
Fault management in TELCO platforms using

Autonomic Computing and Mobile Agents

Sergio Armando Gutiérrez Betancur

Universidad Nacional de Colombia

Facultad de Minas, Escuela de Sistemas

Medellín, Colombia

2011

Fault management in TELCO platforms using

Autonomic Computing and Mobile Agents

Sergio Armando Gutiérrez Betancur

Tesis presentada como requisito parcial para optar al título de:

Magister en Ingeniería de Sistemas

Director:

John Willian Branch Bedoya, PhD

Línea de Investigación:

Telecomunicaciones

Universidad Nacional de Colombia

Facultad de Minas, Escuela de Sistemas

Medellin, Colombia

2011

iii

Abstract

This work presents a solution for Fault Management focused in im-

proving the traditional techniques which are used for this purpose

in TELCO Service Platforms. This solution is based on two no-

vel technological concepts, as Autonomic Computing, and Mobile

Agents.

By means of the use of these two technologies, and taking advan-

tage of their sophisticated features, a solution o�ering increased

availability, proactive reaction to possible failures, faster response

times to faults, and reduced bandwidth consumption is developed.

The architecture of this solution is discused in detail and cases sho-

wing its behavior and performance are presented and discused.

Keywords: Mobile agents, autonomic computing, JADE, Fault Management, APOC

iv

Resumen

Este trabajo presenta una solución para la gestión de fallas enfoca-

da en mejorar las técnicas tradicionales que se usan para este propó-

sito en plataformas de servicio de telecomunicaciones. Esta solución

se basa en dos conceptos tecnológicos novedosos, la computación

autónoma y los agentes móviles. Mediante estas dos tecnologías,

y aprovechando sus características so�sticadas, se desarrolla una

solución que ofrece disponibilidad incrementada, reacción practiva

a posibles fallas, tiempos de respuestas más rápidos y consumo de

ancho de banda reducido. Se discute en detalle la arquitectura de

la solución, y se presentan y se discuten casos mostrando su com-

portamiento y su desempeño.

Palabras clave: Computación autónoma, agentes móviles, gestión de fallas, JADE, APOC.

Content

Abstract iii

1 Introduction 2

1.1 Statement of the problem . 3

1.2 Objectives . 6

1.3 Contribution . 7

1.4 Organization . 7

2 Fundamentals 8

2.1 Fault Management. 8

2.2 Autonomic Computing. 11

2.3 Mobile agents . 13

3 State of Art and related works 19

3.1 Introduction . 19

3.2 Novel approaches . 20

3.3 Contributions of this thesis . 29

4 An architecture for fault management in TELCO platforms 31

4.1 Reference framework. 31

4.2 Components architecture. 32

4.3 Components in deep. 33

4.4 Detailed description of platform running . 39

5 Experiments and results 41

5.1 Introduction . 41

5.2 Description of test platform . 41

5.3 Agents implementation. 42

5.4 Experiments and results . 42

5.5 Experiments discussion. 44

6 Conclusions and future work 46

6.1 Conclusions . 46

6.2 Future work . 46

Bibliography 48

1 Introduction

The topic of Fault Management has gotten a very high importance, because of its inherent relevance

to gain the goal of high availabitility in systems. This topic has a high interest in enterprise and

academic communities, and it has become a hot research topic.

This thesis proposes a novel approach for Fault Management, in particular applied to Telecommu-

nications platform domain. This approach consists in an architecture based on Mobile Agents and

the principles of Autonomic Computing, which improves the Fault Management process itself by

providing:

• Increased accuracy, as the data for the fault detection can be collected in smaller time intervals.

• Learning capabilities, to predict and prevent certain failure conditions.

• Self-correction of failures, by providing intervention mechanisms on the systems components

being monitored.

• Increased scalability and stability, by its distributed and mobile nature.

.

This section will introduce some of the reasons which have motivated researching on this topic and

attempting to provide an improvement for current methods.

A �rst element which is important to be mentioned is the fact, that usually system elements, and

therefore service platforms do not have Fault Management at design time; Fault Management is

added a-posteriori and this is a condition which makes very di�cult to include this feature. Com-

ponents and platforms are not designed by nature to be managed. This implies a great challenge,

as Fault Management features which be added to system components should adapt to the nature

of component themselves, but not being intrusive so that they do not a�ect the correct function.

Another element, which will be presented in detail in chapter 3, is the fact that most of the methods

actually used in Fault Management are based on a Client/Server approach. Client/Server has two

main disadvantages, in relation with modern platforms and architectures.

• The trend in system architectures is mainly pointing towards distribution of system compo-

nents. Proposals as Distributed Service Oriented Architecture [Li and Wu, 2009] and its core

concept, Service Delivery Platform (SDP) [Callaway et al., 2008] encourage the distribution or

the access of remote components to access services and features. Distribution of services com-

ponents increases complexity of Fault Management, and makes the Client/Server approach

non suitable because of high delays in failure detection, and high bandwidth consumptions

[Al-Kasassbeh and Adda, 2008]. Figures 1-1 and 1-2 illustrate these situations and compare

them in Client/Server approach and Multi Agent approach.

1.1 Statement of the problem 3

• In traditional approaches, the server component (named Network Management Station, NMS

in the SNMP architecture) only queries the data in management components, and receives

alarms, but it usually does not execute any active action in response to the failure. This

action has to be performed by a human operator, after acknowledging the alarm or noti�ed

event. In few words, current and traditional mechanisms lack of the capacity to correct the

failures, and to learn how to avoid them.

Figure 1-1: Reaction time when increasing node numbers in traditional SNMP approach and mul-

tiagent approach [Al-Kasassbeh and Adda, 2008].

In particular, this last element, more than a disadvantage is a restriction of Client/Server ap-

proaches. There exist propietary solutions, as for example Predective Self Healing by Sun Microsys-

tems [Sun Microsystems INC, 2010], which have autonomic features regarding Fault Management,

but it is not the general case.

Also, the Client/Server approach for Fault Management, is usually limited to a database which con-

tains the information to be queried and monitored. (In SNMP architecture this is the Management

Information Base). Usually, this MIB does not de�ne thresholds which allow to identify failures;

these thresholds have to be precon�gured by a human operator. Client/Server approach lacks of

self-learning which helps to ease the predictive and proactive monitoring.

1.1 Statement of the problem

Information technologies, and particularly services based or working on Internet have presented a

very accelerated evolution in recent years. From the times of Internet dawn to nowadays, the role

of these services and technologies has become more important and critical, not only for particular

customers, but also for companies whose processes and business goals rely on them.

The evolution in technologies themselves, has caused that multiple networks arise to support them;

1.1 Statement of the problem 4

Figure 1-2: Tra�c generation when increasing node numbers in traditional SNMP approach and

multiagent approach [Al-Kasassbeh and Adda, 2008].

in a �rst instance, these networks were di�erent and highly specialized, almost a unique network for

every service. Nowadays. the industry trend is o�ering a single network which be able to support

multiple kind of services, giving the adequate treatment for every particular service. This trend is

what is known as Service Convergence, or simply Convergence.

As service converge, many di�erent elements of infrastructure are involved in their proper func-

tioning. The increasing complexity related to the relationships among these elements, which on

their turn might be located in a very distributed and scattered deployment, and the usually real-

time requirements, particularly the response to failure events during operation of them, is causing

that supervision, monitoring and management complexity of platforms increases in a very dramatic

way. A point is being reached, where there will not exist enough quali�ed personel to support the

infrastructure where critical services depend of [IBM Corp., 2005].

Infrastructures where these services run on are considered critical-mission because of the high

requirements of reliability and availability [Fujisaki et al., 1997]; This is the usually know as �ve

nines paradigm.

The capacity of detecting failures in a given system is a very important challenge arising in many

engineering disciplines. When dealing with expensive equipments, large and complex systems,

or infrastructure where critical services or processes depend on, requirements of availability and

reliability increase in a dramatical way. This is a reason that makes Fault Management, becomes a

very important research topic in areas as chemical, aerospacial, nuclear and electrical engineering,

among many others [Hwang et al., 2010].

One of the most important areas on Telco Network Management, which is directly involved in

gaining high levels of availability in platforms is Fault Management (Fault Management). In fact,

the most widely used and studied models of IT management and operation de�ne it as a core area

[ISO, a][ISO, b][ITI,][ITSMF, 2003]

1.1 Statement of the problem 5

Fault Management in general, and in particular in a telecommunications platform is the process of

determining and correcting problems that arise in the communications network. Typically, when

a problem arises in the network (e.g., a device malfunction), it generates a signal (alarm) that is

captured by monitoring systems. One di�culty is that the �primary� network problem genera-

lly causes connected or neighboring elements to generate �secondary� alarms; for example, from

elements expecting con�rmation of messages [Kerschberg et al., 1991].

Fault Management can be conceptually divided in three phases: Detection, diagnosis and repairing

[V. Baggiolini, 1998].

Detection is based on the analysis of both alarm events generated by platform components, indica-

ting ongoing malfunctions or buggy behaviors (Passive Monitoring) and injection of test signaling

or test transactions into system components to assess the answers produced by them (Active Mo-

nitoring) [Miller and Arisha, 2001].

Diagnosis is the attempt to detect the root cause or causes of a problem. This diagnosis can be

performed by event correlation [Sterritt et al., 2003] or by specializing the probes sent to a particular

equipment detected or suspected as failing [Brodie et al., 2002, Chen, 2006].

Repairing is the intervention performed on the faulty component, executing the repairing itself, or re-

moving or isolating it to avoid the overall impact on the whole platform [Sterritt and Bustard, 2002].

Both of the approaches (active or passive monitoring) are usually based on Client/Server (CS)

computing model, where there is a centralized entity performing detection and diagnosis, either by

analyzing and correlationing the messages sent by components, or by sending and receiving back

the testing probes and processing them o�ine. Traditional approaches to Fault Management do

not have inherent mechanisms to perform repairing; This is left to an external human operator or

it is performed by a propietary and speci�c entity into the faulty equipment. CS model presents

serious limitation when facing the challenges generated by the evolution of service platforms, which

everyday become more and more complex. These limitations cause that detection and correction

might not be e�cient, accurate and agile enough for service availabiliy requirements. Also, the fact

of having a centralized component for fault management, makes itself a single point of failure in the

platform. To be e�ective, a Fault Management system should have an availability and robustness

even superior to the platform which is managing itself [Sun et al., 2003].

It is important at this point of problem contextualization, to give a precise de�nition of some core

concepts which are recurrent and very imporant for well understand the problem terminology.

Following to Steinder and Sethi [Steinder and Sethi, 2004], these are the de�nitions of four core

concepts related to fault management:

• Event, de�ned as an exceptional condition occurring in the operation of hardware or software

of a managed network, is a central concept pertaining to fault diagnosis.

• Faults (also referred to as problems or root causes) constitute a class of network events that

can cause other events but are not themselves caused by other events. They can be classi�ed

in intermitent, permanent or transient.

• Error is de�ned as a discrepancy between a computed, observed, or measured value or condi-

tion and a true, speci�ed, or theoretically correct value or condition. Error is a consequence

of a fault. Faults may or may not cause one or more errors.

1.2 Objectives 6

Figure 1-3: Core concepts in Fault Management [Steinder and Sethi, 2004].

• Symptoms are external manifestations of failures. They are observed as alarms, which might

be noti�cations of inminent or ongoing failures.

Figure 1-3 illustrates the relationship among core concepts in an example of a real world topology.

1.2 Objectives

1.2.1 General Objective

Design an architecture for Fault Management in TELCO Platforms by implementing the concepts

of Autonomic Computing, by means of Mobile Agents.

1.2.2 Speci�c Objectives

• Compare Fault Management based on Autonomic Computing against a Traditional Fault

Management approach by showing advantages and disadvantages.

