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ABSTRACT 

 

Genetic Analysis of Equine 2’,5’-Oligoadenylate Synthetase (OAS1) and Ribonuclease L 

(RNASEL) Polymorphisms and Association to Severe West Nile Virus Disease.  

(May 2008) 

Jonathan Joseph Rios, B.S., Tarleton State University 

Co-Chairs of Advisory Committee: Dr. David L. Adelson 
                                                                        Dr. Thomas E. Spencer 

 

 West Nile virus (WNV), a member of the Flaviviridae family of RNA viruses, 

was first introduced to the United States in 1999 with rapid transmission across a variety 

of hosts throughout the continental states.  Genetic research to identify genes involved in 

resistance and susceptibility to WNV began in mice, where it was observed that natural 

populations were resistant or fatally susceptible.  Further investigation led to the 

identification of the Flavivirus resistance gene as the oligoadenylate synthetase 1b gene 

in mice.  A nonsense mutation was found within the coding region of this gene that 

associated absolutely with susceptibility to WNV.   

 A two-stage association study was conducted to identify similar genetic 

associations to West Nile encephalitis in naturally susceptible and resistant populations 

of horses in the United States.   

 Genomic sequence of a majority of the equine 2’,5’-oligoadenylate synthetase 1 

(OAS1) gene was assembled by shotgun-sequencing CHORI BAC 100:I10 (3.95X).  A 

contig map spanning the entire gene was constructed, including 8 kilobases of promoter 
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sequence upstream of the first exon.  Coding regions of equine OAS1 and ribonuclease L 

(RNASEL) genes, as well as the OAS1 promoter, were screened for mutations from a 

random sample of horses of multiple breeds.  Numerous polymorphisms were identified 

for case-control analyses.  Analysis using Fisher’s Exact test identified allelic and 

genotypic associations.  Odds ratios were also determined to measure strength of the 

associations.  Case-control analysis of haplotype frequencies identified significant 

differences in haplotype frequencies between populations and association to West Nile 

encephalitis. 

 A conserved interferon-stimulated response element was mapped to within 518 

basepairs upstream of the transcription start site of OAS1.  Promoter polymorphisms 

were not found to affect induction by interferon-tau; however, additional analyses are 

necessary to further characterize the equine OAS1 promoter and the host factors involved 

in regulating expression. 

Statistical analyses of the genotype data from the case and control populations 

identified significant associations between polymorphisms of the OAS1 and RNASEL 

genes with severe West Nile encephalitis.  The similarity between human and horse OAS 

immunity genes suggests that the horse may provide a genetic model to further 

investigate mammalian SNP-associated viral susceptibility. 
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CHAPTER I 

INTRODUCTION: UNDERSTANDING EQUINE WEST NILE VIRUS 

SUSCEPTIBILITY 

 
Objective 

 The emergence of naturally variable levels of resistance to West Nile virus 

(WNV) among multiple species has prompted investigation of the equine innate immune 

system.  The 2’,5’-oligoadenylate synthetase (OAS)/ribonuclease L (RNASEL) system of 

viral immunity emerged as a leading candidate responsible for determining innate levels 

of resistance and susceptibility to WNV infection.  This research investigates the 

potential roles OAS1 and RNASEL play in the development of naturally susceptible and 

resistant populations of horses to severe WNV infection.  Assembly of the genomic 

sequence of these genes allowed for the identification of single nucleotide 

polymorphisms (SNPs) from a random sample of horses.  Associations of SNPs or SNP 

haplotypes between naturally susceptible and resistant populations of horses to WNV 

were measured using multiple statistical methods.  Accompanying the sequence-

dependent role of the equine OAS/RNASEL system in WNV susceptibility, this 

investigation examined the functional importance of a promoter microsatellite during 

interferon (IFN) stimulation of the equine OAS1 proximal promoter.  Together, this 

investigation proposes an equine model of SNP-dependent susceptibility to severe West 

Nile encephalitis. 

 
____________ 
This dissertation follows the style of BMC Genomics. 
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Present Status of the Question 

The cellular response to viral infection represents an intricate convergence of  

many pathways involving hundreds of genes working to suppress and prevent viral 

propagation within and between neighboring cells.  The genetic response is categorized 

by early (within cell) and delayed (between cells) cellular activity [1].  Two pathways, 

described as either toll-like receptor (TLR)-dependent or TLR-independent, mediate early 

viral recognition.  Many TLR receptors recognize different viral products within the cell; 

however, TLR3 specifically recognizes viral double-stranded RNA (dsRNA) and is 

responsible, in part, for activating the TLR-dependent immune response (Figure 1.1).  

Both the TLR-dependent and independent modes of early response culminate in the 

activation of Type I interferon, IFNA and IFNB.   

The secreted IFN binds the receptors of neighboring cells to initiate a complex 

cascade whose interferon-stimulated genes (ISGs) represent the anti-viral repertoire of 

the host immune response.  Interferon acts as an inter-cellular signal whose role is to 

activate many downstream genetic cascades with the shared purpose of limiting viral 

replication at the levels of transcription and translation (Figure 1.2) [2].  

However, with the wide array of host genetic factors limiting viral infection, 

viruses have evolved mechanisms to counteract the antiviral activity of specific host 

genes (Table 1.1). 

With natural resistance to WNV infection, domestic mammals act as dead-end 

hosts during viral transmission [3].  Sheep infected with WNV developed neutralizing  
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Figure 1.1 TLR3-dependent signaling pathway (Source: Kawai, 2006). 
Viral dsRNA is recognized by TLR3 and activates the nuclear localization of IRF and 
NF-�B transcription factors by signaling through TICAM1 (TRIF).  Nuclear 
transcription factors activate IFN expression with positive feedback signals through 
IRF7. 
 
 
antibodies and suffered a moderate febrile reaction and low-grade viremia [4].  Calves 

experimentally infected with WNV did not produce a viremic response [5]. 

Cross-protection studies in pigs infected with WNV and Japanese Encephalitis 

virus (JEV) indicated that pigs were poor hosts for WNV but good hosts for JEV.  Pigs 

infected subcutaneously first with WNV developed low viremia and haemagglutination-

inhibition antibodies to both viruses, whereas pigs infected through mosquito bite 
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produced WNV antibodies but showed no detectable viremia [6].  Dogs infected with 

WNV showed similar results to the previously mentioned livestock species.  Three dogs 

infected with WNV developed antibodies with only one dog displaying a low titer 

viremia [7]. 

 

 
Figure 1.2 Biochemical functions of some IFN-inducible proteins (Source: Samuel, 
2002). 
 Interferon activates expression of many antiviral pathways.  The OAS/RNASEL and 
EIF2AK2 (PKR) pathways are activated by interferon and act at the levels of 
transcription and translation, respectively.   
 
 

Contrary to dogs and other livestock species, horses are particularly susceptible 

to WNV infection.  Clinical symptoms of WNV infection in horses range from biphasic 

fever to weakness, muscle tremors, encephalomyelitis and paralysis, ultimately resulting 

in death [3].  Within a single survey of horses in southern France, 34% of the confirmed  



 
 

 
 

5 

Table 1.1 Recently identified mechanisms of IFN system evasion (Source: Grandvaux, 2002) 

Virus Viral Protein Mechanism of IFN system inhibition 
Molluscum contagiosum  
     virus 

MC159L Blocks EIF2AK2-mediated apoptosis[8] 

African swine fever virus - Inhibits NF-�B: encodes an NFKBIA inhibitor, and 
downregulates p65 subunit [9] 

Influenza virus NS1 Double-stranded RNA sequestering: inhibits NF-�B 
and IRF3 transduction pathways [10, 11] 

  Affects ISG15 synthesis or activity [12] 

Vaccinia virus E3L Double-stranded RNA binding protein: abrogate IRF3 
and IRF7 transactivating potential [13] 

Herpes simplex virus-1 Us11 Double-stranded RNA binding protein: inhibits 
EIF2AK2 activation [14] 

Adenoviruses E1A Prevents IRF3 transcriptional activity through binding 
to CBP/p300 [15] 

 - Downregulates IFNGR2 chain expression [16] 

Human herpesvirus-8 Virally encoded IRF1 Prevents IRF3 and IRF1 activities through binding to 
CBP/p300 [17, 18] 

 Virally encoded IRF3 Inhibits IRF3 activity [19] 

Vesicular stomatitis virus Matrix protein Blocks STAT3 phosphorylation [20] 
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infected horses died; a lower mortality rate than during the Italian outbreak (43%) [21].  

Among 60 horses confirmed with West Nile encephalitis in the United States during the 

2000 outbreak, 38% died or required euthanasia [22].  It seems apparent that horses 

possess a unique susceptibility to severe WNV infection. 

Flavivirus susceptibility has been studied extensively in mice; such studies 

identified a single flavivirus resistance gene, Flv [23].  The Flv gene, predicted to map to 

mouse chromosome 5, was positionally cloned and subsequently identified as the murine 

gene Oas1b [24, 25].  A review of the cloning and characterization of the murine Flv is 

also reported [25].  Sequence comparison of Oas1b cDNA from susceptible and resistant 

mice identified 31SNPs.  The nonsense transversion SNP C820T located in exon 4 

resulted in a truncated transcript lacking 30% of the C-terminal sequence.  Comparison 

between susceptible and resistant strains identified the truncated protein-encoding 

transcript in each susceptible strain; the truncated form was absent in all resistant strains 

analyzed [24]. 

 The murine (Mus musculus) Oas gene cluster consists of eight small-form Oas 

genes (Oas1a-Oas1h) and psuedogene Oas1i, as well as Oas2, Oas3 and two Oas-like 

genes Oasl1 and Oasl2 located on chromosome MMU5 [24, 26-33]. 

The human (Homo sapien) gene cluster is located on human chromosome 

HSA12q24.2 in the following orientation: OAS1-OAS3-OAS2 [34, 35].  The small form 

synthetases p42 and p46 are translated from OAS1 while the medium forms p69 and p71 

and the large form p100 are encoded from OAS2 and OAS3, respectively [36, 37].  

Isoforms of both OAS1 and OAS2 are products of alternatively spliced transcripts.  
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Human OAS1 isoform E16 corresponds to the p42 protein encoded from a 1.6 kilobase 

(kb) transcript while the E18 splice variant encodes the p46 protein from a 1.8 kb 

transcript [38].  Both transcripts contain five translated N-terminal exons (A-E) and are 

identical in their first 346 amino acids but differ at the C-terminus [39, 40].  Human 

OAS2  contains 12 exons, including two groups of 5 exons (A1-E1, A2-E2) homologous 

to the exons of OAS1 [40].  The strong conservation between the exons of OAS1 and 

OAS2 suggests that OAS2 derived from an ancestral fusion of two OAS1 genes [41].  The 

assembled mRNA sequence of OAS3 identified three domains in the p100 protein 

homologous to the OAS1 p42 protein.  Furthermore, human OAS3 contains three groups 

of 5 exons (A1-E1, A2-E2, A3-E3), each homologous to OAS1 exons A-E, suggesting a 

possible second ancestral duplication event [40].  Phylogenetic analysis among 

mammalian OAS gene families provided a model for the ancestral evolution of the 

rodent and human OAS gene clusters [33].  Recent investigations of the human OAS 

gene cluster identified multiple SNPs for case-control analysis [42, 43]. 

Human RNASEL maps to chromosome HSA1q25, whose ~2.8 kb transcript 

encodes a 741 amino acid 83,539 Dalton protein [44, 45].  The RNASEL protein 

consists of three domains, an N-terminal domain of ankyrin repeats and P-loop motif 

between the seventh and eighth repeat, a domain of protein kinase homology, and a C-

terminal ribonuclease domain [46].  Ribonuclease activation requires binding of a single 

[(pp)p(A2’p5’)nA] (2-5A) molecule to the N-terminal ankyrin repeats 2-4 [47, 48].  2-5A 

binding causes a conformational change that releases the repression caused by the 

ankyrin repeats, ultimately concluding with a functional homodimer with ribonuclease 
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activity [46, 48-50].  In further understanding its functional domains, mutagenesis 

experiments have identified amino acids critical for 2-5A binding and ribonuclease 

activity [45, 46, 48, 50-52]. 

The OAS/RNASEL system is an interferon-inducible host cell defense pathway 

activated through binding dsRNA.  dsRNA, present upon viral infection, activates 

OAS1, catalyzing the oligomerization of ATP to form 2’,5’ –linked oligoadenylate 

chains with general structure pppA(2’p5’A)n [53-55].  Originally discovered as a low 

molecular weight inhibitor of protein synthesis, pppA(2’p5’A)n induces the activation of 

the latent endoribonuclease L, responsible for the degradation of both cellular and viral 

RNA in a non-preferential manner [53, 56-58].  The OAS/RNASEL antiviral system has 

also been implicated in the induction of apoptosis [59-63]. 

The equine OAS gene cluster was recently characterized and mapped by 

fluorescent in situ hybridization (FISH) to ECA8p15-p14 [33, 64].  The organization of 

the equine gene cluster is most similar to the human cluster, with single copies of OAS1, 

OAS3 and OAS2 in the same organization [64]. 

Procedure 

 This investigation of the equine OAS/RNASEL antiviral system included 

identification and analysis of polymorphisms among naturally susceptible and resistant 

populations.  The investigation is divided into three sequential phases: 

Phase 1 – OAS1, RNASEL genomic assembly and SNP identification 

 The full-length cDNA sequence was assembled [GenBank: AY321355] and 

genomic Children’s Hospital Oakland Research Institute (CHORI) Bacterial Artificial 
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Chromosome (BAC) clones identified as containing the full genomic sequence of equine 

OAS1 [64].  CHORI BAC clone 100:I10 (~130 kb) was used for the construction of a 

shotgun library because of its smaller size relative to clone 77:F4 (~200 kb); both 

contain the full genomic sequence of equine OAS1 and OAS3.  Clone 77:F4 also contains 

nine 5’ exons of the downstream OAS2 [64]. 

Prior to the availability of the equine (Equus caballus) whole genome shotgun 

(WGS) sequence, BAC DNA from clone 100:I10 was randomly sheared into fragments 

with estimated fragment sizes of ~2.5 kb.  These fragments were cloned into vector 

pCR®4Blunt-TOPO® and isolated into a library of 964 clones with verified inserts of the 

expected size.  Additional clones were isolated with insert sizes smaller than expected; 

these clones were excluded during sequencing.  A total of 900 clones were bi-

directionally sequenced from the endogenous forward and reverse M13 vector regions 

providing 513,390 bases with quality scores >15 (3.95X coverage).  The sequence data 

was analyzed using multiple computational programs.  Sequence data was analyzed with 

Phred and Phrap software to assemble high quality overlapping sequences [65, 66].  

Individual assembled contigs were visualized using the Consed software tool [67, 68].  

Once the equine WGS sequence was released [69], traces identified using BLAST were 

added to the library clone sequence data to verify the contig assemblies.  Individual 

contigs were aligned to human chromosome HSA12 using BLAST to identify the proper 

contig order and orientation.  The following BLAST parameters were adjusted to allow 

for cross-species comparison: i) word size = 7; ii) reward for nucleotide match = 17; iii) 

penalty for nucleotide mismatch = -21; iv) threshold for extending hits = 280; v) cost to 
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open a gap = 29; vi) cost to extend a gap = 22; vii) dropoff value for gapped alignment = 

240; viii) expectation value = 1; and ix) number of database sequences to show (-b and –

V) = 5.  The resulting genomic assembly of the equine OAS1 gene [GenBank: 

DQ536887] included 4 contigs containing six exons (1-6) as well as 4.5 kb and 1.6 kb of 

sequence upstream of exon 1 and downstream of exon 6, respectively.  While the 

complete sequences of introns 2, 3 and 5 were not assembled, additional contigs were 

identified within the downstream equine OAS3 and upstream rabphilin 3A (RPH3A) 

genes.   

The equine full-length RNASEL mRNA sequence was identified and used as a 

reference for primer design and subsequent polymerase chain reaction (PCR) 

amplification from CHORI BAC 159:N12.  Amplification products were sequenced to 

extend the known mRNA sequence and verified using trace data from the equine WGS 

sequence [69].  The final genomic assembly of equine RNASEL [GenBank: EF070193] 

included 4 contigs containing 7 exons.  The full-length sequences of introns 1, 2 and 5 

were undetermined. 

Using the genomic assemblies of equine OAS1 and RNASEL, genomic primers 

were designed to amplify individual exons of each gene from the flanking intron 

sequence.  In addition, primers were designed to amplify the proximal promoter of OAS1 

upstream of exon 1.  Reaction conditions were optimized and amplification products 

from both the BAC and genomic DNA templates were verified by sequencing.   

 DNA from 13 horses was isolated from blood samples and used to identify SNPs.  

Horses were selected to minimize bloodline similarity and inbreeding, representing 
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American Quarter Horse (9), Arabian (1), American Paint Horse (1), Appaloosa (1) and 

Thoroughbred (1) breeds.  Blood samples were collected at the Texas A&M University 

Horse Center with approval from the Animal Science Department and in accordance 

with ethical standards.  Individual regions of OAS1 and RNASEL were amplified and 

sequenced from each sample and aligned using Phred, Phrap and Consed.  

Computational analysis identified high quality sequence discrepancies as well as length 

polymorphisms of two microsatellite repeats within the proximal promoter and 

downstream of exon 6 of OAS1.  Visual analysis of the individual chromatogram data 

identified polymorphic alleles within heterozygous individuals.   

 Analysis among the 13 individuals identified 33 and 31 SNPs within equine 

OAS1 (Table 1.2) and RNASEL (Table 1.3), respectively, as well as 2 polymorphic 

microsatellites within OAS1.  To avoid identifying artifacts of the PCR and sequencing 

processes, SNPs were verified by meeting the following criteria: 1) each homozygous 

allele found in at least two individuals; or 2) the heterozygous genotype found in at least 

two individuals.  These criteria correspond to a minor allele frequency �0.08. 

Phase 2 – OAS1, RNASEL polymorphism association to severe West Nile virus infection 

 The occurrence of naturally susceptible and resistant populations of horses within 

the United States suggests a possible role by which the equine innate immune response 

may affect the clinical severity of WNV infection.  Comparing transcript sequences of 

susceptible and resistant mice, Perelygin et al. (2002) identified a SNP absolutely 

associated with WNV susceptibility within inbred strains of mice [24].  The specific aim 

of this phase was to identify potential polymorphisms or haplotypes significantly  
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Table 1.2 Equine OAS1 single nucleotide polymorphisms and microsatellites (Source: 
Rios et al. 2007)   
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Table 1.3 Equine RNASEL single nucleotide polymorphisms (Source: Rios et al. 2007) 
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associated with WNV susceptibility or resistance in horses.  Candidate polymorphisms 

for analysis include those identified in Phase 1 while additional polymorphic candidates 

may be identified during the analysis of specific susceptible and resistant animals.  The 

SNPs verified in the previous section were identified from horses without specific 

exposure to WNV, where analysis may not identify highly associated polymorphisms.  

However, sequencing from susceptible and resistant horses may identify alleles highly 

associated to WNV phenotype not specifically identified in the random, neutral 

population. 

 Researchers have identified SNPs within the human OAS gene cluster for 

association studies to human WNV infection [42, 43].  In a similar manner, this analysis 

of SNP-associated WNV disease will include multiple computational analyses including 

statistical analysis using Fisher’s Exact test to identify SNPs and/or haplotypes 

associated with WNV susceptibility or resistance. 

 A detailed phenotypic definition of case and control populations is critical to 

developing statistically relevant analyses.  Statistical analyses were repeated using 

different case definitions to investigate the potential genetic effect on equine WNV 

susceptibility.  For example, the first analysis grouped control horses as those that did 

not present with clinical symptoms or presented with clinical signs yet recovered 

(survivors).  The case population consisted of horses that showed clinical signs of WNV 

disease and either died or required humane euthanasia (non-survivors).  A second 

analysis grouped control horses that presented no clinical signs of WNV disease 

(subclinical) and a case population of horses presenting clinical signs (clinical), 
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including survivors and non-survivors.  Data from both scenarios were analyzed in the 

same manner and compared to better understand the degree to which associated alleles, 

genotypes and/or haplotypes contribute to WNV disease in horses.  During veterinary 

examination, case and control samples were confirmed as being infected with WNV by 

diagnostic PCR and histopathology examination of multiple tissues.   

Phase 3 – Regulatory effect of polymorphic microsatellite within the equine OAS1 

proximal promoter  

 Sequencing from a random population of 13 horses identified 2 polymorphic 

microsatellites within the proximal promoter and downstream of exon 6 of equine OAS1.   

 The microsatellite within the promoter region of OAS1 is located ~575 bp 

upstream of the translation initiation ATG, between sequence regions conserved in the 

human OAS1 promoter (Figure 1.3).  This microsatellite’s placement within the 

promoter suggests a possible functional role in OAS1 gene expression.  Dinucleotide 

repeats have been shown to modulate gene activity both positively and negatively [70-

75].  Alternating dinucleotide repeats of purines and pyrimidines, such as those found 

within equine OAS1, alter DNA to form Z-DNA structures and are located near 

transcription start sites [76-79].  One Z-DNA-forming repeat was found to repress 

promoter activity, such that, when deleted, promoter activity increased 36-51% [80]. 

Microsatellite genotypes of the 13 random equine individuals found promoter 

repeat lengths of (GT)9 and (GT)18 were over-represented among this sample set.  

However, preliminary data from Phase 2 identified common alleles of (GT)9 and (GT)19.  

To identify a potential regulatory function of the equine OAS1 promoter microsatellite,  
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Figure 1.3 Alignment of the proximal promoters of human OAS1 and equine OAS1 
(Source: Rios et al. 2007). 
BLAST2 alignment of the 1000 bp upstream of the transcription start for human OAS1 
and equine OAS1 genes.  The alignment shows that the sequence from ~800 bp to ~-350 
bp in the horse promoter is similar to a region of the human promoter interrupted by a 
200 bp Alu repeat (~-811 bp ~-590 bp).  The horse microsatellite is shown in underlined 
bold.  Numbering shown in the alignments is from the translation ATG start sites.  
 
 
OAS1 promoter-reporter clone constructs containing repeat alleles of (GT)9, (GT)16 or 

(GT)19 were transfected into mammalian cells to measure potential differences in IFN-

induced activation (Figure 1.4).  Additional constructs lacking the microsatellite and 

upstream sequence (5’ deletion) were transfected and luciferase expression compared to 

the polymorphic, full-length promoter constructs.  Constructs lacking the microsatellite 
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and downstream sequence (3’ deletion constructs) were analyzed and compared to full-

length constructs.  Data analysis focused primarily on differences in IFN induction 

between the constructs as well as time-course and dose-response differences between 

clones.  With a population over-representation of alleles corresponding to full DNA 

helical rotations, alleles altering this configuration may disrupt the alignment of yet 

unidentified flanking regulatory elements, including the as yet unidentified OAS1 

interferon-stimulated response element (ISRE).    

