
Revista Avances en Sistemas e Informática, Vol.4 No. 2, Septiembre de 2007, Medellín, ISSN 1657-7663
Edición Especial: II Congreso Colombiano de Computación – CCC2007

Resumen—La administración de variabilidad en una línea de
producto tiene dos retos fundamentales: (1) la expresión de las
características comunes y variables de la línea, y (2) la
construcción de aplicaciones que incluyan las características
comunes, y un subconjunto de las características variables. En
este artículo presentamos una propuesta para administrar la
variabilidad durante el proceso de construcción de Software
Product Lines (SPLs) usando un enfoque de construcción de
líneas de producto basado en modelos (MD-SPL). Para esto
separamos conceptos relacionados con SPLs en diferentes
dominios y construimos como activos de la línea modelos de
rasgos, metamodelos y tres tipos de reglas de transformación
para transformar modelos de un dominio origen a diferentes
(variables) modelos en un dominio destino. Las reglas nos
permiten generar incrementalmente las aplicaciones de acuerdo
con una selección de rasgos realizada para cada dominio destino.
Así, logramos ampliar el alcance de las SPLs, separar los
dominios de manera que se disminuya la complejidad de crear
aplicaciones con características variables, y generar aplicaciones
automáticamente usando reglas de transformación. Para ilustrar
la solución construimos una MD-SPL donde los productos
corresponden a ejercicios pedagógicos para la enseñanza de
programación de computadores.

Palabras Clave—Model Driven Architecture, Variabilidad,
Lineas de Producto de Software, Transformaciones de Modelos.

Abstract—Variability management in Software Product Lines

(SPLs) has two fundamental challenges: (1) the expression of
common and variable features, and (2) the development of
applications employing properly such features. In this paper, we
present a Software Product Line based on Models (MD-SPL). We
separate the concepts related to SPLs in different domains and
we build core assets like feature models, metamodels, and three
different types of transformation rules to transform models from
a source domain to different (variable) models into a target
domain.

By using transformation rules, we are able to generate
applications in an incremental process, guided by a set of
features selected for each target domain. Thus, we manage to
extend the SPLs scope, separate the domains diminishing the
complexity to create applications with variable characteristics,
and automatically generate applications using transformation
rules. In order to illustrate our approach, we have built a MD-
SPL where the products are small applications used in
programming computers teaching.

Keywords—Model Driven Architecture, Variability, Software
Product Lines, Model Transformation.

I. INTRODUCTION
he latest advances in information technologies, as well as,
the constant change in business requirements have

transformed software development into a complex task. To
face this reality, diverse proposals have arisen, always aiming
at producing higher software quality and better productivity of
development teams. The principle of these proposals is the
reusability of software using compositional and/or generative
approaches [1]. The compositional approaches deal with
construction of systems by using the join of components that
are in a common repository. The generative approaches focus
on the reusability of processes and components.

To reuse components to develop applications requires a
product family development approach, instead of an
independent applications construction approach [2]. A
software product family (SPL) is defined as "a set of software
systems that satisfies the specific needs for a particular
segment of the market" [3]. In a SPLs development approach,
we can create new products by reusing a set of components
called core assets. The main core asset of a SPL is its
architecture. Other kinds of assets include requirement

Variability Management in a Model-Driven
Software Product Line

Administración de Variabilidad en una Línea de

Producto de Software basada en Modelos
Kelly Garcés, MSc.1, Carlos Parra, MSc.1, Hugo Arboleda, MSc.1, 2, Andrés Yie, MSc.1, 3, Rubby Casallas, PhD.1

1Universidad de los Andes, Colombia
2Ecole des Mines de Nantes, France
3Vrije Universiteit Brussel, Belgium

k-garces@uniandes.edu.co, c-parra1@uniandes.edu.co, hugo.arboleda@emn.fr, a-yie@uniandes.edu.co,
rcasalla@uniandes.edu.co

Recibido para revisión 26 de Marzo de 2007, aceptado 15 de Junio de 2007, versión final 31 de julio de 2007

T

Revista Avances en Sistemas e Informática, Vol.4 No. 2, Septiembre de 2007
Edición Especial: II Congreso Colombiano de Computación - CCC 2007

4

specifications, design models, or software components, among
others. Core assets are created during the domain engineering
process whereas applications are generated from core assets
during the engineering application process [4, 5].

Although products of the same line satisfy specific needs in
a given domain, they differ in the set of functionalities for
each particular implementation. Thus, all the products of a
SPL provide a set of common functionalities, but each product
differs from the others in the set of optional (variable)
functionalities that it implements. The functional difference
between products of a line is known as the SPL variability [5].

