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Resumen—La administración de variabilidad en una línea de 
producto tiene dos retos fundamentales: (1) la expresión de las 
características comunes y variables de la línea, y (2) la 
construcción de aplicaciones que incluyan las características 
comunes, y un subconjunto de las características variables. En 
este artículo presentamos una propuesta para administrar la 
variabilidad durante el proceso de construcción de Software 
Product Lines (SPLs) usando un enfoque de construcción de 
líneas de producto basado en modelos (MD-SPL). Para esto 
separamos conceptos relacionados con SPLs en diferentes 
dominios y construimos como activos de la línea modelos de 
rasgos, metamodelos y tres tipos de reglas de transformación 
para transformar modelos de un dominio origen a diferentes 
(variables) modelos en un dominio destino. Las reglas nos 
permiten generar incrementalmente las aplicaciones de acuerdo 
con una selección de rasgos realizada para cada dominio destino. 
Así, logramos ampliar el alcance de las SPLs, separar los 
dominios de manera que se disminuya la complejidad de crear 
aplicaciones con características variables, y generar aplicaciones 
automáticamente usando reglas de transformación. Para ilustrar 
la solución construimos una MD-SPL donde los productos 
corresponden a ejercicios pedagógicos para la enseñanza de 
programación de computadores. 
 

Palabras Clave—Model Driven Architecture, Variabilidad, 
Lineas de Producto de Software, Transformaciones de Modelos. 

 
Abstract—Variability management in Software Product Lines 

(SPLs) has two fundamental challenges: (1) the expression of 
common and variable features, and (2) the development of 
applications employing properly such features. In this paper, we 
present a Software Product Line based on Models (MD-SPL). We 
separate the concepts related to SPLs in different domains and 
we build core assets like feature models, metamodels, and three 
different types of transformation rules to transform models from 
a source domain to different (variable) models into a target 
domain.  

By using transformation rules, we are able to generate 
applications in an incremental process, guided by a set of 
features selected for each target domain. Thus, we manage to 
extend the SPLs scope, separate the domains diminishing the 
complexity to create applications with variable characteristics, 
and automatically generate applications using transformation 
rules. In order to illustrate our approach, we have built a MD-
SPL where the products are small applications used in 
programming computers teaching. 
 

Keywords—Model Driven Architecture, Variability, Software 
Product Lines, Model Transformation. 

I. INTRODUCTION 
he latest advances in information technologies, as well as, 
the constant change in business requirements have 

transformed software development into a complex task. To 
face this reality, diverse proposals have arisen, always aiming 
at producing higher software quality and better productivity of 
development teams. The principle of these proposals is the 
reusability of software using compositional and/or generative 
approaches [1]. The compositional approaches deal with 
construction of systems by using the join of components that 
are in a common repository. The generative approaches focus 
on the reusability of processes and components. 

To reuse components to develop applications requires a 
product family development approach, instead of an 
independent applications construction approach [2]. A 
software product family (SPL) is defined as "a set of software 
systems that satisfies the specific needs for a particular 
segment of the market"  [3]. In a SPLs development approach, 
we can create new products by reusing a set of components 
called core assets. The main core asset of a SPL is its 
architecture. Other kinds of assets include requirement 
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specifications, design models, or software components, among 
others. Core assets are created during the domain engineering 
process whereas applications are generated from core assets 
during the engineering application process [4, 5]. 

Although products of the same line satisfy specific needs in 
a given domain, they differ in the set of functionalities for 
each particular implementation. Thus, all the products of a 
SPL provide a set of common functionalities, but each product 
differs from the others in the set of optional (variable) 
functionalities that it implements. The functional difference 
between products of a line is known as the SPL variability [5]. 

Variability management in a SPL can be defined as the set 
of activities and assets needed to: (1) express common and 
variable characteristics of a SPL, and (2) construct (compose 
and/or generate) applications which include common 
characteristics, and a subset of possible variable 
characteristics. In a SPL, the products characteristics are 
directly related with functionality that these products provide. 

Currently, feature models are a standard de facto used as a 
mechanism to support variability management. Feature 
models are core assets to express common and variable 
characteristics of a product family. In feature models, 
variability is represented with features that can be selected in 
different ways for each product [6]. Thus, starting from a 
selection of a set of features, and using the core assets, 
applications with common are variable characteristics are 
constructed. 