• Propose an architecture based on Mobile Agents for Fault Management, which shows the fea-

tures of Autonomic Computing Paradigm, and how they improve Fault Management processes

for TELCO platforms.

1.3 Contribution 7

• Validate the proposed architecture by applying to a real world TELCO platform, evaluating

its performance and accurateness in contrast to other methods.

• Compare di�erent mechanisms to access system resources, to provide a non instrusive way to

gather information from them for management and monitoring tasks.

1.3 Contribution

In this work, the solution to be presented is an architecture for improving the tasks related to Fault

Management, by using mobile agents implementing the features of autonomic computing, in such

a way that Fault Management be more agile, more accurate, and more than just detect and report

failures, be capable to learn how to correct and then avoid them.

1.4 Organization

This work is organized in the following way: Chapter 2 presents the backgroumd of the core concepts

used in the formulation of the architecture being the main contribution of this thesis. Chapter

3 presents a review of literature on the concepts of Autonomic Computing, Mobile Agents and

Fault Management. Chapter 4 outlines the architecture proposed for Fault Management in Telco

platforms using the paradigms of Autonomic Computing and Mobile Agents. Chapter 5 describes

the experiments performed on a prototyple implementing the proposed architecture, to validate its

features and �nally Chapter 6 collects the conclusions of this work, and future work to be performed

from it.

2 Fundamentals

This chapter presents some concepts and terminology which is useful to understand the proposed

solution for Fault Management problem, by using Autonomic Computing and Mobile Agents. First,

the concept of Fault Management in Telecommunications is introduced. Then, the concepts of

Autonomic Computing is introduced and Mobile Agents technology are presented.

2.1 Fault Management.

Fault management (Fault Management) is the collection and analysis of alarms and faults in the

service. These faults can be either transient or persistent. Transient failures are not alarmed if

their occurrence does not exceed a threshold; for example, sporadic message losses or delays. These

events are, however, logged. Some transient problems can be automatically corrected within the

service, while others may require di�erent levels of management services to resolve. Faults can be

determined from unsolicited alarm messages or by log analysis; the latter may be the only course

when, say, existing services/applications do not have internal monitoring and/or alarm generation

capabilities. The Fault Management function analyzes and �lters the fault messages and coordinates

the messages so that the number of actual events re�ects the real conditions of the services. The

root cause is reported, while suppressing other related fault messages [Goyal et al., 2009].

Several organizations and institutions have formulated diverse approaches to fault management.

The International Organization for Standardization's (ISO) has de�ned the Network Management

Framework. This framework is a reference model created �[...] to provide a common basis for the

coordinated development of management standards [ISO, a]�. It consists of �ve conceptual areas

that (1) de�ne terminology, (2) create structure, and (3) describe activities for the management

of net-centric systems. In particular, Fault Management is de�ned as an area encompassing fault

detection, isolation and the correction of abnormal operation of the Open Systems Interconnection

Environment (OSIE). Functionality of Fault Management includes [Gorod et al., 2007] :

• Maintain and examine error logs;

• Accept and act upon error detection noti�cations;

• Trace and identify faults;

• Carry out sequences of diagnostic tests.

• Correct faults.

In more recent times, organizations have implemented fully standarized frameworks which help to

formalize their technology processes. In particular, the two more widely adopted frameworks are

ITIL and eTOM, this last one, mainly in TELCO companies.

2.1 Fault Management. 9

The Information Technology Infrastructure Library (ITIL) [ITI,] consists of an interrelated set of

best practices and processes for lowering the cost, while improving the quality of IT services delivered

to users. It is organized around �ve key domains: business perspective, application management,

service delivery, service support, and infrastructure management. ITIL has gained, of all approaches,

the biggest popularity and can now indeed be called a de-facto standard. Even standards as ISO

20000 [ISO, b], which de�nes best practices for Service Managament are based on ITIL.

Within ITIL. there are some very important tasks which link Service Delivery and Service Support

domains.

As de�ned in ITIL, Service Level Management ensures continual identi�cation, monitoring and

reviewing of the optimally agreed levels of IT services as required by the business. Most targets set

in a Service Level Agreement (SLA) are subject to direct �nancial penalties or indirect �nancial

repercussions if not met. It is therefore critical for this management process to �ag when service

levels are projected to be violated in order for an IT organization to take proactive actions to address

the issue . To this extent, ITIL de�nes an incident as a deviation from the (expected) standard

operation of a system or a service. The objective of Incident Management is to provide continuity

by restoring the service in the quickest way possible by whatever means necessary (temporary �xes

or workarounds).

As mentioned, ITIL understands the management of service problems (Incidents), more in relation-

ship with the a�ectation they cause in SLA's and its impact in customer and �nal user relationship.

The work by Salle and Bartollini presents a deeper discussion on this topic [Salle and Bartolini, 2004].

(See Figure 2-1)

Figure 2-1: Scope of ITIL IT Service Management [Brenner, 2006]

Recently, and with the goal to adapt itself to Network Evolution and increased growing, The

Telecommunications Managament Forum. which is the organization which traditionally has been

followed by service providers in the concepts related to service managament, has released the �En-

hanced Telecommunications Operation Map�, best known as eTOM [TMF,].

The eTOM model (Figure 2-2) divides the telecom network operations into three main areas:

Service Ful�llment, Service Assurance and Billing, of which Service Management is one of the key

functions across all domains. Within Service Management, there are various applications such as

2.1 Fault Management. 10

Service Problem Management and Service Quality Analysis, Action and Reporting that are closely

related to customer services. In this model, service management focus is not to wait passively for

customer complaints when there is a service-impacting problem, instead the focus is to identity

quickly the customers whose service is being impacted and proactively notify them.

This is a challenging task because it requires (i) clearly-de�ned service management processes that

link the di�erent applications in the eTOM model, and (ii) complex application systems to automate

these processes.

Figure 2-2: The eTOM Model [Wong, 2009]

Figure 2-3 illustrates an example of Service Management process.

In this example, when the �Network Maintenance� application detects a network element alarm,

it immediately corresponds with the �Network Inventory Management� application to check the

services that are being impacted by this problem and the a�ected customers. This information

is then passed to the �Service Problem Management� application to see how this service problem

should be handled. On the one hand, the �Problem Handling� application would be triggered to

inform the a�ected customers about the service problem. At the same time, the �Customer QoS

Management� application will be invoked to verify whether any QoS commitments to the a�ected

customers are being violated. If so, penalty information must be sent to the �Invoice� application

to give appropriate credits to the a�ected customers. Depending on the service o�erings and the

customer requirements, the service management process for each service impacting problem might

be highly complex [Wong, 2009].

2.2 Autonomic Computing. 11

Figure 2-3: Service Management Process Example, according to eTOM [Wong, 2009]

Another relevant framework in the �eld of Fault Management is FCAPS. FCAPS is the ISO Telecom-

munications Management Network model and framework for network management. FCAPS is an

acronym for Fault, Con�guration, Accounting, Performance, Security, the management categories

into which the ISO model de�nes network management tasks. In non billing organizations Account-

ing is sometimes replaced with Administration.

A comparison between the ITIL IT Service Management and FCAPS would show that FCAPS has

most of the critical capabilities necessary for manageability and operability; ITIL of course has lot

more in the form of guidance on processes and methods [Goyal et al., 2009].

2.2 Autonomic Computing.

As a solution for the increasing complexity in operation and maintenance of service platforms,

appears Autonomic Computing.

Autonomic Computing is a concept inherited from bio-inspired computing in its beginnings. The

�rst work where Autonomy Oriented Computing is presented is the work by Liu et al [Liu et al., 2001].

This work de�nes the fundamentals of Autonomy in computing and the four main characteristics

which should be exhibited by a computing system according to this paradigm:

• Autonomy: The entities in the system are rational individuals, which are capable to act

in an independent way; in other words, the system does not have a central component and

manager.

• Emergent: When system entities cooperate and work together, they exhibit behaviors not

available or not possible to be obtained by individual entities separatedly.

• Adaptive: System components are capable to modify their behavior according to changes

present in the environment where they operate.

2.2 Autonomic Computing. 12

• Self-organized: The system componentes are capable to organize themselves to achieve the

previous commented behaviors.

Authors also present the several types of Autonomy Oriented Computing according to how autonomy

is achieved by the system.

In Jin and Liu [Jin and Liu, 2004], Autonomy Oriented Computing is formally de�ned, by employing

set notation to express the concepts associated: Environment, Computing Entity, State, Behavior,

Goal are some of the concepts which are expressed in a formal language.

From a more applied point of view, and again from a bioinspired perspective, Horn [Horn, 2001]

presents the approach to Autonomic Computing from perspective of a technology industry leader

as IBM.

The �rst part of this work illustrates some of the problems which are inherent to technological

evolution. One of the most relevant is the increasing complexity, which is almost reaching a state

where operation of service platforms according to traditional approaches will not be possible. Taking

as referent the human autonomous nervous system, the author proposes a new paradigm for service

platforms named Autonomic Computing. Following Horn, there are eight keys elements which

posseses an Autonomic Computing System:

• Self-Awareness: This is, the system should know itself. It will need detailed knowledge of

its components, current status, ultimate capacity, and all connections with other systems to

govern itself. It will need to know the extent of its �owned� resources, those it can borrow or

lend, and those that may be shared or should be isolated.

• Self-Con�guration: System con�guration or �setup� must occur automatically. Also, the

system must modify itself, in such a way that its con�guration be the most adequate to cope

with environment conditions.

• Self-Optimization: This is, the system will always try to �nd other ways to improve its func-

tioning. It will monitor its constituent parts and �ne tune work�ow to achieve predetermined

system goals.

• Self-Healing: System must be able to recover from events that might cause malfunctioning.

The system also must be able to detect problem or potential problems, and according to this,

de�ne alternate ways to perform, applying recon�guration to keep the system working.

• Self-Protection: Starting from the fact of the potentially agressive and hostile environment

where system resides, it must be able to detect, protect and identify potential attacks or

vulnerabilities, so that it can protect itself and keep working in a secure and consistent state.

• Self-adaptability: This is, the system must know its environment, the context which su-

rrounds it when operating, and the other entities cohabitating with it. It must be able to

adapt to this environment, and its changing conditions, by recon�guring itself or optimizing

itself.

• Openness: The components in system must be open to communicate each other, and must

be able to work with shared technologies. Propietary solutions are not compatible with Au-

2.3 Mobile agents 13

Figure 2-4: Autonomic Computing Characteristics [Lin et al., 2005]

tonomic Computing philosophy. Components should employ standard protocols, or at least

de facto standards in their communication.

• Self-containment: Components within an Autonomic Computing System must be able to

perform the task or tasks they have assigned, not requiring external interventions for the

performing itself, and hiding the complexity to end user. This does not mean that the system

will lack of interfaces allowing the intervention and feedback from human operators.

Complementing the work by Horn, Lin et al [Lin et al., 2005] review Autonomic Computing from

the perspective of Software Engineering. They present a proposal of metrics which could be used

to evaluate the quality of frameworks based on Autonomic Computing.

In other side, the works of Sterritt [R.Sterrit, 2001], Magedanz et al [Magedanz, 2004], Ionescu et

al [Ionescu et al., 2008] and Tizghadam et al [Tizghadam and Leon-Garcia, 2010] evidentiate how

Autonomic Computing has become a very important research topic in the �eld of Information

Technologies, both for academic communities and for industries, in solving many problems which

are becoming di�cult to face with traditional and conventional approaches.

2.3 Mobile agents

Previous to introduce the concept of Mobile Agents it is important to establish some concepts

related to Agent fundamentals.

