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ABSTRACT

Numerical Modeling of Time-Lapse Seismic Data From Fractured Reservoirs

Including Fluid Flow and Geochemical Processes . (May 2008)

Ravi Shekhar, B.S., Indian Institute of Technology (IIT), Kharagpur;

M.S., Indian Institute of Technology (IIT), Kharagpur

Chair of Advisory Committee: Dr. Richard L. Gibson

Fractured reservoirs, especially in low permeable carbonate rocks, are impor-

tant target for hydrocarbon exploration and production because fractures can control

fluid flow inside the reservoir. Hence, quantitative knowledge of fracture attributes is

important for optimal hydrocarbon production. However, in some cases fractures can

cause leakage of injected CO2 during enhanced oil recovery (EOR) or CO2 seques-

tration. Furthermore, CO2 can geochemically interact with reservoir fluids and host

rock. Hence, time-lapse monitoring of the progress of CO2 in fractured reservoirs is

also very important.

In order to address these challenges, I have developed an integrated approach for

studying fluid flow and seismic wave propagation in fractured media using Discrete

Fracture Network (DFN) models. My seismic simulation study suggests that CO2

saturated reservoir shows approximately ten times more attenuation than brine satu-

rated reservoir. Similarly, large P-wave velocity variation in CO2 saturated reservoir

and amplitude variation with offset (AVO) results for our example model predicts

that CO2 is easier to detect than brine in the fractured reservoirs.

The effects of geochemical processes on seismics are simulated by time-lapse mod-

eling for t = 1000 years. My modeling study suggests that intra-aqueous reactions are

more significant during injection of CO2 for t = 6 years, while slower mineral reac-

tions dominate after pressure equilibrium is achieved that is from t = 6 to 1000 years.

Overall both types of geochemical reactions cause change in reflection coefficient of 2

to 5%, which may be difficult to detect in some cases. However, the significant change

in the seismic properties at the boundary of the CO2 front can be used to detect the

flow path of CO2 inside the reservoirs. Finally, a method for generating stochastic

fracture models was extended and improved to more realistic field model for seismic

and fluid modeling. My detail analysis suggests that fractures generated by isotropic

stress field favor orthogonal sets of fractures in most subsurface rocks that can be
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converted to seismic model, similar to DFN study. The quality and validity of the

models is assessed by comparisons to DFN models, including calculations of fractal

dimension measures that can help to characterize fractured reservoirs.
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CHAPTER I

INTRODUCTION

1.1 Motivation and Overview

Fractures and faults are common in the volume of the earth’s crust and in many

cases control the mechanical strength and transport properties of the solid earth

structure. These fractures can originate from several geological processes, and tectonic

stress is particularly important (Tod, 2001). The intensity of fracturing and the

interconnections of fractures form paths for fluid flow that depend on mineralogy

and grain orientation within the rock, as well as the orientation of stress fields (Tod,

2001).

Quantitative measurements of fracture orientation, intensity, and spatial distri-

butions, are very important for optimal hydrocarbon and ground water production or

for monitoring the motion of pollutants in the subsurface. This is because fractures

can control permeability by providing highly conductive flow paths that dominate

fluid flow within a particular geologic formation. An important practical example

where this phenomenon can be important for hydrocarbon extraction is in applica-

tion to carbonate reservoirs, especially those with low matrix permeability. However,

in some cases fractures can enhance risk of leaking environmentally hazardous fluids

such as carbon dioxide during enhanced oil recovery or CO2 sequestration. Hence,

the knowledge of fracture orientations and distributions is important to monitor the

progress of various fluids inside the earth. Since CO2 is one of the most common in-

jector fluids used by industry for enhanced oil recovery (EOR) and also is a hazardous

fluid, it becomes important to monitor the movement of CO2 inside the earth. Use of

CO2 as injector fluid also helps in sequestrating it in geological formations, known as

CO2 sequestration, to mitigate the effects of greenhouse gases and global warming,

though there are still several challenges. One of the key problems is the low density

and viscosity of CO2 in subsurface conditions that may risk in leaking through frac-

This dissertation follows the style and format of Geophysics.
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tures from the sequestration site into overlying rocks. Furthermore, CO2 chemically

interacts with reservoir fluids and host rocks, so understanding and predicting its

behavior during and after sequestration is very important. Leakage of CO2 through

fractures from sequestration sites can lead to acidification of ground water and killing

of plant life, besides contamination of the atmosphere (Ha-Dong and Keith, 2003;

Ganda et al., 2004). Therefore, it requires improved characterization of the fractured

media in which CO2 is stored and development of advanced methods for monitoring

the fluid movement. One of the most effective tools for identifying and mapping

the distributions of fractures in such reservoirs is using seismic reflection data, be-

cause fractures can alter the seismic velocities and, therefore, amplitudes of seismic

reflections.

An important step for interpretation or analysis of the seismic data is to develop

rigorous models that relate the the intensity and orientation of fractures to changes

in seismic velocities of the composite rock in which the fractures are located. One

approach to this problem represents fractures as planar discontinuities in strain, an

approach that provides an estimate of the decrease in seismic velocity caused by

fractures (Schoenberg, 1980; Schoenberg and Sayers, 1995). Another set of solutions

that is frequently applied to modeling and inversion tasks instead begins with a

model of cracks as a set of “penny-shaped” (ellipsoidal) voids embedded within the

isotropic, homogeneous host rock (Hudson, 1980; Hudson, 1981). When such cracks

are randomly oriented, the resulting material is isotropic, but when they are parallel

the material has seismic anisotropy (Pointer et al., 2000).

These models, however, neglect the possibility of fluid movement between frac-

tures and a porous, permeable host rock. More recently, Thomsen (1995) showed

that the fluid exchange between fracture and host rock as seismic wave propagates

across the fracture can be significant. The time-dependent stress generated by seis-

mic waves striking on the fracture surfaces can cause the flow of fluids from fractures

to matrix. Simultaneously, this process causes attenuation and dispersion of seis-

mic waves. Attenuation is the measurement of loss of energy and dispersion is the

velocity variation with frequency. Also, Thomsen’s (1995) study suggests that such

phenomenon are more influenced by the crack density rather than crack shape. In

fact, this theory for anisotropic fractured rocks produces velocity estimates that much

more accurately reproduce laboratory measurements of velocity in anisotropic, frac-

tured materials (Rathore et al., 1991; Rathore et al., 1995). However, the analytical
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expressions used to estimate velocities, developed by Thomsen, to relate fractures with

fluid flow is restricted for ‘low frequency’ and ‘moderately high frequency’ without

quantification of frequency range. Since frequency of seismic waves have significant

role in flow of fluids from fractures to matrix, so it was important to explore other

relationships that can relate the effect of fracture parameters and fluid flow on seismic

velocity at each frequency.

Recently Hudson et al. (1996), Pointer et al. (2000), Tod (2001) and Chap-

man (2003) have attempted to develop theoretical models that relate fracture prop-

erties with frequency dependence seismic properties. They also proposed strong at-

tenuation and dispersion of seismic waves due to the presence of fractures in seismic

frequency range where the flow between fracture and matrix is maximum. However,

so far fewer studies have worked on reservoir scale models that directly incorporate

models of fluid flow to develop methods for seismic detection of fluids in fractures.

One of the goal of this research is to address this problem by integrating fluid flow,

rock physics and seismic attributes to model randomly oriented fractured reservoirs,

with a porous background matrix. This configuration is described as an equant poros-

ity model (Pointer et al., 2000), in which fluid flows from cracks to porous background

matrix and models show strong attenuation and dispersion in the seismic frequency

range.

1.2 Objectives and Dissertation Structure

The primary objectives of my research are fracture modeling, integrating fluid flow,

geochemical effects and seismic simulation. In detail, the objectives of this research

are the following:

• Development of a systematic procedure to convert a Discrete Fracture Network

(DFN) model used for flow modeling into a seismic model to relate the fracture

properties with seismic velocity. Of late, the DFN technique has gained in-

creasing attention to model complex fracture patterns (Dershowitz et al., 2000;

Al-Harbi et al., 2004). The advantage of DFN is its ability to incorporate com-

plex fracture patterns based on field, core, logs, seismic etc. to model fluid flow

or the permeability of fracture swarms. However, the discrete set of fractures

that comprise the DFN model cannot be used directly in the seismic models,

which are instead expressed in terms of the number density of cracks. Hence,
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our technique converts discrete fracture model into continuum crack density

model for studying the influence of fluid flow on seismic properties.

• Numerical analysis of an equivalent medium theory (Pointer et al., 2000) to

study the effects of individual fracture parameters on seismic velocity. Fur-

thermore, based on numerical analysis, several synthetic models of fractured

reservoirs on reservoir scale are generated to integrate the effect of fractures on

flow and seismic simulation. This also includes modeling of compositional and

geochemical reactions of injected CO2 with reservoir fluids and host rock during

CO2 sequestration in existing or depleted hydrocarbon reservoirs.

• Extend and improve a modeling technique (Masihi and King, 2007) for generat-

ing distributions of fractures in a material in mechanical equilibrium to real field

model. This method is based on statistical mechanics and stochastic processes

and results will be compared with the DFN modeling technique. This modeling

method generates correlated fracture models that can be used to improve the

predictive capability relating to flow behavior in fractured rock.

1.2.1 Seismic Characterization of Fractured Reservoirs

In chapter II, we proposed a systematic procedure (including development of C++

code) to convert a Discrete Fracture Network (DFN) model used for flow modeling into

a seismic model to relate the fracture properties with seismic velocity. This includes

numerical analysis of Pointer’s theory (Pointer et al., 2000) to study the effects of

individual fracture parameters on seismic velocity. Furthermore, based on constraints

of numerical analysis, we generate synthetic models of fractured reservoirs on reservoir

scale to integrate the effect of fractures on flow and seismic simulation. This study

includes the detail analysis of the effects of fractures on frequency dependent seismic

attributes such as attenuation and dispersion. It also considers the influence of fluid

saturated fractures on complex seismic attributes such as instantaneous amplitude,

phase and frequency using full waveform synthetic seismograms computed with the

discrete wavenumber method. Furthermore, time-lapse modeling of AVO attributes

such as tuning intercept and gradient was analyzed to determine the effect of presence

of various types of fluids within fractures. Seismic modeling for this 3D reservoir was

performed using ray-Born algorithm which computes reflected amplitude due to small
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perturbations caused by fractures saturated with different types of fluids.

1.2.2 Seismic Modeling of Geochemical Reactions in CO2 Sequestration

In Chapter III, we develop a systematic procedure to model compositional and geo-

chemical reactions of injected CO2 with reservoir fluids and host rock during CO2

sequestration. The good candidate geological formations for sequestration sites are

depleted oil and gas reservoirs, unmineable coal seams, saline formations, shale and

basalt formations. The motivation to use basalt formation is because of unique chem-

ical properties of basalt that converts all injected CO2 to a solid mineral form thus

permanently storing into the formations (Energy, 2008). However, the most mature

and effective technology still available for directly minimizing emissions is sequestra-

tion in existing or depleted hydrocarbon reservoirs (Hepple and Benson, 2005). Ex-

isting and depleted oil and gas reservoirs for CO2 sequestration are more in demand

compare to other formations because of two principal reasons. First, the economic

benefits associated with enhanced oil and gas recovery are commercially proven and

widely accepted by the industry. Second, oil and gas reservoirs provide abundance

data sources such as porosity, permeability, seismic velocity etc. that can be used to

design the sequestration sites. Hence, we analyzed our sequestration study in post-

water flooded oil reservoirs. Our modeling procedure includes integration of fluid

flow data into the seismic and rock physics study to analyze the effects of various

geochemical reactions on seismic attributes (AVO attributes and Reflection coeffi-

cient) for long time scales for weakly and strongly heterogenous medium. Part of the

analysis relied on a new analytic solution for measures of the amplitude of a seismic

reflection from a thin reservoir. This new result is an improvement of a previously

published equation (Lin and Phair, 1993), and it provides more accurate results for

our case.

The goal of this modeling study is to detect the flow path of injected CO2 inside

the reservoirs and provide a prediction of how important geochemical reactions might

be for seismic monitoring of CO2 sequestration. The modeling results suggest that

fast reactions such as phase equilibria, intra-aqueous reactions dominate at the early

stage of injection. Slow reactions such as mineral reactions dominate after long time

scale. The results suggest that the chemical processes cause relatively small changed

in seismic amplitude after 1000 years, suggesting that the reduction in the bulk mod-
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ulus of the fluid by mixing of the CO2 with brine and oil will still cause the most

significant changes in amplitude. However, significant changes in seismic properties

at the boundaries of the CO2 front can be used to detect the flow path of CO2 inside

the reservoirs.

1.2.3 Statistical and Stochastic Modeling of Fractured Reservoirs

Chapter IV presents an enhanced version of a modeling technique (Masihi and King,

2007) to simulate fractures in mechanical equilibrium to field observation using sta-

tistical mechanics and stochastic processes. This includes detailed derivation of pair-

wise the spatial correlation function integrating elastodynamics, statistical physics

and vector field theory. This also includes development of a simulated annealing code

using this correlation function as an energy objective function. Several models were

generated and compared to understand the effect of medium parameters such as the

Poisson ratio, and the effect of boundaries on generating these correlated fracture

models in reservoirs. This motivated the incorporation of periodic boundary condi-

tions into the simulated annealing code, as well as other modifications that accelerate

computations. The quality and validity of the models is assessed by comparisons to

DFN models, including calculations of fractal dimension measures that may help char-

acterize natural fractured reservoirs. Finally, some seismic simulations were carried

out using these new stochastic models.
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CHAPTER II

SEISMIC CHARACTERIZATION OF FRACTURED RESERVOIR

USING HUDSON’S EFFECTIVE MEDIUM THEORY INTEGRATING

FLUID FLOW

2.1 Introduction

The accurate characterization of fractured reservoirs to obtain knowledge of fracture

direction, intensity, and spatial distributions is of great importance for hydrocarbon

production. These fractures control permeability by providing conductive flow paths

which can have significant effect on hydrocarbon production especially in low perme-

able carbonate reservoirs. A great deal of interest exist in developing models relating

fracture properties with seismic attributes.

The classical attempts to solve this problem (Schoenberg, 1980; Hudson, 1980;

Hudson, 1981; Pointer et al., 2000) were attempted on the assumption of no fluid-

exchange either between the fractures themselves or between fractures and matrix.

But fluid exchange between different parts of pore spaces during seismic wave propa-

gation has long been recognized (Gassmann, 1951; Mavko and Nur, 1975). Thomsen

(1995) has proposed relevant ideas, based on perfect pressure equalization at low fre-

quency, regarding seismic anisotropy due to fractures during transfer of fluid between

fractures and ‘equant porosity’ in the rock matrix. Macbeth and Lynn (2000) used

P-waves to detect fracture-induced azimuthal anisotropy. Their approach rely on

the detection of amplitude variations in individual prestack common reflection point

(CRP), common depth point (CDP), and Common midpoint (CMP) gathers. Beretta

et al. (2002) used diffraction tomography theory to develop a linearized AVO and AVA

inversion methodology in κ-ω domain that detects fracture density variation within a

reservoir using P-wave reflection data. Pérez et.al (1999) used azimuthal variation of

P-wave AVO responses to detect the fracture orientation in oil and gas reservoirs. Zhu

et al. (2004) suggested two- step seismic inversion algorithm for inverting reservoir

crack density from P-wave AVOA data.

Brown et al. (2003) observed that P- and S-wave anomalies are observable with

the saturation changes in fractured media. P wave requires long wave offsets for
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saturation changes whereas S-waves can increase or decrease while going from brine-

to gas- saturation in the reservoirs. Also, the sign of S-wave anomaly associated

with saturation changes depends upon fracture orientation and the magnitude of

these anomalies depend upon the relative compliance of fractures and the saturating

fluids. Angerer et al. (2003) provided an integrated approach of seismic processing,

stratigraphic inversion and DFN modeling to complete seismic-to-simulator workflow.

