likelihood Method and Autoregressive Process [34, 30, 6, 26, 32].

2.4. EEG Forward Problem

One neuron generates a small amount of electrical activity in the order of Femtoamperes.

This small amount cannot be picked up by surface electrodes. When a large group of neu-

rons (approximately 1× 106 neurons) is simultaneously active, the electrical activity is large

enough to be picked up by the electrodes at the surface, thus generating a significant EEG

signal [19]. This physical limitation defines the spatial resolution of EEG source imaging.

So, the electrical activity of a group of neurons can be modeled as a current dipole. The

current flow of the dipole causes an electric field and also a potential field inside the human

head, which extends to the scalp. A volume conductor should be constructed to model the
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field propagation, by incorporating structural priors about the human head compartments.

Commonly, priors are constructed from structural Magnetic Resonance Image (MRI). ESI

task requires the volume conductor for modeling the conductivity patterns that allow calcu-

lating the propagation of sources towards the electrodes [20]. Modeling the field propagation

of sources towards the electrodes generate a projector referred to as the lead field matrix.

Thus, the Forward problem consists of calculating the EEG signal when we know the source

location.

2.4.1. Mathematical statement of the Forward Problem

In the EEG source imaging (ESI), the EEG forward problem solution involves the estimation

of the electrical potentials on the scalp surface ΓΩ, based on the electrical conductivity and

geometry provided by the head volume conductor Ω. Due to the relevant frequencies of the

EEG spectrum are below 100 Hz, the quasi-static approximation of Maxwell’s equations are

used to estimate the potential fields V (x, y, z) ∈ <, with x, y, z ∈ Ω for a given distribution

of Nc electrodes over the scalp (V ⊂ΓΩ). Generally, the forward problem solution relies upon

the inhomogeneous anisotropic Poisson equation, as follows:

∇ · (Σ(x, y, z)∇V (x, y, z)) = −∇ · J(xιf , yιf , zιf ), x, y, z ∈ Ω (2-1)

where J(xιf , yιf , zιf ) ∈ < is the electric current density, and values xιf , yιf , zιf ∈ Ω represent

the position of the current source ιf , assuming −∇·J=ιf . Moreover,Σ(x, y, z) ∈ <3×3 is the

spatially varying inhomogeneous and anisotropy conductivity tensor. In case of the isotropic

volumes, the conductivity Σ(x, y, z) is scalar-valued, i.e., Σ(x, y, z)=σI, where I ∈ <3×3 is

the identity matrix, and σ ∈ <+ is the scalar conductivity value. In this work we only use

isotropic conductivities.

2.4.2. Forward Solution

Nonetheless, the solution of Poisson equation for realistic head model depends on require-

ments that must be carefully fulfilled: i) the boundary conditions between two compartments

with different conductivities (Neumann and Dirichlet), and ii) A numerical framework allo-

wing a piecewise solution for the partial differential equations in a volumetric and irregular

domain [20, 61]. To this purpose, we solve the potential unknowns only for the original

domain Ω, following the particular Neumman homogeneous condition in the interface ΓΩ,

where no current can be injected into the air outside the human head. In this regard, ΓΩ
is the boundary limit where the potential values are significant (different to zero). Hence,

the original domain Ω holding the interface ΓΩ fully contains the non-zero forward poten-

tials. Therefore, Equation (2-1) is discretized using the Finite Difference Reciprocity Method

(FDRM) formulation [9], building a linear equation for the unknown V j
0 around the stencil
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Sj with 18 neighboring vertexes V j
i for the FDRM solution, as follows:

18∑
i∈Sj

αjiV
j
i −

 18∑
i∈Sj

αji

V j
0 = ιf , (2-2)

where V j
i ∈ < is the scalar-valued potential at the i-th neighbor vertex of the j-th node

in the stencil Sj, ιf ∈ < is the dipole current, and αji ∈ < are the FDM coefficients form

depending on the conductivity tensor Σ and the inter-node distance h [55].

Generally speaking, Equation (2-2) results in a linear system that is solved using BiCG

stabilized solver with iLU preconditioning [9]. However, the system implementation requires

a high computational burden. A pre-calculation of reciprocity potentials is employed to

speed up the computation of the inverse solutions. As a result, we calculate a lead field

matrix Lm ∈ <Nc×Nd for a given electrode disposition with Nc channels, and source space

with Nd sources (dipoles) located on the cortical surface with fixed orientation perpendicular

to it.

2.4.3. Proposed methodology for head model generation

In Figure 2-5 the pipeline of the head model generation stage is shown. It can be read as

follows: (i) a volumetric segmentation of the different tissues are obtained from the MRI,

(ii) a mesh of electrodes is coregistered and projected over the scalp surface, (iii) a volume

conductor is established for the segmentation, (iv) a source space is selected, and finally (v)

the Forward solution is done using the Finite Differences Reciprocity Method (FDRM).

Figure 2-5: Forward modeling: The solution is carried out in a voxel-wise conductivity

framework for a leadfield reciprocity space of a coregistered electrodes set. The

solution of the forward problem is carried out using the FDRM algorithm.

Electrode co-registering

The forward model is strongly influenced by the correct electrodes positioning over the scalp
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because the electrodes are directly related to the sources position and the described field

propagation. In this work, we use affine transformations on the MRI to co-register predefined

electrodes mesh in the head model and to wrap it over the scalp surface.