2.3.1 Agent fundamentals

Agents are enjoying a lot of popularity as a novel abstraction for structuring distributed applica-

tions. Agent approach is a technology from the �eld of Arti�cial Intelligence. Agents can deploy

distributed applications into a networked information system. Often, they act on behalf of users,

enabling task automation and hiding complexity. Software modules, which are autonomous compo-

nents of software, are equipped with self-contained intelligence capabilities (using a combination of

2.3 Mobile agents 14

technologies, including expert systems for reasoning, fuzzy logic for knowledge representation, and

machine learning for improving their knowledge) typically implement Agents. They usually operate

autonomously, de�ning and organizing their executions and internal objectives and exerting a cer-

tain degree of control over their actions. Moreover, Agents can communicate with user and network

resources: they cooperate with other agents to execute tasks that might be beyond a single agent's

capability [Boudriga and Obaidat, 2004].

Although, there is not a precise and widely adopted de�nition for Agents, the tendency is de�ne them

through the features they should expose [Franklin and Graesser, 1996]. Following to Yubao and

Renyuan [Yubao and Renyuan, 2009], an agent is an entity possesing the following characteristics:

• Self-government: Agents should have the ability to governate themselves, without external

interference from the outside world while they are performing their tasks.

• Smart: Agents should implement certain functions and be able to choose the required infor-

mation to complete their tasks. They also should be able to get knowledge from the performing

of their tasks.

• Lasting: The agents should have survival capacity, according to their participation in the

tasks.

• Co-relation: This is the social behavior described by theoretical de�nitions. In real world,

the coperation is presented as messages exchange among the agents in the system.

Jennings and Wooldridge [Jennings and Wooldridge, 1998] de�ne an agent as �... computer system

situated in some environment, and that is capable of autonomous action in this environment in

order to meet its design objectives.� An intelligent agent is a computer system that is capable of

�exible autonomous action in order to meet its design objectives. By �exible, we mean that the

system must be:

• responsive: agents should perceive their environment (which may be the physical world, a

user, a collection of agents, the Internet, etc.) and respond in a timely fashion to changes that

occur in it,

• proactive: agents should not simply act in response to their environment, they should be able

to exhibit opportunistic, goal-directed behavior and take the initiative where appropriate, and

• social: agents should be able to interact, when they deem appropriate, with other arti�cial

agents and humans in order to complete their own problem solving and to help others with

their activities.

In Tosic and Agha [Tosic and Agha, 2004], a taxonomy of agents is presented. This hierarchical ta-

xonomy is important because complements the conventional de�nitions by presenting the neccesary

attributes which should expose an agent.

The �rst of these attributes is resposiveness [Wooldridge and Jennings, 1995]. The responsiveness

means that the agents have to be able to notice changes in environment, respond to these changes

and a�ect their input or modify their internal state according to these changes.

2.3 Mobile agents 15

Figure 2-5: Software Agent Classi�cation [Yubao and Renyuan, 2009]

Another attribute is the persistence; this is, the agents should be alive on their own while they

perform their task. This is a behavior basically di�erent than the exhibited by a subroutine within

a program, which is turned on or o� on demand.

The goal-orientedness or goal-drivenness is another important characteristic of agents. In compu-

tational agents, it is related to the fact that the agent is implemented to perform a speci�c task or

to solve a very de�ned problem, so, the goal during the execution of the agent is perform that task

or solve that problem.

Finally, the last attribute which is presented by the author is proactiveness. This attribute refers

to the fact that agent is not executing by cycling randomly around its internal states, but in a way

which allows it to get its goal.

Figure 2-5 presents a schematic classi�cation of software agents.

In other hand, Boudriga and Obaidat [Boudriga and Obaidat, 2004] de�ne the main capabilities to

be exposed by a system based on Agents:

• Intelligence. The method an agent uses to develop its intelligence includes using the agent's

own software content and knowledge representation, which describes vocabulary data, condi-

tions, goals, and tasks.

• Continuity. An agent is a continuously running process that can detect changes in its environ-

ment, modify its behavior, and update its knowledge base (which describes the environment).

It can be triggered by the occurrence of events, a time condition, or environmental constraints.

Continuity de�nes how the agent is triggered and with what degree of synchronization it ope-

rates.

• Communication. An agent can communicate with other agents to achieve its goals, and it

can interact with users directly by using appropriate interfaces. To do so, a wide range of

resources and protocol services can be accessed. An agent's communication attribute describes

resources, protocols, and services with which the agent is allowed to interoperate.

• Cooperation. An agent automatically customizes itself to its users' needs based on previous

experiences and monitored pro�les. It can also automatically adapt itself to changes. The

interoperation's complexity might have several types: client, server, or negotiations based on

various intelligent methods. The cooperation attribute describes the nature of cooperation

and the prerequisite for multiagent interoperation.

2.3 Mobile agents 16

• Mobility. The degree of mobility with which an agent can perform varies from remote execu-

tion, in which the agent is transferred from a distant system, to a situation in which the agent

creates new agents, dies, or executes partially during migration.

2.3.2 Mobile Agents

Although the basics of Agents provide some support for distribution, the current evolution of tech-

nologies and architectures, where system components are highly distributed and even system compo-

sition is dynamic (new components enter and leave during system performing) consitute a challenge

in design and development of service platforms. The emergence of Wireless and Cellular networks

rehearse this challenge. As an approach to this challenge appear solutions focused in logical mobi-

lity, code and state mobility of the computational entities. The so named mobile agents implement

a variation of this behavior, where they can be migrated in state and code to di�erent locations,

and it is the agent itself who autonomously decides about this migration [Picco, 2001].

Mobile agents are such agents that can move in a computer network from host to host as needed in

accomplishing their tasks. Mobile agents o�er a natural extension of the remote programming (RP)

paradigm in several interesting ways. In particular, mobile agents are generally thought to be able

to act with a certain degree of autonomy. That is, the agent is able to make intelligent decisions

regarding its itinerary and modify it in a dynamic fashion in response to information that becomes

available as it moves from one host to another [Yang et al., 1998].

Mobile agents provide a potentially e�cient framework for performing computation in a distributed

fashion at sites where the relevant data is available instead of expensive shipping of large volumes of

data across the network. For example, in many data mining and knowledge discovery tasks, a mobile

agent can visit multiple, geographically distributed, data repositories and return with knowledge.

They are also de�ned as programs that may be dispatched from a computer to another for execution

and interaction with other agents. They are not bound to the system where they begin execution,

but they can transport themselves to di�erent hosts in the network. Thus, the hosts become very

�exible, because the computation can be performed on any host by means of the agents, which can

move form one host to another in order to get the resources and computing power they need to

complete their tasks [Zaharia et al., 2003].

Zaharia et al [Zaharia et al., 2003] gather seven reasons which highlight the use mobile agents as

paradigm for implementing distributed applications:

• They reduce the network load by reducing raw data �ow over network;

• They overcome network latency in real-time systems;

• They encapsulate protocols, i.e. establish channels for communication;

• Asynchronous and autonomous execution;

• Dynamic adaptation (they sense their environment and they are able to adapt to changes);

• Heterogeneity (they depend only on their execution environments);

• They are robust and fault tolerant.

2.3 Mobile agents 17

Figure 2-6: Mobile Agents in Distributed Database Access [Samaras et al., 1999].

The important key contribution of agent mobility is the fact that the execution of the agent is

strongly decoupled of its location; It could be understood as the agent is where it is really needed,

and even the agent could decide to migrate itself to locations with more resources for full�ling its

goal. This perspective o�ers multiple possibilites for the evolution of distributed computing and

applications. Agent platform could be implemented in such a way that provides independence of

operating system and hardware platform.

Although there are authors which pretended to reduce the applicability of Mobile Agents (See

Harrison et al [Harrison et al., 1995]), they can be considered as another approach to be used for

the design and implementation of distributed applications, and which �ts very adequately to the

state-of-art of modern technologies and architectures.

Picco [Picco, 2001] in his introduction to mobile agents illustrates two success cases in applying

Mobile Agents to solve the problem of reducing Database query times [Samaras et al., 1999] (Fi-

gure 2-6) and Data collection for Network Management Systems [Baldi and Picco, 1998]. Other

works in this area are the works by Adhicandra et al [Adhicandra et al., 2003] and Gavalas et al

[Gavalas et al., 2009] (Figure 2-7)

These experiencies in applying Mobile Agents in Network Management will be an important starting

point for the work which will be presented on this thesis.

2.3 Mobile agents 18

Figure 2-7: Mobile Agents in Network Management [Gavalas et al., 2009]

3 State of Art and related works

3.1 Introduction

This chapter will present works related to Fault Management. As it will be shown, the existing

approaches (except by Self-Maintenance) are based in Client/Server model, and lack of mechanisms

for repairing the faulty components. Also, they lack of mechanisms which allow to anticipate to

fault conditions, preventing them in a predictive or proactive way.

The �rst step in fault management is fault detection, which is usually performed via System Moni-

toring.

Bagglioni and Harms [V. Baggiolini, 1998] mention two main features which are common to most

of Fault Management approaches and techniques:

• They are generally added a-posteriori to existing applications. This means that applications

are not designed for being managed. They often lack a suitable architecture and e�cacious

means for diagnosis and repair of faults.

• They typically use external management functionality. State or behavior information is ex-

tracted from the application and analyzed by an external manager. This means that problems

are torn out of their live context, which (1) makes them much more di�cult to diagnose and

correct, and (2) breaks encapsulation. This defeats good software engineering principles,

hinders reusability, and does not favor automatic management solutions.

Traditional and conventional Fault Management systems are based on a Client/Server (C/S) model

[Al-Kasassbeh and Adda, 2008], where alarms and events are captured by sensors in system com-

ponents, and sent them to a centralized entity, the Management Server or Management Station,

where they are collected, and noti�cations are sent to system operators so that they perform the

diagnosis and correction of the faulty component and situation (Figure 3-1).

Other common scenario is the information collection, which is triggered and performed from the

management entity by querying the managed devices. Further analysis is performed by external

applications. This is the main working principle of Simple Network Management Protocol (SNMP)

[Harrington et al., 2002], which is currently the most used basis in Fault Management systems

Serious limitations of this traditional approach are the requirement of human intervention for fault

diagnosis and correction, and the lack of automatic learning from the failure occurrence; in this

approach, the knowledge has to be acquired, documented and stored by human system operators

and administrators, and the application of this knowledge is upon these same human actors.

Also, from data which is periodically gathered from managed device, further analysis has to be

performed o�ine; no knowledge is discovered from these data, and diagnosis has to be performed

by human operators.

3.2 Novel approaches 20

Figure 3-1: Traditional Fault Management [Al-Kasassbeh and Adda, 2008]

Finally, altough C/S model is very reliable, it has problems regarding scalability and capacity to han-

dle in an adequate way very distributed deployments or high quantity of elements [Pras et al., 2004]

and might present high consumptions of bandwidth [Al-Kasassbeh and Adda, 2008].

Zaw and Soe [Zaw and Soe, 2008] present a typical C/S solution for Network Management in Local

Area Network environments; this work exhibits the common features of C/S approach to Fault

Management.

Wang and Zhou [Wang and Zhou, 2004] present and extension to C/S monitoring based on SNMP

[Harrington et al., 2002] for Grid platforms, which solves some of the scalability problems which are

inherent to C/S model itself.

3.2 Novel approaches

Maintenance is a task which is performed on systems, and its main purpose is keep or restore the

condition of the system to a prede�ned state. Maintenance can be preventive, when it is performed

on a timely basis, to deal with degradation or aging or system parts, or corrective, when it is

performed after a failure occurs. There is another novel approach named proactive maintenance,

where current and past information and data of system state is processed to detect possible failures

yet to occur, even forecasting the time before a failure occurs.

3.2.1 Bio-Inspired approaches

With the goal of o�ering increased availability in systems, industry has de�ned the concept of

Self-Maintenance (SM).