On the other hand, an approach of generative reusability is 
the Model Driven Architecture (MDA) [7]. Unlike other 
paradigms that use models just like representation, 
documentation and communication elements, in MDA models 
play a key role and are first-class elements in application 
development. The central idea of MDA is to construct 
business domain models, independently of inherent 
characteristics of technological platforms. Domain models are 
then transformed into new models that include characteristics 
of a specific technological platform through transformation 
rules.  

Models are created using concepts defined in a metamodel. 
A metamodel represents the concepts, relationships, and 
semantics of a domain. Hence, metamodels are called also 
domain models [8]. The relation between a model and its 
metamodel is defined as a conformity relation, that is, a model 
conforms to its metamodel [9]. 

Transformation rules are defined using metamodel 
concepts. A typical transformation rule takes the source model 
elements, which conform to a source metamodel concept, and 
transforms them into target model elements, that conform to 
different target metamodel concepts [10]. 

The separation of domains and the generative nature of 
MDA, make it an adequate approach to create SPLs. The basic 
idea is to create a product of a family by starting from an 
initial model, and using several automatic transformations 
until obtaining a final product. 

Results of recent investigations have shown how the 
mixture of MDA and SPLs (MD-SPL) is an approach 

(compositional and generative) that makes possible the 
definition of  a SPLs creation process [8, 11]. Nevertheless, 
variability management in a MD-SPL approach remains as a 
current area of research. 

In this paper, we present a proposal to manage variability 
during the SPLs construction process, using a MD-SPL 
approach. For this, we have separated the concepts related to a 
product line in different domains: (1) the business logic 
domain, (2) the architecture domain, and the technological 
platform domain. This separation allows us to manage product 
lines variability in a separated manner for each domain. 

We create feature models for each domain to express the 
SPL common and variable elements. We also define 
metamodels for each domain. These metamodels are used to 
construct a wide set of variable models in each domain, and 
thus we can express the specific domain variability. In 
addition to the metamodels, we create transformation rules 
according to the MDA approach.  

Typical transformation rules are created at the metamodel 
level (M2), which implies that one transformation applied to 
the same source model always generates the same target 
model. The above implies that in order to create applications 
with variable characteristics, we need ways to transform the 
same model into different target models. In our approach, we 
successfully achieved this by guiding each transformation 
with the preferences of the user through a set of variable 
characteristics. 

We define three types of transformation rules: (1) base 
rules, (2) control rules, and (3) specific rules. We use base 
rules to generate the SPLs commonalities. Control rules to 
specify which specific rules will be executed according to the 
preferences of the user. Finally, specific rules generate 
different variable features. Using specific rules, we are able to 
generate applications with different functionality according to 
the features selection in the SPL applications creation process 
(application engineering). Thus, using metamodels, 
transformation rules, and feature models, we achieve to extend 
the scope of a SPL, and to separate the domains diminishing 
the complexity of creating applications with variable 
characteristics in each domain. However, the applications that 
we generate are not complete. Since some functional 
requirements are not generated as part of the automatic 
transformation processes, we manually complete the 
applications during the engineering process. We will illustrate 
this proposal with a SPL for the Cupi2 project [12]. For the 
construction process we used GMF [13] like modeling 
environment, AMW [14] to make weaving of models, and 
ATL [15] to transform models. 

The paper is organized as follows. In Section 2, we present 
the application context that will allow us to illustrate the 
proposal on a concrete example. In Section 3 and 4, we 
present the problems and challenges of variability 
management in MD-SPLs as well as the solution proposed to 
solve it. In section 5, we briefly explained our 
implementation. Section 6 presents a comparison of our work 
with some related works, and finally we present the 
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conclusions and we outline future works.  

II. APPLICATION CONTEXT 
In order to validate our approach we have implemented a 

SPL for the Cupi2 project [12]. Cupi2 is part of a series of 
efforts from the software construction group of The 
University of Los Andes (Colombia) to find new ways to 
teach/learn computer programming. 