Variability management in a SPL can be defined as the set
of activities and assets needed to: (1) express common and
variable characteristics of a SPL, and (2) construct (compose
and/or generate) applications which include common
characteristics, and a subset of possible variable
characteristics. In a SPL, the products characteristics are
directly related with functionality that these products provide.

Currently, feature models are a standard de facto used as a
mechanism to support variability management. Feature
models are core assets to express common and variable
characteristics of a product family. In feature models,
variability is represented with features that can be selected in
different ways for each product [6]. Thus, starting from a
selection of a set of features, and using the core assets,
applications with common are variable characteristics are
constructed.

On the other hand, an approach of generative reusability is
the Model Driven Architecture (MDA) [7]. Unlike other
paradigms that use models just like representation,
documentation and communication elements, in MDA models
play a key role and are first-class elements in application
development. The central idea of MDA is to construct
business domain models, independently of inherent
characteristics of technological platforms. Domain models are
then transformed into new models that include characteristics
of a specific technological platform through transformation
rules.

Models are created using concepts defined in a metamodel.
A metamodel represents the concepts, relationships, and
semantics of a domain. Hence, metamodels are called also
domain models [8]. The relation between a model and its
metamodel is defined as a conformity relation, that is, a model
conforms to its metamodel [9].

Transformation rules are defined using metamodel
concepts. A typical transformation rule takes the source model
elements, which conform to a source metamodel concept, and
transforms them into target model elements, that conform to
different target metamodel concepts [10].

The separation of domains and the generative nature of
MDA, make it an adequate approach to create SPLs. The basic
idea is to create a product of a family by starting from an
initial model, and using several automatic transformations
until obtaining a final product.

Results of recent investigations have shown how the
mixture of MDA and SPLs (MD-SPL) is an approach

(compositional and generative) that makes possible the
definition of a SPLs creation process [8, 11]. Nevertheless,
variability management in a MD-SPL approach remains as a
current area of research.

In this paper, we present a proposal to manage variability
during the SPLs construction process, using a MD-SPL
approach. For this, we have separated the concepts related to a
product line in different domains: (1) the business logic
domain, (2) the architecture domain, and the technological
platform domain. This separation allows us to manage product
lines variability in a separated manner for each domain.

We create feature models for each domain to express the
SPL common and variable elements. We also define
metamodels for each domain. These metamodels are used to
construct a wide set of variable models in each domain, and
thus we can express the specific domain variability. In
addition to the metamodels, we create transformation rules
according to the MDA approach.

Typical transformation rules are created at the metamodel
level (M2), which implies that one transformation applied to
the same source model always generates the same target
model. The above implies that in order to create applications
with variable characteristics, we need ways to transform the
same model into different target models. In our approach, we
successfully achieved this by guiding each transformation
with the preferences of the user through a set of variable
characteristics.

We define three types of transformation rules: (1) base
rules, (2) control rules, and (3) specific rules. We use base
rules to generate the SPLs commonalities. Control rules to
specify which specific rules will be executed according to the
preferences of the user. Finally, specific rules generate
different variable features. Using specific rules, we are able to
generate applications with different functionality according to
the features selection in the SPL applications creation process
(application engineering). Thus, using metamodels,
transformation rules, and feature models, we achieve to extend
the scope of a SPL, and to separate the domains diminishing
the complexity of creating applications with variable
characteristics in each domain. However, the applications that
we generate are not complete. Since some functional
requirements are not generated as part of the automatic
transformation processes, we manually complete the
applications during the engineering process. We will illustrate
this proposal with a SPL for the Cupi2 project [12]. For the
construction process we used GMF [13] like modeling
environment, AMW [14] to make weaving of models, and
ATL [15] to transform models.

The paper is organized as follows. In Section 2, we present
the application context that will allow us to illustrate the
proposal on a concrete example. In Section 3 and 4, we
present the problems and challenges of variability
management in MD-SPLs as well as the solution proposed to
solve it. In section 5, we briefly explained our
implementation. Section 6 presents a comparison of our work
with some related works, and finally we present the

Variability Management in a Model-Driven Software Product Line – Garcés, et al

5

conclusions and we outline future works.

II. APPLICATION CONTEXT
In order to validate our approach we have implemented a

SPL for the Cupi2 project [12]. Cupi2 is part of a series of
efforts from the software construction group of The
University of Los Andes (Colombia) to find new ways to
teach/learn computer programming.

In Cupi2, complete examples and exercises are used to
illustrate different topics, instead of just little snippets of code.
Each example/exercise includes a graphical interface, a set of
requirements, a set of unit tests, java code, and
documentation. There are 18 levels in total. Each level adds
new concepts to the previous ones. Our SPL generates
examples for level 7. In this level, among other topics, we deal
with ordering and searching algorithms in collections.

