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Abstract 

After infection, a plant develops symptoms that appear in different parts of plants; however, at moment 
in which these symptoms are visible, the plant can already be affected negatively. In addition, plants 
that remain asymptomatic are pathogens reservoirs, since they can remain infected for most of their 
development cycle, becoming a source of contamination for entire crop. After the symptoms onset, 
disease is verified using detection techniques, such as ELISA, Polymerase Chain Reaction, 
Immunofluorescence, Flow Cytometry, Fluorescence in situ and, Gaseous Metabolite Profiles, among 
others. However, despite the availability of these techniques, a diseases early detection system based 
on spectrometry techniques can help to reduce losses caused in crops and prevent a greater spread of 
disease, with more speed, sensitivity, selectivity and without requiring the samples destruction required 
for analysis. The aim of this study is to evaluate early detection of plants diseases caused by fungal 
infections using in situ reflectance spectroscopy. To achieve this, reflectance spectra were measured 
from leaves of S. lycopersicum infected with a fungus pathogenic strains at various times of 
pathogenesis before the symptoms of the disease were visible. Additionally, physiological analyzes were 
performed and were related to reflectance spectra of the infected and healthy plants in different 
infection periods; also, were developed disease prediction models based on Vis/NIR reflectance data  
before the visual expression of the symptoms using different multivariate statistical tools. In this study it 
was possible to characterize the spectral variation in leaves of S. lycopersicum L. infected with F. 
oxysporum during the incubation period. It was also possible to identify the relevant specific 
wavelengths in the range of 380-1000 nm that can be used as spectral signatures for the detection and 
discrimination of vascular wilt in S. lycopersicum. We watch that inoculated tomato plants increased 
their reflectance in the visible range (Vis) and decreased slowly in the near infrared range (NIRs) 
measured during incubation, showing marked differences with plants subjected to water stress in the 
VIS/NIR. Additionally, three ranges were found in the spectrum related to infection by F. oxysporum 
(510nm-520nm, 650nm-670nm and 700-750nm). Linear discriminant models on spectral reflectance 
data were able to differentiate between tomatos varieties inoculated with F. oxysporum from healthy 
ones with accuracies higher than 70% 9 days after inoculation (only with three explanatory variables). 
Additionally, it was possible to characterize and relate the spectral variance in leaves of S. lycopersicum 
infected with F. oxysporum with the physiological variation and pathogen concentration in tomato 
plants during the asymptomatic period of vascular wilt. Photosynthetic parameters derived from 
gaseous exchange analyzes in the tomato leaves correlated related with four bands in the visible range 
(Vis). Additionally, five specific bands also correlated highly correlated with the increase of F. oxysporum 
conidia concentration measured at root: 448-523nm, 624-696nm, 740-960nm, 973-976nm and 992-
995nm. These wavelengths allowed classifying correctly 100% the plants inoculated with F. oxysporum 
of plants subjected to hydric stress and controls in the disease asymptomatic period. Finally, it was 
possible to develop logistic regression models to predict infection by F. oxysporum in plants, obtaining 
accuracies and areas under the curve greater than 0.9 for one of the tomato varieties evaluated. The 
results of this study will contribute to a better understanding of the optical properties of the plant 
during the development of fungal diseases. These methods will be applicable in development of 
precision crops, specifically in crop protection, differentiation, quantification, and disease early 
detection of plant; in addition to, the developed models which can be used as a basic input in the design 
of technological tools that allow the plant disease detection in real time. 
 
Key words: early detection, diseases plants, fungal infection, spectroscopy, reflectance, F. oxysporum  
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1. GENERAL INTRODUCTION 

1.1 Justification and research problem 

The agricultural sector in Colombia has historically been an important sector in national economy, which 

had an average contribution about 7 % to the Gross Domestic Product (GDP), sectoral value added 

amounting to 366,737 million pesos in 2000-2008 period and 21% generated of country's jobs, according 

to National Administrative Department of Statistics (Romero, 2011). In addition, agricultural production 

of the country's main crops amounted to approximately 9,903,569 tons in 2012 (DANE, 2013). However, 

it has been estimated that crop diseases and pests cause approximately 30% of pre-harvest losses in 

developing countries or even more specifically in cereals (Koyshibayev and Muminjanov 2016); with 

insects, fungi, bacteria and viruses mainly responsible for this damage. 

Although there are some methods which are currently used for the detection of diseases in plants, such 

as the enzyme linked immunoassay (ELISA), polymerase chain reaction (PCR), immunofluorescence (IF), 

flow cytometry, fluorescence In situ and gaseous metabolite profiles. They are generally used after the 

onset of symptoms, when the disease is at an advanced stage in the plant and dispersed in the crop. It 

possible use these methods before symptoms, but they require a lot of time, the destruction of plant 

samples, and usually they are expensive. This is the reasons a system of early detection of the disease 

can help to diminish losses caused in crops and prevent a greater spread of disease, quickly, sensitivity, 

selectivity and without requiring the destruction of samples for analysis (Chaerle and Van 2000). 