Recently Hudson et al. (1996), Pointer et al. (2000), Tod (2001) and Chap-

man (2003) have attempted to develop theoretical models to relate fracturing with

seismic properties. They proposed strong attenuation and dispersion of seismic waves

due to the presence of fractures in seismic frequency range. However, so far fewer

studies have worked on developing reservoir scale models for detecting fluids in frac-

tures.

Our goal in this paper is to model randomly oriented fractured, isotropic reser-

voirs with a porous background matrix. This configuration is described as an equant

porosity model (Pointer et al., 2000), in which fluid flows from cracks to background

matrix. These models show strong attenuation and dispersion of seismic waves in the

seismic frequency range. Our starting reference model of the reservoir, developed by

petroleum engineering colleagues, is a discrete fracture network (DFN) dual porosity

model for fluid flow simulations that has randomly oriented fractures in porous ma-

trix (Al-Harbi et al., 2004). This is the reason we chose the isotropic fracture theory,

even though many results suggests natural fracture distributions may be anisotropic.

Below we outline the basic theory used to describe the seismic properties of

the reservoir and present some results illustrating the types of frequency dependence

predicted for these properties. We then summarize how we create a seismic model

from the DFN reference model and show predicted AVO parameters for this model.

2.2 Background Theory

Pointer et al. (2000) suggested an expression for the effective tensor of elastic constants

C of cracked material in terms of perturbations to the moduli of the uncracked host

rock. The perturbations are expressed in powers of crack density ε = νa3 , where ν is

the number density of cracks. The cracks were assumed to be circular for simplified

analytical expressions and the theories are valid for a low aspect ratio c/a, where a

is the crack radius and c is the crack half- thickness. The general expression for the
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effective elastic constants of cracked material C, accurate to second order in crack

density ε, is given by Hudson (1986)

C = C0 + εC1 + ε2C2, (2.1)

where C0 is the elastic tensor for the isotropic (possibly porous) matrix material,

C1 represents the effective changes in moduli caused by first order scattering by

cracks, and the second term C2 gives the crack-crack interactions. These theories

also assume that crack distribution is dilute so that crack density ε is less than 0.1.

The most challenging part is the calculation of C1, which can be expressed as function

of compliances of a single crack,

C1 = C1(U11,U33), (2.2)

where U11 measures the response of the crack to shear traction, and U33 is the

response to normal traction. The second-order term C2 can be written in terms of

C1 as

C2
ijkl =

1

μ
C1

ijrsχrstuC
1
tukl, (2.3)

where

χijkl = {δikδjl(4 + β2/α2) − (δijδkl + δilδjk)(1 − β2/α2)}/15, (2.4)

and α and β are the respective P- and S-wave speeds of the matrix material.

When the cracks are aligned with normals along the 3-axis, equation 2.2 can be

written as

C1
ijkl = −(1/μ)C0

s3ijC
0
t3klUst, (2.5)

where

{Ust} = diag{U11, U11, U33} (2.6)

Equation 2.5 & 2.6 can be used to calculate effective elastic constants of anisotropic,

aligned cracks, cracked material.

Pointer et al. (2000) introduced three distinct mechanisms for wave-induced fluid

flow within cracked solid: flow between connected cracks through seismically trans-

parent pathways in almost non-porous material, flow within the partially saturated

cracks due to differential pressure gradient, and diffusion from cracks to background

porous matrix through mechanically invisible pathways which is also referred to as

the equant porosity model.
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The resulting parameters for this model are given by Hudson et al. (1996) as

follows:

U11 =
16

3

(λ + 2μ)

(3λ + 4μ)

/
(1 + M)

U33 =
4

3

(λ + 2μ)

(λ + μ)

/
(1 + K), (2.7)

where

M =
4a

πc

iωηf

μ

(λ + 2μ)

(3λ + 4μ)

K =
a

πc

κf

μ

(λ + 2μ)

(λ + μ)

(
1 +

3(1 − i)J

2c

)−1

. (2.8)

The parameter J is related to matrix and fluid by

J2 = φmκfKm/2ωηf , (2.9)

and J must be positive. Appendix A gives the detail derivation of these parameters

for equant porosity model.

The Lamé parameters for the solid background matrix are λ and μ, κf is the

bulk modulus of the fluid and ηf its viscosity, c /a is the crack aspect ratio, ω is the

angular frequency, and Km is the permeability of the unfractured host rock. The

quantity M measures the effect of viscosity of fluid in-fill in cracks response to shear

whereas K measures the effect of the compressibility within the cracks.

The first order perturbations to the elastic moduli with respect to solid back-

ground matrix in the isotropic equant porosity model are (Equation 58, (Pointer et

al., 2000))

κ1

κ
= −κ

μ
U33

μ1

μ
= − 2

15
(2U33 + 3U11) (2.10)

Hence, the effective bulk and shear modulii for the rocks containing fractures

upto first order of approximation is

κeff = κ0 + εκ1

μeff = μ0 + εμ1 (2.11)
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where κ0 and μ0 is the saturated bulk and shear modulus of isotropic porous ma-

trix. These saturated rock properties can be calculated using Gassmann equation

(Equation 2.14).

The corresponding P- and S-wave velocities in such rocks are given by

Vp =

√
κeff + 4

3
μeff

ρ

Vs =

√
μeff

ρ
(2.12)

The real and imaginary parts of these parameters can be used to determine Qp
−1

and velocity dispersion for specific choices of parameters using following equations

Q−1
p =

2Im{Vp}
Re{Vp}

Q−1
s =

2Im{Vs}
Re{Vs} (2.13)

The expressions developed in this theory has the following assumptions (Peacock

and Hudson, 1990):

• the radius of cracks a and the separation between cracks are assumed to be much

less than the wavelength of seismic waves (ka << 1 where k is the wavenumber);

• the position of cracks are randomly distributed within the scale of seismic wave-

length;

• the distribution of cracks are sparse and disconnected, and their total volume

is a small fraction of the volume of the rock. In other words, crack distribution

is diluted so that ε < 0.1;

• the shape of the cracks are oblate spheroid with very small aspect ratio; and

• the material in cracks are much softer than matrix.

2.2.1 Seismic Rock Properties

The amplitude of seismic waves reflecting from a formation containing CO2 or an-

other fluid will depend on the properties of both the fluid itself and of the porous
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rock matrix. Specifically, seismic compressional and shear wave velocities will change

as fluid properties vary, and a common model describing these variations is the

Gassmann equation (Gassmann, 1951). This solution assumes isostress conditions

for an isotropic, homogenous, monominerallic rock at the low frequency limit. While

the shear modulus μ of the rock is predicted to remain constant by this theory, the

bulk modulus of the saturated rock depends on several properties of the fluid and

solid components:

κsat = κdry +
(1 − κdry

κs
)2

φ( 1
κf

− 1
κs

) + 1
κs

(1 − κdry

κs
)

(2.14)

Here κdry is the bulk modulus of the drained rock sample, κs is the mineral grain bulk

modulus, κf is the fluid bulk modulus, and φ is the porosity.

In most cases, the formation will be partially saturated with brine, oil and another

fluid such as CO2 . In our time-lapse models, we can have all three fluids present and

the bulk modulus of the mixture is given by Woods equation (Mavko et al., 2003) as

1

κf

=
S1

κ1

+
1 − S1

κ2

, (2.15)

where κi is the bulk modulus of fluid i, Si is the saturation of that fluid. This is easily

extended to three fluids. The bulk density of the formation is simply the volume

average of the density of each component present in the fluid-saturated rock.

ρbulk = (1 − φ)ρmatrix + φ(ρCO2SCO2 +

ρoilSoil + ρwater(1 − SCO2 − Soil)) (2.16)

2.2.2 Seismic AVO Attributes

The amplitude of a seismic reflection from a boundary between two materials is

approximately a linear function of the squared sine of the angle of incidence i (Shuey,

1985):

R(i) ≈ R(0) + Gsin2i (2.17)

Appropriately processed prestack seismic data, when sorted into common reflection

point, or common midpoint, gathers, provide a measure of this reflection coefficient.

Typical amplitude variation with offset (AVO) analysis fits a line to these measured
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reflection amplitudes to estimate the intercept R(0) and gradient G. The intercept is

equal to the normal incidence reflection coefficient and can be considered an estimate

of the seismic amplitude that would be observed in a typical seismic section. The val-

ues of these two parameters generated by hydrocarbon or CO2 bearing formations are

often significantly different from those of brine-saturated rock, providing a valuable

tool for detecting fluids of interest.

In our model, however, the reservoir, with thickness b=20 m, is sufficiently thin

that reflections from the top and bottom of the layer will interfere for seismic frequen-

cies typical of surface seismic data (about 30 Hz) and so we cannot directly utilize

the (Shuey, 1985) result. Lin and Phair et al. (1993) showed that composite reflec-

tion associated with this superposition or tuning still has the same general functional

form, but the intercept and gradient of the line take the form:

Rt(0) = (4πbf)/V gR(0) (2.18)

Gt = ((4πbf)/V g)(G − R(0)/2) (2.19)

Here f is frequency, Vg is the interval velocity in the reservoir formation, and R(0)

and G are the conventional AVO intercept and gradient respectively for the upper

interface of the reservoir. By utilizing this tuned AVO solution, we obtain much

faster results than we would with a simulation of the synthetic seismograms followed

by processing.

2.3 Numerical Analysis

Table 2.1 lists parameters describing our model. The host rock in our model is drained

carbonate rock saturated with three different fluids for our analysis. They are brine,

liquid CO2 (27◦C and 7.5 MPa) and SCF CO2 (77◦C and 7.5 MPa). The critical

temperature and pressure for carbon dioxide is 31◦C and 7.4 MPa. Carbon dioxide

exists in a supercritical fluid phase above the critical temperature and pressure, and

this phase has lower viscosity, lower density and higher volume expansion than other

phases of CO2. Distinguishing phases may therefore be very useful.

Figure 2.1 shows attenuation in brine saturated and CO2 saturated cracked media

as a function of frequency. At high frequencies, the cracks behave as isolated cracks,

as fluids do not move quickly enough into the porous medium to relax the stress

field. This result in constant velocity and negligible attenuation at higher frequencies.
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Table 2.1. Reservoir model parameters

Matrix Properties Vp 4516 ms−1

(Carbonate) Vs 2631 ms−1

ρ 2400 kg/m−3

Kmineral 74.8 GPa

φm 10 %

Km 10 mD

Fluid properties K 2.25 GPa

(Brine) ρ 1000 kg/m−3

ηf 10−3 Pa − s

Fluid properties K 0.0983 GPa

(SCF CO2) ρ 150 kg/m−3

ηf 2−5 Pa − s

Fluid properties K 0.739 GPa

(Liq. CO2) ρ 733.9 kg/m−3

ηf 5−5 Pa − s

Crack Properties a 5 m

c 1 mm

ε 0.05
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Fig. 2.1. Dependence of attenuation on (a) crack radius (b) crack density (c) matrix
porosity and (d) matrix permeability in brine (solid line) and SCF CO2 (dashed line).
The vertical bars represents seismic frequency zone.
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In mid-frequency ranges, SCF CO2 and Liquid CO2 show much higher attenuation

than brine saturated cracks, which is caused by the higher incompressibility of brine

in the saturated cracks. On the other hand, at low frequency the pressure in the

fluids has sufficient time to equilibrate, and the rocks behave as drained rocks, or

dry rocks, in which attenuation becomes negligible and velocity becomes constant

with frequency (Pointer et al., 2000). Velocity dispersion is also greatest at the same

frequencies where attenuation has maxima, so simulating and measuring its effects at

seismic frequencies may also provide important information for reservoir studies.

These results show that the theory described by Hudson (1996) and Pointer et

al. (2000) suggests a significant attenuation of seismic waves in frequencies of interest

for hydrocarbon exploration. However, the complicated forms of the equations make

it difficult to assess the sensitivity of properties to the various parameters. Thus Fig-

ure 2.1 compares results for changes in several important properties for brine (solid

line) and SCF CO2 (dashed line), suggesting that crack radius and permeability have

the most significant effect on attenuation and dispersion. Figure 2.1(a) suggests that

attenuation increases with increase in crack radius and also introduces attenuation

at lower frequencies. This result is consistent with Chapman’s (2003) argument that

the presence of large fractures introduces significant attenuation and dispersion within

seismic frequency band. This is because relaxation time for fluids in larger cracks is

higher and hence, has lower squirt frequency for fluid migration. Attenuation also

generally increases with increasing permeability, though the effect is small. However,

the quantitative difference in attenuation between the two fluids near seismic fre-

quency range decreases with increasing permeability. For seismic fluid detection in

the exploration frequency range, the most important point is whether or not there

is a significant difference in attenuation values between the two fluids, as measuring

such a difference from field data might provide additional attributes to distinguish

them in reservoirs. In this light, Figure 2.1(d) shows that the maximum difference

in attenuation for two fluids occurs for comparatively small matrix permeabilities,

suggesting that it will be most straightforward to use attenuation as a fluid indicator

for lower permeability reservoirs.
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2.4 Reservoir Modeling and AVO Study

The specification of the reservoir model begins with a discrete fracture network

(DFN), in which fracture planes are mapped in 3D space using statistical properties of

fracture swarms, fracture network geometry and streamline flow characteristics (Al-

Harbi et al., 2004). This synthetic reservoir model is 920 m×920 m, discretized into

smaller cells of 43.8 m×43.8 m for geocellular modeling . The stochastically generated

fractures are randomly oriented either at 45o or 135o. This is also the starting model

used for fluid flow simulations, and we therefore begin with the same reference model,

an example of which is shown in Figure 2.2. The corresponding permeability model

is also displayed in Figure 2.3, and it is used for streamline fluid flow simulations.

The fracture theory, however, requires a value of crack density in each cell in the

model, requiring us to convert the DFN representation into a comparable crack den-

sity map. To derive this seismic model, we considered the cracks to be imperfections

on fractures planes (Liu et al., 2000) and calculated the total area occupied by rect-

angular fractures in each cell. The basic assumption of such kind of models is that the

mechanical response of a fracture with a complex structure remains approximately

the same as fracture with circular cracks or welds with the same crack statistics (Liu

et al., 2000). We then compute the number of circular cracks occupying the same

area in the cell and use this to assign the number density required by the equivalent

medium theory. We can express this as

N∑
i=0

Arectangular = πa2N, (2.20)

where N is the total number of rectangular fractures in the cell and a is the effective

crack radius of each cell. So, the crack density is then ε= νa3 where ν = N/V and

V= area of each cell× thickness of the reservoir layer which is assumed to be 20 m.

The resulting crack density model shown in Figure 2.4.

Figure 2.5 compares attenuation and P-wave velocity variation in the presence

of brine and SCF CO2 in our seismic model. The brine saturated reservoir shows

negligible attenuation in comparison to SCF CO2, which is consistent with our previ-

ous analysis (Figure 2.1). In fact, SCF CO2 saturated reservoir shows approximately

ten times more attenuation than brine saturated reservoir. Similarly, P-wave veloc-

ity variation in SCF CO2 saturated reservoir is much larger than brine saturated
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Fig. 2.5. (a) Attenuation in brine and SCF CO2 (left and right, respectively) at 30
Hz. (b) Dispersion in brine and SCF CO2 (left and right, respectively) at 30 Hz. SCF
CO2 saturated reservoir shows approximately ten times more attenuation than brine
saturated.

reservoir.

To simulate AVO parameters, the fractured carbonate reservoir was assumed to

be at a depth of 1000 m. AVO parameters were computed for this reservoir, which

was assumed to be 20 m thick, and bounded by media with velocities Vp=4000 m/s,

Vs=2309.6 m/s and ρ=2200 kg/m3. This 20 m fractured reservoir was assigned 10%

porosity and 10 mD permeability. The following equations were used to estimate

intercept and gradient for our the tuned reflections from this reservoir layer (Lin and

Phair, 1993):

Rt(0) = ((4πbf)/V g)R(0) (2.21)

Gt = ((4πbf)/V g)(G − R(0)/2) (2.22)
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Fig. 2.6. (a) Tuned AVO intercept for brine and SCF CO2 (left and right, respectively)
(b)Tuned AVO gradient in brine and SCF CO2 (left and right, respectively) in the thin
reservoir layer model at 30 Hz. Brine results show about 1.3 times larger intercept
values and approx. 1.2 times lower gradient values than SCF CO2.