 
 

 
 

Figure 1.4 OAS1 promoter-reporter constructs. 
Schematic diagram of the OAS1 promoter cloned upstream of the pGL3 luciferase 
reporter coding region.  Half arrows indicate primer locations used to amplify and clone 
the OAS1 promoter.  Table represents the GT dinucleotide sequence of individual clone 
constructs.  The GT microsatellite is bolded and underlined. 
 
 

 

Clone Repeat Sequence 
OAS1-9 ...AGAGAGAGCTGTGTGTGTGTGTGTGTGT--------------------CTTAACCTAA... 

OAS1-16 ...AGAGAGAGCTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGT------CTTAACCTAA... 

OAS1-19 ...AGAGAGAGCTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTCTTAACCTAA...      
   ****************************                    ********** 

                                                     (GT)N 

   OAS1 Promoter Luciferase  
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CHAPTER II 

REVIEW OF THE CELLULAR ANTIVIRAL IMMUNE RESPONSE 
 
 

 The host cell recognition and response to viral challenge is propagated through 

the induction of the interferon response system.  When cells are challenged by viral 

infection, they respond by activating a variety of genetic pathways involved in the 

production of interferon.  The pathways to IFN production are redundant and ensure that 

the cell’s response can limit viral replication while also preparing uninfected cells for 

viral infection.  This chapter reviews the cellular response to viral infection and the 

genetic mechanisms of IFN production.  This chapter concludes with a review of the 

viral mechanisms responsible for limiting the host immune response. 

IFN Induction 

 Flaviviruses represent one class of positive-strand RNA virus whose genome 

consists of both structural and non-structural coding regions.  After entry into the host 

cell, Flavivirus replication produces dsRNA, which is consequently recognized by the 

host cell to activate the complex immune response.  Host cell response to viral infection 

is triggered by the recognition of pathogen-associated molecular patterns (PAMPs), such 

as dsRNAs produced by viruses of the Flaviviridae genus, including WNV.  These viral 

recognition patterns interact with host pattern recognition receptors (PRRs) to stimulate 

downstream cascades, signaling the beginning of the early stages of the host immune 

response (ie. cytokine production).  Cytokine production resulting from the presence of 

viral dsRNA is activated by both a TLR -dependent and -independent cascade. 
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 The toll-like family of PRRs consists of membrane glycoproteins containing 

leucine-rich-repeat motifs and a cytoplasmic toll/ interleukin 1 receptor (TIR) homology 

domain, through which PAMP recognition is signaled [81].  The TLR family of 

receptors can be classified by their respective ligands (Table 2.1).  Of particular interest 

to the viral immune response to WNV is TLR3, a PRR activated by binding dsRNA [82, 

83].  Figure 1.1 shows the cascade of TLR3 activation regulating IFN production [84].  

Activated TLR3 signals toll-like receptor adaptor molecule 1 (TICAM1) for the 

downstream activation of neural factor �B (NF-�B) through the inhibitor of kappa light 

polypeptide gene enhancer (IKBK) complex [85].  The interaction between TICAM1 

and receptor interacting protein (RIP), responsible for NF-�B activation, is mediated by 

the RIP homotypic interaction motif (RHIM), a C-terminal motif required for proper 

TICAM1 activity [86].  Unstimulated NF-�B remains a cytoplasmic heterodimer bound 

by the nuclear factor of kappa light polypeptide gene enhancer inhibitor alpha 

(NFKBIA).  Upon activation, the IKBK complex phosphorylates NFKBIA, releasing 

NF-�B into the nucleus [85].  Nuclear NF-�B stimulates cytokine production, including 

Type I IFN [87].   

Contrary to the antiviral role TLR3 plays in IFN production, research using Tlr3-

deficient mice identified a pathogenic role of the gene during WNV infection.  Severe 

central nervous system (CNS) disease and lethality from WNV infection results from 

viral progression through the blood brain barrier.  Recombinant mice lacking Tlr3 (Tlr3-

/-) and infected with lethal doses of WNV were more resistant than infected wild type 

mice, with survival rates of 40% and 0%, respectively [88].  Data indicated that WNV  



20 
 

 
 

 
Table 2.1 TLR recognition of microbial components (Source: Akira et al. 2006) 

 
 
replication and inflammatory responses within the brains of infected mice were reduced 

in Tlr3-/- mice while the viral load within the blood was significantly higher, compared 

to wild-type mice.  Indeed, the researchers showed that the Tlr-dependent response 
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mediated viral entry into the CNS through reversible damage of the blood brain barrier 

[88].     

 The observation of dendritic cell maturation, a response mediated by TLR 

activation, in Tlr-deficient mice suggested a Tlr-independent response to virus infection 

mediated by cytoplasmic retinoic acid-inducible gene 1 (RIG1) protein [89, 90].  Figure 

2.1 shows a diagrammatic representation of NF-�B activation by the RIG1 signaling 

pathway.  RIG1 is a RNA helicase with two caspase-recruiting domain (CARD)-like 

domains.  The helicase domain interacts with dsRNA while the CARD-like domains are 

responsible for the downstream activation of NF-�B [90].  The RIG1 helicase is linked 

to TANK binding kinase 1 (TBK1) and IKBKE by interferon � promoter stimulator 1 

(IPS1), also known as MAVS, VISA and Cardif [91-94].  RIG1 was shown to be 

essential for IFN induction, as induction from dendritic cells deficient for RIG1 were 

greatly diminished [95].  With both TLR and RIG1 proteins localized within the 

cytoplasm and on endosomal membranes, it is unclear which pathway is activated for 

IFN induction.  A possible manner by which cells differentially activate IFN production 

is by the route of viral infection.  Other possible mechanisms are that actively replicating 

viruses signal the RIG1 pathway, while plasmacytoid dendritic cells preferentially 

activate through a RIG1-independent manner [83, 95].   

Recent publications have identified an additional level of complexity by which 

the cell mediates its response to dsRNA species [96, 97].  The presence of dsRNA 

species derives from both cellular activity (self) and viral infection (non-self), and the 
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cell must differentiate the two to properly activate downstream cascades.   For example, 

the OAS/RNASEL innate immune response generates dsRNA species from the 

 
 

 
Figure 2.1 RIG1- and MDA5-mediated signaling pathway (Source: Kawai et al. 2006).  
RIG1 and MDA5 helicases recognize replicating viruses and interacts with 
mitochondrial IPS1.  IPS1 signals activation of IFN genes by multiple transcription 
factors.  
  
  
degradation of both cellular and viral dsRNA.  This pathway contributes to the cellular 

population of dsRNA, which may then provide activating potential for pathways 

activated by dsRNA (i.e. OAS, RIG1).  On the other hand, endogenous dsRNAs (self) 

are produced through the transcription of cellular miRNA genes.  These dsRNA species 
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are utilized in the RNAi cascade.  Thirdly, dsRNAs (non-self) are produced as 

replication intermediates of infecting viruses (WNV).  Several lines of evidence have 

described mechanisms by which cells differentiate dsRNA-responsive mechanisms 

(RIG1 activation vs. RNAi).  One mode by which dsRNAs can be differentially 

identified by host factors is size.  The dsRNA binding protein of the RNAi system, dicer 

1 (DICER1), utilizes small molecules 21-23 bp in length while longer molecules 

preferentially activate eukaryotic initiation factor 2 alpha kinase 2 (EIF2AK2) and OAS 

proteins [98, 99].  Additionally, DICER1 recognizes and is activated by the presence of a 

2 nucleotide overhang at the 3’ end of the short dsRNA molecule.  This 3’ overhang 

seems sufficient to distinguish dsRNA species between the RNAi and RIG1 pathways.  

RIG1 does bind the 3’-overhang dsRNAs but its helicase activity is not activated by 

these molecules [96].  Therefore, the long dsRNA species produced by RNASEL 

ribonuclease activity and viral infection are recognized as lacking the end-motifs and 

activate RIG1 while the endogenous short dsRNA species containing the 3’ overhang are 

recognized and activate the DICER1 complex of the RNAi pathway [96, 97]. 

 Both the TLR-dependent and TLR-independent mechanisms converge in their 

response to viral infection by stimulating the production of Type I IFN.  Type I IFN 

include those previously designated as leukocyte (IFNA/IFNO) and fibroblast interferon 

(IFNB).  Less extensively studied Type I interferon include IFNT, IFNK, IFNE, and 

IFNL [100-108].  Type II interferon represents those previously designated as immune 

interferon (IFNG) [109-111].  The remainder of this discussion will focus primarily on 

Type I IFNA and IFNB, encoded by genes clustered on human chromosome 9q21 [112].   
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 The human IFNA genes, representing different subtypes of IFNA, and IFNB gene 

all lack introns and each encode preproteins with a secretory signal peptide sequence 

which is cleaved prior to protein secretion.  The human IFNAs contain 23 amino acid 

signal peptides and are secreted as mature 166 amino acid proteins with molecular 

weights ranging between 16 and 27 kDa [113].  The IFNA genes are highly conserved, 

with 80-95% homology at the nucleotide level, suggesting this gene cluster originated 

from a common ancestor [114].  At the amino acid level, the IFNAs share >50% 

homology [115].  One hypothesis for the evolution of multiple IFNA genes suggests that 

each evolved under different selective pressures, resulting in genes with different 

functional roles [116].  This hypothesis is supported by the observation that IFNA genes 

are differentially expressed in response to similar stimuli [113].   

 Human IFNB preprotein contains a 21 amino acid signal peptide with a resulting 

166 residue mature protein with molecular weight between 28 and 35 kDa depending on 

its degree of glycosylation [113].  Evidence suggests that in mammals, the IFNA genes 

evolved independently of IFNB; however, both human IFNAs and IFNB contain 

conserved regions of amino acid homology associated with receptor interactions [117, 

118].   

 Comparison between human IFNAs and IFNB revealed only 20% homology 

while IFNO shares 36% identity, suggesting that these Type I IFN species evolved from 

a single ancestral gene [119].  Arguably, such evolutionary duplication occurred mainly 

from unequal crossing-over in conserved regions, including inter-genic repeats [112].  

Phylogenetic analysis of all mammalian Type I IFNs identified three main subgroups of 
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IFNA, IFNB and IFNO; however, IFNB clustered as an out-group to the mammalian 

IFNAs and IFNOs [115]. 

 As previously discussed, IFN gene regulation occurs primarily at the 

transcription level, along with regulating mRNA stability and the short half-life of IFN 

transcripts.  The presence of activating factors produces a rapid increase in IFN 

expression through regulatory elements located within 200 base pairs (bp) of the 

transcription start site.  The immediate promoters of IFNA and IFNB genes contain 

different binding motifs and, therefore, have different binding requirements for 

induction.  Within the IFNB immediate promoter are four binding regions, positive 

regulatory domains (PRD) I-IV, responsible for binding activating transcription factors 

[120].  These regulatory domains were found to coordinate a mechanism by which 

binding factors cooperatively assemble into an enhanceosome complex with strictly 

organized protein-protein and protein-DNA interactions [121, 122] (Figure 2.2).  

The organization of the protein complex is dependent on the proper spatial 

orientation of each factor, aligning each in its appropriate groove within the double 

helix.  The helical relationship between the proteins of the enhanceosome complex 

enables the coordinated activation of the IFNB promoter [121].  Insertion of half-helical 

rotations between the PRD domains diminished the in vitro activation potential of the 

enhanceosome complex.  However, enhanceosome activity was maintained when 

sequence representing an entire helical turn was inserted between domains.  

Additionally, dual insertions between domains that maintained the helical phase of 

PRDIV and PRDII were unable to activate the reporter construct.  These data show that 
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the IFNB enhanceosome requires proper spacing of the PRD domains such that the 

proteins are in proper helical contact with each other as well as with the DNA molecule.   

The high mobility group protein HMG-I(Y) induces a conformational change within the 

protein complex that allows for the synergistic activity of the complex and, thus, is 

required for full transcription activation [121].  The coordinated assembly of the entire 

protein complex alters the inactive DNA conformation, specifically between interactions 

of the NF-�B, ATF-2/c-jun and HMG-I(Y) proteins [123].   

 

 
Figure 2.2 Diagram of the binding sites for the IFNB enhanceosome (Source: Falvo et al. 
2000). 
The IFNB gene promoter requires the cooperative binding and assembly of multiple 
transcription factors into an enhanceosome.  Activation involves protein-DNA and 
protein-protein interactions and proper spacing of DNA binding regions. 
 
 
 Induction of these IFN genes is transient even under conditions of continued 

induction.  The continued state of induction is suggested to be maintained through a 

system which prevents protein synthesis of repressors that inhibit IFN transcription 

[124].  Flanking the positive regulatory elements are two negative regulatory domains 
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(NRDI and NRDII).  The NRD elements regulate the stable repression of the IFNB 

promoter except under inducing conditions.  However, basal levels of IFN are detectable 

during the repressive state when the IFN promoter is not induced.  While PRDI and 

PRDII bind transcriptional activators during promoter induction, these two elements also 

act to repress the promoter after induction in a trans-regulatory feedback mechanism 

[125-127].   

 Although induced under similar condition, the IFNA gene promoter differs from 

the IFNB promoter.  IFNA induction, like IFNB, requires the activation of PRDI binding 

factors; however, the IFNA promoter contains a PRDI-like sequence element but does 

not contain NF-�B binding motifs.  IFNA induction in response to various factors, 

including viral infection, is mediated through the sequence specificity of the PRDI-like 

sequence.  Like the IFNB promoter, IFNA induction requires binding of activating 

factors to the PRDI domain.  However, while the IFNA promoter does not bind NF-�B, 

it does require active TG-sequence binding proteins to the GAAATG binding motif 

[128]. 

IFN Signal Response 

 Mature Type I IFNs are secreted and act as inter-cellular signals to prepare 

uninfected cells for viral challenge.  With a typical ligand-receptor relationship, 

extracellular IFN activates the interferon response of adjacent cells to stimulate 

transcription of host antiviral genes in anticipation of viral infection.  The Type I IFN 

cellular receptor is composed of two subunits, interferon receptor 1 (IFNAR1) and 

IFNAR2, encoded by genes located on human chromosome 21 [129, 130].  The IFNAR1 
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subunit of the IFN receptor is a 110 kDa glycosylated protein while the IFNAR2 subunit 

exists in multiple forms resulting from differential splicing of the IFNAR2 gene [129-

132].  IFNAR2c is the longer form representing the major subunit with a molecular mass 

between 90-100 kDa.  IFNAR2b is smaller with a molecular mass of 51 kDa [129, 131, 

132].  IFNAR1 forms different active complexes with each of the subunits of IFNAR2; 

however, IFNAR2c binds the IFNA and IFNB ligands with significantly greater affinity 

[133-135].   

 The classical janus activated kinase (JAK)-signal transducer and activator of 

transcription (STAT) pathway is represented in Figure 2.3.  IFNAR1 and IFNAR2 

associate with two members of the JAK-family of kinases, tyrosine kinase 2 (TYK2) and 

JAK1, respectively, through interactions with proline-rich receptor sequences [115, 136-

139].  Upon ligand binding, these JAK kinases autophosphorylate and activate in 

response to receptor rearrangement and dimerization [140].  The activated kinases 

phosphorylate multiple STAT proteins leading to the formation of multiple STAT 

homodimer and heterodimer complexes that subsequently translocate to the nucleus for 

gene promoter binding and transcription activation [115, 136, 141-143].  STAT 

phosphorylation, while mediated in part by tyrosine phosphorylation from the JAK 

kinases, also requires protein kinase C-delta (PRKCD)-mediated phosphorylation of 

serine 727 for full transcription activation [144-146].  Dimerization of the STAT 

proteins is mediated by the reciprocal recognition of the phosphorylated tyrosine by the 

required SH2 domains of STAT proteins [147].  The regulatory specificity of STAT 

activation is mediated by the SH2 domain during receptor activation.  For example, 
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STAT1 protein containing a STAT2 SH2 domain was not activated by IFNG; however, 

a STAT2 protein with a STAT1 SH2 domain was activated by both IFNA and IFNG 

[148].   

 
Figure 2.3 Interferon receptors and activation of classical JAK–STAT pathways by Type 
I and Type II IFN (Source: Platanias 2005). 
Activated IFN receptors signal STAT dimerization through kinase phosphorylation.  
STAT dimmers bind gene promoter regulatory motifs for activation of transcription. 
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Specifically induced by Type I IFN, the phosphorylated STAT1-STAT2 complex 

translocates into the nucleus where it interacts with interferon regulatory factor 9 (IRF9) 

to form the mature heterotrimeric complex interferon-stimulated gene factor 3 (ISGF3) 

[141-143].  This transcription factor complex binds exclusively to the ISREs located 

within the proximal promoter region of many ISGs and activates transcription.  

Alternative STAT complexes bind other promoter elements to activate gene 

transcription, including the IFNG-activated sites (GAS) bound by STAT1 homodimers.  

The interactions of these STAT complexes on ISRE and GAS elements activate 

hundreds of genes whose promoters may contain one or both of these elements and may 

require specific complexes of STAT proteins [149].   

 The JAK-STAT pathway contains multiple sites of regulation potentially 

mediating the ligand-specific activation of immediate early ISGs.  These include the 1) 

ligand-receptor-kinase interactions, 2) STAT protein activation and interaction and 3) 

the DNA binding sites located within the promoters of ISGs [150]. 

Activated STAT proteins may also interact with multiple co-activators including 

p300 and cAMP responsive element binding protein (CREB) -binding protein (CBP) 

[151, 152].  Both p300 and CBP are co-activators with histone-acetyltransferase activity 

[153].  Activated STAT proteins also interact with histone deacetylase 1 (HDAC1), 

recently shown to be required for IFN-dependent gene transcription [154-156].  Levels 

of IFN-activated gene transcription are also regulated by the degree of ligand-receptor 

occupancy [157].  
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Viral Antagonists of the IFN Response 

Targeting IFN induction 

 To counteract the antiviral response of host cells, viruses have evolved 

mechanisms that interrupt multiple stages of the IFN response, including induction, 

signaling and altering the effects of specific ISGs.  Many viruses block induction of 

Type I IFN through interactions with IRF3 and IPS1.  Both Influenza and Poxviruses 

compete against activation of IRF3 by encoding dsRNA binding proteins NS1 and E3L, 

respectively [158, 159].  IRF3 phosphorylation by TBK1 is inhibited by the viral P 

protein of some negative-stranded RNA viruses [160].  As well, some viral proteins 

target multiple steps of the IFN induction cascade.  Hepatitis C viral protease NS3/4A 

cleaves IPS1 as well as blocks TLR3- and RIG1 –mediated induction by cleaving 

TICAM1 [92, 161].  Other viruses target NF-�B to inhibit IFN production [9, 11]. 

Targeting IFN activation 

 Viruses have evolved mechanisms to alter the ISG activation response to Type I 

IFN.  Poxviruses encode soluble receptors which compete with host receptors for ligand 

binding [162].  JAK/STAT signaling of the IFN response pathway is targeted by a 

number of viruses.  Paramyxoviruses, Murine Polyoma virus, Human Papillomavirus 

and Herpesviruses all encode proteins targeting members of the JAK-family of signaling 

proteins [163-166].  The ISGF3 complex is targeted by Paramyxoviruses by inhibiting 

STAT synthesis [167].  IRF9 expression is inhibited after Herpesvirus infection, while 

the Papillomavirus E7 protein interacts directly with IRF9 to prevent proper ISGF3 

activity [163, 168].   
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Targeting the activity of ISGs 

 Viruses encode genes producing small non-activating RNAs which compete with 

replication intermediate dsRNAs for binding dsRNA-activated proteins, particularly 

EIF2AK2 and OAS [14, 169, 170].  This competition prevents activation of these 

proteins and prevents them from binding activating dsRNAs.  
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CHAPTER III 

DISCOVERY OF THE FLAVIVIRUS RESISTANCE GENE AND ANTIVIRAL 

CHARACTERIZATION OF THE OAS/RNASEL SYSTEM 

 
Murine Flv Gene Discovery 

Genetic resistance to Flaviviruses was originally identified in mice as early as the 

1920s.  Resistant mice were used in breeding studies to identify a dominant allele within 

a single autosomal gene as conferring the Flavivirus resistance phenotype [171].  A 

resistant mouse strain (PRI) was crossed to susceptible C3H/He mice and offspring 

backcrossed to C3H/He mice for eight generations [172].    The final strain of inbred 

mice contained an estimated donor linkage region of 31 cM containing the Flavivirus 

resistance (Flvr) gene [173].  Phenotypic characterization of resistant and susceptible 

mice has shown resistance to be specific to Flaviviruses, including disease from 

mosquito-borne WNV [25].   Further characterization showed that while resistant mice 

were capable of infection, they produced lower viral yields than susceptible mice.  Data 

measuring the amount of minus-strand and positive-strand viral RNA in resistant and 

susceptible strains showed genetic resistance to Flaviviruses was mediated at the level of 

viral replication and not attachment or entry [174, 175]. 

 Coinheritance studies mapped the Flv locus to mouse chromosome 5 [176].  

Three-point linkage analyses placed the Flv gene in a precise gene order relative to four 

other genes [177].  Further mapping of the Flv locus was completed using 20 

microsatellite markers within the known locus region [178].  Microsatellites were 
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genotyped relative to multiple backcross mice and a linkage region of <0.15 cM was 

identified with three markers D5Mit408, D5Mit159 and D5Mit242 [179]. 

 From the estimated linkage region, the Flv gene was positionally cloned [24].  A 

genomic physical map was constructed using BACs located between markers D5Mit408 

and D5Mit242.  Full-length cDNAs were compared between susceptible and resistant 

mouse strains and a premature stop codon was identified within the Oas1b gene in 

susceptible mice.  This C820T transversion produces a gene product lacking 30% of its 

C-terminal sequence when compared to the full-length gene product in resistant mice.  

The presence of the full-length and truncated alleles correlated absolutely within 

resistant and susceptible mouse strains, respectively.  The premature truncation was also 

identified by a second group and correlated to Flavivirus susceptibility [180].  The 

truncated form of the Oas1b protein lacks a CFK motif involved in forming a 

homotetramer complex required for synthetase activity.  However, unpublished data 

suggests that the full-length Oas1b protein lacks functional synthetase activity.  

Additionally, a second gene on chromosome 5 has been hypothesized to provide a 

synergistic effect with Oas1b in resistance to Flavivirus disease [181]. 

Oligoadenylate Synthetase Gene Cluster 

Human cluster  

The human OAS gene cluster spans a 130 kb region on human chromosome 

12q24.2 [35].  Evidence suggesting evolutionary gene duplication events explain the 

formation of the human cluster containing three genes, cen-OAS1-OAS3-OAS2-tel [41, 

182].  Recent cross-species analysis of mammalian gene clusters has suggested an 
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evolutionary model of gene duplications and rearrangements of a common gene ancestor 

resulting in the formation of the three OAS genes [33] (Figure 3.1).  