A. Cupi2 examples commonalities
All the Cupi2 examples are stand-alone applications

without complex non-functional requirements; they are
developed using the same technological platform, in this case
Java. All the examples are structured by two components: the
kernel and the user interface. The kernel component
implements the concepts of business logic. The user interface
component implements information visualization and
interaction between users and kernel components.

Figure 1. Music Store and Auto Show models

1) Kernel commonalities: Structures of aggregation can

represent and serve to manipulate the kernel concepts and
their relationships. In an aggregation structure, there is always
a main element that groups the other elements of the kernel.
Figures 1a and 1b present business models for two different
examples: a Music Store and an Auto Show. In the Music
Store model, shown in Figure 1a, a MusicStore assembles a
set of Discs and each Disc assembles a set of Songs. The Auto
Show model of Figure 1b shows the AutoShow assembling a
set of Automobiles.

All the kernel elements have a set of properties and are
related to other elements of the kernel. Finally, each kernel
element is responsible of persisting its own information

2) User interface component commonalities: To build a

graphical user interface (GUI), Cupi2 applications employ a
set of elements like panels, lists, labels, images, and radio
buttons, among others. All the GUI elements are grouped in
views of different types. There are two types of views that are
mandatory for any Cupi2 application: (1) the MainView, and
(2) the ExtensionView. The MainView is in charge of
communicating the kernel and the GUI by grouping all the
views. The ExtensionView contains several buttons that
students can use to add new functionality to applications as
part of the exercise.

B. Cupi2 Examples Variability
At the same time that we identify commonalities, we

identify variability as well. The variability in Cupi2 examples
is related to the algorithms that manage the aggregation
structures in the kernel component, and the presentation of the
GUI.

1) Kernel variability: The kernel component has variable
elements related to data structures, algorithms, and services to
persist the different assemblies. The data structures that
represent the aggregation structures can be containers of fix or
variable size, or can be linear structures such as simple lists or
double-linked lists. Each type of data structure can be
manipulated using different algorithms; for example, it is
possible to manipulate a data structure with algorithms to
make insertion of elements, to search a particular element, or
to order the set of elements, among other services.

Different implementations can be used to persist kernel
elements information; for example text files with a special
structure or object serialization

2) User interface variability: There is not a single way to
represent the kernel elements in terms of GUI elements. The
user can select one or several types of views to represent the
kernel elements. Such views are: main view, extension view,
set view, search view, information view, and aggregation
view.

a) Main View: The MainView contains the other views
and is responsible for the communication between the
kernel and the user interface.

Figure 2. MusicStore GUI

Revista Avances en Sistemas e Informática, Vol.4 No. 2, Septiembre de 2007
Edición Especial: II Congreso Colombiano de Computación - CCC 2007

6

b) Extension View:The ExtensionView has a set of
buttons. Student may associate functionalities to each
button.
c) Set View: The SetView presents a set of grouping
elements using components such as lists or tables.

d) Search View: The SearchView is used to introduce the
parameters for a search.

e) Information View: The InformationView is used to
show particular information associated to attributes of the
kernel, this information may include images.
f) Aggregation View: The AggregationView is used to
enter the information of elements that are being created.

In Figure 2, we present a possible GUI configuration with
four different types of views for the Music Store example.

III. DOMAIN ENGINEERING PROCESS
The domain engineering process involves the creation of

core assets. In this section, we introduce the core assets used
in the Cupi2 SPL.

We group concepts in different domains in order to manage
variability. These domains are the business logic, the
architecture domain, and the technological platform domain.
Our strategy follows the MDA approach and it is based on the
automatic transformation of models until obtaining executable
applications. We start from a business logic model, we
transform it into an architectural model, after that we refine it
into a model in the technological platform domain and finally
we generate source code from it. To achieve this, we build as
core assets (1) metamodels for each domain, (2) feature
models for each target domain, (3) weaving models and three
types of transformation rules. Figure 3 presents the domain-
engineering process.

Figure 3. Domain engineering process

A. Feature Models
Feature models are a standard de facto used to represent

common and different characteristics of members from a
product line [16]. The features can be mandatory, optional, or
alternative. Mandatory features are common to every member
of the software product line; some members require optional
features. Two or more features are alternatives to each other,

when the user can choose only one of them.
A feature diagram is a tree which nodes represent features

[2]. There are two kinds of nodes: grouped nodes and solitary
nodes. A solitary node is not contained in a grouped node.
Solitary nodes represent mandatory or optional features.
Grouped nodes group mandatory and optional features, or
alternative features.

In our approach, feature models describe common and
different characteristics of applications in target domains.
Cupi2 SPL has two target domains: architecture and
technological domain. We develop a features model for each
domain.