Here Rt and Gt represent the tuned intercept and gradient. Vg is the P-wave velocity

within the thin layer reservoir, b is the thickness of reservoir and f is the frequency of

measurement. R(0) and G are the intercept and gradient, respectively, from the top

interface of the thin layer model. Vg of this thin layer is calculated using Equation 2.10

in the thin fractured carbonate layer.

The AVO response from the thin layer model is shown in Figure 2.6 for a fre-

quency of 30 Hz. This figure suggests that brine saturated reservoir has an intercept

1.3 times larger and approx. 1.2 times lower gradient than the SCF CO2 saturated

reservoir. Similar types of observation can be seen in for conventional AVO for a single

interface. Also, SCF CO2 saturated reservoir shows 13% increase in intercept values
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with respect to background matrix in comparison to 4% increase in Brine saturated

reservoirs. Similar quantification can be made for AVO gradient values in different

cases. So, AVO attributes can be used primarily to distinguish fluids in a particular

reservoir.

2.5 Complex Trace Attributes

There are other attributes including instantaneous amplitude, phase and frequency

that may be applied to characterize attenuating fractured reservoirs. These instanta-

neous attributes are measured from analytic signal composed the seismic trace (real

part) and its Hilbert transform (imaginary part) (Taner et al., 1979). In order to ex-

amine these attributes, a reservoir geometry was specified at a depth of 1 Km having

crack density to be 0.05.The goal of this modeling study was to examine the effec-

tiveness of instantaneous amplitude, phase and frequency for comparing attenuation

in thin (20 m) and thick (240 m) reservoirs and compare fully brine and SCF CO2

response in fractured reservoirs. Full waveform synthetic seismograms used for the

modeling were computed with the discrete wavenumber method.

2.5.1 Tuning Effects

Figure 2.7 and Figure 2.8 shows synthetic seismograms and their associated instan-

taneous attributes for 20 m thin and 240 m thick fractured attenuating reservoir

respectively. The reflections from the 20 m thin reservoir are fully tuned for the

source frequency of 30 Hz. Increasing thickness to 240 m eliminates the effects of

tuning and emphasizes the influence of attenuation (Figure 2.8).

2.5.2 Effects of Q on Attributes

To determine the influence of Q on both sets of seismograms, they were recomputed

without Q effects and subtracted from the reservoir model results for SCF CO2 sat-

urated reservoirs. Though Q has negligible influence on the amplitudes for the thin

reservoir (Figure 2.9), it does still change phase by approx. 15◦ at large offset, sug-

gesting analysis of field data could search for this effect. Effects are more significant

for the thick reservoir (Figure 2.10), which shows changes in all three attribute types.
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Fig. 2.7. Original synthetic seismograms and associated instantaneous attributes for
a 20 m thin reservoir with SCF CO2. Here, explosion is used as source and (a) is
the vertical component of source (b) instantaneous amplitude (c) instantaneous phase
and (d) instantaneous frequency.
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Fig. 2.8. Original synthetic seismograms and associated instantaneous attributes for a
240 m thick reservoir with SCF CO2. Here source is explosion and (a) is the vertical
component of source (b) instantaneous amplitude (c) instantaneous phase and (d)
instantaneous frequency.
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Fig. 2.9. Attribute changes computed by subtracting results for models with and
without Q effects for a 20 m thin reservoir with SCF CO2. Instantaneous phase
changes by approx. 15◦ at large offset.
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Fig. 2.10. Attribute changes computed by subtracting results for models with and
without Q effects for a 240 m thin reservoir with SCF CO2. Significant difference
in amplitude and phase from bottom surface indicate the presence of gas saturated
reservoir.

Significant visible difference in instantaneous amplitude and phase from bottom of

the surface indicates the presence of gas saturated reservoir.

2.5.3 Distinguishing Fluids with Attributes

One of the goal of this modeling study was to use the seismograms to distinguish

different fluids within the fractured reservoir, either in a single experiment or in mul-

tiple time-lapse expermients. Synthetic seismograms for brine and SCF CO2 for the

20 m (Figure 2.11) and 240 m (Figure 2.12) thick reservoirs were computed and again

subtracted to emphasize differences. The seismic amplitude plots are displayed with

the same scales as the original synthetic seismograms. Figure 2.11 suggests signifi-



28

0.6

0.8

T
im

e 
(S

ec
)

200 400 600 800 1000 1200 1400 1600 1800 2000
Offset (meters)

20 m: Difference in amplitude

0.6

0.8

T
im

e 
(S

ec
)

200 400 600 800 1000 1200 1400 1600 1800
Offset (meters)

20 m: Difference in phase

-0.5

-0.2

0

ra
di

an

0.6

0.8

T
im

e 
(S

ec
)

200 400 600 800 1000 1200 1400 1600 1800
Offset (meters)

20 m: Difference in frequency

-4

-2

0

H
z

Fig. 2.11. Difference in attributes for brine and SCF CO2 computed for the 20 m
reservoir.
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Fig. 2.12. Difference in attributes for brine and SCF CO2 computed for the 240 m
reservoir.

cant difference in amplitude to detect the types of fluid in thin reservoirs. However,

Figure 2.12 shows significant difference in both amplitude as well as instantaneous

phase (approx.15- 20◦) especially from bottom interface to detect types of fluids in the

thick fractured attenuating reservoir. In both the cases, the shift in lower frequency

shadow indicates the presence of gas and attenuating fractured reservoir.

2.6 Flow Simulation Integration with AVO Attributes

Five-spot pattern was used for flow simulation study with injector at the center and

producers at the four corners. Initially reservoir was assumed to be saturated with

80% oil and 20% brine. The reservoir models were tested separately for brine and

SCF CO2 injection. SCF CO2 was injected at high injection pressure (11 MPa)
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Fig. 2.13. Change in oil saturation during (a) SCF CO2 injection and (b) brine
injection at 0, 800 and 2400 days (left to right, respectively). SCF CO2 sweeps lower
area than brine because of high compressibility of SCF CO2.

and temperature, having ρ=650 Kg/m3 and viscosity=7×10−5 Pa-s. The time-lapse

saturation of oil, gas and brine measured at 0, 800 and 2400 days are shown in

Figure 2.13, Figure 2.14 and Figure 2.15 respectively. Because of high compressibility

of SCF CO2, it always shows less flooding than brine.

There were two major objectives of time-lapse study. First, to study the varia-

tion in Qp, Vp and AVO attributes with fluid saturation and second, compare their

effect on AVO attributes at different time scale. Figure 2.16 and Figure 2.17 shows

time-lapse Qp and Vp values for different fluids. SCF CO2 saturated cracks are

more compressible than brine saturated cracks causing around 8 times higher atten-

uation than brine saturated reservoir. These observations are consistent with our

numerical analysis for 100% saturated reservoirs where SCF CO2 saturated reser-

voirs show 10 times higher attenuation than brine saturated reservoirs. With respect

to background medium, SCF CO2 saturated reservoir shows around 4 times higher

attenuation whereas brine shows 50% decrease in attenuation.

Similar study of AVO intercept in Figure 2.18 shows 1.2 times lower intercept

for SCF CO2 saturated reservoirs than brine saturated reservoirs, whereas 1.1 times
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Fig. 2.14. Change in gas saturation during (a) SCF CO2 injection and (b) brine
injection at 0, 800 and 2400 days (left to right, respectively). Brine injection (b) case
shows zero gas saturation as initial reservoir model was saturated with oil and brine
only.
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Fig. 2.15. Change in brine saturation during (a) SCF CO2 injection and (b) brine
injection at 0, 800 and 2400 days (left to right, respectively).

higher AVO gradient for SCF CO2 saturated reservoirs than brine saturated reservoirs

(Figure 2.19). With respect to background, SCF CO2 saturated reservoir shows -

10% to -12% AVO intercept change whereas Brine saturated reservoir shows +4%

change. These results are also in accord with our numerical analysis for different

fluids. These subtle variations in various parameters were further studied using

their difference plots. Figure 2.20 and Figure 2.21 shows the attenuation and velocity

difference between 800 and 2400 days with respect to 0 day. Difference plots show

positive value for attenuation and negative values for velocity change for SCF CO2

saturated reservoir. However, difference plots of attenuation and velocity for brine

saturated reservoir shows opposite effect. This is because injection of more and more

compressible fluids like SCF CO2 causes increase in attenuation of seismic waves and

decrease in background compressional velocity whereas less compressible fluid like

brine injection shows opposite effect. Similar observations can be made for intercept

and gradient in Figure 2.22 and Figure 2.23. The scale clearly shows opposite trend

of intercept and gradient in different fluids due to compressibilty difference. SCF CO2

saturated reservoir shows -0.05 to 0.0 whereas brine saturated reservoir shows 0 to
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Fig. 2.16. Change in Qp
−1 during (a) SCF CO2 injection and (b) brine injection at

0, 800 and 2400 days (left to right, respectively).
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Fig. 2.17. Change in Vp during (a) SCF CO2 injection and (b) brine injection at 0,
800 and 2400 days (left to right, respectively).

6.0 change in intercept. In order to compare the effect of brine and SCF CO2 fluids

on Qp, Vp and AVO attributes, their corresponding results were subtracted and are

shown in Figure 2.24, Figure 2.25, Figure 2.26, and Figure 2.27. SCF CO2 saturation

zone shows higher attenuation and lower velocity compares to brine saturated zone.

The larger intercept and gradient of SCF CO2 saturated zone compare to brine can

be used to segregate types of fluids and their flow regime inside the reservoir.

2.7 Ray-Born Seismic Modeling

Our reservoir modeling study was further analyzed by computing 3D synthetic seis-

mograms using ray-Born algorithm (Beydoun and Mendes, 1989; Gibson et al., 1993).

This method estimates wave fields scattered by small perturbations in the properties

of an elastic medium. In our study, velocities and density of overburden layers are

assumed to be homogenous. Though this assumption is not valid for true earth but

still can be acceptable for time-lapse seismic modeling as properties and geology of

overburden layers change very little during hydrocarbon production. In our seismic
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Fig. 2.18. Change in intercept during (a) SCF CO2 injection and (b) brine injection
at 0, 800 and 2400 days (left to right, respectively). SCF CO2 saturated reservoir
shows 1.2 times lower intercept than brine saturated reservoir.
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Fig. 2.19. Change in gradient during (a) SCF CO2 injection and (b) brine injection
at 0, 800 and 2400 days (left to right, respectively). SCF CO2 saturated reservoir
shows 1.1 times higher gradient than brine saturated reservoir.
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Fig. 2.20. Difference in attenuation during (a) SCF CO2 injection and (b) brine
injection between 800 and 0 day, 2400 and 0 day (left and right, respectively).
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Fig. 2.21. Difference in velocity during (a) SCF CO2 injection and (b) brine injection
between 800 and 0 day, 2400 and 0 day (left and right, respectively).
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Fig. 2.22. Difference in intercept during (a) SCF CO2 injection and (b) brine injection
between 800 and 0 day, 2400 and 0 day (left and right, respectively).
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Fig. 2.23. Difference in gradient during (a) SCF CO2 injection and (b) brine injection
between 800 and 0 day, 2400 and 0 day (left and right, respectively).
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Fig. 2.24. Difference in attenuation between SCF CO2 injection and brine injection
at 800 days and 2400 days (left and right respectively).
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Fig. 2.25. Difference in velocity between SCF CO2 injection and brine injection at
800 days and 2400 days (left and right respectively).
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Fig. 2.26. Difference in intercept between SCF CO2 injection and brine injection at
800 days and 2400 days (left and right, respectively).
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Fig. 2.27. Difference in gradient during (a) SCF CO2 injection and (b) brine injection
between 800 days and 2400 days (left and right, respectively).
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Fig. 2.28. Composite reflection amplitude before any injection from 20 m thin reser-
voir using ray-Born algorithm at zero, med-offset and far-offset (from left to right
respectively).

modeling, there are 90 source-receiver pairs in inline and cross-line direction with

20 m spacing, covering 3D reservoir. We simulated zero-offset, medium offset and

far-offset where the medium offset seismic arrays have 598 m source-geophone off-

set corresponding to 15◦ incident angle. The far-offset seismic arrays have 1136 m

source-geophone offset corresponding to 30◦ incident angle. We also applied normal

move out (NMO) and phase-shift migration to all the seismogram.

The composite reflection amplitude from 20 m thin reservoir before any injection

is shown in Figure 2.28. The time-lapse amplitudes after 800 days and 2400 days

are computed for zero-offset, medium offset and far-offset as shown in Figure 2.29

and Figure 2.30 The percentage change in relative amplitude after 800 days and

2400 days during injection of brine and CO2 is shown in Figure 2.31 and Figure 2.32

In accordance with our previous analytical results, Figure 2.31(a) shows injection

of SCF CO2 causes decrease in amplitude from 20% (zero offset) to 45% (far-offset).

However, Figure 2.31(b) shows brine injection causes in increase in amplitude from

15% (zero offset) to 25% (far-offset). The large percentage change in amplitude at

far-offset becomes very useful in AVO analysis to detect types of fluids present in

fractured reservoir.

In order to better understand the effect of injection of different fluids, we ex-

tracted one inline through the center of 3D reservoir model. Figure 2.33 compares

the effect of different fluids on reflected seismic amplitude. The top of the figure

refers to CO2 injection whereas bottom refers to brine injection. As expected and in
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Fig. 2.29. Difference in reflection amplitude during (a) SCF CO2 injection and (b)
brine injection between 800 days and 0 day at zero, med-offset and far-offset (from
left to right respectively).
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Fig. 2.30. Difference in reflection amplitude during (a) SCF CO2 injection and (b)
brine injection between 2400 days and 0 day at zero, med-offset and far-offset (from
left to right respectively).
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Fig. 2.31. Percentage change in reflection amplitude during (a) SCF CO2 injection
and (b) brine injection after 800 days at zero, med-offset and far-offset (from left to
right respectively).
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Fig. 2.32. Percentage change in reflection amplitude during (a) SCF CO2 injection
and (b) brine injection after 2400 days at zero, med-offset and far-offset (from left to
right respectively).
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Fig. 2.33. Reflection amplitude (far-offset) at 0, 800, 2400 days (left to right respec-
tively) during SCF CO2 injection (top) and brine injection (bottom).

accord to our analytical modeling, CO2 injection causes attenuation or decrease in

reflection amplitude whereas brine injection causes increase in reflection amplitude at

different offsets. Our further analysis suggests that at far-offset (30◦ incident angle),

CO2 injection causes 50% reduction in amplitude whereas brine injection cause 50%

increase in the amplitude.
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2.8 Conclusions

Numerical analysis shows that attenuation and dispersion of seismic waves strongly

depend on crack size and permeability of host rock in the equant porosity model.

We have developed methods for relating discrete fracture network models used by

engineers to set up fluid flow simulations to models of crack density that can be

used to predict seismic reflections from the fractured reservoir. This is an important

first step in developing integrated tools for fractured reservoir characterization. AVO

results for our example model predict that supercritical carbon dioxide is easier to

detect than brine in the fractured reservoirs. The total modeling process is fast and

comparatively simple, leading to a prediction of AVO results for comparison to field

measurements. Our time-lapse study integrating flow simulation suggest significant,

but not sure if measurable on seismic data, change in Qp, Vp and AVO attributes

with change in saturation. The 10% to 12% decrease of intercept with respect to

background for SCF CO2 saturated reservoir shows as potential attribute for detecting

fluids in reservoirs. Also, the opposite trend of differences of various parameters can

be useful in detecting the type of fluids present in the reservoir. Also, other methods

such as instantaneous attributes study suggest Q can be affected even by thin layers

and can distinguish fluids in thin and thick reservoirs. Our seismic modeling using

ray-Born algorithm suggest significant relative change in amplitude at far-offset that

can be useful for AVO analysis. We anticipate that this general procedure will have

some important applications for reservoir monitoring studies.
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CHAPTER III

SEISMIC MODELING OF COMPOSITIONAL AND GEOCHEMICAL

EFFECTS IN CO2 SEQUESTRATION

3.1 Introduction

Carbon dioxide sequestration is a viable approach for controlling the effects of green-

house gases on global warming (Bachu, 2003). Sequestration is the process of storage

of CO2 into repositories such that it remains stored for long and doesn’t release to

the atmosphere. The good candidate geological formations for sequestration sites

are depleted oil and gas reservoirs, unmineable coal seams, saline formations, shale

and basalt formations. The motivation to use basalt formation is because of unique

chemical properties of basalt that converts all injected CO2 to a solid mineral form

thus permanently storing into the formations (Energy, 2008). However, the most

mature and effective technology still available for directly minimizing emissions is

sequestration in existing or depleted hydrocarbon reservoirs (Hepple and Benson,

2005). Existing and depleted oil and gas reservoirs for CO2 sequestration are more

in demand compare to other formations because of two principal reasons. First, the

economic benefits associated with enhanced oil and gas recovery are commercially

proven and widely accepted by the industry. Second, oil and gas reservoirs provide

abundance data sources such as porosity, permeability, seismic velocity etc. that can

be used to design the sequestration sites. Challenges do remain, however, in the

modeling, design and implementation of long time sequestration projects.