 

 
Figure 3.1 Ancestral evolution of the OAS gene domains (Source: Perelygin, Zharkikh et 
al. 2006). 
Schematic representation of the hypothesized evolution of the OAS gene cluster.  
Sequence comparison suggests OAS2 evolved from a fusion of two OAS domains and a 
subsequent duplication even leading to the formation of OAS3 
 
  

Human OAS1, OAS2 and OAS3 genes represent the small, medium and large 

form synthetases, respectively, all with exon structures similar to OAS1.  The exon 

structure of these genes provides evidence for evolution by gene duplication.  Human 

OAS1 contains 7 exons responsible for transcribing alternatively spliced variants which 
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share their first 5 exons (A-E).  Exons A-E of OAS1 are evident in two and three copies 

in OAS2 (A2-E2) and OAS3 (A2-E2, A3-E3), respectively [41, 182].  Table 3.1 shows 

the amino acid homology between the homologous exons of human OAS genes.  As 

suggested from Figure 3.1 and Table 3.1, a single core exon clusters OAS2,2 and OAS3,3 

show greater homology to the OAS1 exon cluster. 

  The small form synthetases p42 and p46 are products of alternatively spliced 1.6 

kb and 1.8 kb transcripts, respectively.  The transcript encoding the smaller synthetase 

contains exons A-E and continues into exon 6; however, the larger product transcribes 

exons A-E but splices into exon 7.  Thus, both OAS1 proteins share their N-terminal 346 

amino acids and differ in their C-terminal ends [39, 40].  Figure 3.2 shows the 

alternatively spliced transcripts of the human OAS1 gene.  

Human OAS2 contains 12 exons, including two groups of exons similar to exons 

A-E of OAS1.  Like OAS1, OAS2 produces differentially spliced transcripts encoding 

synthetases p69 and p71.  The smaller variant consists of 687 amino acids while the 

larger is of 727 amino acids.  Because these proteins result from alternative splicing, 

they share their first 683 N-terminal amino acids.  The high level of homology between 

the two domains of OAS2, especially between OAS1 and OAS2 A2-E2, originally 

suggested that OAS2 derived from a fusion event between two ancestral OAS1 genes 

[41] (Table 3.1).  The large form synthetase encoded from a 6,276 nucleotide transcript 

of OAS3, synthetase p100, is the only product of the gene [182].  OAS3 contains three 

exon clusters homologous to OAS1 exons A-E.  The exon structures of the three clusters 

within OAS3 are similar to OAS1 and OAS2, with similar splice acceptor/donor sites and 
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Table 3.1 Exon size and identities between OAS genes (Source: Justesen 2000) 
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Figure 3.2 Alternatively spliced transcripts of human OAS1 (Source: Justesen 2000). 
Known splice variants of human OAS1 are homologous in their N-terminal regions and 
are differentially spliced after exon 5. 
 
 
reading frames across intron/exon boundaries.  The enlarged OAS3 exon A2 represents 

the only exon with altered splice sites, leading to an expanded 5’ end of the exon [40, 

41]. 

  A fourth synthetase gene, OASL, contains an N-terminal cluster similar to OAS1 

exons A-E.  Therefore, the N-terminal 349 amino acids are homologous to OAS1; 

however, unlike the other synthetases, the C-terminal 165 amino acids contain two 

ubiquitin-like repeats [40, 183].  Human OASL is alternatively spliced, producing a p56 

variant as well as a variant lacking exon D, p30. 

Investigation of the human OAS1 promoter identified the regulatory regions of 

this ISG.  An IFN-regulated sequence was originally identified using deletion constructs 
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driving expression of a chloramphenicol acetyltransferase (CAT) reporter gene [184].  

They identified a 72 bp region from -159 to -87 responsible for IFN-stimulated 

induction.  This region is conserved within the equine promoter with a nucleotide 

conservation rate of 55% upon alignment using ClustalX software (Figure 3.3).  Shortly 

thereafter, a second group identified a sequence boundary (-113 to -74) conferring IFN-

induced binding of nuclear factors [185].  This human promoter region was sufficient for 

the IFN-induced activation of a CAT reporter gene as well as for the IFN-responsive 

activation of a heterologous promoter [185, 186].   

 

 
Figure 3.3 Local alignment of human OAS1 IFN-regulated sequence and horse promoter. 
Local alignment of the human OAS1 ISRE sequence and the homologous region of the 
equine OAS1 promoter.  The high degree of conservation suggests a role for this region 
as an ISRE in the horse OAS1 promoter. 
 
 
 A typical ISRE contains repeats of the hexamer sequence AGTGA with a  

consensus sequence GGYAAAY[A/T]GAAACTY [187].  However, the ISRE located 

within the promoter of human OAS1 (OAS-ISRE) is differentially activated in response 

to IFNB than the ISRE of the major histocompatibility complex (MHC) class I genes 

(MHC-ISRE) [188].  It was shown that in neurons, the ISGF3 complex preferentially 

bound the OAS-ISRE and not the MHC-ISRE.  Flanking sequences may affect the 

binding affinity of the ISGF3 complex to ISRE elements [189].  The cell-type specific 
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activation of different ISGs may be mediated by the differential binding affinities of the 

ISRE-binding transcription factors expressed within those cells.  

 The promoter of the human OAS1 gene also interacts with the core protein of the 

Hepatitis C virus (HCV) [190].  Both the HCV core(M) and core(P) proteins activated a 

luciferase reporter construct containing the human OAS1 ISRE sequence region from      

-159 to +82.  Activation by the core proteins was observed in a dose-dependent manner 

where increasing amounts of protein activated the reporter gene to greater levels.  

Further analysis using deletion constructs lacking regions of the ISRE showed that the 

activation by HCV core proteins occurs through this promoter element.  The role of 

ISREs in HCV core protein-mediated gene activation was further investigated and it was 

found that a sub-class of ISREs was differentially activated [191].  Among IFN-induced 

genes, the sequences of the ISREs are variable [143].  Activation by HCV proteins of 

luciferase reporter constructs containing the ISREs from OAS1, EIF2AK2 and guanylate 

binding protein 1 (GBP1) were compared and showed preferential activation of the ISRE 

of OAS.  A synthetic ISRE converting an inactive ISRE sequence to the OAS ISRE 

sequence recovered the activating potential of the HCV proteins.  The synthetic 

constructs were produced using a PCR-based method [192].  The preferential activation 

of the OAS-form ISRE was also observed using the adenosine deaminase (ADAR1) gene, 

whose ISRE is very similar to OAS [191]. 

Murine cluster 

 The genomic structure of the murine Oas gene cluster is different from that of the 

human OAS gene cluster, particularly with the murine Oas1 gene(s).  While the human 
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cluster contains single copies of all OAS genes, the murine cluster consists of multiple 

Oas1 and Oasl genes (Figure 3.4).  The murine cluster contains eight Oas1 genes 

(Oas1a-h), an Oas1i psuedogene, single copies of Oas2 and Oas3 and two Oas-like 

genes (Oasl1 and Oasl2) [33].  Within the identified Oas1 genes, Oas1a-g contain a 

complete set of exons (A, B, C, D, E and T) [26, 193].  Murine genes Oas1a and Oas1g 

contain an additional C-terminal exon 7.  All exons of the Oas1 genes are spliced 

following typical GT/AG intron-exon boundaries.  Alignment of protein residues 

between multiple Oas1 genes identified a high degree of conservation within each exon 

between genes.  Investigations using recombinant murine Oas1 proteins identified those 

proteins with synthetase activity (Oas1a and Oas1g) while Oas1c-Oas1e and Oas1h 

lacked this activity [28, 30].  Identification of inter-genic retrovirus-like elements and 

molecular evolutionary analysis suggest that the expansion of the mouse Oas1 genes 

derived from multiple duplication events occurring as recently as ~11 MYA [28, 33, 

194] (Figure 3.1).  

The genomic exon structure of murine Oas2 and Oas3 genes, like human, 

contain duplications and triplications of the exon group (A-E), respectively [26].  The 

exon groups are followed by a single C-terminal T exon in both Oas2 and Oas3.  Murine 

Oas2 is differentially spliced while Oas3 is transcribed into a single transcript [193].  

The mouse also has two Oas-like genes, Oasl1 and Oasl2.  Amino acid homology for 

exons A-E compared to human OASL were 74% and 49% for Oasl1 and Oasl2, 

respectively, suggesting an ancestral role of Oasl1 in the evolutionary duplication event 

that produced the Oasl2 gene [26]. 
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Figure 3.4 Schematic representation of the mouse and human OAS gene clusters 
(Source: Kakuta et al. 2002). 
The multiple Oas1 genes in the murine cluster may have evolved from duplication 
events occurring from the presence of retrovirus-like element in the cluster.  The human 
and horse clusters contain single genes of OAS1 , OAS2 and OAS3. 
 
  
Canine, bovine and equine clusters 

 The OAS gene clusters among these mammals are strikingly different from the 

human and murine clusters.  The canine (Canis familiaris) cluster of OAS genes 

resembles attributes of both the human and murine OAS clusters [33].  Similar to the 

human OAS gene cluster, the canine cluster is located on chromosome CFA26 in the 

same orientation, OAS1-OAS3-OAS2.  However, the canine OAS gene family also 

resembles the murine cluster, containing two OAS-like genes, OASL1 and OASL2.  

Canine OASL1 encodes a full-length protein containing two C-terminal ubiquitin 

domains while the OASL2 is a pseudogene. 

 The bovine (Bos taurus) OAS gene cluster most resembles the human gene 

cluster, although not entirely.  The bovine cluster was FISH mapped to BTA17q24 
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telomeric to RPH3A [33, 64].  Sequencing of bovine CHORI BAC clone 49:I16 

identified three OAS1 genes (OAS1X-OAS1X-OAS1Y) and a single OAS2 gene.  

Sequencing the intergenic region between the OAS1 genes and OAS2 did not identify a 

bovine OAS3 gene.   

 The equine (Equus caballus) OAS gene cluster was FISH mapped to equine 

chromosome ECA8p15 and found to contain single copies of each OAS gene in the same 

orientation as the human cluster (RPH3A-OAS1-OAS3-OAS2) and a single OASL gene 

[64, 195].  On average, exon lengths are more similar to the human genes than mouse.  

Furthermore, equine OAS2 is differentially spliced into two transcripts [33]. 

OAS Activation and 2-5A Synthesis 

 The enzymatic products of the OAS family of proteins were originally discovered 

as interferon-induced, low molecular weight inhibitors of protein synthesis able to bind 

poly(I)�poly(C) columns during purification [53, 54, 56-58].  The mechanism through 

which this protein family was discovered involves a cascade of activation by dsRNA and 

downstream processes involving the activation of an endoribonuclease and subsequent 

RNA cleavage and inhibition of protein synthesis.  Following is a review of the 

mechanisms by which the OAS/RNASEL system, in particular OAS1, acts within the 

innate immune system. 

Activation by dsRNA 

 In response to Type I IFN, the OAS gene family is induced and synthetases 

poised for activation by dsRNA.  dsRNAs play important roles in signaling many 

cellular events and thus must be able to differentiate the activation of specific cellular 
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pathways.  Of late, investigation has identified means by which dsRNA species are 

differentiated for targeted downstream pathway recognition, i.e. RNAi vs. OAS 

activation.  Both the DICER1 complex of the RNAi system and the OAS proteins bind 

and respond to dsRNA species; however, recent investigation has identified a mode by 

which the cell differentiates self and non-self (viral) dsRNA species to activate either the 

RNAi or OAS pathways [96].   

Characteristics including size and termini of the dsRNA are used to differentiate 

dsRNA species.  Activation of the OAS proteins was measured at maximal levels with 

dsRNA species of lengths between 65 and 80 nucleotides [99].  This agrees with 

previous identification of the minimal length threshold of dsRNAs to activate EIF2AK2 

and OAS proteins and to inhibit protein synthesis [99, 196, 197].  The RNAi DICER1 

complex uses dsRNA species with lengths between 21 and 23 nucleotides for targeted 

degradation [198].  Additionally, the terminal nature of the dsRNA species differentiates 

the activation of downstream targets.  Upon processing self-dsRNA for targeted 

degradation, the DICER1 complex recognizes 2 nucleotide 3’-overhangs at the terminus 

of the dsRNA molecule [198].  These dsRNA species containing 3’-overhangs are 

endogenous and activate the RNAi pathway.  Non-self dsRNA species do not contain the 

2 nucleotide overhang and thus do not activate the RNAi pathway.  These dsRNAs may 

be introduced during viral infection/replication or produced from non-specific 

ribonuclease activity, as seen following RNASEL activation.  The specific cellular 

response is mediated, in part, from the recognition of the 3’-overhang.  dsRNA species 
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containing the typical DICER1-recognized overhang bind RIG1 helicase but fail to 

activate its helicase activity [199]. 

dsRNA acts as a potent activator of the host antiviral system by inducing the IFN 

response as well as by activating antiviral genes such as those of the OAS cluster and 

EIF2AK2.  As mentioned above, dsRNA species are used to differentially activate host 

pathways, and depending on the structural nature of the dsRNA molecules.  The 

activating potential of dsRNA dependents on the degree of mismatches within the 

molecule [200].  Investigations have identified different dsRNA structural requirements 

for the activation of ISG proteins.  The activating potential of partially methylated 

dsRNA differs between OAS and PKR, providing evidence of differential dsRNA 

structural requirements of these antiviral proteins [201].  Other structural requirements 

were identified by measuring OAS and PKR activation from multiple polynucleotides, 

including analogs of (A)n�(U)n and (I)n�(C)n [202].  However, the analog polynucleotide 

species failed to activate OAS to the levels of (A)n�(U)n and (I)n�(C)n.   

Synthetase activity of OAS proteins 

Using molecular antibodies, the multiple synthetase proteins were identified with 

molecular weights 40, 46, 69 and 100 kDa [36, 37].  Each protein contains multiple 

functional domains, including distinct acceptor and donor ATP binding sites and a 

nucleotidyl transferase catalytic domain [40].  The functional synthetases of OAS1, 

OAS2 and OAS3 are found as tetramers, dimers and monomers, respectively [203, 204].  

This suggests that four catalytic subunits are required for proper activity, provided by 

four molecules of OAS1 and two molecules of OAS2 [205].  The enzymatic properties 
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of the OAS2 synthetase were found to be mediated by two independent catalytic 

domains [206].   

The synthetases are induced differentially by IFNA, IFNB AND IFNG in a tissue 

specific manner [36, 207].  The different synthetase forms also differ in their subcellular 

localization [36, 204].  The small form synthetases are present in the ribosomal fraction 

with differential cell type specific expression of the splice variants.  The medium form 

synthetase is localized on the nuclear envelope and in a patterned manner throughout the 

cytoplasm [40].  The 100 kDa synthetase was localized in a diffuse pattern throughout 

the cytoplasm.  Additionally, the medium form 69 kDa synthetase was found to be 

myristylated [204]. 

Upon activation, the synthetases use adenosine triphosphate (ATP) as a substrate 

for the oligomerization of 2-5A molecules represented with the general formula 

pppA(2’p5’A)n, where n�2 [53-55, 57] (Figure 3.5).  These oligomers are 

phosphorylated at their 5’ end and are uniquely structured 2’-5’ compared to the normal 

3’-5’ bond linkage of the genomic DNA helix.  Measuring the level of inhibition on type 

I DNA topoisomerase by the presence of 2-5A, researchers found that the level of 

inhibition was dependent upon the degree of 5’ phosphorylation as well as oligomer 

length.  Inhibition was most effective by a 5’-triphosphorylated hexamer [208].  

Oligomerization by the OAS1 synthetase homodimer requires multiple active sites, 

including an acceptor binding site for ATP, a second for the donor ATP (distinct from 

the acceptor ATP binding site) and a third site with activity to catalyze the nucleotidyl 

transferase reaction [40]. 
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Figure 3.5 Structure of a [(pp)p(A2’p5’)2A] molecule (Source: Tanaka et al. 2004). 
Activated OAS1 synthetase homotetramer complexes catalyzes the oligomerization of 2-
5A molecules from ATP.  The preferential 2-5A for RNASEL activation is a tri-
phosphorylated trimer. 
 

 
RNASEL Activation and Activity 

The only known role of 2-5A molecules in the immune response to viral 

infection is to activate the latent RNASEL [53].  The human RNASEL gene encodes a 

741 amino acid protein from a ~2.8 kb transcript and maps to human chromosome 1q25 

[45, 209].  The RNASEL protein contains multiple regions of functional importance, 

including an N-terminal domain of ankyrin repeats with P-loop motifs between the 

seventh and eighth repeat, a serine/threonine protein kinase domain and a C-terminal 

ribonuclease domain.  

Deletion analysis identified the nine N-terminal ankyrin repeats as responsible 

for repressing the ribonuclease activity of unbound RNASEL as well as binding 2-5A for 
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proper activation [46, 48].  Detailed structural analysis of RNASEL identified a direct 

binding interaction between a single 2-5A molecule and akyrin repeats 2-4 [48].  

Additionally, repeats 6-9 are required for full RNASEL activation from 2-5A binding 

[210].  The interaction between the 2-5A molecule and ankyrin repeats, and thus 

ribonuclease activation, is mediated by certain structural attributes of the 2-5A molecule 

[48, 211].  Structural considerations of the 2-5A molecule include the ribose-phosphate 

linkage, 5’ phosphorylation, length and nature of the bases.  Figure 3.6 summarizes the 

analogs tested and the interpretations regarding the structural requirements of 2-5A on 

ankyrin binding and RNASEL activation [48].   The activating potential of the 

oligonucleotide analogs showed that activation by 2-5A is dependent on the specific 

backbone linkage (2’,5’) and on containing at least a single phosphoryl group at the 5’ 

end of a molecule of at least three adenylyl residues.   

The N-terminal ankyrin repeats, while responsible for activating RNASEL 

through binding 2-5A molecules, are also responsible for the inactivated repression of 

ribonuclease activity.  The repressive state of RNASEL was maintained when the first 

237 N-terminal residues were deleted, corresponding to ankyrin repeats 1-6.  These data 

provide evidence that the repressive function of the N-terminal ankyrin repeats involves 

at most domains 7-9 [46].  

Other functional domains include a domain with protein kinase homology as well 

as a C-terminal ribonuclease domain [46].  Deletion analysis of the C-terminal region 

identified 10 residues required for ribonuclease activity.  C-terminal deletions including 
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the most C-terminal 31 residues inactivated the protein.  Ribonuclease activity requires 

amino acid residues between 710 and 720 for proper activity [46].   

 

 
Figure 3.6 RNASEL activation by 2-5A analogs (Source: Tanaka et al. 2004). 
2-5A molecules activate the dimerization of RNASEL proteins.  Several characteristics 
of 2-5A molecules are necessary for proper RNASEL activation.  Characteristics include 
phosphorylation and the unique 2’,5’ linkages of the 2-5A molecules. 
 

Functional RNASEL ribonuclease activity cleaves both cellular and viral RNA 

without discrimination.  However, the efficiency with which RNA is cleaved depends on 

the nucleotide preference between the protein and RNA molecule, with cleavage 

dependent on RNA sequence and not availability of ribonuclease binding. Specific 

sequence preference for RNASEL was identified by several groups.  Cleavage of labeled 

RNA identified UpN sites as preferred for RNASEL ribonuclease activity.  Levels of 

ribonuclease cleavage were variable among different UpN sites, with a strong preference 

for UA and UU sites.  However, cleavage at all UU and UA sites was not achieved, 
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possibly due to the presence of secondary structures within the RNA molecule [212].  

Cleavage specificity was expanded to investigate ribonuclease activity on different 

homopolymers.  Comparison between reactions without RNASEL, with RNASEL and 

with both RNASEL and 2-5A showed appreciable levels of ribonuclease activity with 

poly(U) but not with poly(A), poly(G) or poly(C) [213].  These data show the specific 

nature of the ribonuclease activity of RNASEL, leading to the patterned cleavage of 

rRNA [214]. 

Contrary to the induction of OAS1 by IFN, there is only a slight increase in 

expression of RNASEL in response to IFN treatment [215].  Basal transcription levels of 

RNASEL are sufficient for antiviral induction by 2-5A.  Mapping the promoter region 

identified general transcription factor binding sites as well as several tissue-specific 

transcription factor binding sites that together may regulate the ubiquitous expression of 

human RNASEL [216].  A single GAS element was identified ~147 bp upstream of the 

transcription start site while no ISRE element was found within the promoter.   

Additional regulatory motifs are located within the 3’ untranslated region for 

post-transcriptional regulation of the RNASEL mRNA [217].  The human RNASEL 

mRNA contains multiple AU-rich elements (ARE) of sequence AUUUA.  This 

regulatory sequence binds ARE-binding proteins that either positively or negatively 

regulate the transcript’s accessibility to mRNA decay mechanisms, including 

deadenylation and decapping [218, 219].  Deletion analysis of the AREs identified the 

regulatory roles of these motifs within the 3’UTR [217].  Analysis of multiple single and 

double deletion constructs showed that AREs 7-8 act as positive regulators while AREs 
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2 and 3 independently decrease RNASEL levels.  Between AREs 7 and 8 lies a binding 

site for ELAV-like 1 (ELAVL1), an ARE binding protein, which exhibits a regulatory 

effect independent of the flanking AREs.  Finally, the 3’ UTR of human RNASEL is 

predicted to contain regulatory binding sites for micro-RNAs. 
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CHAPTER IV 
 

CHARACTERIZATION OF THE EQUINE 2’-5’ OLIGOADENYLATE 

SYNTHETASE 1 (OAS1) AND RIBONUCLEASE L (RNASEL) INNATE 

IMMUNITY GENES* 

 
Background 

The innate immune responses are the first line of host defense against virus 

infection.  An important component of the intracellular antiviral response is mediated by 

the OAS/RNASEL pathway.  OAS genes are interferon-inducible and activated by 

binding dsRNA.  dsRNA, present in virus infected cells, activates OAS proteins to 

catalyze the oligomerization of ATP to form 2’,5’ –linked oligoadenylate chains 

(pppA(2’p5’A)n) [53-55].  Originally discovered as a low molecular weight inhibitor of 

protein synthesis, pppA(2’p5’A)n induces the activation of the latent endoribonuclease, 

RNASEL, which degrades both cellular and viral RNA in a non-preferential manner [53, 

56-58].  The OAS/RNASEL pathway has also been implicated in the induction of 

apoptosis [59-63].  

  The murine Flv was positionally cloned and identified as Oas1b [24].  A cDNA 

sequence comparison among susceptible and resistant strains of mice identified a single 

nucleotide substitution that causes a premature stop codon in the Oas1b transcripts of 

susceptible mice [24].  