The plant diseases early detected in plantations or in propagated materials, and selective eradication 

programs are methods used to prevent the advance of pathogens. Once the problem is established, 

control has traditionally been carried out with exclusively chemical methods. However, this is difficult 

because these methods generate resistance problems, added to low efficiency of some active principles 

(Moss, 2010). The high cost of control measures and environmental impact that they generate have 

provoked great interest in precision agricultural techniques in which the products application is carried 

out in the affected specific sites by the disease. These site-specific applications result in a reduction in 

use of pesticides and, therefore, can minimize costs and the ecological impact of agricultural crop 

production systems (Gebber and Adamchuk 2010). 

In addition, it must be taken into account that in plants, disease management of their timely detection is 

fundamental and the non-destructive methods of productive units are desirable. Among the above, 
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there is remote sensing by spectroscopic techniques, used in initial stages of plant material propagation 

by direct reading of planting units, being useful in identification of primary foci of disease (Franke and 

Menz 2007; Franke et al. 2009; Marin et al. 2018). To implement these sensors within precision plant 

protection technologies, these have to be robust, low cost and preferably offering real-time detection 

(Zhang et al. 2002). 

For these techniques based on spectroscopy to be applicable, it is necessary that specific pathosystem 

information about spectral signature of infectious processes be generated, as a primary input of 

knowledge that feeds the spectral libraries used to identify diseases. That is why we intend to carry out 

the study in tomato (S. lycopersicum), a plant with widely known agronomic characteristics and 

susceptible to range of pathogens, which allows contrasting different colonization processes of 

microorganisms. In addition, Fusarium oxysporum f. sp. Cubense is a widely accepted model organism 

for the plants pathogenicity study, and is morphologically diverse and widely distributed species of the 

genus Fusarium spp., which is currently considered a species complex of plant pathogenic fungi (Baayen 

et al. 2000). This species has many pathogenic strains that parasitize more than plants species 100 

(Bosland 1998), characterized by producing colonies of rapid growth and very variable morphology, 

predominating two primordial types: one mycelial and one pionotal type (Garcés et al. 2001). In general, 

the majority of pathogenic strains produce symptoms of wilt, accompanied by partial yellowing of leaves 

and folding of disease plant buds. A characteristic that allows to diagnose and differentiate quickly this 

disease is the whitish, yellowish or brown coloration in vascular bundles; additionally, there may be 

dwarfing in shoots and decrease in the plant overall growth (Garcés et al. 1999). 

1.2 Hypothesis 

 The leaves reflectance of S. lycopersicum plants with systemic fungal infections differs in healthy 

leaves from early stages of disease, before the symptoms are visible. 

  Fungal infections generate changes in S. lycopersicum plants physiology in early phases the 

disease, influencing their optical properties and allowing the use of in situ reflectance 

spectrometry for early detection. 

 The plants disease presence can be accurately determined by means of multivariate calibration 

models of spectral data, based on changes generated by the phytopathogenic fungus in S. 

lycopersicum plants in initial stages in which disease is asymptomatic. 
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1.3 Objective 

1.3.1 General 

Detect in asymptomatic period the vascular wilt in plants from in situ reflectance spectroscopy in model 

Solanum lycopersicum-Fusarium oxysporum. 

1.3.2 Specific 

 Characterize the plants spectral changes in S. lycopersicum infected with F. oxysporum before 

the appearance of visible symptoms using VIS/NIR reflectance spectroscopy. 

 Identify and relate the physiological and spectral responses before occurrence of visible 

symptoms caused by fungal infections in Solanum lycopersicum. 

 Perform prediction models for vascular wilt detection in asymptomatic period of vascular wilt in 

Solanum lycopersicum using Vis/NIR reflectance spectral data. 

1.4 List of academic products 

1.4.1 Articles 

Marín-Ortiz, J. C., Gutierrez-Toro N., Fernandez, V. B., Hoyos-Carvajal, L.M. (2019). Linking 
physiological parameters with visible/near-infrared leaf reflectance in incubation period of vascular wilt 
disease.  Saudi Journal of Biological Sciences. Doi: https://doi.org/10.1016/j.sjbs.2019.05.007 (A1 
Publindex Colciencias: Chapter 2, published, see annex 3) 
 
Marín-Ortiz, J. C., Hoyos-Carvajal, L. M., Fernandez, V. B. (2018). Detection of asymptomatic Solanum 
lycopersicum L. plants infected with Fusarium oxysporum using reflectance VIS spectroscopy VIS. Revista 
Colombiana de Ciencias Hortícolas, 12(2): 436-446. (B Publindex Colciencias: preliminary results, 
published, see annex 1). 