Source space

Forward modeling requires a source space located inside the brain. Due to most of the EEG

signals are generated by sources located in the cerebral cortex, the dipole source space is

restricted to the gray matter. To confine all sources of brain electrical activity to the gray

matter, we apply a dilation-based morphological operator over the volumetric segmentation

of white matter, resulting in a segmented middle area between the cortex and WM boun-

dary. Thus, we initially triangulate a neocortex surface representation having more than

2× 106 vertexes, which further are down-sampled using a quadratic edge decimation to pro-

duce approximately 10,000 vertexes. Every single vertex becomes a source position so that

the triangulation procedure brings the connectivity map, containing the information about

the spatial relationship between the neighbor sources to every single voxel. The schematic

representation of the proposed methodology for producing the source space is presented in

Figure 2-6.

Figure 2-6: Source space dependent on MRI.

Conductivity values

For the different compartments the scalar conductivity values are fixed as display the Table 2-

1.

2.5. Bayesian Framework for ESI

The ESI goal is to obtain the neuronal activity as accurate as possible. It is done using

the information provided by the EEG recordings and a defined head modeling [19]. Based
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Tissue σ(S/m)

Scalp 0.43

Skull 0.01

CSF 1.79

WM 0.14

GM 0.33

Table 2-1: Overview of the tissue conductivities. Values provided by [64].

on the forward model, EEG data can be generated assuming some active current dipoles.

However, estimating the location and distribution of these current sources leads to an issue.

Due to the relatively small number of electrodes measuring the brain electrical activity (a

couple of hundred at best), and a large number of discretized brain activity generators (up

to several thousand), it leads to a mathematical ill-posed problem. In short, the amount of

information to be determined is much more than the available information. This problem is

commonly referred to as the EEG inverse problem. Several techniques have been proposed

to find a unique solution by minimizing the difference between the generated EEG data and

the measured EEG data, i.e. the residuals. Each inverse technique will differ depending on

the nature of the forward model and the optimized cost-function to find the optimal dipole

parameters, i.e., the locations and the intensities of the dipoles. Mainly, distributed dipoles

approaches are employed, which represent a highly under-determined but linear system.

Classical and most popular distributed dipoles approach can be framed regarding a Weighted

Minimum Norm criterion (WMN), which obtain a unique solution by optimizing an accuracy

term and a regularization term in a carefully balanced way. Hence, we introduce a Bayesian

statistical approach to solve the inverse problem for ESI. The Bayesian approach establishes

the ESI as a linear problem formulated on a distributed source model, allowing to include

multiple source priors for EEG source imaging. Additionally, a generalized cost function is

derived, i.e. the free energy, that is optimized to find a unique solution using the Restricted

Maximum Likelihood (ReML) algorithm. Finally, we show the Bayesian Framework for ESI,

which can be used to compare different forward models depending on the measured EEG

data.

2.5.1. Probability and Bayesian Inference

For the sake of simplicity, we will now drop notation depicting data from each EEG segment,

and describe the inversion procedure for any segment of data Y ∈ <Nc×Nt with Nc number

of channels and Nt time samples. Hence, Y is given by [19, 11]:

Y =LJ + Ξ, (2-3)



16 2 EEG Source Imaging

where J ∈ <Nd×Nt is the amplitude of the Nd current dipoles distributed through the cortical

surface with fixed orientation perpendicular to it, and L ∈ <Nc×Nd is the lead field matrix

linking the source amplitudes in J of the assumed dipoles on fixed locations to the electrical

potential in EEG data Y . We assume that the EEG measured data are affected by a zero

mean Gaussian noise Ξ ∈ <Nc×Nt with covariance QΞ.

Generally, source estimation can be expressed by the expected value of the posterior source

activity distribution, which can be computed from the input data using the Bayes’ theorem,

in the form:

p(J |Y )=
p(Y |J)p(J)

p(Y )
, (2-4)

thereby, we can solve Equation (2-4) by assuming that J is a zero mean Gaussian process

with prior covariance cov(J) = Q, with Q ∈ <Nd×Nd . Thus, brain activity estimation, Ĵ , is

carried out by solving the widely known maximum-a-posteriori problem as follows:

Ĵ = argmax
J

p(J |Y ) = argmax
J

p(Y |J)p(J), (2-5)

The optimization problem of Equation (2-5) yields the estimate Ĵ=QLT (QΞ +LQLT )−1Y ,

that requires prior knowledge about the sensor noise covarianceQΞ and the source covariance

matrix Q. In order to supply the sensor noise covariance, we set QΞ=exp(λΞ)INC
where

INC
∈ <NC×NC is an identity matrix scaled by a hyperparameter modulating the sensor

noise variance λΞ [50]. We use two different alternatives to supply the source covariance

matrix Q where the sources are smoothed:

Multiple Sparse Priors (MSP): Where the source covariance matrix is constructed as a

sum of a set of P patches {Qp, p=1, . . . , P} each one reflecting one potentially activated

region of cortex, weighted by the respective hyperparameter λp, as follows [15]:

Q=
P∑
p=1

exp(λp)Qp, (2-6)

Low-Resolution Tomography (LOR): Is assumed that the sources are smoothed, and

multiple dipoles are related in focal region [47, 48]. A way to obtain a smoother is proposed

in [21], where a Green’s structural MRI is introduced, taking into account the inter-voxel

distance and connections between sulci. The source covariance matrix, holding a Laplacian

operator ∆ ∈ <D×D, that aims to represent the groups of neurons with synchronized acti-

vation, seeking for smoothness:

Q = exp(λ1)(L>∆>L∆)−1. (2-7)
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2.5.2. Free Energy as cost function

To estimate the hyperparameter set {λΞ, λP }, we use the so termed free energy [65]. In this

regard, for a given EEG recording and a certain forward model m, the free energy can be

expressed as [39]:

F (m)=−Nt

2
Tr(∆−1C)−Nt

2
ln |∆|−NcNt

2
ln2π− 1

2
(µ−η)TΩ−1(µ−η)+

1

2
ln
∣∣ΥΩ−1

∣∣ , (2-8)

where ∆ ∈ <Nc×Nc is the estimated model covariance, computed as ∆=LQL>+QΞ ; C ∈
<Nc×Nc is the measured data covariance, µ,η ∈ <Np×1 are the prior and posteriors means of

the hyperparameters {λΞ , λp}. Likewise, Υ,Ω ∈ <P×P are the posterior and prior hyperpa-

rameter covariances. | · | represent the matrix determinant operator.

Therefore, maximizing the free energy cost function estimated in (2-8) can be considered

as a trade-off between the accuracy of the solution and the complexity of the solution. The

accuracy (the first two terms) penalizes the difference in variance between the measured

EEG data Y and the estimated solution Ŷ =LJ . The complexity (the last two terms) gives

a measure of the difficulty level to optimize the hyperparameters for a given prior. Hence,

the free energy defined in Equation (2-8) can be divided as follows:

F (m)=accuracy(λ)− complexity(λ), (2-9)

The Free Energy can be maximized using standard variational schemes [65]. To perform this

optimization scheme, we use a greedy search (GS) algorithm. Further, the set of GS hyper-

parameters were tuned through the Restricted Maximum Likelihood (ReML) algorithm, as

explained and detailed in [4, 15].

2.5.3. Bayesian model selection (BMS)

Now, suppose that we want to compare different forward models using the Bayesian Frame-

work. So, making the dependency on a certain forward model m, Equation (2-4) is rewritten

as [36]:

p(Jm|Y ,m)=
p(Y |Jm,m)p(Jm)

p(Y |m)
, (2-10)

where p(Jm) represents the prior assumptions about the source activity and p(Y |m) the

model evidence.

The log evidence after inversion log p(Y, λ̂), i.e. the free energy computed with the optimal

set of estimated hyperparameters, provides an approximation to the log model evidence

log p(Y |m) [36, 35]. Thus, the free energy can be used for Bayesian model selection. Hence,

some metrics based on the free energy values are defined to test the likelihood of obtaining

a model in favor of another model, given the EEG data.
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Fixed Effects analysis: The free energy values corresponding with different forward models

m can be used to compare model performance in source reconstruction task, using Bayesian

model selection [22]. In turn, free energy values can be evaluated in a fixed effects analysis

comparing the log Bayes factors (ψ). For two models m1 and m2 the log Bayes factor is

defined as:

log(ψ(m1,m2))=
p(Y |m1)

p(Y |m2)
=F (m1)− F (m2), (2-11)

where F (m1) and F (m2) are the free energy corresponding with a model 1 and a model 2,

respectively. The log group Bayes factor (Ψ) is defined as the sum of the individual log Bayes

factors over N subjects as follows:

log(Ψ)=
N∑
n=1

log(ψn(mi,mj)), (2-12)

where, the subscripts i, j refer to the models being compared, and N is the number of

subjects. According to [49], a model can be chosen in favor of another when there is a

difference larger than three units. This criteria apply for both the log ψ and the log Ψ at

group level. It is worth to note that Ψ is a simple index for direct model comparison and it

does not account for group heterogeneity or outliers.

Random-effects analysis: The expected posterior model frequencies and exceedance pro-

babilities quantify the probability that a particular model generated the data for any ran-

domly selected subject, compared with the other models. In this sense, these metrics are

calculated using a random-effects approach, treating each model as a random variable and

estimating the parameters of a Dirichlet distribution that describes the probabilities for all

considered models [57].

The expected posterior model frequency reflects the proportion of participants that support

a certain model, and is defined as:

rk=
αk

α1 + ...+ αK
, (2-13)

being k=1, ..., K and K the number of models, αi with i=1, ..., K, the Dirichlet parameters

and rk representing the expected likelihood of obtaining the k − th model over all the other

models.

The exceedance probability represents the possibility that a model has the highest posterior

probability, respect to other models, given the group data Y :

φk = p(rk > rj|Y ;α), (2-14)

where j = 1, ..., K and j 6= k, α = [α1, ..., αK ] are the Dirichlet parameters. To quantify

and establish the reliability obtained results based on the exceedance probabilities and the
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expected posterior model frequency, the Bayesian omnibus risk (BOR) is commonly used [53].

It directly quantifies the probability that the expected posterior model frequencies are all

equal to each other and therefore evaluates the probability that the observed findings may

have occurred by chance. The BOR can be taken as an error rate, in that the rule establishes

that when the BOR is smaller than 0.25, we can be confident in choosing the best model

based on the results of the exceedance probabilities [53].