In Cupi2, complete examples and exercises are used to 
illustrate different topics, instead of just little snippets of code. 
Each example/exercise includes a graphical interface, a set of 
requirements, a set of unit tests, java code, and 
documentation. There are 18 levels in total. Each level adds 
new concepts to the previous ones. Our SPL generates 
examples for level 7. In this level, among other topics, we deal 
with ordering and searching algorithms in collections. 

A. Cupi2 examples commonalities 
All the Cupi2 examples are stand-alone applications 

without complex non-functional requirements; they are 
developed using the same technological platform, in this case 
Java. All the examples are structured by two components: the 
kernel and the user interface. The kernel component 
implements the concepts of business logic. The user interface 
component implements information visualization and 
interaction between users and kernel components. 

 

 
Figure 1.  Music Store and Auto Show models 

 
1) Kernel commonalities: Structures of aggregation can 

represent and serve to manipulate the kernel concepts and 
their relationships. In an aggregation structure, there is always 
a main element that groups the other elements of the kernel. 
Figures 1a and 1b present business models for two different 
examples: a Music Store and an Auto Show. In the Music 
Store model, shown in Figure 1a, a MusicStore assembles a 
set of Discs and each Disc assembles a set of Songs. The Auto 
Show model of Figure 1b shows the AutoShow assembling a 
set of Automobiles. 

All the kernel elements have a set of properties and are 
related to other elements of the kernel. Finally, each kernel 
element is responsible of persisting its own information 

2) User interface component commonalities: To build a 

graphical user interface (GUI), Cupi2 applications employ a 
set of elements like panels, lists, labels, images, and radio 
buttons, among others. All the GUI elements are grouped in 
views of different types. There are two types of views that are 
mandatory for any Cupi2 application: (1) the MainView, and 
(2) the ExtensionView. The MainView is in charge of 
communicating the kernel and the GUI by grouping all the 
views. The ExtensionView contains several buttons that 
students can use to add new functionality to applications as 
part of the exercise.  

B. Cupi2 Examples Variability 
At the same time that we identify commonalities, we 

identify variability as well. The variability in Cupi2 examples 
is related to the algorithms that manage the aggregation 
structures in the kernel component, and the presentation of the 
GUI. 

1) Kernel variability: The kernel component has variable 
elements related to data structures, algorithms, and services to 
persist the different assemblies. The data structures that 
represent the aggregation structures can be containers of fix or 
variable size, or can be linear structures such as simple lists or 
double-linked lists. Each type of data structure can be 
manipulated using different algorithms; for example, it is 
possible to manipulate a data structure with algorithms to 
make insertion of elements, to search a particular element, or 
to order the set of elements, among other services. 

Different implementations can be used to persist kernel 
elements information; for example text files with a special 
structure or object serialization 

2) User interface variability: There is not a single way to 
represent the kernel elements in terms of GUI elements. The 
user can select one or several types of views to represent the 
kernel elements. Such views are: main view, extension view, 
set view, search view, information view, and aggregation 
view. 

a) Main View: The MainView contains the other views 
and is responsible for the communication between the 
kernel and the user interface. 
 

 
Figure 2.  MusicStore GUI 
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b)  Extension View:The ExtensionView has a set of 
buttons. Student may associate functionalities to each 
button. 
c) Set View: The SetView presents a set of grouping 
elements using components such as lists or tables. 

d)  Search View: The SearchView is used to introduce the 
parameters for a search.  

e) Information View: The InformationView is used to 
show particular information associated to attributes of the 
kernel, this information may include images. 
f)  Aggregation View: The AggregationView is used to 
enter the information of elements that are being created. 

In Figure 2, we present a possible GUI configuration with 
four different types of views for the Music Store example. 

III. DOMAIN ENGINEERING PROCESS  
The domain engineering process involves the creation of 

core assets. In this section, we introduce the core assets used 
in the Cupi2 SPL. 

We group concepts in different domains in order to manage 
variability. These domains are the business logic, the 
architecture domain, and the technological platform domain. 
Our strategy follows the MDA approach and it is based on the 
automatic transformation of models until obtaining executable 
applications. We start from a business logic model, we 
transform it into an architectural model, after that we refine it 
into a model in the technological platform domain and finally 
we generate source code from it. To achieve this, we build as 
core assets (1) metamodels for each domain, (2) feature 
models for each target domain, (3) weaving models and three 
types of transformation rules. Figure 3 presents the domain-
engineering process. 
 

