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Abstract

Everyday, a wide quantity of hospitals and medical centers around the world are producing

large amounts of imaging content to support clinical decisions, medical research, and educa-

tion. With the current trend towards Evidence-based medicine, there is an increasing need

of strategies that allow pathologists to properly interact with the valuable information such

imaging repositories host and extract relevant content for supporting decision making. Un-

fortunately, current systems are very limited at providing access to content and extracting

information from it because of different semantic and computational challenges. This thesis

presents a whole pipeline, comprising 3 building blocks, that aims to to improve the way

pathologists and systems interact. The first building block consists in an adaptable stra-

tegy oriented to ease the access and visualization of histopathology imaging content. The

second block explores the extraction of relevant information from such imaging content by

exploiting low- and mid-level information obtained from from morphology and architecture

of cell nuclei. The third block aims to integrate high-level information from the expert in

the process of identifying relevant information in the imaging content. This final block not

only attempts to deal with the semantic gap but also to present an alternative to manual

annotation, a time consuming and prone-to-error task. Different experiments were carried

out and demonstrated that the introduced pipeline not only allows pathologist to navigate

and visualize images but also to extract diagnostic and prognostic information that poten-

tially could support clinical decisions.

Keywords: Histopathology, Digital pathology, Pathological marker



vi

Resumen

Diariamente, gran cantidad de hospitales y centros médicos de todo el mundo producen gran-

des cantidades de imágenes diagnósticas para respaldar decisiones cĺınicas y apoyar labores

de investigación y educación. Con la tendencia actual hacia la medicina basada en evidencia,

existe una creciente necesidad de estrategias que permitan a los médicos patólogos inter-

actuar adecuadamente con la información que albergan dichos repositorios de imágenes y

extraer contenido relevante que pueda ser empleado para respaldar la toma de decisiones.

Desafortunadamente, los sistemas actuales son muy limitados en cuanto al acceso y extrac-

ción de contenido de las imágenes debido a diferentes desaf́ıos semánticos y computacionales.

Esta tesis presenta un marco de trabajo completo para patoloǵıa, el cual se compone de 3 blo-

ques y tiene como objetivo mejorar la forma en que interactúan los patólogos y los sistemas.

El primer bloque de construcción consiste en una estrategia adaptable orientada a facilitar

el acceso y la visualización del contenido de imágenes histopatológicas. El segundo bloque

explora la extracción de información relevante de las imágenes mediante la explotación de

información de caracteŕısticas visuales y estructurales de la morfoloǵıa y la arquitectura de

los núcleos celulares. El tercer bloque apunta a integrar información de alto nivel del experto

en el proceso de identificación de información relevante en las imágenes. Este bloque final no

solo intenta lidiar con la brecha semántica, sino que también presenta una alternativa a la

anotación manual, una tarea que demanda mucho tiempo y es propensa a errores. Se llevaron

a cabo diferentes experimentos que demostraron que el marco de trabajo presentado no solo

permite que el patólogo navegue y visualice imágenes, sino que también extraiga información

de diagnóstico y pronóstico que potencialmente podŕıa respaldar decisiones cĺınicas.

Palabras claves: Histopatoloǵıa, Patoloǵıa digital, Marcadores patológicos



Contents

Acknowledgements IV

Abstract V

1 Introduction 2

2 Efficient access to digital histopathology images 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 A strategy to efficiently access and interact with histopathological images . . 13

2.2.1 An adaptable strategy for interaction with histopathological images

from mobile devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 A web-based interactive tool for education and research . . . . . . . . 30

2.3 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Histopathological analytics by learning from imaging data 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Study case: Automatic detection and grading of Ductal Carcinoma In Situ . 40

3.2.1 Extraction of features . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Study case: Association between Tumor-Infiltrating Lymphocytes and prog-

nosis in patients with lung cancer . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Identification of lymphocytes on histopathological images . . . . . . . 46

3.3.2 Extracting topological and density information from Tumor-Infiltrating

Lymphocytes for prognosis . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.3 Identifying groups of lymphocytes and their incidence in prognosis . . 65

3.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Histopathological analytics by learning from experts 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Study case: Detection of regions of interest in basal cell carcinoma . . . . . . 77

4.2.1 Integrating visual attention maps and interactions of experts . . . . . 77

4.2.2 Integrating nuclear data and interactions of experts . . . . . . . . . . 83

4.3 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



Contents 1

5 Conclusions 100

Bibliography 103



1 Introduction

Evidence-based medicine

Medicine practice has meaningfully changed during the last decades. Some years ago, unsys-

tematic observations from clinical experience were considered as a valid way of building

knowledge about patient prognosis, the value of diagnostic tests, and the efficacy of treat-

ment [55]. Likewise, a combination of thorough traditional medical training and common

sense was sufficient to allow a physician to evaluate new tests and treatments [55].

However, starting in the late 1960s, different authors published works evidencing weaknesses

in medical decision making at the level of both individual patients and populations. These

works highlighted problems such as lack of controlled trials, errors in clinical reasoning,

gaps in evidence, high variations in how physicians practiced, large number of inappropriate

procedures performed by physicians, among others [117, 172, 46, 66].

In response to these problems, in the last years, a new paradigm for medical practice has

gained popularity: Evidence-base medicine (EBM). EBM is defined as “the conscientious,

explicit, judicious, and reasonable use of current best evidence in making decisions about

the care of individual patients”[111]. EBM states that clinical decisions should be based on

evidence rather than the beliefs or intuition of experts. It also promotes to change the training

of practitioners to ensure that the patient care actually delivered does meet standards[46].

Most physicians around the world are aiming for practice of EBM. Now, proper EMB prac-

tice requires accurate and reproducible diagnoses as well as the possibility of establishing

prognostics and predictive factors, understanding prognostic factors as those related to the

natural disease evolution and predictive factors as those related to some kind of intervention.

Providing such set of diagnostic, prognostic, and predictive factors is the labor of pathology.

Pathology

Pathology is, literally translated, the study of disease and involves the analysis of structural

and functional changes at the levels of cells, tissues, and organs affected by a disease [166].

It employs different molecular, microbiological, immunologic, and morphologic techniques to

understand the signs and symptoms of patients, thereby offering a rational basis for clinical

attention and treatment. Thus, pathology has been considered as a bridge between basic

sciences and clinical medicine, and it provides the scientific foundation for all of medi-
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cine [91] (See Figure 1-1). Effective healthcare is supported by information that pathology

services provide to clinicians; unfortunately, this fact is often not appreciated by the general

public or even healthcare professionals [122].

Figure 1-1: The Tree of Medicine. The trunk is General Pathology, which draws from all

the basic sciences, and divides into the many branches of Special Pathology;

each one of these supports a specialized field of Medicine, the crown of the tree.

Source: [108].

Pathology focuses on the following four aspects of the disease process [166, 91]:

Etiology. This term refers to origin of disease, including the underlying causes and

modifying factors. Factors that cause disease are usually grouped into two classes:

genetic and acquired; however, it is known that some diseases may be caused by a

combination of inherited genetic susceptibility and various environmental triggers.

Pathogenesis. It refers to the mechanisms involved in the origin of disease. It describes

how etiologic factors trigger cellular and molecular changes that give rise to the specific

functional and structural abnormalities that characterize a disease.
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Morphologic changes. They are related to structural alterations in cells or tissues.

Such alterations could be either characteristic of a disease or diagnostic of an etiologic

process. Traditionally, morphology has been used in diagnostic pathology to determine

the nature of the disease and follow its progression.

Functional derangements and clinical manifestations. This aspect refers to the

functional consequences of morphologic changes. The result of genetic, biochemical,

and structural changes in cells and tissues are functional abnormalities, which lead to

the symptoms and signs of disease, as well as its clinical course and outcome.

Histopathology

Histopathology is a sub-discipline of pathology that comprises the study of diseased tissue.

Histopathologists look at tissues and cells removed from patients undergoing a tissue biopsy

or a surgical procedure. The process is summarized as follows. First, they examine the tissue

at naked eye looking for abnormalities and then select pieces to examine in more detail. These

small pieces are treated with chemicals so that very thin slices can be cut. Aiming to identify

the structures present in the cut slices, they are stained using different techniques [122, 157].

Most diagnoses are based in assessment of hematoxylin and eosin (H&E) stained tissues.

Hematoxylin stains nucleic acids in blue tones while Eosin colors acidophilus structures

(e.g., cytoplasm) in varying degrees of pink [52] (See Figure 1-2). Finally, the stained slices

are examined by histopathologists under a microscope.

Histopathology specimens have a vital importance in patient care [8]. Using information

from them, pathologist can establish a diagnosis and provide the physician who is treating

the patient with information for decision making and treatment panning [8, 157].

Figure 1-2: Histologic specimen of a breast tissue stained with hematoxylin (blues) and

eosin (pinks).
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Pathology challenges

As scientific foundation of medicine, pathologists carry a great responsibility, their decisions

have crucial care repercussions. An incorrect diagnosis could result in a patient to undergo

unnecessary surgical treatment and therapy, or have a delay in beginning treatment, which

could be fatal [175]. However, this is not an easy task since pathology faces several challenges,

as described below.

High workloads. Demand for pathology services is raising, which represents an increased

number of biopsies to assess and reports to fill out [81]. This has incidence in different

aspects. First, turn around times might increase, so high-risk cases could be delayed.

In addition, reliability of a rendered diagnosis might be affected.

Cumbersome and time consuming tasks. Part of a pathologist’s duties include time

consuming tasks such as manual counting of the number of cells existent in a sample

tissue. For example, during a myelography procedure, pathologists have to manually

count the number of blood cells of different types to either diagnose or stage the

disease in patients with hematological diseases (leukemia, anemia, lymphomas, etc.).

Although pathologists employ auxiliary tools, e.g., cell counter devices (See Figure

1-3), the whole task is cumbersome and time-consuming.

Subjectivity. Recognizing, analyzing and understanding changes at the level of the

tissue architecture or individual cells is a subjective process [122], so the inter-observer

variability is a constant challenge. Usually, pathologists must face highly complex cases

which make difficult to reach a consensus.

Communication and inter consulting barriers. Usually, some cases must be sent from

a laboratory to a distant location so other experts may examine the case and provide

a second diagnostic opinion. This is not only a time consuming task but also there is

a risk cases are lost or damaged while being transported.

Lack of dynamic educational strategies. Education in pathology meaningfully relies on

consulting books, which are expensive, easily outdated, and have limited interaction

possibilities. Pathology is a dynamic field and, as such, it needs to provide trainees with

proper tools that improve the learning process and allow them to face the complexity

of the field.

Digital pathology

Digital pathology consists in the analysis of histopathological samples by means of computer-

based tools (See Figure 1-4). The first step involves digitization of tissue glass slides, i.e.,
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Figure 1-3: A blood cell counter, used to manually count white blood cells. Source:

http://www.naugramedical.com/

the histopathology specimens. This process is carried out by scanning devices, which take a

set of consecutive photographies of the glass slide and then stitch them out by registration

algorithms.

Images are captured at a high resolution level (usually, 40×) to provide detailed visual

information of the tissue. Due to the large resolution of the resulting images, the file sizes

are on the order of gigabytes. Finally, images are stored in a server so they can be accessed.

Stored images can be visualized by means of software tools specially developed for navigation

of tissue virtual slides also known as whole slide images [56].

Digital slides provide important benefits over glass slides. First, digital slides are not fragile

and do not get affected by passage of time. In addition, digital samples can be easily shared

between experts located in different physical locations to do remote pathology consultation

without the need of physically shipping slides around [106, 150]. Furthermore, access to

large digital repositories of tissue slides is a huge potential educational resource for medical

students and pathology residents who could be trained to identify and recognize pathology

cases in a dynamic fashion [106].

An additional benefit of digital pathology is that, by means of computer vision and other

algorithms, quantitative data could be extracted from such images to provide pathologist

with information to support their diagnostic and prognostic tasks.

Challenges of digital pathology

Everyday, a large quantity of medical images are being produced in hospitals and medical

centers for diagnosis and therapy; unfortunately, the valuable information of this data reposi-

tories is not being exploited [118]. The development of systems able to to efficiently manage,

access, and share such data could be highly valuable for clinicians, especially with the cu-

rrent trend toward evidence-based practice of medicine [27]. Nonetheless, current systems

are far from this objective since their interaction mechanisms are very limited, i.e., they do

not allow users to easily and dynamically visualize the content and extracting information

from it. Some reasons for that are described hereafter.

Quantity of data. As previously stated, histopathology specimens are digitized at a

high magnification to provide the pathologist with the required information for diag-
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Figure 1-4: General workflow of digital pathology. First, a glass slide containing a tissue

sample is digitized by means of a specialized scanner. Usually, such scanners

take different consecutive pictures of the sample and then use registration al-

gorithms to obtain a single final digital image. Such an image is stored into a

server, so it can be later accessed for either visualization or automatic analysis

purposes.

nostic; for this reason, these images are very large (on the order of gigabytes). Proper

interaction with such large content represents a very challenging task in terms of sto-

rage, memory, processing, and streaming. Efficient and effective approaches to allow

pathologists to visualize and interact with content should be developed.

Complexity and variability of biological structures. Histopathological tissues exhibits

a wide range of structures with different levels of complexity, so accurate identifica-

tion of them is a challenging task. Different automatic approaches have attempted to

model some structures based on low-level features such as color, shape, or texture;

unfortunately, visual similarity is not enough. First, some structures reveal a high in-

tra variability, i.e., a same structure may appear in very visually different manners.

Likewise, two very similar structures could have a complete different biological mea-

ning. In both cases, the context play a very important role to guide a pathologist

towards an accurate diagnosis. Effective automatic strategies must inquire not only

visual appearance of basic structures such as nuclei or glands, but also their context

and architecture.
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Limited annotated data. Modern machine learning algorithms have made a good job

at recognizing pattern in histopathology images; however, most of them need proper

quantities of annotated data to work. Despite the large quantity of generated data

everyday at hospitals and medical centers, most of them are not annotated. Data

annotation is an expensive and time-consuming labor that, in addition, should only be

performed by expert people to assure the quality of the content. Unfortunately, experts

hardly have time for this kind of tasks, especially because the amount of content of

such image databases is beyond their manual indexing capability [101, 27, 180].

Thesis outline

As previously stated, current medical systems do not provide proper interaction mechanisms

thereby limiting a good practice of EBM. For this reason, in this thesis we provide a set

strategies that attempt to improve the way pathologists and systems interact. In particular,

we aim to answer two research questions:

How to efficiently access to histopathology content?

How to extract relevant information from this content?

The remaining chapters of the thesis are organized as follows:

Chapter 2: Efficient access to digital histopathology images

The large size of images obtained from histopathology specimens represents a compu-

tational challenge for visualization and interaction. In this chapter, a low-computational-

cost strategy to ease visualization of histopathology images is introduced. The work

presented in this chapter has been published in a journal and different conferences:

• Germán Corredor, Eduardo Romero, and Marcela Iregui. An adaptable naviga-

tion strategy for Virtual Microscopy from mobile platforms. Journal of Biomedical

Informatics, vol 54, pp 39-49, 2015

• Germán Corredor, Marcela Iregui, Viviana Arias, and Eduardo Romero. Flexible

architecture for streaming and visualization of large virtual microscopy images.

Proc. of the MICCAI - Workshop on Medical Computer Vision 2013, Nagoya -

Japan, 2013

• Germán Corredor, Marcela Iregui, Viviana Arias, and Eduardo Romero. Con-

current access to a virtual microscope using a web service oriented architecture.

Proc. of the IX International Seminar on Medical Information Processing and

Analysis, Mexico City - Mexico, 2013
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Chapter 3: Exploiting information from nuclei and their context for his-

topathological analytics

Considering that the cell is the fundamental unit of pathology [91, 166], in this chapter,

we present different strategies for exploiting information from cell nuclei in conjunction

with their context. This information is then employed for identification of pathological

structures and inferring prognostic information. Specifically, two study cases are pre-

sented; the former is focused on breast cancer cases and the latter on lung cancer cases.

The work presented in this chapter has been accepted for publication in a journal and

was published different conferences:

• Germán Corredor, Xiangxue Wang, Yu Zhou, Cheng Lu, Pingfu fu, Konstantinos

Syrigos, David Rimm, Michael Yang, Eduardo Romero, Kurt Schalper, Vamsidhar

Velcheti, and Anant Madabhushi. Spatial architecture and arrangement of tumor-

infiltrating lymphocytes for predicting likelihood of recurrence in early-stage lung

cancer. Accepted for publication in Clinical Cancer Research.

• Xiangxue Wang, Germán Corredor, Eduardo Romero, Andrew Janowczyk, Yu

Zhou, Michael Yang, Vamsidhar Velcheti, and Anant Madabhushi. Computerized

Density Estimation of Tumor-Infiltrating Lymphocyte in H&E TMAs Predicts

Recurrence in Early Stage Non-Small Cell Lung Cancer. Proc. of the USCAP

106th annual meeting, San Antonio - USA, 2017

• Paula Toro, Germán Corredor, Xiangxue Wang, Viviana Arias, Vamsidhar Vel-

cheti, Anant Madabhushi, and Eduardo Romero. Quantifying expert diagnosis

variability when grading tumor-Infiltrating lymphocytes. Proc. of the 13th Inter-

national Symposium on Medical Information Processing and Analysis, San Andres

- Colombia, 2017

• Juan Garćıa-Arteaga, Germán Corredor, Xiangxue Wang, Vamsidhar Velcheti,

Anant Madabhushi, and Eduardo Romero. A lymphocyte spatial distribution graph

based method for automated classification of recurrence risk on lung cancer images.

Proc. of the 13th International Symposium on Medical Information Processing

and Analysis, San Andres - Colombia, 2017

• Germán Corredor, Xiangxue Wang, Cheng Lu, Vamsidhar Velcheti, Eduardo Ro-

mero, and Anant Madabhushi. A Watershed and Feature based approach for au-

tomated detection of lymphocytes on lung cancer images. Proc. of SPIE Medical

Imaging 2018, Houston - USA, 2018

• Germán Corredor, Cristian Barrera, Paula Toro, Ricardo Moncayo, Hannah Gil-

more, Anant Madabhushi, and Eduardo Romero. Detection and grading of ductal

carcinoma in situ by using structural features. 14th European Congress on Di-

gital Pathology and the 5th Nordic Symposium on Digital Pathology, Helsinki -

Finland, 2018
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• Germán Corredor, Cristian Barrera, Xiangxue Wang, Anant Madabhushi, and

Eduardo Romero. Phenotyping Tumor Infiltrating Lymphocytes on H&E Tissue

Images: Predicting Recurrence in Lung Cancer. Submitted to SPIE Medical Ima-

ging 2019, San Diego - USA, 2019

Chapter 4: Using interactions from experts for histopathological analytics

In this chapter, we present an approach that employs implicit relevance feedback from

experts to identify regions of interest in histopathology images. By means of this stra-

tegy, high-level information is obtained from experts while they perform routine tasks,

i.e., they do not need to manually annotate images. Specifically, a study case focused on

skin cancer cases is presented. The work presented in this chapter has been published

in a journal and different conferences:

• Germán Corredor, Jon Whitney, Viviana Arias, Anant Madabhushi, and Eduardo

Romero. Training a cell level classifier for detecting basal cell carcinoma by com-

bining human visual attention maps with low level handcrafted features. Journal

of Medical Imaging, vol 4(2), 2017

• Germán Corredor and Eduardo Romero. Learning Histopathological Regions of

Interest by fusing bottom-up and top-down information. Proc. of the International

Conference on Image Processing (ICIP) 2015, Quebec city - Canada, 2015

• Daniel Santiago, Germán Corredor, and Eduardo Romero. A sparse representation

of the pathologist’s interaction with whole slide images to improve the assigned

relevance of regions of interest. Proc. of the 13th International Symposium on

Medical Information Processing and Analysis, San Andres - Colombia, 2017

Chapter 5: Conclusions The final chapter in this work presents some conclusions

and discuss the potential impact of the interaction strategies presented in this work.

Some future research directions are also presented.



2 Efficient access to digital

histopathology images

2.1. Introduction

Virtual Microscopy (VM) may be thought of as a collection of techniques that facilitate a set

of Whole Slide Images (WSIs) can be examined from any place and at any time. Typically,

a histopathological specimen is digitized at the higher possible magnification to provide the

pathologist with the required information for diagnostic, research, training or educational

tasks [34]. During the last decade, the dynamic interpretation of WSIs has been integrated

with many pathology activities such as teaching, research, digital archiving, teleconsultation,

and quality assurance testing [2]. Different works have studied the viability and agreement of

diagnoses by using WSIs, reporting promising results [51, 2, 112]. Recently, medical schools

in the United States have introduced digital pathology courses and virtual slide laboratories,

promoting a generation of pathology trainers who may prefer digital pathology imaging

over the traditional hands-on light microscopy [171]. A large variety of technical solutions

supported these studies, e.g., Aperio ImageScope [51], home systems such as U-DPS [2],

DMetrix Digital Eyepiece [171], or WebScope [112].

Several technical and logistical barriers, however, have delayed WSI becomes a widely ac-

cepted pathology modality [124]. A proper management of the number of files generated by

a WSI demands large memory, processing, and storage resources since the size of a WSI is

typically on the order of gigabytes. Furthermore, since there is not a common image format

for virtual slides, a large number of proprietary or vendor-specific formats has been cons-

tantly modified as long as new scanners have been introduced [161]. Standardization not

only allows an user to perform certain functions in an optimal way, but it also offers qua-

lity guarantees, interoperability, independency from vendors and equipments, access to new

technologies, and possibilities to scale applications according to new requirements. A wider

VM use will require full integration with laboratory information systems, seamless connec-

tivity over broadband networks, efficient workstations, cost-effective storage solutions, and

standards-based informatics transactions for integrating information with WSI [171, 124, 80].

Lately, image quality improvements, smaller scan times, and image-viewing browsers have

converted digital pathology into an actual opportunity [124]. Overall, actual clinical scena-

rios require access to these files from any location, reason by which mobile devices might

be considered as the support nodes of a VM network. However, such devices are still very
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resource limited [120] and, yet communication channels have remarkably improved, network

bandwidths are frequently insufficient.

This problem has been addressed using a variety of approaches, the most common consis-

ting in constructing pyramidal data structures that deal with different image scales that are

stored as independent files [3]. For a requested Region of Interest (RoI) to be displayed,

a complex combination of pyramidal files must be composed and this is usually compu-

tationally expensive. Some pyramidal approaches (e.g., HD View, Zoomify, Gigapan, and

Google Earth) have been evaluated from a VM standpoint, reporting pleasant interaction

experiences when navigating a single WSI from a conventional computer [3]. Nevertheless,

these approaches might be very limited when displaying a WSI from a low resource mobile

device since in such a case, applications should deal with variable storage requirements, low

compatibility, high processing demand, and poor adaptation to different displays. Likewise,

limited devices may have trouble managing a large number of files since their cache space

may be easily overflowed. Aperio [9], a commercially available software allows an user to

pan and zoom in and out virtual slides, but this system is computationally very demanding

and requires a powerful infrastructure. Similar aproaches are OpenSlide [63], NYU Virtual

Microscope [72], and Deep Zoom (formerly called Seadragon) [114], among them, Openslide

is an open source library devised to display WSIs and is compatible with different image

formats. The NYU Virtual Microscope uses the Google Maps API and Deep Zoom is part of

the Microsoft Silverlight platform, a proprietary software with a very limited mobile version.

These last three applications are based on a pyramidal structure and share the limitations

aforementioned for mobile devices. A different approach was proposed by Hadwiger et al.

who introduced a multi-resolution virtual memory that performs dynamic updates and deals

with missing data [70]. This system is not based on any standard, uses the lossy JPEG

version and was devised to display data at a full resolution, a bottleneck in limited devices.