3 ESI performance when using

individually-defined head models

3.1. Introduction

The goal of ESI is to obtain the neural generators of electrical brain activity measured on

the scalp. It implies a direct influence between the forward model capabilities for closely

describe the head structural patterns and the source imaging performance. To review this

influence, we evaluate two approaches to enhance the model of brain structure in the EEG

forward problem formulation: i) Incorporating progressively more realistic knowledge of the

brain tissue morphology concerning each patient. ii) Varying the tissue model complexity

by augmenting the number of segmented brain layers. In brief, this chapter is referred to the

study of the forward model influence in the ESI task, mainly, the after-effects of including

several tissues and personalized prior structural information.

Head models are built using the Fieldtrip Toolbox in the tissues segmentation, and the

Finite Difference Reciprocity Method (FDRM) [9] as a numeric approximation to the forward

solution. ESI and Bayesian Model Selection are made using the functions implemented in

the Statistical Parametric Mapping software (SPM12) for neuroimaging.

3.2. Enhanced brain tissue modeling for improving the

performance of ESI

With the aim of improving the performance of ESI, we evaluate two approaches to enhan-

ce the model of brain structure in the EEG forward problem formulation: i) Encouraging

patient-dependent data by incorporating more realistic knowledge of the brain tissue morpho-

logy concerning each patient. For comparison, the anatomical structure priors are extracted

from the following cases of image data: a standardized MRI template (NY), a demographic

population atlas (AT), or a set of patient-specific MRI scans (PD). ii) Constructing a mo-

re precise volumetric tissue model by augmenting the number of segmented brain tissues.

Namely, we contrast the following configurations of tissue model complexity: three-layer

arrangement (noted as 3L), including brain, skull, and scalp. 4L, adding CSF to the 3L

configuration. 5L, dividing the brain layer of 4L in white matter and gray matter. The

testing outline is shown in Figure 3-1.
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Figure 3-1: Schematic representation of the tested methodology to enhance the brain tis-

sue model within the EEG forward problem formulation. The top row within

the blue box shows the proposed individually defined head modeling, including

patient dependent structural MRI, individual MRI segmentation, FDRM and

individual source space modeling. Left middle and bottom boxes show the com-

paring structural information, namely, Atlas (AT) and New York (NY). The

top middle panel shows the different tissue complexity (3L, 4L, and 5L). The

remaining panel shows the source localization and the performance measure.

Evaluation of the proposed methodology to enhance the brain tissue model is accomplished

within the Bayesian formulation of the EEG inverse problem as shown in Figure 3-1, where

the MSP and LOR methods are carried out as the ESI solution. Head models are constructed

using the methodology described in chapter 2.
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3.2.1. Participants and patient-dependent brain image measures

The brain image data were acquired from 25 children within an age range between 5 to

16 years old, having two socio-cultural levels (high–medium and low–medium). All patients

were randomly selected from the preschool, elementary, and secondary courses at a few

private and public schools of Manizales city. For legal purposes, the children’s parents agreed

to participate in the research through a written permission. According to the children’s

historical data, the exclusion criteria were established for mental retardation, individuals

with neurological antecedents (history of head trauma, epilepsy, and related) or referring

psychiatric disorders (psychiatric hospitalization history, autism, and similar).

From each child, two brain image datasets were acquired: an MRI collection supplying the

anatomical priors of the brain tissues, and a EEG/ERP set that is employed for validation

of the EEG source imaging performance.

MRI: A set of T1-MRI scans are acquired from the same 25 children under study, employing

a 1,5 T General Electric OPTIMA MR 360 scanner with the following parameters: 1 mm

×1 mm pixel size, TR=6, TE=1,8, TI=450, and sagittal slices of 256×256 size and 1 mm

spacing. For each child, three scans are performed to be further averaged (using the free surfer

suite), yielding a single representative brain MRI with the goal of providing an enhanced

signal–to–noise ratio.

EEG/ERP: The brain activity data were obtained following an oddball experimental pa-

radigm for cognitive evoked potentials with rare visual stimuli, where each evoked stimulus

lasted 130 ms, while the time delay between the onsets of two consecutive stimuli was 1 s.

During each stimulation, the subjects had to pay attention to the rare stimulus (termed

target) and count their occurrence, ignoring the presence of remaining stimuli (non–targets).

The non–target stimuli were displayed on 80 % of the trials, whereas the target stimuli –on

20 % of remaining trials, resulting in approximately 160 non–target stimuli and 40 target

stimuli. The EEG recordings were collected using 19 electrodes symmetrically placed at the

standard positions of the international 10-20 system, operating a single (Cadwell) Easy III

EEG amplifier. Data were subsampled at 250 Hz and segmented in 1-s epochs, which were

averaged separately over each subject and stimulation condition. As a result, two ERPs were

obtained following the different stimulus conditions for each subject, namely, visual target

(V-T) and visual non-target (V-nT).

3.2.2. Head models integrating brain structure priors

For incorporating anatomical priors of the brain tissues in the EEG forward problem, we

evaluate the ESI performance individually over the following head models:
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Template-based head model (Noted as NY). A standardized volume conductor model

that avoids any patient-dependent or population-dependent information. As a patterned

template, we use the New York Head (NY) that is frequently used in neuroimage studies

whenever an individual MRI is not available. NY allows segmentation of one symmetric head

template (ICBM-152 v2009) into two tissue types (gray matter –GM, white matter –WM)

and partition of another symmetric template (ICBM-152 v6) into non-brain tissues (CSF,

skull, and scalp). Also, the segmentation of lower head part is extracted from an additional

head template averaged over 25 subjects provided by [24]. Thus, the segmented head tissues

together with extracted lower part are compounded into the NY head model.