Figure 4 presents a subset of features for the architecture
domain. The model represents the user interface
characteristics (section 2). The GUI node groups a MainView
(mandatory feature) and SetView, AddView and
InformationView (optional features).

Figure 4. Cupi2 architecture features

Figure 5 presents a subset of features for the technological

domain (Java). This model has a Container node, which
groups the ArrayList and Vector nodes (alternative features).

Figure 5. Cupi2 technological features

Figure 6. Cupi2 features model

Figure 6 presents the relationship between architectural and

technological feature models. The relationship between
features nodes implies that the nodes selected in the
architectural feature model constrain the selection the user can

Variability Management in a Model-Driven Software Product Line – Garcés, et al

7

make in the platform feature model. For example, the
selection of JCombobox or JList features can be done only if
the SetView feature has been selected before.

B. Metamodels
As stated in section 1, in our approach metamodels

represent the concepts, relationships, and semantics of the
domain of applications.

In a similar way as the feature models express common and
variable characteristics of a set of applications, metamodels
also allow the expression of such characteristics. This is
achieved by abstracting the domain concepts, their properties,
and their relationships. Each model that conforms to a
metamodel represents a particular instance of the domain, with
a set of specific characteristics.

To create the Cupi2 project SPL, we have designed three
different metamodels as part of the core assets. These
metamodels refer to business logic, architecture, and
technological platform. Each metamodel includes abstract
concepts of a particular domain. Thus, business metamodel
only includes the essential concepts of the problem to solve in
the Cupi2 examples. Architecture metamodel includes refined
concepts of the business metamodel, along with the concepts
of the architecture including the user interface. Finally, the
technological platform metamodel includes refined concepts
of the architecture metamodel along with its own concepts of
the language such as for example packages, classes, methods
and attributes.

1) Business logic metamodel: The business logic
metamodel presented in Figure 7 represents abstract concepts
from the Cupi2 examples of levels 7 and 8. In general terms,
these examples describe a set of elements related to each other
through aggregation structures. For instance, in the Auto show
example, we say that an AutoShow element groups a set of
Automobiles (Figure 8). In addition to that, each element may
have a set of attributes that characterize it. For example, it is
possible that the Automobile element has an attribute that represents
the model; this attribute can be used later to create a service that
orders all the instances of Automobile per model.

Figure 7. Business logic metamodel

Figure 7 presents the concepts Container and Element, and

the aggregation relationship between them. The

AttributeCupi2 is also presented, as well as all the attributes
that characterize properly this business concept according to
the requirements of the applications being modeled. For
example, the attribute isComparable in the meta-class
AttributeCupi2, indicates that such element could be
compared to other elements. This information is used in the
transformation process and may lead to the generation of
algorithms to order a set of AttributeCupi2 instances or to
look for a single AttributeCupi2 element.

Figure 8. Auto show business logic model

Models that conform to the business metamodel, use its

concepts to express the features of a single instance of the
domain they represent. In Figure 8a an example of a model for
the Auto Show example is shown. In this model representation
as well as in the rest of models in the reminder of this paper,
we use stereotypes as <<Container>>, <<Simple>>,
<<Attribute>> and <<AttributeCupi2>> to indicate the
“conforms to” relationship between the elements of the model
and its counterpart in the metamodel. The AutoShow element
conforms to Container, which, according to the metamodel
definition, indicates that it may group a set of other Container
or Simple elements.

In this example, the grouped element is the Automobile.
Each Automobile contains a set of Attribute and
AttributeCupi2 elements. Figure 8b presents a detailed view
of each of these attributes.

2) Architecture Metamodel: The architecture metamodel is
related to design concepts of Cupi2 examples; this metamodel
does not include details about implementation on a specific
technological platform. To simplify its representation, we
have divided it in two different metamodels. The first one
includes the concepts related to the business logic and the
second one deals with the concepts of graphic user interface.
The business logic architecture metamodel introduces the
concept of Service. Services are necessary to manipulate the
data structures of the examples. On the other hand, the graphic
user interface metamodel includes interaction concepts and
elements that will be part of the graphical user interface of the
generated application. A model that conforms to the
architecture metamodel has all the structural and graphical

Revista Avances en Sistemas e Informática, Vol.4 No. 2, Septiembre de 2007
Edición Especial: II Congreso Colombiano de Computación - CCC 2007

8

elements of a real application. From this point, it should be
possible to specify a technological platform and generate the
source code.