One of the major concerns in sequestration projects is the low density and vis-

cosity of CO2 under subsurface conditions, which may significantly increase the risk

of its leakage from the sequestration site into overlying rock (Tsang et al., 2002).

Furthermore, CO2 interacts chemically with the host rock, potentially causing diffi-

culties in understanding and predicting its behavior during sequestration. Leakage of

CO2 can lead to several other problems such as acidification of ground water. The

development of adequate policies to govern sequestration therefore requires improved

characterization of the media in which CO2 is stored and the development of ad-

vanced methods for detecting its flow and movement. Existing laboratory data and
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field experiments both suggest that the influence of CO2 on seismic properties is suf-

ficiently strong to be detectable at a given point in time. The injected CO2 can exist

in three separate phases, viz. supercritical fluid CO2, gaseous CO2 or dissolved in

aqueous solutions, depending on the pore pressures and temperatures in the reservoir

(Wang et al., 1998). Measurements on core samples have shown that the CO2 can

decrease the velocity of both compressional and shear waves by up to 10% (Wang

et al., 1998). Crosswell experiments show that it can be detected successfully in the

field (Harris et al., 1995). These results show that it should be possible to image the

distribution of CO2 injected into a formation because of the immediate changes in

bulk fluid properties. However, the seismic response may also change because of geo-

chemically influenced processes such as cementation, secondary porosity formation or

compaction, and these are especially important for long-term sequestration efforts. In

particular, when carbon-dioxide encounters formation brine, it forms carbonic acid,

which reacts with the formation minerals and alters rock composition as well as brine

salinity.

Therefore, this chapter presents results of detailed geochemical simulations com-

bining fluid flow models with composition modeling that incorporates these phenom-

ena. Our modeling study considers carbonate rich limestone rock, an end member

of metacarbonates series, which is one of the most common reservoir rocks. The

solutions provide a prediction of how important geochemical reactions might be for

seismic monitoring of CO2 sequestration. Below we first summarize the simulation of

fluid flow, geochemical and seismic responses and then present results for changes in

seismic reflection response. The results show that the chemical processes cause rela-

tively small changes in seismic amplitudes after 1000 years, suggesting that reduction

in the bulk modulus of the fluid by mixing of CO2 with brine and oil will still cause

the most significant changes in amplitude.

3.2 Geochemical Modeling

The two major components of the model study are compositional and geochemical

modeling of fluid flow and the prediction of time-lapse seismic signals. We used the

GEM simulator for the geochemical and composition modeling of CO2 injection and

subsequent fluid flow (Nghiem, 2002; Nghiem, 2003). GEM is a compositional sim-

ulator that incorporates phase and chemical equilibrium models and rate dependent
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Table 3.1. Aqueous species and their initial concentrations

Species Name Initial Molality

(Moles/Kg of Water)

H+ 1E-07

Ca++ 9.118492E-05

Al+++ 2.317806E-11

SiO2 2.345433E-08

Na+ 0.5

Cl− 0.52

HCO3
− 2.489299E-02

CO3
−− 1.170273E-05

OH− 5.456322E-07

mineral dissolution and precipitation reactions.

The geochemical reactions taking place during sequestration alter rock composi-

tion and brine salinity, thus affecting the density and bulk modulus of reservoir rock

and fluids. For example, CO2 injection into the formation leads to the formation of

carbonic acid, which in turn triggers other reactions (Stumn and Morgan, 1996). Our

simulations considered the brine species in Table 3.1, minerals in Table 3.2 and we

selected to include the set of reactions in Table 3.3, which model the basic dynamics

of the chemical transformations during CO2 injection. All of the brine species are

actively involved in these reactions. The relative phase behavior of CO2 and reservoir

fluids controls the dissolution of CO2 that affects different geochemical reactions. For

chemical modeling, phase equilibria are calculated using the Peng-Robinson equation

of state and the gas-brine equilibria (Li and Nghiem, 1986). Dissolution was assumed

to be instantaneous, and the gas and aqueous phases are considered to be in thermo-

dynamic equilibrium at which the fugacities of the gaseous and aqueous phases are
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Table 3.2. Minerals and their initial volume fractions

Mineral Chemical Molecular Density Initia Volume

Formula Weight (kg/m3) Fraction

Calcite CaCO3 100.0869 2710 97

Kaolinite Al2Si2O5(OH)4 258.1616 2410 0.0176

Anorthite CaAl2Si2O8 278.2082 2740 0.0088

Table 3.3. Geochemical reactions

Intra-aqueous reactions

CO2 (aq)+ H2O = H++ HCO3
−

HCO3
− = H++ CO3

−−

H++ OH− = H2O

Mineral equilibrium reactions

Calcite + H+ = Ca+++ HCO3
−

Kaolinite + 6H+ = 5H2O + 2Al+++ + 2SiO2 (aq)

Anorthite + 8H+ = 4H2O + Ca+++ 2Al+++ + 2SiO2 (aq)
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equal as shown below,

fig − fiw = 0, i = 1, 2, ..., ng (3.1)

where ng is the total number of components in the gas phase, fig and fiw represents

the fugacities of component i in the gaseous and aqueous phase respectively. The

Peng-Robinson equation of state is used to compute the fugacities of gas phase and

Henry’s law is used to compute the fugacities of the components in the aqueous phase

as given below,

fiw = yiwHi (3.2)

where Hi is the Henrys law constant for component i and is a function of salinity (?).

The geochemical reactions include both fast intra-aqueous or slow mineral re-

actions, and the GEM simulator models intra-aqueous reactions (Table 3.3), such as

the formation of carbonic acid, using chemical equilibrium conditions that require the

forward and backward reaction rates to be same.In GEM, these reactions are modeled

using the following equality conditions (Nghiem, 2002; Nghiem, 2003).

Qa
α − Ka

eq,α = 0, α = 1, ....Raq (3.3)

where Qa
α is the activity product for the intra-aqueous reaction α given by,

Qa
α =

ns∏
k=1

a
νa

kα
k , α = 1, ....Raq (3.4)

where ak is the activity coefficient for component k and Raq is the number of aqueous

reactions. Also, Ka
eq,α is the chemical equilibrium constant for the intra- aqueous

reaction α and is given as follows,

Ka
eq,α = exp[− 1

RT

ns∑
k=1

νa
kα(ΔG◦

f )k], α = 1, ....Raq (3.5)

where R is the Gas constant, T is the temperature, and ΔG◦ is the standard-state

Gibbs energy. Aqueous solutions are considered ideal, hence their activity coefficients

are considered to be equal to their molalities (moles/kg of water). The activity

coefficient for water and minerals are taken to be unity. The chemical equilibrium

constants are modeled as fourth order polynomial of temperature whose coefficients
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were taken from (Nghiem, 2003; Stumn and Morgan, 1996).

The mineral reactions (Table 3.3), which are typically slower than intra-aqueous

reactions, are modeled as rate-dependent reactions based on their distance from equi-

librium (Nghiem, 2002),

rβ = Âβkβ

[
1 − (

Qβ

Keq,β

)
]

(3.6)

where Âβ is reactive surface area of mineral reaction β per unit bulk volume of porous

medium, kβ is the rate constant of the mineral reaction, Qβ is the activity product of

mineral dissolution/ precipitation reaction, Keq,β is the chemical equilibrium constant

of mineral dissolution/precipitation reaction. Whether precipitation or dissolution

takes places depends upon the activity product of associated mineral dissolution and

precipitation reactions. These reactions significantly affect reservoir properties, es-

pecially porosity and permeability. In GEM, the porosity change is computed from

changes in the reactive surface area from the relationship (Nghiem, 2002; Nghiem,

2003)

dφ

dt
= −

nm∑
k=1

Nk4πrk
2
drk

dt
, (3.7)

where φ is the porosity, rk is the mean grain size of the mineral, Nk is the number of

mineral grains per unit volume, and rk is the rate of dissolution of mineral k. Results

show that porosity changes in our model are negligible, however. The more detail of

geochemical modeling is discussed in Kumar et al. (2008).

3.3 Models for Time-Lapse Seismic Monitoring of CO2

Seismic data have the potential to provide valuable insights into the success or failure

of a CO2 sequestration project. Previous experiments show the feasibility of detect-

ing the motion of CO2 in the subsurface (Harris et al., 1995; Nolen-Hoeksema et al.,

1995), which will be very important for ensuring that leakage from the storage site

is not taking place. However, the feasibility of long term storage is a more complex

issue, because most studies are based on short term field efforts where chemical pro-

cesses are likely of minimal importance. In this study, we therefore use conventional

models, combined with the fluid flow and geochemical simulations, to demonstrate

the potential of seismic data to monitor changes in a sequestration site over periods
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as long as hundreds of years.

This simulation requires models for the changes in seismic properties that are

caused by changes in fluid properties and chemical effects. Here we summarize the

models used to predict changes in seismic velocity and formation density caused

by changes in fluid properties and by changes in formation properties caused by

chemical processes. These provide the essential parameters for simulating the seismic

response of the reservoir. This response could be determined using a full simulation of

seismic wave propagation, generating synthetic seismograms that would be processed

for interpretation applications. In our case, we are primarily interested in applying

amplitude variation with offset (AVO) processing, which is based on measurements of

the change in seismic reflection amplitudes with angle of incidence, which is equivalent

to changes in the offset between source and receiver in a common midpoint gather.

Conventional processing fits a line to the amplitude measured as a function of the

squared sine of the angle of incidence, reducing a large number of observations to a

pair of seismic attributes, the intercept and slope, or gradient, of the line. Simple

analytic solutions are available to compute these two attributes for a homogeneous

reservoir, and they provide a much faster solution than trying to directly simulate the

seismograms and process them for the equivalent results. We therefore outline the

basic features of the solutions as well as the models for rock and reservoir properties.

3.3.1 Seismic Rock Properties

The amplitude of seismic waves reflecting from a formation containing CO2 or an-

other fluid will depend on the properties of both the fluid itself and of the porous

rock matrix. Specifically, seismic compressional and shear wave velocities will change

as fluid properties vary, and a common model describing these variations is the

Gassmann equation (Gassmann, 1951). This solution assumes isostress conditions

for an isotropic, homogenous, monominerallic rock at the low frequency limit. While

the shear modulus μ of the rock is predicted to remain constant by this theory, the

bulk modulus of the saturated rock depends on several properties of the fluid and

solid components:

κsat = κdry +
(1 − κdry

κs
)2

φ( 1
κf

− 1
κs

) + 1
κs

(1 − κdry

κs
)
. (3.8)
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Here κdry is the bulk modulus of the drained rock sample, κs is the mineral grain bulk

modulus, κf is the fluid bulk modulus, and φ is the porosity.

In most cases, the formation will be partially saturated with brine, oil and another

fluid such as CO2 . In our models, we can have all three fluids present and the bulk

modulus of the mixture is given by Woods equation (Mavko et al., 2003) as

1

κf

=
S1

κ1

+
1 − S1

κ2

, (3.9)

where κi is the bulk modulus of fluid i, Si is the saturation of that fluid. This is easily

extended to three fluids. The bulk density of the formation is simply the volume

average of the density of each component present in the fluid-saturated rock.

ρbulk = (1 − φ)ρmatrix + φ(ρCO2SCO2 +

ρoilSoil + ρwater(1 − SCO2 − Soil)) (3.10)

Using bulk and shear moduli and the density of the CO2 bearing formation, the

compressional and shear wave velocities can be calculated.

Vp =

√
κ + 4

3
μ

ρ
(3.11)

Vs =

√
μ

ρ
(3.12)

The S-wave velocity is comparatively weakly dependent on the fluid properties,

because only density changes affect it. However, the change in the P-wave velocity is

more significant because of its dependence on the bulk modulus.

In a general case, seismic properties will change with pore pressure as well. How-

ever, in our simulations the changes in pore pressure are comparatively small, on the

order of several MPa, especially after CO2 injection stops. Test calculations show

that pressure effects cause much smaller changes in seismic velocity than saturation

and other effects, so we ignore them in this study.

3.3.2 Acoustic Properties of Reservoir Fluids

While the Gassmann and Woods equations provide models for changes in seismic

properties with changes in fluid saturations, integration of seismic and fluid flow
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simulations also requires relationships to quantify the effects of changing temperature,

salinity and pore pressure. The density of brine, which depends upon salinity, pore-

pressure and temperature, was taken directly from the simulation results, but the

P-wave velocity changes for the relevant fluids require additional models. Here we

summarize the models used for the fluids of interest, viz. brine, oil and supercritical

fluid CO2.

Brine: Batzle and Wang et.al (1992) provide empirical realationships for changes

in brine P- wave velocity as

Vp = Vw + S(11709.6T + 0.055T 2 − 8.5 × 10−5T 3

+2.6P − 0.0029TP − 0.0476P 2 + S1.5(78010P

+0.16P 2)1820S2 (3.13)

Here pressure P is in MPa, temperature T is in degree Celsius, salinity S is in parts

per million divided by 106. The acoustic velocity in pure water, Vw, in m/s is (Batzle

and Wang, 1992)

Vw =
4∑

i=0

3∑
j=0

wijT
iP j, (3.14)

and the coefficients wij are as provided by (Batzle and Wang, 1992). The acoustic

velocity and density can be used to calculate the bulk modulii of brine using Vp
2 =

K/ρ.

Oil : The acoustic velocity in dead oil, oil with minimal gas present, depends

upon pore-pressure and temperature as (Batzle and Wang, 1992)

Vp(m/s) = 2096( ρr

2.6−ρr
)1/2 − 3.7T + 4.64P

+0.0115[4.12(1.08ρr
−1 − 1)1/2 − 1]TP (3.15)

where ρr is reference standard density. The density of dead Oil is directly taken from

simulation results.

Supercritical Carbon dioxide (SCF CO2): The density of Supercritical CO2 is

directly obtained from simulation results, while the bulk modulus of supercritical
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CO2 can be calculated from the following relationship (Vargaftik, 1975),

KCO2 = 4.2911×10−2 − 8.3309 × 10−3P

+5.8377×10−4P 2 − 4.3896 × 10−3 (3.16)

3.3.3 Seismic AVO Attributes

The amplitude of a seismic reflection from a boundary between two materials is

approximately a linear function of the squared sine of the angle of incidence i (Shuey,

1985):

R(i) ≈ R(0) + Gsin2i (3.17)

Appropriately processed prestack seismic data, when sorted into common reflection

point, or common midpoint, gathers, provide a measure of this reflection coefficient.

Typical amplitude variation with offset (AVO) analysis fits a line to these measured

reflection amplitudes to estimate the intercept R(0) and gradient G. The intercept is

equal to the normal incidence reflection coefficient and can be considered an estimate

of the seismic amplitude that would be observed in a typical seismic section. The val-

ues of these two parameters generated by hydrocarbon or CO2 bearing formations are

often significantly different from those of brine-saturated rock, providing a valuable

tool for detecting fluids of interest.