Atlas head model (AT). An anatomical brain atlas is built to provide a more precise

demographic tissue information about a concrete population sample. So, we built a generic

atlas from the obtained 25 representative MRI scans, employing the Diffeomorphic Anatomi-

cal Registration (DARTEL) algorithm that generates a set of customized templates for the

considered brain tissues [18]. The use of DARTEL non–linearly transforms all individual pro-

babilistic partitions, initially provided by the Statistical Parametric Mapping (SPM) Matlab

Toolbox, merging them into a single template. The registration procedure is conducted du-

ring a fixed number of iterations for increasing the template crispness. To construct from all

patients the atlas that includes all tested tissues, DARTEL is applied using the following de-

fault parameters: Linear elastic energy regularization, Levenberg–Marquardt optimization,

and six outer iterations.

Patient–dependent head model (PD). This model of prior information includes patient-

dependent structure data individually and tends to provide a more specific knowledge of the

geometry of each child’s brain, performing an individual MRI segmentation of all conside-

red brain tissues separately. Nevertheless, the resulting segmentation, which is accomplished

using the FieldTrip pipeline [46], may contain some anatomic errors, like WM patches su-

rrounded by skull or skull exposed outside scalp. Therefore, the segmentation is corrected to

ensure that the GM tissue covers WM entirely, being contained by CSF at the same time.

It is worth noting that the brain segmentation procedure includes the neck area extracted

for each patient [31].

All considered head models are implemented using the methodology for the EEG forward

solution proposed in [9]. Figure 3-2 displays some examples of the applied segmentation for

the examined head models incorporating prior information.

3.2.3. Parameter selection

Source space. All sources of brain electrical activity are confined to the gray matter

applying a dilation-based morphological operator over the volumetric segmentation of white
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Figure 3-2: Exemplary of performed five–layered segmentation for the contrasted head mo-

dels to incorporate prior information into the EEG forward model formulation.

matter, as shown in chapter 2. It results in a segmented middle area between the cortex and

WM boundary, which is triangulated and downsampled using a quadratic edge decimation

to produce approximately 10,000 vertexes.
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Conductivity values. Based on the generated source space, then, the lead fields are

calculated from the performed segmentation of brain tissues for the tested head model con-

figuration (3L, 4L, and 5L), fixing the corresponding conductivity values to the suggested in

table 2-1 [64].

3.2.4. Validating scenarios of ESI

In accordance with the evaluated approaches to enhance the brain tissue model, we explore

the following nine scenarios for evaluating the direct EEG problem: 3L–NY, 4L–NY, 5L–

NY, 3L–AT, 4L–AT, 5L–AT, 3L–PD, 4L–PD, and 5L–PD.

In all scenarios, the source reconstruction of visual stimuli is validated using two ESI solu-

tions: LOR and MSP. In the former case, the Laplacian operator ∆ is included to represent

groups of neurons with synchronized activation (see Equation 2-7), modeling spatial coheren-

ce. In the case of MSP, the priors, needed to compute the set of covariance components, are

constructed as a sum of patches, each one reflecting one potentially activated region of cor-

tex weighted by the respective hyperparameter (see Equation 2-6). For either ESI solution,

priors are implemented by the Statistical Parametric Mapping (SPM12) software package,

where the number of covariance components is fixed to 1024 for MSP, which are formed by

sampling from evenly spaced columns of the coherence matrix as to cover the cortical sur-

face entirely. Besides, the MSP hyperparameters are tuned by maximizing the Free energy

through the Restricted Maximum Likelihood approach under a greedy search algorithm.

During validation, we employ Bayesian Model Selection (BMS), making the same group

studies as in [52]. This approach is based on the free energy as an approximation to the

Bayesian log evidence, yielding a reliable measure that shows which model is more probable

to generate the available data [58]. To this end, we compare the Free energy values of the

inverse solutions over subjects, corresponding with the ERPs elicited by each stimulation

condition. Then, the log group Bayes factor (ρL ∈ <), the expected likelihood (ρK ∈ <+)

and the Bayesian omnibus risk – BOR (ρB ∈ <+) are computed. In the log group Bayes

factor, one model can be chosen in favor of the other when there is a difference larger than

three points. Additionally, the exceedance probability expresses the belief that a model has

the highest posterior probability regarding the other ones. Besides, the BOR quantifies the

likelihood that the expected posterior model frequencies are all equal. Thus, if the BOR

is smaller than 0,25, the best model selected according to the exceedance probability is

trustworthy.

3.2.5. Results

Performed source imaging using anatomic structure priors

With the purpose of a better data visualization, all values of log Bayes factor (ψ) are repre-

sented through the radar charts that display the source imaging performance data in a radial
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pattern as shown in Figure 3-3. The star chart holds the ψ computed for the worst testing

scenario of each patient in reference to the other ones. As a result, the worst scenario fall to

zero, and the other are shown in positive differences. Therefore, the higher this computed

factor, the better the model performs the EEG source reconstruction [49]. Note that each

colored string depicts the performance obtained by a single subject, where the gray circle is

drawn for the cases of significant Bayes factor, having differences that are greater than three

points.