In Figure 9, we present a simplified version of the user
interface architecture metamodel. This metamodel aims for the
generalization of concepts found in the different view types
described in section 2. The main element refers to View. A
View can simultaneously have a set of Components and a set
of Services. The Components are specialized in two types,
Interaction and Visualization. The Interaction Components
are used in a GUI to call some type of functionality. Some
examples of Interaction Components can be buttons, lists, or
drop-down lists. On the other hand, the Visualization Components
are used to show information to the user. Some examples of these
Components are text labels, and message boxes.

Figure 9. GUI architecture metamodel

Figure 10 presents a model that conforms to the GUI

architecture metamodel. In the same way as in figure 8, we
use stereotypes to show the relation of conformity of the
elements of the model with the metamodel.

Figure 10. Auto show GUI model

In this case there are four different elements conform to the
View element of the metamodel. Each View has a set of
components according to its specific responsibilities. The
AutoShowMainView element is the main view and contains all
other views. The AutoSetView is in charge of showing a group
of automobiles contained by the data structure of the
application. This view has an Interaction Component of type
List to show the set of automobiles. The orderByModel button
is associated with the services of ordering the list of
automobiles. The AutoSearchView offers the possibility of

look for a automobile using the attribute name. Finally, the
AutoInformationView has a set of Label elements to visualize
the automobile attributes.

C. Weaving model at domain level and transformations rules
Our strategy uses automatic transformation of models until

obtaining executable applications.
Transformations rules are defined in terms of metamodel

concepts. It implies that a same source model is always
transformed into the same target model. Since we need to
transform the same metamodel concept into different target
concepts according to the features related, we need to create
different rules. There are three types of rules: (1) base rules,
(2) control rules, and (3) specific rules. In order to guide the
creation of these transformation rules, we create weaving
model at domain level.

Weaving models link metamodel concepts to feature nodes.
Each link means that one source metamodel concept can be
transformed to obtain the target feature. Using the weaving
models at domain level, we can identify (1) the metamodel
concepts that have to be always transformed into the same
target feature, and, (2) the metamodel concepts that can be
transformed into different (variable) target features. For the
first case, we create base rules; and for the second, we create
control and specific rules. Thus, the base rules allow us for the
generation of the commonalities of the product line, and the
control and specific rules for the variability.

Figure 11 presents a weaving model between the business
logic metamodel and the feature model of the architecture
domain. In Figure 11, the link between Container and the
mandatory feature MainView indicates that a main view is
always created for Container elements (isMain == True). For
this connection, we create a base rule. The links between
Element, and the Serialization and Files feature nodes indicate
that an element of type Element can implement its persistence
using Files or Serialization methods. For these connections, we
created one control rule and two specific rules.

Figure 11. Weaving model between the business logic metamodel and the

architecture features

We implement the base rules using declarative
programming, and the specific rules using imperative
programming. The control rules are implemented in a mixed
way, it means, they have a declarative section and an
imperative one.

Listing 1 presents an example for each type of rule. The
mainView is a base rule. Line 3 shows the source pattern and

Variability Management in a Model-Driven Software Product Line – Garcés, et al

9

the line 5 shows the target pattern. The mainView rule
transforms the elements conform to Container, without
container, into View. For example, for the Music store
application, a View is created from the MusicStore element
(conform to Container). For the Auto Show application, a
View is created from the AutoShow element.

List 1. Base, control, and specific transformation rules

The setView, in line 7, is a control rule. The declarative

section is in the lines 8 to 13 and the imperative section is in
the lines 14-16. The setView rule searches in the weaving
model the elements that have the feature SetView associated
(line 9). For those elements, a View is created (line 13) and
the addComponent imperative rule is called (line 15). The
addComponent rule creates concepts associated to the created
View giving the characteristics needed for a SetView. The
addComponent rule is a specific rule, which has the
imperative sentences in the lines 23-25. When this rule is
called from the control rule, a Visualization component is
created (lines 19-22), the parameter type is assigned to this
component, in this case List (line 21), and the created
component is added to the previous created View (line 24).

IV. APPLICATION ENGINEERING
Application engineering process generates a specific product
from the core assets [4, 5].

As we said previously, our strategy uses an incremental
transformation of models until obtaining applications. Thus,
we start from a business logic model, we transform it into an
architectural model, after that we transform it into a model in
the technological platform domain and finally we generate
source code from it. Figure 12 presents the application
engineering process.
A. Business logic model

The first step is to create the business logic model. Business
logic model represents the problem description. Figure 8a

shows a business logic model.
B. Weaving model at application level

User selects the features that he wants before the execution
of each transformation. He makes the selection by associating
(source) model elements and (target) feature nodes. We use
weaving model to create the associations.

Weaving model at domain level constrains weaving model
at application level. For example, the weaving model (showed
in Figure 11) contains a link between Element, and the
Serialization and Files feature nodes. Thus, weaving model at
application level can contain a link between an element
(conforms to Element) and Serialization or Files feature.
Figure 13 presents a weaving model at application level.