SM is taken from nature, emulating the capacity of self-repairing which is exhibited by some living

organisms.

Mei-hui et al [Mei-hui et al., 2010] introduce an approach to SM. According to authors, SM is part of

a wider feature, Self-Recovery (SR). SR can be understood as the combination of Self-Maintenance

and Self-Repairing.

Self-Maintenance is composed by technologies as Recomposition, Dynamic Recon�guration, Cold

Backups, and Reconstruction, that is to say, technologies which allow to modify or even restore the

state of the system to ful�ll with some service levels.

3.2 Novel approaches 21

Self-maintenance is not a feature considered indispensable for the systems; it is more an evolution

and improvement of conventional maintenance systems. Self-maintenance component is conformed

by Detection System, which are the sensors on charge to detect events and issues; the information of

these sensors is then transmitted to the Analysis System[Yuniarto and Labib, 2006], which evaluates

the situation according to fault type, and then, transmit to Maintenance System the decision about

how to perform the maintenance itself.

Figure 3.2 presents a �ow diagram which illustrates the concept of Self-Maintenance.

Figure 3-2: The development of Self-Maintenance Process [Mei-hui et al., 2010]

Labib [Labib, 2006] presents the notion of Next Generation Maintenance Systems, as an approach

for the design of Self-Maintenance machines. In the �rst part of this work, the generations of

maintenance are presented, with a �rst generation, lasting approximately until World War II, when

maintenance was merely corrective, having fault as something unavoidable, so maintenance consisted

in �xing equipment, a second generation lasting until 70's decade, when maintenance was focused in

o�ering a high availability on equipments, while costs tried to be reduced. In this second generation,

some statistical techniques started to be used in fault modelling, and computer systems, although

the ones of these times were quite big and slow. The third generation, which is considered to extend

to present time, when maintenance is focused in o�ering high availability and reliability, but with

greater emphasis in environment and security.

So, the fourth generation will be an evolution of third, aiming to zero downtime in systems, by

means of hot redundancies. It might be that the vision of this generation aims to avoid failure

consequences, rather than failures themselves. To gain this, maintenance techniques should combine

self-maintaning, self-repair and self-healing features.

Figure 3-3 shows the schematic division of Maintenance Strategies.

This work also presents some unmet needs in responsive maintenance, this is, features which might

be considered as desirable in Self-maintenance systems: a) Intelligent monitoring, prediction, preven-

tion and compensation for sustainability, b) Prioritization, Optimization and responsive scheduling

for recon�guration needs and c) Autonomous information �ows from market demands to factory

asset utilization.

In particular, the last point is very important, as mentioned that most of the maintenance method do

not provide feedback to bussiness process within the organization, being these isolated of corporate

3.2 Novel approaches 22

policies and merely focused on infrastructure rather than services and processes.

An important di�erence which is presented between traditional maintenance (preventive and co-

rrective) and Self-Maintenance is the fact that traditional maintenance consists in interventions to

avoid more catasthrophic failures, while Self-Maintenance is based in intelligent monitoring, with

adaptive and responsing behavior in the system. The features required in the system to be able

to implement Self-Maintenance are perception, fault classi�cation and diagnosis, failure prediction,

repair planning and repair execution [Sirvunnabood and Labib, 2005].

Figure 3-3: Maintenance Strategies [Labib, 2006]

Author refers a classi�cation for maintenance strategies [Umeda et al., 1995]: Attributive and Func-

tional maintenance. The attributive maintenance consists in replacing failing parts (which implies

stopping the system) while functional maintenance tries to repair the functions rather than compo-

nents. Functional maintenance focuses in the whole system, and would allow that Self-Maintenance

be implemented. Figure 3-3 briefs the classi�cation of maintenance strategies.

Some features wich are required for Self-Maintenance are presented, as follows:

• Monitoring: Self-Maintenance systems must have sensor capabilities; sensors would collect

raw data from system components, and this data would be sent to a processing entity.

• Fault judging: The processing entity would take the information coming from sensors and

would judge whether system component is on normal or abnormal state. It would be desirable

also that from this raw data, the system would try to predict time left for a failure.

• Diagnosing: After analysing the data, whether an abnormal state is found, the system should

classify the failure, and identify if possible its root causes, so that a reparing plan can be

carried out.

• Repair planning: From the information collected, the system should be capable to propose one

or several maintenance plans. These plans would include also information previously stored,

3.2 Novel approaches 23

taken from experts. As many repair plans might be proposed, the system should decide to

apply an optimized one.

• Repair execution: The action of maintenance which is executed by the system itself. This is

performed by control and actuators on the system components.

• Self-Learning and improvement: Although an unexpected problem arises, the system is ex-

pected to include the applied solution as knowledge for a possible next time where the same

failure arises. This feature will allow the system to repair itself in a shorter time frame, being

more e�cient and e�ective.

Sterrit et al [Sterritt et al., 2003] introduce the concept of Autonomy in event correlation. Starting

from the ideas formulated by Horn [Horn, 2001], authors present an approach where the goal is

avoiding failures at system level, by performing self-con�guration to ensure minimal disruption.

This approach is composed by three main areas:

• Correlation: Consists in processin information which cames from several sources, and trying

to �nd relationships among the information pieces, which be useful to decide when and what

to do.

• Rule discovery: The information sent by network entities is just symptoms. A further pro-

cessing needs to be performed according to rules guiding what events correlate, and how to

process the information within them. Techniques as machine learning or data mining might

be useful at this point [Sterritt and Bustard, 2002], although in most of cases the most useful

knowledge will be the one which could be provided by a human operator [Uthurusamy, 1996].

• Autonomic Computing Correlator Analysis Tools: It is the mechanism which perform the

analysis to correlate the events reported, and try to �nd the root cause of the problem or

failure reported. It implements the self-diagnosis, and triggers the self-healing on system

components.

Figure 3-4 illustrates the high level design of this last component.

Figure 3-4: Design of Autonomic Computing Correlator Tool [Sterritt et al., 2003]

3.2 Novel approaches 24

Figure 3-5: Fault diagnosis with Rough Sets and Expert Systems [Yougang, 2009]

Sterrit [Sterritt, 2001] describe in detail the process of rule discovery by means of acquisition of

knowledge from events captured in network and from human expert knowledge, and later applying

data mining to this data to obtain new rules for event and alarm correlation. This work opens a

novel research topic, as the knowledge acquisition is vital to build monitor and fault management

systems which really adapt to changing network conditions and be able to work in real time.

3.2.2 Arti�cial Intelligence Based

Yougang [Yougang, 2009] proposes an approach based on Rough Sets Theory and Expert Systems.

This approach shows an improved diagnosis e�ciency by reducing redundant data and the occur-

rence of false alarms. By being based on Expert Systems, it still has the limitations of conventional

Expert Systems, as bottleneck in knowledge acquisition, and dynamic recon�guration of existing

knowledge.

Figure 3-5 illustrates the scheme of the system proposed by Yougang.

Al-Fuqaha et al [Al-Fuqaha et al., 2009] present a system called CHARS: Call Home Analysis and

Response System. CHARS receives a stream of events, which summarize the state of Software

Based Services and Network Elements, and also performs tasks which traditionally were performed

by System Operators. CHARS has the ability of correlate the messages produced by services and

elements, to detect the root cause of events and issues, and associate them with a solution procedure.

This system has the ability of de�ning relationships and dependencies among service components,

and allows to human operators bring knowledge into te system by de�ned scripts which can react

to problems, modifying the con�guration of system elements. CHARS has as its core a Rule-Based

Expert System.

The main design goals of this system are:

• Intelligence: By using Expert Systems, CHARS has the possibility of store and forward chai-

ning the documention and solutions which were previously inserted by human experts, or

deduced when solving a particular problem.

3.2 Novel approaches 25

Figure 3-6: Architecture of CHARS [Al-Fuqaha et al., 2009]

• Reactiveness: By using scripts which can interact with network entities, CHARS has the

capacity of isolating outages which are detected by forward chaining.

• Scalability: As the knowledge of the system is stored in the database of the Expert system,

bring new external knowledge into the system is not a hard issue.

• Extensibility: By using technologies as XML, extending the components of the system, for

example the rules engine, is quite easy to perform.

Figure 3-6 shows the architecture of CHARS.

Varga and Moldovan [Varga and Moldovan, 2007] propose an Integrated Service Level Monitoring

and Fault Management (ISF) framework. This framework o�ers a solution for service-level monito-

ring, with the goal of o�ering end-to-end Quality of Service. This framework is applied in managing

several Local Area Networks, thus showing its applicability in multiprovider environments.

A system implemented following this framework, would be integrated by the following elements:

• Event collector: It is an entity where the messages sent by all the nodes and elements in

the system send their messages. At this element, they are normalized, stored in the event

database, and sent to preprocessing module.

• Data Miner: It is an entity on charge of analyze the event database. It applies analysis

algorithms to detect non matching patterns, and in case they are found, alarms are sent to

event collector, because they might indicate possible problems in system.

• Event Processing: It is integrated by two submodules, correlator, which tries to �nd correla-

tions among event messages, and �lter, which eliminates unnecesary events.

3.2 Novel approaches 26

Figure 3-7: Event processing module [Varga and Moldovan, 2007]

• Alarm Presentation: It is the entity which displays the alarms, and triggers a new Root Cause

Analysis for each one.

• Root Cause Analysis: It is an entity which using the descriptive information on the alarm,

tries to �nd a Root Cause for it.

• Advice and Noti�cation: It produces fault descriptions after the Root Cause Analysis. It uses

a database to compare the descriptive information and provide possible corrective actions to

be taken. This module could just notify, or take directly the actions on the network elements.

• Event Database: It stores the information of the collector, and is used by the data miner for

the analysis.

• Topology Database: It stores information of the real network structure. It contains node

addresses, node functionalities and connections among nodes.

In particular, for the Root Cause Analysis, this approach uses Petri-Nets as analysis technique as

mentioned in [Aghasaryan et al., 1997]. Figure 3-7 shows the event processing module, which is

the core and most important component of the proposed framework

Sterrit et al [Sterritt et al., 2002] present HACKER, which is a tool which integrates visualization

and data mining, incorporating principles of Computer and Human Discovery. The tool is designed

to assist in discovering unknown rules from events in such a way that these new rules can be

used to feed systems of event correlation based in rules. This process of knowledge discovery is

performed in three tiers: Visualization Correlation, Knowledge acquisition (Rule based correlation)

and knowledge discovery (Data Mining Correlation). Figure 3-8 shows a diagram illustrating the

three tier knowledge discovery process.

3.2 Novel approaches 27

Figure 3-8: The three tier knowledge discovery process [Sterritt et al., 2002].

3.2.3 Mathematic Techniques Based

Another approach which hase been used for Fault Management and System Monitoring is by means

of statistics.

Bhattacharyya et al [Bhattacharyya et al., 2004] present the use of discrete events for Fault Diag-

nosis and Detection. It is based on passive monitoring, and models the network nodes as Finite

State Machines, considering faults at Input, Output and Transitions of them. This work has some

limitations because, although it is able to detect all faults, it founds some kind of failures which are

not diagnosable.

Li et al [Li et al., 2009b] propose a method based on Bayesian Network to model the fault propaga-

tion on Distributed Application Systems. This approach presents a good behavior, but requires the

knowledge of a human expert to increase its performance, so it lacks of autonomy in its working.

Li et al [Li et al., 2009a] study the active monitoring of Internet Services as Fault Detection me-

chanism. This approach tries to solve the problematic related to balance the number of probes

which are sent, keeping the balance between enough probes for diagnose, but not increasing it on a

measure which could saturate the network. This approach proposes the integration of a-priori fault

distribution learning, and fault diagnosis in a Hidden Markov Model. The approach as presented, is

very accurate to work, even in noisy and uncertain environments, reducing the complexity related

to priory knowledge acquisition. Figure 3-9 illustrates the diagnosis probing selection method.