 
Figure 3.  Domain engineering process 

A. Feature Models  
Feature models are a standard de facto used to represent 

common and different characteristics of members from a 
product line [16]. The features can be mandatory, optional, or 
alternative. Mandatory features are common to every member 
of the software product line; some members require optional 
features. Two or more features are alternatives to each other, 

when the user can choose only one of them. 
A feature diagram is a tree which nodes represent features 

[2]. There are two kinds of nodes: grouped nodes and solitary 
nodes. A solitary node is not contained in a grouped node. 
Solitary nodes represent mandatory or optional features. 
Grouped nodes group mandatory and optional features, or 
alternative features. 

In our approach, feature models describe common and 
different characteristics of applications in target domains. 
Cupi2 SPL has two target domains: architecture and 
technological domain. We develop a features model for each 
domain.  

Figure 4 presents a subset of features for the architecture 
domain. The model represents the user interface 
characteristics (section 2). The GUI node groups a MainView 
(mandatory feature) and SetView, AddView and 
InformationView (optional features). 

 

 
Figure 4.  Cupi2 architecture features 

 
Figure 5 presents a subset of features for the technological 

domain (Java). This model has a Container node, which 
groups the ArrayList and Vector nodes (alternative features). 

 

 
Figure 5.  Cupi2 technological features 

 

 
Figure 6.  Cupi2 features model 

 
Figure 6 presents the relationship between architectural and 

technological feature models. The relationship between 
features nodes implies that the nodes selected in the 
architectural feature model constrain the selection the user can 



Variability Management in a Model-Driven Software Product Line – Garcés, et al 

 
 

7

make in the platform feature model. For example, the 
selection of JCombobox or JList features can be done only if 
the SetView feature has been selected before. 

B. Metamodels  
As stated in section 1, in our approach metamodels 

represent the concepts, relationships, and semantics of the 
domain of applications.  

In a similar way as the feature models express common and 
variable characteristics of a set of applications, metamodels 
also allow the expression of such characteristics. This is 
achieved by abstracting the domain concepts, their properties, 
and their relationships. Each model that conforms to a 
metamodel represents a particular instance of the domain, with 
a set of specific characteristics. 

To create the Cupi2 project SPL, we have designed three 
different metamodels as part of the core assets. These 
metamodels refer to business logic, architecture, and 
technological platform. Each metamodel includes abstract 
concepts of a particular domain. Thus, business metamodel 
only includes the essential concepts of the problem to solve in 
the Cupi2 examples. Architecture metamodel includes refined 
concepts of the business metamodel, along with the concepts 
of the architecture including the user interface. Finally, the 
technological platform metamodel includes refined concepts 
of the architecture metamodel along with its own concepts of 
the language such as for example packages, classes, methods 
and attributes. 

1) Business logic metamodel: The business logic 
metamodel presented in Figure 7 represents abstract concepts 
from the Cupi2 examples of levels 7 and 8. In general terms, 
these examples describe a set of elements related to each other 
through aggregation structures. For instance, in the Auto show 
example, we say that an AutoShow element groups a set of 
Automobiles (Figure 8). In addition to that, each element may 
have a set of attributes that characterize it. For example, it is 
possible that the Automobile element has an attribute that represents 
the model; this attribute can be used later to create a service that 
orders all the instances of Automobile per model. 

 
Figure 7.  Business logic metamodel 

 
Figure 7 presents the concepts Container and Element, and 

the aggregation relationship between them. The 

AttributeCupi2 is also presented, as well as all the attributes 
that characterize properly this business concept according to 
the requirements of the applications being modeled. For 
example, the attribute isComparable in the meta-class 
AttributeCupi2, indicates that such element could be 
compared to other elements. This information is used in the 
transformation process and may lead to the generation of 
algorithms to order a set of AttributeCupi2 instances or to 
look for a single AttributeCupi2 element. 