VM demands highly flexible, efficient, manufacturer independent, and standard-based tools

[161, 137]. An alternative to the artificial pyramidal approach is the JPEG2000 standard,

founded on the concept of making available any piece of required information, i.e., a parti-

cular spatial region at any desired quality and magnification. The standard appears to be

flexible enough as to address the issue of streaming and visualizing demanding content in

mobile devices [139], such as WSIs. This standard was smartly conceived to be granular, i.e.,

an image can be decomposed and compressed in small independent parts (grains) of infor-

mation at different levels of magnification, several degrees of quality and independent spatial

representation, facilitating a separated access and process of specific regions of the image,

while also supporting large file sizes and a larger dynamic range of the pixel representation

[156]. In addition, by the JPIP (JPEG2000 Interactive Protocol) standard, the client may

demand specific RoIs from the server, instead of remotely accessing the whole JPEG2000

content [155]. Nevertheless, the JPEG2000 standard complexity may make it very expensive

in computational terms [161] and therefore unrealistic at supporting a VM network. Basi-

cally, data allocation can be an actual burden of the navigation while the decoding process
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may be on the order of 2-5 seconds, even when decoding a small VS of 9000 × 12000 pi-

xels. There exist some applications using different JPEG2000 implementations, all of them

decompressing data at the server side and leaving to the client a purely passive role at recei-

ving the raw decoded information to be displayed, for instance IIPImage [128], Djatoka [33],

JVSMicroscope [161], and Web Microscope [103], being the latter a reference in certain aca-

demic and clinical institutions. This strategy throws away the JPEG2000 high compression

rates since only uncompressed data are transmitted and ignores the potential processing

improvement at the client side. Other works [75, 60, 59] have explored the JPEG2000 as

an interaction tool for VM by modifying the decoder implementation, retrieving and de-

compressing specific portions of the codestream; unfortunately, this tightly-coupled solution

could be hardly extended to different platforms. Finally, Rosenbaum et al. proposed to send

only the RoI encoded information and to complete the missing codestream (untransmitted)

at the client side with a pre-defined template [139], but then the decompression times result

equivalent because of the size of data.

2.2. A strategy to efficiently access and interact with

histopathological images

2.2.1. An adaptable strategy for interaction with histopathological

images from mobile devices

This section introduces an adaptable and low computational cost VM framework that ex-

ploits the JPEG2000 potentiality at both the server and client sides. The possibility of

meeting any requirement, i.e., any spatial region at any size, with a desired magnification

and quality, makes this proposal adaptable to new scenarios, in particular to the training

and educational VM. In that case, a group of pathologists or students, might simultaneously

access the same WSI and therefore saturate the network. The main contributions of this

work are:

Unlike most existent solutions, this strategy has been devised to maximally exploit the

processing resources at both the client and the server so the server sends compressed

data and the client decompresses data, even under very limited computational capacity.

A smart decoding strategy addressed to construct any RoI by setting the requested

region to an image which can then be decompressed by any standard decoder.

A flexible and scalable data management strategy that efficiently retrieves JPEG2000

compressed data at the server side, independently of the image size, by a coupled

designed meta level index file.
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A loosely-coupled architecture, web service oriented, providing functionalities that sup-

port interoperable and standard interaction over the network. This highly adaptable

architecture adjusts the content to the user requirements, the device capacity and the

network bandwidth, while it offers a progressive lossless visualization.

Materials and Methods

JPEG2000 Overview

JPEG2000 is a highly flexible image coding standard that optimizes interaction with com-

pressed data [147, 153]. A key feature of this standard is that it encodes multiple resolution

levels and quality layers. Resolution is related with the number of pixels that are needed to

ensure that, at a particular image size, the displayed information is maximum. In contrast,

the quality is a function of the number of bits that are used to represent a pixel. Resolution

flexibility implies that an image can be retrieved at a low resolution (a small version of the

image) and can be enlarged (by a factor of two) by adding the missing data and only these

data [121]. The quality is connected with the concept of progressive user interaction and

consists in displaying a very basic version of the image, with few details, that are progres-

sively added as long as the user demands more information, until reaching a full lossless

visualization, if needed [121].

The JPEG2000 norm is based on the Discrete Wavelet Transform (DWT) and the Embedded

Block Coding with Optimal Truncation (EBCOT), both endowing the data representation

with high granularity [154] (see Figure 2-1). The DWT decomposes the input image in-

to frequency subbands, producing a natural multi-resolution decomposition, with basically

two wavelets: the Daubechies 9-7 for lossy compression, and the reversible Daubechies 5-3

for lossless compression [76]. The DWT image is divided into tiles that allow random ac-

cess to spatial regions with different frequential information. The EBCOT compresses the

image into small blocks (code-blocks) that encode the DWT coefficients of each subband.

Each of the codeblocks, composed of a set of bit-planes, is ordered by levels of relevancy

known as the quality layers, each containing a part of the whole information. Finally, the

packet, the basic JPEG2000 information unit, is responsible for storing compressed data at

a particular resolution level, a single spatial region and a unique quality level. The standard

allows a progressive reconstruction of the original image by dynamically adding missing pac-

kets, improving the visualization of the image until a perfect reconstruction is obtained [156].

Smart decoding strategy

The JPEG2000 decompression process is expensive because of the decoding and the inverse

transforming processes, a fact that has limited the JPEG2000 application in VM. A partial

remedy to this bottleneck has consisted in assigning the processing responsability to a server

which decodes the codestream and sends the resultant raw data [128, 33, 161, 103]. The

client acts as a simple information receptor and the potential client resources are never used,
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Figure 2-1: JPEG2000 data partition. The image is divided into smaller rectangular regions

known as tiles. The DWT is applied independently within each tile component,

yielding the respective subband tree structure. Each subband of each tile is furt-

her partitioned into code-blocks, which are then independently coded. After the

EBCOT encoding, optimal truncation points for each quality layer are identi-

fied. Finally, each resolution of each tile component is grouped into precincts

that represent specific spatial regions of the image.

overloading the communication channel by transporting uncompressed data. Furthermore,

the transmission of raw data necessarily reduces the possiblity of storing relevant information

at the client side and thus the potentiality of implementing effective cache policies that may

reduce the network traffic. The option of decoding at the client side has been introduced

either by decompressing the whole image, a real problem with the WSI sizes, or by adapting

the decoder implementation to decompress specific packets [60, 59]. The main drawback of

this last solution is the inevitable dependence on the decoder implementation, or the problem

of managing the dynamic organization of data, which in some cases has been approximated

by completing the requested codestream with zeros [139], but then the decompressing times

result to be equivalent to those obtained with the whole image. In summary, most of the

existent VM applications have ended up by using JPEG2000 as a simple compression format,

without exploiting its flexibility at representing the data.

Unlike previous approaches, the proposed strategy effectively integrates the client to the pro-

cessing by generating, for each requested RoI, a new small JPEG2000 coded image that meets

the desired RoI, i.e, same dimensions, resolution levels and quality layers. This is achieved

by modifying the image main header and assembling that header with the packets associated

with the RoI. In this way, an efficient decompression is accomplished by processing exactly

the required image portion, at any desired quality and magnification. A resultant side advan-

tage of this strategy is the independence of the implementation, i.e., any decoder can be used.

Flexible data management

In an actual navigation scenario, the retrieval of specific data from a JPEG2000 file demands

an intensive search within the codestream to localize the desired packets, whose location is

coded in structures known as tag-trees [76]. Any individual query requires these structures

to be decoded [76], a process that may take about 2 seconds for a single packet of a large
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Figure 2-2: Illustration of the smart decoding strategy, which is performed in three steps:

(1) Extraction of the image main header and packets that represent a region

r. (2) Modification of the image header by adjusting the main data using the

region r features (width, height, resolution level, quality level). (3) Assembling

the modified main header and the extracted packets to generate a new smaller

codestream that represents the requested RoI.

WSI. This problem has been overcome by using index files [154]. The herein used index files

are based on the JPIP standard specification [77] and they are simple text files that provide

an organized structure of the general image data at two different levels (see Figure 2-3), the

global image information (width, height, progression order, number of components, number

of quality layers, number of decomposition levels, etc) and the particular local configuration

at the level of packets (quality layer, component, resolution, precinct number and byte ran-

ges), thereby facilitating any application to identify and to extract bytes directly from the

JPEG2000 files and therefore to meet complex user requirements.

Figure 2-3: Structure of the adapted index file.
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In general, when navigating an image, a user requests Windows of Interest (WoI) that are

identified by their image location, size (weight and height), resolution and quality. The

system must therefore use a parser that maps the user request to the specific packets in

the compressed image or codestream, after the image information box in the index file

(See Figure 2-3). Using the WoI coordinates, the parser computes the identifiers of those

precincts1 associated to the spatial query. This information, together with with the specific

requested resolution and layer, is used to calculate the corresponding packet IDs. Once these

IDs are found, a search in the index file determines the initial and final locations in the

codestream of the specific bytes, i.e., the position of this packet in the compressed file.

Finally, these bytes are extracted directly from the compressed file.

While these index files are very important to accelerate the time required to locate a packet

within the codestream, they require an associated efficient access technique. Depending on

the WSI size, the index files may result as large as a WSI and the search process may become

as slow as to become an actual navigation bottleneck. For this reason, indexation was herein

optimally managed by designing a hash-based structure composed of multiple small index

files that may be selectively loaded to meet a client request. Each file stores data from a

given set of packets. When a packet information is required, its identification number is used

to determine the index file containing the necessary data. This strategy provides scalability

and proper performance regardless the image size, since just one index file must be accessed

and loaded in memory.

Architecture overview

The proposed strategy exploits and extends the benefits of both the JPEG2000 and JPIP

standards, adapting the content to the device capacity and user needs (see Figure 2-4). Basi-

cally, any navigation request may be assembled and resources may be optimized if a flexible

architecture is capable of implementing the standard granularity [141, 139]. In particular, the

level of quality is a variable of the user needs and hence the navigation might be speeded up

by setting a maximum quality. Likewise, navigation may also be accelerated if the decoding

policies, at both the server and client sides, are completely adaptable to the bandwidth.

Any architectural approach must then be flexible enough as to cope with all these different

scenarios.

The proposed architecture is loosely coupled and allows integration of different caching and

prefetching models, which speed up the browsing performance [41, 59]. Furthermore, the

transmitted content can be adapted to the screen size, supporting several devices with dif-

ferent capacities (not only mobile ones). This architecture consists of three loosely coupled

layers, described hereafter. Figure 2-5 illustrates the information flow through the different

modules of the proposed architecture.

Storage layer: This layer is the repository of the JPEG2000 compressed images and their

1Precincts are a JPEG2000 image spatial partition
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Figure 2-4: Top-level runtime view of the architecture.

respective index files, which facilitate access to such image files. When a new compressed

image is stored, its index file is constructed using the information of the main header and

the packet markers in the codestream. The proposed approach is independent of any data-

base engine since data are stored as files. This layer is platform independent, i.e., it can be

run from any operating system (Windows or UNIX based) and the required storage space

depends exclusively on the image sizes. The application that generates the index files was

developed using the Java SE platform, which is also platform independent.

Data provider Layer: This layer provides web service interfaces for a client accesses to

data in the storage layer. The web services were developed using the Java EE platform and

run over any Java Enabled Application Server. Such web services are interoperable and may

be consumed by any client application. Four main services are available: List sends a list of

the available images. Header receives an image name and returns the image main header.

Metadata takes as input an image name and sends specific information, namely dimensions,

progression order, number of precincts, number of components, number of quality layers,

number of resolution levels, among others. Finally, for the Packets service, given an image

name and a list of packet IDs, it sends the bitstream of each packet. The Data Manager

module is an intermediate between the web services and the storage layer.

Alternatively, the Pixels service takes an image name and a WoI request (coordinates, reso-

lution and layer), and returns the pixels of that window. This service may be suitable when

decoding can not be performed at the client side, for example devices with very low capacities

or for web-based applications, which generally have no support for the JPEG2000 standard.

This service connects to a Server Processor module which is responsible for packet calcu-
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Figure 2-5: Information flow through the different architecture modules. When a user se-

lects an image, a message is sent to both the Metadata and Header services,

requesting these data. Then, an initial low resolution spatial request is genera-

ted for a user visualizes and interacts with a region of the image. For doing so,

the packets of such region (WoI) are calculated and requested to the Packet ser-

vice if they are not available in the cache memory. Then, the packets, the region

parameters and the image main header are used to build a codestream of such

requested region. This compliant codestream may be uncompressed with any

standard JPEG2000 (J2K) decoder. When a user interacts with the interface

(panning, zooming in/out or refining quality), the Processor Manager receives

the requested region parameters and the process is repeated, starting from the

packet calculation until WoI display.

lation and generates a compliant codestream to be uncompressed using a JPEG2000 decoder.

Client Layer: It is composed of several modules for a user may visualize and interact with

the WSI. A first module is a graphic user interface (GUI) with panning, zooming-in/out and

quality operations. A second module is the cache manager that administrates the memory

where previously requested data may be stored. This module removes old/unused data when

this is full and takes advantage of spatial, resolution and quality scalability. The size of this

cache memory is configurable according to the device capacity and adaptable to different

models, for example, the Least Recently Used or the Least Frequently Used. The fact that

the data representation is so granular facilitates the design of more complex cache policies

that are constructed, after the principle of storing only what is relevant and will be used

in the future. A third module is the Request Processor that demands the required data

either to the cache manager (if they were previously requested) or to the corresponding web

service. This module uses the Packet Calculator to identify the packets that are requested.
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In the smart decoding module, the retrieved data from the codestream are mapped to a

JPEG2000 image which then can be decompressed using any standard decoder. Finally, raw

data (pixels) are displayed by the GUI.

GUI design

From any mobile device the first view is a dynamic list of the available WSIs. The user then

selects that one to be examined and may easily switch between different WSIs of the dataset,

as illustrated in Figures 2.6(a) and 2.6(b). Each thumbnail image is associated to a list of

metadata, containing clinical information, that is pop out when long pressing the thumbnail

image. If the pathologist picks a WSI, the navigation starts by displaying two views, a guide

window that displays a low magnification version of the WSI and serves for the expert to be

oriented within the WSI, and an exploration window showing a RoI (Figure 2.6(c)). At each

WSI, the expert may pan, zoom in or out and refine the quality by using some gestures and

interface elements.

(a)

(b)
(c)

Figure 2-6: System GUI. Subfigures (a) and (b) present visualization of the available WSIs

in a smartphone and a tablet, respectively. Subfigure (c) presents the GUI for

visualization of a WSI. It shows the exploration and guide views. The latter

displays a thumbnail that helps to track the explored region within the WSI

Experimentation

Dataset

Experiments were performed with a dataset consisting of twenty skin biopsies of different

patients, stained with Hematoxylin-Eosin. Most of these cases are skin basal cell carcinomas,

two were lentigines, a melanocytic nevus, and an irritated seborrheic keratosis. The diagnosis

difficulty was considered as moderate by our expert dermato-pathologist and, in general, they

took less than a minute to perform a diagnosis. The cases were provided by the Pathology

Department of Universidad Nacional de Colombia. The cases were collected between 2009

and 2014 and were randomly selected from a set of 98 patients. All the cases were anonymized.
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The slides were digitized at 40x using a tri-ocular CARL ZEISS Axiostar plus microscope

coupled to a DXM1200 Nikon color digital camera, controlled by a custom motorized scanner.

The WSIs were JPEG2000 compressed using 10 quality layers, 4 decomposition levels (5

resolutions), the lossless filter (W5x3) and precinct sizes of 64 × 64 for the first resolution

level and dyadic increasing sizes for the other levels. The WSI resolutions vary from 104 to 340

mega pixels, and their sizes range between 630 MB and 972 MB. The proposed approach was

compared with two baseline approaches: the lossy and lossless versions of the JPEG standard,

constucting two pyramidal structures with different scale (spatial scalability) and quality

(Signal-to-noise ratio scalability) versions of the original image, based on the Google Earth

API documentation [64]. Images were JPEG and JPEG-lossless (JPEG-LS) compressed using

10 quality layers, 5 resolution levels, and tiles of 64 × 64 for the first resolution level and

dyadic increasing sizes for the other levels. Finally, the experiments were run using a 1 Mbps

network. Table 2.2.1 shows a quantitative comparison of some representative WSIs in terms

of formats, resolution, file size and number of files.

Image 1 2 3 4 5

Diagnosis Nodular ba-

sal cell carci-

noma

Nodular ba-

sal cell carci-

noma

Nodular ba-

sal cell carci-

noma

Solar lentigo Melanocytic

nevus

Resolution 15360x14336 22528x14336 11264x13824 36864x9216 17408x11776

JPEG2000 size 120.9 MB 176.5 MB 153.2 MB 198.5 MB 120.7 MB

JPEG pyramid

size

502 MB 758 MB 421 MB 480 MB 499 MB

JPEG-LS pyra-

mid size

1280 MB 1860 MB 1400 MB 1890 MB 1140 MB

Raw size 630 MB 924 MB 768 MB 972 MB 586 MB

# of JPEG2000

files

3 3 3 3 3

# of JPEG &

JPEG-LS files

10500 15400 12800 16200 9350

Table 2-1: Comparison of some WSIs of the dataset in terms of formats, resolution, file size

and number of files. The number of JPEG2000 files includes index files.

Architecture deployment

The server application was developed using the Java EE 1.5 platform and was deployed on

the GlassFish Application Server. The storage and data provider layers run on a computer

with 4 GB RAM memory and 2.4 GHz quad core processor. The client application for a single

user navigation was implemented in the Android platform. The tests were performed using

the Samsung GT-i9100 (Galaxy S2) device, with operating system Android 4.1.2, 800× 480

display size, 1024 MB RAM memory and 1.2 GHz dual-core processor. Decoding was carried
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out using the Kakadu library [152] version 2.2.3 and the JasPer library [1] version 1.900.1,

under the Java Native Interface.

Simultaneous access experiments were run on a desktop client device that randomly executed

recorded requests of actual expert navigations. The client application was developed in the

Java platform and tests were performed on a computer with 4GB RAM memory and 2.71

GHz dual core processor, using The Kakadu library version 2.2.3 as the decoder.

Evaluation

Provided that limited processing power, memory and bandwidth are the most critical cons-

traints of any mobile device, evaluation is addressed to measure an efficient trade off between

the navigation time and the percentage of used resources. The evaluation of the presented

strategy was carried out by addressing the following quality attributes:

Efficacy: The system complies the user requirements and the diagnostic task is not

altered by the system.

Efficiency: The tasks are performed using the system resources appropiately (low res-

ponse times and low memory consumption).

Concurrency: The system can simultaneously attend a given number of users without

affecting the response times.

According to the previously mentioned considerations, the experiments assessed: the global

perception of the user during the diagnosis and its accuracy, size of the image representations,

memory consumption, and response times in transmission and decoding. These last were

measured for a single and multiple users. For doing that, two sets of experiments were

executed, a mobile client device was firstly used to evaluate the system performance during

a single user navigation, and then, a desktop client device was used to evaluate concurrent

access.

Given that efficiency does not depend on the image content, but on its size and diagnostic

information, the single user navigation experiments were carried out using one WSI, the one

that spanned the largest navigation times, i.e., the largest number of requests.

Experiment 1: Navigations of Pathologists

An initial test was made with two pathologists with at least ten years of professional expe-

rience. They were requested to diagnose the 20 WSIs, using a custom GUI design with a list

of the available WSI. Overall, pathologists are not familiar with computer, so for avoiding

any navigation bias because of an inappropriate use of the GUI, before the first navigation,

each pathologist was instructed about this interface with a test image. Each of the navi-

gation operations were then previously assessed by them, the different zooms, the resizing
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operations, the spatial jumps and the quality improvement. When they picked a particular

WSI, the application displayed two windows: the exploration and guide views. The guide

view resulted very useful since it facilitated a preliminar diagnosis that drove the navigation.

This view may be hidden, if needed, to increase the exploration area. Pathologists perfor-

med different exploration paths, identifying relevant regions and diagnosing them, by using

different gestures, namely taps, drags, pinches and stretches.
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Figure 2-7: Performance of the system for the 10 first navigation steps of the pathologists

during a diagnosis task on the whole dataset. Subfigure (a) presents the response

times and Subfigure (b) presents the memory usage

At the end of the navigations, the pathologists reported a pleasant interaction experience,

they agreed for all the cases and they concluded that the application might then be suitable

to perform diagnosis tasks. In average, the experts spent about 1 minutes per WSI and 3.6

seconds per examined region. During the first 10 navigation steps, the average response time

remained below the 800 milliseconds (Figure 2.7(a)) and the system memory consumption

remained below the 38 MB, only a 3.7 % of the testing mobile device capacity (Figure 2.7(b)).

Finally, expert’s requests were recorded to perform the concurrency tests and to compare

the proposed model performance with the baseline (JPEG and JPEG-LS). In such tests, va-

riables such as size of the respresentations, transmission, decoding and memory usage were

measured. Results are shown in the following sections.

Experiment 2: Size of the representation

The WSIs were JPEG2000 encoded and their average file size, including indexes, was 151.9

MB. Likewise, after construction of the JPEG and JPEG-LS pyramidal structures, an ave-

rage of 12850 files were generated per image, resulting from splitting the image into different

blocks, each coded in 5 resolutions and 10 quality layers. The JPEG pyramidal construction

had a final average size of 532 MB, while the JPEG-LS structure, a final average size of 1.514
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GB (Figure 2-8). Intergroup comparison under a one-way analysis of variance (ANOVA) sho-

wed significant differences (p < 0,05) and pair-wise post hoc test (Bonferroni) indicating that

these differences could be attributed to differences between JPEG2000 and the other for-

mats. It should be strengthen out that while JPEG2000 data organization allows progressive

reconstruction by size, resolution and quality refinement as long as more data are received,

the pyramidal representation for JPEG and JPEG-LS requires storage and transmission of

redundant data.
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Figure 2-8: Size comparison of the image representations. JPEG2000, including index fi-

les, presents the lowest size, contrasted to the JPEG and JPEG-LS pyramidal

structures.

Experiment 3: Transmission efficiency

Latency was estimated by means of the data size and the bandwidth, measuring the trans-

mitted bytes per request. Figure 2.10(a) shows these results for the WSI with the largest

number of requests. The ANOVA test showed no significant differences among the means

of the three formats (p < 0,05) and the pair-wise post hoc test (Bonferroni) indicated that

these differences may be attributed to differences between JPEG2000 and the other formats.

When quality refinements and magnifications were required (requests 9-14), it can be seen

that JPEG-LS is highly demanding.

Experiment 4: Decoding Performance

Figure 2.10(b) presents the decoding time for each of the requested regions during a naviga-

tion. In this case, the ANOVA indicates significant differences (p < 0,05) and the post hoc

Bonferroni test showed insignificant difference between JPEG y JPEG-LS. Results show that

these times were larger for the JPEG2000 approach. Nevertheless, it is important to keep in

mind that this experiment in paticular was performed using the JasPer library [1]. In cons-

trast, the decoding times for the previous navigation path using Kakadu library [152] were
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about one third, a figure that could even decrease more with the Intel IPP based JPEG2000

library (×10 more rapid) [73] or the last Kakadu release (version 7.3.3) that includes a

”speed pack”that speeds up to 40 % or 50 % the decoding process [152]. Hence, the use of

more efficient or hardware-based decoders might improve the decoding times.

Experiment 5: Effect of the WSI size

The effect of the WSI size on the speed and efficiency of the system was assessed by including

3 new WSI images with compressed sizes of 3.89 GB, 2.6 GB and 1.3 GB and whose raw

sizes were 12.5 GB, 9 GB and 4 GB, respectively. This experiment consisted in measuring

the response times of requesting the image dimensions and the main header from the index

file by the respective web services. Likewise, three different requests were also measured,

namely, a 256 × 256 spatial, panning and zoom-in queries. Results, shown in Figure 2.2.1,

demonstrate that in spite of the large size differences in the set of images, the response

times are quite similar, not exceeding the 120 milliseconds, i.e., the WSI size has a moderate

impact on the system performance.
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Figure 2-9: Effect of the WSI size on the performance of the system. The response times of

four requests were measured for 10 different images: 1) Image dimensions and

main header, 2) a 256×256 region, 3) a panning query, and 4) a zoom-in query.