Figure 13 shows links between business model elements
and architecture features. For instance, one link associates
Disc element and SetView feature. It generates a SetView
which groups discs by using a list. Another link associates
MusicStore element and Serialization feature. Link between
MusicStore element and Files feature is not possible because
Serialization and Files are alternative features.

User should create two weaving models to generate a Cupi2
example. First, he weaves business model elements and
architecture features. Later, he weaves architecture model
elements and technological features.

Fi
Figure 12. Weaving model between business model and architecture features.

C. Transformation execution
After the weaving at application level, a transformation is

executed.
A transformation has two inputs (source model and

weaving model) and one output (target model).
Transformation applies base, control, or specific rules. For
example, for Music store application, business to architecture
transformation receives the business model (showed in Figure
1a) and weaving model (showed in Figure 13). When
transformation is executed, mainView and setView rules are
executed too; mainView is always executed, setView rule is
executed because we weave Disc (conforms to Element) and
setView feature.

Revista Avances en Sistemas e Informática, Vol.4 No. 2, Septiembre de 2007
Edición Especial: II Congreso Colombiano de Computación - CCC 2007

10

V. IMPLEMENTATION
We used feature models, metamodels, and transformation

rules like core assets in the SPL application engineering
process to create specific example applications such as the
Music store, the AutoShow, and others. We created feature
models for the architecture domain and the technological
platform. We created business logic, architecture, and
technological platform metamodels. Finally, we created base,
control, and specific transformation rules. These
transformation rules transform business logic models to
architecture models, and architecture models to technological
platform models.

In the application creation process, the developer creates a
model of the business logic. Then, the model is weaved with
the architecture feature model and transformed to obtain an
architecture model. The generated architecture model is
weaved with the technological platform feature model so it
can be transformed into a platform dependent model. Finally,
we apply a transformation based on templates to generate the
source code (see Figure 12).

For the implementation of our solution, we have selected a
suite of Eclipse tools (plug-ins) [17]. described in the next
sections:
• A model and metamodel manager: this tool allows us to

create metamodels and models that are serialized in XMI
format following the MOF standards proposed by the
OMG. This tool is EMF [18]. EMF implements EMOF
(Essential MOF), which is a subset of MOF.

• A graphical modeling tool: Due to the complexity in
metamodels expression, we require a tool to create
metamodels in a graphical way. We have chosen GMF,
since it allows us to define metamodels graphically and to
generate plug-ins to create models that conform to these
metamodels [13].

• A model-to-model transformation language: we have
selected ATL as transformation language. This is a mixed
language (declarative and imperative) compatible with
models expressed using EMF [18]. Even though ATL is
not a full QVT implementation (Query, View,
Transformations), the standard proposed by the OMG to
make queries and transformations on the models and
metamodels, it has a very good and consistent
implementation.

• A tool for weaving models: we have selected AMW [14] as
tool for mapping or link elements of two different models,
and to generate a model with the information of these
links. The AMW models are also compatible with models
expressed with EMF.

• A model to code transformation language: We use Acceleo [19]
as transformation language. This tool specializes in the
generation of text files (code, XML, documentation) starting
from models. Using Acceleo we can generate the source code
based on templates and models expressed with EMF.

VI. RELATED WORK
Proposals for the SPL variability management focus on

managing variability of members in a product family. The
differences among these proposals and ours reside in the core
assets that are used to express the variability, and to create
(variable) SPL applications during the application engineering
process. In this section, we have tried to put together different
proposals for managing variability in SPLs. However, our
goal is not to present all the state-of-the-art of the subject,
some proposals could not be referenced here.

The FODA method [16] was introduced as a strategy to
express variable functionality in the requirements engineering
process through the use of feature models. The FORM [20]
proposal complements the FODA proposal to express variable
functionality in design applications process, and prescribes
how feature models can be used as a basis to develop domain
architectures and components for reusability. In FORM, the
authors propose to organize the features in agreement with
non-functional requirements, and use object- oriented
components as core assets to create SPLs applications.

AHEAD [21] is a proposal of an architecture model for object
oriented programming, and a base for compositional programming
on large scale. In AHEAD (Algebraic Hierarchical for Equations
Application Design), the feature models are used to express
variability. The core assets to create SPL applications are fragments
of classes and methods. The features are associated with these
assets, and they are composed by means of algebraic equations to
create SPL applications.

In [22] a proposal with classes and aspects like core assets
is described. To express variability, the authors propose the
elaboration of feature models. For the development of the SPL
they propose: (1) to design a flexible architecture applying
patterns, (2) to design aspects regarding the variable features,
and (3) to compose the aspects and business classes.