 Marín-Ortiz, J. C., Hoyos-Carvajal, L. M., Fernandez, V. B. (2018). Detection of significant wavelength for 

identifying and classification of Fusarium oxysporum during the incubation period and water stress in 

Solanum lycopersicum plants using reflectance spectroscopy. Journal of Plant Protection Research (A2 

Publindex Colciencias: Chapter 1- accepted, in press, see annex 2) 

 

1.4.2 Academic events 

Marín-Ortiz JC, Hoyos-Carvajal L, Botero V. 2017. Detection of Fusarium oxysporum from asymptomatic 
Solanum lycopersicum L plants by means of reflectance spectroscopy. Agro-Geoinformatics, Fairfax, 
Virginia. EEUU.  
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Marín-Ortiz JC, Hoyos-Carvajal L, Botero V. 2017. Respuestas iniciales de genotipos tolerantes y 
sensibles de tomate al ataque de Fusaruim obtenidas por espectroscopia de reflectancia. Congreso 
nacional de la Sociedad Colombiana de Control de Malezas y Fisiología Vegetal “COMALFI”, Medellín, 
Colombia. 

Marín-Ortiz JC, Hoyos-Carvajal L, Botero V. 2017. Respuestas espectrales ante el estrés biótico y abiótico 
en plántulas de tomate. Congreso nacional de la Sociedad Colombiana de Control de Malezas y Fisiología 
Vegetal “COMALFI”, Medellín, Colombia. 

Da Silva DJ; Marín-Ortiz JC; Pinto Diniz C; De Andrade I; Moraes Samerto ME; De Albuquerque Vieira HL; 
Grattapaglia D; Sonsin-Oliveira J; De Alencar-Figueiredo LF. 2017. Classificação de madeiras comerciais 
com a espectroscopia no infravermelho próximo portátil. Congresso Nacional de Botânica - 36ª Jornada 
Fluminense de Botânica,Centro de Convenções Sul América, Rio de Janeiro, Brasil. 

Pereira Quintino D., Marín-Ortiz J.C., De Oliveira Soares W.R., Batista Pinho D., Corrêa Café Filho A., De 
Alencar-Figueiredo LF. 2017. Identificação de espécies de Colletotrichum utilizando a espectroscopia no 
infravermelho próximo portátil. 23º Congresso de Iniciação Científica da Unb e 14º do DF, Brasilia, Brasil. 

 

Da Silva D.J., Marín-Ortiz J.C., Silva Carvalho M., Diego Knop H., De Alencar-Figueiredo L.F. 2017.  
Classificação de famílias de briófitas das três divisões Anthocerotophyta, Bryophyta e Marchantiophyta 
usando a espectroscopia no infravermelho próximo portátil. 23º Congresso de Iniciação Científica da 
Unb e 14º do DF, Brasilia, Brasil. 
 

Pereira Quintino D., Marín-Ortiz J.C, Gerard Miller R.N., De Alencar-Figueiredo L.F. 2017. Discriminação 
das variedades de banana Cavendish (Musa acuminata, cv. Cavendish Grande Naine) e Calcutta 4 (Musa 
acuminata subsp. burmannicoides var. Calcutta) usando a espectroscopia do infravermelho próximo 
portátil. 23º Congresso de Iniciação Científica da Unb e 14º do DF, Brasilia, Brasil. 
 
Da Silva D.J., Marín-Ortiz J.C., Diniz C., De Andrade Sá I., Moraes Samerto M.E., De Albuquerque Vieira 
H.L., Grattapaglia, D., Sonsin-Oliveira J., De Alencar-Figueiredo L.F. 2017. Discriminação de madeiras 
comerciais utilizando um espectrômetro portátil. 23º Congresso de Iniciação Científica da Unb e 14º do 
DF, Brasilia, Brasil. 
 
1.4.3 Projects derived from this investigation 

2017-2018. "Detección temprana de la marchitez vascular en plantas mediante espectroscopia de 
reflectancia en el modelo Solanum lycopersicum-Fusarium oxysporum". Financiado por la 
convocatoria nacional para el apoyo a proyectos de investigación y creación artística de la Universidad 
Nacional de Colombia 2017-2018. Función: Co investigador – Estudiante de doctorado. 
 
2015-2016. Detección temprana e identificación de enfermedades bacterianas en plantas usando 
espectroscopia in situ. Financiación por la convocatoria del programa nacional de proyectos para el 
fortalecimiento de la investigación, la creación y la innovación en posgrados de la universidad Nacional 
de Colombia. Función: Co investigador – Estudiante de doctorado. 
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1.4.3 Doctoral internship 
 
2016. Botanic department of Brasilia University, Brazil. Doctoral internship director: professor Lucio 
Flavio de Alencar Figueiredo (PhD). Aims: I) Design and installation of experiments, II) Spectral data 
collection with different spectroscopy, III) analysis of plants spectral data subjected to fungal, viral and 
nematoid diseases. Duration: 6 months. 
 