In our model, however, the reservoir, with thickness b=20 m, is sufficiently thin

that reflections from the top and bottom of the layer will interfere for seismic frequen-

cies typical of surface seismic data (about 30 Hz) and so we cannot directly utilize

the (Shuey, 1985) result. Lin and Phair et al. (1993) showed that composite reflec-

tion associated with this superposition or tuning still has the same general functional

form, but the intercept and gradient of the line take the form:

Rt(0) = (4πbf)/V gR(0) (3.18)

Gt = ((4πbf)/V g)(G − R(0)/2) (3.19)

Here f is frequency, Vg is the interval velocity in the reservoir formation, and R(0)

and G are the conventional AVO intercept and gradient respectively for the upper

interface of the reservoir. By utilizing this tuned AVO solution, we obtain much

faster results than we would with a simulation of the synthetic seismograms followed
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Fig. 3.1. (a) Porosity and (b) permeability in the weakly correlated reservoir model.
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Fig. 3.2. (a) Porosity and (b) permeability in the strongly correlated reservoir model.

by processing.

3.4 Model Results and Discussion

For our modeling, we used a 2D model of a carbonate reservoir as shown in Table 3.4

with two different permeability distributions. The first case has a low spatial corre-

lation ( λD ∼ 0.01) that causes a random distribution of permeability as shown in

Figure 3.1. The second case has a high spatial correlation ( λD ∼ 0.3) leading to

distinct flow channels as shown in Figure 3.2. A porosity-permeability relationship

representative of a carbonate reservoir was used in this study (Jennings and Lucia,

2003).
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Table 3.4. Reservoir model

Grid 41×41×1

Grid Size (m)

Δx = Δy 22.43

Δz 20

Heterogenity

Case I Weakly coorelated

Case II Strongly coorelated

Reservoir Compressibility 1.0e-08

Reference Pressure 1 MPa

Initial reservoir pressure 19.58 MPa

Initial water saturation 0.6
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Fig. 3.3. (a) Gas Saturation, and (b) oil Saturation at 6 years (end of gas injection)
for weakly correlated reservoir model.

Our modeling study was performed for CO2 sequestration under post-waterflood

conditions, having initial water saturation of 60%. We used a five spot pattern with

a injector in the center and producers at the four corners of the model. The model

is simulated with CO2 injection for six years and then the wells are shut down. We

measure results at 6 years (end of gas injection), 10 years, 100 years and 1000 years

to model the seismic response corresponding to the reservoir conditions.

This section discusses modeling results associated with geochemical reactions

during CO2 injection and its impact on seismic response. Overall the primary objec-

tive is to examine the feasibility of seismic monitoring of CO2 during CO2 sequestra-

tion. For case 1, the host rock was considered to correspond to properties of ‘vuggy’

carbonate whereas for case 2, the host rock was considered to represent ‘marly’ lime-

stone. Mean properties for these rocks were taken from measurements presented by

Brown (2002).

3.4.1 Case 1 : Weakly Correlated Reservoir Model

Figure 3.1 shows the permeability distribution for the weakly correlated reservoir

model case that has a low spatial correlation ranging from 0.1 md to 2200 md. CO2

is injected for first 6 years and then all the wells were shut down. We monitored

the reservoir conditions at 10 years, 100 years and 1000 years. Figure 3.3 show the

gas (primarily supercritical CO2 ) and oil saturation in the reservoir at the end of

6 years. The corresponding pressure change and the dissolution of CO2 in brine are
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Fig. 3.4. (a) Pressure, and (b) CO2 concentration in brine at 6 years (end of gas
injection) for weakly correlated reservoir model.

shown in Figure 3.4. Since the wells are shut down after 6 years, the reservoir reaches

equilibrium around 10 years with reservoir pressure around 24 MPa. The decrease in

pressure is mainly due to the formation of bicarbonate ions due to the mixing of CO2

and brine. This reduces the amount of gas present in the reservoir and thus reduces

the reservoir pressure. The mixing of CO2 into the reservoir brine changes the brine

density and pH due to chemical interactions. The distribution of salinity and brine

densities are shown in Figure 3.5. After 6 years, the brine salinity changes (calculated

as TDS) by 10%, thus changing the density of the brine. As the gas-aqueous system

reaches equilibrium (around 10 years), the salinity changes become very slow at later

times. This can be attributed to fact that fast aqueous reactions are predominant

only during the first few years while gas is being injected, and after that only slow

mineral reactions shift the equilibrium.

CO2 also mixes with oil, changing their oil density but the effect is opposite

compare to mixing of CO2 in brine as shown in Figure 3.6(a), and the corresponding

gas density distribution is shown in Figure 3.6(b). The lowering of pH during CO2

injection triggers several geochemical reactions that lead to precipitation of minerals

such as Calcite and Kaolinite, and dissolution of Anorthite. Figure 3.7, Figure 3.8,

Figure 3.9 show the mineral precipitation/dissolution profiles for Calcite, Kaolinite,

and Anorthite respectively at 100 and 1000 years. The positive values indicate min-

eral precipitation (Calcite and Kaolinite). while negative values indicate dissolution
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Fig. 3.5. (a) Salinity, and (b) brine density at 6 years (end of gas injection) for weakly
correlated reservoir model.
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Fig. 3.6. (a) Oil density, and (b) gas Density at 6 years (end of gas injection) for
weakly correlated reservoir model.
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Fig. 3.7. Moles of calcite precipitated at (a) 100 years, and (b)1000 years for weakly
correlated reservoir model.

(Anorthite). The calcium cations require for calcium precipitation is provided by

the dissolution of anorthite. Thus, the calcite precipitation is symmetric with the

anorthite dissolution. Porosity changes due to these mineral reactions are of order of

0.15%, and 1.5% are observed at times 100 years, and 1000 years respectively (Kumar

et al., 2008).

We used Gassmann equation to compute the changes in seismic properties. For

this model, the reservoir is assumed to be located at a depth of 2 Km, overlain by an

isotropic and homogenous medium of = 4.5 Km/s, =2.5 Km/s and density= 2.2 g/cc.

Figure 3.10 shows changes in compressional velocity, Vp, at t = 6, 10, 100 and 1000

years. These changes are computed with respect to the initial conditions at t = 0.

Because of CO2 injection and the mineral precipitation/ dissolution with accompany-

ing porosity changes, the velocity decreases by 2.73%, 2.75%, 2.765% and 2.87% at t

= 6, 10, 100 and 1000 years respectively. The AVO intercept and gradient parameters

provide important insights into the seismic detectability of the CO2 front. The inter-

cept parameter, R(0) , which undergoes a decrease of 13.63%, 14.14%, 13.85% and

11.6% at the monitoring times, t = 6, 10, 100 and 1000 years, and the corresponding

changes in gradient are 5.02%, 5.07%, 5.09% and 5.45% respectively (Figure 3.11).

However, as we know the mineral reactions are slow reactions and their effects are

dominated after the reservoir reaches pressure equilibrium. In order to understand

their effect on seismic properties, we subtracted the results of t = 1000 years with t

= 6 years (Figure 3.12). Figure 3.12 clearly shows that the maximum change in the
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Fig. 3.8. Moles of kaolinite precipitated at (a) 100 years, and (b)1000 years for
heterogenous field with small correlation length.

Fig. 3.9. Moles of anorthite precipitated at (a) 100 years, and (b)1000 years for
heterogenous field with small correlation length.
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Fig. 3.10. Difference of Vp between (a) t = 6 years (b) t = 10 years (c) t = 100 years
and (d) t = 1000 years with t = 0 year respectively for weakly correlated reservoir
model.
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Fig. 3.12. Difference of (a) salinity (b) reservoir bulk modulus (c) compressional
velocity (d) intercept between (a) t =1000 years and (b) t = 6 years respectively for
weakly correlated reservoir model.
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intercept occurs at the boundary of the CO2 front that can be useful in detecting the

flow of CO2 inside the reservoirs. The maximum change in various seismic properties

at the boundaries is because of the continuous chemical activities between acidified

reservoir fluids and host rock at the boundary.

In order to better understand the individual effects of these processes, we con-

strained our study for one particular grid cell (516 m, 448 m) that shows significant

changes. For first 6 years, out of the total injected CO2 partially dissolved into brine,

some leads to formation of carbonic acid whereas rest enhances oil production. The

formation of carbonic acid triggers a variety of geochemical reactions that can al-

ter rock composition and brine salinity whereas dissolution increases brine density,

changing bulk properties of reservoir fluids, as shown in (a), (b) and (c) respectively

in Figure 3.13. The reservoir reaches pressure equilibrium by 10 years, thus reducing

the rates of fast reactions. After 10 years, the mineral reactions that are slower be-

comes more active than the faster intra-aqueous reactions. During mineral reactions,

some of the brine species start interacting with host rock minerals, decreasing the

density of brine. The low rate of change of seismic properties and amplitudes at

times after 10 years is due to the slow rate of mineral reactions. Most of the effect

of these geochemical reactions is discernible by 100 years but then also, their overall

affect on seismic velocity, thus seismic amplitudes, is not more than 2%., that may

be difficult to detect on noisy seismic data (Figure 3.13(d)). However, the significant

change in the seismic properties at the boundary of the CO2 front can be used to

detect the flow path of CO2 inside these reservoirs.

3.4.2 Case 2: Strongly Correlated Reservoir Model

The permeability distribution for this case shows strong anisotropy and long range

spatial correlation as shown in Figure 3.2. Here, also we injected CO2 using five-

spot pattern with injector in the center and producers at the four corners. Due to

permeability anisotropy, the movement of CO2 front is channelized, preferential to

south-east direction. Figure 3.14 shows the gas saturation and gas density at the end

of 6 years of CO2 injection. The reservoir pressure distribution and brine densities at

the end of 6 years are shown in Figure 3.15.

For seismic modeling, the reservoir is assumed to be overlain by an isotropic and

homogenous medium having Vp = 3.55 Km/s, Vs=2.8 Km/s and density = 1.6 g/cc.
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time (d) Reflection coefficient as a function of angle of incidence.
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Fig. 3.14. (a) Gas saturation, and (b) gas density at 6 years (end of gas injection) for
strongly correlated reservoir model.
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Fig. 3.15. (a) Pressure, and (b) brine density at 6 years (end of gas injection) for
strongly correlated reservoir model.
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Fig. 3.16. Difference of Vp between (a) t = 6 years (b) t = 10 years (c) t = 100 years
and (d)t = 1000 years with t = 0 year respectively for strongly correlated reservoir
model.

Figure 3.16 shows the change in Vp at t = 6, 10, 100 and 1000 years with respect to

the at time t = 0. Figure 3.17 shows change in the intercept and the gradient at t =

10 and 1000 years respectively with respect to t = 0 years.

Figure 3.18 shows some of the more important chemical and seismic modeling

results for the model. The CO2 saturation is largest near the injection site, and the

salinity and calcite precipitation are distributed in patterns controlled by the hetero-

geneous permeability field. Figure 3.18 also shows that the decrease in compressional

velocity after t=1000 years is 10-15%. The potential causes for the velocity decrease

are the reduction of the fluid bulk modulus when CO2 enters the pore space, intra-

aqueous reactions, and the geochemical reactions between CO2 reservoir fluids and

the minerals in the formation. However, as we know the mineral reactions are slow
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Fig. 3.17. Difference of intercept between (a) t =10 years and (b) t = 1000 years with
t = 0 year respectively for strongly correlated reservoir model. (c) and (d) represent
same profile for gradient.
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Fig. 3.18. Change in (a) CO2 saturation, (b) salinity, (c)moles of calcite precipitation,
and (d) compressional velocity from t=0 to t=1000 years.
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Fig. 3.19. Change in (a) salinity, (b) reservoir bulk modulus, (c) compressional ve-
locity, and (d) intercept from t=6 to t=1000 years.

reactions and their effects are dominated after the reservoir reaches pressure equilib-

rium, hence we subtracted the results from t = 1000 years to t = 6 years when all the

wells were shut down. Figure 3.19 is used to show the influence of mineral reactions

on rock properties. This figure clearly suggests that the slow mineral reactions have

very small effect on the wave velocity of the host rock, thus very small change in

intercept. However, the maximum change occurs at the boundary of the CO2 front

that can be used to detect the flow of CO2 in the reservoirs. The maximum change

at the boundary is because of sharp change in the properties between background

matrix and CO2 saturated rock due to continuous geochemical reactions. The more

detail analysis of this model case is discussed below.

During the six years of CO2 injection, the reservoir is not in pressure equilib-

rium, which enhances the faster intra-aqueous reactions. Part of the injected CO2
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is partially dissolved into brine, and some forms carbonic acid. The dissolution of

CO2 increases brine density, while the formation of carbonic acid triggers a variety of

geochemical reactions that can alter rock composition and brine salinity. After the

injection period, when all the wells were shut down, the reservoir eventually reaches

pressure equilibrium, thus reducing the importance of fast reactions and emphasizing

the slower mineral reactions. This equilibrium is achieved at about t = 10 years in

the simulation. In order to clarify the relative importance of chemical and fluid sub-

stitution effects on fluid properties, we consider one particular grid cell in more detail.

This cell, located at (516 m, 448 m), was selected because it showed large changes

in seismic velocities. While the brine properties have relatively little change, the to-

tal fluid and bulk properties of the porous reservoir rock show significant variability

during the period of injection only (Figure 3.20). The changes in properties after

injection, at least for density, are not negligible, but the biggest changes are during

injection. Dramatic decreases in bulk modulus and density must therefore be caused

by injection CO2 and not by subsequent chemical reactions. Gassmann equation cal-

culations support this conclusion by showing that compressional velocity decreases

by 10-14% after six years (Figure 3.20d). Furthermore, comparisons of compositional

modeling with and without chemical reactions suggest that the contribution of intra-

aqueous reactions is less than 2% change in velocities. Figure 3.21 shows that the

change in AVO attributes in models with and without chemical reactions is negligible

at a time point of 10 years. Thus, the majority of decrease in this early stage must

be attributed to the injection of a fluid, CO2 with a low bulk modulus, thus reducing

the bulk modulus of the reservoir. Once the reservoir is in pressure equilibrium, the

chemical reactions will be the only cause of time-lapse seismic signals. Since these

reactions are comparatively slow, the changes in seismic amplitude are small (Fig-

ure 3.22). During mineral reactions, some of the brine species interact with host rock

minerals, decreasing the brine density. The simulation results also show that these

reactions cause an increase in porosity of about 0.15% and 1.5% after t=100 and

t=1000 years. respectively, though this has negligible influence on seismic properties.

In general, most of the effect of the geochemical reactions is discernible in the seismic

amplitudes by 100 years but even then their overall affect on seismic velocity, and

thus seismic amplitudes, is not more than 2-5% (Figure 3.22). However, the signifi-

cant change in the seismic properties at the boundary of the CO2 front can be used

to detect the flow path of CO2 inside these reservoirs.



78

10-1 100 101 102 103
0.80

0.90

1.00

D
en

si
ty

 (
kg

/m
3 )

10-1 100 101 102 103

1.16.104

1.20.104

1.24.104

S
al

in
ity

(a) (b)

10-1 100 101 102 103
0.00

1.00

2.00

Time (years)

B
ul

k 
m

od
ul

us
 (

G
P

a)

(c)

10-1 100 101 102 103
3.2

3.3

3.4

3.5

3.6

3.7

Time (years)

V
p 

(k
m

/s
)

(d)

Fig. 3.20. Values of model properties as a function of time in the grid cell at (516 m,
448 m). (a) salinity, (b) brine (brown) and bulk reservoir fluid (red) densities, (c) brine
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Fig. 3.21. Relative change in AVO parameters (a) intercept and (b) gradient when
chemical reactions are neglected. The values are the relative change compared to the
complete model results that do include geochemical reactions.
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3.5 Conclusions

Our modeling combines comprehensive flow simulation, including chemical processes,

with seismic simulations to model the CO2 injection that includes all the accompany-

ing phase behavior and geochemical effects. The CO2 dissolution and the acidification

triggers a variety of geochemical reactions that can significantly alter the rock-fluid

properties. Our modeling shows that intra-aqueous reactions are more significant

during injection of CO2, while slower mineral reactions dominate after pressure equi-

librium is achieved. Overall both types of geochemical reactions, intra-aqueous and

mineral reactions, cause a change in reflection coefficient of 2 to 5%, which can be

generally very difficult to detect in noisy field data. So, even though geochemical re-

actions affect seismic data during CO2 injection, the seismic signals are dominated by

reductions in bulk modulus associated with fluid substitution effects modeled using

the Gassmann equation. However, the significant change in the seismic properties at

the boundary of the CO2 front can be used to detect the flow path of CO2 inside the

reservoirs.
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CHAPTER IV

CORRELATED FRACTURE NETWORK MODELING USING

STATISTICAL AND STOCHASTIC PROCESSES

4.1 Introduction

The quantification of the spatial distribution of fractures in low permeability rocks

is essential as they control the nature of fluid flow in those rocks. Generally, these

spatially distributed fractures form complex networks that can either act as fluid

carriers or barriers depending upon fracture connectivity. Therefore, understanding

the connectivity pattern, at least for areas of high and low fracture density zones,

becomes crucial for estimating flow characterization inside the earth. To date most

research has considered the effect of geometrical properties of fractures such as length

(Berkowitz, 1995; Bour and Davy, 1997) and orientation (Robinson, 1984; Balberg

et al., 1984; Masihi et al., 2005) on the scaling laws of the connectivity of fractures.