As it can be inferred from these proposals, feature models
are a standard de facto to model the SPLs variability.
Nevertheless, there are other proposals that use models and
express variability. In [23] an orthogonal variability model
(OVM) is proposed to reduce the feature models complexity.
The variability models are constructed conforming to a
general metamodel that defines the variability concepts. In
[24], there is also a process based on UML for the expression
of variability and the definition of mechanisms that allow its
implementation.

Recent works demonstrate the advantages of Model Driven
Engineering (MDE) in SPLs variability management. In [2]
the author presents, from a global perspective, the basic
concepts of the Generative Software Development (GSD)
approach. This approach aims at developing product families
by automating the family member’s creation from
specifications written in specific domain languages. These
languages can be defined using meta-modelling.

In [25] MDA is presented as a mechanism for variability
expression that makes possible to postpone the decision-making
task on the feature model. In [11] the MDA abstraction levels are

Variability Management in a Model-Driven Software Product Line – Garcés, et al

11

employed as a mechanism to express variability in a separated way
for each domain that corresponds to an abstraction. The SPL
applications are created composing elements of a common
framework. The approach described in [8] studies the reusability of
core assets to extend variability scope by using metamodels with
different abstraction levels. The composition of applications is
achieved by mapping business abstract concepts with the low-level
components. These MD-SPL proposals do not use model
transformations like mechanism for SPL applications generation.

 In our proposal, we use the following core assets to manage
the variability: (1) feature models, (2) metamodels, and (3)
transformation rules. Like in some of the previous proposals,
we use feature models to express the SPL applications
variability. Nevertheless, in our strategy to generate
applications, we create different feature models to express in a
separated way, the product line variability for each specific
domain. In addition, as a complementary strategy to the
feature models, we use metamodels to express variability of
different domains. In consequence, we successful extend the
SPL scope.

Our strategy to generate applications is mainly generative.
We automatically generate the applications with variable
characteristics of the SPL using transformation rules on
models. During each transformation process it is possible to
select features. Thus, we divide the decision-making task on
the feature models, postponing until the last moment the
decisions related to technology and platform.

VII. CONCLUSIONS
In this paper, we have presented a proposal to manage

variability during the SPLs construction process using a MD-
SPL approach. For the core assets creation, we separate
concepts related to a SPL in different domains. This
separation allows us to extend the SPL scope, managing the
variability at level of concepts of each domain in an
independent way. Our strategy for the applications creation
uses automatic transformation of an initial business model into
a target architecture model; then, we start from the
architecture model, and we transform it into a target
technological platform model; finally, we transform the
technological platform model into source code.

In our approach, we only build the initial business logic
model manually. From that initial model, we automatically
generate new and more refined models and finally, we
generate java code from such models. Having a process
separated in several stages allows us to construct simpler and
more flexible transformation rules than processes to generate
in only one-step a complete application. Since the applications
that we generate are not complete, not all the functional
requirements are created, part of the future work refers to
represent the concepts for all the functional requirements in
the business logic, and to construct the transformations of
these concepts.

In order to guide the generation of applications with
different (variable) characteristics in each domain, we create

metamodels, feature models, weaving models and three types
different of transformation rules: (1) base, (2) control, and (3)
specific rules. The feature models allow us to express and to
select the desired characteristics of an application in a target
specific domain. The metamodels allow us to create large set
of (variable) models in a particular domain extending the SPL
scope. The weaving between metamodels and feature models
makes possible the identification of the transformation rules
needed to generate common and variable characteristics of the
applications. The transformation base rules allow us to create
applications with common characteristics of the line. The
specific and control rules allow us to create applications with
variable characteristics of the product line. Finally, the
weaving models between source models and target domain
feature models allow the automatic rules execution to generate
models of variable applications in each domain. Thus, using
these different core assets we can manage the variability not
only at application level, but also at the domain level. This
means that we can generate applications that vary not just in
concrete functionalities at application level, but also in
concepts of the different identified domains.

Currently we are validating our approach with the
implementation of the SPL to generate different applications.
As future work, we want to extend the SPL to include
different Cupi2 levels. By doing that we will be able to
validate the concepts of this proposal in domains where the
business logic handles a higher number of concepts.

The construction of an eclipse Plug-in that allows the
creation of the weaving models, the selection of features in
each domain, and the automatic applications generation is part
of the current work.

One of these topics is the need to explore new alternatives
for domains separation, and modeling the concept for each
domain. A close related future work refers to the conceptual
expression of different domains; it is necessary to work on the
expression and transformation of concepts relative to
functional requirements. It is also necessary to work on the
design and development of modular rules starting from a
better-defined transformation pattern. To complement the
transformation processes, and in general, the generation
processes, the traceability management is a complete field to
explore.