1.5 Introduction references 
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Chaerle L, Van Der Straeten D. 2000. Imaging techniques and the early detection of plant stress. Trends 
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CHAPTER 2. DETECTION OF SIGNIFICANT WAVELENGTHS FOR 
IDENTIFYING AND CLASSIFYING Fusarium oxysporum DURING 

THE INCUBATION PERIOD AND WATER STRESS IN Solanum 
lycopersicum PLANTS USING REFLECTANCE SPECTROSCOPY 

 

ABSTRACT 

Spectroscopy has become one of the most used non-invasive methods to detect plant diseases before symptoms 
are visible. In this study, it was possible to characterize the spectral variation in leaves of S. lycopersicum L. infected 
with F. oxysporum during the incubation period. It was also possible to identify the relevant specific wavelengths in 
the range of 380-1000 nm that can be used as spectral signatures for the detection and discrimination of vascular 
wilt in S. lycopersicum. It was observed that inoculated tomato plants increased their reflectance in the visible 
range (Vis) and decreased slowly in the near infrared range (NIRs) measured during incubation, showing marked 
differences with plants subjected to water stress in the Vis/NIR. Additionally, three ranges were found in the 
spectrum related to infection by F. oxysporum (510nm-520nm, 650nm-670nm and 700-750nm). Linear 
discriminant models on spectral reflectance data were able to differentiate between tomato varieties inoculated 
with F. oxysporum from healthy ones with accuracies higher than 70% 9 days after inoculation. The results showed 
the potential of reflectance spectroscopy to discriminate plants inoculated with F. oxysporum from healthy ones as 
well as those subjected to water stress in the incubation period of the disease. 

Keywords: plant diseases, vascular wilt, hyperspectral reflectance, relevant specific wavelength, band selection 

2.1 Introduction 

Remote sensing and nearly sensing methods, like multi or hyperspectral sensors, have been widely 

applied in agriculture, livestock, industries, and even some sectors of pharmaceutical and human 

medicine (Huang et al. 2007; Hatfield et al. 2008; Berzaghi and Riovanto 2010; Teixeira et al. 2013; 

Ciurczak and Igne 2014). Additionally, remote sensing technology provides an alternative method that is 

unbiased and automatic for visual evaluation of plant diseases (Mahlein et al. 2012), even in the early 

stages of evolution when the symptoms are not visible (Khaled et al. 2018).  

After symptom expression of a plant disease, the disease can be verified through detection techniques. 

Detection techniques of plant diseases that are currently available can be divided into four groups: 1) 

serological methods: Flow Cytometry, Enzyme Linked Immunosorbent Assay (ELISA) and 

immunofluorescence, 2) "Purely molecular" methods: Fluorescent In Situ Hybridization (FISH), 

Polymerase Chain Reaction (PCR) and DNA Arrays, 3) Disease detection based on biomarkers: Profiles of 

Metabolites in the Gas Phase and Profiles of Plant Metabolites, 4) Disease detection based on plant 

properties and stress, which includes: imaging techniques (hyperspectral and fluorescence images) and 

spectroscopic techniques (Vis/NIR), infrared (NIR), fluorescence and multispectral bands (Sankaran et al. 
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2010). In recent decades, research in this last group of technology has led to the development of 

methods based on spectroscopy for the detection of diseases and stress in plants. These methods are 

faster, non-destructive, sensitive and selective for detection of disease during its incubation phase. 

These techniques are based on measuring the amount of radiation reflected on a surface in function of 

the wavelengths to produce unique reflectance spectra for each material. These spectra can be used as 

a "fingerprint" (spectral signature), since they sense healthy and diseased plants in different states of 

evolution, even in cases when the symptoms of the disease are not yet visible (Zhang et al. 2003; Huang 

et al. 2004; Larsolle and Muhammed 2007; Mahlein et al. 2010; Marin-Ortiz et al. 2018). Characteristics 

of spectral radiation, reflected, transmitted or absorbed by the leaves, can provide a deep 

understanding of the histological, physiological and biochemical responses to growth conditions and 

adaptations of plants to the environment. However, because of increased interest in remote sensing, 

leaf reflectance has been studied more than absorbance and transmittance as stress responses in plants 

(Gregory et al. 2001).  

The efficiency of measuring spectral reflectance for detection of diseases is based on the identification 

of the most significant spectral wavelength, which is highly correlated with a specific disease (Song et al. 

2011; Mahlein et al. 2013), since it is found in only some regions of the electromagnetic spectrum of 

interest. Jacquemoud and Ustin (2001) divided the spectral range from 400 nm to 2500 nm into three 

large bands. The first is the Vis range (~380-750 nm), in which photosynthetic pigments have a greater 

impact on spectral signature, characterized by low reflectance values and a maximum peak located ~ 

550 nm. The second one includes the near infrared plateau (750-1100 nm), a high reflectance spot due 

to multiple dispersion within the leaf in relation to the fraction of air spaces within the tissue (internal 

structure) and/or its water content. Finally, the third one includes near infrared (1100-2500 nm), which 

is a low reflectance zone, due to high absorption of water mainly in tissues such as fresh leaves and dry 

matter. 

Significant wavelengths have been identified as a base to develop many Spectral Vegetation Indices 

(SVE) (Robert et al. 2011), as well as a method to detect and analyze changes in physiological and 

biochemical parameters in plants (Merzlyak et al. 2003a, 2003b; Gitelson et al. 2007). However, it is not 

possible to perform a quantitative definition or identification of a particular disease based on common 

SVEs because the method lacks specificity for diseases (Mahlein et al. 2013). Therefore, it is necessary to 

determine the Relevant Specific Wavelengths (RSW) for the construction of Spectral Disease Indices 
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(SDI) that can be used to simplify the detection of diseases by spectral sensors, since each disease 

uniquely influences the spectral signature in a characteristic way.  