Experiment 6: Memory usage

The figure 2.10(c) presents the use of memory for the three assessed strategies, recording

the quantity of used memory in Megabytes each second during the navigation. The ANOVA

indicated significant differences (p = 0,002) while the post hoc Bonferroni test showed no

significant difference between JPEG2000 and the other formats. These results show that both

strategies, JPEG and JPEG-LS, present a higher memory consumption that rapidly increa-

ses during the navigation. As long as the navigation lasts, more complex variable requests

must be met, namely overlapped regions, magnifications or quality refinements, making the
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device memory to fill quickly. It is worthy to mention that during experimentation, conse-

cutive execution of different navigation protocols using the JPEG and JPEG-LS approaches

caused memory overflows.
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Figure 2-10: Performance of the system measured during the browsing of a selected WSI.

a) Quantity of transmitted data for each request, b) Decoding time for each

request, c) use of memory during the execution time.

Experiment 7: Simultaneous access performance

The access times were measured for several concurrent clients, using a client desktop device

that randomly executed the diagnostic paths previously recorded. Each of these observation

paths is composed of a set of requests, for which the application recorded the time spanned

between a particular request and the data display.

Figure 2-11 presents the results for interaction of multiple concurrent users. Subfigure (a)

presents the results with five simultaneous clients requesting data to the server, not exceeding

the 280 milliseconds. In subfigure (b), ten simultaneous clients did not go beyond the 300ms.
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Figure 2-11: Average response times measured for a set of concurrent clients requesting

data corresponding to different image navigation paths.

Finally, Subfigure (c) shows the results of twenty simultaneous clients remaining below the

600 milliseconds. For the first experiment (5 simultaneous clients), significant differences

were not demonstrated under an ANOVA analysis (p > 0,05). However, the ANOVA for the

other two experiments showed significant differences (p < 0,05). In general terms, the system

presented response times under half a second even if a basic server was used (4 GB RAM

memory and 2.4 GHz quad core processor) and the system was overloaded with a large

number of concurrent users. Of course, much more powerful servers may attend a larger

number of users.

Discussion

This section has presented a system fully integrated with an actual VM workflow that easily

adapts to the device capacity and the expert interaction needs. This is achieved by means
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of three key elements. A smart decoding strategy, a flexible data management and an archi-

tecture devised to adapt the navigation to the device resources and the network bandwidth,

while it maintains the granular data representation of the JPEG2000 standard.

Dynamic interaction with WSIs is a very complex and challenging task due to their large si-

zes, on the order of Gigabytes [34]. Currently, the most common visualization state-of-the-art

strategy consists in constructing a pyramidal structure composed of different magnifications

of the same WSI. Each of these WSI enlargements is then split into small tiles that facili-

tate access to specific information and each tile is stored in a separate file, while each level

of the pyramid (magnification) is stored in a separate folder [3]. This artificial granularity

enables applications to fetch only the required tiles, instead of downloading the entire image.

However such pyramids present important limitations and disadvantages, i.e., construction,

management and uploading of thousand of files that result heavy, wasteful and cumbersome

to manage[3]. Furthermore, neither the client cache management nor the communication

channel are efficiently administered, for instance operations such as zoom and quality re-

finement end up by transmitting redundant data and by rapidly overflowing the system

memory, as herein demonstrated. In addition, some applications that use these approaches

are computationally very demanding, requiring a powerful and expensive infrastructure. Du-

ring some experiments of the present investigation, the pathologists assessed the v10 stand

alone version of Aperio[9] and found out that such application allows interaction with three

WSI, but ten of them blocked a standard computer (2.8 GHz quad-core processor and 5

GB RAM memory). Therefore, at least with this version, it would be complicated to serve

a large number of concurrent pathologists. Other disadvantage of these pyramidal approa-

ches is related to the particular image formats, most of them use lossy compression formats

such as JPEG, an actual issue in medical applications, i.e., Physicians hardly have accepted

a compression rate of 2:1 [75]. Other lossless formats, such as BMP or JPEG-LS, are not

suitable because of their high storage and transmission costs, as illustrated by the set of

experiments herein presented. Unlike these approaches, the system herein introduced takes

advantage of the multiresolution nature of the JPEG2000 standard and easily deals with

many requests using a single structure. Although JPEG2000 has many advantages regarding

data management, the decoding time is longer than other standards and the actual access

to the content can be slow [75]. Furthermore, the J2K decoder implementations are partially

granular, complicating a selective RoI decoding at the client side. Different approaches have

attempted to improve the degree of granularity. On the one hand, some works [128, 33, 161]

have developed solutions with a lazy client, that is to say, the client just receives the decoded

data to be displayed, but these approaches may increase the server loading when attending

several clients. On the other hand, some approaches [75, 60, 59] have opted for tightly-coupled

decoder adaptations that enable decoding of specific RoIs, but these solutions can hardly

evolve. Other approach [139] aimed to optimally use the channel bandwidth by sending the

specific packets of a particular request, while the untransmitted codestream positions were

completed with predefined data, but at the price of demanding important processing resour-
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ces at the client side when processing large datastreams. In contrast, the proposed system

achieves an adaptable and selective decompression at the client side, exploits the potential

of the available devices, allows the smart use of advanced cache models and lightens the

server loading. Regarding mobile applications, some works have explored interaction with

WSIs, concluding that a successful interpretation is feasible from such devices [149, 131].

Nevertheless, some of these applications are just viewers that connect to VM pyramidal sys-

tems such as Zoomify or Aperio, inheriting some of the previously mentioned limitations. A

mobile tele-radiology imaging system using JPEG2000 was proposed by Kim et al.[85], using

low resolution and lossy versions of tomography images. Nonetheless, the authors conclude

that the size of mobile devices was not functional because the magnification and details nee-

ded for diagnosis require zooming, RoI selection and high quality, characteristics that were

not therein offered. On the contrary, the proposed approach achieves a selective lossless RoI

visualization on the mobile device and accomplishes random spatial access of RoIs at any

magnification and quality.

Different strategies have been proposed to improve interaction with large images. Some have

explored JPEG2000 as an interaction tool, speeding up the navigation by implementing cache

and prefetching techniques [74, 75, 59]. In this work, a simple and loosely coupled cache

technique avoided redundant transmission. Interaction can also be enhanced by selectively

compressing the more relevant areas with lossless quality and the rest of the image [11]

with some loses. Different works have adapted and implemented wavelet-based [107, 58] and

JPEG2000 approaches [11, 151] to ease the access to specific image areas. In the proposed

approach the entire WSI was assumed to be relevant and a free lossless navigation was so

possible. In this case, the granular RoI was dynamically constructed in real time, i.e., while

the user was interacting with the WSI and not during compression. However, some studies

have shown that a pathologist need not explore the entire slide, but instead she/he focuses

her/his analysis on a few number of visual fields [68, 69]. Recognition of such relevant regions

may be a potential source of knowledge for diagnostic tasks, medical training and reduction

of computational and transmission costs. Integration of the proposed technique with RoI

coding approaches might also be very useful.

Yet the discussed elements strengthen out the proposed approach, the presented system

shows some limitations. The main issue is related to the fact that few web applications offer

support for the JPEG2000 format, and then external decoders are required. This weakness

was herein mitigated by uncoupling the system from the particular decoder and constructing

general plug-ins or interfaces that communicate with any decoding standard implementation.

Another important limitation is the time for decoding, larger for the proposed approach

when compared with the state-of-the-art JPEG pyramidal approach, but still appropriate in

terms of a seamless navigation experience. In fact, the authors conducted a short usability

evaluation, consisting in 4 questions for the two pathologist that assessed the system: From

1 to 5, what was their opinion about the user friendliness, relevance, response times and

functionality. Results showed scores of 4.8, 4.8, 4 and 3.8 for each of the respective items.
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Pathologists pointed out that this prototype was very friendly and very useful for academic

and clinic environments. Regarding the User Interface and functionality, this was considered

as basic since it just displays a RoI at a time, and some extra functions should be added, for

instance, interaction with the thumbnail, diagonal panning and zoom in based on a selected

point. Likewise, they agree about the response times were appropriated but some work is still

required to improve the transition between frames. Finally, yet only two pathologists were

part of the evaluation, these experiments conclude a proper performance of the proposed

architecture. Future work includes to enhance the GUI design and to perform a deeper

usability test and to release stable prototype of the system.

2.2.2. A web-based interactive tool for education and research

Exploration of histopathological slides is a potential source of knowledge and new medical

training and research paradigms. Commonly, such slides are explored using an optical micros-

cope to analyze the structure and architecture of the tissue and to provide a diagnosis[110].

However, such physical slides have some issues: they are fragile, hard to transport, deterio-

rate with time, and may easily be lost. Furthermore, they have limited access because just

a single person can examine a sample at any time [123]. Traditionally, pathology education

has involved using optical microscopes in laboratory sessions. However, this model has ex-

perienced important changes due to curricular reforms that have reduced availability and

time of laboratory practices, lack of space, and tools and tendencies towards cooperative

work. New pedagogical approaches aim to interpretation and identification of structures in

histology samples, more than to acquisition of hand skills such as microscope manipulation

[160].

Recently, Digital Pathology has earned interest in the academic community since it solves

some of the conventional microscopy issues: virtual information is easily accessible and always

available, provides simultaneous access to the same sample, and is not deteriorate with time.

In addition, working with digital images permits to annotate, set regions of interest, apply

image processing techniques such as segmentation, perform pattern recognition, and use

information for diagnosis support [110].

Digital Pathology has a great potential for training, so multiple educative institutions have

included it in their curricula, complementing their histopathology courses, with positive

results [109, 31, 134, 40, 171]. Inclusion of digital pathology in education has important

benefits. First, it reduces costs for institutions since they do not have to invest in buying

and maintenance of optical microscopes and physical slides [31, 40, 123]. Second, it offers

flexibility to access content at any moment and place, not only during laboratory practices

[90, 110]. Third, informatics tools give learners freedom and fast access to explore and study

different slides, thereby potentially improving their diagnostic skills [86]. Fourth, virtual

microscopy systems provide access to remote users to observe in real time certain slides

[32]. They promote a collaborative environment in which learners and experts visualize and
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discuss some samples [110, 160]. Fifth, professors can annotate the slides to present them

to the class with the possibility of hiding data to evaluate students. These systems can be

integrated to other academic systems to extend their functionality, for example, management

of tests. Finally, such slides could be incorporated into clinical databases [31, 160].

Despite its strengths, implementation of digital pathology in education has important li-

mitations that have hindered a wide adoption of it [32]. A remarkable issue is the size of

virtual slides, that are on the order of gigabytes [123], which demands smart strategies to

dynamically and efficiently access and visualize images. Other problem is related to the costs

of infrastructure and resource support required to deploy a training system [123, 32]. Lack

of standardization is another inconvenience since there is not a common image format for

virtual slides, a large number of proprietary or vendor-specific formats has been constantly

modified as long as new scanners have been introduced [161]. Finally, some educative sys-

tems have been developed as non-interoperable or stand-alone applications, for example,

ReportTutor[47], which limits their accessibility and wide usage and does not profit the po-

tential mobile devices offer. Current web and mobile technologies present a great opportunity

to develop rich and interactive applications that facilitate access to content from anywhere

and at any moment.

This section introduces an accessible, flexible, and low-computational-cost system for digital

pathology training and research. The proposed approach exploits the potential of web tech-

nologies, integrating an interactive interface, mobile responsive, with a set of modules devised

to perform specialized training and research tasks in the pathology field. It takes advantage

of the JPEG2000 standard to efficiently deploy WSI at a desired quality and magnification.

It also includes an interactive annotation tool for WSIs, to create content for learning, colla-

borative, and discussion purposes. The system also was devised to serve as a tracking tool,

in which navigations over WSIs are registered. In this way, all the registered information can

be easily used to feedback the learning and teaching processes, build reference databases,

study navigation patterns, analyze intra-observer variability, among others.

System overview

Access and visualization strategy

Given the large size of WSIs, the most common visualization strategy consists in constructing

a pyramidal structure composed of different image files, generally in the JPEG format. This

pyramid contains magnifications of the same WSI, each split into small tiles to ease random

spatial and resolution access [123]. However, as previously stated, this approach presents

important limitations regarding management, quality, flexibility and performance [3, 36].

On the other hand, the JPEG2000 standard appears to be a suitable format for WSIs [75]

since it offers some features such as support to large file sizes, high compression rates, lossless

compression, and granular representation, i.e., a spatial region of an image can be retrieved

at different levels of magnification and degrees of quality [153].
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In Section 2.2.1, a strategy to efficiently access and display JPEG2000-coded WSIs without

requiring a powerful infrastructure was presented. In this section, an adaptation to this model

was used to allow users to dynamically interact with WSIs from a web browser (Figure 2-12).

For this purpose, two main applications were deployed.

The first application is a provider of web services; basically, it receives a specific request

and sends back the corresponding response. These requests include image metadata, clinical

information, and a specific image region at a particular resolution. In the latter case, when

the region parameters are received (coordinates and resolution level), an image is genera-

ted following the methodology described in Section 2.2.1. In summary, the corresponding

JPEG2000 packets needed to construct such a region are computed and extracted. Next,

the packets and the corresponding image header are used to build a codestream, which is

uncompressed using a standard JPEG2000 decoder. Finally, resulting pixels are sent to the

requester application.

The second application is a visualizer and was built based on the OpenSeadragon software[163].

It works as an interface between the user and the provider of services. When a user wants

to navigate a particular image, the visualizer creates an empty image pyramid composed

of different tiles and scales. The tiles of the pyramid are filled dynamically when the user

interacts with the image. For example, if the user moves towards a particular image region

to visualize it, the visualizer computes the coordinates and resolution of such a region and

sends the corresponding parameters to the provider of services. Then, the provider sends

back the corresponding image pixels and they are received by the visualizer, which displays

them into the screen.

Figure 2-12: Architecture of the web-based interactive tool for visualization of WSIs.

Graphical user interface

Figure 2-13 shows some screen-shots of the user interface. It comprises three main screens.

The first screen shows a tree-view of categories and subcategories. When a user selects an
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item, the second screen is displayed showing the list of images (and corresponding thumb-

nail) within the selected category or subcategory. Finally, when user selects one image on

the list, the third screen is deployed presenting the image itself. In such a third screen,

user can navigate thorough the image by panning or zooming in specific areas for detailed

examination.

(a) (b)

(c)

Figure 2-13: Main screens of the graphical user interface of the tool for visualization of

WSIs. Subfigure (a) shows a tree-view of categories and subcategories. Subfi-

gure (b) presents the list of images existent into a certain category. Subfigure

(c) displays the interface for navigation of the WSI.

The graphical user interface of the system was implemented using the HTML 5, CSS 3, and

JavaScript technologies, which ease the development of rich Internet applications. It was

designed to be easy to use and interactive. This application runs at any modern browser and

does not require to use or to install external plug-ins to work properly, so users can easily

access to it from anywhere. In addition, it has responsive design, i.e., the content is adapted

according to the user device, thereby enabling mobile access.

Navigation tracking

The presented system was devised to track the navigation movements of the different users

while using the application. Specifically, it registers data derived from user interaction such

as movements (panning and zoom) and elapsed time. Likewise, it registers points of interest
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during navigations that are explicitly set by users by double-clicking. This information can

be used for different purposes. For example, educators can visualize the way learners are

exploring a WSI to detect problems during diagnostic tasks and to take corrective actions.

Similarly, this can serve for students to see the way an expert navigates a slide and learn

from that. This information is also very helpful to study navigation patters and identification

of Regions of Interest (RoIs), which favors different activities; for example, the development

of strategies such as caching or prefetching2, the design smart tutoring systems which pro-

vide feedback that can help improve learner’s diagnostic skills [47, 123], the indexation of

histopathological databases, the use of selective compression strategies3.

The system includes an interactive visualization tool that reproduces the registered naviga-

tion paths. It sequentially displays each visualized window step-by-step. Additionally, it also

displays the marked points of interest on the image during navigation as showed in Figure

2-14.

Figure 2-14: View of the navigation tracking tool. When users navigate the WSIs, they

can indicate points of diagnostic interest by double-cliking on the image. The

tracking tool enables the visualization of both the movements performed by

a user and the points of interest he/she marked.

Clinical data and annotation editor

The system includes a panel showing the clinical data of the WSI (clinical record, diagnosis,

2Cache is a memory space where information previously processed might be used in the future. Prefetching

consists in anticipating the user requirements to make data available before the user requests them
3A set of RoIs are explicitly defined to be lossless compressed while irrelevant data is lossy compressed
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notes, etc.). Furthermore, it has an annotation editor that allows experts to delineate specific

areas of the image with certain pathological meaning and including them some explanatory

text. The annotations can be downloaded in JSON format for analytics and information

extraction purposes. Figure 2-15 shows an example of an image annotation.

Figure 2-15: Example of an annotation on a WSI. The green polygon delineates a histo-

pathological concept. The bottom-left square shows the corresponding text

describing the concept.

2.3. Products

Journal papers

Germán Corredor, Eduardo Romero, and Marcela Iregui. An adaptable navigation stra-

tegy for Virtual Microscopy from mobile platforms. Journal of Biomedical Informatics,

vol 54, pp 39-49, 2015

Conference papers

Germán Corredor, Marcela Iregui, Viviana Arias, and Eduardo Romero. Flexible ar-

chitecture for streaming and visualization of large virtual microscopy images. Proc. of

the MICCAI - Workshop on Medical Computer Vision 2013, Nagoya - Japan, 2013

Germán Corredor, Marcela Iregui, Viviana Arias, and Eduardo Romero. Concurrent

access to a virtual microscope using a web service oriented architecture. Proc. of the IX

International Seminar on Medical Information Processing and Analysis, Mexico City -

Mexico, 2013
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Indirect products

Undergraduate thesis: Darwin Dı́az. Advisors: Germán Corredor, Eduardo Romero,
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colaborativo en cáncer. Universidad de los Llanos, Villavicencio - Colombia, 2018

Colombian journal: Sylvia Hernández, Germán Corredor, and Marcela Iregui. Mo-

delo de interacción para la navegación en imágenes panorámicas o de gran tamaño en

Dispositivos Móviles de pantalla táctil. Scientia et Technica, vol 19(3), pp. 290-298,

2014

Sylvia Hernández, Germán Corredor, and Marcela Iregui. Interaction Model for Large-

Image Navigation in Mobile Devices. Proc. of the 5th Latin American Conference on

Networked and Electronic Media, Manizales - Colombia, 2013

Paula Toro, Germán Corredor, Eduardo Romero, and Viviana Arias. Presentation of an

annotated whole-Slide image database of Dermatopathology for Postgraduate Training

in Pathology and Dermatology. Proc. of the 5th Digital Pathology Congress, London -

UK, 2017

Paula Toro, Germán Corredor, Eduardo Romero, and Viviana Arias. Web application

for pathology training using a low cost platform and annotated whole slide images.

Accepted for presentation at the 14th European Congress on Digital Pathology and

the 5th Nordic Symposium on Digital Pathology, Helsinki - Finland, 2018

Software

Web application for exploration of histopathologic slides.

URL: http://cimalab.unal.edu.co/microscopio/



3 Histopathological analytics by learning

from imaging data

3.1. Introduction

Large quantity of medical images are being produced daily in hospitals and medical cen-

ters for diagnosis and therapy [118, 27, 42]. In consequence, health care organizations need

systems and technologies that enable health professionals to efficiently manage, access, and

share such data [181]. These systems should allow experts to find content into those large

repositories and use it to assist them in different manners, for example, to support their de-

cisions by providing quantitative information or to make comparison between similar images

in case of differential diagnosis [27, 99].

In most of the current medical imaging systems, access and retrieval of content is achieved

by means of text, i.e., images are annotated by keywords or descriptive text and organized by

topical or semantic hierarchies in traditional Database management systems. When a user

wants to access to content, he/she inputs keywords that are compared to the text marked in

the images and results are retrieved based on some similarity criteria [27, 132]. However, as

the databases grow, the traditional keywords based methods to retrieve a particular image

becomes inefficient and suffers from the following limitations:

1. Lot of manual labor. Manual annotation is an expensive and time-consuming procedure

that is also highly prone to errors. Furthermore, it should only be performed by expert

people to guarantee the quality of data, which is completely unrealistic since the whole

content volume of very large image databases is beyond the manual indexing capability

of human experts [39, 101, 27, 180, 132, 169].

2. Inaccuracy of the annotation due to the human subjectivity. A single image could

represent different things to different persons and it could be hard to describe the

diversity and ambiguity of image contents [101, 169].

3. The keywords increase linguistic barrier to share image data globally [168].

According to Müller et al. [118], the goal of medical information systems is “To deliver the

needed information at the right time, the right place, to the right persons in order to improve

the quality and efficiency of care processes”. Nonetheless, the simple text-based retrieval is
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very far from such a goal. Consequently, there is a strong need for efficient and effective

strategies to interact with relevant content from such image repositories.

In response to such problematic, a strategy called Content-based Image Retrieval (CBIR)

has been proposed. CIBR systems have been widely used to search into large image databa-

ses (medical, satellite, artistic, among others) and their objective is to aid users to retrieve

relevant and objective information [130]. In general, CBIR enables image indexing by visual

features and image retrieval by similarity of such features [102]. These characteristics include,

but are not limited to, color, shape, borders, and texture. Several techniques have been used

to extract visual image features. For example, extraction of color has been performed by

color histograms, covariance matrices, coherence vectors, among others [27, 101]. Textures

have been extracted using strategies such as co-ocurrence matrices, Tamura features, Wa-

velet transform coefficients, and Gabor filters [118, 101, 27]. Finally, some shape descriptors

commonly used are Fourier descriptors, Turning functions, Beam angle statistics, Zernike

moments, Generalized complex moments, Morphological descriptors, etc [27].

Figure 3-1 illustrates the operation of a typical CBIR system. Generally, CBIR systems

operate in two phases. The first is an off-line step in which information is pre-processed and

the indexes are created. In this stage, the visual contents of each image in the database is

extracted, a set of characteristic features (a multidimensional feature vector) computed using

a feature extraction process. This feature vector is finally stored in a metadata repository.

The second phase is presented when a user performs a search. In this stage, the user inputs a

query, commonly an example image, which is converted into a feature vector using an online

feature extraction process. Then, the similarity between the feature vector of the userś query

and the feature metadata items is calculated and ranked. Finally, retrieval is performed by

applying an indexing scheme that can be used to support fast retrieval and to make the

system scalable to large image databases [27].

Figure 3-1: Diagram of a typical CBIR system (adapted from [27]).

While research in this field has been productive in recent years, there are different challenges

to address to improve the performance of CBIR systems and make them a powerful tool to



3.1 Introduction 39

support different professional tasks. One of these challenges is the curse of dimensionality,

which refers to the problem caused by the exponential increase in volume associated with

adding extra dimensions to Euclidean space [83]. In addition, CIBR systems must deal with

the semantic gap, defined as the difficulty of describing high-level content by means of low-

level features [101]. Although visual features could aid to find similar cases, similar visual

features may not imply similar diagnoses or symptoms. Figure 3-2 illustrates a situation

in which two images are visually similar (shape, texture, and color), but they have a very

different meaning. While image (a) is a hair follicle, a normal structure, image (b) is a nodule

of basal cell carcinoma, a cancerous structure. Although an expert can easily identify and

differentiate such structures, this is not an easy task for a computer program that only uses

information coming from visual primitives such as color, texture, orientation, or shape.

(a) (b)

Figure 3-2: Two visually similar structures obtained from skin samples. Image (a) is a

hair follicle, a normal structure. Image (b) is a basal cell carcinoma nodule, a

cancerous structure.

In this chapter, we present different strategies to automatically identify pathological struc-

tures and infer prognostic data from H&E stained images. These approaches aim to provide

pathologists with objective and quantitative information that can support their decision ma-

king. The proposed strategies start by reducing the dimension of data, so instead of using

the information of all the image pixels, the analysis is focused on image cell nuclei. This

decision has two main reasons:

1. The cell is the basic unit of pathology. Modern pathology is the study of cellular

abnormalities, i.e., pathologists understand diseases in the context of normal cellular

structure and function [91].

2. Due to the high dimensionality of medical images, extraction of relevant content could

be an intractable computational problem. For this reason, strategies for dimensionality

reduction should be applied in such a way that there is an equilibrium between amount

and utility of data.