 
Figure 8. Auto show business logic model 

 
Models that conform to the business metamodel, use its 

concepts to express the features of a single instance of the 
domain they represent. In Figure 8a an example of a model for 
the Auto Show example is shown. In this model representation 
as well as in the rest of models in the reminder of this paper, 
we use stereotypes as <<Container>>, <<Simple>>, 
<<Attribute>> and <<AttributeCupi2>> to indicate the 
“conforms to” relationship between the elements of the model 
and its counterpart in the metamodel. The AutoShow element 
conforms to Container, which, according to the metamodel 
definition, indicates that it may group a set of other Container 
or Simple elements. 

In this example, the grouped element is the Automobile. 
Each Automobile contains a set of Attribute and 
AttributeCupi2 elements. Figure 8b presents a detailed view 
of each of these attributes. 

2) Architecture Metamodel: The architecture metamodel is 
related to design concepts of Cupi2 examples; this metamodel 
does not include details about implementation on a specific 
technological platform. To simplify its representation, we 
have divided it in two different metamodels. The first one 
includes the concepts related to the business logic and the 
second one deals with the concepts of graphic user interface. 
The business logic architecture metamodel introduces the 
concept of Service. Services are necessary to manipulate the 
data structures of the examples. On the other hand, the graphic 
user interface metamodel includes interaction concepts and 
elements that will be part of the graphical user interface of the 
generated application. A model that conforms to the 
architecture metamodel has all the structural and graphical 
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elements of a real application. From this point, it should be 
possible to specify a technological platform and generate the 
source code.  

In Figure 9, we present a simplified version of the user 
interface architecture metamodel. This metamodel aims for the 
generalization of concepts found in the different view types 
described in section 2. The main element refers to View. A 
View can simultaneously have a set of Components and a set 
of Services. The Components are specialized in two types, 
Interaction and Visualization. The Interaction Components 
are used in a GUI to call some type of functionality. Some 
examples of Interaction Components can be buttons, lists, or 
drop-down lists. On the other hand, the Visualization Components 
are used to show information to the user. Some examples of these 
Components are text labels, and message boxes. 

 
Figure 9. GUI architecture metamodel 

 
Figure 10 presents a model that conforms to the GUI 

architecture metamodel. In the same way as in figure 8, we 
use stereotypes to show the relation of conformity of the 
elements of the model with the metamodel. 

 

 
Figure 10.  Auto show GUI model 

In this case there are four different elements conform to the 
View element of the metamodel. Each View has a set of 
components according to its specific responsibilities. The 
AutoShowMainView element is the main view and contains all 
other views. The AutoSetView is in charge of showing a group 
of automobiles contained by the data structure of the 
application. This view has an Interaction Component of type 
List to show the set of automobiles. The orderByModel button 
is associated with the services of ordering the list of 
automobiles. The AutoSearchView offers the possibility of 

look for a automobile using the attribute name. Finally, the 
AutoInformationView has a set of Label elements to visualize 
the automobile attributes. 

C. Weaving model at domain level and transformations rules  
Our strategy uses automatic transformation of models until 

obtaining executable applications.  
Transformations rules are defined in terms of metamodel 

concepts. It implies that a same source model is always 
transformed into the same target model. Since we need to 
transform the same metamodel concept into different target 
concepts according to the features related, we need to create 
different rules. There are three types of rules: (1) base rules, 
(2) control rules, and (3) specific rules. In order to guide the 
creation of these transformation rules, we create weaving 
model at domain level. 

Weaving models link metamodel concepts to feature nodes. 
Each link means that one source metamodel concept can be 
transformed to obtain the target feature. Using the weaving 
models at domain level, we can identify (1) the metamodel 
concepts that have to be always transformed into the same 
target feature, and, (2) the metamodel concepts that can be 
transformed into different (variable) target features. For the 
first case, we create base rules; and for the second, we create 
control and specific rules. Thus, the base rules allow us for the 
generation of the commonalities of the product line, and the 
control and specific rules for the variability. 

Figure 11 presents a weaving model between the business 
logic metamodel and the feature model of the architecture 
domain. In Figure 11, the link between Container and the 
mandatory feature MainView indicates that a main view is 
always created for Container elements (isMain == True). For 
this connection, we create a base rule. The links between 
Element, and the Serialization and Files feature nodes indicate 
that an element of type Element can implement its persistence 
using Files or Serialization methods. For these connections, we 
created one control rule and two specific rules. 