In this research, we conducted experiments under semi-controlled conditions to identify important 

spectral wavelengths for the early detection of F. oxysporum in tolerant and susceptible plants of 

Solanum lycopersicum L. This organism model is widely accepted for the study of pathogenicity in plants 

(Baayen et al. 2000). First, we carried out a characterization of spectral variation in leaves of S. 

lycopersicum infected with F. oxysporum during the incubation period of the disease and subjected to 

mild water stress. Then we identified RSW on 380-1000 nm that could be used for detection of spectral 

signatures in S. lycopersicum plants infected with F. oxysporum before the expression of visible 

symptoms. Finally, we tested or discriminated infected S. lycopersicum plants with F. oxysporum from 

healthy plants as a test of the RSW identified in the previous step.  

 

2.2 Materials and Methods 

2.2.1 Biological material 

The plants used in this study were maintained under semi-controlled greenhouse conditions, located at 

the National University of Colombia Medellín (Antioquia, Colombia). Average temperatures ranged from 

18 and 24°C, relative humidity between 60 and 70%, and there was a photoperiod of 12 hours during 

the experiments. In this study was used two tomato cultivars, Ponderosa, which is susceptible to all 

races of F. oxysporum (Reis and Boiteu 2007), and the Santa Cruz, which is resistant to races 1 and 2 

were used. The seeds were planted in germination trays of 86 wells with sterile peat as a substrate and 

kept in the greenhouse for the duration of the respective experiments. The plants were irrigated daily, 

fertilized once a week with a nutritious solution (Annexed 4) and a protective action fungicide was 

applied every 7 days, starting when the plants were 7 days old, according to the management plan. After 

4 weeks of germination, the inoculation procedure was carried out and individual plants were placed in 

900 cm3 plastic cups containing the same substrate as that used to plant the seeds. In this study, five 

treatments were evaluated: (I) tomato plants var Ponderosa inoculated at 4 weeks after germinating 

with a pathogenic strain of F. oxysporum (Fo5), (II) healthy plants var Ponderosa submitted to hydric 

stress sustaining 60% of field capacity, (III) healthy plants (var. Ponderosa) and substratum maintained 

with 100% field capacity as control treatment, (IV) plants of tomato var. Santa Cruz infected with Fo5, 

(V) healthy plants (var Santa Cruz) and substratum maintained at 100% field capacity. The plants 

subjected to these treatments were kept under almost the same conditions as the greenhouse during 
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the rest of the experiment. Fertilization with nutritious substances was increased to twice every week. F. 

oxysporum Fo5 was isolated from Passiflora edulis (passionfruit), which is hyghly pathogenic on tomato 

plants (Marin et al. 2018). This strain has an incubation period of 24 dpi on tomato plants. 

2.2.2 Inoculation 

Four-week-old tomato plants inoculated according to the modified procedure described by Ortiz and 

Hoyos (2016) with a suspension of spores of isolate Fo5. Ten milliliters of spore suspension of F. 

oxysporum were prepared in distilled water. The concentration of the spore suspension used was 1x106 

spores/ml. The tomato seedlings were removed gently from the nurseries and the roots were washed 

with tap water to remove the remains of peat. Then wounds (cuts) were made on the secondary roots 

of all the plants with a sterile scalpel and only the roots were immersed in 15 ml of the solution of 

distilled water and spores for 20 minutes. The same procedure performed on the inoculated plants. The 

control plants inoculated only with distilled water, and subjected to water stress. The seedlings 

submitted to the different treatments transplanted to the vessels with sterile peat of 900 cm3. To verify 

the efficiency of the inoculation (postulate three of Koch), a cross section from the neck of roots from 

five plants of each treatment was made (days 0, 12 and 24 dpi). The tissue was disinfected and diluted in 

distilled sterilized water 1:10 (w/v). The homogenized solution (100 uL) was placed on PDA + malachite 

green oxalate supplemented with 200 ppm chloramphenicol. During the first 4 days after sowing, 

observations made under a microscope and the F. oxysporum colonies that grew in the medium counted 

according to the following formula: 

# Conidia / gram of plant 
𝐶𝑜𝑙𝑜𝑛𝑖𝑒𝑠

𝑃𝑙𝑎𝑛𝑡𝑖𝑛𝑔𝑣𝑜𝑙𝑢𝑚𝑒+𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛𝑓𝑎𝑐𝑡𝑜𝑟
 

2.2.3 Spectroscopy 

For the acquisition of Vis/NIR reflectance spectra, a HR2000 portable spectroscope (Ocean Optics, USA) 

with a tungsten halogen light source HL-2000-HP (wavelength range of 360-2400 nm), a diffuse 

reflectance standard model WS-1 (reflectivity> 98% in the range of 250-1500 nm) and a 600μm premium 

grade reflectance probe QR600-7-VIS-125F were used. The measurements were made with the optical 

fiber attached to the adaxial surface of the leaf, in which five spectra acquisition were taken for each 

leaf. Different parameters required for spectrometer calibration, such as integration time, average 

readings per measurement and interval time were determined at the beginning of the experiments. 
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2.2.4 Pathogenicity test 