Chu et al [Chu et al., 2009] present an approach based in two algorithms, one for probe selection,

to monitor the whole components, and other for the fault diagnosis, by sending more probes to

obtain a more detailed view of system state. This work focuses in Service Concept, conceiving the

service as a composition of interdependent components, in such a way as whether a component fails,

it for sure will cause a degradation or failure in the other components. It uses for modelling the

3.2 Novel approaches 28

Figure 3-9: Diagnosis Probe selection [Li et al., 2009a]

dependencies among components a Bipartite Bayesian Network.

Chu proposes a layer model to understand the service, having the following layers:

• Demand Layer: It comprises the quality of service requirements de�ned for a particular service.

By measuring the service performance, and evaluation to see whether the service is full�ling

these requirements or not. In case that requirements do not be ful�lled, corresponding alarms

will be issued and sent to monitoring component.

• Service Layer: In this layer appear service themselves are de�ned in the system. There exists

a one-to-many mapping among service and quality of service requirements.

• Dependency Layer: Contains the dependency relationships among system components. This

layer applies for the cases where dependency model is adopted to de�ne the system.

• Component Layer: This layer contains the components which integrate a service. In gene-

ral, each service depends on several components, and di�erent service may share dependent

components.

• Mode Layer: This layer de�nes the modes or states where a service can be located at. One

of this modes is de�ned as working mode, and the other will represent di�erent degrees of

degradation.

This work shows an approach that reduces the necessity of probes, but produces a high diagnosis

rate, and a low number of false positives.

Figure 3-10 illustrates the representation of dependency model at service layer.

3.3 Contributions of this thesis 29

Figure 3-10: Dependencies model at service layer [Chu et al., 2009]

Chen [Chen, 2005][Chen, 2006] proposes an scheme named Proactive Probing and Probing on de-

mand which can be used to monitor the whole components of a service. He de�nes an entity called

Probing Service (PS), which is implemented as a Web Service, capable of performing a speci�c

transacion, record its result, and send it to a management station. These services are deployed

by means of Probing Service Outlets (PSO), where PS can invoked on a regular basis, or can be

invoked at anytime.

The scheme proposed by the author is composed by three stages. A �rst stage, when PSO and PS

are selected to monitor service components; the goal is select a set of PS as small as possible. At this

point, the information is collected with the only purpose of monitoring the health of the system, and

will not be useful for diagnosing the particular problem. The advantage of decoupling monitoring

and diagnosing is reducen overhead and tra�c, as system will be most of the time monitoring, with,

as mentioned, the smallest set of PS.

The second stage is o�ine rule development, that is to say, provide and strategy in the case of

one or several PS reports problems. This strategy should consider the whole possible pools of PS,

for the failure detection. The last stage of this approach is enabling On Demand and Incremental

probing, for the failure diagnosing and location. It is performed by using one or several PSs to get

additional information, and it is guided by the strategy which was de�ned on second stage.

Figure 3-11 illustrates the generic architecture of probing systems.

Kirmani and Hood [Kirmani and Hood, 2004] propose a mechanism to diagnose network states by

means of a technique named Intelligent Probing, presented by Brodie et al [Brodie et al., 2002].

Intelligent probing consists in �nding an optimal set of probes, which tends to be small but still

enough to get an accurate diagnosis, which be e�cient in terms of precision and time.

3.3 Contributions of this thesis

After reviewing the state-of-art of Fault Management approaches, in particular traditional ones, the

following limitations, which are to be dealt with this proposal are:

• Traditional Fault Management approaches are based on client server model where exists a

centralized entity which queries and analyzes data from managed entities. This deployment

is not suitable for very distributed platforms, or for platforms formed by a high number

3.3 Contributions of this thesis 30

Figure 3-11: Generic architecture of probing systems [Chen, 2005, Chen, 2006]

of components. Experience shows that when the number of managed nodes increases, the

performance of Fault Management system decreases [Al-Kasassbeh and Adda, 2008].

• Traditional Fault Management approaches do not support mobility. Mobility is a feature which

is very important in the modern technologies, as it provides that entities migrate through

the networks and platforms. An e�ective Fault Management approach should have mobility

features, to be able to detect, diagnose and correct problems in these mobile entities.

• Traditional Fault Management approaches do not include entities capable to solve in an au-

tonomous way abnormal situations which might arise. Usually, the execution of actions ten-

ding to solve the failure are triggered or executed by an external entity.

• Conventional Fault Management systems lack of intelligence to perform predictive or proactive

maintenance. Situations that in some time could drive to a failure, are not usually identi�ed

as such ones, and actions are not taken regarding them.

4 An architecture for fault management in

TELCO platforms

This chapter will present the detailed design of the solution to be proposed on this thesis for Fault

Management by means of mobile agents and autonomic computing principles.

The chapter is divided in three main sections. The �rst section will introduce the theoretical

support used to de�ne the architectural framework of the design. Second section will introduce the

architecture of the design and third section will analyze in detail the features exhibited by each

component in the architecture.

4.1 Reference framework.

In the work of design a system based on the concept of multi agent, several questions should be

answered. From aspects regarding to cognitive features (Arti�cial Intelligence techniques used to

provide the smart side of agents) to the details of communication protocol and agreements among

components need to be carefully de�ned and speci�ed.

The way how these features is implemented or speci�ed depends, among other things, on the com-

plexity of the agent, the available resources, and the preferences of the designer. Simple agents, for

example, can be implemented equally e�ciently in competitive and cooperative systems. However,

as more complex agents are created and issues such as attentional mechanisms and modelling of men-

tal processes are explored, a single arbitration mechanism may not be suitable [Andronache, 2004]

Arti�cial intelligence (AI) e�orts to design control systems for arti�cial agents are relying increas-

ingly on research in the �eld of agent architectures. Various architecture schemes and design method-

ologies have been proposed, which focused on di�erent aspects of agent control. Two main paradigms

might be considered, behavior based architectures and cognitive based architectures. By nature,

cognitive architecture are not targeted towards a particular agent or type of agent. However, that is

not the case with behavior-based architectures, most of which were developed for particular kinds of

agents or targeted at a particular class of tasks. Both of the paradigms have examples of architec-

tures which have been successful on their respective application domains. It would be advantageous

if components and principles which contributed to their success could be reused in other circum-

stances. An especially interesting question is whether these principles and components could be

utilized in other architectures that do not use the same basic components or design methodology.

A �rst problem related to determine whether an architecture is successful or not is credit assignment:

it may be di�cult to say what part of an architecture or design accounts for its success. A second

arises from the di�culty of comparing two di�erent architecture types directly, because their design

assumptions and domain restrictions may vary signi�cantly, e.g., symbolic versus �sub� or non-

symbolic, high-level versus low-level, serial vs. parallel, software versus robotic agents. A third

4.2 Components architecture. 32

problem is that the characteristics which impede direct comparison also hinder the combination of

mechanisms into a unitary architecture. Consequently, it is di�cult if not impossible not only to

assess the advantages and disadvantages of particular designs and methodologies but also to utilize

them in other designs without a common language or framework in which architectures could be

compared.

Another problem, speci�c to current behavior-based architectures, is that the mechanisms used for

behavior selection are typically �xed. While it may be possible to adjust some of the mechanisms'

parameters to make them more adaptive, they cannot be changed altogether.

As a step towards the development of a general framework for agent architectures, Andronache

[Andronache, 2004] introduces the APOC architecture framework. APOC is not only intended as

a theoretical framework, which allows researchers to analyze, evaluate, and compare agent archi-

tectures, but also, complemented by ADE, the APOC development environment, it functions as a

practical tool for the design of complex agents.

In this thesis, for a formal and structured de�nition of the components for the proposed architec-

ture, several componentes from APOC will be taken. In order, the follow aspects will be detailed

discussed:

• Component notion.

• Link types.

• Associated processes.

• Activation function and priorities.

Figure 4-1 illustrates how an APOC component can be understood and speci�ed.

4.2 Components architecture.

This section will introduce the architecture which will be proposed in this thesis. Figure 4-2

illustrates the actual components of the architecture in an abstract representation. The oval and

squares represent devices containing the components of the architecture. The components are the

following:

• Knowledge Database (KDB): It is a relational database storing the information collected

by the monitoring agents (depicted on blue) and the criteria used to control the monitoring

agents; These criteria would de�ne conditions causing the agents react to perform (or not

perform) some action, and would be modi�ed according to the collected data.

• Data Collector Agent (DCA): It is depicted on red. It is the component on charge to

receive information from the Monitoring Agents, and to send back control information, used to

trigger speci�c actions to be performed by the monitoring agent, or to modify the conditions

to observe on the resource which is being monitored by the agent.

• Monitoring Agent (MA): They are depicted on blue. These are agents residing at the

system device to be monitored, and they are implemented to control and monitor a speci�c

4.3 Components in deep. 33

Figure 4-1: An APOC component [Andronache, 2004]

resource on that system. The monitoring agent has the capacity to perform actions on that

resource, and from the information collected during the monitoring process, is able to prevent

failures or buggy behaviors. The criteria de�ning actions to perform, and behaviors to observe

are de�ned and sent from the DCA. The agent is implemented in such a way that it is capable

to be operative altough communication link with the DCA be lost. An important feature of

the MA is its capacity to move itself onto a remote system device to monitor the speci�ed

resource.

• Managed Resource (MR): The managed resource is any entity within the system device

under monitoring. That entity can be a hardware resource (Network Interface, Hard disk

device, communications port), a logical resource (Filesystem, network connection) or a system

process.

In the next section, the components of the proposed solution will be described in a more formal

way, according to concepts de�ned in APOC reference architectural framework [Andronache, 2004].

4.3 Components in deep.

As mentioned on the �rst section of this chapter, the architectural framework de�ned to use on

the construction of the proposed solution was APOC [Andronache, 2004]. APOC is an acronym

standing �Activating, Proccessing, Observing, Components�, which summarizes the four milestones

of the framework. Tightly related to this milestones, appears the concept of communication links.

APOC de�nes four types of links for the components, one for each one of the milestones. These

four types are:

4.3 Components in deep. 34

Figure 4-2: Diagramatic architecture of the proposed solution.

4.3 Components in deep. 35

Figure 4-3: Data Collector Agent

• Activation links (A-links): This kind of links allow to agents exchange general purpose mes-

sages.

• Process control links (P-liks): This type of links are used to in�uentiate the behavior of other

components.

• Observation links (O-Links): Links which are used to observe the state of other components

of the system.

• Component links (C-links): Links used to instatiate other components in the system, and

then connect them by any of the other three types.

In the next subsections, the main two components of the architecture (DCA, and MA) will be

described in detail according to APOC, and it will be introduced how these components will exhibit

the eight principles of Autonomic Computing described by Horn [Horn, 2001].

4.3.1 Data Collector Agent

Figure 4-3illustrates the diagramatic view of DCA agent.

Following APOC, the following elements can be identi�ed.

• The component is the Data Collector Agent itself.

• As will be discussed in chapter 5, the environment that will be used in implementation is

JADE, a framework for Multi Agent Systems implementation, based on JAVA programming

language. Because of that choice, the associated process for this component is the main

thread of the agent implementation.

• The DCA is the main agent in the system, and is the one in charge to control the other agents

of the system. For that reason, it has no activation function and it has highest priority

of all the agents.

4.3 Components in deep. 36

Figure 4-4: Monitoring agent.

• Activation links correspond to the bidirectional interface of communication between DCA

and MA's. Through this link, the messages with informational data coming from the moni-

toring agents are sent.

• Observation links are used for the DCA to query particular data and information state from

MA.