 

 
Figure 11. Weaving model between the business logic metamodel and the 

architecture features 
 

We implement the base rules using declarative 
programming, and the specific rules using imperative 
programming. The control rules are implemented in a mixed 
way, it means, they have a declarative section and an 
imperative one. 

Listing 1 presents an example for each type of rule. The 
mainView is a base rule. Line 3 shows the source pattern and 
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the line 5 shows the target pattern. The mainView rule 
transforms the elements conform to Container, without 
container, into View. For example, for the Music store 
application, a View is created from the MusicStore element 
(conform to Container). For the Auto Show application, a 
View is created from the AutoShow element.  

List 1.  Base, control, and specific transformation rules 
 
The setView, in line 7, is a control rule. The declarative 

section is in the lines 8 to 13 and the imperative section is in 
the lines 14-16. The setView rule searches in the weaving 
model the elements that have the feature SetView associated 
(line 9). For those elements, a View is created (line 13) and 
the addComponent imperative rule is called (line 15). The 
addComponent rule creates concepts associated to the created 
View giving the characteristics needed for a SetView. The 
addComponent rule is a specific rule, which has the 
imperative sentences in the lines 23-25. When this rule is 
called from the control rule, a Visualization component is 
created (lines 19-22), the parameter type is assigned to this 
component, in this case List (line 21), and the created 
component is added to the previous created View (line 24). 

IV. APPLICATION ENGINEERING   
Application engineering process generates a specific product 
from the core assets [4, 5]. 

As we said previously, our strategy uses an incremental 
transformation of models until obtaining applications. Thus, 
we start from a business logic model, we transform it into an 
architectural model, after that we transform it into a model in 
the technological platform domain and finally we generate 
source code from it. Figure 12 presents the application 
engineering process. 
A. Business logic model 

The first step is to create the business logic model. Business 
logic model represents the problem description. Figure 8a 

shows a business logic model. 
B. Weaving model at application level  

User selects the features that he wants before the execution 
of each transformation. He makes the selection by associating 
(source) model elements and (target) feature nodes. We use 
weaving model to create the associations.  

Weaving model at domain level constrains weaving model 
at application level. For example, the weaving model (showed 
in Figure 11) contains a link between Element, and the  
Serialization and Files feature nodes. Thus, weaving model at 
application level can contain a link between an element 
(conforms to Element) and Serialization or Files feature. 
Figure 13 presents a weaving model at application level. 

Figure 13 shows links between business model elements 
and architecture features. For instance, one link associates 
Disc element and SetView feature. It generates a SetView 
which groups discs by using a list. Another link associates 
MusicStore element and Serialization feature. Link between 
MusicStore element and Files feature is not possible because 
Serialization and Files are alternative features.  

User should create two weaving models to generate a Cupi2 
example. First, he weaves business model elements and 
architecture features. Later, he weaves architecture model 
elements and technological features. 

 

Fi 
Figure 12. Weaving model between business model and architecture features. 

C. Transformation execution 
After the weaving at application level, a transformation is 

executed.  
A transformation has two inputs (source model and 

weaving model) and one output (target model). 
Transformation applies base, control, or specific rules. For 
example, for Music store application, business to architecture 
transformation receives the business model (showed in Figure 
1a) and weaving model (showed in Figure 13). When 
transformation is executed, mainView and setView rules are 
executed too; mainView is always executed, setView rule is 
executed because we weave Disc (conforms to Element) and 
setView feature.  



Revista Avances en Sistemas e Informática, Vol.4 No. 2, Septiembre de 2007 
Edición Especial: II  Congreso Colombiano de Computación - CCC 2007 

10 

V. IMPLEMENTATION 
We used feature models, metamodels, and transformation 

rules like core assets in the SPL application engineering 
process to create specific example applications such as the 
Music store, the AutoShow, and others. We created feature 
models for the architecture domain and the technological 
platform. We created business logic, architecture, and 
technological platform metamodels. Finally, we created base, 
control, and specific transformation rules. These 
transformation rules transform business logic models to 
architecture models, and architecture models to technological 
platform models. 