Destructive samplings were executed to confirm plant infection at 24 days post infection in the following 

way: a cut of 1 cm was made from the neck of the stem of each plant and each segment was cut into 

five equal parts, approximately 2mm long each. Then, the segments disinfected in 70% alcohol, 2% 

sodium hypochlorite and water. Finally, the five cuts of the stem of each plant were placed in Petri 

dishes with PDA medium + 300 ppm of Gentamicin. Seven days after sowing the five stem segments, 

each Petri dish and stem segment observed for the presence and growth of the pathogen.  

2.2.5 Data analysis  

The results obtained in this work are presented as a function of the treatment realized in two tomato 

varieties infected with a strain of F. oxysporum, and subjected to water stress, and their respective 

controls, through the incubation period of the disease (before the appearance of visible symptoms). 

Each treatment has 30 plants and the same to control. A comparison of the effects caused by the 

treatments was carried out on leaves in the same stage of growth and development. Spectra 

acquisitions were carried out every three days from the infection of plants in five places of the second 

leaf of each plant. Due to this design, we collected six groups of data with 150 spectra each (30 leaves 

per treatment and control plant), for each sampling day (900 spectra/day of sampling), and 1800 spectra 

total. For the analysis, we use all the individual spectra from each sheet (It not their averages) 

Initially, a spectra selection was made to remove noise, either by being deformed and/or with reading 

error. The spectra that showed very different patterns confirmed with analysis of "outliers" identified in 

a Principal Component Analysis (PCA) without prior data treatment. After the elimination of the spectra 

with noise and previous treatments, several types of transformations applied to reduce the impact of 

the difference in illumination, cultivar of the plant or specific effects of the sensor. After several 

analyses, the standard normal variate transformation (SNV) was chosen as the best pre-treatment that 

allow a good grouping of the plants through the treatments, reducing spectral noise and eliminate 

background effects of Vis/NIR data. After performing the pre-treatment of raw data, an analysis of the 

variance was made from the absolute differences between the reflectance means of the plants of S. 

lycopersicum (two varieties) subjected to biotic stress (infected with F. oxysporum) and abiotic (water 

stress) with healthy plants, and standard deviations of reflectance. Subsequently, a binary classification 

of healthy leaves and diseased plants was made to test the detection and the later classification of 

disease by RSW. To reduce the information of the measured spectrum and obtain these RSW to 
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separate diseased and healthy plants, the RELIEF algorithm was used (Robnik-Šikonja and Kononenko 

2003). Finally, the RSW identified in the previous step were used to perform Linear Discriminant Analysis 

(ADL) in order to characterize or separate tomato plants subjected to biotic stress (infected with Fo5) 

and abiotic (hydric stress) during the incubation period of disease. All statistical analyses were 

performed using R Software. The main libraries and functions used summarized in Table 1. 

Table 1. Description of the main analyses used with the R software 

Analysis Library Function Description 

Pre  
processing 
 

 mdatools, 
prospectr 

prep.snv, 
gapDer 

Standard normal variate (SNV) and second derivatives of 
different orders 

Detection and 
elimination of 
extreme points  

 mvoutlier, 
rrcov 

pcout, 
PcaHubert 

Fast algorithm to identify multivariate outliers in high 
dimensionality data, using the Filzmoser algorithms 
(Maronna and Werner 2007), and ROBPCA (Hubert et al. 
2005) 

Data visualization 
 

mdatools, 
ggplot2  

mdaplot, 
ggplot, plot 

Functions used for data visualization (scatter plots, bars, 
histograms) 

Selection of LOE dprep relief This function implements the RELIEF feature selection 
algorithm (Kira and Rendel 1992) 

Discrimination of 
treatments MASS lda, predict 

Functions used to calculate linear discriminant analyses 
and matrices of confusion 

 
2.3 Results 

 

2.3.1 Variation of spectral signatures 

 
The Figure 1 show Changes in treatments analyzed as absolute differences between statistical average 

reflectance of infected plants and subjected to biotic stress, less the reflectance of no infected plants. 

Difference in reflectance increased with F. oxysporum colonization on two tomato cultivars evaluated 

(380-750 nm) 21-24 days post infection (dpi). On these days, the susceptible cultivar displayed changes 

at same time as visible alterations or symptoms occurred, while the tolerant plants revealed slight 

differences in spectra, and there were no visible symptoms of disease. In the infrared (750-1000 nm) the 

reflectance showed a sustained increase in the difference of the tolerant cultivar with their respective 

healthy controls until 21 dpi, decreasing markedly 24 dpi. In the susceptible cultivar, there was an 

increase 12 dpi and, then fell. Taking into account the standard deviations, it can be affirmed that only 

the mean varied, but there was no disparity in the dispersion of the data in each treatment. The highest 

differences on reflectance were on limit of red (750 nm), usually after the first week of infection. 