• Processing links are used to modify the observation criteria on the MA, instruct the agents

not to execute or execute selectively actions on the resource, or to request moving, cloning or

shutdown of them. The DCA component does not receive directives through any processing

links as it is the main component. The control of this component is under charge of the

operating system of the device where it runs on.

• Component links are used for the instatiation of new MA.

4.3.2 Monitoring Agent

Figure 4-4 presents the diagram of Monitoring Agent (MA). Following APOC, the elements which

can be identi�ed on this component are:

• The component is the monitoring agent itself.

• As will be discussed in chapter 5, the environment that will be used in implementation is

JADE, a framework for Multi Agent Systems implementation, based on JAVA programming

language. Because of that choice, the associated process for this component is the main

thread of the agent implementation.

4.3 Components in deep. 37

• Every MA will have a priority indicator to be used by DCA, to resolve con�icts regarding

what particular action to perform for handling or avoiding a failure detected on the Managed

Resource (MR).

• Every MA will have de�ned a series of thresholds, used to specify when the MA has to activate

a particular action for handling events or conditions on the MR. These thresolds have initial

values when the MA is started or created, and they can be modi�ed by the DCA, or by the

MA itself.

• Activation links correspond to the bidirectional interface of communication between the

DCA and the MA. Through these links data related to information collected or detected on

the MR are exchanged.

• Proccessing links are used by the DCA to perform control operations on the MA. These

operations include modi�cation of the criteria used by the MA during operation, passivation

of the MA, inhibition, shutdown, moving request or cloning request.

• Observation links are used by the DCA to query particular data and information state from

MA.

• Component links do not apply for MA.

• MA interacts with the MR by means of particular interfaces provided by it. These interfaces

can be system calls, �les, management protocols, etc.

4.3.3 Exhibiting Autonomic Computing principles.

Following to Horn [Horn, 2001], Autonomic Computing is based on eight principles:

• Self-Awareness: This is, the system should know itself. It will need detailed knowledge of

its components, current status, ultimate capacity, and all connections with other systems to

govern itself. It will need to know the extent of its �owned� resources, those it can borrow or

lend, and those that may be shared or should be isolated.

• Self-Con�guration: System con�guration or �setup� must occur automatically. Also, the

system must modify itself, in such a way that its con�guration be the most adequate to cope

with environment conditions.

• Self-Optimization: This is, the system will always try to �nd other ways to improve its func-

tioning. It will monitor its constituent parts and �ne-tune work�ow to achieve predetermined

system goals.

• Self-Healing: System must be able to recover from events that might cause malfunctioning.

The system also must be able to detect problem or potential problems, and according to this,

de�ne alternate ways to perform, applying recon�guration to keep the system working.

• Self-Protection: Starting from the fact of the potentially agressive and hostile environment

where system resides, it must be able to detect, protect and identify potential attacks or

vulnerabilities, so that it can protect itself and keep working in a secure and consistent state.

4.3 Components in deep. 38

• Self-adaptability: This is, the system must know its environment, the context which su-

rrounds it when operating, and the other entities cohabitating with it. It must be able to

adapt to this environment, and its changing conditions, by recon�guring itself or optimizing

itself.

• Openness: The components in system must be open to communicate each other, and must

be able to work with shared technologies. Propietary solutions are not compatible with Au-

tonomic Computing philosophy. Components should employ standard protocols, or at least

de facto standards in their communication.

• Self-containment: Components within an Autonomic Computing System must be able to

perform the task or tasks they have assigned, not requiring external interventions for the

performing itself, and hiding the complexity to end user. This does not mean that the system

will lack of interfaces allowing the intervention and feedback from human operators.

In the next two subsections, it will be clari�ed how the two main components of the proposed

solution exhibit the principles of autonomic computing on their design.

4.3.4 Autonomic features of the Data Collector Agent:

• Self-Awareness: At the moment to be started, the DCA will become aware of its own

existence, and it will have complete control of the MA associated.

• Self-Con�guration: The DCA will have the capacity to modify parameters regarding the

polling frequency of the MA, the criteria to trigger changes on the MA, and whether passivate

them, induce additional actions, or shutdown them.

• Self-Optimization: The DCA will be able to modi�y its timing parameters, to not over-

whelm the MA with very frequent queries of information or status, or with queries reporting

high volume of data.

• Self-Healing: DCA will have the capacity to avoid error conditions caused by absent or

invalid data, besides recovery procedures for situations such as database connection lost, or

MA P-links lost (See section 4.3.1 about the meaning of P-Link term)

• Self-Protection: DCA will have validation mechanisms for any interaction coming from

outworld, and for the data coming from MA, to avoid data corruption or invalidation.

• Self-adaptability: The adaptability of DCA will be represented by the Self-Optimization

and the Self-Con�guration. In situations such as slow answer from MA, DCA will be able to

reduce the query rate of information from them.

• Openness: DCA will be implemented with an open and standard technology as JADE (See

chapter 5) and using standard network protocols and interfaces.

• Self-containment: The task of DCA is clearly de�ned. It will be on charge of receiving and

analyzing the information coming from MA, to produce criteria modi�cations on the actions

4.4 Detailed description of platform running 39

to be performed by them on the Managed Resources. Also, the DCA will be on charge to

track the activities performed on the MA.

4.3.5 Autonomic features of the Monitoring Agent:

• Self-Awareness: At the moment to be started, the MA will become aware of its own exis-

tence, and will perform a kind of registration on the DCA, to establish the control relationship.

Also, the MA will have to establish a relationship with the MR which will be monitoring and

controlling.

• Self-Con�guration: The MA will be able to modify the criteria to detect failures or buggy

behaviors with the goal to anticipate and prevent them. These eventual modi�cations will be

noti�ed to the DCA, so that they be stored on the Knowledge Database. Also, the MA will

have the capacity to perform even when communication links with the DCA be lost.

• Self-Optimization: MA will modify the frequency and parameters of the procedures it

performs to monitor the MR, so that it prevents to become intrusive on the MR itself.

• Self-Healing: MA will have the capacity to avoid error conditions caused by absent or invalid

data coming from the MR, besides recovery procedures for situations such as MR connection

lost, or communication links lost (See section 4.3.2 about the meaning of P-Link term)

• Self-Protection: MA will have validation mechanisms for any interaction coming from out-

world, and for the data coming from DCA, to avoid data corruption, invalidation or intrusive

actions on the MR. MA will have to certify it will only receive information coming from the

DCA of the system.

• Self-adaptability: The adaptability of MA will be represented by the Self-Optimization and

the Self-Con�guration. In situations such as slow answer from MR, MA is capable to reduce

the query rate of information to avoid intrusive behavior.

4.4 Detailed description of platform running

This section will provide a description about how the platform runs, and performs the monitoring

and fault management tasks.

4.4.1 Platform Initialization: DCA startup.

The �rst component to be started is the DCA, which operates as the master component (It is

assumed that the KDB is available when DCA is going to be started). It has to be availabile for the

initialization of monitoring agents, although it is not required for their later running. When DCA

is started, it is ready to send and receive information from/to the monitoring agents. DCA reads

database information, and gets ready to o�er initialization parameters to the agents which perform

successful authentication against it.

4.4 Detailed description of platform running 40

4.4.2 Monitoring agents initialization.

After DCA is running, the remote monitoring agents may be initiated. The �rst task executed by

monitoring agents after being started is the registration against DCA. The registration is executed

after the monitoring agent gets authenticated against the DCA. If registering is successful, DCA

con�rms the registration by returning to the monitoring agent the parameters so that it starts to

execute its task. Also, if available, DCA can return criteria to be used by the monitoring agent to

detect failures or to take actions when failure occurs. In case there not be information regarding

actions to be taken when failures occur, the default behavior of the agents is just notify back the

failure condition to DCA.

4.4.3 Monitoring and failure detection.

The agents execute a continous loop performing the monitoring action, according to agent imple-

mentation. This action, guided by the criteria which might have been pased at initialization time,

allows to detect whether the monitored resource is in correct status, or whether a failure condition

occurs. If a fault is detected, the default behavior of the agent, when there is not any action de�ned

for it, is notify the DCA. DCA might return to monitoring agent an action speci�cation informing

it what to do to try to solve the fault. Also, DCA might ask for further information to monitoring

agent, to take a better decision regarding the action to ask tio be performed by it.

The monitoring agent, when receives an action noti�cation from DCA, executes it, and veri�es

whether the fault condition was solved. If solved, monitoring returns to initial state. If not solved,

the monitoring agent noti�es again to DCA, asking for additional actions to perform.

When DCA noti�es actions to be performed, the monitoring agent stores it into a local action

memory. This memory allows to agent to know what actions to perform when fault conditions

occur, without having to ask them to DCA. Monitoring agent would apply the actions stored into

that memory, before having to ask to DCA.

4.4.4 Remote monitoring at additional locations.

After correcting a fault, the monitoring agents, if instructed, may move (or clone) onto another

locations (other monitored resources), and perform the monitoring tasks. If fault is detected, the

monitoring agents may apply the actions they have stored into their local action memory, or they

might ask to DCA for further actions to perform..

5 Experiments and results

5.1 Introduction

The present chapter describes de tests performed to validate the advantages of the proposed ap-

proach for fault management. For these tests, a preliminary implementation of the proposed ap-

proach was performed, and run on a typical platform for the voice over IP Service. Two aspects

were assesed. The time required to detect a failure, and the bandwith consumed.

5.2 Description of test platform

For the validation of the approach proposed in this work, a typical platform in the Voice over IP

Services was chosen. This kind of platform was chosen, because of its criticity, and the relationships

established between the components, which tend to induce failures in the other components, when

a problem occurs.

The �gure 5-1 depicts the testbed which was used for the implementation.

Figure 5-1: Testbed used to validate and test the proposed approach.

All of the machines run Linux Operating System, with no special settings. Network Management

Station has installed the NET SNMP software, for the tests based on SNMP, MySQL for the

database used by the Data Collector Agent of the proposed approach, and JAVA development kit

for the Agent Platform. Relational Database is MySQL, with standard con�guration, and contains

the service database which is used by the SIP Proxy and the Media Server. SIP Proxy is based in

OpenSIPS software, an open implementation of SIP Protocol, and Media Server is based on Asterisk,

a full SIP application server which provides di�erent telephony servers. Besides the speci�c purpose

5.3 Agents implementation. 42

software deployed on each node, JAVA Development Kit for running JADE is installed, and NET-

SNMP Agent, for the SNMP Based tests.

5.3 Agents implementation.

For the implementation of the agents, the used tool was JADE [Jad,]. JADE is a middleware that

facilitates the development of multi-agent systems. It includes:

• A runtime environment where JADE agents can �live� and that must be active on a given

host before one or more agents can be executed on that host.

• A library of classes that programmers have to/can use (directly or by specializing them) to

develop their agents.

• A suite of graphical tools that allows administrating and monitoring the activity of running

agents.

A very important concept in JADE terminology is container. Each running instance of the JADE

runtime environment is called a Container as it can contain several agents. The set of active

containers is called a Platform. A single special Main container must always be active in a platform

and all other containers register with it as soon as they start. It follows that the �rst container

to start in a platform must be a main container while all other containers must be �normal� (i.e.

non-main) containers and must �be told� where to �nd (host and port) their main container (i.e.

the main container to register with).

JADE provides several API's for the agent implementation, and for details such as their behaviors

and their communications mechanisms.

For accessing the resources and the detailed status information of monitored resources, the Java

Native Interface (JNI) was used. JNI is an interface of Java programming language, which allows

to execute methods written in native language of the platfrom where Java virtual machine runs

on. In this implementation, the native code was written in ANSI C language, to invoke the Linux

Operating System syscalls required for the monitoring tasks performed by the agents.