In the application creation process, the developer creates a 
model of the business logic. Then, the model is weaved with 
the architecture feature model and transformed to obtain an 
architecture model. The generated architecture model is 
weaved with the technological platform feature model so it 
can be transformed into a platform dependent model. Finally, 
we apply a transformation based on templates to generate the 
source code (see Figure 12). 

For the implementation of our solution, we have selected a 
suite of Eclipse tools (plug-ins) [17]. described in the next 
sections: 
• A model and metamodel manager: this tool allows us to 

create metamodels and models that are serialized in XMI 
format following the MOF standards proposed by the 
OMG. This tool is EMF [18]. EMF implements EMOF 
(Essential MOF), which is a subset of MOF. 

• A graphical modeling tool: Due to the complexity in 
metamodels expression, we require a tool to create 
metamodels in a graphical way. We have chosen GMF, 
since it allows us to define metamodels graphically and to 
generate plug-ins to create models that conform to these 
metamodels [13]. 

• A model-to-model transformation language: we have 
selected ATL as transformation language. This is a mixed 
language (declarative and imperative) compatible with 
models expressed using EMF [18]. Even though ATL is 
not a full QVT implementation (Query, View, 
Transformations), the standard proposed by the OMG to 
make queries and transformations on the models and 
metamodels, it has a very good and consistent 
implementation. 

• A tool for weaving models: we have selected AMW [14] as 
tool for mapping or link elements of two different models, 
and to generate a model with the information of these 
links. The AMW models are also compatible with models 
expressed with EMF.  

• A model to code transformation language: We use Acceleo [19] 
as transformation language. This tool specializes in the 
generation of text files (code, XML, documentation) starting 
from models. Using Acceleo we can generate the source code 
based on templates and models expressed with EMF. 

 

VI. RELATED WORK 
Proposals for the SPL variability management focus on 

managing variability of members in a product family. The 
differences among these proposals and ours reside in the core 
assets that are used to express the variability, and to create 
(variable) SPL applications during the application engineering 
process. In this section, we have tried to put together different 
proposals for managing variability in SPLs. However, our 
goal is not to present all the state-of-the-art of the subject, 
some proposals could not be referenced here. 

The FODA method [16] was introduced as a strategy to 
express variable functionality in the requirements engineering 
process through the use of feature models. The FORM [20] 
proposal complements the FODA proposal to express variable 
functionality in design applications process, and prescribes 
how feature models can be used as a basis to develop domain 
architectures and components for reusability. In FORM, the 
authors propose to organize the features in agreement with 
non-functional requirements, and use object- oriented 
components as core assets to create SPLs applications. 

AHEAD [21] is a proposal of an architecture model for object 
oriented programming, and a base for compositional programming 
on large scale. In AHEAD (Algebraic Hierarchical for Equations 
Application Design), the feature models are used to express 
variability. The core assets to create SPL applications are fragments 
of classes and methods. The features are associated with these 
assets, and they are composed by means of algebraic equations to 
create SPL applications. 

In [22] a proposal with classes and aspects like core assets 
is described. To express variability, the authors propose the 
elaboration of feature models. For the development of the SPL 
they propose: (1) to design a flexible architecture applying 
patterns, (2) to design aspects regarding the variable features, 
and (3) to compose the aspects and business classes. 

As it can be inferred from these proposals, feature models 
are a standard de facto to model the SPLs variability. 
Nevertheless, there are other proposals that use models and 
express variability. In [23] an orthogonal variability model 
(OVM) is proposed to reduce the feature models complexity. 
The variability models are constructed conforming to a 
general metamodel that defines the variability concepts. In 
[24],  there is also a process based on UML for the expression 
of variability and the definition of mechanisms that allow its 
implementation. 

Recent works demonstrate the advantages of Model Driven 
Engineering (MDE) in SPLs variability management. In [2] 
the author presents, from a global perspective, the basic 
concepts of the Generative Software Development (GSD) 
approach. This approach aims at developing product families 
by automating the family member’s creation from 
specifications written in specific domain languages. These 
languages can be defined using meta-modelling. 