Considering that pathologists do not pay attention to cells individually, but they examine

their context and their relationships with other cells, the hereafter presented strategies exploit

local and contextual information of nuclei.
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In the subsequent subsections, two study cases are described. The former illustrates an

approach that uses nuclear information for automatic identification and grading of ductal

carcinoma in situ. The latter presents a strategy in which visual and topological features of

lymphocyte nuclei are exploited to predict patient prognosis in cases of non-small cell lung

cancer.

3.2. Study case: Automatic detection and grading of

Ductal Carcinoma In Situ

Breast cancer comprises several kinds of lesions with different severity grades. From such le-

sions, ductal carcinoma in situ (DCIS) is the most common non-invasive breast cancer type.

In this case, tumor cells are still located in the origin tissue (the milk ducts) and have not

spread into any surrounding tissue[21]. Although DCIS is not life-threatening, it is synony-

mous of a high risk of developing invasive carcinoma and these patients may require additio-

nal surveillance, prevention, or treatment to reduce their risks. Early detection results then

crucial in these cases[48]. Unfortunately, detection of DCIS is challenging since this cancer

type is observed as a set of lesions with highly variable morphology, biomarker expression, ge-

nomic profile, and natural progression[16] (See Figure 3-3). Usually, DCIS is categorized into

three grades: low, moderate, and high. Low-grade lesions contain cancerous cells that look

very similar to normal or atypical ductal hyperplasic cells. Moderate-grade lesions contain

cancerous cells slightly different to normal cells. Finally, high-grade DCIS is characterized

by well-differentiated and fast growing cancerous cells [21]. Previous studies have revealed

low levels of agreement among experts when analyzing DCIS lesions[48, 16], a definite issue

in the clinical practice. Misclassification of breast lesions may lead to over/under treatments

of lesions identified during breast screening[48]. In this context, automatic measures may

contribute for discrimination between breast lesions.

This section presents an automatic strategy that classifies microscopic Field of Views (FoVs)

extracted from breast histology images into two classes: DCIS and non-DCIS. Furthermore,

this strategy also classifies DCIS lesions into 3 grades. The presented approach characteri-

zes each FoV using different nuclear features and their context. Each nucleus is threefold

characterized by its own morphological properties (size, shape, color, texture, etc.), by its

neighbor nuclei features within a determined radius, and a distance to other image nuclei.

Unlike other state-of-the-art methods, any feature in this approach exploits nuclei relative

information, i.e., each nucleus is not only characterized by its own information but also by

how that nucleus feature is with respect to the surrounding nuclei. This method shows a good

classification performance while it shows fast training times and needs no large annotated

datasets.
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Figure 3-3: Illustration of three different breast lesions. The first corresponds to an epit-

helial dysplasia (non-cancerous) while the remaining 3 correspond to different

DCIS grades.

3.2.1. Extraction of features

The pathology semiology is based on identifying abnormalities in terms of color, shapes, sizes,

textures, and spatial arrangement of present structures at different scales[91, 164]. Inspired

by this observation, the underlying idea behind the present work is that after nuclei are

automatically identified from breast tissue images, different nuclei-based features are used

to characterize such images.

Nuclei segmentation

Automatic nuclei segmentation is performed by a watershed-based algorithm[165]. This met-

hod applies a set of mathematical operations at different scales to identify candidate nuclei

in H&E stained images. This method was selected by its visual efficacy, simplicity, speed,

and absence of adjustable parameters.
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Local features and regional features

Previous works[48] have shown that nuclear morphological features are useful to characterize

DCIS. For this reason, after nuclei are segmented, a set of low-level features are extracted

from them, including characteristics of shape (Zernike moments, ratio between axes, etc.),

texture (Haralick, entropy, etc.), and color (mean intensity, mean red, etc.). This set of local

features is used to characterize each nucleus.

Besides nuclear local features, pathologists also examine the nuclei context/neighborhood

looking for particular patterns. Different approaches have used graph-based techniques to

characterize nuclei neighborhoods[14, 6, 94]; however, these features only take into account

the spatial distribution and ignore the variability of other features. For this reason, for each

image nucleus, a set of circles with incremental radii of k=dL*10,dL*20,dL*30 pixels were

placed at the nucleus center (dL=20 pixels, the average diameter of all the detected nuclei).

Different radii were used aiming to model a multi-scale approach. Finally, a set of regional

features are computed within each circle and used to characterize the nucleus. These features

aim to measure the neighborhood density and variations in color, shape, and texture.

Once nuclei are characterized, each feature (local and regional) is represented by a histogram

to characterize the FoV. For this purpose, the dynamic feature range is set between the

maximum and minimum values found along the whole set of FoVs. The dynamic range is

divided into ten intervals and the bins of the histogram are constructed as the number of

occurrences within each of the particular intervals. The final histogram is normalized thereby

obtaining a probability distribution function.

Cellularity features

Since cancer is characterized by an uncontrolled proliferation of cells, features related to

the number of nuclei and their grouping grade were also included. This grouping index was

computed as follows: a fully-connected graph is built using nuclei as nodes and the inverse

of the Euclidean distance between nuclei is set as edge weights. The grouping factor for each

node is computed as the sum of the weights of every edge connected to such node[36]. A

high/low value means that such particular nucleus is close/far to other nuclei. Finally, the

FoV was also characterized by different statistical measures of such grouping grade (mean,

median, mode, etc.)

3.2.2. Experimentation

Dataset

A group of 1102 FoVs (1024x1024 pixels) were extracted from a set of H&E breast histology

samples from 28 different patients. The cases were acquired from Indiana Hospital and

scanned into WSIs at University Hospitals in Cleveland - Ohio using Aperio and Philips

scanners. The FoVs were automatically extracted from a set of manual annotations carried
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out by an expert pathologist. The final set comprised 400 non-DCIS, 106 low-grade, 251

moderate-grade, and 345 high-grade FoVs.

Experimental setup

Two experiments were carried out. The first experiment attempted to classify between DCIS

and non-DCIS. A 10-fold cross validation scheme was used. At each iteration, 70 % of the

whole set of FoVs was used to train a Gradient Boosted Regression Trees classifier[15] and

30 % was used to test the trained model. Finally, the measured performances along the 10

iterations were averaged. The second experiment aimed to distinguish between the different

DCIS grades; this experiment followed a methodology similar to the first experiment, but

in this case only the images labeled by the pathologist as DCIS were used. The presented

method was compared with two approaches: The former uses only morphological features and

the latter combines morphological and graph-based (Voronoi, Delaunay, etc.) features[14].

Results

Figure 3-4 illustrates the average receiver operator characteristic (ROC) curves of the pre-

dictions using the three different approaches, and Table 3-1 presents the corresponding ac-

curacies and f-measures. Results show that the presented approach outperforms the baseline

approaches in all the tested scenarios.

Morph. Morph. + Graphs Ours

DCIS vs non-DCIS
Acc. 0.87 +/- 0.01 0.89 +/- 0.01 0.95 +/- 0.01

F-meas. 0.83 +/- 0.01 0.85 +/- 0.01 0.93 +/- 0.01

Low vs Moderate, High
Acc. 0.87 +/- 0.02 0.88 +/- 0.02 0.91 +/- 0.02

F-meas. 0.41 +/- 0.10 0.45 +/- 0.06 0.58 +/- 0.12

Moderate vs Low, High
Acc. 0.68 +/- 0.02 0.76 +/- 0.02 0.88 +/- 0.02

F-meas. 0.49 +/- 0.03 0.63 +/- 0.04 0.82 +/- 0.03

High vs Low, Moderate
Acc. 0.65 +/- 0.03 0.78 +/- 0.01 0.94 +/- 0.01

F-meas. 0.65 +/- 0.03 0.77 +/- 0.01 0.94 +/- 0.01

Table 3-1: Accuracies and F-measures measured for the tested approaches. First column

presents the results of an approach that classifies FoVs based just on morpholo-

gical features. Second column shows the results of a strategy that uses the morp-

hological and graph-based features reported in[14]. The third column presents

the results of the introduced approach that uses local, regional, and cellularity

features.



44 3 Histopathological analytics by learning from imaging data

Figure 3-4: Average ROC curves for correctly identifying DCIS and DCIS grades in the

test set of FOVs using the introduced approach and the comparative strategies

(Morphological only features and morphological + graph-based features). To

generate an adequate precision of the ROC curves, 100 repeats of 10-fold cross-

validation were run.

3.3. Study case: Association between Tumor-Infiltrating

Lymphocytes and prognosis in patients with lung

cancer

Early-stage (stages I and II) non-small cell lung cancer (NSCLC) [57, 22] is typically treated

with complete surgical resection of the tumor. However, even after the entire resection of

the tumor, 30-55 % of patients develop disease recurrence within the first 5 years of surgery

[162]. The ability to identify patients at highest risk of recurrence could help to identify

those cases who may gain maximum benefit with adjuvant chemotherapy following surgery.

Lung cancer histopathology is characterized by a complex interplay of cancer nuclei, immu-
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ne cells (lymphocytes and plasma cells), fibroblasts, and pericytes/endothelial cells. Recent

evidence suggests the interaction of cancer nuclei with immune cells is associated with like-

lihood of disease progression, and also influences tumor development, invasion, metastasis,

and patient outcome [57, 22]. Recently, several independent studies [143, 43, 20, 22, 100]

have shown association between patient survival, disease prognosis, and treatment response

with an increased density of Tumor-Infiltrating Lymphocytes (TILs) in NSCLC and other

cancer types. Additionally, there is substantial recent evidence that suggests that the density

of TILs is associated with the chemotherapy response for a variety of different cancer types

[24, 167, 87, 82, 100].

Unfortunately, despite the reported evidence [143, 43, 20, 22] showing a high correlation

between density of TILs and prognosis of NSCLC, substantial inter-reader variability at

estimating TIL density has meant that TIL count is not routinely employed in the clinic as

a prognostic marker of outcome for NSCLC. Brambilla et al. [20], for instance, determined

that inter-reader agreement between two pathologists was at best moderate (Kappa = 0.59).

While attempts have been made to formalize guidelines for TIL grading in the context of

breast cancer [140], these efforts have been lagging in the context of lung cancer.

Over the last few years there has been substantial interest in developing automated nuclear

segmentation and detection algorithms for identifying and quantifying the extent of TILs

from routine Hematoxylin and Eosin (H&E) pathology images [7, 136, 49]. Detection and

segmentation of TILs have been carried out using different strategies, such as extracting

visual features [7], applying morphological operations [13, 50], or using Deep Learning models

[78]. Similarly, different works have employed different methods to automatically approach

the density of TILs. In [7], authors determine whether lymphocyte density is high or low

depending on whether the number of lymphocytes is higher or lower than the average of

lymphocytes for the study population. Other approaches [136, 49] have used specialized

software suites that compute a density estimation from automatic detection of lymphocytes.

Likewise, beyond just TIL density, there has also been recent interest in looking at spatial

patterns of TILs with and their relation with the disease outcome and prognosis. Multiplexed

quantitative fluorescence (QIF) and immunohistochemistry (IHC) based methods have been

employed for objectively identifying TIL subtypes and some attempts have tried to correlate

the spatial arragement and density of these TIL subtypes with the disease NSCLC outcome

[143, 12, 100]. For instance, Schalper et al. [143] found out that increased levels of CD3 and

CD8 TILs were associated with improved disease outcome. Similarly, Barua et al. [12] showed

that spatial interplay between tumor and regulatory T cells was associated with overall

survival in NSCLC. Furthermore, Liu et al. [100] demonstrated that presence of CD8+ and

FOXP3+ TILs is correlated to response to platinum-based neoadjuvant chemotherapy in

advanced NSCLC.

Interestingly, recent evidence suggests computer extracted spatial patterns and morphologic

attributes of TILs from routine H&E images also appear to be associated with prognostic

outcome of disease. Basavanhally et al. [13] explored the use of graph network algorithms to
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spatially characterize the arrangement of machine identified TILs in HER2+ breast cancer

H&E images in order to predict the TIL grade (i.e. high or low). Yu et al. [179] and Luo et

al. [104] extracted a number of quantitative morphological nuclei and surrounding cytoplasm

features from H&E tissue images of early-stage NSCLC patients (e.g., area, shape, intensity,

texture, density, etc.) for predicting survival. In addition, Wang et al. [170] found that

nuclear architecture features added prognostic value to nuclear shape and texture features for

predicting early versus late recurrence in early-stage NSCLC. In [79], Saltz et al. used a deep

learning model to identify patches of TILs in images, which were clustered using different

similarity metrics. From such clusters, several indices were obtained and their correlation

with patient survival was studied in different cancers types.

Given the evidence demonstrating the importance of TILs for prognostics tasks, in this sec-

tion, we study the correlation between density and spatial arrangement of TILs and patient

outcome, specifically disease recurrence in early-stage NSCLC. First, we introduce a simple

and effective automatic approach for detecting lymphocytes on H&E images. Once we have

identified lymphocytes, we proceed to extract information from their density and spatial

arrangement, and then we analyze the correlation of such information with the patient prog-

nosis. Finally, we explore a strategy that groups TILs based on their contextual information

and then studied the association of the identified TIL families with prognosis.

3.3.1. Identification of lymphocytes on histopathological images

As previously stated, automatic detection and quantification of lymphocyte infiltration could

potentially develop image based prognostic tools [140]. Thanks to the advances in computer

vision and image analysis, a TIL biomarker for cancer prognosis is a real possibility [7]. Ho-

wever, lymphocyte segmentation in Hematoxylin and Eosin (H&E) stained histopathology

images is not an easy task because of the similar appearance between lymphocyte nuclei and

other structures (See Figure 3-5). Additional challenges include biological variability, histo-

logical artifacts, and high prevalence of overlapping objects [13]. An automated lymphocyte

detection algorithm has to be able to deal with these challenges so that an objective and

precise infiltration grade can be measured.

Different complex approaches have attempted to address the issue of detecting lymphocytes

by means of visual features. Basavanhally et al. [13] presented a scheme that starts by

combining a region growing algorithm with a maximum a posteriori estimation and Markov

random fields to identify lymphocytes. In another approach [92], a first set of candidates were

obtained by applying different operations such as sigmoid contrast enhancement, conditional

hole filling, adaptive active contour, and extraction of Haralick features. These candidates

were then classified as lymphocytes or non-lymphocytes using the scale-invariant feature

transform (SIFT) algorithm. In a different approach [7], the authors used the Visilog software,

an image analysis suite, to perform an automatic detection of lymphocytes based on a three-

step process: detection based on color thresholding, boundary definition with a watershed
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Figure 3-5: A patch extracted from an H&E stained lung cancer image. Figure illustrates

the prevalence of overlapping objects and similar appearance between lymp-

hocyte nuclei and other structures.

approach, and size based filtering of the detected elements.

In recent years, Deep Learning (DL) methods have become popular since they have shown

outstanding performance in different computer vision and pattern recognition tasks [138].

DL architectures are constituted by multiple layers, containing linear and non-linear data

transformations, aiming to construct a reduced and meaningful representation. In the digital

pathology domain, DL models have been used for different tasks such as mitosis identification

and localization of regions of interest in histological images [138]. However, DL models are

highly demanding of powerful hardware infrastructures and large sets of annotated data for

training, requirements hard to meet in real medical scenarios.

This subsection presents a framework that takes advantage of some discriminating visual fea-

tures of lymphocytes in order to identify them in patches extracted from lung cancer Whole

Slide Images (WSIs). It starts by detecting nuclei by a watershed-based nuclei segmentation

algorithm. A main goal of this work was to define a simple but discriminating set of visual

features to discriminate lymphocytes from other structures; for this reason, some shape, tex-

ture, and color features were carefully selected and extracted from each segmented nucleus.

Finally, a Support Vector Machine (SVM) classifies each nucleus as either lymphocyte or

non-lymphocyte. An SVM was used because it showed a higher performance compared with

other classifiers, namely random forest, linear discriminant analysis, and quadratic discrimi-

nant analysis. An important advantage of this approach, compared to other state-of-the-art

methods, is its simplicity since it is very easy to use and implement; besides, it presents a

good performance, fast training times, and accurate results. This strategy is compared with

a second approach constructed upon a Deep Learning model that was trained to identify

lymphocytes. This model receives as input, patches from WSIs and outputs probability maps

showing pixels that are likely lymphocytes; then, a threshold is applied to such map and a

watershed-based algorithm segments and splits the connected/overlaid cases to set the final

candidates.
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Materials and methods

Dataset

13 Fields of View (FoV) of 1000 × 1000 pixels at ×40 were extracted from a set of H&E

WSIs from 5 patients diagnosed with lung cancer. These FoV were chosen as containing both

lymphocytes and tumoral cells. The WSIs were provided by the Pathology Department of

University Hospitals in Cleveland-Ohio, USA. FoVs with lymphocytes were manually anno-

tated, validated, and approved by a pathologist and used to train the different models. A

total of 3420 structures were annotated, being 2352 lymphocytes while the remaining 1068

corresponded to other structures (e.g., cancerous nuclei). The study cohort was limited to 13

FoVs owing to the arduous work required to annotate the images and the time constraints of

the pathologist who validated annotations. This classification task is challenging since lymp-

hocytes and cancerous cells are very alike and annotations have to be checked out several

times.

Feature selection

In H&E images, lymphocyte nuclei are generally distinguished from other cell nuclei by

their smaller size, more circular shape, and a darker homogeneous staining [92, 13], thereby

suggesting that visual features may provide a good clue to differentiate lymphocytes from

other structures. For a pathologist, the color is one of the most discriminating characteris-

tics of lymphocytes. This is why a main feature was the median of the red r, g, b channel

of the segmented nucleus as well as the minimum and maximum of the luminance channel.

Additionally, taking into account that lymphocyte texture is more homogeneous than other

nuclei since this cell has a differentiated nucleolus, the entropy was also selected. Finally,

provided that shape and size of lymphocytes are usually different from other structures, area,

eccentricity, and major and minor axes ratios were also chosen. Figure 3-6 presents some

feature spaces illustrating the discriminating properties of the selected features. The features

selected corresponded to representative color and shape characteristics.

Model training

First, a normalization process, a color-based technique commonly used to compensate the

different color variations on histopathology images, is applied to input images. Then, the

previously described features are extracted from the annotated nuclei. Finally, a Support

Vector Machine (SVM) with a linear kernel was trained to classify each structure as a lymp-

hocyte or non-lymphocyte. Training takes about 8.4 seconds on a laptop computer with 8

GB RAM and an Intel Core i7 3.1 GHz processor. The training accuracy, i.e., accuracy of

the model using the same training set for validation, of this approach was 95.99 %.

Model testing

Since manual annotation of nuclei is a time-consuming and unrealistic task for sets of WSI,
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(a) (b)

Figure 3-6: Feature spaces of some selected visual characteristics. Blue dots represent lymp-

hocytes and orange non-lymphocytes. 3D plots show how discriminating are the

selected features.

a nuclei segmentation algorithm first detects nuclei candidates and then the trained SVM

model classified such nuclei as either lymphocytes or non-lymphocytes.

Nuclei segmentation is a very challenging task and is out of the scope of the present article;

for this reason, a watershed-based method [165, 176] was used by its documented advan-

tages, namely simplicity, speed, and absence of adjustable parameters. This method starts

by un-mixing the color images followed by morphological operations. A marker-controlled

watershed segmentation is then applied at multiple scales and with different markers; next, a

post-processing for rejection of false regions is performed; finally, results from multiple scales

are merged.

Once nuclei are segmented, the input images are color-normalized and the previously mentio-

ned visual features are extracted. Based on such extracted features, the SVM model defines

whether a nucleus is lymphocyte or not. Nuclei segmentation takes about 4.8 minutes and

feature extraction about 9.4 seconds on the previously mentioned laptop computer.

Comparative Strategy

It is well-known that DL models are able to automatically determine relevant features from a

set of samples. For this reason, to train a model, a set of pixels is randomly selected from the

manually annotated nuclei and lymphocytes. A set of patches (size 32×32), centered on the

selected pixels, is extracted from the images. A single patch might then contain none, one,

or multiple nuclei. Finally, each patch is labeled as positive if its center pixel corresponds to

a lymphocyte and negative otherwise. In order to increase the number of training samples,

different transformations (e.g., rotation and mirroring) were applied to the patches. Finally,

a set of 213436 patches is obtained (144046 patches correspond to the positive class).

The annotated patches are then used to train a Deep Neural Network classifier. The architec-
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ture selected for this task is the well-known CIFAR-10 AlexNet network schema, which was

previously used for automatic detection of lymphocytes [78]. This architecture is composed

of three identical blocks (See Figure 3-7). Each block is composed of a Convolution Neural

Layer (CNL), a Rectifier Linear Unit, and a Maximum Pool operator. Each CNL corresponds

to a set of convolutional filters learned from the lymphocyte and non-lymphocyte classes.

Finally, two fully connected layers yield the probability of representing the membership of

each nucleus to the lymphocyte class. The network parameters (size of kernels, number of

feature maps, loss function, etc.) were the same previously reported in the literature [78].

Training of this model takes about 3 hours using a server with 32 GB RAM, 8 2.5 GHz

CPUs, and 3 GPUs: a GeForce GTX 660, a GeForce GTX Titan, and a Tesla K20c.

Figure 3-7: Deep learning architecture used to classify nuclei as either lymphocytes or non-

lymphocytes. The illustration is based on the Figure presented by Romo et al.

[138].

During testing, patches extracted from WSIs are used as input of the DL trained model.

During this process, the membership of each patch to the lymphocyte class is determined.

Finally, neural network outputs a probability map highlighting the pixels that likely corres-

pond to lymphocytes. Different image processing operations could be applied to such maps

to determine the final candidates. In this case, a simple threshold (128) was applied; finally,

a watershed-based algorithm was used to segment and split the connected/overlaid cases.

Experimental results

Validation of the presented approaches was carried out using the previously described dataset

(See Section 3.3.3). Automatic lymphocyte detection was graded by the number of lymp-

hocyte centroids that correctly overlapped, judged as correct when centroids were within one

nuclear radius. Figure 3-8 shows some visual results. These results show that DL approach is

missing an important quantity of lymphocytes; in contrast, the presented framework detects

most of the lymphocytes, even the overlapped/adjacent structures.

Quantitative results, presented in Table 3-2, show that the Deep Learning approach has a

very high precision (95.29), but a very low recall (39.60). In contrast, the presented framework

shows good precision and recall metrics (89.12 and 83.57, respectively). Furthermore, the F-

score for the presented approach outperforms by about 30 % the DL approach.
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(a) (b)

Figure 3-8: Visual results of the lymphocyte detection process. Green circles represent

lymphocyte hits, red plus signs represent missed lymphocytes, and red cros-

ses represent false positives and false negatives. Subfigure (a) shows results

using the presented simplified framework and Subfigure (b) presents results of

the DL approach.

Precision Recall F-score NAL Acc. NAL

Presented approach 89.12 83.57 86.31 621 64.5

Deep learning 95.29 39.60 55.95 2018 28.2

Table 3-2: Performance metrics for identifying lymphocytes on patches of lung cancer ima-

ges. NAL stands for number of detected lymphocytes absent in manual annota-

tions and Acc. NAL is the accuracy of the prediction for 10 % of NAL.

During testing, both approaches (DL and visual features) detected lymphocytes that were

absent from the manual annotations (See Table 3-2, column Non annotated lymp.). For

this reason, 10 % of these lymphocytes were randomly selected and manually labeled by a

pathologist to test the accuracy of such prediction. After this process, 28.2 % of the lymp-

hocytes detected by the DL model were accurate and 64.5 % of the detections of the presented

framework were true positives.

Our results show that the balance between precision and recall for the DL model is poor,

being outperformed for the simple approach based on visual features (∼30 % higher F-score).

While DL models have shown interesting results in different computer vision tasks, they have

important limitations, for example, their need of large amounts of annotated data; more

data means more annotations. Another limitation is related to training times, that are quite

longer than using the presented simplified approach. This is an important constraint because

it meaningfully limits model updating, i.e., adding new training data that could improve its
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classification performance. It is worth noting that architecture of the used DL model has

been widely used in many other tasks showing successful results, yet in the present case is

very limited. A factor influencing the net performance is definitely the number of samples

required for training and this is probably the case here. Although automatic differentiation

between lymphocytes and cancerous cells is challenging, combination of an accurate nuclei

segmentation strategy (e.g. watershed) and a set of simple but discriminating features could

be good enough. General results suggest this approach provides good classification metrics

and does not require high computational capabilities, long training times, nor thousands of

annotated data.