The election of JNI as the mechanism to interact with the monitoring resource information is not

gratuitous. During the development of this work, several tests were performed to assess di�erent

schemas to access system informations. The work by Branch and Gutierrez [Branch and Gutierrez, 2011]

presents a comparison where, although Python programming language o�ers the best behavior, be-

cause of the election of JADE as the framework to implement the agents, JNI is more suitable to

integrate within it.

5.4 Experiments and results

For the testing, three scenarios where de�ned and tested. The three scenarios consist in inducing

failures on a Resource node, and measuring the time used to detect (and correct) the failure.

5.4 Experiments and results 43

5.4.1 Full �lesystem

On the �rst scenario, the �rst failure to be induced was a �lesystem full on Relational Database.

The failure was induced by creating an increasing size �le, by means of an in�nite loop script which

concatenated 1MB �les to an existing �le until the whole �lesystem was �lled.

The SNMP based detection was performed by running a shell script which invocated snmpwalk

system command once every second, querying the OID referencing the �lesystem to be monitored.

For the agent scenario, platform was started up, and a monitor agent was created on the supervised

host, indicating it what �lesystem to monitor. For this �rst test, no action was de�ned for the

monitoring agent at startup time. At failure ocurrence, DCA instructed the agent the action to

perform, which in in this case was deleting the �le causing the �lesystem full.

Table 5-1 presents the results of the execution of this test scenario.

Variable SNMP TEST AGENT TEST

Elapsed time 3 mins, 42 sec 4 mins, 4 sec

Total packets 811 318

Average Bandwidth (Mbps/s) 0.003 0.002

Average packet size (Bytes) 87.89 155.08

Average packets per second 3.642 1.303

Table 5-1: Data of the test of full �lesystem fault at database.

5.4.2 Dead system process.

The second test scenario is the detection of a dead process within the SIP Proxy. The failure is

induced by killing the process, disappearing it from system processes table.

The SNMP based detection was performed by running a shell script which invocated snmpwalk

system command once every second, querying the OID referencing the entry of the process within

the system process table exposed through SNMP.

For the agent scenario, platform was started up, and a monitor agent was created on the supervised

host, indicating the name of the executable associated to process. In this case, a single process was

montitored, although the approach is valid for multiple instances of same process. For this test, no

action was de�ned for the monitoring agent at start time. At failure ocurrence, DCA instructed the

monitoring agent to restart the process.

Table 5-2 presents the results of the execution of this test scenario.

Variable SNMP TEST AGENT TEST

Elapsed time 1 min 1 min

Total packets 508 147

Average Bandwidth (Mbps/s) 0.003 0.002

Average packet size (Bytes) 87.89 155.08

Average packets per second 3.642 1.303

Table 5-2: Data of the test of dead system process at SIP proxy.

5.5 Experiments discussion. 44

5.4.3 Network interface misscon�guration.

The second test scenario is the detection of a misscon�guration within the Mediaserver. The failure

is induced by modifying the network interface con�guration, changing the duplex mode from full

to half. This is a very common error on this kind of equipments, and usually causes malfunction in

the service it o�ers.

The SNMP based detection was performed by running a shell script which invocated snmpwalk

system command once every second, querying the OID referencing the duplex mode of the main

network interface of the mediaserver. In this case, the monitoring script was capable, after detecting

the error, to perform a correction by setting the parameter of duplex mode, by executing snmpset

system command.

For the agent scenario, platform was started up, and a monitor agent was created on the supervised

host, indicating the name of the main network interface in the host. For this test, no action was

de�ned for the monitoring agent at start time. At failure ocurrence, DCA instructed the monitoring

agent to recon�gure the network interface. Table 5-3 presents the results of the execution of this

test scenario.

Variable SNMP TEST AGENT TEST

Elapsed time 2 min 2 min, 32 secs

Total packets 203 84

Average Bandwidth (Mbps/s) 82.6 38.7

Average packet size (Bytes) 87.89 155.08

Average packets per second 3.642 1.303

Table 5-3: Data of the test of network interface misscon�guration at mediaserver.

5.5 Experiments discussion.

In this section, a discussion on the results obtained from the tests will be presented.

A very important point to state is the fact that in the �rst two tests, besides of the fault detection,

from the information that DCA returns at failure occurrence, the agent is capable to perform an

action to correct the fault condition.

The concept behind the implemented platform is providing the agents with logic and actions (be-

haviors) allowing that, from the information provided by the DCA in this case, they be capable to

apply corrections.

In the standard implementation, SNMP based detection is not capable to correct complex faults as

it should have external mechanisms to apply any correction. SNMP can solve very speci�c faults, if

the correction consists in modifying a single variable, as seen on the third scenario, where the script

could restore the network interface con�guration. In the other cases, an autonomous correction y

means of SNMP is not possible, and the intervention of a human operator is required. The fault

correction is reactive, not proactive.

The agents implementation, by default is capable to provide mechanisms to apply corrections when

particular types of faults are detected. Also, because of the local memory the agents have, they

5.5 Experiments discussion. 45

can try to apply corrections when faults are detected, without the need to ask for information to

DCA, in an autonomous way. The agents, provided information to react to fautls are capable to

apply corrections in a proactive way. The tradittional approaches, based on SNMP, are just based

on noti�cacions, and focused on alarm and noti�cation triggering, leaving the action performed to

correct the fault condition itself to an external entity (usually a human operator).

It can be observed that the elapsed time, measured since monitoring was started until the fault

condition was detected (and corrected), is a longer for agents than for SNMP. This can be explained

as the agent platform (main container and satellital container) require some time for its initialization.

In SNMP case, monitoring starts by just run the script executing snmpwalk.

The average packet size is also greater for agents than SNMP because the network transport protocol

that agent platform uses. JADE uses TCP for the communication, di�erent to SNMP, which uses

UDP. The usage of TCP as communication protocol in the agent platform increases the reliability

of monitoring, as delivery of messages is guarateed, and monitorin agents do not require to have

additional logic for handling message delivery.

Another fact which can be observed is that agent approach require less packets to be exchanged.

As the agent communicates with DCA only for noti�cations and initialization tasks, and not for

monitoring per se, less tra�c is required. For SNMP, more packtes are required, as the decision to

detect the fault is taken at monitoring station, not in the monitored resource itself.

Brie�ng, from the point of view of the two variables assesed, the proposed approach, based on agents,

shows to be more e�cient, by exhibiting lower times to detect the fault, less tra�c requirements,

and besides, provides added value by the capability of executing and performing proactive corrective

actions, to eliminate and avoid the fault conditions.

6 Conclusions and future work

6.1 Conclusions

In this work, an approach for fault management using Autonomic Computing and Mobile Agents has

been proposed. This approach has showed to o�er more advantages than conventional approaches

by exhibiting the following features.

• From the architectural point of view, it is not server centric, as traditional systems, usually

based on a master component which queries sattelital agents to obtain information. Although

the proposed approach has a master component, the monitoring agents do not require the

communication with this component to perform their tasks, as they are designed to operate

in autonomous way.

• It provides self-learning capacities. Traditional systems just report the fault by triggering an

alarm when a threshold is reached, or when the fault itself arises, but they lack of e�cient

mechanisms to correct the fault. The agents in the proposed approach have the capacity

to analyze causes of the detected problems, and perform further actions to avoid the fault

occurence.

• It provides a richer communication protocol among the involved entities, allowing to have

a detailed information regarding facts and actions to be performed. The concept of agents

ontology provides a very robust mechanism for the communication protocol regarding message

formats and interpretation. Traditional approaches are based on a simple request/response

protocol, with very strict and limited message formats.

• It provides mobility, which allows to monitoring agents to move accross the network to detect

and correct faults. Traditional systems are based on static monitoring systems, which are

con�ned to run at a single host.

These features present a system which is very suitable for platforms as the ones used in Telecom-

munications service, which nowadays require high levels of availability because of the criticity of

the services they o�er. Also, the implemetation of the features previously mentioned contribute to

improve the task of fault management, by providing added value to monitoring tasks, and correction

for some of the limitations of traditional approaches.

6.2 Future work

There are several points to have present, which could be starting point for future work:

6.2 Future work 47

• Include root cause analysis by using for example Belief Bayesian Networks on the agents, to

o�er sophisticated diagnosis features.

• Reduce the memory footprint of the agents, to make them suitable on systems and platforms

with reduced hardware resources.

• Provide more robust authentication and authorization mechanisms for the communication

between monitoring agents and the KDB.

• Provide more secure communication protocols among the platform components.

• Include patter recognition techniques to perform sophisticated analysis on the data collected

and stored into KDB.

• De�ne additional metrics which allow to compare and expose the goodness of multi agent and

autonomic approach in comparison to traditional and centric fault management solutions.

Bibliography

[TMF,] Enhanced telecom operations map (etom), the business frame work, release 7.0.

[ISO, a] Information processing systems - open systems interconnect - basic reference model: Part

4 - management framework, 1989.

[ISO, b] Information technology - service management - part 1: Speci�cation.

[ITI,] Infrastructure library ITIL.

[Jad,] JADE Tutorial: JADE Programming for Beginners.

[Adhicandra et al., 2003] Adhicandra, I., Pattinson, C., and Shaghouei, E. (2003). Using mobile

agents to improve performance of network management operations.

[Aghasaryan et al., 1997] Aghasaryan, A., Fabre, E., Benveniste, A., Boubour, R., and Jard, C.

(1997). A petri net approach to fault detection and diagnosis in distributed systems,. In Proc.

36th IEEE Conference on Decision and Control, IEEE (CDC 97).

[Al-Fuqaha et al., 2009] Al-Fuqaha, A., Rayes, A., Guizani, M., Khanvilkar, M., and Ahmed., M.

(2009). Intelligent service monitoring and support. In Proc. IEEE International Conference on

Communications, 2009. ICC '09.

[Al-Kasassbeh and Adda, 2008] Al-Kasassbeh, M. and Adda, M. (2008). Analysis of mobile agents

in network fault management. Journal of Network and Computer Applications, 31:699�711.

[Andronache, 2004] Andronache, V. (2004). APOC AND ADE: THEORY AND PRACTICE IN

THE DESIGN OF ARCHITECTURES FOR BEHAVIOR-BASED AGENTS. PhD thesis, Uni-

versity of Notre Dame.

[Baldi and Picco, 1998] Baldi, M. and Picco, G. (1998). Evaluating the tradeo�s of mobile code

design paradigms in network management applications. In Proc. of 20th Internation Conference

on Software Engineering.

[Bhattacharyya et al., 2004] Bhattacharyya, S., Huang, Z., Chandra, V., and Kumar, R. (2004). A

discrete event systems approach to network fault management: detection & diagnosis of faults.

In Proceedings of the 2004 American Control Conference.

[Boudriga and Obaidat, 2004] Boudriga, N. and Obaidat, M. (2004). Intelligent agents on the web:

a review. Computing in Science and Engineering, 06:35�42.

Bibliography 49

[Branch and Gutierrez, 2011] Branch, J. and Gutierrez, S. (2011). A comparison of performance

to access programatically system resources in linux. Revista Avances en Sistemas e Informatica,

Vol.8 No.1, marzo de 2011 - Medellin., 8:39�42.

[Brenner, 2006] Brenner, M. (2006). Classifying ITIL processes: A taxonomy under tool support

aspects. In First IEEE/IFIP International Workshop on Business-Driven IT Management (BDIM

2006).

[Brodie et al., 2002] Brodie, M., Rish, I., and S.Ma (2002). Intelligent probing: a cost-e�ective

approach to fault diagnosis in computer networks. IBM Systems Journal, 41:372�385.

[Callaway et al., 2008] Callaway, R., Devetsikiotis, M., Viniotis, Y., and Rodriguez, A. (2008).

An autonomic service delivery platform for service-oriented network environments. In IEEE

International Conference on Communications, 2008. ICC '08.