In [25] MDA is presented as a mechanism for variability 
expression that makes possible to postpone the decision-making 
task on the feature model. In [11] the MDA abstraction levels are 
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employed as a mechanism to express variability in a separated way 
for each domain that corresponds to an abstraction. The SPL 
applications are created composing elements of a common 
framework. The approach described in [8] studies the reusability of 
core assets to extend variability scope by using metamodels with 
different abstraction levels. The composition of applications is 
achieved by mapping business abstract concepts with the low-level 
components. These MD-SPL proposals do not use model 
transformations like mechanism for SPL applications generation. 

 In our proposal, we use the following core assets to manage 
the variability: (1) feature models, (2) metamodels, and (3) 
transformation rules. Like in some of the previous proposals, 
we use feature models to express the SPL applications 
variability. Nevertheless, in our strategy to generate 
applications, we create different feature models to express in a 
separated way, the product line variability for each specific 
domain. In addition, as a complementary strategy to the 
feature models, we use metamodels to express variability of 
different domains. In consequence, we successful extend the 
SPL scope. 

Our strategy to generate applications is mainly generative. 
We automatically generate the applications with variable 
characteristics of the SPL using transformation rules on 
models. During each transformation process it is possible to 
select features. Thus, we divide the decision-making task on 
the feature models, postponing until the last moment the 
decisions related to technology and platform. 

VII. CONCLUSIONS   
In this paper, we have presented a proposal to manage 

variability during the SPLs construction process using a MD-
SPL approach. For the core assets creation, we separate 
concepts related to a SPL in different domains. This 
separation allows us to extend the SPL scope, managing the 
variability at level of concepts of each domain in an 
independent way. Our strategy for the applications creation 
uses automatic transformation of an initial business model into 
a target architecture model; then, we start from the 
architecture model, and we transform it into a target 
technological platform model; finally, we transform the 
technological platform model into source code.  

In our approach, we only build the initial business logic 
model manually. From that initial model, we automatically 
generate new and more refined models and finally, we 
generate java code from such models. Having a process 
separated in several stages allows us to construct simpler and 
more flexible transformation rules than processes to generate 
in only one-step a complete application. Since the applications 
that we generate are not complete, not all the functional 
requirements are created, part of the future work refers to 
represent the concepts for all the functional requirements in 
the business logic, and to construct the transformations of 
these concepts. 

In order to guide the generation of applications with 
different (variable) characteristics in each domain, we create 

metamodels, feature models, weaving models and three types 
different of transformation rules: (1) base, (2) control, and (3) 
specific rules. The feature models allow us to express and to 
select the desired characteristics of an application in a target 
specific domain. The metamodels allow us to create large set 
of (variable) models in a particular domain extending the SPL 
scope. The weaving between metamodels and feature models 
makes possible the identification of the transformation rules 
needed to generate common and variable characteristics of the 
applications. The transformation base rules allow us to create 
applications with common characteristics of the line. The 
specific and control rules allow us to create applications with 
variable characteristics of the product line. Finally, the 
weaving models between source models and target domain 
feature models allow the automatic rules execution to generate 
models of variable applications in each domain. Thus, using 
these different core assets we can manage the variability not 
only at application level, but also at the domain level. This 
means that we can generate applications that vary not just in 
concrete functionalities at application level, but also in 
concepts of the different identified domains. 

Currently we are validating our approach with the 
implementation of the SPL to generate different applications. 
As future work, we want to extend the SPL to include 
different Cupi2 levels. By doing that we will be able to 
validate the concepts of this proposal in domains where the 
business logic handles a higher number of concepts. 

The construction of an eclipse Plug-in that allows the 
creation of the weaving models, the selection of features in 
each domain, and the automatic applications generation is part 
of the current work. 

One of these topics is the need to explore new alternatives 
for domains separation, and modeling the concept for each 
domain. A close related future work refers to the conceptual 
expression of different domains; it is necessary to work on the 
expression and transformation of concepts relative to 
functional requirements. It is also necessary to work on the 
design and development of modular rules starting from a 
better-defined transformation pattern. To complement the 
transformation processes, and in general, the generation 
processes, the traceability management is a complete field to 
explore. 
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