Besides, plants with water stress displayed different patterns, with a lack of reflectance from the first 
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week on visible and NIR, 750-1000 nm being the region with a high difference of reflectance, during 

which the assessment standard deviation was kept constant.  

 

Figure 1. Differences between the average reflectance (____) and standard deviation of tomato leaves 
subjected to both types of stress compared to healthy controls: infected with F. oxysporum and 
subjected to water stress (--- standard deviation on control plants, _ _ _ standard deviation on 
treatment). 

2.3.2 RSW for detection and classification of plants subjected to two types of 
stress 

Since vascular wilt is a systemic disease in tomato plants, a binary classification of healthy leaves and 

diseased plants was made to test the detection and subsequent classification of the disease by SRW. To 

reduce the information of the measured spectrum and obtain these RSW the RELIEF algorithm was used 

to separate diseased and healthy plants (Fig. 2). 

On day 0 (plants without infection and without water stress) weights for wavelengths were constant and 

close to "0" for the two types of stress evaluated in the measured range, without highlighting any 

relevant RSW (Fig. 2A and 2F). The specific wavelengths relevant to infection by F. oxysporum (biotic 

stress) were 510-520 nm, 650-660 nm and 750 nm, clarifying that the ranges of 510-520 nm, 650-660 

nm were relevant from 3 dpi (Fig. 2B), while the wavelength of 750 nm began to be important 
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approximately 9-12 dpi (Fig. 2C and 2D). No RSW was observed in plants subjected to biotic stress in the 

infrared range measured (750-1000 nm).  

The scores of these RSW increased with the period of incubation of the disease in the plant, but 

decreased markedly in the susceptible cultivar to 24 dpi (their weights tended to be constant), when the 

symptoms were observed on them, whereas the RSW in the tolerant plants continued with the same 

pattern observed during the previous days (Fig. 2E). The RSW for plants subjected to water stress were 

750 nm and the range 900-950 nm, was observed after 18 dpi (Fig. 2I and 2J). 

 
Figure 2. Relevant specific wavelengths for the two tomato varieties during the incubation period of F. 
oxysporum infection (A-E): 0 dpi (A), 3 dpi (B), 12 dpi (C), 21 dpi (D) and 24 dpi (E); Tolerant cultivar 
(dashed line) and susceptible cultivar (solid line). The LOER for the susceptible cultivar of tomato 
subjected to water stress illustrated in F-J.  

The RSW with scores greater than 0.1 that selected after analysis with the RELIEF algorithm are 

summarized in Table 1. 
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Table 2. Relevant specific wavelengths (nm) selected for the detection and classification of plants of 
both tomato varieties (tolerant and susceptible) subjected to two types of stress, biotic (F. oxysporum - 
Fo5, during the incubation period) and water stress (ws). 
 

  
 
Biotic Stress (Fo5) Abiotic Stress (ws) 

Dpi Tolerant 
 
Susceptible 

 
Susceptible 

0 - - - 

3 510 520, 650 - 

6 510, 550, 710 520, 650 - 

9 650, 760 520, 650 - 

12 510, 650, 750, 880 510, 660 - 

15 650, 740, 890 510, 650 - 

18 - - 750, 900 

21 510, 650, 770 510, 660, 710 750, 950 

 

2.3.3 Classification of tomato plants infected with F. oxysporum  

Table 3 summarizes classification percentages of plants compared to their healthy controls during the 

incubation period of disease; this figure summarizes confusion tables in Linear Discriminant Analysis 

(LDA) using the RSW selected with the RELIEF algorithm. The tolerant cultivar of tomato infected with F. 

oxysporum exhibited a progressive increase in the classification percentage compared to its controls 

since infection, reaching the highest value (92.76%) 12 dpi and maintained little variation until 24 dpi. 

Otherwise, susceptible tomato plants showed intermediate values of correct classification, between 

68% and 72% from 3 to 15 dpi, respectively, abruptly increasing on day 18 from coincident at the same 

time as early visual symptoms with early visual symptoms. Susceptible plants subjected to water stress 

showed a pattern similar to the one described above, maintaining constant classification percentages 

between 71.00 and 76.00%, but increasing rapidly on day 15 and reaching 93.00% to 21 dpi. 