____________ 
*Reprinted from “Characterization of the equine 2-5 oligoadenylate synthetase 1 
(OAS1) and ribonuclease L (RNASEL) innate immunity genes” by Rios JJ, Perelygin 
AA, Long MT, Lear TL et al. 2007. BMC Genomics, 8, 313, www. 
biomedcentral.com/bmcgenomics. 
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The human OAS gene cluster, consisting of genes OAS1, OAS3 and OAS2, is  

located on chromosome 12q24.2 [35].  The small synthetases are transcribed from the 

OAS1 gene while the medium and large synthetases are encoded by the OAS2 and OAS3 

genes, respectively.  Alternative splicing was previously reported in both OAS1 and 

OAS2 transcripts [36, 37].  For example, the human OAS1 transcript E16 corresponds to 

the p42 protein, which is translated from a ~1.6 kb mRNA, while the alternatively 

spliced E18 transcript encoding the p46 protein is ~1.8 kb [38].  Both p42 and p46 

proteins are identical in their first 346 N-terminal amino acids but differ at the C-

terminus [39]. Variations in the human OAS1 gene that may be relevant to the outcome 

of virus infections have been reported [42, 43, 220-222].  

The human RNASEL gene maps to chromosome 1q25 [209].  The 741 amino 

acid, 83,539 Dalton protein is translated from a ~2.8 kb transcript [44, 45].  The 

RNASEL protein consists of three domains: 1) an N-terminal domain of ankyrin repeats 

with P-loop motifs between the seventh and eighth repeat, 2) a serine/threonine protein 

kinase domain, and 3) a C-terminal ribonuclease domain [46].  RNASEL activation 

requires binding of a single 2-5A molecule to the N-terminal ankyrin repeats 2-4 [47, 

48].  2-5A binding reverses the naturally repressive state of the RNASEL ankyrin 

repeats, ultimately producing a functional homodimer with ribonuclease activity [46, 48-

50].   

Previously, the equine OAS gene cluster was mapped to horse (Equus caballus; 

ECA) chromosome 8p15 and shown to have an organization similar to that in the human 

genome: OAS1-OAS3-OAS2 [64].  Two clones were identified from segment 1 of the 



54 
 

 
 

CHORI-241 equine BAC library, 77:F4 (~200 kb) and 100:I10 (~130 kb), that contain 

complete OAS1 and OAS3 sequences.  BAC clone 77:F4 also contains nine 5’-terminal 

exons of OAS2 [64].   

A subclone library generated from CHORI-241 BAC 100:I10 was sequenced and 

used to construct a contig assembly spanning the OAS1 gene.  The equine RNASEL gene 

was identified in multiple BAC clones of the CHORI-241 library and FISH mapped on 

metaphase spreads to ECA5p17-p16.  Equine RNASEL genomic sequence was obtained 

from BAC clone 159:N12 and an assembly similar to that for OAS1 was constructed.  

Full-length RNASEL cDNAs from 8 species were determined and compared in a 

phylogenetic analysis.  Re-sequencing of genomic DNA from multiple horses of 

different breeds identified a total of 64 SNPs and 2 microsatellites within the OAS1 and 

RNASEL genes.  

Results 

BAC 100:I10 sequencing and OAS1 contig assembly 

 A shotgun subclone library was constructed from sheared fragments of CHORI-

241 BAC 100:I10.  Nine hundred sub-clones were bi-directionally sequenced, resulting 

in 513,390 bases with quality scores >15, providing 3.95X coverage.  The individual 

chromatogram files were analyzed by Phred, Phrap and Consed [65-68, 223] and 

individual contigs scaffolded on the human genome sequence using BLAST.  The 

scaffold was further validated by the addition of multiple sequences from TraceDB [224] 

retrieved via BLAST searches using full length equine OAS1 mRNA [GenBank: 

AY321355].  The scaffold contained four genomic contigs spanning a substantial part of 
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the equine OAS1 gene, including 4.5 kb of promoter sequence upstream of exon 1 and 

1.6 kb of sequence downstream of exon 6, and was submitted to GenBank under 

accession number DQ536887.  The genomic assembly also included sequence for the 

downstream equine OAS3 gene as well as an upstream gene orthologous to human 

RPH3A (data not shown).  This assembly completely overlaps two contigs of whole 

genome shotgun sequences, AAWR01028567 (55475 bp) and AAWR01028568 (31407 

bp), that were recently submitted to GenBank from the Broad Institute.  

Identification of OAS1 microsatellites 

The genomic sequence assembly identified two microsatellites, one located 

within the promoter and the other downstream of exon 6.  The promoter GT-

microsatellite is located 575 bp upstream of the ATG translation initiation site.  A 

shorter GT-microsatellite is in the same relative position in the human OAS1 promoter 

(Figure 1.3).  This microsatellite may affect the functions of flanking regulatory 

elements.  Sequencing the OAS1 promoter in 13 horses established this promoter 

microsatellite as polymorphic in length.  The second polymorphic microsatellite was a 

GT-dinucleotide repeat located 43 bp downstream of exon 6.   

OAS1 SNP identification  

The assembled OAS1 scaffold was aligned to the full length, 1.6 kb cDNA equine 

transcript [GenBank: AY321355] to delineate individual exons and flanking intron 

sequences from the genomic contigs.  Genomic primers were designed within flanking 

intron sequences as well as for the proximal promoter (Table 4.1).    
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Table 4.1 Primers for amplifying genomic fragments for SNP detection 

 
 
 

Sequence data obtained from the screening population and from CHORI BAC 

100:I10 were analyzed using Phred, Phrap and Consed programs [65-68, 223].  Both 

visual analysis of the chromatogram data to identify heterozygotes and computer  

analysis using the Consed visualization tool identified 33 single nucleotide substitutions 

within the proximal promoter and exons of equine OAS1 (Table 1.2).  Of these, 11 were 

within coding regions, 9 within non-coding regions and the remaining 13 within the 

proximal promoter upstream of exon 1.  Four of the 9 non-coding polymorphisms were 

located within the 5’ and 3’ untranslated regions (UTR).  Of the 11 coding 

polymorphisms, 4 were synonymous and 7 were non-synonymous.  Five of the 7 non-

synonymous SNPs resulted in substitutions of amino acids with different properties.  

Interestingly, the amino acids encoded by the major alleles of 4 of the 7 non-

synonymous mutations were identical to the corresponding amino acids in the human 
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OAS1 protein [UniProtKB: P00973].  The genotypes of each individual were used to 

identify potential haplotypes within equine OAS1 using PHASE v2.1 software [225, 

226].  Only those SNPs verified within multiple individuals were used for the haplotype 

analysis (minor allele frequency � 0.08).  The best reconstruction produced 15 

haplotypes from the 33 diallelic SNPs (Table 4.2).  The polymorphic microsatellites 

were not included in the analysis.  

 
Table 4.2 Haplotypes of equine OAS1 and RNASEL 
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Assembling full-length RNASEL mRNA sequences of cattle, dog, horse, cat, domestic 

pig, Guinea pig, elephant and opossum 

 A limited number of mammalian RNASEL mRNA sequences were previously 

deposited to GenBank and some of these sequences were predicted from whole genome 

annotations.  However, this GenBank information was not sufficient to identify 

evolutionarily conserved regions in mammalian RNASEL sequences that could be used 

to design PCR primers to amplify equine RNASEL fragments.  The predicted sequences 

of cattle [GenBank: XM_597290] and dog [GenBank: XM_547430] RNASEL open 

reading frames (ORFs) were amplified from commercial cDNA (BioChain, Hayward, 

CA), directly sequenced and extended to full-length cDNA sequences by DNA walking.  

The full-length cattle and dog RNASEL sequences were submitted to GenBank under 

accession numbers DQ497162 and DQ497163, respectively.  These two sequences as 

well as the human full-length RNASEL sequence NM_021133 were aligned and 

degenerate primers were designed from conserved regions (Table 4.3) and used to 

amplify the middle portions of equine RNASEL cDNA.  This partial sequence was 

extended to the full-length sequence by DNA walking and submitted to GenBank under 

accession number DQ497159. 

Several additional mammalian RNASEL sequences were also determined and 

subsequently used to perform a phylogenetic analysis.  The GenBank feline WGS 

database was searched with the canine RNASEL sequence [GenBank: DQ497163].  Four 

genomic contigs, AANG01026257, AANG01026302, AANG01630549 and 

AANG01026248, were detected.  These contigs contain the first, second and third, as  
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Table 4.3 Primer for amplifying RNASEL sequence from multiple species 

 
 
 
well as the fifth and sixth feline RNASEL coding exons, respectively.  No contigs 

containing the fourth coding exon of the feline RNASEL gene were found in GenBank.  

Two primers were designed based on the 3’- end AANG01026302 sequence and the 5’-

end AANG01630549 sequence (Table 4.3) and used to amplify and sequence this region 

from commercial cat genomic DNA (Novagen, Madison, Wisconsin).  The sequence of 

this exon was submitted to GenBank under accession number EF062998.  Using this 

sequence as well as the other exon sequences derived from GenBank (see above), the 

predicted full-length mRNA sequence of the feline RNASEL gene was assembled.  

The TIGR porcine database [227] was searched using the cattle sequence 

[GenBank: DQ497162] and five partial RNASEL sequences were found.  The TC212507 

and TC212872 sequences correspond to the 5’-end of porcine RNASEL mRNA, while 

the TC218317, TC237301, and TC236970 sequences represent the 3’-end.  An 

additional 5’-end cDNA sequence, 20060611S-038813, was detected in the Pig EST 

Data Explorer [228].  A pair of primers was designed based on the partial sequence 
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(Table 4.3) and used to amplify pooled cDNA (kindly provided by Dr. Jonathan E. 

Beever, University of Illinois at Urbana–Champaign).  The middle portions of the 

porcine RNASEL cDNA were directly sequenced.  The partial sequence was then 

extended to the full-length sequence by DNA walking and submitted to GenBank under 

accession number DQ497160. 

The GenBank Guinea pig whole genome sequence database was searched using 

both mouse [GenBank: NM_011882] and rat [GenBank: NM_182673] full-length 

RNASEL sequences.  Two Guinea pig sequences, AAKN01052053 and 

AAKN01424676, showed significant similarity to the 5’ and 3’ regions of the rodent 

RNASEL sequences, respectively.  These two sequences were used to design primers 

(Figure 4.3) to amplify commercial cDNA (BioChain, Hayward, CA) and directly 

sequence the middle portions of Guinea pig RNASEL cDNA.  This partial sequence was 

extended to the full-length sequence by DNA walking and submitted to GenBank under 

accession number DQ497161. 

Cattle, dog, horse and pig RNASEL sequences were used to search the GenBank 

elephant genome trace archive using the discontiguous Mega BLAST program.  The 

same sequences were also used to search the GenBank elephant WGS database using the 

BLASTN program.  The sequences for all potential exons of the elephant RNASEL gene 

were identified.  Based on these sequences, five primer pairs (Table 4.3) were designed 

to amplify genomic DNA (kindly provided by Drs. Alfred L. Roca and Stephen J. 

O'Brien, National Cancer Institute) and directly sequence each of the elephant RNASEL 
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exons.  The resulting sequence was submitted to GenBank under accession number 

DQ497164. 

The RNASEL ORF sequence of the laboratory opossum (Monodelphis domestica) 

was predicted by searching the UCSC genome browser [229] using the BLAT program.  

No sequence traces similar to RNASEL were detected in frog (Xenopus tropicalis) or 

several fish species (Danio rerio, Takifugu rubripes and Tetraodon nigroviridis). 

Phylogenetic analysis of vertebrate RNASEL gene sequences. 

 Human, chimpanzee, orangutan, rhesus macaque, mouse, rat and chicken ORF 

sequences of RNASEL genes were downloaded from GenBank and aligned to 

orthologous sequences described above to build a phylogenetic tree (Figure 4.1).  

Rodents showed the highest rate of nucleotide substitutions, while primates showed the 

lowest rate of evolution.  Evolution rates were found to be fairly uniform in the three 

different RNASEL domains: ankyrin repeats, serine/threonine protein kinase domain, 

and ribonuclease domain.   

Assignment of the RNASEL gene to horse chromosome ECA5p17-p16 

 The horse CHORI-241 BAC library was searched with a probe derived from the 

partial equine RNASEL cDNA fragment.  Twelve positive clones were identified and two 

of them, 108:P15 and 189:I19, were FISH mapped to assign the RNASEL gene to the 

horse chromosomal location ECA5p17-p16 (Figure 4.2). 

Exon/intron structures of vertebrate RNASEL genes 

A partial sequence of the equine RNASEL gene was obtained by sequencing PCR 

fragments of BAC 159:N12.  The mRNA sequence [GenBank: DQ497159] was used as  
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Figure 4.1 Phylogenetic tree of vertebrate RNASEL genes. 
RNASEL ORF sequences from 15 vertebrate species were aligned and the njtree program 
was used for tree construction. 
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Figure 4.2 FISH mapping equine RNASEL. 
FISH map position ECA5p17-p16 of horse RNASEL gene (orange) on DAPI 
counterstained metaphase chromosomes (blue). 
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a reference for determining intron/exon junctions.  Sufficient genomic sequence was 

obtained to build a scaffold as described for the equine OAS1 gene.  The scaffold was 

verified using sequences from TraceDB [224] and submitted to GenBank under 

accession number EF070193.  This scaffold completely overlaps the WGS sequence 

AAWR01030439 (193510 bp) that was recently submitted to GenBank from the Broad 

Institute.  Comparison of genomic and mRNA sequences revealed six coding and one 5’-

terminal non-coding exon in the equine RNASEL gene.  This exonic composition is 

similar to that of a number of other mammalian RNASEL genes.  However, two and three 

5’-terminal non-coding exons were found in the chicken and mouse RNASEL genes, 

respectively.  The coding vertebrate RNASEL exons were designated A through F.  

Comparison of the genomic and mRNA sequences of vertebrate RNASEL genes revealed 

significant length variation in both the 5’- (1402-1510 bp) and 3’-terminal (130-187 bp) 

coding exons (Table 4.4). 

SNP identification in the equine RNASEL gene 

After identification of the equine RNASEL introns, exon-specific genomic 

primers were designed (Table 4.1).  Exon-specific sequencing of DNA from the 

screening population identified 31 SNPs within the RNASEL gene (Table 1.3).  Of the 10 

non-coding polymorphisms, one was within the second intron and the others were 

located in the 5’ and 3’ UTRs.  Seventeen of the 31 SNPs were located within the 

ankyrin repeat-encoding exon 2, 13 of which are non-synonymous, with 10 resulting in 

substitutions of amino acids with different properties.  Three non-synonymous 

polymorphisms were identified within exons 3 and 5.  The remaining exons, including  
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Table 4.4 Lengths of coding exons (bp) within ORFs of vertebrate RNASEL genes 
Species Exon A Exon B Exon C Exon D Exon E Exon F
Horse 1480 86 206 133 134 130
Cat 1477 86 206 133 134 139
Dog 1477 86 206 133 134 139
Cattle 1474 86 206 130 131 145
Elephant 1510 86 206 133 137 187
Human 1480 86 206 133 134 187
Chimpanzee 1480 86 206 133 134 187
Orangutan 1480 86 206 133 134 187
Rhesus 1480 86 206 133 134 187
Mouse 1474 86 206 133 137 172
Rat 1489 86 206 133 131 172
Guinea pig 1462 86 206 133 134 187
Opossum 1453 86 206 129 131 139
Chicken 1402 89 191 124 122 136  

 
the non-coding exon 1 were invariant among these horses.  The amino acids encoded by 

the major allele of 11 of the 16 non-synonymous mutations were identical to the 

corresponding human RNASEL amino acid [UniProtKB: Q05823].  Using MOTIF 

Search [230] to identify putative transcription factor binding motifs in the TRANSFAC 

database, the promoter SNP was identified within a potential (Score: 90) cAMP-

response element binding site upstream of the first exon.  Haplotypes were assembled in 

the same manner as for the equine OAS1 gene.  The best reconstruction from Phase 

analysis produced 10 haplotypes among the 31 verified diallelic SNPs with minor allele 

frequencies � 0.08 (Table 4.2).  As with OAS1, only good quality, unambiguous 

resequencing data were used for the haplotype analysis.  
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Identifying SNPs by sequencing DNA from multiple individuals enhances the 

possibility of artifacts either from PCR or sequencing error.  The 64 SNPs identified 

from the equine OAS1 and RNASEL genes were considered valid if each allele was 

identified in at least two individuals.  Eight additional SNPs were identified but could 

not be verified in more than one individual (minor allele frequency < 0.08).  Within the 

3,864 bp and 5,406 bp re-sequenced during the SNP identification for OAS1 and 

RNASEL, respectively, equine OAS1 contained an average of one polymorphism per 117 

bp, while equine RNASEL averaged one polymorphism per 174 bp.  

Discussion 

Sequence characterization of equine OAS1 in CHORI-241 BAC 100:I10 enabled 

a partial genomic sequence assembly [GenBank: DQ536887] and comparison among 

multiple equine individuals.  Re-sequencing identified 2 polymorphic microsatellites and 

33 SNPs from a group of 13 individuals and BAC 100:I10 (Table 1.2).  Although the 

effects of the majority of mutations detected are unknown, a single mutation that results 

in a Arg209Cys substitution may significantly change OAS1 enzymatic activity.  

Arg209 in the equine OAS1 protein corresponds to Arg544 in the human OAS2 protein, 

which is located in the donor binding domain.  Substitution of Arg544 with either Ala or 

Tyr significantly decreased enzymatic activity of the OAS2 protein [231].  In addition, 

the equine OAS1 promoter SNP at position 4531 is located in a potential ISRE [230].  

Inactivation of this regulatory element by a single nucleotide substitution may alter 

expression of the equine OAS1 gene.  
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RNASEL enzymatic activity was previously reported in reptiles, birds, and 

mammals [232].  However, no RNASEL genes have been found for amphibians or fishes 

to date.  This observation is in good agreement with the absence of OAS genes in these 

same classes of vertebrates [33]. These data suggest that the OAS and RNASEL genes, 

which are functionally connected, co-evolved in birds and mammals. 

The equine RNASEL gene was FISH mapped to chromosomal location 

ECA5p17-p16.  Orthologous genes are located on primate chromosome 1 (human, 

chimpanzee and rhesus macaque), cattle chromosome 16, dog chromosome 7, mouse 

chromosome 1, rat chromosome 13 and chicken chromosome 8 [233].  Using 

comparative chromosome painting (Zoo-FISH), similarities between human 

chromosome 1 and horse chromosome 5 [234], mouse chromosome 1, rat chromosome 

13 [235], dog chromosome 7 [236, 237] and cattle chromosome 16 [238] were 

previously established. Our results further confirm the conservation of RNASEL-

containing syntenic chromosomal segments in horses. 

Thirty one SNPs were identified in equine RNASEL (Table 1.3).  Interestingly, all 

but three of the 17 coding SNPs identified are located within exon 2.  The RNASEL 

protein contains 9 N-terminal ankyrin repeats responsible for binding 2-5A molecules 

that are essential for activation [46].  Exon 2 of the human RNASEL gene encodes the 

entire ankyrin repeat region (amino acid 24 to 329).  The high frequency of non-

synonymous polymorphisms within exon 2 suggests that a single SNP or haplotype 

could ablate 2-5A binding and/or other RNASEL interactions.  As well, the SNP 

identified within the promoter upstream of the first exon is located within a potential 
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cAMP-response element binding site.  Mutations within this promoter element have 

been shown to affect gene expression [239-241].  

A number of SNPs were detected within the 3’ UTR region of the equine 

RNASEL gene.  Of the eight SNPs found within this region, six result in transitions.  The 

3’ UTR regions of mRNAs contain regulatory regions capable of protein and microRNA 

binding that control mRNA stability, translation and localization.  A simple analysis of 

octamer motifs containing equine 3’ UTR SNPs identified SNP 10247 as being within a 

human miRNA target site [242].  If this target site is functionally conserved in horses, 

this SNP could significantly affect RNASEL synthesis. 

Genotype analysis using PHASE v2.1 [225, 226] identified 15 and 10 haplotypes 

among equine OAS1 and RNASEL genes, respectively, and suggested the existence of 

haplotype blocks spanning most of each gene (Table 4.2).  Even if efforts to show an 

association between viral-induced disease susceptibility and OAS1 and/or RNASEL SNPs 

are successful, it may prove difficult to unambiguously identify a single causal SNP 

because of potential linkage disequilibrium at these loci.  As determined from our 

screening population, a single haplotype occurred more frequently than any other, with a 

frequency of 0.19 and 0.23 in OAS1 and RNASEL, respectively (Table 4.2). 

The frequency of SNP identification in this study in two equine genes was high 

considering the previously estimated equine SNP frequency of 1 per 1500 bp [243].  In 

dogs, the estimated SNP frequency is ~1 per 1600 bp (based on entire genome re-

sequencing), but a higher frequency of ~1 per 900 bp was estimated between breeds 

[244].  Re-sequencing of specific genes in several breeds of the domestic dog identified 
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polymorphisms at frequencies comparable to our estimates, with 1 SNP per ~250-330 bp 

[S. Canterbury, personal communication]. Furthermore, re-sequencing within an Elk 

(Cervus elaphus nelsoni) putative promoter region, which is highly conserved between 

mule deer, cow and sheep, detected an average one SNP per 69 bp [unpublished data]. 

The microsatellite identified within the promoter region in this study may also 

alter expression of the equine OAS1 gene.  The alleles observed to date indicate that 

dinucleotide repeat lengths of 9 and 18 may represent the major alleles at this locus.  The 

over-representation of these alleles may be due to the fact that they correspond to 

complete rotations of the DNA helix.  If this microsatellite separates cis-regulatory 

elements, alterations in its length could affect binding of transcriptional regulators to 

these elements and significantly alter gene expression.  In support of this hypothesis, 

there is a high degree of conservation between human and horse OAS1 promoters in the 

regions flanking the microsatellite (Figure 1.3).   

Conclusion 

This research reports the genomic sequences of the equine OAS1 and RNASEL 

genes and identifies 64 single nucleotide polymorphisms and 2 polymorphic 

microsatellites in these genes.  On the basis of the allelic variants characterized, a 

number of these are plausible candidates for regulatory or structural mutations, which 

may influence OAS1 transcription or enzymatic activity of OAS1 and RNASEL proteins.  

Also, RNASEL cDNA sequences were determined for 8 mammals and utilized in a 

phylogenetic analysis.  The chromosomal location of the RNASEL gene was assigned by 

FISH to ECA5p17-p16. 
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Methods 

RNASEL cDNA and FISH 

Preparation of horse cDNA was described previously [64].  Partial RNASEL 

sequences were extended using a DNA Walking SpeedUp Kit (Seegene USA, Del Mar, 

CA) according to the manufacturer’s protocol.  Four high-density filters for segment 1 of 

the CHORI-241 equine genomic BAC library were purchased from the Children’s 

Hospital Oakland Research Institute, Oakland, CA.  These filters were screened using a 

P32-labeled equine RNASEL cDNA probe according to the supplier’s protocol.  Two 

positive equine BAC clones were purchased from CHORI.  Each of these BAC clones 

was grown individually in 500 mL of LB media.  BAC DNA was isolated using the 

NucleoBond BAC Maxi Kit (BD Biosciences Clontech, Palo Alto, CA) and used as the 

template for direct partial sequencing with a BigDye terminator v1.1 Cycle Sequencing 

Kit on an ABI 3100 Genetic Analyzer according to the manufacturer’s 

recommendations.  DNA from equine BAC clones 108:P15 and 189:I19 was FISH 

mapped as described previously [245].  International cytogenetic nomenclature of the 

domestic horse [246] was used to identify individual horse chromosomes. 