Although results using the introduced simple approach were good, it is worth remembering

the model was trained using a dataset with a few number of patients, so the question about

how well this method generalize to other cases is still open. The model was designed ta-

king into account two important aspects: 1) the visual features selected for identification of

lymphocytes were based on the visual information pathologists use in their daily routine to

differentiate lymphocytes from other structures, 2) lymphocytes have a low biological varia-

bility, meaning their appearance is similar regardless the tissue sample. For this reason, it is

expected the model will have a good performance on new images; however, more experimen-

tation is needed to validate this assertion. New experimentation could include either adding

more training data from different patients or using data augmentation strategies.

3.3.2. Extracting topological and density information from

Tumor-Infiltrating Lymphocytes for prognosis

Recent evidence has demonstrated that TIL density and spatial arrangement of cells appear

to be prognostic of disease outcome in NSCLC. For this reason, in this section we present

and evaluate computer extracted spatial TIL (SpaTIL) features relating to 1) the spatial

architecture of TIL clusters, 2) co-localization of clusters of both TILs and cancer nuclei,

and 3) variation in density of TIL clusters across the tissue slide image.

The association between disease recurrence and the SpaTIL features was explored on a

total of n=301 patients with stages I and II of non-small cell lung cancer. Additionally, we

also compared the SpaTIL features in terms of their ability to predict recurrence in these

patients against the manually estimated degree of TILs by two thoracic pathologists. Finally,

the SpaTIL features were also compared against an automated estimation of TIL density

via a computerized algorithm for identifying TILs in pathology images.

Materials and methods

Datasets

Tissue microarrays (TMAs) H&E-stained samples from three independent and well-characterized

NSCLC cohorts in stage I and II were included in this study, representing a total of n=301
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patients. The three cohorts were represented by D1 (n=70), D2 (n=119), and D3 (n=112).

A fourth dataset, named D4 (n=112), was also included, containing tissue punches corres-

ponding to the same patients in D3 but extracted from different regions of the tumor.

The corresponding clinico-pathological information from patients in D1-D4 was collected

from clinical records and pathology reports. Patients from cohort D1 and D2 contained the

formalin-fixed paraffin-embedded (FFPE) tumor samples from previously reported retros-

pective collections of NSCLC patients [143] and 0.6-mm cores from each tumor were arrayed

in the form of TMA. Another 116 patients provided two punches from the same tumor con-

sisted of D3 and D4, also in the form of TMA. Standard TMA preparation protocol was

described in [28]. Datasets D1 and D2 were scanned and digitized at 20x magnification. The

dataset D3 and D4 were scanned and digitized at 20x using a Ventana iScan HT Scanner

(serial: BI15N7205). Finally, a 1500 pixel x 1500 pixel image at 20x magnification was ex-

tracted to represent unique patient from each dataset. The first cohort (D1) was employed

for feature discovery and model training. This dataset included samples from 350 patients

and was collected independently at Sotiria General Hospital and Patras University General

Hospital between 1991 and 2001. Cohorts D2 and D3 were used for independently validating

the trained classifier. D2 comprised samples from 202 patients and was collected at Yale

Pathology between 1988 and 2003. D3 comprised tissue images from 189 patient samples

and was collected at Cleveland Clinic between 2004 and 2014. D3 and D4 were used to

quantitatively assess the ability of the approach to deal with intra-tumoral heterogeneity.

Figure 3-9 illustrates the inclusion and exclusion criteria for patient selection for this study.

Figure 3-9: Patient selection workflow for the datasets included in this study.

Automatic characterization of TILs

Identification of Lymphocytes

The first step was to identify the spatial location of the TILs on the digitized H&E images. A

watershed-based algorithm [165] was used for automatically detecting nuclei on H&E images.

This method applies a set of mathematical operations (fast radial symmetry transform and

regional minima) at different scales to identify nuclei candidates. This method was selected
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Figure 3-10: Representative TMA tissue spots of recurrent (top row) and non-recurrent

(bottom row) early-stage NSCLC cases. The first column (a, d) shows the ori-

ginal H&E-stained images. Identification of TILs (yellow) and non-TILs (cyan)

is presented in the second column (b, e). The third column (c, f) illustrates the

qualitative representation of one of the SpaTIL features overlaid on the ori-

ginal images, specifically, the variation in the density of lymphocyte clusters.

The color bars represent the density measurement (H stands for highly den-

se clusters while L stands for low-density or sparse clusters). Non-recurrence

cases are characterized by the presence of more high-density clusters while

recurrence cases were comprised of a larger number of low-density clusters.
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by its visual efficacy and documented advantages, namely simplicity, speed, and lack of ad-

justable parameters. Once nuclei were detected, the method presented in Subsection 3.3.1

(also presented in [37]) was used to identify lymphocytes. This approach takes advantage

of the fact that TILs tend to be smaller compared to cancerous nuclei, they also tend to

be more rounded and with a darker homogeneous staining. Once all the nuclei candidates

have been identified by the watershed approach described above, a machine classifier using

7 features related to texture, shape, and color attributes of the segmented nuclei is used

to identify individual nuclei as being either lymphocytes or non-lymphocytes (See Figure

3-10-b).

Spatial TIL Graph Construction

A graph is a mathematical structure composed of finite sets of objects (nodes) that capture

global and local relationships via pairwise connections (edges) between the nodes. Graphs

have been previously used to characterize nuclear architecture in histopathologic images due

to their ability for representing spatial information such as neighborhood relationships and

spatial arrangement of nuclei [13, 6, 5]. In order to evaluate a spatial network of TILs and

to extract the corresponding SpaTIL features, we first identify sets of clusters of proximally

adjoining TILs and non-TILs respectively. We first represented each of the individual TILs

and cancer nuclei by their centroids, which in turn represents the nodes of a graph. Using

the approach described in [6, 5], each node is connected to others based on the Euclidean

distance, a weighting function favoring the connectivity between proximal nodes. After this

process, multiple disconnected subgraphs or clusters of TILs are generated. This process was

also performed with all the non-TILs (See Figure 3-10-c).

SpaTIL features

Two sets of features were extracted. The first comprises 20 features related to spatial arran-

gement of TILs are extracted from the TIL cluster graphs. These features include first-order

statistics (e.g. mean, mode, median) of the following: number of lymphocytes within the

clusters, ratio between the area of the lymphocyte clusters and area of the TMA spot, ratio

between the numbers of TILs within the cluster and the cluster area, among others. The

second set includes 65 features describing the relationship between lymphocyte and non-

lymphocyte clusters were extracted for each image. They include, for instance, the ratio

between the density (ratio between the number of nuclei within the cluster and the cluster

area) of a non-lymphocyte cluster and the density of its closest lymphocyte cluster, the in-

tersecting areas of the lymphocyte clusters and non-lymphocyte clusters, a value indicating

if the nearest neighbor of a lymphocyte cluster is either a lymphocyte or a non-lymphocyte

cluster.

Feature selection

The Minimum Redundancy Maximum Relevance (mRMR) feature selection method [126]
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identified the SpaTIL features most correlated with recurrence in the discovery set D1, while

also eliminated redundant features. Table 3-5 presents the top SpaTIL features identified

via this approach.

Comparative strategies

Inter-reader variability in TIL estimation by human readers

Two expert pathologists experienced in grading TILs were asked to determine the infiltra-

tion grade for each of the images in D1 and D2 via visual evaluation. A simple developed

in-house custom web application was used by the readers which in turn enabled them to

assign an infiltration score to each image. Infiltration options were defined based on findings

reported in [143, 20], as 0) no-infiltration (virtual absence of TILs), 1) low (1 %-33 %), 2)

moderate (34 %-66 %), and 3) high (67 %-100 %). The agreement among pathologists during

the TIL-grading task was measured, and for this purpose two indices were computed: Pear-

son's correlation [18] and Cohen's Kappa coefficient [29]. The Kappa index is a widely used

measure to determine the agreement among a set of experts making categorical judgments,

considering agreement may occur by chance.

Computer based estimation of TIL-density

We also extracted TIL-density-based (DenTIL) features and compared the prognostic perfor-

mance of these DenTIL features against the SpaTIL features. The DenTIL features included

ratio between the number of lymphocytes and the TMA spot area, ratio between the sum

of lymphocyte areas and area the TMA spot, ratio between the number of lymphocytes and

the number of non-lymphocytes, and a grouping value indicating how close are lymphocytes

to each other (computed as the sum of the inverse distances between lymphocytes).

Statistical analysis

Classification

A Quadratic Discriminant Analysis (QDA) classifier was trained using the top SpaTIL fea-

tures (QS) identified from D1 to separate patient cases into two classes: recurrence and

non-recurrence. We chose this classifier owing to the fact that it has no hyper parameters

to tune, and is able to learn quadratic boundaries and therefore this is more flexible than

linear classifiers. Similarly, another QDA classifier was trained using DenTIL features (QD)

on the training set D1. The performance of the QDA classifiers QS and QD in distinguishing

between early stage NSCLC patients who did and did not have recurrence was evaluated on

the independent validation sets D2, D3, and D4. For each image in the test sets, QS and

QD assigned a probability of recurrence. Classifier performance was evaluated via the area

under the receiver operating characteristic (ROC) curve (AUC). The recurrence and non-

recurrence labels predicted by QS and QD were compared with the ground truth labels (true
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patient outcomes) to determine classifier accuracy and AUC. The AUC obtained for QS on

D3 and D4 were quantitatively compared to evaluate the effect of spatial tissue sampling on

the classifier performance.

Statistical and Survival Analysis

Recurrence-free survival (RFS) was defined as the time interval between the date of diagnosis

and the date of death or recurrence (whichever happened first). Patients who were still

alive without recurrence at the last reported date were labeled as censored. The Kaplan-

Meier survival analysis was used to examine the difference of RFS between different patient

groups categorized by the classifier output. As previously stated, D1 was used to train a

classification model which was applied on datasets D2 and D3. The difference of survival

in each group predicted by the classifier was assessed by log-rank test. Multivariable Cox

regression was employed to examine the predicting ability of the QS and QD classifiers when

controlling the effects of clinical and pathological parameters, namely gender, age, tumor

stage, T-stage, and N-stage. P-values were two-sided assessed, and all values under 0.05

were considered as statistically significant. A Kaplan-Meier analysis was also carried out

based on the TIL density estimation by the human readers. For this purpose, patients were

split into two groups: High-TIL and Low-TIL. Since pathologists graded each case from 0 to

3, case patients with TIL categories of 0 to 2 were considered as being part of the low-TIL

group and those with scores of 3 were grouped in as part of the high-TIL tumor category.

This strategy was based on the approach described in [143, 20].

Experimental Results

Clinico-pathologic Features of the Patient Cohorts

The median follow-up for patients was 40.91 months, 45.33 months, and 70.92 months for D1,

D2, and D3, respectively. By the end of the study/follow-up, 34 out of 70 patients (48.6 %)

in D1, 54 of 119 (45.4 %) in D2, and 34 out of 116 (30.4 %) in D3 had developed recurrence.

A summary of clinical and pathological features for the 3 cohorts is presented in Table 1,

and a summary discriminated by dataset is presented in Table 3-3.

Experiment 1: Prognostic ability of SpaTIL in early stage NSCLC

Figures 3-11-c, 3-12-c, and 3-13-a illustrates the ROC curves and corresponding AUCs

for the SpaTIL classifier (Qs) for predicting recurrence in NSCLC on D1, D2, D3, and D4.

Concordance indexes (CI) of the binary classifier for the 4 datasets were 0.7002, 0.7248,

0.7008, and 0.7063, respectively.

Significance of clinical and pathologic variables with patients' survival time in the test sets

was evaluated by log-rank test . Multivariate survival analysis controlling the effect of major

pathological and clinical variables is presented in Table 3-4. Patients identified by the Qs

classifier as having poor prognosis had statistically significantly worse disease-specific sur-
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Variable Sub-variables N ( %)

Number of patients 301

Average age 64.3 +/- 10.5

Sex
Male 176 (58.5)

Female 125 (41.5)

N-Pathological
0 206 (68.4)

1 95 (31.6)

T-Pathological
1 136 (45.2)

2 165 (54.8)

Stage
I/IA/IB 220 (73.1)

II/IIA/IIB 81 (26.9)

Recurrence
Non-recurrence 135 (44.9)

Recurrence 166 (55.1)

Tumor types

Adenocarcinoma 135 (44.9)

Squamous Cell Carcinoma 89 (29.6)

Others 77 (25.6)

Table 3-3: Summary of clinical and pathological features for the patients in D1, D2, and

D3.

vival. The calculated hazard ratio was 3.08 (95 % confidence interval, 2.1 - 4.5, p=7.3e-5),

meaning that patients with recurrence were approximately 3 times more likely to develop

disease recurrence and die from it.

Figures 3-11-d, 3-11-d, and 3-11-b illustrate the Kaplan-Meier plots corresponding to the

SpaTIL features for D1, D2, and D3, respectively. Qs was found to be prognostic for D1,

D2, and D3 (p-values < 0.02).

Experiment 2: Comparison of Human and Machine based assessment of TIL

Density for Predicting Recurrence in Early stage NSCLC

Pearson's correlation and Cohen's Kappa index were computed to measure the agreement

among pathologists. Subfigures 3-11-a and 3-12-a show the computed values for the two

pathologists for D1 and D2, respectively. The overall computed Kappa (considering both

analyzed datasets) was 0.5028. When computed independently for each dataset, Kappa in-

dices were 0.3781 and 0.6216 for D1 and D2, respectively. On the other hand, the correlation

coefficients were 0.5704 for D1 and 0.7902 for D2.

Subfigures 3-11-b and 3-12-b illustrate the Kaplan-Meier plots for both pathologists on

D1 and D2, respectively. For reader 1, no statistically significant correlation between TIL

estimation and outcome was observed for D1 (p=0.1373) nor D2 (p=0.2584). Conversely, for

reader 2, a significant statistical correlation was observed for set D1 (p=0.0082), but not for
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set D2 (p=0.0712).

Subfigures 3-11-d, 3-12-d, 3-13-b, and 3-13-e illustrate the Kaplan-Meier plots correspon-

ding to the QS classifier on D1, D2, D3, and D4, respectively. The QS classifier was found to

have a statistically significant statistical correlation between the classifier and patient out-

come for D1, D2, D3, and D4 (p-values = 0.0034, 0.0005, 0.0014, and 0.0152, respectively).

Subfigures 3-11-e, 3-12-e, 3-13-c, and 3-13-f illustrate the Kaplan-Meier plots correspon-

ding to the QD classifier on D1, D2, D3, and D4, respectively. The QD classifier was found

to have a statistically significant statistical correlation between the classifier and patient

outcome for D1 and D2 (p-values = 0.0082 and 0.0003, respectively); the predictions were

not statistically significant for D3(p=0.3602) and D4 (p=0.3638), respectively.

Figure 3-11: Prognostic prediction results for human readers, QD, and QS for D1. a) Bar

chart illustrating the Kappa index and correlation coefficient computed for

the agreement among readers 1 and 2, b) Kaplan-Meier curves for readers 1

and 2, c) ROC curve and corresponding AUC for QS, d) Kaplan-Meier plot

for QS classifier, e) Kaplan-Meier plot for QD classifier.
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Figure 3-12: Prognostic prediction results for human readers, QD, and QS for D2. a) Bar

chart illustrating the Kappa index and correlation coefficient computed for

the agreement among readers 1 and 2, b) Kaplan-Meier curves for readers 1

and 2, c) ROC curve and corresponding AUC for QS, d) Kaplan-Meier plot

for QS classifier, e) Kaplan-Meier plot for QD classifier.

Discussion

NSCLC is one of the most common lung cancers and presents high recurrence rates. Previous

works have reported that 30-50 % of patients develop recurrence and die of their disease des-

pite curative resection [162]. Identification of patients which disease is likely to recur can

help clinicians for decision making, treatment planning, and guide the administration of

adjuvant therapies. Traditionally, the prognosis of NSCLC has been evaluated according to

TNM staging system; unfortunately, growing evidence has shown that such a system is not

accurately enough [57, 162]. Therefore, alternative biomarkers are required as well as strate-

gies that ease stratification of patients based on the risk of recurrence. Several studies have

demonstrated that the presence and density of TILs are strongly correlated with the clinical

response in patients with different kinds of cancer, namely lung, breast, ovarian, pancreatic,

colorectal, skin, among others [7, 136, 140, 57, 142, 20, 22]. In the case of NSCLC, different
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Figure 3-13: Prognostic prediction results for QD and QS for D3 (top row) and D4 (bottom

row). First column (a, d) shows the ROC curve and corresponding AUC for

QS, second column (b, e) presents the Kaplan-Meier plots for QS classifier,

and third column (c, f) illustrates the Kaplan-Meier plot for QD classifier.

works have demonstrated a high association between the presence of TILs and patient outco-

me. For instance, in [143], Schalper et al. showed that the presence of certain subpopulations

of TILs were associated with recurrence in early-stage NSCLC. Similarly, Liu et al. [100]

found that presence of specific TIL subtypes is predictive of response to platinum-based neo-

adjuvant chemotherapy in advanced NSCLC patients. In such works, however, pathologists

estimate by eye the quantity of lymphocytes, a time consuming and prone to error task.

Different studies have shown that human based estimation of TILs presents poor reprodu-

cibility and has, at best, moderate inter-agreement [20, 7]. Different works have employed

computer based approaches for automatic estimation of TILs [7, 136, 49]. Although these

strategies mitigate the subjectivity and improve reproducibility, different studies support

that the mere quantification of TILs might not be enough for predicting prognosis. Previous

works have shown information from different cells within the tumor area has a prognostic

value. For example, in [179] and [104], authors found association between different morpho-
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Variable
Hazard Ratio

(95 % Confidence Interval)
p-value

Gender

Male vs. Female
1.1836 (0.8494-1.6492) 0.3193

T-stage

T1 vs. T2
0.9768 (0.6834-1.3961) 0.8975

N-stage

N0 vs. N1
0.9128 (0.5929-1.4051) 0.6784

Stage

Stage I vs. Stage
1.0107 (0.6478-1.5771) 0.9625

Tumor subtypes

ADCs vs. SCC vs. Others
0.9225 (0.7178-1.1856) 0.5287

SpaTIL

recurrence vs. non-recurrence
3.0791 (2.1034-4.5075) 7.29e-05

Two-sided p<0.05 (in bold) was considered as statistically significant.

Table 3-4: Multivariable Cox analysis of independent prognostic ability of SpaTIL contro-

lling for major clinical parameter on the test set.

logical nuclei and surrounding cytoplasm features and survival in patients with early-stage

NSCLC. In other study [170], researchers showed that spatial architecture of cells is highly

correlated to recurrence in early-stage NSCLC. Other studies have also revealed that loca-

tion of immune cells with respect to cancer cells might be of biological relevance [143]. All

this evidence suggests that tumor microenvironment and interplay between cancerous cells

and lymphocytes plays a determinant role in the disease progression and patient progno-

sis. In this work, we presented a set of features based on the spatial architecture of TILs

(SpaTIL), devised to capture the TIL local density, variances of the density, architecture,

and co-localization of TIL and cancerous nuclei. All nuclei in the images were first identified

by a watershed-based algorithm. A feature based classifier distinguished these nuclei as eit-

her lymphocytes or non-lymphocytes (mostly, cancer nuclei). Then, based on the Euclidean

distance between nuclei, different cell cluster graphs of lymphocytes and non-lymphocytes

are built. From such clusters, different topological and density measurements are extracted,

including local density of clusters, area of clusters, the intersected area between clusters of

lymphocytes and non-lymphocytes, characterization of the neighborhood of clusters, graph-

based metrics (betweenness and closeness centrality), among others. Two specific questions

were addressed in this study. First, could SpaTIL features independently predict recurrence

in early stage NSCLC. Secondly, would the SpaTIL features offer more prognostic capability

compared to TIL density alone based off 1) manual assessment by expert human readers

and 2) and a computerized automated TIL density estimator. The SpaTIL features were
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Rank Name Description

F1 AvgLCNLC Mean number of lymphocyte clusters surrounding a non-

lymphocyte cluster

F2 MoDLC Mode of the density of all lymphocyte clusters.

F3 StdANLC Standard deviation of the area of non-lymphocyte clus-

ters.

F4 AvgANLC Mean of the area of non-lymphocyte clusters.

F5 Me2N NLCLC Considering the two nearest neighbor clusters to a non-

lymphocyte cluster, median number of lymphocyte clus-

ters.

F6 Avg2N NLCLC Considering the two nearest neighbor clusters to a non-

lymphocyte cluster, mean number of lymphocyte clus-

ters.

F7 Me3N NLCLC Considering the three nearest neighbor clusters to a non-

lymphocyte cluster, median number of lymphocyte clus-

ters.

F8 Avg3N NLCLC Considering the three nearest neighbor clusters to a non-

lymphocyte cluster, mean number of lymphocyte clus-

ters.

F 9 Mo4N NLCLC Considering the four nearest neighbor clusters to a non-

lymphocyte cluster, mode of the number of lymphocyte

clusters.

F 10 AvgRBNLCLC Mean of the ratio of betweenness centralities of non-

lymphocyte clusters to their closest lymphocyte cluster.

F 11 AvgRCNLCLC Mean of the ratio of the closeness centralities of non-

lymphocyte clusters to their closest lymphocyte cluster.

Table 3-5: List of the most discriminating spaTIL features for predicting recurrence in

NSCLC. In this study, density is defined as the ratio of the number of cells

within the cluster to the cluster pixel area, betweenness centrality is a measure

of centrality in a graph based on shortest paths, and closeness centrality is a

measure of centrality calculated as the sum of the length of the shortest paths

between the node and all other nodes in the graph.

evaluated by training a Quadratic Discriminant Analysis classifier to predict recurrence on

3 different cohorts: D2 (n=119), D3 (n=112), and D4 (n=112); with D3 and D4 containing

cases of the same patients but extracted from different tumor regions for assessing the inci-

dence of tumor heterogeneity. The SpaTIL classifier was modeled using a cohort comprising

70 patients (D1). On two TMAs with 119 and 112 patients, the SpaTIL classifier yielded CIs
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of 0.72, and 0.70, respectively. A Kaplan-Meier analysis showed a strong association between

the predictions of the SpaTIL classifier and recurrence for D2 (p=0.0005), D3 (p=0.001), and

D4 (p=0.01). Likewise, other factors were part of the analysis and the multivariate analysis

for the automatic strategy, controlling T and N classification, showed results also strongly

associated with recurrence; the calculated hazard ratio was 3.08 (95 % confidence interval, 2.1

- 4.5, p=7.3e-5). We also compared the prognostic performance of TIL estimation carried out

by two human readers. A Kaplan-Meier analysis was conducted for each pathologist; results

showed that no significant statistical correlation was found between Pathologist 1 and prog-

nosis for any dataset (p>0.05) while there was a significant statistical correlation between

TIL grade estimation of Pathologist 2 and patient outcome for D1 (p=0.006). In addition,

the agreement among expert pathologists was studied for D1 and D2. The computed Kappa

value was 0.5028, which is lower than the values previously reported for NSCLC (K=0.59)

[20] and breast pathology (K=0.72) [26].This moderate agreement might be due to the fact

that TIL grading in lung pathology lacks a well-defined set of guidelines, so each pathologist

might either focus on different areas of the tissue during examination (e.g., epithelium or

stroma) or count different cells within the infiltration (e.g., plasma cells). In contrast, the

results obtained by using SpaTIL features appear to suggest that the spatial arrangement

of TILs and cancer nuclei were strongly associated with recurrence in early stage NSCLC

(p<0.05). Two related approaches to the work presented here have been published in the

literature. In [84], aiming to deal with tumor heterogeneity, Khan et al. started by extracting

several TMA cores for each patient in the dataset. Then, they measured the infiltration for

each core as the ratio of lymphocytes to all cells. Finally, they computed an infiltration score

for each patient based on the skewness of the measured infiltration values. Such a score was

found to be associated with poor prognosis in breast cancer, specifically HER2 (p=0.018).