[Chen, 2005] Chen, Z. (2005). Proactive probing and probing on demand in service fault localization.

The international journal of Intelligence control and systems., 2:107�113.

[Chen, 2006] Chen, Z. (2006). Service fault localization using probing technology. In Proceedings

of the 2006 IEEE International Conference on Networking, Sensing and Control, 2006. ICNSC

'06.

[Chu et al., 2009] Chu, L. W., Zou, S. H., Cheng, S. D., Wang, W. D., and Tian, C. Q. (2009).

Internet service fault management using active probing in uncertain and noisy environment. In

Proc. Fourth International Conference on Communications and Networking in China, ChinaCOM

2009.

[Franklin and Graesser, 1996] Franklin, S. and Graesser, A. (1996). It's an agent or just a program?:

A taxonomy for autonomous agents. In Proceedings of the Third International Workshop on Agent

Theories, Architectures, and Languages,.

[Fujisaki et al., 1997] Fujisaki, T., Hamada, M., and Kageyama, K. (1997). A scalable fault-tolerant

network management system built using distributed object technology. In Proc. First Interna-

tional Enterprise Distributed Object Computing Workshop.

[Gavalas et al., 2009] Gavalas, D., Tsekouras, G. E., and Anagnostopoulos, C. (2009). A mobile

agent platform for distributed network and systems management. The Journal of Systems and

Software, 82:355�371.

[Gorod et al., 2007] Gorod, A., Gove, R., Sauser, B., and Boardman, J. (2007). System of systems

management: A network management approach. In IEEE International Conference on System

of Systems Engineering.

[Goyal et al., 2009] Goyal, P., Mikkilineni, R., and Ganti, M. (2009). Fcaps in the business services

fabric model. In 18th IEEE International Workshops on Enabling Technologies: Infrastructures

for Collaborative Enterprises.

Bibliography 50

[Harrington et al., 2002] Harrington, D., Presuhn, R., and Wijnen, B. (2002). Rfc 3411: An ar-

chitecture for describing simple network management protocol (snmp) management frameworks.

Technical report, IETF.

[Harrison et al., 1995] Harrison, C., Chess, D., and Kershenbaum, A. (1995). Mobile agents: Are

they a good idea? Technical report, IBM T.J. Watson Research Center.

[Horn, 2001] Horn, P. (2001). Autonomic computing: IBM's perspective on the state of information

technology. Technical report, IBM Corp.

[Hwang et al., 2010] Hwang, I., Kim, S., Kim, Y., and Seah, C. E. (2010). A survey of fault detec-

tion, isolation, and recon�guration methods. IEEE Transactions on Control Systems Technology,

18:636�653.

[IBM Corp., 2005] IBM Corp. (2005). An architectural blueprint for autonomic computing. Tech-

nical report, IBM Corp.

[Ionescu et al., 2008] Ionescu, D., Solomon, B., Litoiu, M., and Mihaescu, M. (2008). A robust auto-

nomic computing architecture for server virtualization. In International Conference on Intelligent

Engineering Systems, 2008. INES 2008.

[ITSMF, 2003] ITSMF (2003). IT Service Management: An Introduction. Van Haren Publishing;

3Rev Ed edition (March 13, 2003).

[Jennings and Wooldridge, 1998] Jennings, N. and Wooldridge, M. (1998). Applications of Agent

Technology in Agent Technology. Springer-Verlag.

[Jin and Liu, 2004] Jin, X. L. and Liu, J. M. (2004). Agents and Computational Autonomy: Po-

tential, Risks, and Solutions., chapter From Individual Based Modeling to Autonomy Oriented

Computation, pages 151�169. University of Bath.

[Kerschberg et al., 1991] Kerschberg, L., Baum, R., Waisanen, A., Huang, I., and Yoon., J. (1991).

Managing faults in telecommunications networks: A taxonomy to knowledge-based approaches. In

Proc. IEEE International Conference on Systems, Man, and Cybernetics, 1991. 'Decision Aiding

for Complex Systems'.

[Kirmani and Hood, 2004] Kirmani, E. and Hood, C. (2004). Diagnosing network states through

intelligent probing. In Network Operations and Management Symposium, 2004. NOMS 2004.

IEEE/IFIP.

[Labib, 2006] Labib, A. W. (2006). Next generation maintenance systems: Towards the design of a

self-maintenance machine. In IEEE International Conference on Industrial Informatics, 2006.

[Li et al., 2009a] Li, C., Zou, S., and Lingwei, C. (2009a). Online learning based internet service

fault diagnosis using active probing. In Proc. IEEE International Conference on Networking,

Sensing and Control, Okayama, Japan.

[Li and Wu, 2009] Li, H. and Wu, Z. (2009). Research on distributed architecture based on soa. In

International Conference on Communication Software and Networks, 2009. ICCSN '09.

Bibliography 51

[Li et al., 2009b] Li, Y., Zhao, C., and Yin, Y. (2009b). A method of building the fault propogation

model of distributed application systems based on bayesian network. In Second International

Workshop on Computer Science and Engineering.

[Lin et al., 2005] Lin, P., MacArthur, A., and Leaney, J. (2005). De�ning autonomic computing: A

software engineering perspective. In Proc. of the 2005 Australian Software Engineering Conference

(ASWEC 05).

[Liu et al., 2001] Liu, J., Tsui, K., and Wu, J. (2001). Introducing autonomy oriented computation.

In Proceedings of First International Workshop on Autonomy Oriented Computation.

[Magedanz, 2004] Magedanz, T. (2004). Report on fet consultation meeting on communication

paradigms for 2020. Technical report, Fraunho�er FOKUS.

[Mei-hui et al., 2010] Mei-hui, W., Chuan, L., Zhao, M., and Dong, Z. (2010). A discussion of using

self-maintenance technology to achieve high reliability of equipment. In Prognostics and Health

Management Conference, 2010. PHM '10.

[Miller and Arisha, 2001] Miller, R. and Arisha, K. (2001). On fault management using passive

testing for mobile ipv6 networks. In IEEE Global Telecommunications Conference, 2001. GLOBE-

COM '01.

[Picco, 2001] Picco, G. P. (2001). Mobile agents: an introduction. Microprocessors and Microsys-

tems, 25:65�74.

[Pras et al., 2004] Pras, A., Drevers, T., van de Meent, R., and Quartel, D. (2004). Comparing the

performance of snmp and web services-based management. IEEE Transactions on Network and

Service Management, 1:72�82.

[R.Sterrit, 2001] R.Sterrit (2001). Soft computing and fault management. In Proceedings of Fourth

International Symposium Soft Computing and Intelligent Systems for Industry, Paisley, Scotland,

United Kingdom.

[Salle and Bartolini, 2004] Salle, M. and Bartolini, C. (2004). Business driven prioritization of

service incidents. In Distributed Systems Operations and Management.

[Samaras et al., 1999] Samaras, G., Pitoura, E., and Papastavrou, S. (1999). Mobile agents for www

distributed database access. In Proceedings of 15th International Conference on Data Engineering.

[Sirvunnabood and Labib, 2005] Sirvunnabood, S. and Labib, A. (2005). Towards the development

of self-maintenance machines. In Proc. of the 2005 Third European Conference on Intelligent

Management Systems in Operations. 28th and 29th June. Greater Manchester U.K.

[Steinder and Sethi, 2004] Steinder, M. and Sethi, A. S. (2004). A survey of fault localization

techniques in computer networks. Science of Computer Programming, 53.

[Sterritt, 2001] Sterritt, R. (2001). Discovering rules for fault management. In Proc. Eighth Annual

IEEE International Conference and Workshop on the Engineering of Computer Based Systems,

2001. ECBS 2001.

Bibliography 52

[Sterritt and Bustard, 2002] Sterritt, R. and Bustard, D. (2002). Fusing hard and soft computing

for fault management in telecommunications systems. In IEEE Transactions on Systems, Man,

and Cybernetics, Part C: Applications and Reviews,.

[Sterritt et al., 2003] Sterritt, R., Bustard, D., and McCrea, A. (2003). Autonomic computing

correlation for fault management system evolution. In IEEE international conference industrial

informatics.

[Sterritt et al., 2002] Sterritt, R., Curran, E., and Song, H. (2002). Hacker: human and computer

knowledge discovered event rules for telecommunications fault management. In IEEE Interna-

tional Conference on Systems, Man and Cybernetics, 2002.

[Sun et al., 2003] Sun, H., Han, J. J., and Levendel, H. (2003). Availability requirement for a fault-

management server in high-availability communication systems. IEEE transactions on reliability,

52:238�244.

[Sun Microsystems INC, 2010] Sun Microsystems INC (2010). Predictive self healing. Technical

report, Sun Microsystems INC.

[Tizghadam and Leon-Garcia, 2010] Tizghadam, A. and Leon-Garcia, A. (2010). Autonomic tra�c

engineering for network robustness. IEEE journal on selected areas in communications, 28:39�50.

[Tosic and Agha, 2004] Tosic, P. T. and Agha, G. A. (2004). Towards a hierarchical taxonomy of

autonomous agents. In IEEE International Conference on Systems, Man and Cybernetics.

[Umeda et al., 1995] Umeda, Y., Tomiyama, Y., and Yoshikawa, H. (1995). A design methodology

for self-maintenance machines. ASME Journal of Mechanical Design, 177.

[Uthurusamy, 1996] Uthurusamy, R. (1996). From data mining to knowledge discovery: Current

challenges and future directions. Advances in knowledge discovery and Data Mining, pages 561�

569.

[V. Baggiolini, 1998] V. Baggiolini, J. H. (1998). Generic fault management techniques. Technical

report, University of Geneva, Switzerland.

[Varga and Moldovan, 2007] Varga, P. and Moldovan, I. (2007). Integration of service-level moni-

toring with fault management for end-to-end multi-provider ethernet services. IEEE Transacions

on Network and Service Management, 4.

[Wang and Zhou, 2004] Wang, J. and Zhou, M. (2004). Providing network monitoring service for

grid computing. In Proc. 10th IEEE International Workshop on Future Trends of Distributed

Computing Systems, 2004. FTDCS 2004.

[Wong, 2009] Wong, D. (2009). Adapting e-TOM model to improve multimedia network manage-

ment: A case study with a taiwan multimedia service provider. In Fifth International Conference

on Intelligent Information Hiding and Multimedia Signal Processing.

[Wooldridge and Jennings, 1995] Wooldridge, M. and Jennings, N. (1995). Intelligent Agents: The-

ory and Practice. Knowledge Engin Rev.

Bibliography 53

[Yang et al., 1998] Yang, J., Pai, P., Honavar, V., and Miller, L. (1998). Mobile intelligent agents

for document classi�cation and retrieval: A machine learning approach. In 14th European Meeting

on Cybernetics and Systems Research. Symposium on Agent Theory to Agent Implementation.

[Yougang, 2009] Yougang, Z. (2009). Fault diagnosis model based on rough set theory and expert

system. In International Colloquium on Computing, Communication, Control, and Management.

[Yubao and Renyuan, 2009] Yubao, M. and Renyuan, D. (2009). Mobile agent technology and its

application in distributed data mining. In First International Workshop on Database Technology

and Applications.

[Yuniarto and Labib, 2006] Yuniarto, M. N. and Labib, A. W. (2006). Fuzzy adaptive preventive

maintenance in a manufacturing control system: a step towards self-maintenance. International

Journal of Production Research, 44.

[Zaharia et al., 2003] Zaharia, M. H., Leon, F., and Galea, D. (2003). A framework for distributed

computing using mobile intelligent agents. New Trends in Computer Science and Engineering,

pages 219�223.

[Zaw and Soe, 2008] Zaw, M. P. P. and Soe, S. M. M. (2008). Design and implementation of client

server network management system for ethernet lan. World Academy of Science, Engineering and

Technology, 48.