The njtree program was used to construct a phylogenetic tree as described 

previously [33].  This program is available upon request. 

Construction of subclone library 

 BAC clone 100:I10 was isolated from segment 1 of the CHORI-241 equine BAC 

library at Texas A&M University and confirmed by PCR as containing OAS1.  The 

colony-isolated clone was cultured and BAC DNA isolated by standard alkaline/lysis 
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miniprep using Millipore Solutions and treated with Plasmid-Safe ATP-dependent 

DNAse (Epicentre, Madison, WI).  BAC DNA was fragmented using a HydroShear® 

DNA Shearing Device (GeneMachine, San Carlos, CA) at Speed Code 8 for an 

estimated fragment size of 2.5 kb.  The fragmented product was analyzed by agarose gel 

electrophoresis stained with ethidium bromide and gel extracted using the QIAquick Gel 

Extraction Kit (Qiagen, Valencia, CA).  Extractions were eluted in water according to 

the manufacturer’s protocol.  Purified fragments were cloned into vector pCR®4Blunt-

TOPO® using the TOPO® Shotgun Subcloning Kit (Invitrogen, Carlsbad, CA) following 

the manufacturer’s protocol.  Ligation reactions were incubated 30 minutes at room 

temperature and electroporated into E. coli.  Colonies were screened for lack of �-

galactosidase activity and selected for ampicillin resistance on LB-agarose plates 

containing 50 µg/mL ampicillin.  White colonies were cultured and screened for 

appropriate insert size by PCR using vector-sequence M13 primer sites flanking the 

cloned insert, prior to sequencing. 

Sequencing of clones 

 Individual OAS1 inserts were amplified directly from individual colonies by PCR 

using vector-sequence M13 primer sites flanking the cloned insert.  Amplification 

products were purified by centrifugation with the Qiaquick PCR Purification Kit 

(Qiagen, Valencia, CA) in 96-well plate format according to manufacturer’s protocol.  

Purified products were sequenced in separate reactions with each M13 primer using a 

cycle sequence of 96C, 10 sec; 50C, 5 sec; 60C, 4 min with BigDye® Terminator Mix 
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v1.1 (Applied Biosystems, Foster City, CA).  Sequencing reactions were analyzed using 

an ABI Prism 3100 Genetic Analyzer (Applied Biosystems, Foster City, CA). 

 Primers were designed to amplify the immediate promoter and exons of OAS1 

and RNASEL genes from 13 individual horses by PCR (Table 4.1).  Sequencing was 

carried out in the same manner as used for the library subclones.  Sequences obtained 

were compared between individuals to identify SNPs within the amplified regions. 

Sequence analysis and contig assembly 

 Sequences were assembled and analyzed using Phrap assembly software [65, 66, 

223] and viewed with the Consed visualization tool [67, 68, 223].  Contig and singleton 

reads were assembled by scaffolding onto the human genome using BLASTN [247-249].   

Additional sequences were added to the assembly data and re-analyzed with 

Phrap and BLAST until the consensus sequence spanned the genes from the promoter to 

the 3’ UTR.  The genomic equine consensus sequence was confirmed using data from 

the Equine Genome Sequencing Project (2x) [69] and intron/exon boundaries were 

assigned by local alignment to the full-length equine OAS1 [GenBank: AY321355] and 

RNASEL [GenBank: DQ497159] cDNAs.  The equine genomic sequences of OAS1 and 

RNASEL were submitted to GenBank and assigned accession numbers DQ536887 and 

EF070193, respectively. 

Genotyping population 

 Blood samples were collected at the Texas A&M University Equestrian Center in 

accordance with ethical standards.  The sampled set used for screening consisted of 13 

horses, including 10 geldings/stallions and 3 mares, ranging in age from 21 months to 20 
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years.  Breeds represented include American Quarter Horse (9), Arabian (1), American 

Paint Horse (1), Appaloosa (1) and Thoroughbred (1). 

 White blood cells (WBC) were digested with Proteinase K (Promega, Madison, 

Wisconsin) and washed twice with phenol/chloroform and ethanol precipitated.  Purity 

and concentration were analyzed by Nanodrop©.  
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CHAPTER V 

OAS1 AND RNASEL POLYMORPHISMS ARE ASSOCIATED WITH 

SUSCEPTIBILITY TO WEST NILE ENCEPHALITIS IN HORSES 

 
Background 

  Naturally susceptible and resistant mouse populations led to the identification of 

the Flv gene as Oas1b [24, 180].  A nonsense mutation identified within the Oas1b gene 

of susceptible mice results in the translation of a truncated protein lacking C-terminal 

functional domains.  The full-length Oas1br genotype was recently shown to confer 

resistance to WNV infection in susceptible mice [250].  The interferon-induced OAS 

genes encode dsRNA-activated proteins which catalyze the synthesis of 2’-5’-linked 

oligoadenylates from ATP [53-55].  The only known function of the 2-5A molecules are 

to activate the dimerization of RNASEL proteins for the degradation of cellular and viral 

RNA [53, 56-58].  Interestingly, the full-length murine Oas1b protein lacks synthetase 

activity, suggesting an antiviral function of Oas1b independent of RNASEL activation 

[251]. 

 Susceptibility to severe West Nile encephalitis among mammalian species is 

naturally variable [3].  Experimental infections in sheep [4], calves [5], pigs [6] and dogs 

[7] showed these domestic species are poor hosts for, or develop only mild clinical 

symptoms to, infection from WNV.  Conversely, horses are particularly susceptible to 

infection from WNV and typically show clinical symptoms including fever, ataxia, 

paralysis and death.  Treatments for human and equine patients are similar, providing 

only supportive care targeted to minimize symptom severity. 
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 To investigate a potential role of the mammalian innate immune response to 

WNV infection, a two-stage association study was conducted using SNPs within the 

equine OAS1 and RNASEL genes.  The known structure of the OAS gene clusters of 

several domesticated mammals is variable.  Both the canine and bovine clusters contain 

gene duplications in OASL and OAS1 genes, respectively [33, 64].  The equine cluster is 

more similar to the human OAS gene cluster than to any other domesticated mammal, 

with single copies of each gene, OAS1-OAS3-OAS2, and a single OASL gene [35, 64].   

Numerous single nucleotide polymorphisms were identified in both equine OAS1 

and RNASEL genes and two polymorphic microsatellites within the OAS1 gene [252].  

Each SNP was genotyped among case and control populations infected with WNV.  

Control individuals consisted of unvaccinated horses infected with WNV through natural 

mosquito transmission yet failed to exhibit clinical symptoms.  Horses genotyped and 

included in the case population were unvaccinated, naturally infected and subsequently 

developed clinical symptoms requiring treatment from veterinary services.   Veterinary 

examination of clinical horses noted a variety of symptoms, the most common including 

forelimb and/or hindlimb ataxia.  Diagnostic tests confirmed WNV infection in both case 

and control individuals.  The relevance of case-control analyses is strongly affected by 

the comparability in infection between case and control populations [253].  Previous 

case-control studies finding SNP association to West Nile susceptibility in human 

patients lacked such highly comparable case and control populations, likely a result of 

the few numbers of known infected patients failing to exhibit clinical signs [43].  In this 

study, recently hospitalized human West Nile patients were genotyped and compared to 
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HAPMAP samples collected prior to the first reported infection of WNV in the United 

States.  This report attempts to accommodate the need for highly comparable case and 

control samples by investigating equine susceptibility to WNV. 

Results and Discussion 

This study involved genotyping 66 equine OAS1 and RNASEL SNPs among 20 

control and 58 case samples.  Genotype data was analyzed using STATA 9 [254] 

software to identify statistically significant allelic (2x2) and genotypic (2x3) associations 

to WN encephalitis using Fisher’s Exact tests.  Odds ratios were also calculated for 

homozygous and heterozygous genotypes.  Analyses using Fisher’s Exact Test identified 

13 SNPs in OAS1 (Table 5.1) and a single Glutamine to Arginine mutation in exon 2 of 

RNASEL (Table 5.2) significantly associated with WNV susceptibility.  Eleven of the 

significant polymorphisms are located in the promoter and 5’UTR, flanking the 

polymorphic microsatellite of OAS1.  Only the OAS1 promoter polymorphisms and the 

RNASEL polymorphism had statistically significant odds ratios.  Using the data collected 

from our case and control populations, horses genotyped with susceptibility-associated 

alleles are up to 11.77 times more likely to suffer severe West Nile encephalitis upon 

infection (Table 5.3).  Discrepancies between allelic and genotypic significance values 

as well as the homozygous and heterozygous odds ratios likely resulted from sampling 

error.  The case-control association reported here is exploratory in nature and confirms 

the contribution of the OAS/RNASEL antiviral system in equine resistance to West Nile 

virus. 
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Table 5.1 Fisher’s Exact test for OAS1 allelic (2x2) and genotypic (2x3) associations   

 
Equine OAS1 polymorphisms genotyped among case and control populations for 
statistical analysis by Fisher’s Exact test.  Allele frequencies and allelic and genotypic p-
values are shown.  Bolded SNPs were significantly associated with WNV phenotype. 
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Table 5.2 Fisher’s Exact test for RNASEL allelic (2x2) and genotypic (2x3) associations   

 
Equine RNASEL polymorphisms genotyped among case and control populations for 
statistical analysis by Fisher’s Exact test.  Allele frequencies and allelic and genotypic p-
values are shown.  Bolded SNPs were significantly associated with WNV phenotype. 
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Table 5.3 Odds ratio analysis of significantly associated polymorphisms 

 
Odds ratios were determined for all SNPs genotyped in the case and control populations.  Shown are the statistically significant 
ORs including 95% confidence intervals (95% CI) and statistical p-values.
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To investigate potential haplotype effects between case and control populations, 

several analyses were conducted using multiple haplotype analysis software.  Equine  

OAS1 haplotypes were inferred with Phase v2.1 [225, 226] using (1) SNPs with 

genotype success rates �80% and (2) population samples genotyped at �80% of SNPs to 

minimize the occurrence of unknown genotypes.  From the assembled best 

reconstruction, tagSNPs were identified by htsubsets using STATA 9 [254, 255].  Six 

tagSNPs (snp6549803, snp6549905, snp6550610, snp6564946, snp6566498 and 

snp6567078) were identified which provide a mean percentage of diversity explained 

(PDE) of 99.440%.  These tagSNPs were used to re-construct haplotypes among all 

samples and to conduct a haplotype frequency comparison between case and control 

populations using Phase v2.  The tagSNPs reduced the occurrence of minor haplotypes; 

however, case-control haplotype frequencies were not significantly variable (p=0.11).   

Alternatively, sixteen SNPs genotyped within the promoter, 5’UTR and exon 1 of OAS1 

were assembled into haplotypes using all case and control samples.  Six tagSNPs 

(snp6566042, snp6566107, snp6566201, snp6566888, snp6567000 and snp6567078) 

with a total mean PDE of 99.729% were used to re-construct haplotypes and case-

control variation analyzed by Phase v2.1.  As expected, reducing minor haplotypes 

through the exclusion of OAS1 SNPs with lower linkage disequilibrium values to the 

significant promoter and 5’UTR polymorphisms (data not shown) resulted in a 

significant case-control haplotype association (p=0.02).  A single haplotype (ACGAAT, 

Haplotype H) accounted for 57.5% and 30.17% of chromosomes genotyped within 
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control and case populations, respectively (Table 5.4).  Fisher’s Exact test showed 

deviations from this haplotype are statistically associated (p=0.004) with susceptibility to 

severe West Nile disease, with an odds ratio of 3.13 (p=0.003).  The significant 

haplotype association supports the SNP associations identified by Fisher Exact test. 

In a similar manner, RNASEL haplotypes were assembled from 65 individuals 

using 19 SNPs genotyped at �65% of all samples.  Six tagSNPs (snp2742846, 

snp2755071, snp2755672, snp2756325, snp2756421 and snp2756422) were identified 

with total mean PDE of 99.134%.  Haplotypes were re-constructed from the same 65 

samples and were not significantly variable between case and control populations 

(p=0.55). 

Human OAS1 is interferon inducible from a ISRE proximal to the transcription 

start site in the minimal promoter (Figure 5.1).  Since the SNPs associated with WNV 

susceptibility were present in the OAS1 promoter, their potential effect on interferon 

induction was investigated.  OAS1 promoter-luciferase reporter constructs were 

transfected into 2fTGH cells and treated with IFNT as previously described [256].  To 

investigate promoter polymorphism effects on interferon inducibility, the full-length 

clones lack 5’UTR and exon 1 regions and their tagSNPs (snp6566107 and 

snp6566134).  Three full length promoters were cloned, each representing multiple 

tagSNP haplotypes.   

Full-length clone EcOAS1_A-Luc represents multiple tagSNP haplotypes, 

including the common haplotype identified above (ACGAAT) and was genotyped at a 

frequency of 41.4% and 65% among case and control populations, respectively.  Clone 
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Table 5.4  OAS1 promoter haplotype distribution among case and control populations 
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EcOAS1_B-Luc was genotyped with frequencies of 17.2% and 5% while full-length 

clone EcOAS1_C-Luc was identified at frequencies of 29.3% and 15% among case and 

control populations, respectively.  Upon treatment with 104 U/mL IFNT, no difference in 

reporter activity was identified between full length clones (Figure 5.2).  The full length 

OAS1 promoter clones are induced strongly by IFNT treatment (Figures 5.2).  The full-

length clones were similarly induced 7-8 fold relative to basal levels (Figure 5.3). 

To further localize the interferon regulatory region of the  equine OAS1 promoter, 

deletion constructs lacking the microsatellite and promoter sequence upstream or 

downstream were transfected and treated with IFNT.   Constructs lacking promoter 

sequence downstream of the microsatellite, proximal to the transcription start site, were 

entirely inactive prior to and after IFNT treatment (data not shown).   Constructs lacking 

the polymorphic microsatellite and upstream sequence (EcOAS1_A�5’-Luc and 

EcOAS1_B�5’-Luc) were induced to levels comparable to the full length clones 

(Figures 5.2 and 5.3).  This proximal promoter region from the start site of transcription 

to the microsatellite is necessary and sufficient for strong induction by interferon.   

 To further characterize potential polymoprhism effects on IFN stimulation of the 

OAS1 promoter, full-length constructs were transfected into 2fTGH cells and treated 

with different levels of IFNT.  Reporter activation was similar between the clones and 

increased with increasing IFNT treatments (Figure 5.4).  However, greater differences in 

activation were observed between treatments of 102 and 103 U/mL.  To further 

characterize the relationship between treatment dose and reporter activation, cells were 
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Figure 5.1  Local alignment of human and horse OAS1 promoters. 
ClustalX alignment of equine and human OAS1 promoters.  Also aligned are the 
sequences of the full-length clones transfected in 2fTGH fibroblast cells.  Statistically 
significant polymorphisms are outlined in red.  The known human ISRE is double 
underlined in the human sequence. 
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Figure 5.1 continued 
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Figure 5.1 continued 
 
 
treated with low dose levels of IFNT.  As observed in previous experiments, levels of 

activation to low dose treatments of IFNT were similar between clones and increased 

with IFNT dose.  Relative differences in reporter activation were greater between cells 

treated with 500 U/mL and 250 U/mL (Figure 5.5).   
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Figure 5.2  Effect of IFNT on OAS1-luciferase activity in 2fTGH fibroblast cells. 
 
 

 
Figure 5.3  Fold IFNT-induced stimulation of OAS1-luciferase activity in 2fTGH cells. 
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Figure 5.4 Effect of IFNT dose on OAS1-luciferase activity in 2fTGH fibroblast cells. 
 
 

 
Figure 5.5  Effect of low IFNT dose on OAS1-luciferase activity in 2fTGH cells. 
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These data suggest that West Nile susceptibility may involve other regulatory 

factors independent of the interferon-induced expression of equine OAS1.  However, 

additional experiments are needed to further characterize the effect of the 

polymorphisms on IFN induction in other cell types and in response to WNV infection. 

This investigation reports a strong association of OAS1 and RNASEL single 

nucleotide polymorphisms with severe West Nile encephalitis.  With comparable 

immune gene structure to humans, the horse may provide a model for which to study 

SNP-associated disease susceptibility.  The strongest association occurred among SNPs 

of the OAS1 promoter and 5’ gene sequence; however, while we show the proximal 

region of the OAS1 promoter is induced strongly after IFN treatment, preliminary in 

vitro analysis suggests the functional association of these polymorphisms with severe 

West Nile disease is independent of the gene’s response to interferon.  

Methods 

DNA extraction and SNP genotyping of equine samples 

White blood cells were isolated from whole blood and DNA extracted (see 

below).  Control DNA samples were genotyped at each SNP as previously described 

[252].  Case samples consisted of frozen or archived formalin-fixed paraffin-embedded 

(FFPE) liver, kidney or nervous (spinal cord or brain) tissues.  DNA was extracted from 

frozen tissue samples after Proteinase K (Promega, Madison, Wisconsin) digestion, 

washed twice with phenol/chloroform and ethanol precipitated.  FFPE liver and kidney 

samples were deparrafinized with xylene and DNA extracted using the RecoverAll 

Nucleic Acid Extraction Kit (Ambion, Austin, Texas).  Additional FFPE brain and spinal 
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cord samples were deparaffinized with xylene and DNA extracted in a manner similar to 

frozen samples after treatment with 6 mg Proteinase K for 3 days at 55°C.  All FFPE 

DNA samples were amplified using the Whole Genome Amplification Kit (Sigma, St. 

Louis, Missouri) using ~100ng input DNA without further digestion and amplified for 

25 cycles.  Amplification products were processed using either the GeneElute 

Purification System (Sigma, St. Louis, Missouri) or the Qiaquick PCR Purification Kit 

(Qiagen, Valencia, California).  Amplification products from FFPE DNA resulted in 

fragmented template < 500 bp in length (data not shown).  FFPE samples were 

genotyped by sequencing short PCR products <200bp.  PCR primer sequences are 

available upon request. 

Transfection experiment  

 Genotyped samples were amplified with Easy-A high fidelity taq (Stratagene, La 

Jolla, California) and TA-cloned into pCRII (Invitrogen, Carlsbad, California).  Full-

length promoters were amplified using PCR primers 

F:CGACGGCCAGCTCGAGAACCCACAGAATAAACACCACA and 

R:CAGCTATGACAAGCTTCTGTCAGCCTCTCTCTCTTACG.  PCR primers 

F:CGACGGCCAGCTCGAGAACCCACAGAATAAACACCACA and 

R:CAGCTATGACAAGCTTAGCTCTCTCTTCTGTTTTATA were used to amplify the 

3’ deletion promoters.  Primers F: 

CGACGGCCAGCTCGAGCTTAACCTAGAAACGCGTCTGA and R: 

CAGCTATGACAAGCTTCTGTCAGCCTCTCTCTCTTACG were used to amplify the 

5’ deletion constructs.  Individual clones were cultured and verified by sequencing.  
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Each primer pair contains XhoI and HindIII sites used to directionally clone the 

promoter regions into pGL3-Basic (Promega, Madison, Wisconsin).  Final constructs 

were verified by sequencing (Figure 5.1). 

The 2fTGH immortalized cells [257] were maintained in DMEM-F12 medium 

(Sigma-Aldrich Corp., St. Louis, MO) supplemented with penicillin/ streptomycin/ 

amphotericin B (Invitrogen, Carlesbad,CA) and 5% FBS (Hyclone, Logan,UT).  Cells 

were seeded into 12-well plates, allowed to grow until monolayers were 67-75% 

confluent and transiently transfected as described previously [256].  Briefly, luciferase 

constructs (500 ng/well) were co-transfected with an equivalent amount of pEF1-Myc-

His LacZ (500 ng/well; Invitrogen) and GenePorter Transfection Reagent  (Gene 

Therapy Systems, San Diegeo, CA)  according to the manufacturer’s instructions.  

Transfected cells were grown overnight (14-16 h) in medium containing 10% FBS 

before treatment.   Recombinant ovine interferon tau (IFN τ , 108 antiviral units/ml) was 

produced and assayed as described previously [258].  Transfected cells were treated with 

104 AVU IFN τ/ml or left untreated in serum-free medium for 24 h.  Cells were lysed in 

Cell Culture Lysis Reagent (Promega, Madison, WI), and luciferase activity was assayed 

according to the manufacturer’s instructions (Promega).   Each construct-treatment 

combination was tested in four wells/combination, and transfection assays were repeated 

a minimum of  three times.  Lower IFN concentrations (102-104 AVU/ml) were tested in 

two experiments. 
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Statistical analysis 

 Statistical association analyses were conducted using STATA v9 software.  

Allelic association was conducted using Fisher’s Exact tests on 2x2 tables.  Fisher’s 

Exact tests were conducted on 2x3 tables to identify genotypic association.  Genotypes 

were coded such that alleles with greater case population frequencies were coded alike.  

Allelic odds ratios were determined for each SNP as well as for the heterozygous and 

homozygous genotypes of the associated alleles.  Significance is reported with �=0.05.  

Haplotype associations were computed using a 2x2 design by comparing single 

haplotypes to all others.  Case-control haplotype analysis was also conducted with Phase 

v2. 
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CHAPTER VI 

SUMMARY AND CONCLUSION 

 
 Prior to the release of the equine genome sequence and the advancements made 

as a result, this work successfully identified polymorphisms implicating the involvement 

of the OAS/RNASEL innate immune system in the mammalian response to WNV 

infection.  Using data provided from years of study with susceptible and resistant strains 

of mice, which identified a role of the murine Oas1b gene in resistance to severe WNV 

infection, this research conducted a two-stage association study to identify a similar role 

of the OAS/RNASEL system in the horse.  In doing so, multiple polymorphisms were 

utilized within a case-control study to identify significantly associated mutations with 

susceptibility to equine West Nile encephalitis. 

 Genomic sequence was assembled by shotgun sequencing CHORI BAC 100:I10 

(OAS1) or from extending full-length transcript sequence (RNASEL) and polymorphisms 

were identified.  Screening for polymorphisms within these genes from a random 

population of horses successfully identified a high frequency of SNPs in both genes.  

These polymorphisms were then genotyped in case and control samples collected across 

the United States. 

 The ability to detect associations in a case-control study design requires a high 

degree of comparability between case and control samples.  Through collaborations 

cultivated across the United States, this research succeeded in assembling a highly 

comparable collection of equine samples for case-control study of WNV susceptibility.  
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Control animals were maintained under controlled conditions where naïve horses were 

infected with WNV through natural mosquito transmission and their response closely 

monitored.  These horses failed to respond clinically to viral infection.  Accordingly, 

these control horses are considered to be naturally resistant.  Samples included in the 

case population were greater in number and collected during the initial United States 

epidemic.  All case horses tested positive, as did control horses, for the presence of West 

Nile viral infection.  Case horses suffered debilitating symptoms, albeit to varying 

degrees, with the most apparent being incoordination and ataxia of the forelimb and/or 

hindlimb.  Other symptoms suffered by clinical case horses included paralysis, seizures, 

fever, recumbancy and eventual death.  These case horses, like the control population, 

were infected with WNV through natural mosquito transmission and all horses in both 

populations were unvaccinated at the time of infection and/or death. 