REFERENCES

[1] J. Sametinger, Software engineering with reusable components, New

York: Springer, 1997.
[2] K. Czarnecki, "Overview of Generative Software Development." pp. 313–

328.
[3] "Software Product Lines," December, 2006; [Online]. Available:

http://www.sei.cmu.edu/productlines/.
[4] P. Clements, and L. Northrop, Software Product Lines: Practices and

Patterns: Addison Wesley Professional, 2001.
[5] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product Line

Engineering: Foundations, Principles and Techniques: Springer, 2005.
[6] J. Lee, and D. Muthig, “Feature-oriented variability management in

product line engineering,” Communications of the ACM, vol. 49, no. 12,
pp. 55 - 59, 2006.

[7] J. Mukerji, and J. Miller, "MDA Guide," 2003.
[8] J. Estublier, and G. Vega, “Reuse and variability in large software

Revista Avances en Sistemas e Informática, Vol.4 No. 2, Septiembre de 2007
Edición Especial: II Congreso Colombiano de Computación - CCC 2007

12

applications,” in 13th ACM SIGSOFT Lisbon, Portugal 2005.
[9] J. Bézivin, “On the Unification Power of Models,” Software and Systems

Modeling, vol. 4, no. 2, pp. 171-188, 2005.
[10] O. M. G. OMG, "MOF 2.0 Query/Views/Transformations RFP," 2002].
[11] A. L. Santos, A. Lopes, and K. Koskimies, "An MDA Approach to

Variability Management in Product-Line Engineering ".
[12] "Proyecto CUPI2" Diciembre, 2006; [Online].
[13] "Graphical Modeling Framework" Access 2006; [Online]. Available:

http://www.eclipse.org/gmf/.
[14] "AMW Home Page," Access 2006; [Online]. Available:

http://www.eclipse.org/gmt/amw/.
[15] "ATL Home Page," Access 2006; [Online]. Available:

http://www.eclipse.org/gmt/atl/.
[16] K. Kang, S. Cohen, J. Hess et al., Feature-Oriented Domain Analysis

(FODA) Feasibility Study, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Estados Unidos 1990.

[17] "Eclipse," Access 2006; [Online]. Available: http://www.eclipse.org/.
[18] "Eclipse Modeling Framework," Access 2006; [Online]. Available:

http://www.eclipse.org/emf/.
[19] "Acceleo," Access 2006; [Online]. Available: http://www.acceleo.org.
[20] K. C. Kang, S. Kim, J. Lee et al., “FORM: A feature-oriented reuse

method with domain-specific reference architectures,” Annals of Software
Engineering vol. 5, pp. 143 - 168, 1998.

[21] D. Batory, "Feature-oriented programming and the AHEAD tool suite."
[22] V. Alves, A. Dantas, and P. Borba., “AOP-Driven Variability in Product

Lines of Pervasive Computing Applications,” in Second International
Generative Programming and Component Engineering Conference
(GPCE'03), Erfurt, Germany, 2003.

[23] K. Pohl, F. van der Linden, and A. Metzger, “Software Product Line
Variability Management,” International Software Product Line
Conference, 2006.

[24] E. A. d. Oliveira, I. M. S. Gimenes, E. H. M. Huzita et al., "A variability
management process for software product lines." pp. 225 - 241

[25] S. Deelstra, M. Sinnema, J. v. Gurp et al., "Model Driven Architecture as
Approach to Manage Variability in Software Product Families."

Kelly Garcés is a M.Sc. student at University of Los Andes in
Colombia. She develops research to find solutions that improve
software development process.

Carlos Parra is a master graduate from University of Los Andes,
currently he is doing an internship at the University of Science and
Technology in Lille, France. His interests are Model Driven
Engineering and Context Aware Software.

Hugo Arboleda is a Ph.D. student at University of Los Andes in
Colombia in the Software Construction group; and at Ecole des
Mines Nantes, France, in the OBASCO group. He recived a M.Sc. in
Computing and System Engineering from Los Andes University in
2004. His interests are Model Driven Engineering and Software
Product Line Engineering.

Andres Yie is an Engineering Ph.D. student from the University of
Los Andes and Vrije Universiteit Brussel. He obtains his master
degree in Engineering from University of Los Andes. He is
researching model driven development and software product lines
looking for semi-automatic strategies on software development.

Rubby Casallas is an Associate professor in the Department of
Systems and Computing Engineering, University of Los Andes,
Bogotá, Colombia. She received a Ph.D. in Informatics from the
University of Grenoble, France in 1996. Currently she is the
coordinator of the Software Construction group at the University of
Los Andes. Her interests are Software Engineering Education and
Software Product Lines.