3L-NY

5L-PD

4L-PD

3L-PD

5L-AT4L-AT

3L-AT

5L-NY

4L-NY

3L-NY

5L-PD

4L-PD

3L-PD

5L-AT4L-AT

3L-AT

5L-NY

4L-NY

Visual-Target Visual-nonTarget

(a) LOR

3L-NY

5L-PD

4L-PD

3L-PD

5L-AT4L-AT

3L-AT

5L-NY

4L-NY

3L-NY

5L-PD

4L-PD

3L-PD

5L-AT4L-AT

3L-AT

5L-NY

4L-NY

Visual-Target Visual-nonTarget

3 3

(b) MSP

Figure 3-3: Radar chart showing the ψ values achieved by LOR as ESI solutions for each

scenario and patient
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Figure 3.3(a) displays the achieved performance by LOR source imaging solution, showing

that the testing scenarios of NY produce the highest values of ψ regardless of the considered

stimuli condition. At the same time, the AT head models perform the worst. In the case

of MSP solution, Figure 3.3(b) shows that all testing scenarios of NY models produce the

lowest values of ψ regardless of the considered stimuli. Concerning the AT models, the radar

charts also show that the reconstruction accuracy improves, meaning that the inclusion of

structural priors using the study population enhances the tissue model. However, the highest

values of ψ are achieved by the PD head models, resulting in the best model for incorporating

information about head tissues in the EEG forward problem. Another aspect to consider is

the variability provided by each ESI solution for every patient. Thus, although MSP produces

much fewer outliers than the LOR solution does, it is hard to select the best scenario during

validation of the individually–defined forward modeling.

Bayesian model selection of EEG source imaging methods

The BMS for group studies is employed, aiming to generalize the performance results achie-

ved by the examined ESI solutions across the whole patient set. Thus, BMS identifies the

best source reconstruction through a random effect analysis, assuming that each subject is

drawn from a large population of subjects so that his response represents an independent

sample from the overall distribution [7]. We conduct BMS through the expected posterior

probability and Bayesian omnibus risk (BOR), comparing the log model evidence for each

reconstruction at the group level.
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Figure 3-4: Results of Bayesian model selection shown as the expected posterior probability

and Bayesian omnibus risk assessed by each testing scenario of brain tissue

model. Here, both LOR and MSP are used as ESI solution methods.

Figure 3-4 presents the performed results, comparing together all the testing scenarios of

MSP and LOR solutions. It is worth noting that the confidence for the expected posterior

probability is adequate for the considered visual stimuli (BOR lesser than 0,25).
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On the other hand, MSP performs better results than LOR in all stimuli condition despite the

tested scenario of head model, making evident the superiority of the former solution regarding

the achieved reconstruction accuracy. This effect may be explained relaying the fact that the

LOR solution tends to fail in detecting deep sources. Furthermore, the deeper the actual

source, the more blurred is the current density estimated by LOR [48]. On the contrary,

the MSP algorithm embraces the entire cortical surface (both focal and deep), identifying

the patches that better reproduce the neural source distribution, and thus, enabling a more

accurate reconstruction of the superficial and deep sources [15].

Figure 3-5 displays the considered ESI solutions performed for a randomly selected patient,

allowing to explain the above-described effect of different accuracy on the deep reconstruc-

ted sources. Besides, the NY head models are implemented due to the simplicity of their

incorporated priors, having the lowest influence on the source reconstruction. The obtained

source reconstruction reveals that LOR spreads the activity over the entire cortical mesh

although the identified prevailing areas tend to be less scattered as the number of modeled

tissues increases. On the contrary, MSP focuses the most on the visual-processing related

areas (like the visual cortex in the posterior brain area), becoming more evident as the num-

ber of tissues increases. Consequently, due to the showed outstanding superiority, we further

consider the MSP solution in the following procedures.

Comparison of brain tissue models

For the MSP source imaging, we compare the enhancing scenarios of brain tissue model

through the explained log model evidence at the group level.

Figure 3-6 shows that the best brain structure is 5L-PD that certainly achieves the highest

expected posterior probability (the top bar highlighted with red) with high confidence since

the BOR value is much lower than 0,25. The second highest performance is achieved by the

3L-AT testing scenario, outperforming even the 3L and 4L layer arrangements of the PD

models. Further, there is no apparent benefit in selecting one of the remaining scenarios of

PD or AT models. In fact, except in the case of 5L configuration, either model behaves

similarly. Nonetheless, all scenarios tested for the NY-based brain tissue models plainly

reach the lowest probability of a model generating the observed data, confirming that this

is the worst strategy of incorporating anatomical priors.

Regarding the used tissue model complexity, the performed Bayesian model selection only

infers that the five-layer arrangement provides the most substantial source reconstruction

performance. Other patterns of complexity tissues are comparable regardless of the used

stimuli and combined head model to integrate the brain structure priors.

To inspect the quality of the ESI solution, we provide a visual inspection of the obtained

source reconstruction for a representative subject, using the best-achieved head model for

each tested scenario, i.e., 5L-PD, 3L-AT, and 5L-NY.

Thus, Figure 3-7 shows the sensor space data, namely, an example of ERP and scalp topo-
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Figure 3-5: Achieved source reconstructions with NY models for both ESI methods. Top:

Sensor space - ERP and topographic map. Bottom: Reconstructed activity.
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right (Ir) and Inside left (Il).

graphy, as well as the results of the source reconstruction (dipole-wise power). Both, scalp

topography and source activity, are averaged in the time range from 100 to 200 ms (typically,

termed N200 component), which contains brain-specific responses related to the processing

of visual stimuli [14]. The ERP waveform shows a prominent temporo-occipital negative peak

around 180 ms, which is mostly associated with visual processing.