 A total of 66 SNPs were genotyped in the case and control samples.  Statistical 

analyses identified highly significant associations between West Nile susceptibility and 

polymorphisms in both genes.  A majority of the OAS1 polymorphisms associated with 

susceptibility were identified within the promoter and 5’ UTR region, while only a 

single polymorphism associated significantly in RNASEL.  Haplotype analyses of the 

OAS1 promoter polymorphisms identified a number of haplotypes whose frequencies 

were significantly variable between case and control populations.  A single haplotype 

was found at greater frequency in both populations.  While this haplotype was not 

significantly identified as conveying a resistant phenotype to West Nile infection, 

differences from this common haplotype were significantly associated with WNV 
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susceptibility.  The direct consequences of these deviations or of the common haplotype 

on OAS1 expression are still to be determined; however, OAS1 is highly inducible by 

interferon.  The most direct hypothesis is that these polymorphisms affect the interferon 

inducibility of the gene and thus its ability to provide adequate immediate earlyhost 

resistance.   

To further investigate the effect of the single nucleotide and microsatellite 

polymorphisms on OAS1 expression, luciferase clones were constructed to measure in 

vitro IFN inducibility of multiple promoter haplotypes.  Full-length and deletion 

promoter-reporter constructs were transfected into 2fTGH cells and treated with IFNT to 

induce promoter activity.  The equine OAS1 ISRE was localized to within 518 bp of the 

transcription start site, which is in agreement with many ISRE-stimulated genes 

throughout the human genome, including human OAS1.  This proximal region was 

identified as necessary and sufficient for the activation of equine OAS1 transcription in 

response to interferon.   

Further investigation will identify potential roles of the polymorphic 

microsatellite on the immediate early response of the OAS1 gene to IFN. 

Although multiple polymorphisms were statistically associated with WNV 

susceptibility, this work has only begun to identify the functional consequences of these 

polymorphisms on OAS1 and RNASEL that may contribute to the susceptible phenotype.  

The contribution of the OAS1/RNASEL immune system in equine resistance to WNV 

infection is still unknown; however, the strong statistical associations and evidence 

presented herein are suggestive.   
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The strict pathogenesis of West Nile infection introduces the potential for a 

cellular context by which the immune response acts to provide host resistance.  Initial 

infection progresses to particular tissues within the animal and may require a specific 

cellular environment for which the OAS/RNASEL pathway responds to infection and 

limits viral replication.  To understand further the functional involvement of OAS1 and 

the consequences of the detected polymorphisms, additional work will need to focus on 

characterizing the in vivo environment of the promoter and its specific response to 

cellular signals.  An absolute role for the OAS/RNASEL system in resistance to WNV 

infection is unlikely, although the odds ratios are quite definitive.  With advancements in 

technology and the release of the equine genome sequence, further detection of genome-

wide immune response loci involved in host resistance and susceptibility will provide a 

greater understanding of the host innate immune response in horses and other mammals. 
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APPENDIX A 

CASE-CONTROL STATISTICAL ANALYSES OF EQUINE OAS1 

POLYMORPHISMS 

Allelic Fisher’s Exact Tests 

snp6567078  
           |         Allele 
           |         T          C |     Total 
-----------+----------------------+---------- 
Control    |        30          8 |        38  Fisher's exact = 0.002 
Case       |        52         54 |       106  1-sided Fisher's exact = 0.001 
-----------+----------------------+---------- 
     Total |        82         62 |       144  
         
snp6567031 
           |         Allele 
           |         G          T |     Total 
-----------+----------------------+---------- 
Control    |        30          8 |        38  Fisher's exact = 0.004 
Case       |        56         52 |       108  1-sided Fisher's exact = 0.003 
-----------+----------------------+---------- 
     Total |        86         60 |       146  
 
snp6567000 
           |         Allele 
           |         A          G |     Total 
-----------+----------------------+---------- 
Control    |        32          8 |        40  Fisher's exact = 0.074 
Case       |        68         40 |       108  1-sided Fisher's exact = 0.036 
-----------+----------------------+---------- 
     Total |       100         48 |       148  
 
snp6566994 
           |         Allele 
           |         C          T |     Total 
-----------+----------------------+---------- 
Control    |        32          8 |        40  Fisher's exact = 0.007 
Case       |        59         49 |       108  1-sided Fisher's exact = 0.004 
-----------+----------------------+---------- 
     Total |        91         57 |       148  
 
snp6566893 
           |         Allele 
           |         T          C |     Total 
-----------+----------------------+---------- 
Control    |        32          8 |        40  Fisher's exact = 0.007 
Case       |        60         48 |       108  1-sided Fisher's exact = 0.005 
-----------+----------------------+---------- 
     Total |        92         56 |       148  
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snp6566888 
           |         Allele 
           |         A          T |     Total 
-----------+----------------------+---------- 
Control    |        34          6 |        40  Fisher's exact = 0.133 
Case       |        77         31 |       108  1-sided Fisher's exact = 0.064 
-----------+----------------------+---------- 
     Total |       111         37 |       148  
 
snp6566745 
           |         Allele 
           |         C          T |     Total 
-----------+----------------------+----------  
Control    |        32          8 |        40  Fisher's exact = 0.004 
Case       |        59         51 |       110  1-sided Fisher's exact = 0.003 
-----------+----------------------+---------- 
     Total |        91         59 |       150  
 
snp6566713 
           |         Allele 
           |         C          G |     Total 
-----------+----------------------+---------- 
Control    |        37          1 |        38  Fisher's exact = 0.298 
Case       |        99         11 |       110 1-sided Fisher's exact = 0.135  
-----------+----------------------+---------- 
     Total |       136         12 |       148  
 
snp6566498 
           |         Allele 
           |         C          T |     Total 
-----------+----------------------+---------- 
Control    |        32          8 |        40  Fisher's exact = 0.004 
Case       |        61         53 |       114  1-sided Fisher's exact = 0.002 
-----------+----------------------+---------- 
     Total |        93         61 |       154  
            
snp6566399 
           |        Allele 
           |         T          C |     Total 
-----------+----------------------+---------- 
Control    |        32          8 |        40  Fisher's exact = 0.792 
Case       |        32         10 |        42  1-sided Fisher's exact = 0.441 
-----------+----------------------+---------- 
     Total |        64         18 |        82  
 
snp6566277 
           |        Allele 
           |         C          G |     Total 
-----------+----------------------+---------- 
Control    |         5         35 |        40  Fisher's exact = 0.134 
Case       |         5        103 |       108  1-sided Fisher's exact = 0.096 
-----------+----------------------+---------- 
     Total |        10        138 |       148  
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snp6566231 
           |        Allele 
           |         C          T |     Total 
-----------+----------------------+---------- 
Control    |        32          8 |        40  Fisher's exact = 0.000 
Case       |        50         60 |       110  1-sided Fisher's exact = 0.000 
-----------+----------------------+---------- 
     Total |        82         68 |       150  
 
snp6566201 
           |        Allele 
           |         A          G |     Total 
-----------+----------------------+---------- 
Control    |         6         34 |        40  Fisher's exact = 0.093 
Case       |         6         98 |       104  1-sided Fisher's exact = 0.077 
-----------+----------------------+---------- 
     Total |        12        132 |       144  
 
snp6566134 
           |        Allele 
           |         C          G |     Total 
-----------+----------------------+---------- 
Control    |        31          7 |        38  Fisher's exact = 0.013 
Case       |        44         32 |        76  1-sided Fisher's exact = 0.009 
-----------+----------------------+---------- 
     Total |        75         39 |       114  
 
snp6566107 
           |        Allele 
           |         C          A |     Total 
-----------+----------------------+---------- 
Control    |        32          8 |        40  Fisher's exact = 0.039 
Case       |        45         29 |        74  1-sided Fisher's exact = 0.028 
-----------+----------------------+---------- 
     Total |        77         37 |       114  
 
snp6566042 
           |        Allele 
           |         A          G |     Total 
-----------+----------------------+---------- 
Control    |        37          3 |        40  Fisher's exact = 0.540 
Case       |        67          9 |        76  1-sided Fisher's exact = 0.351 
-----------+----------------------+---------- 
     Total |       104         12 |       116  
 
snp6565949 
           |        Allele 
           |         T          C |     Total 
-----------+----------------------+---------- 
Control    |        32          8 |        40  Fisher's exact = 0.095 
Case       |        52         30 |        82  1-sided Fisher's exact = 0.047 
-----------+----------------------+---------- 
     Total |        84         38 |       122  
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snp6565123 
           |        Allele 
           |         C          T |     Total 
-----------+----------------------+---------- 
Control    |        30         10 |        40  Fisher's exact = 0.828 
Case       |        85         25 |       110  1-sided Fisher's exact = 0.464 
-----------+----------------------+---------- 
     Total |       115         35 |       150  
 
snp6565031 
           |        Allele 
           |         C          T |     Total 
-----------+----------------------+---------- 
Control    |        30         10 |        40  Fisher's exact = 0.681 
Case       |        72         30 |       102  1-sided Fisher's exact = 0.380 
-----------+----------------------+---------- 
     Total |       102         40 |       142  
 
snp6564989 
           |        Allele 
           |         C          T |     Total 
-----------+----------------------+---------- 
Control    |        10         30 |        40  Fisher's exact = 0.490 
Case       |        20         88 |       108  1-sided Fisher's exact = 0.257 
-----------+----------------------+---------- 
     Total |        30        118 |       148  
 
snp6564967 
           |        Allele 
           |         G          A |     Total 
-----------+----------------------+---------- 
Control    |        10         30 |        40  Fisher's exact = 0.348 
Case       |        18         86 |       104  1-sided Fisher's exact = 0.207 
-----------+----------------------+---------- 
     Total |        28        116 |       144  
 
snp6564956 
           |        Allele 
           |         A          G |     Total 
-----------+----------------------+---------- 
Control    |        10         30 |        40  Fisher's exact = 0.490 
Case       |        20         88 |       108  1-sided Fisher's exact = 0.257 
-----------+----------------------+---------- 
     Total |        30        118 |       148  
 
snp6564946 
           |        Allele 
           |         A          G |     Total 
-----------+----------------------+---------- 
Control    |        10         30 |        40  Fisher's exact = 0.498 
Case       |        21         87 |       108  1-sided Fisher's exact = 0.300 
-----------+----------------------+---------- 
     Total |        31        117 |       148  
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snp6550610 
           |        Allele 
           |         G          C |     Total 
-----------+----------------------+---------- 
Control    |        18         22 |        40  Fisher's exact = 0.045 
Case       |        28         78 |       106  1-sided Fisher's exact = 0.027 
-----------+----------------------+---------- 
     Total |        46        100 |       146  
 
snp6550514 
           |        Allele 
           |         T          C |     Total 
-----------+----------------------+---------- 
Control    |        20         20 |        40  Fisher's exact = 0.248 
Case       |        31         49 |        80  1-sided Fisher's exact = 0.164 
-----------+----------------------+---------- 
     Total |        51         69 |       120  
    
snp6550471 
           |        Allele 
           |         A          G |     Total 
-----------+----------------------+---------- 
Control    |        20         18 |        38  Fisher's exact = 0.044 
Case       |        26         54 |        80  1-sided Fisher's exact = 0.030 
-----------+----------------------+---------- 
     Total |        46         72 |       118  
 
snp6549905 
           |        Allele 
           |         A          G |     Total 
-----------+----------------------+---------- 
Control    |        23         15 |        38  Fisher's exact = 0.251 
Case       |        47         51 |        98  1-sided Fisher's exact = 0.130 
-----------+----------------------+---------- 
     Total |        70         66 |       136  
            
snp6549803 
           |        Allele 
           |         A          G |     Total 
-----------+----------------------+---------- 
Control    |        32          6 |        38  Fisher's exact = 0.100 
Case       |        42         20 |        62  1-sided Fisher's exact = 0.054 
-----------+----------------------+---------- 
     Total |        74         26 |       100  
 
snp6549696 
           |        Allele 
           |         A          T |     Total 
-----------+----------------------+---------- 
Control    |        21         17 |        38  Fisher's exact = 0.702 
Case       |        48         48 |        96  1-sided Fisher's exact = 0.361 
-----------+----------------------+---------- 
     Total |        69         65 |       134  
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snp6549675 
           |        Allele 
           |         C          G |     Total 
-----------+----------------------+---------- 
Control    |        22         16 |        38  Fisher's exact = 0.570 
Case       |        50         46 |        96  1-sided Fisher's exact = 0.340 
-----------+----------------------+---------- 
     Total |        72         62 |       134  
 
snp6548520 
           |        Allele 
           |         C          T |     Total 
-----------+----------------------+---------- 
         0 |        29          9 |        38  Fisher's exact = 0.211 
         1 |        53         31 |        84  1-sided Fisher's exact = 0.108 
-----------+----------------------+---------- 
     Total |        82         40 |       122  
 
snp6548430 
           |        Allele 
           |         G          T |     Total 
-----------+----------------------+---------- 
Control    |        19         19 |        38  Fisher's exact = 0.424 
Case       |        45         31 |        76  1-sided Fisher's exact = 0.231 
-----------+----------------------+---------- 
     Total |        64         50 |       114  
 
 

Genotypic Fisher’s Exact Tests 

snp6567078  
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |         2          4         13 |        19   
Case       |        12         30         11 |        53  
-----------+---------------------------------+---------- 
     Total |        14         34         24 |        72  
 
Fisher's exact = 0.001 
 
snp6567031 
           |              Genotype 
           |        GG         GT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |        13          4          2 |        19   
Case       |        11         34          9 |        54  
-----------+---------------------------------+---------- 
     Total |        24         38         11 |        73  
 
Fisher's exact = 0.001 
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snp6567000 
           |              Genotype 
           |        AA         AG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |        14          4          2 |        20   
Case       |        15         38          1 |        54  
-----------+---------------------------------+---------- 
     Total |        29         42          3 |        74  
 
Fisher's exact = 0.000 
 
snp6566994 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |        14          4          2 |        20   
Case       |        11         37          6 |        54  
-----------+---------------------------------+---------- 
     Total |        25         41          8 |        74  
 
Fisher's exact = 0.000 
 
snp6566893 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |         2          4         14 |        20   
Case       |         6         36         12 |        54  
-----------+---------------------------------+---------- 
     Total |         8         40         26 |        74  
 
Fisher's exact = 0.000 
 
snp6566888 
           |              Genotype 
           |        AA         AT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |        15          4          1 |        20   
Case       |        23         31          0 |        54  
-----------+---------------------------------+---------- 
     Total |        38         35          1 |        74  
 
Fisher's exact = 0.003 
 
snp6566745 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |        14          4          2 |        20   
Case       |        11         37          7 |        55  
-----------+---------------------------------+---------- 
     Total |        25         41          9 |        75  
 
Fisher's exact = 0.000 
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snp6566713 
           |         Genotype 
           |        CC         CG |     Total 
-----------+----------------------+---------- 
Control    |        18          1 |        19 Fisher's exact = 0.169  
Case       |        44         11 |        55  1-sided Fisher's exact = 0.124 
-----------+----------------------+---------- 
     Total |        62         12 |        74  
 
snp6566498 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |        14          4          2 |        20   
Case       |        14         33         10 |        57  
-----------+---------------------------------+---------- 
     Total |        28         37         12 |        77  
 
Fisher's exact = 0.001 
 
snp6566399 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |         2          4         14 |        20   
Case       |         0         10         11 |        21  
-----------+---------------------------------+---------- 
     Total |         2         14         25 |        41  
 
Fisher's exact = 0.091 
 
snp6566277 
           |        Genotype 
           |        CG         GG |     Total 
-----------+----------------------+---------- 
Control    |         5         15 |        20   
Case       |         5         49 |        54   
-----------+----------------------+---------- 
     Total |        10         64 |        74 
 
Fisher's exact = 0.122  
1-sided Fisher's exact = 0.088 
 
snp6566231 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |        14          4          2 |        20   
Case       |        11         28         16 |        55  
-----------+---------------------------------+---------- 
     Total |        25         32         18 |        75  
 
Fisher's exact = 0.000 
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snp6566201 
           |              Genotype 
           |        AA         AG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |         1          4         15 |        20  
Case       |         1          4         47 |        52  
-----------+---------------------------------+---------- 
     Total |         2          8         62 |        72  
 
Fisher's exact = 0.205  
 
snp6566134 
           |              Genotype 
           |        CC         CG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |        14          3          2 |        19   
Case       |        16         12         10 |        38  
-----------+---------------------------------+---------- 
     Total |        30         15         12 |        57  
 
Fisher's exact = 0.092 
 
snp6566107 
           |              Genotype 
           |        AA         AC         CC |     Total 
-----------+---------------------------------+---------- 
Control    |         2          4         14 |        20   
Case       |         8         13         16 |        37  
-----------+---------------------------------+---------- 
     Total |        10         17         30 |        57  
 
Fisher's exact = 0.197 
 
snp6566042 
           |              Genotype 
           |        AA         AG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |        17          3          0 |        20   
Case       |        30          7          1 |        38  
-----------+---------------------------------+---------- 
     Total |        47         10          1 |        58  
 
Fisher's exact = 1.000 
 
snp6565949 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |         2          4         14 |        20   
Case       |         8         14         19 |        41  
-----------+---------------------------------+---------- 
     Total |        10         18         33 |        61  
 
Fisher's exact = 0.278 
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snp6565123 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |        11          8          1 |        20   
Case       |        35         15          5 |        55  
-----------+---------------------------------+---------- 
     Total |        46         23          6 |        75  
 
Fisher's exact = 0.593 
 
snp6565031 
           |              Genotype  
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |        11          8          1 |        20   
Case       |        29         14          8 |        51  
-----------+---------------------------------+---------- 
     Total |        40         22          9 |        71  
 
Fisher's exact = 0.395 
 
snp6564989 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |         1          8         11 |        20   
Case       |         5         10         39 |        54  
-----------+---------------------------------+---------- 
     Total |         6         18         50 |        74 
 
Fisher's exact = 0.168  
 
snp6564967 
           |              Genotype 
           |        AA         AG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |        11          8          1 |        20   
Case       |        38         10          4 |        52  
-----------+---------------------------------+---------- 
     Total |        49         18          5 |        72  
 
Fisher's exact = 0.203 
 
snp6564956 
           |              Genotype 
           |        AA         AG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |         1          8         11 |        20   
Case       |         5         10         39 |        54  
-----------+---------------------------------+---------- 
     Total |         6         18         50 |        74  
 
Fisher's exact = 0.168 
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snp6564946 
           |              Genotype 
           |        AA         AG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |         1          8         11 |        20   
Case       |         5         11         38 |        54  
-----------+---------------------------------+---------- 
     Total |         6         19         49 |        74  
 
Fisher's exact = 0.238 
 
snp6550610 
           |              Genotype 
           |        CC         CG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |         7          8          5 |        20   
Case       |        31         16          6 |        53  
-----------+---------------------------------+---------- 
     Total |        38         24         11 |        73  
 
Fisher's exact = 0.149 
 
snp6550514 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |         5         10          5 |        20   
Case       |        16         17          7 |        40  
-----------+---------------------------------+---------- 
     Total |        21         27         12 |        60  
 
Fisher's exact = 0.524 
 
snp6550471 
           |              Genotype 
           |        AA         AG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |         6          8          5 |        19   
Case       |         5         16         19 |        40  
-----------+---------------------------------+---------- 
     Total |        11         24         24 |        59  
 
Fisher's exact = 0.135 
 
snp6549905 
           |              Genotype 
           |        AA         AG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |         9          5          5 |        19   
Case       |        16         15         18 |        49  
-----------+---------------------------------+---------- 
     Total |        25         20         23 |        68  
 
Fisher's exact = 0.555 
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snp6549803 
           |              Genotype 
           |        AA         AG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |        14          4          1 |        19   
Case       |        17          8          6 |        31  
-----------+---------------------------------+---------- 
     Total |        31         12          7 |        50  
 
Fisher's exact = 0.339 
 
snp6549696 
           |              Genotype 
           |        AA         AT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |         7          7          5 |        19   
Case       |        11         26         11 |        48  
-----------+---------------------------------+---------- 
     Total |        18         33         16 |        67  
 
Fisher's exact = 0.360 
 
snp6549675 
           |              Genotype 
           |        CC         CG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |         8          6          5 |        19   
Case       |        13         24         11 |        48  
-----------+---------------------------------+---------- 
     Total |        21         30         16 |        67  
 
Fisher's exact = 0.346 
 
snp6548520 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |        11          7          1 |        19   
Case       |        21         11         10 |        42  
-----------+---------------------------------+---------- 
     Total |        32         18         11 |        61  
 
Fisher's exact = 0.198 
 
snp6548430 
           |              Genotype 
           |        GG         GT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |         5          9          5 |        19  
Case       |        10         25          3 |        38  
-----------+---------------------------------+---------- 
     Total |        15         34          8 |        57  
 