In the present work, SpaTIL features were also tested in tumor heterogeneity conditions.

D3 and D4 cohorts contain samples of the same patients but extracted from different tumor

areas, and results support the idea of such features are prognostic in spite of tumor hete-

rogeneity (p ≤ 0.01). Similar to Khan et al. [84], in this article the ratio of lymphocytes

to all cells in a TMA core was computed and used in conjunction with other density-based

features (DenTIL) to assess their prognostic value. In this case, however, results were sta-

tistically significant only for D2 (p=0.0003) but not for D3 nor D4 (p ≥ 0.36). In [79], Saltz

et at. used a deep learning model to identify patches from whole slide images (WSIs) con-

taining TILs. Next, similar patches were clustered by means of affinity propagation. Finally,

from such patch clusters, authors computed different measures and indices, namely Ball and

Hall, Banfield and Raftery, C, determinant ratio, among others. Five associations between

cluster index and patient survival were found to be significant for different tumor types: Ball-

Hall for breast invasive carcinoma (p=0.007), C-index for lung adenocarcinoma (p=0.003),

Banfield-Raftery for prostate adenocarcinoma (p=0.013), Determinant Ratio for prostate

adenocarcinoma (p=0.012), and Banfield-Raftery for skin cutaneous melanoma (p=0.001).

Similar to SpaTIL, the approach presented by Saltz et al. [79] supports the idea that spa-
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tial arrangement of TILs has a prognostic value; however, SpaTIL features include not only

information from TILs but also from cancer nuclei. Under the idea that spatial location

of immune cells with respect to cancer cells might be of biological relevance [143], SpaTIL

features attempt to characterize the interplay between clusters of TILs and non-TILs within

the tumor region. Our work did however show some limitations. First, unlike the study of

Saltz et al. [79], our approach was evaluated on tissue microarrays and not on WSIs. Despite

representing small portions of the whole tumor, TMAs allow pathologists to rapidly evaluate

large clinical cohorts. Previous works have stated that results using TMAs are concordant

with other studies in the field using TIL-based biomarkers from WSIs [140, 143, 84]. Even

though our approach did evaluate different punches of the tissue from different locations

within the tumor and revealed that SpaTIL features were prognostic tumor heterogeneo-

us conditions, this approach will clearly need to also be evaluated on whole slide images.

Second, even though two independent validation cohorts were employed (one of them with

TMA cores from different tumor locations), the number of samples in the study is relatively

small in terms of the complexity of this problem. Future work will include a further analysis

of the proposed approach on WSIs and in a larger independent test set. Third, the employed

datasets were highly heterogeneous, with images obtained from very different places and

scanners. Although the success of SpaTIL features despite such heterogeneity is a promising

sign regarding their robustness, further investigation into sensitivity of scan parameter he-

terogeneity on identification of lymphocytes and non-lymphocytes is required. In summary,

in this work, we presented an approach that exploits a set of density and spatial topological

features related to arrangement of clusters of TIL and non-lymphocytes within the tumor

area, which were found to be predictive of patient recurrence in NSCLC cases. With an

additional larger, multi-site validation, this approach could potentially form the basis for an

image based companion diagnostic test to identify which early-stage lung cancer patients are

at increased risk for recurrence and hence candidates for adjuvant chemotherapy.

3.3.3. Identifying groups of lymphocytes and their incidence in

prognosis

As previously stated, it is well-acknowledged that most tumors trigger an immune response

modulated by TILs[140]. Different studies have shown that density of TILs is highly co-

rrelated with the disease progression, patient survival, and treatment response in different

types of cancer [140, 143, 7]. Recent works, however, have suggested that studying immune

infiltration might not be as valuable as evaluating the relative concentrations of the diffe-

rent TIL subtypes, each of which may have different biological roles in tumor control [143].

While some of these TIL populations might stimulate an anti-tumor response, others might

promote cancer progression [140]. Unfortunately, the different TIL subtypes are difficult to

spot by manual inspection in Hematoxylin and Eosin (H&E) stained samples.

Multiplexed quantitative fluorescence (QIF) or immunohistochemistry (IHC) have been used
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to identify TIL subtypes including CD3, CD4, and CD8. In [143], Schalper et al. showed that

the increased levels of CD3 and CD8 TILs were associated with improved outcome in non-

small cell lung cancer (NSCLC). Interestingly, in [30], the spatial interplay between different

families of intratumoral TIL cells was correlated with survival in pancreatic cancer. More

recently, in [12], the authors showed that the spatial interplay between tumor and regulatory

T cells was associated with survival in NSCLC. However, in all of these studies QIF or IHC

was employed for TIL subtyping, non-trivial and tissue-destructive processes.

Even though the different TIL subtypes may not be visually discernible on routine H&E

tissue slide images, there is no doubt that spatial architecture of the different TIL phenotypes

could be more prognostic of disease outcome compared to TIL density alone. In this section

we present an approach called Phenotyping of Tumor Infiltaring Lymphocytes (PhenoTIL)

for identifying potential TIL cluster families and their spatial architecture from routine H&E

images, potentially obviating the need for more expensive and tissue destructive approaches

such as QIF and IHC. Quantitative measurements derived from the PhenoTIL approach

were then applied to predicting recurrence in early-stage NSCLC and the approach compared

strategies based off the density of TILs and using the extracted local and contextual TIL

features with no clusterization.

Figure 3-14: Illustration of PhenoTIL methodology for identifying TIL subtypes.

Methods

Identification and characterization of lymphocytes

A watershed-based algorithm [165] is firstly applied to segment nuclei on the image. We

first segment all possible nuclei and then subsequently classify them either lymphocytes or

non-lymphocytes (mainly, tumor cells) using different nuclei texture, shape, and color fea-

tures [37] (See Figure 3-14(b)). Subsequently, each lymphocyte is characterized by its own

local morphological features and by a set of contextual features to describe the lymphocyte

and its surroundings/neighborhood. For each lymphocyte, a set of circles with incremen-
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tal radii1 of k = dL × 10, dL × 20, dL × 30 pixels were placed at the lymphocyte center;

dL = 20 pixels being the average diameter of all the detected lymphocytes. Finally, a set

of features are computed within each circle and used to characterize the lymphocyte (See

Figure 3-14(c)). These features aim to measure the grouping factor of lymphocytes, relative

lymphocyte-cellular density, lymphocyte tissular density, variation of the median intensities

of lymphocytes, relative lymphocyte-cellular interspersing, among others. The full set of fea-

tures is described in Table 3-6.

Table 3-6: Contextual Features

Sum of the inverse Euclidean distances between the lymphocyte

on the center of the circle and the other lymphocytes in the circled

area.

Ratio between the sum of the area of lymphocytes and the area of

non-lymphocytes.

Ratio between the sum of the areas of lymphocytes and the eosi-

nophilic tissue area.

Ratio between the number of lymphocytes and the number of non-

lymphocytes.

Average of the squared differences between the median intensities

of lymphocytes.

Ratio between the area of the convex hull containing all the lymp-

hocytes and the convex hull containing non-lymphocytes.

Intersection between the convex hull containing all the lymphocy-

tes and the convex hull containing all the non-lymphocytes.

Median of distances from each lymphocyte to closest non-

lymphocyte neighbor.

Ratio between the median of the distance between all the lymp-

hocytes and their closest lymphocyte neighbor and the median of

the distance between all the non-lymphocytes and their closest non-

lymphocyte neighbor.

Number of lymphocytes within a convex hull of non-lymphocytes.

Sum of distances between the centered lymphocyte and its non-

lymphocytes neighbors.

Clustering analysis

1Different radii were used aiming to model a multi-scale approach
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Gaussian mixture models are probabilistic models that assume all the data points are gene-

rated from a mixture of a finite number of Gaussian distributions with unknown parameters.

In such cases, a Dirichlet Process as a prior distribution of the number of clusters, makes

that the probability mass can be easily re-distributed (Figure 3-15). DPGMMs can then

automatically learn the number of clusters adjusted to the observed data, which make them

suitable for unsupervised clustering scenarios.

Figure 3-15: Illustration of a DPGMM. xi are the observed data points, zi is a set of labels

assigning xi to one of the k clusters. Cluster parameters are π (mixture pro-

portions) and θ (cluster means and covariances) with associated uninformative

priors (α and λ).

Since biological subtypes of lymphocytes are not visually distinguishable in H&E images and

it is unknown the number of possible groups existent in a set of images, DPGMMs provide

a convenient framework for TIL clustering.

Finding the lymphocyte clusters is summarized as follows. First, it is assumed that there

exists an infinite set of latent groups, each described by a set of parameters (e.g., a Gaussian

with mean µ and standard deviation σ). Then, each lymphocyte must be assigned to a

cluster, similarly to the ”Stick-Breaking process”, as follows:

There is a stick of length one.

A random variable β1 ∼ Beta(1, α) is generated, a real number between 0 and 1 is

set by the Beta distribution, with expected value 1/(1 + α). α is the concentration o

scaling parameter, a positive real number that influences the dispersion of data points

(A low α value will generate more tightly clustered data points while a high value will

generate more clusters). The stick is then Break off at β1 and w1 is the stick length at

the left.

Now take the stick at the right, and generate β2 ∼ Beta(1, α). Break off the stick at

β2 and again, w2 is the length of the stick to the left, i.e., w2 = (1− β1)β2.

Image characterization

Once lymphocytes are assigned to a group, histopathologic images may be characterized

using the clusters obtained via the DPGMM. For this purpose, a particular image is then

represented by a histogram containing the number of TIL occurrences per cluster. These

image histograms are normalized, resulting in the corresponding probability distribution

functions.
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Experimentation

Dataset

The dataset consisted of 178 H&E-stained tissue cores, corresponding to 178 different cases,

from two independent and well-characterized collections of NSCLC represented in tissue mi-

croarrays (TMAs). TMAs were prepared using standard procedures and digitally scanned

at ×20. Each tissue core was digitized within an image with 1500 × 1500 pixels which was

labeled as either Recurrence or Non-recurrence, information taken from the patient medical

record.

Experiment 1: Assessing the performance of PhenoTIL

PhenoTIL was evaluated in terms of its ability to determine whether a NSCLC case may have

recurrence or not. For this purpose, the whole dataset (See subsection 3.3.3) was randomly

split into a learning (n = 100) and a test (n = 78) sets. The learning set was used to

determine the clustering parameters and to train a Linear Discriminant Analysis (LDA)

classifier model that separates cases into two classes: recurrence and non-recurrence.

Different α values were used for clustering, and the performance of each set of clusters was

assessed. In addition, PhenoTIL was compared against two different approaches. The first

is a model in which images are characterized by lymphocyte local and contextual features

but with no clustering. In this case, features pertaining to lymphocyte mean, variance, skew-

ness, and kurtosis are used to build the feature vector. A second prediction model was also

constructed based off the density of TILs in the image, i.e., the ratio between the number of

extant lymphocytes to the total tissue area.

Rows 1 and 2 of Figure 3-16 present some visual results corresponding to two non-recurrence

cases while rows 3 and 4 illustrates two recurrence cases. These results show that some

lymphocyte populations tend to appear more frequently on the recurrence cases while others

are more common in non-recurrence cases.

Left panel of row 5 of Figure 3-16 presents the Receiver Operating Characteristic (ROC)

curves corresponding to 1) a model using only TIL density, 2) a model using only local and

contextual TIL features, and 3) the PhenoTIL model using different α values , which in turn

resulted in 5, 8, and 10 clusters respectively. The corresponding AUCs were 0.58, 0.61, 0.80,

0.84, and 0.81, respectively. Results show that PhenoTIL outperformed the other models

and a total of 8 clusters resulted in the highest area under the curve.

Experiment 2: Survival analysis using PhenoTIL

Right panel of row 5 of Figure 3-16 shows a Kaplan-Meier survival curve. We employed

the previously optimally determined number of clusters (8) for locking down the PhenoTIL

classifier for the survival analysis on the test set. PhenoTIL resulted in highly statistically

significant separation between the patients who did and did not have recurrence following

surgery.
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Figure 3-16: Summary of results.Rows 1 and 2 present two non-recurrence cases while rows

3 and 4 show two recurrence cases. 1st column: original image, 2nd column:

TIL identification, 3rd column: TIL clustering (8 clusters), and 4th column:

corresponding histogram derived from clusters. Row 5 illustrates the ROC

curves of PhenoTIL and comparative strategies and the Kaplan-Meier curve

of PhenoTIL using 8 clusters.
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3.4. Concluding remarks

Usually, the common approach to extract relevant content from images is using low-level

features, namely color, texture, orientation, or shape. Unfortunately, this strategy results

highly limited in the medical field because of the high variability and complexity of biologi-

cal structures. Structures very visually similar could have completely different pathological

meanings. Aiming to deal with this gap between semantics and raw visual information, in

this chapter we have presented different approaches that exploit the relationships between

different constituent elements of an image. Specifically, we identified nuclei and studied their

local and contextual information to obtain objective information that can be used for both

rendering a diagnosis and establishing the patient prognosis.

In a first study case, nuclear information is used to automatically identify from a set of fields

of view which of them contained DCIS and their corresponding grade. For this purpose,

we characterized each image nucleus by its local morphological information (size, shape,

color, texture, etc.), contextual information (neighborhood visual features), and grouping

factor (distance to other nuclei). Previous studies have shown that detection of DCIS is a

challenging task because of the variable morphology, biomarker expression, genomic profile,

and natural progression of this type of lesion. Furthermore, such studies have revealed low

levels of agreement between expert pathologists. Experimental results suggest the introduced

approach could provide pathologists with objective and quantitative information, thereby

easing decision-making and treatment planning.

In a second study case, we explored the prognostic potential of TILs for patients with NSCLC.

Different studies have shown a a high correlation between the infiltration grade of lymphocy-

tes and the patient prognosis (response to therapy, survival, recurrence, etc.); unfortunately,

this information is not used in clinical practice because of a lack of standardized methodo-

logies and objective strategies to quantify the infiltration. In this chapter we presented a

first approach called SpaTIL that quantifies topological and density features from TILs on

H&E-stained samples. Extraction of such features started by automatically detecting TILs

and non-TILs (mostly cancerous nuclei) on histopathological images; then, TILs and non-

TILs were grouped into small cell clusters based on the Euclidean distance. From each cell

cluster, density and neighborhood characteristics were extracted. The prognostic ability of

SpaTIL features was tested using 3 independent datasets; results showed a high correlation

with with recurrence in early-stage NSCLC.

Recent works [143], however, have stated that lymphocytes should not be analyzed as a whole

since there are different TIL families or sub-groups with different prognostic characteristics.

For this reason, this chapter also presented a second approach called PhenoTIL that aims to

perform a more granular analysis of lymphocytes. Unfortunately, TIL families are not easily

distinguishable on H&E images, so non-standard, expensive, tissue-destructive, and time-

consuming methods such as IHC must be applied to identify such sub-groups. Therefore,

lymphocytes were characterized on H&E images by their local and contextual information.
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Then, taking into account that we do not know how many sub-groups of lymphocytes we

have, we used a soft-clustering approach aiming to naturally group lymphocytes, i.e., we did

not explicitly state how many groups there were but the algorithm automatically learned

the number adjusted to the observed data. Finally, we studied the relationship between

the presence of certain groups and the patient prognosis. For this purpose, we used 2 of the

datasets previously used to validate SpaTIL, but in this case we removed some noisy samples

(deteriorated tissue, staining problems, etc.). Although we found, again, a high correlation

with recurrence in NSCLC, more experimentation needs to be carried out to get a definitive

conclusion.

Study and quantification of lymphocytic infiltration have a great potential. Predicting whet-

her or not a patient will have recurrence might guide clinicians or better decision making

and treatment planning. In addition, this would allow clinicians for identifying patients with

higher risk disease who would benefit from adjuvant chemotherapy.
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4 Histopathological analytics by learning

from experts

4.1. Introduction

The development of computer-assisted histomorphometric tools for interrogating digital pat-

hology slide images allows for the discovery of patterns and objective measurements associa-

ted with disease aggressiveness, grade, and patient outcome [106, 19, 105, 178]. Nevertheless,

the size of a WSI, which typically runs in the order of several gigabytes, poses computational

and diagnostic challenges [67]. Despite the large size of a sample, in general, pathologists

require very little time to examine samples and reach a diagnosis [135]. They rapidly identify

regions of potential diagnostic interest, i.e. areas that usually contain abnormal patterns that

characterize a particular set of pathologies [148, 119]. Although every case is different, it is

widely acknowledged that diseases present certain characteristic patterns and pathologists

are educated to recognize them, even under very noisy conditions [25, 166].

There is a growing demand in pathology to use objective measurements that support treat-

ment decisions, but few systems in use can meet this need [88]. The ability to identify the RoIs

which contain pertinent diagnostic information could 1) reduce the time pathologists need

to dedicate to each sample by focusing their attention on relevant areas [88] and 2) improve

computational image analysis tools, thus enabling improved objective measurements of histo-

logical data [88, 116]. Different approaches [180, 132, 169] have attempted to identify relevant

information on medical imaging databases using manual annotations, a very time consuming,

laborious, and impractical approach when processing vast image collections. Other approa-

ches have used automated RoI identification by handcrafted features (e.g. color, shape, and

texture). For instance, Doyle et al. [44] applied a boosted Bayesian multi-resolution classi-

fier along with texture features to identify areas of adenocarcinoma in prostate biopsy slide

images. Low resolution RoIs were identified by a texture classifier and then mapped onto the

next higher resolution to generate high resolution RoIs. Similarly, Peikari et al. [125] pre-

sented a texture analysis technique that automatically triages clinically important regions

on histopathological images. Another method to automatically detect RoIs in WSIs involves

the use of handcrafted graph features. Graphs are mathematical constructions composed

of finite sets of connected objects (nodes) that capture global and local relationships via

pairwise connections between its members (edges). These structures can be used to quan-

titatively represent spatially distributed information, such as neighborhood relationships,
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and the spatial arrangement of structural tissue primitives (e.g. nuclei, lymphocytes, and

glands)[145, 96, 13, 94]. Different graph-based features such as Delaunay triangles, Voronoi

diagrams, and minimum spanning trees, have been extracted and combined with other visual

features to effectively characterize histopathologic images [129, 13, 6, 5, 106].

While these approaches turn out to be simple and efficient, in practice they suffer from

different drawbacks. One of these drawbacks is the semantic gap, a concept related with the

impossibility of fully describing the global meaning of the image by using low-level image

features [65, 101, 133]. The semantic gap might be minimized by introducing prior knowledge

from the pathologist as part of the learning workflow. This prior knowledge could be used to

inform low-level feature algorithms where in the images to initially ”look”. These algorithms

could combine pathologists knowledge with features such as 1) low-level image cues such as

color and texture of the epithelium and the stroma, and 2) mid-level structural motifs such

as nuclear architectural patterns, collagen patterns, and gland morphology.

There are several methods for either predicting or identifying the interesting RoIs in a WSI

based on the pathologist knowledge. For example, Peter et al. [127] described a method

using a random forest algorithm to learn and identify potential RoIs within an image. The-

se regions were then shown to an expert who interactively flagged the regions which were

actually relevant. This in turn, allowed a continuous updating of the scoring function for

different RoIs. This approach requires substantial manual interaction, which is time consu-

ming and therefore difficult to implement in clinical practice. Alternatively, this high level

expert domain knowledge might be captured by implicitly extracting information from the

pathologist actions with the virtual microscope during a diagnosis task [89, 62, 135, 113].

One manner consists in passively recording the navigations of pathologists during a diag-

nostic task, a strategy perfectly suited for real clinical scenarios. In such an approach, the

idea is to identify and characterize the most frequently visited areas, since very likely they

contain relevant diagnosis information.

In this chapter, we present a strategy oriented to automatically detect regions of interest

from histopathological images by including the pathologist into the learning workflow. Con-

sidering that manual annotations is an unrealistic task, in the hereafter introduced approach,

we captured implicit information from the expert interactions. Specifically, we recorded in-

formation from their movements (panning and zooming) while performing a diagnostic task

and use it for latter analysis.

We present a study case that consists in detection of regions of interest in basal cell carci-

noma, a type of skin cancer. In a first approach (Section 4.2.1), the high-level information

captured from experts is used in conjunction with a visual attention map of the sample

attempting to identify the most relevant regions and caching them. Although this approach

showed a good predictive ability, the learned models were image-specific, so they hardly

could be generalized. For this reason, a second approach (Section 4.2.2) attempted to extend

the first approach by combining nuclei information with the navigations of pathologists to

identify which regions are more likely to be cancerous.
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4.2. Study case: Detection of regions of interest in basal

cell carcinoma

4.2.1. Integrating visual attention maps and interactions of experts

Digitized versions of tissue samples can be navigated, shared and remotely accessed under

client-server architectures, facilitating inter-consultation and education scenarios [53]. Ho-

wever, a typical Whole Slide Image (WSI) size is of the order of gigabytes, a bottleneck

when visualizing a pathological case. Identification of relevant Regions of Interest (RoIs) is

crucial towards development of VM applications, a claim based on several statements. First,

it favors strategies such as caching or prefetching1 that speed up navigation [98, 41, 75, 61].

Second, this process may also serve to design smart educational systems that might guide the

training strategies of pathology residents. Third, these strategies can be useful for indexing

histopathological databases and to perform selective compression.

Some studies [159, 158, 45] have shown that when the visual process is task-driven, iden-

tification of RoIs involves a complex interaction between two complementary sources of

information, the bottom-up flow, provided by information coming up from low level image

features, and the top-down flow, provided by the expert who establishes relationships bet-

ween an acquired knowledge and the tissue information [62]. In consequence, the relevant

content of a WSI might be located by strategies that capture the navigation patterns defined

by the pathologist expertise, acknowledging that there exist identifiable patterns from the

pathologist interaction process [135]. Now, while the examination path is very likely connec-

ted with a particular clinical meaning, the underlying relationship is difficult to establish.

The question addressed in this paper is then how to use the observational path defined by a

particular navigation to determine which are the relevant RoIs, i.e., the relevance map of a

WSI.

Different information search strategies have previously used graph structures. For instance,

the Google PageRank algorithm [23, 93], behind the successful Google search engine, is a

classical graph representation that has demonstrated how relevancy can be naturally inte-

grated and exploited to improve interaction between users searching information and web

pages [54]. Google’s strategy however can not be straightforwardly extrapolated to the VM

scenario since only a small number of experts is always available. This article presents a

relevance map constructed from low level features that are integrated and modulated by the

high level knowledge from actual pathologists’ navigations. For doing so, a graph structure is

constructed, being the graph nodes, the spatial regions of the WSI and the edges, the weights

(relevance) of each of these regions. Initially defined by a Visual Attention Model (VAM),

edges are modified by an evidence function that is generated using a Bayesian strategy that

1Cache is a memory space where information previously processed shall be used in the future, while pre-

fetching consists in anticipating the user requirements to make data available before the user requests

them
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learns the expert preferences during actual navigations.

Model description

The Bottom-up and Top-down flows

The bottom-up information arranges low level captured features. In this work, the model

proposed by Harel et al. [71], which integrates information from color, intensity and orienta-

tion, was used to calculate a coarse salience map: a 2D function whose intensity values stand

for the relevance levels or the probability map. The pathologist knowledge is included by

modifying the relevance level using information from the particular visited regions, the ti-

me spent at each and specific associated exploration activities, namely panning and zooming.

The Bayesian strategy

Navigations are considered as occurrences of a random variable whose probability is determi-

ned by the relevance distribution, the posterior distribution P (Θ|X ) = P (X|Θ)P (Θ), where

X are the particular regions visited during a navigation, Θ the distribution parameters,

P (X|Θ) the likelihood, the probability of having a particular navigation X given a distri-

bution with parameters Θ and P (Θ) is the a priori probability of the parameters. Provided

that there exist k probable regions that can be independently visited during a navigation,

the success of visiting exactly a single region at a time for N independent trials is estimated

as a multinomial distribution, with the same probability of success for each trial since sta-

tistical independence is assumed. The image is divided into M disjoint regions whose state

of visits is stored at each of the navigation steps2. A navigation is then defined as a set of

steps, each storing the location of the visited regions. The probability of visiting the region

i, P (xi|Θ), given the relevance distribution parameters is estimated assuming independence.