The scaling law of connectivity is the power law equation like in percolation theory

that determines the span of the cluster of connected fractures. However, very few

studies have been performed on the spatial correlation such as length, orientation

and position of fractures, though some of the studies were mainly concentrated on

long-range density correlations using fractal geometry (Berkowitz et al., 2000; Darcel

et al., 2003b). The knowledge of spatial correlation parameters are important as

they determine the connectivity of fractures. For example, orthogonal sets of fracture

cluster has higher connectivity compare to parallel set of fractures. Bour and Davy

(1999) have studied the correlation between the position and the length of the fracture.

However, still one of the major concern in industry as well as academia is to determine

parameters affecting connectivity of fractures that can improve the prediction of fluid

flow inside the earth.

A more thorough understanding of the correlations of fracture locations and

properties provides better insights into flow properties of fracture network models

utilized for numerical modeling of fluid flow. A common approach is to applied dis-

crete fracture network (DFN) methods, which produces a list of locations, sizes, and

orientations of individual fractures. Generally DFN models require specification of
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the statistical distributions of several parameters such as fracture density, orientation,

location, size, aperture, connectivity etc. to generate several realizations for produc-

tion estimation, reservoir planning such as to target drilling wells at dominantly

connected fractures. The first chapter of this dissertation outlines an integrated ap-

proach of modeling fractures using Discrete fracture network and seismics. Here,

we implement and extend a new model of the spatial distribution of fractures using

physics of fracturing process (Masihi and King, 2007), which is not explicitly consid-

ered in DFN modeling. The idea for modeling is based on the fact that the elastic

free energy associated with the fracture density follows Boltzmann distribution. The

expression that determines the spatial correlation function for the displacement of

fractures, discussed in detail later, is used as an objective function to generate sev-

eral realizations for fracture distributions using simulated annealing algorithm that

minimizes the objective function. The basic assumption for this method is that the

reference rock sample used for study is already fractured and the rock sample has

already achieved mechanical equilibrium. This equilibrium assumption allows us to

use entropy arguments and statistical mechanics for modeling fractures. The goal of

our study is to extend the stochastic modeling technique of fracture distributions into

real field observations. The stochastic models generated with this concept were also

compared with DFN models, followed by their integration with seismic study.

4.2 Correlation in the Elastic Displacement of Fractures

This section discusses important steps involve in the derivation of the expression for

the spatial correlation of the elastic displacement of fractures. The complete deriva-

tion is given in Appendix C. We write the displacement within the fractured rock

volume as u(x) = x − x
′
, noting that the particle at x has moved to x

′
. Using the

theory suggested by Landau and Lifshitz ( (1982b), Chapter IV) that describes re-

lation of elastic deformations in the presence of dislocations, Masihi et al. (2007)

suggests that a fracture in the rock sample is defined as discontinuity in the displace-

ment vector in the elastic medium. So, any displacement vector is assumed to have

continous part (elastic displacement ue) and a discontinous part (the inelastic dis-

placement ui) that can act as a source for inelastic strain. Similarly, the strain and
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stress can be decomposed into elastic and inelastic parts,

eij = ee
ij + Eij and σij = σe

ij + Sij (4.1)

If the system is in mechanical equilibrium i.e. in the absence of any external body

forces, the equation of continuity becomes,

∂jσij = ∂jσ
e
ij + ∂jSij = 0 or ∂jσ

e
ij = −∂jSij (4.2)

where the inelastic part of stress, internal sources of stress, becomes the fictitious

body force that gives rise to displacement and fracturing and also keeps fractures

open. From Heffer and King et al. (2006), the total elastic energy per unit volume

required to keep fractures open is the work done by elastic forces on the total strain.

This total elastic energy is given as

E =
1

2
σe

ijε
e
ji (4.3)

Using Fourier transforms of stress and strain and contracting above terms together

leads to an expression for the elastic energy,

E(k) =
1

2
[(λ + μ)kkkl + μk2δkl]u

e
k(k)ue

l (−k) =
1

2
μ[k2δkl +

1

1 − 2ν
kkkl]

=
μ

2
Lkl(k)ue

k(k)ue
l (−k), (4.4)

where Lkl is the usual linear operator of isotropic elasticity and is the inverse of

the Green’s function, LklGlm = δkm. Applying the assumption that the frequency

distribution, p(E), of strain energy due to the displacements/dislocations or fractures

follows Boltzmann Law,

p(E) ∝ exp(−E/ < E >), (4.5)

implies that the dislocations or fractures adopt a configuration that maximizes the

entropy of the system subject to mean strain energy, < E >, being fixed. This

assumption leads to the following expression for the spatial correlation between the
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elastic displacements or fractures in real space,

Ckl(r) =
< E >

μ
Gkl(r)

=
< E >

16πμ(1 − ν)

((3 − 4ν)δkl

r
+

rkrl

r3

)
(4.6)

where the terms < E >, μ, ν are the average strain energy, the shear modulus of

elasticity and the Poisson ratio of the rock sample. The random functions simulated

with this covariance relationship will satisfy Equation 4.2, which can be used to

determine both σe
ij and εe

ji. From the Appendix C, it can be clearly shown that the

energy function for the above distributions of fractures can be simplified as

E =
N∑

k=1

N∑
l=1
k �=l

Aukul[η|cos(θk − θl)| + |cos(α − θl)cos(α − θk)|]/rkl (4.7)

where A = < E >/16πμ(1-ν), N is the number of fractures in the system, and α, θk

and θl are the orientation of distance vector r and fractures uk and ul with respect

to the horizontal, respectively and uk and ul are the length of fractures in k and l

direction. This equation computes the pairwise interactions of fractures.

4.3 Modeling Methods and Analysis

4.3.1 Simulated Annealing Algorithm

Simulated Annealing (SA) is a stochastic optimization method that has been used

in variety of problems that involve finding global optimum values of a function con-

sisting of large number of independent variables. Tran (2007) suggests that the basic

concept behind SA originates from the physical process of metallurgical annealing

where annealing process occurs when a metal in a heat bath, initially at very high

temperature, is slowly cooled. In the beginning at very high temperature, all the par-

ticles are distributed randomly in a quasi-liquid state and as the temperature drops,

particles arrange themselves in low-energy ground state, probably at or very close to

global minimum of energy, forming a crystal. To apply SA for any problem, one must

define following terms:

• A description of set of possible configuration of the system.
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• A random number generator that can be used for systematic perturbing or

changing the configuration of the system.

• An objective function E (analog of energy) whose global minimization should

be the goal of the procedure.

• And a control parameter T (analog of temperature) and an annealing schedule of

changing a temperature-like parameter, so that system can reach its equilibrium.

Appendix B provides pseudocode for the typical Simulated Annealing Algorithm.

In application of SA to the current fracture modeling problem, the energy function

is the elastic energy function (Equation 4.7), while the fracture model parameters

such as position, length and orientation are the quantities that are rearranged in an

optimal, low-energy configuration. The goal of the SA application is to find a spatial

distribution, or distributions, of fractures that honors their spatial correlation given

by Equation 4.7. The first step in the application of SA is to choose the initial set

of fracture configuration. Since SA is independent of choice of initial configuration,

so we can start with any configuration i.e fractures having length l and orientation θ

in a square system of side length L. We start with the calculation of initial energy

of the fracture configuration, Ei, using Equation 4.7: The initial temperature, Ti, is

chosen at the same order of magnitude as energy function so that acceptance ratio at

the start is approximately 99%-100%. In order to change the current configuration of

fractures, a fracture j is selected randomly and its length, orientation and/ or position

is changed slightly. The algorithms used for for changing the orientation, length and

the position are, identical to Masihi et al.(2007),

θnew
j = θj + 0.05π(2R − 1) (4.8a)

lnew
j = lj + 0.5(2R − 1) (4.8b)

rnew
j = rj + 0.5(2R − 1) (4.8c)

where R is a random number selected from a uniform distribution in the range of

[0-1]. Once again the energy of new state of the configuration, Ej, is calculated

using Equation 4.7. To check the acceptance of new perturbed configuration, Ej,

with respect to previous configuration, Ei, the change in energy ΔE = Ej - Ei is

calculated assuming A to be one as it as just scaling factor. If ΔE < 0, then perturbed
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configuration is accepted unconditionally and we go back to previous step with Ei =

Ej. If ΔE > 0, then the new perturbed state is accepted or rejected on the basis

of Metropolis algorithm. This means that new state j will be accepted if exp[-(Ej -

Ei)/T] > r where r is a uniform random number in the range [0,1]. This allows the

algorithm to escape from local minima. This step is performed for 20-30 iterations at

a particular temperature where every fracture is visited at every iteration. Then the

temperature parameter is changed using the exponential cooling schedule T new=αT old

where α = 0.97. Here, we take large number of temperature iterations, assuming the

function reaches optimal minima of the solution after significantly large number of

iterations.

4.3.2 Periodic Boundary Condition (PBC) Implementation

In order to apply SA algorithm, we choose a model of finite size having finite fractures

that could image the whole area. Since the model that we have chosen is of finite size,

the truncation or the boundaries of the model can introduce artificial effects in the

output of final configuration of fractures from SA that are not commonly observed in

nature. So, understanding the effect of boundaries on overall configuration of fractures

becomes very important. This is because fractures close to the boundary experience

different effective stress, hence energy, compare to fractures in the center of the model.

Also, while changing the configuration of fractures by perturbing their position some

fractures close to the boundary can move out of the model, thus affecting the number

density of fractures in the model as shown in Figure 4.1. These limitations can

affect our prediction of final configuration of fracture system in an area. So, in order

to eliminate these problems, periodic boundary conditions are used by periodically

imaging the representative model in whole area. But this may sometime lead to

infinite pairs of calculations during the application of SA. So, one of the major concern

while applying periodic boundary condition is at what we can truncate calculations

without losing accuracy. In most of the cases of use of PBC, either one or two images

are used to cover the whole area (Masihi and King, 2007). But this arbitrary choice

can either make the algorithm computationally slow or results inaccurate. So here,

we proposed a systematic procedure for determining the minimum number of images

required to keep the method accurate and computationally fast.

We can establish criteria for determining the maximum distance, and number of
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Fig. 4.1. An example of periodic boundary condition for fracture modeling. The arrow
shows the simultaneous replacement of fractures in order to maintain the number
density of fractures in any cell.
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repeated model cells, that must be considered in implementing the PBC in the SA

code using a simple test model. This model includes 2500 fractures in a square area

5000 m on each side, each fracture 50 m in length with a random orientation between

-30 to +30 degree (Figure 4.2). This model was used to estimate the maximum

distance at which significant fracture interaction occurs. In other words, we needed to

determine the distance up to which a slight change in fracture configurations influence

other fractures or affects the total energy value. The most important factors are

relative orientation of fractures and ratio of length of fractures. For detailed analysis,

an arbitrary fracture (the first fracture of the test model) was taken and the total

initial energy was calculated using Equation 4.9.

Ei =
N∑

l>1
k=1

Aukul[η|cos(θk − θl)| + |cos(α − θl)cos(α − θk)|]/rkl (4.9)

The effect of the orientation of each of the other fractures was then quantified by

recomputing the total energy value by rotating a single fracture at r = (100,50),

(200,50), (300,50)...(4000,50) etc. one at a time, changing the orientation by 15◦

(Figures 4.3(a)). The influence of fracture length as a function of the separation be-

tween fractures was tested in the same way (Figure 4.3(b)). The results confirm that

fractures close to the reference fracture have significantly larger influence than frac-

tures at a distance, which is not surprising given that energy is inversely proportional

to distance (Equation 4.9). In fact, fractures at distances larger than r = 1200 m

have negligible influence on total energy value. So, for our modeling study the cutoff

radius (rcutoff ), the distance up to fractures influence each other, is 1200 m. Hence,

the number of periodic image at least require for PBC can be calculated as follows:

if rcutoff > a then n = rcutoff/a else n = (rcutoff/a) + 1, where a is the one side of

square representative model and n is the number of model image require to constrain

the usage of PBC. So the number of periodic image surrounding the model cell will

be equal to n in both side in x- and y- directions in order to neutralize the effect of

boundaries of the model cell.

The periodic boundary condition can be implemented by copying enough images

of the model to extend to a distance of rcutoff in all directions. Figure 4.4 and

Figure 4.5 compares the final configuration of fractures without and with periodic

boundary condition generated using simulated annealing algorithm. Figure 4.4(a)
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Fig. 4.2. The starting model used for testing factors affecting periodic boundary
condition. This model consists of 2500 fractures in a square area with each side=5000
m.
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Fig. 4.3. (a) The effect of rotation or relative orientation of fracture on total energy
value. Here r represents x-coordinate and y-coordinate=50 m. (b) The effect of
relative lengths of fracture on total energy value. Here, Li is the first fracture and
Lj is the fracture whose length is changed.
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Fig. 4.4. Final configuration of fractures for η = -1 (a) without PBC (b) with PBC.

without PBC shows that fractures near the boundary don’t get properly aligned

whereas Figure 4.4(b) with PBC shows all fractures becoming parallel to each other.

This is because fractures near the boundary experience different stress compare to

fractures near the center of the model. However, when we apply PBC, all fractures

experience similar stress because of images surrounding the model boundary. Also, if

fractures close to the boundary move out of the model cell then their image enter into

the model. Thus, the usage of PBC during modeling assures that fracture density

remains constant at every realization. We also test the effect of PBC for η = 0.25 as

shown in Figure 4.5. Figure 4.5(d) shows that number of fractures become equal in

orthogonal directions using PBC.

4.3.3 Sensitivity of η

The energy function or objective function used to determine the spatial correlation

of fractures includes several parameters that control the distribution of fractures. In

general, while minimizing the energy function (Equation 4.7), the first cosine term

favors orthogonal sets of fractures while second combined cosine term favors parallel

and in line fracture configuration. This is because the first cosine term becomes zero
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Fig. 4.5. Final configuration of fractures for η = 0.25 (a) without PBC (b) with PBC.
Histogram of final configuration of fractures (c) without PBC (d) with PBC.
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for orthogonal set of fractures whereas second cosine term becomes zero for parallel

and in line fractures, thus leading to minimization of energy function. The parameter

η associated with the first cosine term in the energy function is also very important

as it controls the internal configuration of fractured rocks by controlling the behavior

of objective function. For example, mathematically it can be observed that energy

function for η > 0 minimizes only when fractures become orthogonal to each other.