Fisher's exact = 0.189 
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Genotypic Odds Ratios 

snp6567078  
                                                  Number of obs   =         72 
                                                  LR chi2(2)      =      13.88 
                                                  Prob > chi2     =     0.0010 
Log likelihood =  -34.60889                       Pseudo R2       =     0.1671 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Homozygous   |   7.090909   6.145649     2.26   0.024     1.297091    38.76442 
Heterozygous |   8.863636   5.953402     3.25   0.001     2.376232    33.06245 
-------------------------------------------------------------------------    
      
snp6567031 
                                                  Number of obs   =         73 
                                                  LR chi2(2)      =      14.60 
                                                  Prob > chi2     =     0.0007 
Log likelihood = -34.554474                       Pseudo R2       =     0.1744 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   10.04545   6.718028     3.45   0.001     2.708429    37.25818 
Homozygous   |   5.318182   4.693708     1.89   0.058     .9430001    29.99264 
------------------------------------------------------------------------------ 
 
snp6567000 
                                                  Number of obs   =         74 
                                                  LR chi2(2)      =      15.96 
                                                  Prob > chi2     =     0.0003 
Log likelihood = -35.202238                       Pseudo R2       =     0.1848 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   8.866667   5.707895     3.39   0.001     2.510738    31.31261 
Homozygous   |   .4666667   .5972778    -0.60   0.552     .0379813    5.733812 
------------------------------------------------------------------------------ 
            
snp6566994 
                                                  Number of obs   =         74 
                                                  LR chi2(2)      =      16.85 
                                                  Prob > chi2     =     0.0002 
Log likelihood = -34.754241                       Pseudo R2       =     0.1952 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   11.77273   7.803504     3.72   0.000     3.211158     43.1611 
Homozygous   |   3.818182   3.476442     1.47   0.141     .6409739    22.74431 
------------------------------------------------------------------------------ 
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snp6566893 
                                                  Number of obs   =         74 
                                                  LR chi2(2)      =      15.47 
                                                  Prob > chi2     =     0.0004 
Log likelihood = -35.446828                       Pseudo R2       =     0.1791 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Homozygous   |        3.5   3.172144     1.38   0.167      .592381    20.67926 
Heterozygous |       10.5   6.905613     3.58   0.000     2.893165    38.10705 
------------------------------------------------------------------------------ 
 
snp6566888 
                                                  Number of obs   =         73 
                                                  LR chi2(1)      =       7.85 
                                                  Prob > chi2     =     0.0051 
Log likelihood = -37.929555                       Pseudo R2       =     0.0938 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   5.054348   3.166148     2.59   0.010     1.480658    17.25343 
------------------------------------------------------------------------------ 
 
snp6566745 
                                                  Number of obs   =         75 
                                                  LR chi2(2)      =      16.94 
                                                  Prob > chi2     =     0.0002 
Log likelihood = -35.022915                       Pseudo R2       =     0.1948 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   11.77273   7.803504     3.72   0.000     3.211158     43.1611 
Homozygous   |   4.454545   3.997182     1.66   0.096     .7673574    25.85884 
 
snp6566713 
                                                  Number of obs   =         74 
                                                  LR chi2(1)      =       2.72 
                                                  Prob > chi2     =     0.0991 
Log likelihood = -40.793328                       Pseudo R2       =     0.0323 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |        4.5   4.865811     1.39   0.164     .5405249    37.46359 
------------------------------------------------------------------------------ 
 
snp6566498 
                                                  Number of obs   =         77 
                                                  LR chi2(2)      =      13.23 
                                                  Prob > chi2     =     0.0013 
Log likelihood = -37.488891                       Pseudo R2       =     0.1500 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |       8.25   5.366688     3.24   0.001     2.305371    29.52345 
Homozygous   |          5   4.309458     1.87   0.062     .9232654    27.07781 
------------------------------------------------------------------------------ 
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snp6566399 
                                                  Number of obs   =         39 
                                                  LR chi2(1)      =       2.79 
                                                  Prob > chi2     =     0.0951 
Log likelihood = -25.524019                       Pseudo R2       =     0.0518 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   3.181818   2.277474     1.62   0.106     .7823558    12.94036 
------------------------------------------------------------------------------ 
 
snp6566277 
                                                  Number of obs   =         74 
                                                  LR chi2(1)      =       2.80 
                                                  Prob > chi2     =     0.0941 
Log likelihood = -41.780042                       Pseudo R2       =     0.0324 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Homozygous   |   3.266667   2.279831     1.70   0.090     .8318498    12.82817 
------------------------------------------------------------------------------ 
 
snp6566231 
                                                  Number of obs   =         75 
                                                  LR chi2(2)      =      16.02 
                                                  Prob > chi2     =     0.0003 
Log likelihood = -35.483868                       Pseudo R2       =     0.1842 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   8.909091    5.96345     3.27   0.001     2.399205    33.08259 
Homozygous   |   10.18182   8.668535     2.73   0.006     1.919263    54.01522 
------------------------------------------------------------------------------ 
 
snp6566201 
                                                  Number of obs   =         72 
                                                  LR chi2(2)      =       2.61 
                                                  Prob > chi2     =     0.2713 
Log likelihood = -41.236113                       Pseudo R2       =     0.0307 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |          1   1.581139    -0.00   1.000     .0450954    22.17521 
Homozygous   |   3.133333   4.527578     0.79   0.429     .1845204      53.207 
------------------------------------------------------------------------------ 
 
 
 
snp6566134 
                                                  Number of obs   =         57 
                                                  LR chi2(2)      =       5.28 
                                                  Prob > chi2     =     0.0713 
Log likelihood =  -33.64047                       Pseudo R2       =     0.0728 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |        3.5   2.597073     1.69   0.091     .8174456    14.98571 
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Homozygous   |      4.375   3.748022     1.72   0.085     .8161342    23.45279 
------------------------------------------------------------------------------ 
 
snp6566107 
                                                  Number of obs   =         57 
                                                  LR chi2(2)      =       3.86 
                                                  Prob > chi2     =     0.1454 
Log likelihood = -35.006831                       Pseudo R2       =     0.0522 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Homozygous   |        3.5   3.049075     1.44   0.150     .6346461     19.302       
Heterozygous |    2.84375    1.93051     1.54   0.124     .7516995    10.75817 
------------------------------------------------------------------------------ 
 
snp6566042 
                                                  Number of obs   =         57 
                                                  LR chi2(1)      =       0.14 
                                                  Prob > chi2     =     0.7077 
Log likelihood = -36.865032                       Pseudo R2       =     0.0019 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   1.322222   .9968051     0.37   0.711     .3017139    5.794468 
------------------------------------------------------------------------------ 
            
snp6565949 
                                                  Number of obs   =         61 
                                                  LR chi2(2)      =       3.12 
                                                  Prob > chi2     =     0.2102 
Log likelihood = -37.032342                       Pseudo R2       =     0.0404 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Homozygous   |   2.947368   2.550895     1.25   0.212     .5404239    16.07438 
Heterozygous |   2.578947   1.721317     1.42   0.156     .6971216    9.540616 
------------------------------------------------------------------------------ 
            
snp6565123 
                                                  Number of obs   =         75 
                                                  LR chi2(2)      =       1.25 
                                                  Prob > chi2     =     0.5343 
Log likelihood = -42.866923                       Pseudo R2       =     0.0144 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   .5892857   .3287069    -0.95   0.343      .197479    1.758454 
Homozygous   |   1.571429   1.805078     0.39   0.694     .1653985    14.92993 
------------------------------------------------------------------------------ 
 
 
snp6565031 
                                                  Number of obs   =         71 
                                                  LR chi2(2)      =       2.25 
                                                  Prob > chi2     =     0.3244 
Log likelihood = -41.086839                       Pseudo R2       =     0.0267 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   .6637931   .3765646    -0.72   0.470     .2183498    2.017961 
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Homozygous   |   3.034483   3.393187     0.99   0.321     .3390496    27.15852 
------------------------------------------------------------------------------ 
 
snp6564989 
                                                  Number of obs   =         74 
                                                  LR chi2(2)      =       3.53 
                                                  Prob > chi2     =     0.1709 
Log likelihood = -41.414074                       Pseudo R2       =     0.0409 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |        .25   .2984332    -1.16   0.246     .0240898    2.594462 
Homozygous   |   .7090909   .8136176    -0.30   0.764     .0748213    6.720144 
------------------------------------------------------------------------------ 
 
snp6564967 
                                                  Number of obs   =         72 
                                                  LR chi2(2)      =       3.16 
                                                  Prob > chi2     =     0.2061 
Log likelihood = -40.961393                       Pseudo R2       =     0.0371 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Homozygous   |   .8636364   1.009836    -0.13   0.900     .0873041     8.54333 
Heterozygous |      .3125   .3795299    -0.96   0.338     .0289114    3.377775 
------------------------------------------------------------------------------ 
 
snp6564956 
                                                  Number of obs   =         74 
                                                  LR chi2(2)      =       3.53 
                                                  Prob > chi2     =     0.1709 
Log likelihood = -41.414074                       Pseudo R2       =     0.0409 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |        .25   .2984332    -1.16   0.246     .0240898    2.594462 
Homozygous   |   .7090909   .8136176    -0.30   0.764     .0748213    6.720144 
------------------------------------------------------------------------------ 
 
snp6564946 
                                                  Number of obs   =         74 
                                                  LR chi2(2)      =       2.90 
                                                  Prob > chi2     =     0.2342 
Log likelihood =   -41.7294                       Pseudo R2       =     0.0336 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |       .275   .3272277    -1.08   0.278     .0266976    2.832654 
Homozygous   |   .6909091   .7929587    -0.32   0.747     .0728608    6.551606 
------------------------------------------------------------------------------ 
 
snp6550610 
                                                  Number of obs   =         73 
                                                  LR chi2(2)      =       3.71 
                                                  Prob > chi2     =     0.1565 
Log likelihood = -41.008741                       Pseudo R2       =     0.0433 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Homozygous   |   3.690476   2.716406     1.77   0.076     .8720642    15.61767 
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Heterozygous |   1.666667   1.240706     0.69   0.493     .3874308    7.169739 
------------------------------------------------------------------------------ 
 
snp6550514 
                                                  Number of obs   =         60 
                                                  LR chi2(2)      =       1.43 
                                                  Prob > chi2     =     0.4882 
Log likelihood = -37.473799                       Pseudo R2       =     0.0188 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Homozygous   |   2.285714   1.778393     1.06   0.288     .4974474     10.5026 
Heterozygous |   1.214286   .8600715     0.27   0.784     .3029841    4.866559 
------------------------------------------------------------------------------ 
 
snp6550471 
                                                  Number of obs   =         59 
                                                  LR chi2(2)      =       3.88 
                                                  Prob > chi2     =     0.1440 
Log likelihood = -35.137203                       Pseudo R2       =     0.0523 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |        2.4   1.786617     1.18   0.240     .5579003    10.32442 
Homozygous   |       4.56   3.588515     1.93   0.054     .9752311    21.32172 
------------------------------------------------------------------------------ 
            
snp6549905 
                                                  Number of obs   =         68 
                                                  LR chi2(2)      =       1.32 
                                                  Prob > chi2     =     0.5177 
Log likelihood = -39.624644                       Pseudo R2       =     0.0163 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |     1.6875   1.119714     0.79   0.430      .459666    6.195056 
Homozygous   |      2.025   1.326594     1.08   0.281     .5607845    7.312301 
------------------------------------------------------------------------------ 
            
snp6549803 
                                                  Number of obs   =         50 
                                                  LR chi2(2)      =       2.70 
                                                  Prob > chi2     =     0.2587 
Log likelihood = -31.851158                       Pseudo R2       =     0.0407 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   1.647059   1.170747     0.70   0.483     .4089458    6.633648 
Homozygous   |   4.941176   5.627127     1.40   0.161     .5302273    46.04671 
------------------------------------------------------------------------------ 
 
snp6549696 
                                                  Number of obs   =         67 
                                                  LR chi2(2)      =       1.87 
                                                  Prob > chi2     =     0.3931 
Log likelihood = -39.018723                       Pseudo R2       =     0.0234 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   2.363636   1.522822     1.34   0.182     .6686153    8.355741 
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Homozygous   |        1.4   1.014083     0.46   0.642     .3385047    5.790171 
------------------------------------------------------------------------------ 
 
snp6549675 
                                                  Number of obs   =         67 
                                                  LR chi2(2)      =       2.10 
                                                  Prob > chi2     =     0.3507 
Log likelihood = -38.904552                       Pseudo R2       =     0.0262 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   2.461538   1.576646     1.41   0.160     .7014574    8.637975 
Homozygous   |   1.353846   .9504272     0.43   0.666     .3419863    5.359569 
------------------------------------------------------------------------------ 
 
snp6548520 
                                                  Number of obs   =         61 
                                                  LR chi2(2)      =       3.73 
                                                  Prob > chi2     =     0.1548 
Log likelihood = -35.971199                       Pseudo R2       =     0.0493 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   .8231293     .50224    -0.32   0.750     .2489428    2.721677 
Homozygous   |   5.238095   5.829428     1.49   0.137     .5913968    46.39464 
------------------------------------------------------------------------------ 
 
snp6548430 
                                                  Number of obs   =         57 
                                                  LR chi2(2)      =       3.58 
                                                  Prob > chi2     =     0.1667 
Log likelihood = -34.489559                       Pseudo R2       =     0.0494 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   1.388889   .9328445     0.49   0.625     .3723571    5.180544 
Homozygous   |         .3   .2738613    -1.32   0.187     .0501284    1.795388 
------------------------------------------------------------------------------ 
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APPENDIX B 

CASE-CONTROL STATISTICAL ANALYSES OF EQUINE RNASEL 

POLYMORPHISMS 

Allelic Fisher’s Exact Tests 

snp2758810    
           |        Allele 
           |         C          G |     Total 
-----------+----------------------+---------- 
Control    |         9         17 |        26  Fisher's exact = 0.444 
Caes       |         2         10 |        12  1-sided Fisher's exact = 0.231 
-----------+----------------------+---------- 
     Total |        11         27 |        38  
 
snp2756586 
           |        Allele 
           |         A          C |     Total 
-----------+----------------------+---------- 
Control    |        26         12 |        38  Fisher's exact = 0.127 
Case       |        25         25 |        50 1-sided Fisher's exact = 0.064  
-----------+----------------------+---------- 
     Total |        51         37 |        88  
 
snp2756461 
           |        Allele 
           |         A          G |     Total 
-----------+----------------------+---------- 
Control    |        11         27 |        38  Fisher's exact = 0.139 
Case       |        11         57 |        68  1-sided Fisher's exact = 0.097 
-----------+----------------------+---------- 
     Total |        22         84 |       106  
 
snp2756452 
           |        Allele 
           |         C          T |     Total 
-----------+----------------------+---------- 
Control    |        23         15 |        38  Fisher's exact = 0.835 
Case       |        45         25 |        70  1-sided Fisher's exact = 0.427 
-----------+----------------------+---------- 
     Total |        68         40 |       108  
 
snp2756423 
           |        Allele 
           |         T          C |     Total 
-----------+----------------------+---------- 
Control    |        11         27 |        38  Fisher's exact = 0.128 
Case       |        10         56 |        66  1-sided Fisher's exact = 0.077 
-----------+----------------------+---------- 
     Total |        21         83 |       104  
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snp2756422 
           |        Allele 
           |         T          G |     Total 
-----------+----------------------+---------- 
Control    |        28         10 |        38  Fisher's exact = 0.663 
Case       |        47         21 |        68 1-sided Fisher's exact = 0.396  
-----------+----------------------+---------- 
     Total |        75         31 |       106  
 
snp2756421 
           |        Allele 
           |         A          C |     Total 
-----------+----------------------+---------- 
Control    |        25         13 |        38  Fisher's exact = 0.517 
Case       |        52         20 |        72  1-sided Fisher's exact = 0.313 
-----------+----------------------+---------- 
     Total |        77         33 |       110  
    
snp2756325 
           |        Allele 
           |         A          C |     Total 
-----------+----------------------+---------- 
Control    |        11         27 |        38  Fisher's exact = 0.643 
Case       |        16         52 |        68  1-sided Fisher's exact = 0.348 
-----------+----------------------+---------- 
     Total |        27         79 |       106  
 
snp2756127 
           |        Allele 
           |         A          C |     Total 
-----------+----------------------+---------- 
Control    |        30          8 |        38  Fisher's exact = 0.653 
Case       |        61         21 |        82  1-sided Fisher's exact = 0.382 
-----------+----------------------+---------- 
     Total |        91         29 |       120  
 
snp2756111 
           |        Allele 
           |         A          G |     Total 
-----------+----------------------+---------- 
Control    |        20         18 |        38  Fisher's exact = 0.324 
Case       |        34         48 |        82  1-sided Fisher's exact = 0.172 
-----------+----------------------+---------- 
     Total |        54         66 |       120  
 
snp2756069 
           |        Allele 
           |         G          T |     Total 
-----------+----------------------+---------- 
Control    |        29          9 |        38  Fisher's exact = 1.000 
Case       |        18          6 |        24  1-sided Fisher's exact = 0.569 
-----------+----------------------+---------- 
     Total |        47         15 |        62  
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snp2756056 
           |        Allele 
           |         A          G |     Total 
-----------+----------------------+---------- 
Control    |         8         30 |        38  Fisher's exact = 0.762 
Case       |         6         18 |        24 1-sided Fisher's exact = 0.475  
-----------+----------------------+---------- 
     Total |        14         48 |        62  
 
snp2756043 
           |        Allele 
           |         A          G |     Total 
-----------+----------------------+---------- 
Control    |         9         29 |        38 Fisher's exact = 1.000  
Case       |         6         18 |        24  1-sided Fisher's exact = 0.569 
-----------+----------------------+---------- 
     Total |        15         47 |        62  
 
snp2756001 
           |        Allele 
           |         A          C |     Total 
-----------+----------------------+---------- 
Control    |        22         16 |        38 Fisher's exact = 0.798  
Case       |        13         11 |        24  1-sided Fisher's exact = 0.489 
-----------+----------------------+---------- 
     Total |        35         27 |        62  
 
snp2755808 
           |        Allele 
           |         A          G |     Total 
-----------+----------------------+---------- 
Control    |         6         30 |        36  Fisher's exact = 0.475 
Case       |        19         63 |        82  1-sided Fisher's exact = 0.296 
-----------+----------------------+---------- 
     Total |        25         93 |       118  
 
snp2755763 
           |        Allele 
           |         C          G |     Total 
-----------+----------------------+---------- 
Control    |         7         29 |        36  Fisher's exact = 0.132 
Case       |        29         57 |        86  1-sided Fisher's exact = 0.085 
-----------+----------------------+---------- 
     Total |        36         86 |       122  
 
snp2755672 
           |        Allele 
           |         A          G |     Total 
-----------+----------------------+---------- 
Control    |        27          9 |        36  Fisher's exact = 0.285 
Case       |        49         29 |        78  1-sided Fisher's exact = 0.142 
-----------+----------------------+---------- 
     Total |        76         38 |       114  
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snp2755299 
           |        Allele 
           |         A          G |     Total 
-----------+----------------------+---------- 
Control    |         1         35 |        36  Fisher's exact = 0.340 
Case       |         0         70 |        70  1-sided Fisher's exact = 0.340 
-----------+----------------------+---------- 
     Total |         1        105 |       106  
 
snp2755162 
           |        Allele 
           |         A          G |     Total 
-----------+----------------------+---------- 
Control    |         1         35 |        36  Fisher's exact = 0.360 
Case       |         0         64 |        64  1-sided Fisher's exact = 0.360 
-----------+----------------------+---------- 
     Total |         1         99 |       100  
 
snp2755142 
           |        Allele 
           |         A          C |     Total 
-----------+----------------------+---------- 
Control    |         1         35 |        36  Fisher's exact = 1.000 
Case       |         1         63 |        64  1-sided Fisher's exact = 0.593 
-----------+----------------------+---------- 
     Total |         2         98 |       100  
 
snp2755132 
           |        Allele 
           |         C          T |     Total 
-----------+----------------------+---------- 
Control    |         1         35 |        36  Fisher's exact = 1.000 
Case       |         2         60 |        62  1-sided Fisher's exact = 0.696 
-----------+----------------------+---------- 
     Total |         3         95 |        98  
 
snp2755071 
           |        snp63_ 
           |         G          A |     Total 
-----------+----------------------+---------- 
Control    |        28          8 |        36  Fisher's exact = 0.005 
Case       |        48         48 |        96  1-sided Fisher's exact = 0.003 
-----------+----------------------+---------- 
     Total |        76         56 |       132  
 
snp2755039 
           |        Allele 
           |         A          G |     Total 
-----------+----------------------+---------- 
Control    |         1         35 |        36  Fisher's exact = 0.473 
Case       |         1         95 |        96 1-sided Fisher's exact = 0.473  
-----------+----------------------+---------- 
     Total |         2        130 |       132  
 
 
 
 
 
 
 



144 
 

 
 

snp2750857 
           |        Allele 
           |         C          T |     Total 
-----------+----------------------+---------- 
Control    |         8         32 |        40  Fisher's exact = 0.402 
Case       |         7         47 |        54  1-sided Fisher's exact = 0.261 
-----------+----------------------+---------- 
     Total |        15         79 |        94  
 
snp2750736 
           |        Allele 
           |         A          G |     Total 
-----------+----------------------+---------- 
Control    |         6         34 |        40  Fisher's exact = 1.000 
Case       |         6         38 |        44  1-sided Fisher's exact = 0.551 
-----------+----------------------+---------- 
     Total |        12         72 |        84  
 
snp2750733 
           |        Allele 
           |         C          G |     Total 
-----------+----------------------+---------- 
Control    |        39          1 |        40  Fisher's exact = 0.476 
Case       |        44          0 |        44  1-sided Fisher's exact = 0.476 
-----------+----------------------+---------- 
     Total |        83          1 |        84  
 
snp2743998 
           |        Allele 
           |         C          G |     Total 
-----------+----------------------+---------- 
Control    |         6         28 |        34  Fisher's exact = 0.564 
Case       |         9         59 |        68  1-sided Fisher's exact = 0.376 
-----------+----------------------+---------- 
     Total |        15         87 |       102  
 
snp2743993 
           |        Allele 
           |         T          A |     Total 
-----------+----------------------+---------- 
Control    |         6         22 |        28  Fisher's exact = 1.000 
Case       |        13         51 |        64  1-sided Fisher's exact = 0.554 
-----------+----------------------+---------- 
     Total |        19         73 |        92  
 
snp2743789 
           |        Allele 
           |         C          T |     Total 
-----------+----------------------+---------- 
Control    |         7         21 |        28  Fisher's exact = 0.402 
Case       |        15         77 |        92  1-sided Fisher's exact = 0.219 
-----------+----------------------+---------- 
     Total |        22         98 |       120  
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snp2743745 
           |        Allele 
           |         T          C |     Total 
-----------+----------------------+---------- 
Control    |        20          8 |        28  Fisher's exact = 0.272 
Case       |        51         35 |        86  1-sided Fisher's exact = 0.178 
-----------+----------------------+---------- 
     Total |        71         43 |       114  
 
snp2743078 
           |        Allele 
           |         C          T |     Total 
-----------+----------------------+---------- 
         0 |        11         25 |        36  Fisher's exact = 1.000 
         1 |        10         20 |        30  1-sided Fisher's exact = 0.508 
-----------+----------------------+---------- 
     Total |        21         45 |        66  
 
snp2742898 
           |        Allele 
           |         C          T |     Total 
-----------+----------------------+---------- 
Control    |        29          5 |        34 Fisher's exact = 1.000  
Case       |        58         12 |        70 1-sided Fisher's exact = 0.496  
-----------+----------------------+---------- 
     Total |        87         17 |       104  
 
snp2742846 
           |        Allele 
           |         C          T |     Total 
-----------+----------------------+---------- 
Control    |        10         24 |        34  Fisher's exact = 0.661 
Case       |        26         46 |        72  1-sided Fisher's exact = 0.325 
-----------+----------------------+---------- 
     Total |        36         70 |       106  
 
snp2742808 
           |        Allele 
           |         C          T |     Total 
-----------+----------------------+---------- 
Control    |        10         24 |        34  Fisher's exact = 0.781 
Case       |         9         17 |        26  1-sided Fisher's exact = 0.439 
-----------+----------------------+---------- 
     Total |        19         41 |        60  
 
snp2742764 
           |        Allele 
           |         C          T |     Total 
-----------+----------------------+---------- 
Control    |        22         10 |        32  Fisher's exact = 1.000 
Case       |        16          8 |        24  1-sided Fisher's exact = 0.547 
-----------+----------------------+---------- 
     Total |        38         18 |        56  
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Genotypic Fisher’s Exact Tests 

snp2758810    
           |              Genotype 
           |        CC         CG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |         4          1          8 |        13  
Case       |         1          0          5 |         6  
-----------+---------------------------------+---------- 
     Total |         5          1         13 |        19  
 