The probability of visiting certain region r can be modeled as a multinomial probability:

P (x1, . . . , xk|Θ) = Multi(X|Θ) =
k∏
i=1

pxii (4-1)

where x1, x2, ..., xk are binary variables that indicate which region is visited, i.e., if the

region visited is r then xr = 1 and ∀i 6= r, xi = 0. The parameter vector Θ is the set

of probabilities {p1, p2, ..., pk}, being pi the probability of visiting the region i. A navigation

is a path composed of N steps, being the step xt a set of states xt1, x
t
2, ..., x

t
k of the WSI

spatial regions, with
∑k

i=1 x
t
i = 1, i.e., just a single region is visited at each step. The

resultant probability is given by:

P (X|Θ) =
k∏
i=1

pNi
i (4-2)

2at a particular navigation step, a state of visit is one if that region has been visited and null otherwise.
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where Ni =
∑N

t=1 x
t
i stands for the number of times the i-th region is visited during a

navigation. This information is obtained by recording the expert pathologists in the vector

n = (N1, N2, ..., Nk).

Figure 4-1: WSI navigation modeled as multinomial probability. The Figure illustrates a

WSI divided into 9 regions, which is navigated in three steps. At each step, a

single region is visited. In this example, at the end of the navigation, region

6 was visited just once, so N6 =
∑3

t=1 x
t
6 = 1, and region 5 was visited twice

(step t = 1 and t = 3), then N5 =
∑3

t=1 x
t
5 = 2.

Under a Bayesian inference framework, the multinomial distribution parameters {p1, . . . , pk}
are modeled as random variables that are described by a Dirichlet Distribution, i.e., the
multinomial conjugate. Hence the prior distribution is:

P (Θ|α) = Dirichlet(Θ|α) =
Γ(α0)

Γ(α1) · · ·Γ(αk)

k∏
i=1

pαi−1
i (4-3)

where Θ = (p1, p2, ..., pk), α = (α1, α2, ..., αk) and α0 =
∑k

i=1 αi. Given these prior and
likelihood, the posterior, which also has a Dirichlet distribution is given by

P (Θ|X , α) =
Γ(α0 +N)

Γ(α1 +N1) · · ·Γ(αk +Nk)

k∏
i=1

pαi+Ni−1
i (4-4)

where α = (α1, α2, ..., αk) is a vector with the initial parameters of the prior distribution

given by the saliency map and αi is the initial visit probability assigned by the VAM to the

ith region. Θ is estimated using a Bayesian parameter estimation:

ΘBayes = E [Θ|X , α] =
αi +Ni

α0 +N
(4-5)

Two variations were introduced, a discrete relevance map that takes into account the number

of times a region is visited, and a structured relevance map that models the WSI spatial re-

gions as nodes and their relationships as edges. Hereafter, both models are further described.

The discrete relevance map
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The relevance map probability is assigned to each region according to the number of times

that region was previously visited, i.e., RoIs are those that are more frequently visited.
Taking into account equations (4-4) and (4-5), an estimated parameter for each region is

P (pi|X , α) =
Γ(α0 +N)∏k
i=1 Γ(αi +Ni)

(
λαi + (1− λ)Ni

λα0 + (1− λ)N

)αi+Ni−1

(4-6)

where λ is a parameter that controls the relative importance of the prior with respect to the

likelihood. The higher λ is, the more important the prior.

With a prior α and a navigation n1, an estimate θ1 is calculated, if a new navigation n2 is

available, a new estimate θ2 is calculated using θ1 as prior, and so on.

The structured relevance map

In the present context, searching particular RoIs amounts to figure out a preferential infor-

mation flux through a net of nodes belonging to a fully-connected graph, being each node a

particular histhological region and each edge a similarity (or dissimilarity) measure among

regions. If an image is partitioned and its parts are somehow associated to a fully-connected

graph, the interaction process between an user and the image is defined by a particular path

of that graph.

The structured relevance map herein proposed performs a flexible WSI splitting that may

represent any relevant region. This model defines a graph G = (V,E), where V is the set of

regions of the WSI with a relevance score associated and E is the set of edges representing

the hierarchical relevance relationships among nodes. A first step is then to build a discrete

saliency map and structure it as a graph. For doing so, the saliency map of an image is

obtained from a bottom-up VAM. Then, a set of local minima are determined by a two-

dimensional first-order derivative of the saliency map; each local minimum determines a

saliency level which defines an image region with a similar relevance value (iso-saliency).

Every iso-relevant region is represented by a node of the graph which connects other regions

or nodes by relevance levels. The resulting graph corresponds to a tree that encodes the

hierarchical relevance relationships of the image regions (See Subfigures 4-2(a) and 4-2(b)).
The idea is to enrich the tree structure described above with information from the patho-
logists’ navigations. For achieving so, the path followed by an expert pathologist during a
diagnostic exploration is recorded and the posterior probability P (v|X ) is estimated given
a navigation sample X , where v = v1, v2, . . . , vk is the probability of visiting the node i,
modeled as a Dirichlet probability:

P (vi|X , α) =
Γ(α0 +N)∏k
i=1 Γ(αi +Ni)

(
λαi) + (1− λ)Ni)

λα0 + (1− λ)N

)αi+Ni−1

(4-7)

where α = (α1, α2, . . . , αk) is the set of initial parameters of the prior distribution given by

the discrete saliency map.
During a navigation then, a visited region may overlap an image area corresponding to
several nodes or just a small portion of the area associated to a single node, a more accurate
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estimation of the probability distribution may be obtained considering not only the number
of times an area is visited (as for the discrete relevance map), but also the intersected
area. That is to say, the relevance of an area depends also on its Euclidean distance to
an overlapped area, in this way, the more distant non-overlapped areas are, the lower the
relevance value is. A smooth saliency region function redistributes the probability mass not
only within the tree but also at the level of the node itself. This is modeled as:

γ =
Γ(α0 +N)∏k
i=1 Γ(αi +Ni)

(4-8)

δ =
1

D(x,y)(p, q)
(4-9)

P (vi(x, y))|X , α) = δγ(
λαi(x, y)) + (1− λ)Ni(x, y))

λα0 + (1− λ)N
)αi+Ni−1 (4-10)

Where D(x,y)(p, q) is the euclidean distance between the current pixel (p, q) and the nearest

pixel (x, y) overlapped by the navigation path. Afterwards, a normalization is performed and

the graph hierarchy is updated: the nodes corresponding to the more visited regions will have

a higher relevance score. A new saliency map is built by the union of every region, as shown

in Figure 4-2. As soon as a new navigation is available, the probability is redistributed.

Again, the λ parameter weights the probability maps.

Experimentation

Experimental setup

The evaluation dataset consisted of a total of twenty skin biopsies of patients diagnosed with

different types of basal cell carcinoma, embedded in paraffin and stained with Hematoxylin-

Eosin3. The WSI resolutions vary from 104 to 340 mega pixels, and their sizes range between

630 MB and 972 MB. Four pathologists, with at least ten years of professional experience,

navigated these virtual slides and diagnose them using a custom virtual microscope (each

pathologist was trained to use the virtual microscope with two test images). The twenty

WSIs were randomly displayed. Each pathologist was asked to run over the WSIs up to

a diagnosis was set. During examinations, the pathologist interactions (Visited WoIs, time

spanned at each RoI, magnification level changes) were recorded for creating navigation heat

maps. A navigation heat map shows how often a pixel was visited by a pathologist during a

diagnostic task. Each image pixel has a visit counter, initially set to zero. When a pathologist

is looking at a certain window, the all the pixels of such region increase their visit counter.

Similarly, when a pathologist zooms in a region, the visit counter of the pixels belonging

to the magnified region will increase. Thus, pixels within magnified regions will have higher

visit counter values than pixels on other regions.

3The set of histological samples was provided by the Pathology Department of the Universidad Nacional

de Colombia and is representative of what pathologists usually observe in this pathology
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Figure 4-2: Redistribution of probabilities in the structured relevance map. (a) and (b)

correspond to the saliency function and its corresponding graph. (c) A recorded

navigation (gray-level squares) overlapping the discrete saliency prior. (d) Intra-

region probability distribution by multinomial analysis and distance function.

(e) and (f) final relevance map and its corresponding graph representation.

Evaluation and Results

The two presented strategies stored the most relevant regions and evaluation consisted in

checking out whether the pixels requested during a navigation were or not available in that

cache space (percentage of cache hits).

In the first experiment, the prediction capability of the discrete relevance map was evaluated

using a fixed cache size, corresponding to the 5 % of the image size, and 9 different λ values

that assessed the importance of the prior with respect to the evidence. First, an initial

experiment using the saliency map calculated from the bottom-up VAM was performed.

A first posterior probability P (Θ1|X1) was calculated using a navigation and tested for

a second navigation. Then, a second and a third posterior probability P (Θ2|X2), P (Θ3|X3)

were calculated using the previous navigations and evaluated for a new one. Results in Figure

4-3 show that When using the VAM approach, the percentage of cache hits is constant for

the different values of λ, about a 13 %. On the contrary, when the first posterior probability

is calculated, the percentage of cache hits increases to 21.6 %, 8 % higher than the VAM,

which may amount to a delay of about 12,5 s for an image of 458 megapixels and 24 bits-

per-pixel being transmitted on a network with a speed of 3.5 Megabits/second. If a second

navigation is involved and a second posterior probability is calculated, the percentage of
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cache hits reaches a 22.4 % while for a third posterior probability, this figure is 22.8 %. These

results demonstrate that integration of new knowledge increases the predictive capability of

the model, especially for a λ value of 0.7, while larger values of this λ make that performance

decreases, likely due to the lack of more evidence.

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
12

14

16

18

20

22

24

Lambda factor

C
ac

h
e

h
it

s
(

%
)

VAM
1st learning iteration
2nd learning iteration
3rd learning iteration

Figure 4-3: Prediction ability of the discrete relevance map using a cache size of the 5 %

of the image size. Results using the VAM and after one (P (Θ1|X1)), two

(P (Θ2|X2)) and three (P (Θ3|X3)) learning iterations. Different λ values we-

re used to model the importance of the prior with respect to the evidence.

In a second test, the two proposed Bayesian models were compared. A cross-validation leave-

one-out scheme was implemented: For each image, two navigations were used to build and

train a relevance map with the discrete and structured relevance maps, and one navigation

was used to measure the percentage of cache hits. In this case, performance was measured

as the difference of hits for different cache sizes between the two methods. Results, shown

in Figure 4-4, demonstrate that the structured relevance map has more cache hits than the

discrete relevance map. For a cache size of 1 % of the image, the difference is about 1.8

millions of pixels, which might represent a delay of about 12 s for a 458 megapixels and 24

bits-per-pixel image being transmitted on a network with a speed of 3.5 Megabits/second.

For a cache size of 20 %, the difference is about 14.5 millions of pixels, which may represent

a more than 1,66min for an image and a network with the previously described features.

4.2.2. Integrating nuclear data and interactions of experts

In Section 4.2.1, a Bayesian framework predicted regions an expert might visit based on the

visual data and previous visits of other experts, attempting to improve the cache perfor-
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Figure 4-4: Evaluation of the discrete and structured relevance maps. Performance is mea-

sured as the difference of pixels hits for different cache sizes between the two

methods. The cache size corresponds to a percentage of the WSI size.

mance for different navigation tasks. This approach begins by learning a set of candidate

relevant regions using salient information coming from visual features such as color, sha-

pe, and orientation. These candidate regions are then pruned based on feedback information

from the navigation trends of the pathologist. Unfortunately, this approach is limited because

the learned models are specific for each image, so they hardly could be generalized.

For this reason, this section introduces a model that aims to integrate low-, mid- and high-

level information to determine how likely a nucleus is cancerous. The model exploits the

implicit knowledge extracted from actions performed by pathologists while navigating WSIs.

Briefly, the method starts by segmenting the WSI nuclei and computing a set of nuclear visual

features typically altered in regions with cancer, namely color, size, and spatial distribution

[166]. Then, each nucleus is assigned a likelihood of being cancerous based off the number of

times said nucleus is visited by a group of pathologists while performing a diagnostic task.

Finally, the relative importance of each of the visual features is calculated by performing

a multi-linear regression between the visual features associated with each nuclei and the

corresponding likelihood of cancer presence. The primary contribution of this work is a

simple and adaptable integration of the high-level expert knowledge (implicitly extracted)

with handcrafted visual features in order to create a classifier for cancer detection on a

patch-by-patch basis within WSIs. The underlying rationale here is that prior information,

derived from pathologists’ interactions with the WSI, improves the predictive performance

of handcrafted features. The model is trained offline with a set of WSIs and then applied to
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classification/prediction task in new images (previously unseen). A second contribution of

this method is that it may provide an alternative approach to defining expert ground truth

since this method enables identification of areas that represent a high level of interest. Figure

4-5 illustrates the workflow of the new approach to identify suspicious RoIs from whole slide

images of basal cell carcinoma.

The presented method was evaluated in terms of its ability to determine if a set of patches or

fields of view (FOVs), extracted from WSIs, contained cancerous regions. The validation of

our approach was performed on a study case involving the detection of basal-cell carcinoma

(BCC) from WSIs. BCC is the most common malignant skin cancer [38]. Although skin

cancer is a threat to human life, fortunately it can be cured if it is detected and removed

before it makes metastasis [144]. However, detecting BCC is challenging since it is difficult to

distinguish the actual tumor from its surrounding noncancerous tissue [10]. If BCC remains

undiagnosed, the tumor can grow, requiring more extensive resection that can result in vi-

sual or functional deformities. Currently, diagnosis relies on the experience and subjective

judgment of each pathologist [10]. The development of objective measures for BCC detec-

tion could help improve clinical decision support approaches for disease diagnosis and could

also potentially facilitate better strategies for treatment planning. The present paper shows

how integration of navigations and low-level image features could help to identify cancerous

regions in BCC WSIs.

Low-level model

Nuclear Segmentation

The low-level image features employed in this work are based off spatial nuclear architectu-

re and arrangement. Consequently, the first challenge in extracting these measurements is

carefully identifying these nuclei on digitized pathology images.

While a number of different nuclear segmentation methods for digitized pathology images

have been previously presented [4, 50, 78, 177], we opted to go with the method of Wienert

et al. [173]. This strategy, whose major advantage is its simplicity, involves the use of an

adaptive tracing technique that detects contours which are filtered based off the strength of

the image gradient. The convex-hull of each detected region is employed to separate out nu-

clei clusters. Nuclei classification is, subsequently, performed on these clusters in order to 1)

distinguish between overlapping and conjoined nuclei and 2) distinguish nuclei from similar

appearing primitives such as lymphocytes. According to the authors [173], with a validation

set containing 7931 manually annotated cells from 36 images of different organs, this segmen-

tation method presents a precision = 0.908 and recall = 0.859. After these results, one could

expect that about a fifteen percent of the population might be missed; however, the fact that

the segmentation process is applied to the complete WSI makes that in practice the probabi-

lity distribution function of these features would change very little by the misdetected nuclei.
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Figure 4-5: Illustration of the process of identifying cancer RoIs by fusing information from

handcrafted features and interactions with the pathologist. In the learning pha-

se, two types of information are extracted from a set of WSIs: low and high-level.

Low-level features originate from the visual content of the image, specifically

from nuclei arrangements and their sizes and colors. High-level information,

such as magnification-weighted location focus, come from the visual attention

of the experts. These two information sources are then integrated by a multi-

linear model that learns the relative importance (weights) of each handcrafted

feature for predicting RoIs, i.e., cancer areas. In the prediction phase, low-level

features are extracted from new WSIs. Using the learned weights, a nuclei cance

likelihood is calculated to predict whether a specific patch is either cancerous

or not.
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Nuclear feature extraction

Experts frequently base their diagnosis of disease presence or absence on nuclear features

[166]. Consequently, nuclei represent critical visual information for analysis in digital histo-

pathology. For this reason, we attempted to determine the degree to which a nucleus might

represent cancer. Identifying individual nuclei that represent cancer might in turn enable

identifying regions involved with cancer. For this reason, each nucleus was assigned a li-

kelihood of being cancerous or not based on its visual properties; hence, features that are

characteristic of morphologic disruption in cancer were extracted, namely attributes pertai-

ning to spatial distribution, size, and color of the nuclei.

Since cancer is characterized by rapid cell proliferation and the formation of cell clusters,

our model was designed to assign a likelihood to each nucleus according to its grade of

grouping. A high value for an individual nucleus means that it is close to other nuclei and

has a high probability of being cancerous. The model is defined as follows: Once nuclei are

segmented, the center of gravity of each individual cell is associated with a node in a graph

which represents nuclei spatial relationships. The weights of the graph edges correspond to

the inverse of the Euclidean distances between the connected nuclei. The likelihood of a

node being cancerous is then computed by adding the corresponding weights of every edge

connecting to that node. In this way, this feature captures the local spatial distribution of

cells. Particular attention was paid to setting a threshold value that prevented large dense

clusters from dominating the likelihood distribution. If the analysis is performed without

such threshold, the probability mass of the likelihood is basically concentrated into very few

foci, typically one or two. The idea behind this threshold is to achieve a likelihood distributed

as homogeneously as possible. For this reason, this threshold was set to 0.02, a value that

ensured a number of foci reached a number of Gaussians with similar probability mass. This

value was established after an exhaustive search for the optimal threshold values on a subset

of images from the training set. This model is defined by Equation

x1,i =
n−1∑
j=1

1

Di,j

× bθ, (4-11)

where x1,i is the likelihood of the spatial distribution-based feature for the i-th nucleus, n

the number of nuclei, and Di,j is the Euclidean distance between nuclei i and j, θ is the

threshold value, and bθ is a binary value that is 0 when Di,j > θ and 1 otherwise. This model

generates very high values if nuclei are close together or overlapping, a useful condition

for the model detects clustered nuclei. It should be strengthen out that these values are

calculated between centroids and therefore the minimum distance between two nuclei is at

least the nucleus radius, in consequence this quantity will never diverge.

Cancer cells are also characterized by the proliferation of cells with large nuclei. For this

reason, our method employs a model that clusters cells based on their area in order to

highlight homogeneous neighborhoods. In this process, the area of each nucleus is computed
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and modeled as a graph in which nodes are the nuclei and weights are the inverse of the

differences between areas. Here, the likelihood of each nucleus being cancerous corresponds

to the sum of the weights of the nodes connecting to it. High likelihood values typically are

ascribed to cells with large areas surrounded by other similar cells.

It is also known that cancer cells and their environment (surrounding area) present slight

differences in color when compared to normal cells. Taking this into account, the averaged

YUV color values of each nucleus and its surrounding area are also extracted. The area

surrounding the nucleus is defined as a circumference with radius ×1,5 the nucleus major

axis length but excluding, of course, the nucleus itself and any other intersecting nuclei. This

value aims to model a nucleus-cytoplasm relationship that usually is 1:4, but in the present

investigation was set to 1:3 trying to take into account the shrinkage effect of the whole

histological procedure (approximately 25 % according to [174]).

Finally, after applying these models and the subsequent feature extraction, a set of 8 feature

values were obtained for each nucleus. These included spatial distribution, size, mean nuclear

Y, U, and V values, and mean Y, U, and V values of the region surrounding each nucleus.

High-level model

We had a set of pathologists perform a series of diagnostics tasks on WSIs and captured

the coordinates of the window of interest they visited and the type of action the expert

performed (panning, zooming in or out). All of this information was recorded for each reader

and used to generate the respective visual attention maps.

Visualization strategy and tracking system

Given the size of the WSIs, the most common visualization strategy consists in constructing a

multi-resolution pyramid of the image, compressed in JPEG format; however, this approach

presents important limitations regarding management, quality, flexibility and performance

[3, 123, 36]. However, the JPEG2000 (J2K) standard, characterized by a natural multi-

resolution decomposition, lossless compression, and random spatial access [75, 156], better

suits the requirements for this type of interaction. In [36], the J2K model was adapted to

improve the dynamic interaction between WSIs and a custom virtual microscope enabled to

run on small devices like smartphones or tablets. The principle of this navigation is that the

client requests RoIs instead of the entire image, thereby reducing the amount of information

requested. When users navigate a particular WSI, they have as reference a window of interest

that is moved along a navigation path, and whose coordinates and magnification are encoded

as spatial coordinates. These coordinates define the J2K packets needed to construct the

specific requested region. The packets are then extracted from the compressed file, combined

with the region parameters and the image main header, decompressed using a J2K decoder,

and used by the client to reconstruct the original RoI. Here, this strategy was adapted and

used to enable pathologists to visualize different WSIs.
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Furthermore, the visualization system was tuned to register the different navigation move-

ments and actions performed by the pathologists during the diagnostic task. The tracking

system records the time, location, and magnification activity along the entire diagnostic

path. This information is subsequently stored for offline analysis.

The visual attention map

Visual attention maps are a summary of the most visited regions of an image by a set of

experts during a diagnosis task. In this work, the visual attention map is built using the

frequency with which each image pixel is visited; this approach assumes that regions most

visited by a set of pathologists are those likely containing cancer. Information related to the

time pathologists spend at examining a particular region was ignored by this model since

it could be highly noisy. Generation of this map starts by setting to zero a visit counter

for every pixel. Each time a pathologist visits certain region, the visit counter of each pixel

belonging to such a region increases (See Figure 4-6 for illustration). Consequently, pixels

from regions more frequently visited will have higher visit counter values. The final visual

attention map is generated by summing all the visits from every pathologist, followed by a

normalization process that sets 1 to the highest value and 0 to the lowest. From this map,

we infer the likelihood of a cancerous nucleus depending on its location, i.e., a nucleus in

a frequently visited area will have a higher likelihood value than a nucleus in a non-visited

region.

Learning feature relevance

As previously stated, traditional approaches usually employ only low-level features for buil-

ding machine learning classifiers for disease diagnosis. While these strategies have showed

good results at discriminating between classes, they disregard the concepts behind the image

and ignore the expert domain knowledge.

In this work we employ a mathematical formulation that enables the integration of higher-

level expert knowledge with lower-level image derived features. The set of low-level features

used to determine the degree to which a nucleus is cancerous can be thought of as the prior

class conditional information, invoking the Bayesian formulation. Additionally, information

about which nuclei are decisive in rendering a diagnosis can be implicitly extracted from the

visual attention map, information that can be thought of as evidence or class prior. Thus the

likelihood function of an individual nuclei was defined as a linear combination of its visual

features as,

y =

f∑
k=0

wkxk, (4-12)

with xk the k-th feature vector, x0=1 (the bias factor) and wk the corresponding weight (the

model parameters to be learned), f the number of different features, and y the resulting
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Figure 4-6: Generation of the WSI visual attention map. The visual attention map is ge-

nerated at a pixel-level. Every pixel belonging to the navigation window is set

to the relevance level, defined as the number of times said pixel was included

within one of the observation windows. In this example, a pathologist exploring

the WSI changed the observation window. Each time this happened, the num-

ber of visits was continuously updated for every pixel within the observation

window. In step 1, all image pixels were initialized with a ”visit counter.of 0.

Steps 2-4 show visits to different image regions (red squares); in these cases, the

visit counter of the pixels within the visualized regions increases. In step 5, a

region is re-visited and the visit counters are incremented for every pixel within

the observation window. Finally, a visual attention map is obtained from the

total number of pixel visits. The more frequently a region is visited, the more

likely it is cancerous (brighter).

likelihood. The bias term is usually introduced in multilinear regression models to avoid

the regression line is forced to pass through the origin. In other words, if the bias is not

used, when all of the feature regressors or predictors are zero, the predicted likelihood value

should be zero, a meaningless statement in this context since nuclei relevance is always non

null by other features than can have any influence on such likelihood value. So, a bias term

independent of the regressors was added to allow the hyperplane described by the learned

weights to naturally capture the statistical relations.