Moreover, the reconstructed activity localizes some components in the vicinity of the tem-

poral lobe, covering the visual cortices for all the tested models. However, 5L-NY model
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Figure 3-7: ESI solution for a representative subject using the best-achieved head models for

each structural prior information, namely, 5L-PD, 3L-AT, and 5L-NY. Top:

Sensor space - ERP and topographic map. Bottom: Reconstructed activity.

Views: Outside right (Or), Outside left (Ol), Top (To), Bottom (Bo), Inside

right (Ir) and Inside left (Il).
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spreads the brain activity, which makes that some activations appear in non-visual related

areas. 3L-AT activates the middle temporal gyrus, that has some visual-related task. Addi-

tionally, in 5L-PD, an activity patch seems over the posterior cingulate gyrus, which occurs

when a high demand of visual processing/discrimination is required, confirming that this

kind of priors enhances the reconstruction of neural activity.

Another aspect to consider is the accuracy of brain activity source localization achieved by

the volumetric brain segmentation that we model through the number of tissues incorporated

into the head model. From the results performed by MSP, Figure 3-8 shows that including

CSF segmentation (i.e., 4L) overperforms the conventionally used 3-layer head model just

in the case of NY tissue morphology. Otherwise, the discrepancy in performance between

both configurations may vary from case to case.
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Figure 3-8: Results of Bayesian model selection shown as the expected posterior probability

and Bayesian omnibus risk, comparing, within each structural prior informa-

tion, the 3L and 4L head models. Here, MSP is used as ESI solution method.

Also, we investigate the distinction between the white and gray matter in the volumetric

brain segmentation, proving that the highest model complexity (5L) performs almost the

best for each method to include the anatomical priors and regardless the elicited stimulus

(see Figure 3-6).

3.3. Discussion

With the aim of enhancing the ESI performance regarding the anatomical structure priors

used to feed the forward modeling, we propose two approaches for improving the model of

brain structures: i) Including anatomical patient/population dependent data. ii) Enhancing

the complexity of the head model by augmenting the number of considered brain tissues.

Through the above-validated results on real EEG/ERP data, the following findings are worth

mentioning:

Contribution of anatomical structure priors. For incorporating anatomical priors of the

brain tissues in the EEG forward problem, the radar charts show that the Patient–dependent
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head model is the best-considered head model that is followed by the AT models, and being

NY the worst representation. This result agrees with the commonly reported criterium of

modeling structure priors, stating that the more the individual anatomical information, the

smaller the source localization error [22]. However, modeling of the brain tissues is very sensi-

tive to wrong shape approximations of the target population (form, size, and demographics),

which lead to significant errors of source localization [13]. Thus, the widely used NY head

model is not aware of any demographic details, and consequently, is very likely to be far

more representative of any particular target population. For reducing the shape differences

between modeled and actual head tissues, the AT model builds an averaged atlas extracted

from a population as similar as possible to the target. Another aspect to consider is the

variability observed between the examined patient group as shown by the radar charts in Fi-

gure 3-3. Hence, some in-congruent approximations may appear, making the brain structure

deteriorate by the head segmentation complexity (see Figure 3-4). It should be noticed that,

in practice, additional factors decrease the ESI performance. Most representative sources of

error include measurement and physiological noise of the EEG, incorrect electrodes place-

ment and insufficient contact with the scalp, and errors derived from the ill-posed inverse

problem. As a result, the patient-specific head model that provides the inclusion of more rea-

listic knowledge of the brain tissue morphology allows increasing the most the performance

of EEG source localization.

Impact of volumetric brain segmentation. One of the main aspects of head modeling is

the number of considered tissues. Here, we investigate two modifications to the classical 3-

layered approximation of the head: The inclusion of a CSF compartment, and the distinction

between white and gray matter in the brain.

In the last years, it has been established that the 3-layers head model is a strong simplification

of the reality. Therefore, several improvements of this model have been suggested, being the

inclusion of a CSF compartment, the most common one [66, 58, 64]. However, we obtain

that the discrepancy in performance between neglecting CSF or adding this tissue to the

conventionally used configuration may vary from case to case. The drop in performance may

be explained because of some small changes in CSF layer thickness can provide a significant

effect on EEG signal magnitudes in several standard visual paradigms[51].

Moreover, we divide the brain into the white and gray matter. This distinction has not

been considered in most of the previous studies on source analysis. Instead, the separation

between the white and gray matter makes the volumetric segmentation perform almost the

best for each method to include the anatomical priors, demonstrating that neglecting this

tissue division diminishes notably the ESI solution results [1]. Therefore, the volumetric

brain segmentation influences heavily on the forward and inverse problems, so, it must be

carried out as accurately as possible. As in the previous case, when using atlas head models,

this distinction does not improve the ESI performance. It might be produced because of

discrepancies between the modeled and the real subject’s anatomy. Therefore, one might
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conclude that a more accurate model in brain size and shape is better than a not so detailed

model of WM and GM tissues. However, when using patient-dependent data, results are

once again, significantly improved. As a result, we observe that the more realistic the head

modeling, i.e., patient dependent MRI and a more significant number of layers, the better

the source reconstruction.