Fisher's exact = 0.736 
 
snp2756586 
           |              Genotype 
           |        AA         AC         CC |     Total 
-----------+---------------------------------+---------- 
Control    |        11          4          4 |        19  
Case       |         8          9          8 |        25  
-----------+---------------------------------+---------- 
     Total |        19         13         12 |        44  
 
Fisher's exact = 0.252 
 
snp2756461 
           |              Genotype 
           |        AA         AG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |        10          7          2 |        19  
Case       |        24          9          1 |        34  
-----------+---------------------------------+---------- 
     Total |        34         16          3 |        53  
 
Fisher's exact = 0.271 
 
snp2756452 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |         8          7          4 |        19  
Case       |        18          9          8 |        35  
-----------+---------------------------------+---------- 
     Total |        26         16         12 |        54  
 
Fisher's exact = 0.706 
 
snp2756423 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |        10          7          2 |        19  
Case       |        23         10          0 |        33  
-----------+---------------------------------+---------- 
     Total |        33         17          2 |        52  
 
Fisher's exact = 0.126 
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snp2756422 
           |              Genotype 
           |        TT         GT         GG |     Total 
-----------+---------------------------------+---------- 
Control    |        11          6          2 |        19  
Case       |        19          9          6 |        34  
-----------+---------------------------------+---------- 
     Total |        30         15          8 |        53  
 
Fisher's exact = 0.852 
 
snp2756421 
           |              Genotype 
           |        AA         AC         CC |     Total 
-----------+---------------------------------+---------- 
Control    |         8          9          2 |        19  
Case       |        20         12          4 |        36  
-----------+---------------------------------+---------- 
     Total |        28         21          6 |        55  
 
Fisher's exact = 0.562 
    
snp2756325 
           |              Genotype 
           |        AA         AC         CC |     Total 
-----------+---------------------------------+---------- 
Control    |         2          7         10 |        19  
Case       |         4          8         22 |        34  
-----------+---------------------------------+---------- 
     Total |         6         15         32 |        53  
 
Fisher's exact = 0.545 
 
snp2756127 
           |              Genotype 
           |        AA         AC         CC |     Total 
-----------+---------------------------------+---------- 
Control    |        13          4          2 |        19  
Case       |        27          7          7 |        41  
-----------+---------------------------------+---------- 
     Total |        40         11          9 |        60  
 
Fisher's exact = 0.843 
 
snp2756111 
           |              Genotype 
           |        AA         AG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |         7          6          6 |        19  
Case       |        11         12         18 |        41  
-----------+---------------------------------+---------- 
     Total |        18         18         24 |        60  
 
Fisher's exact = 0.688 
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snp2756069 
           |              Genotype 
           |        GG         GT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |        11          7          1 |        19  
Case       |         7          4          1 |        12  
-----------+---------------------------------+---------- 
     Total |        18         11          2 |        31  
 
Fisher's exact = 1.000 
 
snp2756056 
           |        Genotype 
           |        AG         GG |     Total 
-----------+----------------------+---------- 
Control    |         8         11 |        19  
Case       |         6          6 |        12  
-----------+----------------------+---------- 
     Total |        14         17 |        31  
 
Fisher's exact = 0.724 
1-sided Fisher's exact = 0.475 
 
snp2756043 
           |              Genotype 
           |        AA         AG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |         1          7         11 |        19  
Case       |         1          4          7 |        12  
-----------+---------------------------------+---------- 
     Total |         2         11         18 |        31  
 
Fisher's exact = 1.000 
 
snp2756001 
           |              Genotype 
           |        AA         AC         CC |     Total 
-----------+---------------------------------+---------- 
Control    |         7          8          4 |        19  
Case       |         5          3          4 |        12  
-----------+---------------------------------+---------- 
     Total |        12         11          8 |        31  
 
Fisher's exact = 0.652 
 
snp2755808 
           |              Genotype 
           |        AA         AG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |         1          4         13 |        18  
Case       |         5          9         27 |        41  
-----------+---------------------------------+---------- 
     Total |         6         13         40 |        59  
 
Fisher's exact = 0.907 
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snp2755763 
           |              Genotype 
           |        CC         CG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |         1          5         12 |        18  
Case       |         7         15         21 |        43  
-----------+---------------------------------+---------- 
     Total |         8         20         33 |        61  
 
Fisher's exact = 0.421 
 
snp2755672 
           |              Genotype 
           |        AA         AG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |        11          5          2 |        18  
Case       |        18         13          8 |        39  
-----------+---------------------------------+---------- 
     Total |        29         18         10 |        57  
 
Fisher's exact = 0.597 
 
snp2755299 
           |        Genotype 
           |        AG         GG |     Total 
-----------+----------------------+---------- 
Control    |         1         17 |        18  
Case       |         0         35 |        35  
-----------+----------------------+---------- 
     Total |         1         52 |        53  
 
Fisher's exact = 0.340 
1-sided Fisher's exact = 0.340 
 
snp2755162  
           |        Genotype 
           |        AG         GG |     Total 
-----------+----------------------+---------- 
Control    |         1         17 |        18  
Case       |         0         32 |        32  
-----------+----------------------+---------- 
     Total |         1         49 |        50  
 
Fisher's exact = 0.360 
1-sided Fisher's exact = 0.360 
 
snp2755142 
           |        Genotype 
           |        AC         CC |     Total 
-----------+----------------------+---------- 
Control    |         1         17 |        18  
Case       |         1         31 |        32  
-----------+----------------------+---------- 
     Total |         2         48 |        50  
 
Fisher's exact = 1.000 
1-sided Fisher's exact = 0.595 
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snp2755132 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |         0          1         17 |        18  
Case       |         1          0         30 |        31  
-----------+---------------------------------+---------- 
     Total |         1          1         47 |        49  
 
Fisher's exact = 0.605 
 
snp2755071 
           |              Genotype 
           |        AA         AG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |         2          4         12 |        18  
Case       |        16         16         16 |        48  
-----------+---------------------------------+---------- 
     Total |        18         20         28 |        66  
 
Fisher's exact = 0.049 
 
snp2755039 
           |        Genotype 
           |        AG         GG |     Total 
-----------+----------------------+---------- 
Control    |         1         17 |        18  
Case       |         1         47 |        48  
-----------+----------------------+---------- 
     Total |         2         64 |        66  
 
Fisher's exact = 0.474 
1-sided Fisher's exact = 0.474 
 
snp2750857 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |         2          4         14 |        20  
Case       |         2          3         22 |        27  
-----------+---------------------------------+---------- 
     Total |         4          7         36 |        47  
 
Fisher's exact = 0.681 
 
snp2750736 
           |              Genotype 
           |        AA         AG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |         1          4         15 |        20  
Case       |         0          6         16 |        22  
-----------+---------------------------------+---------- 
     Total |         1         10         31 |        42  
 
 
 
 
 
 
 



151 
 

 
 

Fisher's exact = 0.723 
 
snp2750733 
           |        Genotype 
           |        CC         CT |     Total 
-----------+----------------------+---------- 
Control    |        19          1 |        20  
Case       |        22          0 |        22  
-----------+----------------------+---------- 
     Total |        41          1 |        42  
 
Fisher's exact = 0.476 
1-sided Fisher's exact = 0.476 
 
snp2743998 
           |              Genotype 
           |        CC         CG         GG |     Total 
-----------+---------------------------------+---------- 
Control    |         2          2         13 |        17  
Case       |         2          5         27 |        34  
-----------+---------------------------------+---------- 
     Total |         4          7         40 |        51  
 
Fisher's exact = 0.754 
 
snp2743993 
           |              Genotype 
           |        AA         AT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |         9          4          1 |        14  
Case       |        21          9          2 |        32  
-----------+---------------------------------+---------- 
     Total |        30         13          3 |        46  
 
Fisher's exact = 1.000 
 
snp2743789 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |         2          3          9 |        14  
Case       |         4          7         35 |        46  
-----------+---------------------------------+---------- 
     Total |         6         10         44 |        60  
 
Fisher's exact = 0.681 
 
snp2743745 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |         4          0         10 |        14  
Case       |        12         11         20 |        43  
-----------+---------------------------------+---------- 
     Total |        16         11         30 |        57  
 
Fisher's exact = 0.078 
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snp2743078 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |         3          5         10 |        18  
Case       |         2          6          7 |        15  
-----------+---------------------------------+---------- 
     Total |         5         11         17 |        33  
 
Fisher's exact = 0.892 
 
snp2742898 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |        13          3          1 |        17  
Case       |        24         10          1 |        35  
-----------+---------------------------------+---------- 
     Total |        37         13          2 |        52  
 
Fisher's exact = 0.554 
 
snp2742846 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |         3          4         10 |        17  
Case       |         9          8         19 |        36  
-----------+---------------------------------+---------- 
     Total |        12         12         29 |        53  
 
Fisher's exact = 0.924 
 
snp2742808 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |         3          4         10 |        17  
Case       |         2          5          6 |        13  
-----------+---------------------------------+---------- 
     Total |         5          9         16 |        30  
 
Fisher's exact = 0.789 
 
snp2742764 
           |              Genotype 
           |        CC         CT         TT |     Total 
-----------+---------------------------------+---------- 
Control    |         8          6          2 |        16  
Case       |         6          4          2 |        12  
-----------+---------------------------------+---------- 
     Total |        14         10          4 |        28  
 
Fisher's exact = 1.000 
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Genotypic Odds Ratios 

snp2758810    
Logistic regression                               Number of obs   =         18 
                                                  LR chi2(1)      =       0.59 
                                                  Prob > chi2     =     0.4435 
Log likelihood = -11.163632                       Pseudo R2       =     0.0256 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Homozygous   |        2.5   3.137474     0.73   0.465     .2136442    29.25425 
------------------------------------------------------------------------------ 
 
snp2756586 
Logistic regression                               Number of obs   =         44 
                                                  LR chi2(2)      =       2.99 
                                                  Prob > chi2     =     0.2245 
Log likelihood = -28.594273                       Pseudo R2       =     0.0496 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |    3.09375    2.35007     1.49   0.137     .6980665    13.71114 
Homozygous   |       2.75   2.113942     1.32   0.188     .6095493    12.40671 
------------------------------------------------------------------------------ 
 
snp2756461 
Logistic regression                               Number of obs   =         53 
                                                  LR chi2(2)      =       2.23 
                                                  Prob > chi2     =     0.3285 
Log likelihood = -33.471685                       Pseudo R2       =     0.0322 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Homozygous   |        4.8   6.150122     1.22   0.221     .3895988    59.13775 
Heterozygous |   2.571429   3.405535     0.71   0.476     .1918071    34.47341 
------------------------------------------------------------------------------ 
 
snp2756452 
Logistic regression                               Number of obs   =         54 
                                                  LR chi2(2)      =       0.74 
                                                  Prob > chi2     =     0.6893 
Log likelihood = -34.651483                       Pseudo R2       =     0.0106 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   .5714286   .3766762    -0.85   0.396     .1569871    2.079984 
Homozygous   |   .8888889   .6625383    -0.16   0.874     .2062527    3.830852 
------------------------------------------------------------------------------ 
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snp2756423 
Logistic regression                               Number of obs   =         52 
                                                  LR chi2(2)      =       4.75 
                                                  Prob > chi2     =     0.0930 
Log likelihood = -31.759937                       Pseudo R2       =     0.0696 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Homozygous   |   2.15e+08          .        .       .            .           . 
Heterozygous |   1.34e+08   8.31e+07    30.10   0.000     3.96e+07    4.52e+08 
------------------------------------------------------------------------------ 
 
snp2756422 
Logistic regression                               Number of obs   =         53 
                                                  LR chi2(2)      =       0.55 
                                                  Prob > chi2     =     0.7586 
Log likelihood = -34.308589                       Pseudo R2       =     0.0080 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   .8684211   .5636838    -0.22   0.828     .2433456    3.099111 
Homozygous   |   1.736842   1.563358     0.61   0.540     .2975644    10.13771 
------------------------------------------------------------------------------ 
 
snp2756421 
Logistic regression                               Number of obs   =         55 
                                                  LR chi2(2)      =       1.08 
                                                  Prob > chi2     =     0.5824 
Log likelihood = -34.911704                       Pseudo R2       =     0.0152 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   .5333333   .3241704    -1.03   0.301     .1620399    1.755398 
Homozygous   |         .8   .7694154    -0.23   0.817     .1214592    5.269257 
------------------------------------------------------------------------------ 
    
snp2756325 
Logistic regression                               Number of obs   =         53 
                                                  LR chi2(2)      =       1.05 
                                                  Prob > chi2     =     0.5903 
Log likelihood = -34.057699                       Pseudo R2       =     0.0152 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   .5714286   .5765079    -0.55   0.579     .0791032    4.127905 
Homozygous   |        1.1   1.040913     0.10   0.920     .1721528    7.028641 
------------------------------------------------------------------------------ 
 
snp2756127 
Logistic regression                               Number of obs   =         60 
                                                  LR chi2(2)      =       0.52 
                                                  Prob > chi2     =     0.7718 
Log likelihood = -37.200896                       Pseudo R2       =     0.0069 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   .8425926   .5998509    -0.24   0.810     .2087555    3.400927 
Homozygous   |   1.685185   1.466031     0.60   0.549      .306297    9.271553 
------------------------------------------------------------------------------ 
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snp2756111 
Logistic regression                               Number of obs   =         60 
                                                  LR chi2(2)      =       0.96 
                                                  Prob > chi2     =     0.6200 
Log likelihood = -36.981771                       Pseudo R2       =     0.0128 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   1.272727   .8852239     0.35   0.729     .3256091    4.974783 
Homozygous   |   1.909091    1.28915     0.96   0.338     .5082021    7.171612 
------------------------------------------------------------------------------ 
 
snp2756069 
Logistic regression                               Number of obs   =         31 
                                                  LR chi2(2)      =       0.13 
                                                  Prob > chi2     =     0.9368 
Log likelihood = -20.625066                       Pseudo R2       =     0.0032 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   .8979592   .7108204    -0.14   0.892     .1903046    4.237053 
Homozygous   |   1.571429   2.348624     0.30   0.762     .0839666    29.40916 
------------------------------------------------------------------------------ 
 
snp2756056 
Logistic regression                               Number of obs   =         31 
                                                  LR chi2(1)      =       0.18 
                                                  Prob > chi2     =     0.6672 
Log likelihood = -20.597935                       Pseudo R2       =     0.0045 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Homozygous   |   .7272727   .5389883    -0.43   0.667     .1701627    3.108353 
------------------------------------------------------------------------------ 
 
snp2756043 
Logistic regression                               Number of obs   =         31 
                                                  LR chi2(2)      =       0.13 
                                                  Prob > chi2     =     0.9368 
Log likelihood = -20.625066                       Pseudo R2       =     0.0032 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   .5714286    .883935    -0.36   0.718     .0275581    11.84879 
Homozygous   |   .6363636   .9510957    -0.30   0.762      .034003    11.90949 
------------------------------------------------------------------------------ 
 
snp2756001 
Logistic regression                               Number of obs   =         31 
                                                  LR chi2(2)      =       1.10 
                                                  Prob > chi2     =     0.5773 
Log likelihood = -20.140975                       Pseudo R2       =     0.0266 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |       .525   .4699235    -0.72   0.472     .0908354    3.034334 
Homozygous   |        1.4   1.285302     0.37   0.714     .2315599    8.464334 
------------------------------------------------------------------------------ 
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snp2755808 
Logistic regression                               Number of obs   =         59 
                                                  LR chi2(2)      =       0.68 
                                                  Prob > chi2     =     0.7112 
Log likelihood = -35.950751                       Pseudo R2       =     0.0094 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |        .45   .5622485    -0.64   0.523     .0388764    5.208812 
Homozygous   |   .4153846    .476146    -0.77   0.443     .0439276    3.927928 
------------------------------------------------------------------------------ 
 
snp2755763 
Logistic regression                               Number of obs   =         61 
                                                  LR chi2(2)      =       2.23 
                                                  Prob > chi2     =     0.3285 
Log likelihood = -35.891763                       Pseudo R2       =     0.0301 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   .4285714   .5088144    -0.71   0.475     .0418262    4.391353 
Homozygous   |        .25   .2821579    -1.23   0.219     .0273682    2.283668 
------------------------------------------------------------------------------ 
 
snp2755672 
Logistic regression                               Number of obs   =         57 
                                                  LR chi2(2)      =       1.32 
                                                  Prob > chi2     =     0.5163 
Log likelihood = -34.887224                       Pseudo R2       =     0.0186 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   1.588889   1.033862     0.71   0.477     .4438452    5.687946 
Homozygous   |   2.444444    2.14703     1.02   0.309     .4370629    13.67151 
------------------------------------------------------------------------------ 
 
snp2755142 
Logistic regression                               Number of obs   =         50 
                                                  LR chi2(1)      =       0.17 
                                                  Prob > chi2     =     0.6798 
Log likelihood = -32.585713                       Pseudo R2       =     0.0026 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Homozygous   |   1.823529   2.636928     0.42   0.678     .1071585    31.03123 
------------------------------------------------------------------------------ 
 
snp2755071 
Logistic regression                               Number of obs   =         66 
                                                  LR chi2(2)      =       6.53 
                                                  Prob > chi2     =     0.0382 
Log likelihood = -35.408453                       Pseudo R2       =     0.0844 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Homozygous   |          6   5.049752     2.13   0.033     1.152812    31.22799 
Heterozygous |          3    2.03101     1.62   0.105     .7958937    11.30804 
------------------------------------------------------------------------------ 
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snp2755039 
Logistic regression                               Number of obs   =         66 
                                                  LR chi2(1)      =       0.48 
                                                  Prob > chi2     =     0.4888 
Log likelihood = -38.433248                       Pseudo R2       =     0.0062 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Homozygous   |   2.764706   3.987411     0.71   0.481     .1636813    46.69806 
------------------------------------------------------------------------------ 
 
snp2750857 
Logistic regression                               Number of obs   =         47 
                                                  LR chi2(2)      =       0.89 
                                                  Prob > chi2     =     0.6409 
Log likelihood = -31.609891                       Pseudo R2       =     0.0139 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |        .75   .9437292    -0.23   0.819      .063678    8.833501 
Homozygous   |   1.571429   1.660728     0.43   0.669     .1980259    12.47003 
------------------------------------------------------------------------------ 
 
snp2750736 
Logistic regression                               Number of obs   =         42 
                                                  LR chi2(2)      =       1.73 
                                                  Prob > chi2     =     0.4219 
Log likelihood = -28.201547                       Pseudo R2       =     0.0297 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   1.21e+08          .        .       .            .           . 
Homozygous   |   8.61e+07   6.36e+07    24.73   0.000     2.02e+07    3.66e+08 
------------------------------------------------------------------------------ 
 
snp2743998 
Logistic regression                               Number of obs   =         51 
                                                  LR chi2(2)      =       0.56 
                                                  Prob > chi2     =     0.7569 
Log likelihood = -32.183717                       Pseudo R2       =     0.0086 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |        2.5   3.259601     0.70   0.482     .1941373    32.19371 
Homozygous   |   2.076923   2.192074     0.69   0.489     .2624373    16.43672 
------------------------------------------------------------------------------ 
 
snp2743993 
Logistic regression                               Number of obs   =         46 
                                                  LR chi2(2)      =       0.02 
                                                  Prob > chi2     =     0.9925 
Log likelihood = -28.259615                       Pseudo R2       =     0.0003 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Homozygous   |   1.166667   1.502569     0.12   0.905     .0934696    14.56208 
Heterozygous |      1.125   1.534753     0.09   0.931     .0776108    16.30734 
------------------------------------------------------------------------------ 
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snp2743789 
Logistic regression                               Number of obs   =         60 
                                                  LR chi2(2)      =       0.75 
                                                  Prob > chi2     =     0.6863 
Log likelihood = -32.219869                       Pseudo R2       =     0.0116 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   1.166667   1.291891     0.14   0.889     .1331624    10.22144 
Homozygous   |   1.944444   1.834058     0.70   0.481     .3061377    12.35021 
------------------------------------------------------------------------------ 
 
snp2743745 
Logistic regression                               Number of obs   =         46 
                                                  LR chi2(1)      =       0.35 
                                                  Prob > chi2     =     0.5548 
Log likelihood = -28.092787                       Pseudo R2       =     0.0062 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Homozygous   |        1.5   1.042833     0.58   0.560     .3839878    5.859562 
------------------------------------------------------------------------------ 
 
snp2743078 
Logistic regression                               Number of obs   =         33 
                                                  LR chi2(2)      =       0.55 
                                                  Prob > chi2     =     0.7590 
Log likelihood = -22.461565                       Pseudo R2       =     0.0121 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |        1.8   1.971801     0.54   0.592     .2102945    15.40696 
Homozygous   |       1.05   1.089266     0.05   0.962     .1374537    8.020885 
------------------------------------------------------------------------------ 
 
snp2742898 
Logistic regression                               Number of obs   =         52 
                                                  LR chi2(2)      =       0.94 
                                                  Prob > chi2     =     0.6265 
Log likelihood = -32.395277                       Pseudo R2       =     0.0142 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   1.805556   1.341375     0.80   0.426     .4209594    7.744287 
Homozygous   |   .5416667   .7884162    -0.42   0.674     .0312447    9.390484 
------------------------------------------------------------------------------ 
 
snp2742846 
Logistic regression                               Number of obs   =         53 
                                                  LR chi2(2)      =       0.37 
                                                  Prob > chi2     =     0.8298 
Log likelihood = -33.067579                       Pseudo R2       =     0.0056 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   .6666667   .6034878    -0.45   0.654      .113077     3.93046 
Homozygous   |   .6333333   .4893811    -0.59   0.554     .1392846    2.879796 
------------------------------------------------------------------------------ 
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snp2742808 
Logistic regression                               Number of obs   =         30 
                                                  LR chi2(2)      =       0.79 
                                                  Prob > chi2     =     0.6742 
Log likelihood = -20.132724                       Pseudo R2       =     0.0192 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |      1.875   2.124081     0.55   0.579     .2035746    17.26947 
Homozygous   |         .9   .9439279    -0.10   0.920     .1152113    7.030563 
------------------------------------------------------------------------------ 
 
snp2742764 
Logistic regression                               Number of obs   =         28 
                                                  LR chi2(2)      =       0.12 
                                                  Prob > chi2     =     0.9436 
Log likelihood = -19.063419                       Pseudo R2       =     0.0030 
------------------------------------------------------------------------------ 
             | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
Heterozygous |   .8888889   .7481115    -0.14   0.889     .1707869     4.62637 
Homozygous   |   1.333333   1.515354     0.25   0.800      .143726    12.36922 
------------------------------------------------------------------------------ 
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