However for η < 0, second combined cosine term controls the behavior of energy

function that favors parallel and in line fractures. The coefficient η is related to rock

properties as η = 3-4ν or (λ+3μ)/(λ+μ) where ν is Poisson’s ratio, λ and μ are

Lamé parameters that depends on the type of rock sample. Landau and Lifshitz et

al. (1982b) suggests that the lower and upper bound for ν as -1 and +0.5 respectively,

implies η in the range of [1,7]. This is calculated from mathematical expression (shown

below)

σ =
1

2

(3κ − 2μ)

3κ + μ
(4.10)

where σ lies between -1 (for κ=0) and 1/2 (for μ=0). However in reality, Poisson

ratio’s varies between 0 and 1/2 and there are no known substance for σ < 0, i.e.,

substance that would expand transversely when stretched longitudinally. The most

common value of Poisson ratio, ν, for subsurface geological rocks are between 0.2

and 0.3 (Engelder and Peacock, 2001). Here, our goal is to test the sensitivity of η

on fracture configuration and hence, we consider η from negative to positive values,

though negative values are not going to be applicable to field settings in any realistic

case.

The starting model for this test is a simple model including 100 fractures in a

square box of with sides 1000 m in length. Initially each fracture is 50 m long and are

randomly oriented where orientation is chosen uniformly between -30◦ to +30◦. In this

initial test, only fracture orientations are allowed to vary. The effect of different values

of η after 10000 iterations is shown in Figure 4.6. These results suggest that η > 0

favors orthogonal sets of fractures whereas η < 0 favors one set of parallel fractures.

This is because η is associated only with first cosine term in energy equation. So for

η > 0, the energy function will be minimized if the second term becomes minimum

which is possible only when fractures become orthogonal. Similarly for η < 0, the

energy function will be minimized if the second term becomes maximum which is

possible only when fractures become parallel to each other. However, most rocks
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Fig. 4.6. (a) Initial fracture model, and final fracture configurations for (b) η = -1,
(c) η = 1, and (d) η = 2 respectively.
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have ν = 0.25 or η = 2, so this theory favors dominant existence of orthogonal sets

of fractures. This orthogonal feature may seem surprising since the stress field and

the material are both isotropic, but it is quite common fractures setting during basin

formation. An example of conjugate sets of fracture observed is in Upper Cretaceous

(Senonian) Chalk in Kent (Belayneh et al., 2007) where conjugate set of fractures

were studied to be formed during basin subsidence.

4.3.4 Sensitivity of Model Parameters

The goal of this section to explain the modeling scheme, understand the sensitivity

of model parameters on the objective energy function and their application on field

data. The most important model parameters in the objective energy function used

for SA algorithm are length, orientation and position of fractures. Any slight change

in any of these parameters affect the final configuration of fractures and also the

decay of energy function. Here, we study their effects by slightly changing either one

parameter or combination of parameters in SA algorithm. In this section, another

goal will be to look non-uniqueness in the result and will suggest methods to constrain

the model parameters.

We used an initial model containing 100 fractures with lengths selected from

a Gaussian distribution (mean 50 m, standard deviation 20 m) to examine these

issues (Figure 4.7(a)). The model parameters are perturbed using Equation (4.8).

Figure 4.7(b) shows the effect of perturbation of orientation only and orientation

and length together on the energy function with change in number of iterations.

In accord with general SA study, for the first few iterations at high T , the energy

function fluctuates significantly because a large number of perturbations/realizations

are accepted, but fluctuations decrease with the increase of number of iterations

suggesting large number of rejections of fracture configuration. The energy function

becomes stable around 6000 iterations suggesting that the energy function is close

to minimum. The fracture model corresponding to these iterations can be taken as

one of the realization as several realizations can correspond to same minima; the

solution is nonunique. The orientation of fractures of the final output fracture model

is not stable, though energy gets minimized, so fractures need to be rotated to match

the field data. The histogram of change in orientation after 20000 at 10 successive

iterations is shown in Figure 4.8. Figure 4.8 shows that the orientation of fractures
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Fig. 4.7. (a) Original model of 100 fractures with Gaussian distribution of length of
mean=50 m and std. dev.=20 m (b) Comparison of energy value for different cases
after 14000 iterations.

are not stable, even though fractures become orthogonal around 6000 iterations.

Also, if we increase the number of visits to each fracture from 20 to 30 at a par-

ticular temperature then the final orientation of the output model doesn’t remains

same, though fractures become orthogonal and system reaches energy minima in both

the cases. Figure 4.9 compares both the cases where the orthogonality of fractures

confirm that system is at energy minima. However, the final orientations of fractures

are not the same which is another example of non-uniqueness in the result. Hence,

the final realization generated using SA algorithm needs to updated corresponding to

field data. The other problem of perturbation algorithm (Equation (4.8)(b)) is that

successive iterations can make the length of fractures negative which is not possible.

Hence, it becomes important to constrain the length of fractures at every iteration.

So we decided that the length of fractures at every iteration needs to be renormalized

such that the mean length of fractures remains same as field data or initial mean

length of the starting model. Also Figure 4.7(b) compares the change in energy func-

tion with the number of iterations for cases with and without (but constrained to

minimum and maximum fracture length) renormalization to mean length. The figure

clearly shows that if the fracture length is renormalized to mean length, the energy

function coincides with the case of orientation perturbation only (Figure 4.7(b)) which

is expected. Figure 4.7(b) also shows that for the case of orientation and length per-
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Fig. 4.11. (a) Original model of 100 fractures with Gaussian distribution of length
of mean= 50 m and std. dev.= 20 m. (identical to Figure 4.7(a)) Here, position of
fractures are also perturbed. (b) Comparison of energy value for different cases.

turbation together without renormalization, the energy function continue decreasing

till all fractures reaches minimum length or fractures become unimodal to minimum

constrained length. So, if we don’t constrain the length of fractures then length of

fractures can become negative which will make no sense. Hence, this test shows that

the length of fractures needs to be first constrained to minimum and maximum length

of fractures and then renormalize to mean length of fractures. Figure 4.10 shows final

orientation and length distribution of fractures for all three cases. For the case when

length is renormalized, the energy function reaches minima when fractures become

bimodal, whereas for the case without renormalization, the energy gets minimized

when fractures become unimodal to constrained minimum length.

To study the effect of perturbation of position, a similar study was performed

including the perturbation of the position of fractures for the above model. This is

important as it can help in restricting the movement of fractures with respect to field

data. Figure 4.11 shows the effect of perturbation including position perturbation for

the same model and compare different cases. We calculated the total displacement

of fractures at every iterations. The histogram of total displacement of fractures at

different iterations is shown in Figure 4.12, 4.13, 4.14 and 4.15. Figure 4.12 suggests

that the fracture movement is larger at high temperature, ranging from 0.5 m to

40-45 m for first the 2000 iterations. However, as the temperature decreases, the
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Fig. 4.12. (a) Total displacement after 1st iteration. (b) Total displacement after
2000 iterations.

increase in total displacement also decreases, approx. 0-60 m around 4000 and 6000

iterations (Figure 4.13). For further decrease in temperature as the system tends to

equilibrium, the total displacement is constrained to 0-75 m as shown in Figure 4.15.

This is analogous to Brownian motion or metal annealing where particle movement

decreases with the reduction in temperature.

4.4 Comparison with DFN Models

In this section, our goal is to compare the two different approaches to fracture mod-

eling proposed in this thesis. As already discussed, discrete fracture network (DFN)

model is a statistical method which uses location, size, and orientation of fractures

collected from field data to generate several stochastic realizations of fractures. How-

ever, the other method, proposed in this chapter, generates fractures based on physics

of fracturing where fractures are spatially correlated in length, orientation position at

every realization. In order to compare them, we generated SA models with a starting

model of 3000 fractures, randomly oriented but with starting position the same as

in a DFN model. Then we applied simulated annealing, visiting each fracture 30

times at one particular T . At every iteration orientation, length and position of each

fracture is changed using the same perturbation algorithm as discussed previously
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Fig. 4.13. (a) Total displacement after 4000 iterations. Top of (a) is histogram
including 1 outlier due to PBC. Bottom of (a) excluding the outlier suggesting the
maximum total displacement is 60 m. (b) Total displacement after 6000 iterations.
Top of (b) is histogram including 1 outlier due to PBC. Bottom of (b) is excluding
the outlier suggesting the maximum total displacement is around 65 m.
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maximum total displacement is 75 m. (b) Total displacement after 10000 iterations.
Top of (b) is histogram including 1 outlier due to PBC. Bottom of (b) is excluding
the outlier suggesting the maximum total displacement is around 75 m.
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Fig. 4.15. (a) Total displacement after 12000 iterations. Top of (a) is histogram
including 1 outlier due to PBC. Bottom of (a) excluding the outlier suggesting the
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the outlier suggesting the maximum total displacement is around 70 m.
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DFN model. (b) Final fracture output model after 30,000 iterations.

(Equation (4.8)). Here also we rescaled the length of fractures at each iteration such

that the mean length of fracture system remains same as DFN model. Figure 4.16

(a) is the starting model whereas Figure 4.16 (b) is the final orthogonal fracture

model after 30000 iterations (1000 T reduction and 30 visits to each fracture at ev-

ery temperature). Since fractures in the original DFN model (Figure 2.2) are either

45◦ or 135◦, so we rotated final fracture model by 45◦ to generate another fracture

model similar to DFN model (shown in Figure 4.17(a)). Figure 4.17(b) shows the

corresponding Energy vs Number of iterations plot.

We tried to compare these two approaches by computing both the fractal dimen-

sion and crack density, generated similarly as in DFN model in section 2.4. Fractals

are entities that display self-similarity in their geometry such that any portion of the

system is the image of whole area on large scale. These fractal entities have fractal

dimension that describes the manner in which the fractal entity fills the available

Euclidean space. This is consider to be an important tool to study fractures as frac-

tures exhibit scaling behavior ranging from few microns in thin section to thousand

of kilometers around faults and form complex patterns (Roy et al., 2007).

Mandelbrot (1983) defines a fractal as an entity for which Hausdroff-dimension

(D) strictly exceeds the topological dimension. According to Bonnet et al. (Bonnet

et al., 2001), the classical definition of a fractal is given by the number of segments,
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Fig. 4.17. (a) SA output model rotated to 45 degree in order to replicate DFN model.
(b) Energy vs Number of iteration curve for simulating 3000 fractures using energy
method.

circles, or spheres of dimension d (either 1, 2 or 3) and characteristic length scale r

require to cover the part of fractal object included in the volume Rd. The number of

circles or sphere required should vary as

N(r, R) ≈ (R/r)D (4.11)

where D denotes the fractal dimension and which is defined as follows:

D = lim
r→0

lnN(r)

ln(1/r)
(4.12)

This is the typical box-counting method for which the fractal dimension is obtained

even for infinitely small details of the object.

We calculated fractal dimension for both the methods using Equation 4.12. Fig-

ure 4.18 shows that the fractal dimension generated by both the methods are very

close. This fractal dimension is also in accord with the general field observation for

linear features i.e. between 1 and 2. Figure 4.19 compares the crack density or seismic

model (section 2.4) generated from both the methods. The seismic model generated

using SA algorithm has more highs and spread of crack density compare to seismic

model generated using DFN technique as shown in Figure 4.19. The difference is due

to change in configuration i.e. length, orientation and position of original fractures
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Fig. 4.18. Fractal dimension of (a) DFN model (b) model generated using energy
method.

(see Figure 4.16) during SA in order to minimize the energy function to generate

optimized fracture model.

4.5 Ray-Born Seismic Modeling

The fracture model generated using simulated annealing algorithm can be further an-

alyzed by computing 3D synthetic seismograms using ray-Born algorithm (Beydoun

and Mendes, 1989; Gibson et al., 1993). This method estimates wave fields scattered

by small perturbations in the properties of an elastic medium. In our study, velocities

and density of overburden layers are assumed to be homogenous. Though this as-

sumption is not valid for true earth but still can be acceptable for time-lapse seismic

modeling as properties and geology of overburden layers change very little during

hydrocarbon production. In our seismic modeling, the synthetic reservoir model is

920 m×920 m, discretized into smaller cells of 43.8 m×43.8 m for geocellular mod-

eling. The reservoir was assumed to be at depth of 1000 m and to be 20 m thick

bounded by homogenous media with velocities Vp=4000 m/s, Vs=2309.6 m/s and

ρ=2200 kg/m3. This 20 m fractured reservoir was assigned 10% porosity and 10 mD

permeability (same host rock as in DFN, section 2.4). The reservoir is saturated with

60% oil, 20% brine and 20% gas. There are 90 source-recmandereiver pairs in inline

and cross-line direction with 20 m spacing, covering 3D reservoir. We simulated zero-
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Fig. 4.19. Crack density of (a) DFN model. (b) model generated using energy method.

offset, medium offset and far-offset where the medium offset seismic arrays have 598

m source-geophone offset corresponding to 15◦ incident angle. The far-offset seismic

arrays have 1136 m source-geophone offset corresponding to 30◦ incident angle. We

also applied normal move out (NMO) and phase-shift migration to all the seismogram.

Figure 4.20 shows the composite reflection amplitude at zero offset, medium offset

and large offset respectively. As expected, the reflection amplitude decreases with in-

crease in incident angle or at far-offset. Similar to our DFN time-lapse modeling, the

fracture model generated using physics based stochastic process can be used for time-

lapse modeling. Several inlines, crosslines and 2D section (For example, Figure 4.21)

can be extracted for detail analysis of the composite reflection amplitudes.

4.6 Conclusions

Our study presents another method of fracture modeling based on physics of fractur-

ing. Several realizations of fractures can be generated based on the assumption that

elastic free energy due to fracture density follows Boltzmann distribution. The goal

of the new method is to generate several realizations of spatially correlated fracture

networks using SA annealing algorithm, update minimum energy realization with

field data and predict the flow behavior. The algorithm was further improved by

introducing periodic boundary conditions that can enhance the computational speed

and accuracy of the algorithm. We also suggested methods of constraining the model

parameters in accord to field observations. The fracture model generated using SA
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can be considered better than DFN as DFN generates realizations based on only

statistical distribution of fractures, without any knowledge of physics of fracturing.

Also, fractures generated at different realization are not spatially correlated unless

statistically constrained. However, the energy constraint used while applying SA

algorithm always generate spatially correlated fracture networks. These correlated

fracture networks can be used to determine the connectivity of fractures that can

help in predicting the flow behavior of the area. Our detail analysis suggests that

fractures generated by the isotropic stress field favor orthogonal sets of fractures in

most subsurface rocks. We have also shown that this energy based fracture model

can also be converted to seismic model, similar to DFN study, that can be further

used for synthetic seismic modeling using ray-Born algorithm.
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CHAPTER V

CONCLUSIONS

The accurate characterization of fractured reservoirs is of great importance for hydro-

carbon production. This is because these fractures control permeability by providing

conductive flow paths which can have significant effect on hydrocarbon production es-

pecially in low permeable carbonate reservoirs. However, till today most of the study

lacks comprehensive knowledge about fracture characterization. Our study proposes

methodology to integrate geology, geophysics and reservoir engineering for better

characterization of fractured reservoirs. However, our greater interest still exists in

developing models relating fracture properties with seismic attributes.

For our modeling study, we used randomly oriented fracture, isotropic reservoirs

with a porous background matrix. Our numerical analysis suggests that seismic waves

through these fluid saturated fractures undergo significant attenuation and dispersion

and attenuation and dispersion of seismic waves depend upon the crack size and

permeability of host rock. We have developed methods for relating discrete fracture

network models used by engineers to set up fluid flow simulations to models of crack

density that can be used to predict seismic reflections from the fractured reservoir.

This is an important first step in developing integrated tools for fractured reservoir

characterization. AVO results for our example model predict that supercritical carbon

dioxide is easier to detect than brine in the fractured reservoirs. The total modeling

process is fast and comparatively simple, leading to a prediction of AVO results for

comparison to field measurements. Our time- lapse study integrating flow simulation

suggest significant change in Qp, Vp and AVO attributes with change in saturation.

The 10% to 12% decrease of intercept with respect to background for SCF CO2

saturated reservoir shows as potential attribute for detecting fluids in reservoirs. Also,

the opposite trend of differences of various parameters can be useful in detecting the

type of fluids present in the reservoir. Our seismic modeling using ray-Born algorithm

suggest significant relative change in amplitude at far-offset that can be useful for AVO

analysis. Also, other methods such as instantaneous attributes study suggest Q can

be affected even by thin layers and can distinguish fluids in thin and thick reservoirs.

We anticipate that this general procedure will have some important applications for



111

reservoir monitoring studies. Future work should be to apply this methodology to

field data, if available, and update the models.