Source space. A more realistic modeling of the sulci and gyrus of the brain enhances the

individually-defined forward model. In practice, canonical source reconstruction is employed

that pools anatomical data from multiple subjects, being very susceptible to inter-subject

variability in cortical anatomy that poses a factor of an inaccurate tissue modeling [40]. To

cope with this issue, we propose a cortical mesh that is transformed anatomically to produce

the subject-specific mesh. For this, we confine all sources of brain electrical activity within

the gray matter by applying a dilation-based morphological operator over the volumetric

segmentation of white matter, resulting in a segmented middle area between the cortex

and WM boundary. As an additional advantage, our source space generation proposal is

efficiently adaptable to a wide class of prior structural information as it does not require

any manual intervention for ensuring that sources are enclosed within the gray matter. As a

concrete example Figure 3-7 shows some focalized sources in the posterior cingulate gyrus,

which in fact must be related to the tested visual stimulus [33]. Therefore, even that the

patient-dependent approaches demand the cortical surface extraction from an individual’s

MRI, an efficient method for computing the EEG forward problem, along with the head

model, is essential to provide a more accurate localization of very focal sources.

Forward Model solver. In the literature, several forward modeling methodologies have

been employed, being BEM the most used one. However, BEM solves the forward potentials

only for the interfaces between two neighbor tissues. As a result, BEM interpolates the

potential in the scalp induced by a dipole inside the GM. Additionally, BEM works mainly

with three layers, namely scalp, skull, and brain. Consequently, to consider more versatile

forward models, we use a volumetric technique named FDRM, which allows: i) including

more complex tissues at a negligible computational effort, and ii) adapting to the voxelized

structural information of a patient using his segmentation of the MRI data.

The benefit of individually-defined source reconstruction. As regards the influence of the

used dipole source localization, we also compare two well-established approaches: LOR and

MSP. The former ESI approach reconstructs mostly surface sources, favoring the simplest

head model (i.e., NY template) that produces the lesser detailed description of the tissue

structures. Instead, the MSP method enables the reconstruction of superficial as well as

deep sources, embracing the entire cortical surface. Additionally, MSP takes advantage of the

measured EEG data to select the neural activity reconstruction model (sparse or distributed),

using to a greater extent the prior information provided by the PD head models and the
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EEG. As a result, a more elaborate ESI solution also enhances the individually-defined source

reconstruction.

The last aspect to consider is the lack of a ground truth when using real data. Thus, although

one solution might appear more focal than another, there is not a reason why it should be

more accurate. Consequently, the model evidence provided by the Bayesian ESI solution is

a plausible tool for comparing the ESI performance when using several head models, as has

been previously demonstrated in [22, 15, 58]. Consequently, it is worth noticing that we are

claiming that the best model is the more probable depending on the data.
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4.1. General Conclusions and Main Contributions

Methodology for generating personalized forward models

We propose a methodology for generating personalized forward models, allowing the inclu-

sion of prior structural information and different levels of model complexity. The proposed

methodology takes into account priors of anatomical structure extracted from the following

cases of image data: a standardized MRI template (NY), a demographic population atlas

(AT), or a set of patient-specific MRI scans (PD). Additionally, different configurations of

tissue model complexity are selectable: three-layer arrangement (3L), including brain, skull,

and scalp. 4L, adding CSF to the 3L configuration. 5L, dividing the brain layer of 4L in

white matter and gray matter. As a result, our proposed methodology is suitable for gene-

rating head models with different levels of prior information.

Methodology for estimating a patient-dependent source space

We develop a methodology for estimating source space using the structural information pro-

vided by the patient-specific MRI. In our approach, we applied 3D morphological transforma-

tions to the white matter to obtain a cortical mesh that properly describes the free-form sulci

disposition of the gray matter. Our method guarantees that the vertexes of the estimated

mesh are fully contained in the GM area. Additionally, the quadric edge collapsing method

allows the reduction of the vertexes (source positions), maintaining the sulci forms in the GM.

Evaluation of performance of forward models in the ESI task

We present an evaluation and comparison study of the forward models in the EEG source

reconstruction task. Group studies are performed using the Bayesian Model Selection (BMS)

framework, allowing to infer the most probable head model to generate the EEG data, within

a set of possible models. This framework support all the comparisons made in this disser-

tation. Obtained results show that the source reconstruction is strongly influenced by the

model complexity and the prior anatomic information.
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4.2. Future work

Enhancing the model of tissue conductivity

Previous studies have reported that some electrical conductivities of brain tissue are highly

anisotropic [38, 25], which generate topography errors when they are not considered. Ho-

wever, the head model is commonly approximated as a volume conductor with isotropic

conductivity. In this dissertation, the white matter and the skull were simplified using iso-

tropic conductivity values. So, future work could include the anisotropic conductivities in

WM and skull to investigate its effect on ESI task.

Increasing the model complexity

In this work, we evaluate how the variation of the tissue model complexity by augmenting

the number of segmented brain layers influences the ESI task. Hence, we fit a set of testing

scenarios in which the model complexity was increased including several brain tissues (Scalp,

Skull, CSF, GM, WM). Briefly, results show that the more complex the head model, the bet-

ter the ESI solution. However, many other tissues and essential properties as the anisotropy

can be included in future works due to the flexibility of the FDRM methodology.

Generalizing the findings

In the present context, the inferences are based on the approximated model evidence given by

the free energy, which takes into account the data fit and the model complexity. Nevertheless,

group studies may be carried out using another metric that considers other relevant criteria,

such as reproducibility of results across datasets and the predictive validation of results. In

this sense, it is worth to note that all of the above findings are obtained for a specific dataset.

So, future work could show whether the present results can be extrapolated to other datasets.
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