In order to integrate this information with the expert knowledge, the information extracted

from the visual attention map was used as the objective function in this linear model. The

weight or relative importance of each feature is then learned by performing a multi-linear

regression using the least squares method [115].
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Model validation

Validation of the presented approach was carried out using 24 patient studies as described

below (See Subsection ”Dataset”). Firstly, the feature weights were estimated using the

model described in Section 4.2.2. This process was carried out using the 70 % of the cases (17

randomly selected) (See Figure 4-7). Secondly, each of the images within the remaining 30 %

(7 images) were split into smaller patches or fields of view (FOVs) with a size of 1024×1024

pixels. This FOV typically contains most of the relative primitives and surrounding structures

needed to render a diagnosis by a pathologist. This FOV size was empirically determined

by the pathologists. FOVs with no tissue were discarded. Next, each FOV was labeled by

an expert pathologist as cancer or not-cancer. The number of FOVs is dependent on the

WSI size, i.e., the larger the WSI the higher the number of FOVs. Once all the FOVs are

collected, the number of samples within the cancer and noncancer classes were balanced by

randomly removing a set of FOVs with the most represented class. 176 FOVs corresponding

to 5 patients were used to train a classifier to predict the presence of cancer on a patch-

by-patch basis while the remaining 98 FOVs, from 2 patients, were used for independent

testing.

The first step to predict the cancer presence in a FOV was to calculate the likelihood of

being cancerous for each of its nuclei. For this purpose, each nuclear feature was multiplied

with its corresponding weight in the weighting vector (previously learned). Features that we-

re positively correlated with cancer were assigned larger positive weights, features inversely

correlated with cancer were given negative weights, and uncorrelated features were assigned

weights of 0. Thus, the numerical result of multiplying the feature and weighting vectors was

a direct indication of the likelihood that each nucleus was cancerous. Finally, the likelihood

of a FOV being cancerous is calculated from the average likelihood of its individual consti-

tuent nuclei.

Baseline

The model described in this work (M im) (defined by Equation 4-11) attempts to infer the

relevance of visual features from implicit knowledge, extracted from interactions between a

group of pathologists and WSIs. The comparative strategy or baseline model (M ex) uses

the very same visual features as M im (See Subsection ”Nuclear feature extraction”), but

the estimation of weights is performed from explicit knowledge, i.e., nuclei manually labeled

by an expert as cancerous or non-cancerous (See Figure 4-8). The baseline feature weights

are used to predict the likelihood of cancer on a per-nucleus basis, across the different WSIs.

Finally, from these WSIs, a set of FOVs is extracted and a classifier is trained to predict the

presence or absence of cancer at the FOV level.

Dataset

The dataset consisted of Hematoxylin-Eosin (H&E) slides from patients diagnosed with BCC.
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Figure 4-7: Dataset partition

Figure 4-8: Validation methodology

These samples exhibit unique and mixed BCC types, namely superficial, nodular, microno-

dular, morpheaform, and trabecular. They were collected from the Pathology Department of

Universidad Nacional de Colombia between 2009 and 2014 and were randomly selected from

a set of 98 patients previously diagnosed with BCC and for whom slides were available. All

the cases were anonymized. The study cohort was limited to 24 cases, each from a different

patient, owing to the time constraints involving digitizing, manually annotating the samples,

and recording the navigations of 4 different pathology readers. The slides were digitized at

40× using a tri-ocular CARL ZEISS Axiostar plus microscope coupled to a DXM1200 Nikon

color digital camera, controlled by a custom motorized scanner.

Experimental Results

The visual attention map

Four pathologists with at least ten years of professional experience navigated 17 WSIs (70 %

of all the cases) using a customized virtual microscope. Each pathologist was asked to exa-
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mine each WSI until a diagnosis of disease presence or absence had been made. The set

of WSIs used in the present investigation were determined to be of intermediate diagnostic

difficulty, as defined by our dermato-pathologist. The test demanded only a general diag-

nosis and all four pathologists reached the same diagnosis in each case. Overall, the four

pathologists explored mostly the regions with cancer and usually the difference in diagnostic

times was due to the difficulty in finding the cancerous region. Once this region was located,

pathologists frequently focused on local details that supported a refinement of the diagnosis.

This navigation profile was not strongly impacted by the type of carcinoma in each slide; i.e.

whether it was any one of the unique and mixed BCC types, namely superficial, nodular,

micronodular, morpheaform, and trabecular.

Navigation patterns presented by pathologists during diagnosis tasks present a very high

variability, associated to different factors such as the experience level or the complexity of

the visual patterns to identify. Although patterns may be highly variable, previous works

have shown that a group of experts exploring the same histological slide tend to visit similar

locations [62]. Different pathologists navigate the same WSI assuming that the intersection

of their navigations mitigate the noise generated by a single navigation. While four patho-

logists were part of the experiment, results of previous works suggest that including more

pathologists has the potential of improving even more these results [35].

Learning feature relevance

As defined in Section 4.2.2, the likelihood a nucleus is cancerous is given by the linear

combination of its features and the weights of each feature. In order to learn these feature

weights, the least squares method was applied to approximate the likelihood of each nucleus

by employing the visual attention map. This estimation process was performed using the

learning set, i.e., 70 % of all the cases.

The least squares method was used to determine the feature weights; the average mean squa-

re error for the regression fit was 4.88 %. Interestingly, the spatial distribution-based feature

has the highest weight among all the features. This makes intuitive sense given that cancer

is characterized by high cellular proliferation and cluster formation. Figure 4-9 shows some

visual results of images whose relevance values were predicted using the learned weights.

Table 4-1 shows the weights learned for each of the image features considered in this study.

Model validation

From the evaluation set, i.e., 30 % of all the cases (7 patients), 274 FOVs were extracted.

176 FOVs (from 5 patients) were used to train an SVM to predict the presence of cancer

on a patch-by-patch basis while the remaining 98 FOVs (from 2 patients) were used for

independent testing.

The accuracy, area under the receiver operating characteristic curve (ROC), and model

performance were compared against the predictions made by a model trained with explicit

manual annotations.
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Figure 4-9: Examples of the predicted likelihood for representative fields of view. The color

of each nucleus (dot) represents the relative likelihood of each nucleus being

cancerous (a heat map color palette was used, in which blue and red represent

low and high relevance, respectively). Column A presents the original image,

column B shows the likelihood based on low level features, column C displays

the likelihood inferred from navigations of pathologists, and column D illustra-

tes the final likelihood calculated with the presented approach. First row is a

visual field with two structures: a carcinoma nodule (bottom) and epidermis

(top), second row corresponds to a cancerous area, and third row corresponds

to a follicle, a normal/healthy structure.



4.2 Study case: Detection of regions of interest in basal cell carcinoma 95

Feature Weight

Bias factor 0.3623

Spatial distribution 0.2272

Size 0.0231

Mean nuclear Y 0.1142

Mean nuclear U -0.0354

Mean nuclear V -0.0292

Mean Y of the region surrounding a nucleus -0.0624

Mean U of the region surrounding a nucleus -0.1355

Mean V of the region surrounding a nucleus 0.0146

Table 4-1: Learned weights for each visual feature.

Results, presented in Table 2, show that classification performance is slightly higher when

using nuclear features weighted by visual attention information, in contrast to using a model

trained with manual annotations.

Acc. Precision Recall (Sensitivity) F-measure Specificity

Impl. Model 74.49 75.00 86.44 80.31 56.41

Baseline 73.47 77.97 77.97 77.97 66.67

Table 4-2: Performance metrics for identifying the presence of cancer in a set of FOVs.

Figure 4-10 shows the ROC curve corresponding to the SVM. The solid line corresponds to

the ROC curve for implicit model (M im), where the Area Under the Curve (AUC) is equal

to 0.7771. In contrast, the dashed line represents the baseline (M ex) ROC curve with an

AUC=0.7750. Although differences are not meaningful, these results demonstrate that the

presented approach, based on knowledge implicitly extracted from pathologists, can be used

instead of the classical approach that require specific manual annotations.

Discussion

In this work, we introduced a new computational model that takes advantage of low, mid-,

and high-level image information to predict the likelihood of cancer presence in WSIs. Low-

level information was extracted from nuclear visual properties (spatial distribution, area and

color), and high level information was extracted from visual attention maps, generated from

pathologists interactions during diagnostic tasks. Our approach was able to identify RoIs

within the whole slide images that seemed to be critical in predicting the presence of cancer;

areas where the pathologists tend to focus on when making their diagnostic decision. As
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Figure 4-10: ROC curves for correctly identifying cancer in the test set of FOVs using the

integrated and the baseline

previously stated, there is a wide body of evidence that abnormal tissue is characterized

by nuclear patterns which can substantively inform the pathologists decision [135]. These

patterns are interpreted by expert pathologists in ways that cannot easily be captured by

simple models. As a first step, our experiments used nuclear features extracted from H&E

slides of BCC samples to train a classifier to identify whether or not a given FOV contained

cancer. This model was informed using an automated information gathering process that

identified what RoIs in tissue slides a pathologist typically tends to focus on, and used that

information to interpret the significance of nuclei features. While in this work we demonstra-

ted the applicability of the new model in the diagnosis of BCC alone, this approach may be

able to help incorporate expert knowledge into the interpretation of a wide variety of disease

types.

The method was evaluated in terms of its ability to determine if a set of FOVs extracted from

BCC WSIs contained cancerous regions. For this purpose the whole dataset was randomly

split into a learning and a evaluation sets. The learning set was used to estimate the weights of

a multi-linear regression (the least squares method) of visual features, aiming to approximate

the visual attention maps generated by interactions of a pathologist. Subsequently, the WSIs

in the experimentation set were split into 274 FOVs. 176 FOVs (from 5 patients) were used

to train an SVM learning classifier to predict which FOVs were cancerous or noncancerous.

The remaining 98 FOVs (from 2 patients) were employed as the test set.

The SVM yielded an accuracy of 74.49 % and an F-measure of 80.31 %, in turn representing

an improvement of 1.02 % and 2.34 % over a baseline representation using a model trained
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with manual annotations. The ROC curve of this SVM classifier yielded an AUC=0.7714 for

the integrated model and AUC=0.7505 for the baseline.

Our approach aims to identify diagnostically relevant information from the WSI by explicitly

modeling and integrating attributes pertaining to the interaction of an expert with a WSI.

The method may potentially be prone to different types of noise. An example may be where

the cancer region is too small, with many healthy cells surrounding a region of interest, e.g.

micronodular carcinoma. The results presented herein suggest that even if different sub-types

of skin cancer manifest on the slides, at the level of the cell, they may still be similar. The

model aims to estimate the primary relationships in the feature space and uses these learned

relationships to then predict the tissue class. In this particular case, since some data might

not be the most çlass representative”, linear regression was performed on about 830,000

different nuclei from 17 different WSIs. Our results suggest that the use of a large number

of training exemplars might help to offset concerns regarding image noise.

Experimental results appear to suggest the following two issues. First, handcrafted nuclear

features (spatial distribution, area, and color) were found to be independently discriminating

of BCC and benign regions. Second, the presented approach, using implicit knowledge from

pathologists, has a slightly better performance than the very same model but trained using

manual annotations of individual nuclei. Consequently, this approach shows a high potential

of being used in a real scenarios since experts are not asked to manually annotate the

relevant structures, an obviously time consuming and prone to error task. Therefore, relevant

information can be passively collected during pathologists’ routine tasks (e.g. performing a

diagnosis or teaching) for posterior analysis.

While visual saliency is a useful clue for focusing on relevant information, these maps tend

to incorrectly suppress targets and pop-out distractors [97]. Past experience suggests that

most models cannot replicate the ability of expert knowledge to describe entire populations

of nuclei [135]. Different experiments [158, 45] have shown that when the visual process is

task-driven, identification of RoIs requires complex interaction between two complementary

sources of information. These include the bottom-up flow of information coming from low

level image features such as color, edges, intensity or texture, and the top-down flow of expert

knowledge, which establishes relationships between experience and a particular application

[62]. In this work, visual information coming from nuclear handcrafted features was combined

with high level information obtained from visual attention maps. These maps captured the

focus and visual attention of expert pathologists during a focused cancer identification task,

demonstrating that higher-level understanding can complement and enrich the prediction

possible by low-level image features.

In a recent work [17], authors presented an approach for breast histopathology image segmen-

tation in which an image is represented as a graph using an Euclidean spatio-colour-texture

distance based similarity. This work utilized similar mathematical structures by introducing

a graph-based model that assigns higher likelihood to clustered nodes and area-related ho-

mogeneous neighborhoods. Experimental results showed that these features were useful for
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a tasks such as cancer detection. However, these results also indicate that this information

is enriched by incorporating higher level information, pertaining to the regions a pathologist

tends to focus on while rendering a diagnosis, and not necessarily the rationale behind the

diagnosis itself.

Our work did however have its limitations. A major limitation of the presented approach

was the size of the dataset. Since this work required the digitization and manual annotation

of WSIs, and the capture of diagnostic navigation paths of 4 different pathologists, it was

necessary to limit the number of images due to the limited time availability of our experts.

Another limitation of this work is that we only focused on selective features of nuclear

morphology and architecture while ignoring potential value that could be derived from sub-

visual features such as from the stroma [146]. Interestingly, pathologists do not currently

spend a great deal of time interrogating stromal architecture, but recent results suggest that

tumor adjacent normal appearing regions might contain substantial prognostic information

[95]. Future work will include validation of our approach on a larger independent test set,

evaluation of our approach on other study cases apart from BCC, as well as the consideration

of new visual and architectural nuclear features.

4.3. Products

Journal papers

Germán Corredor, Jon Whitney, Viviana Arias, Anant Madabhushi, and Eduardo Ro-

mero. Training a cell level classifier for detecting basal cell carcinoma by combining

human visual attention maps with low level handcrafted features. Journal of Medical

Imaging, vol 4(2), 2017

Conference papers

Germán Corredor and Eduardo Romero. Learning Histopathological Regions of Interest

by fusing bottom-up and top-down information. Proc. of the International Conference

on Image Processing (ICIP) 2015, Quebec city - Canada, 2015

Daniel Santiago, Germán Corredor, and Eduardo Romero. A sparse representation of

the pathologist’s interaction with whole slide images to improve the assigned relevance of

regions of interest. Proc. of the 13th International Symposium on Medical Information

Processing and Analysis, San Andres - Colombia, 2017

Indirect products

Lina Guzmán, Germán Corredor, and Eduardo Romero. A Radiology Image Retrieval

System based on User Preferences. Proceedings of the 12th International Symposium
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on Medical Information Processing and Analysis, Tandil - Argentina, 2016



5 Conclusions

In general, we consider this thesis has presented two breakthrough contributions:

As far as we know, we introduced the first attempt to implicitly include the expert in

the learning process involved in the automatic detection of regions of interest in his-

topahological images. Previous works [127] have included participation of the expert;

however, they require an active manual interaction that is not similar to what patholo-

gists do in daily routine. In contrast, in the presented approach, high-level knowledge

is passively extracted from interactions (navigations) of pathologists with the WSI;

then, it is used to determine the relative importance of low- and mid-level nuclear fea-

tures for predicting the likelihood that a nucleus in a WSI is cancerous. Experimental

results showed this approach has a comparable performance with an approach based

on explicit manual annotations.

Modern machine learning algorithms are doing a great job at identifying patterns in

histopathology images; however, some of them (e.g., deep learning approaches) depend

on large quantities of manually annotated data. Manual annotation is an unrealistic

task because it must be performed by experts (to guarantee the quality of information),

who hardly have time for such kind of activities. Looking for alternative methods for

capturing high-level information is still an open question.

We understand the presented approach is still noisy and requires a way more exten-

sive experimentation; nonetheless, it has a lot of potential to be used in real clinical

scenarios due to the speed and ease with which it can absorb higher-level information

from routine tasks of physicians and implement that knowledge to generate objective

diagnosis.

We explored the prognostic potential of tumor-infiltrating lymphocytes for patients

with non-small cell lung cancer. Although several works[7, 20, 24] have demonstra-

ted a high correlation between the infiltration grade of lymphocytes and the patient

prognosis (response to therapy, survival, recurrence, etc.), this information is not being

used in clinical practice because of a lack of standardized methodologies and objective

strategies to quantify the infiltration. In the presented work, we found out that spa-

tial arrangement of nuclei lymphocytes and interplay between immune and cancerous

cells show a high correlation with disease recurrence in early-stage non-small cell lung

cancer. Predicting whether or not a patient will have recurrence might guide clinicians
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for better decision making and treatment planning. In addition, this would allow clini-

cians for identifying patients with higher risk disease who would benefit from adjuvant

chemotherapy. It is worth to say that, although this work was focused on lung cancer,

lymphocytes have proven to have a prognostic value for different kinds of cancers, so

application to other solid cancer types is another possible extension.

In addition to such mentioned contributions, the presented work also has explored other

approaches with a high potential. For example, we presented an adaptable strategy oriented

to ease the visualization of histopathology images. This approach effectively exploits and

extends the granularity of the JPEG2000 standard and integrates it with different strate-

gies to achieve a lossless, loosely-coupled, decoder, and platform independent implementa-

tion, adaptable to any interaction model. As a result of this work, a web-based tool was

developed. It allows users to interact with the content in different ways: image visualiza-

tion and navigation, querying clinical data and annotations, visualization of the diagnostic

paths followed by expert pathologists, etc. Currently, this application is publicly available

(http://cimalab.unal.edu.co/microscopio/) and contains more than 250 histology samples

(about 40 % of them have annotations and clinical data), which have been included within

the last months. Although the application is still in development, it has a great educative

potential since it provides high-quality and easy-to-share material for physicians and learners.

Similarly, in this work we also explored a strategy for detection and grading of ductal carci-

noma in situ. Although DCIS is not life-threatening, people who suffer it are at a high risk of

developing invasive carcinoma, so they may require additional surveillance. Unfortunately,

detection and grading of DCIS is challenging because of the high variability of the lesions; a

low agreement among experts have been reported [48]. In this work, we exploited information

of nuclear features at different scales to detect and grade DCIS. This kind of approach might

provide pathologists with objective and quantitative tools that facilitate decision making

and treatment planning.

In summary, this thesis has presented a whole pipeline for pathology. This pipeline includes

strategies to provide pathologists access to visual content and to extract diagnostic and

prognostic information from such content. A very important point of this pipeline is that it

includes the expert as a part of the learning process.

Although this approach has a great potential, still there are different things to explore

and improve. Future work will include enhancing the web application for visualization of

histopathology images by making it more robust and able to provide access to many more

simultaneous users. We plan to expand its functionality, so it will include user management,

more educative material, tools for evaluation, and an analytics tool displaying objective

metrics and suggestions. In collaboration with the Pathology Department of Universidad

Nacional de Colombia, we plan to add more cases including clinical data and annotations.

Furthermore, we understand that the number of samples used in the different experiments

along the thesis is relatively small in terms of the complexity of the addressed problem.

For this reason, using the web application, we plan to record the interactions of many more
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experts. With the new added cases and the high-level information obtained from annotations

and recorded navigations, we could extend the experimentation and propose better predictive

models.



Bibliography

[1] M.D. Adams and F. Kossentini. Jasper: A software-based jpeg-2000 codec implemen-

tation. http://www.ece.uvic.ca/ frodo/jasper/.

[2] Shaimaa Al-Janabi, André Huisman, Aryan Vink, Roos J. Leguit, G. Johan A. Offer-

haus, Fiebo J.W. ten Kate, and Paul J. van Diest. Whole slide images for primary

diagnostics of gastrointestinal tract pathology: a feasibility study. Human Pathology,

43(5):702 – 707, 2012.
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pervised visual model for finding regions of interest in basal cell carcinoma images.

Diagnostic Pathology, 6(1):26, 2011.

[69] Ricardo Gutierrez and Eduardo Romero. A visual model approach to extract regions of

interest in microscopical images of basal cell carcinoma. Diagnostic Pathology, 8(Suppl

1):S36, 2013.

[70] M. Hadwiger, J. Beyer, Won-Ki Jeong, and H. Pfister. Interactive volume explora-

tion of petascale microscopy data streams using a visualization-driven virtual memory

approach. Visualization and Computer Graphics, IEEE Transactions on, 18(12):2285–

2294, Dec 2012.



110 Bibliography

[71] Jonathan Harel, Christof Koch, and Pietro Perona. Graph-based visual saliency. In

Advances in Neural Information Processing Systems 19, pages 545–552. MIT Press,

2007.

[72] Institute for Innovations in Medical Education. NYU Virtual Microscope.

http://education.med.nyu.edu/virtualmicroscope.

[73] Intel Corp. Performance tools for software developers - application notes

- intel ipp jpeg2000 and jasper in ksquirrel. http://software.intel.com/en-

us/articles/performance-tools-for-software-developers-application-notes-intel-ipp-

jpeg2000-and-jasper-in-ksquirrel.

[74] M. Iregui, P. Chevalier, and B. Macq. Optimal caching mechanisms for jpeg2000

communications. EUSIPCO - European Signal Processing Conference, 3:201–204, 2002.
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and Joann G. Elmore. Localization of diagnostically relevant regions of interest in

whole slide images: a comparative study. Journal of digital imaging, 29(4):496–506,

August 2016.

[114] Microsoft Corporation. Deep zoom. http://www.microsoft.com/silverlight/deep-

zoom/.

[115] Steven Miller. The Method of Least Squares. Mathematics Department Brown Univer-

sity,, 2006.



114 Bibliography

[116] X. Moles-Lopez, O. Debeir, I. Salmon, and C. Decaestecker. Whole slide imaging

and analysis for biomarker evaluation in digital pathology, pages 776–787. Formatex

Research Center, 2014.

[117] Chassin MR, D H Kosecoff J FAU Solomon, R H Solomon DH FAU Brook, and Brook

RH. How coronary angiography is used. clinical determinants of appropriateness.

(0098-7484 (Linking)).

[118] Henning Müller, Nicolas Michoux, David Bandon, and Antoine Geissbuhler. A review

of content-based image retrieval systems in medical applications-clinical benefits and

future directions. International journal of medical informatics, 73(1):1–23, 2004.

[119] Dilip B Nagarkar, Ezgi Mercan, Donald L Weaver, Tad T Brunye, Patricia A Carney,

Mara H Rendi, Andrew H Beck, Linda G Frederick, Paul D Shapiro, and Joann G

Elmore. Region of interest identification and diagnostic agreement in breast pathology.

Modern Pathology, 29:1004–1011, 2016.

[120] M.T. Nkosi and F. Mekuria. Cloud computing for enhanced mobile health applica-

tions. In Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second

International Conference on, pages 629–633, Nov 2010.

[121] Rita Noumeir and Jean François Pambrun. Using jpeg 2000 interactive protocol to

stream a large image or a large image set. J Digit Imaging, 24(5):833–843, 2011.

[122] G. Orchard and B. Nation. Histopathology. Fundamentals of Biomedical Science. OUP

Oxford, 2011.

[123] Liron Pantanowitz, Janusz Szymas, Yukako Yagi, and David Wilbur. Whole slide

imaging for educational purposes. Journal of Pathology Informatics, 3(1):46, 2012.

[124] Liron Pantanowitz, Paul Valenstein, Andrew Evans, Keith Kaplan, John Pfeifer, David.

Wilbur, Laura Collins, and Terence Colgan. Review of the current state of whole slide

imaging in pathology. Journal of Pathology Informatics, 2(1):36, 2011.

[125] M. Peikari, M. J. Gangeh, J. Zubovits, G. Clarke, and A. L. Martel. Triaging diagnos-

tically relevant regions from pathology whole slides of breast cancer: A texture based

approach. IEEE Transactions on Medical Imaging, 35(1):307–315, Jan 2016.

[126] Hanchuan Peng, Fuhui Long, and C. Ding. Feature selection based on mutual informa-

tion criteria of max-dependency, max-relevance,, and min-redundancy. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 27(8):1226–1238, Aug 2005.
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[135] Lucia Roa-Peña, Francisco Gómez, and Eduardo Romero. An experimental study of

pathologist’s navigation patterns in virtual microscopy. Diagnostic Pathology, 5(1):71,

2010.

[136] H. S. Robins, N. G. Ericson, J. Guenthoer, K. C. O’Briant, M. Tewari, C. W.Drescher,

and J. H. Bielas. Digital quantification of tumor infiltrating lymphocytes. Science

translational medicine, 5(214), 2013.
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