As we know, the knowledge of movement of CO2 front inside the reservoir is

also very important for hydrocarbon production as well as CO2 sequestration. This

becomes more important because of distinctive properties of CO2 such as low viscos-

ity, low density and its chemical interaction with host rock and other reservoir fluids.

We developed a modeling technique that combines comprehensive flow simulation,

including chemical processes, with seismic simulations to model the CO2 injection

that includes all the accompanying phase behavior and geochemical effects. The CO2

dissolution and the acidification triggers a variety of geochemical reactions that can

significantly alter the rock-fluid properties. Our modeling shows that intra-aqueous

reactions are more significant during injection of CO2, while slower mineral reactions

dominate after pressure equilibrium is achieved. Overall both types of geochemical

reactions, intra-aqueous and mineral reactions, cause a change in reflection coefficient

of 2 to 5%. So, even though geochemical reactions affect seismic data during CO2

injection, the seismic signals are dominated by reductions in bulk modulus associ-

ated with fluid substitution effects modeled using the Gassmann equation. However,

the significant change in various seismic properties at the boundaries because of the

continuous chemical activities can be used to detect the flow path of CO2 inside the

reservoirs. The future study should be to develop more complicated models esp. leaky

CO2 reservoir that may show more significant relative change in reflection amplitude

for detection even in noisy field data.

We also extended another method of generating fractures developed by Masihi

et al. (2007) to more realistic field model. This method is based on physics of fractur-

ing, with assumption that fracture density follows Boltzmann distribution, generates

several stochastic realizations of fractures whose statistical distribution can be used

for better understanding of the spatial correlation of fractures. Our analysis suggests

that the isotropic stress field generates orthogonal sets of fractures in most subsur-

face rocks. We also propose methodology to convert fracture model to seismic model,

similar to DFN study, that can be further used for synthetic seismic modeling us-

ing ray-Born algorithm. Future work is to enhance simulated annealing algorithm

especially computational speed and improve the method to constrain the model pa-

rameters with respect to field data.
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APPENDIX A

EQUANT POROSITY

Hudson et al. (1996) tried to studies the effect of the overall properties of a cracked

solid having connections between isolated cracks with small-scale porosity within the

solid material where the size of pores is an order of magnitude smaller than the cracks.

In such solids, the pressure within the crack is relieved due to diffusion from the crack

into matrix rather than flow from cracks to cracks. Such kind of model is called as

Equant Porosity Model (Thomsen, 1986). The derivation of dimesionless parameters

for this model are as follows:

Using D’Arcy’s law and conservation of fluid mass, the porosity φm within the

matrix must satisy the diffusion equation

∂

∂t

= ∇.(ρfDm∇pf ) (A.1)

where ρf is the local fluid density and pf is the pressure, while Dm is the coefficient

of diffusion relating the volume flux to the pressure gradient within the porous ma-

trix. For mathematical simplicity, it was assumed that φm remains constant i.e. we

neglected the effect of stress and fluid pressure on φm. Also, Equation 8 from Hudson

et al. (1996) suggest that the relative increase of the volume of the fluid above its

volume in the unstressed state is related to fluid pressure as

ρo

ρf

− 1 = −pf/kf (A.2)

where ρo is the density of unstressed fluid and kf is the bulk modulus of the fluid.

Substituting above equation into Equation A.1, we can get

φm

kf

∂pf

∂t

= Dm∇2pf (A.3)

Also, the diffusion was assumed to be linear away from a crack face in the plane x3 =

0. So, for such cases if the time variations are harmonic, then fluid pressure pf within

the matrix satisfies

pf = pcexp{−(1 + i)qx3 + iωt} (A.4)
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where

q2 =
ωφm

2kfDm

, q > 0 (A.5)

and pc is the fluid pressure in the crack. The mass flow into the crack of circular

radius a, is

ṁc = 2πa2Dmρf
δpf

δx3

∣∣∣∣
x3=0

= −2(1 + i)πa2qDmρcpc (A.6)

where ρc is the fluid density in the crack.

Now the next step is to calculate the relationships between crack- opening dis-

placements and fluid density, mass and pressure. Here, one important point to note

is that only the axial stress σ33 gives rise to changes of volume of the crack and the

corresponding crack-opening displacement is given as (Hudson, 1981),

[u3] =
a

μ
σ∞

33U33(r) (A.7)

where σ∞
33 is the value of the axial stress at infinity and r is the distance from the

center of the crack. The corresponding change in the volume of the crack, upto the

first order is,

δVc =

∫
Sc

[u3]dS =
a

μ
σ∞

33

∫
Sc

U33(r)dS, (A.8)

where Sc is the plane face of the crack.

Hence, the corresponding change in density, δρc, is given by

δρc

ρo

=
δmc

mo

− δVc

Vo

(A.9)

to the first order, where ρo, mo,Vo are the properties in unstressed equilibrium. Also,

we have

δρc

ρo

=
pc

kf

(A.10)

From above two equations, we can simplify to

pc

kf

=
δmc

mo

− δVc

Vo

(A.11)
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and substitution of δmc from Equation A.6 and δVc from above results in

−pc

kf

=
3a

4πcμ
σ∞

33Ū33 +
3(1 − i)qDmpc

2c
(A.12)

where

Ū33 =
1

a2

∫
Sc

U33(r)dS (A.13)

Using the result of dry crack from Eshelby et al. (1957), we have

U33(r) =
2

π

(
λ + 2μ

λ + μ

)
(1 − r2/a2)1/2(1 + pc/σ

∞
33) (A.14)

and so integrating over Sc, we get

Ū33 =
4

3

(
λ + 2μ

λ + μ

) (
1 − (3akf/4πcμ)Ū33

(1 + 3(1 − i)kfqDm/2c)

)
(A.15)

Finally rearranging the terms we get,

Ū33 =
4

3

(
λ + 2μ

λ + μ

)
/(1 + K), (A.16)

where K is,

K =
1

π

a

c

kf

μ

4

3

(
λ + 2μ

λ + μ

)
/[1 + 3(1 − i)J/2c] (A.17)

and

J2 = ωφmkfDm/2, J > 0 (A.18)

The second crack parameter, Ū11, which appears in overall elastic parameters is unaf-

fected by interconnections between pores as shear stress applied to a crack face does

not give rise to a volume change.
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APPENDIX B

SIMULATED ANNEALING PSEUDOCODE

Simulated annealing is a stochastic optimization method used in variety of problems

involve finding optimum values of a function consisting of large number of independent

variables. The following pseudocode implements (Cicirello, 2008) standard Simulated

Annealing algorithm starting from initial state S continued till maximum, imax steps.

The neighbor state S is selected randomly and metropolis algorithm is used to decide

whether to accept or reject the new state. The exponential annealing schedule is used

for this algorithm.

S ← GenerateInitialState

T ← Some Initial High Temperature, To

for i from 1 to imax

S
′← PickRandomState(Neighborhood(S))

if Energy(S
′
) < Energy (S)

S ← S
′ {Note: accepting a move}

else

r ← Random(0,1)

if r < exp{(Energy(s) - Energy(s
′
))/T}

S ← S
′ {Note: accepting a move}

end

end

T ← To.α
i

end

This pseudocode refers to general SA algorithm where PickRandomState refers to a

function that randomly selects the neighborhood state, Energy at a particular state

refers to value of objective function at that particular state, and α represents the

temperature reduction factor.
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APPENDIX C

DERIVATION OF OBJECTIVE ENERGY FUNCTION

According to Masihi and King et al. (2007), a fracture is defined as discontinuity

in the displacement vector in the elastic medium. So, any displacement vector is

assumed to have continous part (elastic displacement ue) and a discontinous part

(the inelastic displacement ui) that can acts as a source for inelastic strain. Similarly,

strain and stress can be decomposed into elastic and inelastic parts,

eij = ee
ij + Eij and σij = σe

ij + Sij (C.1)

If the system is in mechanical equilibrium i.e. in the absence of any external body

forces, the equation of continuity becomes,

∂jσij = ∂jσ
e
ij + ∂jSij = 0 or ∂jσ

e
ij = −∂jSij (C.2)

Since the system is in equilibrium, the inelastic part of stress becomes the fictitious

input driving force that gives rise to displacement and fracturing and also keeps

fractures open, From Heffer and King et al. (2006), the total elastic energy per unit

volume required to keep fractures open is the work done by elastic forces on the total

strain which includes elastic and inelastic strain. This total elastic energy is given by

equation C.3

E =
1

2
σe

ijε
e
ji (C.3)

The definition of elastic strain in fourier domain is given as

εe
ji =

i

2

(
ue

ikj + ue
jki

)
=

i

2

(
δajδil + δaiδjl

)
kau

e
l (C.4)

where ui and uj is the displacement at i and j locations and ki and kj is the wavenum-

ber associated with displacements at respective locations.

Similarly, the stress can be written as

σe
ij = iλijalkau

e
l (C.5)

where λijal is the standard isotropic elasticity tensor, related to Lamé constants, λ

and μ, by

λijal = λδijδal + μ(δiaδjl + δilδja) (C.6)
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Contracting above terms together leads to an expression for the elastic energy

given as

E(k) =
1

2
[(λ + μ)kkkl + μk2δkl]u

e
k(k)ue

l (−k) =
1

2
μ[k2δkl +

1

1 − 2ν
kkkl]

=
μ

2
Lkl(k)ue

k(k)ue
l (−k) (C.7)

where Lkl is the usual linear operator of isotropic elasticity and is the inverse of the

Green’s function, LklGlm = δkm

Here, we will use the hypothesis that the frequency distribution of strain energy

due to the displacements/dislocations or fractures follows Boltzmann Law

p(E) ∝ exp(−E/ < E >) (C.8)

Assuming the fracture system to be ergodic in nature i.e. equiprobable existence of

all possible energy states, Boltzmann Distribution Law can be written as

p(E(k)) = Z−1exp
(
− E(k)

< E >

)
= Z−1exp

(
− μ

2 < E >
Lkl(k)ue

k(k)ue
l (−k)

)
(C.9)

where Z is the normalization for the possible existence in different energy states.

Hence, the probability distribution of fluctuations about equilibrium using equa-

tion C.9 can be given as

p(E(u)) = Z−1exp
(
− μ

2 < E >
L : uu

)
(C.10)

Using Einstein Fluctuation Theory ((Reichl, 1998), pg 350-351) about equilib-

rium, assuming linear translation fluctuation is given as h.u, the more general form

of integral is represented as,

I = Z−1

∫ ∞

−∞
Duexp

(
− μ

2 < E >
L : uu + h.u

)
(C.11)

Here Z is partition function, hence it holds following relationship from Boltzmann’s
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law,

Z =

∫ ∞

−∞
Duexp

(
− μ

2 < E >
L : uu

)
= 1

=

∫ ∞

−∞
du1du2du3.....dunexp

(
− μ

2 < E >

∑
1≤k≤n
1≤l≤n

Lklukul

)
(C.12)

Also, L is symmetric matrix, hence it can be diagonalized using an orthogonal matrix,

O such that O.L.OT = Γ where Γ is diagonal (Γii = γi and Γij=0 for i �= j) ( Reichl

et al.,pg 187-188) and equation C.12 can be rewritten as,∫ ∞

−∞
du1du2....dunexp

(
− μ

2 < E >
L : uu

)
=

∫ ∞

−∞
dα1dα2dα3.....dαnexp

(
− μ

2 < E >

∑
1≤i≤n

γiα
2
i

)
(C.13)

where det(L) = γ1γ2...γn and α = O.u = (α1, α2, ....αn).

Using infinite integrals properties
∫ ∞
−∞ exp(−ax2)dx =

√
(π

a
) where a>0, it can be

shown from Equation C.12 and Equation C.13 that Z−1 =
√

μγ1γ2...γn

(2π<E>)n =
√

μdet(L)
(2π<E>)n .

Similarly, equation C.11 can be rewritten as

I = Z−1

∫ ∞

−∞
du1du2....dunexp

(
− μ

2 < E >
L : uu + hu

)

=

∫ ∞

−∞
exp

(
− μ

2 < E >
γ1α

2
1 + h1α1

)
dα1

∫ ∞

−∞
exp

(
− μ

2 < E >
γ2α

2
2 + h2α2

)
dα2.....

.....

∫ ∞

−∞
exp

(
− μ

2 < E >
γnα

2
n + hnαn

)
dαn

(C.14)

Using the identity
∫ ∞
−∞ exp(−ax2)exp(2bx)dx =

√
π
a
exp( b2

a
) where a>0 and Z , it

can be shown that the most general integral equation C.14 can be written as

I = exp(
< E >

2μ
L−1

kl hkhl). (C.15)

Also the joint moment identity,< xi , x2 , ..xn > for jointly distributed stochastic

variables is given as

< xi, x2, ...xn >= lim
k1→0

..... lim
kn→0

(−i)n ∂

∂k1

.......
∂

∂kn

fx1........,xN
(k1, ..., kN) (C.16)

where fx1........,xN
(k1, ..., kN) is the jointly distributed characteristic function for stochas-
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tic variables ((Reichl, 1998), pg 186)

Similarly, the correlation or second moment between two fractures located at k

and l is given as

Ckl(k) =< uk(k)ul(−k) >= lim
h→0

∂

∂hk

∂

∂hl

[I]

= lim
hk→0

lim
hl→0

∂

∂hk

∂

∂hl

[< E >

2μ

(
L−1

kk h2
k + 2L−1

kl hkhl + L−1
l h2

l )]

=
< E >

μ
L−1

kl (k) =
< E >

μ
Gkl(k)

(C.17)

In real space, correlation function (equation C.17) is given as,

Ckl(r) =
< E >

μ
Gkl(r) (C.18)

From Landau and Lifshitz ((1982b), pg 115), Green’s tensor in an isotropic

medium is given as

Gkl(r) =
1

16πμ(1 − ν)r
{(3 − 4ν)δkl + nknl} (C.19)

where,

r is the radius vector of displacement vector from k to l i.e. r = ‖rk − rl‖,
nk is unit vector in k direction i.e. direction of displacement =rk

r

nl is unit vector in l direction i.e. direction of displacement = rl
r

Hence, using Equation C.19 into Equation C.18, the correlation between two

fractures is given as,

Ckl(r) =
< E >

μ
Gkl(r)

=
< E >

16πμ(1 − ν)

((3 − 4ν)δkl

r
+

rkrl

r3

)
(C.20)

So, basically Ckl(r) represents second moment tensor of each displacement with
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respect to the origin of force. We can rewrite Equation C.20 as,

Ckl(r) = A(r)rkrl + B(r)δij

A(r) =
D

r3
,

B(r) =
(3 − 4ν)D

r
,

D =
< E >

16πμ(1 − ν)
, (C.21)

which is the necessary conditions for determining covariance tensor between two vec-

tors separated by r in an isotropic vector field (Daly et al. (2001)).

Daly et al. (2001) shows that in any isotropic vector field, the covariance between

two vectors uk and ul, separated by r, having component relationship shown in

equation C.21 can be rewritten as

Ckl(r) = Cov(uk(r),ul(−r))

C(r : uk,ul) = A(r)(r,uk)(r,ul) + B(r)(uk,ul)

substituting A, B and C from above

=
D

r3
(r,uk)(r,ul) +

(3 − 4ν)

r

D

r
(uk,ul)

=
D

r

[
η(uk,ul) +

(r,uk)(r,ul)

r2

]
=

< E >

16πμ(1 − ν)r

[
η(uk,ul) +

(r,uk)(r,ul)

r2

]
(C.22)

where η = 3 − 4ν.

Now according to L.E. Reichel’s book, the response of fluctuations of energy in

a randomly distributed system can be expressed in terms of covariance or correlation

function for equilibrium fluctuations. Therefore, objective energy function for our

fracture modeling from equation C.22 is,

E =
N∑

k=1

N∑
l=1
k �=l

Aukul[η|cos(θk − θl)| + |cos(α − θl)cos(α − θk)|]/rkl (C.23)
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where N is the number of fractures in the system and α, θk and θl are the orientation of

distance vector r and fractures uk and ul with respect to the horizontal, respectively.
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