Table 3. Temporal variation on classification percentage for plants subjected to biotic stress (Fo5) and 
abiotic stress (ws) 

 Days post infection 

Cultivar/stress 0 3 6 9 12 15 18 21 

Tolerant / infected with F. oxysporum  60.5 70.0 80.3 87.5 92.7 92.3 86.0 90.2 

Susceptible / infected with F. oxysporum  62.4 68.0 68.9 69.8 69.4 72.1 70.9 90.0 

Susceptible / subjected to water stress 64.5 71.2 74.0 75.0 75.7 72.0 89.6 93.00 

 



 

 

15 
 

 

 

Histograms for each group in the first discriminant dimension were made to visualize post-infection 

during 24 dpi, when the separation of the groups of plants can be observed compared to their 

respective controls (Fig. 3). Tolerant tomato plants infected with F. oxysporum are clearly discriminated 

from control plants from 12 dpi (Fig. 3A). In addition, the plants of the susceptible cultivar achieved an 

acceptable classification after 12 dpi (Fig. 3B), although it was appreciably lower than the previous 

treatment. Regarding plants subjected to water stress, it should be noted that the water deficiency to 

which they were subjected was slight (field capacity at 60%), so a classification percentage >85% was 

observed for 18 and 21 dpi (Fig. 3C). 

 

Fig. 3. Histograms for the first linear discriminant dimension of two tomato varieties infected with F. 
oxysporum -tolerant (A), susceptible (B) -, and subjected to water stress (C), on different post infection 
days. Red: Plants subject to biological or water stress; green: control plants (Wavelengths, selected with 
RELIEF algorithm, were 510nm, 650nm and 750 nm on data from plants infected with F. oxysporum; 
750nm and 950nm for data on plants subjected to water stress). 

2.4 Discussion 

Spectral reflectance analyses are useful for detecting different types of biotic and abiotic plant stress 

due to changes in the light absorption incident in the Vis/NIR range of the electromagnetic spectrum 

(Sankaran et al. 2010; Khaled et al. 2014). Additionally, the relationships between the physiological, 

histological and biochemical changes generated in the plant by different pathogens affect the spectral 
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characteristics and can be detected before the expression of symptoms in the Vis/NIR regions. Currently 

there are few studies dedicated to the S. lycopersicum-F. oxysporum pathosystem specific using the 

reflectance spectroscopy technique focused on the early detection of the disease (Salman et al. 2012; 

Abu-Khalaf 2015; Marín et al. 2018). However, these did not investigate in depth early detection during 

the incubation period or the search for LOER related with disease. 

The data variance set analyzed from the absolute differences between the reflectance means of S. 

lycopersicum plants subjected to stress by F. oxysporum (biotic) and water stress (abiotic) with healthy 

plants agrees with the theoretical basis proposed by Zhang et al. (2003). This is a basis for the use of 

spectroscopy in the discrimination of different forms of stress in plants, which suggests that the wave 

magnitude will typically vary in different lengths, increasing the reflectance in the Vis range and 

decreasing in the NIR (750-1100 nm) on plants infected with pathogens. This is possible due to the 

specific interaction of the light with different photosynthetic pigments of the plant. In the Vis light 

range, there are mainly transition processes, in which the atoms of the pigments absorb visible photons 

of light and can excite one of their electrons at higher energy levels. The region of the infrared (IR) 

generates a specific vibration of the molecules chemical bonds , and as the energy to excite an electron 

in a specific atom is constant, the energy to change the vibration of a particular chemical bond is also 

fixed (Weiner and Ping-Tong 2003). As each link is different, each one has a different way of vibrating, 

varying the percentage of absorbance and reflectance in each wavelength, so it is possible to carry out 

characterizations about of organic structure in different applications. 

During the incubation period of the disease the difference of reflectance values in tomato varieties 

evaluated (tolerant and susceptible) fluctuated between 380 and 750 nm compared to the positive 

controls (Dif = λFo5 - λCON), indicating higher values in the reflectance of infected plants in this spectral 

range. This increase in reflectance in the Vis range (decrease in absorbance) suggests that the content of 

the different photosynthetic pigments is lower in leaves of infected plants rather than the healthy ones 

(Carter and Knapp 2001). This fact is related to physiological responses against stress produced by 

reported pathogens (Berger et al. 2007). On the other hand, the small differences between plants 

infected with Fo5 and their controls, in the range of 750-1000 nm, may indicate a minor disturbance in 

the hydric state of the leaves infected (Genc et al. 2013; Jin et al. 2077).  These results contrast with the 

strong decrease in reflectance in plants subjected to water stress in the same range, from the start of 

data collection (day 3 of the beginning of the stimulus) to the death of the leaf (day 24), suggesting a 

strong relationship between water reduction in leaf tissues and wavelengths in this spectral range. 
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Additionally, plants with an increasing level of water deficiency showed a decrease in the reflectance, 

which has also been observed in plants with a decrease in the relative water content of the leaf and 

response to some organic compounds (Zhang et al. 2012; Genc et al. 2013). 

This study provides evidence regarding the finding of specific wavelengths more relevant to vascular wilt 

in tomato plants caused by F. oxysporum that can help to improve the detection and discrimination of 

asymptomatic infected plants and water stress from hyperspectral data. These RSW are characterized by 

having high sensitivity and specificity in the pathosystem studied and can be used in the future to make 

definition indices that incorporate two or three bands of the spectrum in the Vis/NIR range. In general, 

the method most commonly used to detect RSW for the development of disease indices is by correlation 

with biophysical or biochemical traits (Hatfield et al. 2008). However, the use of the RELIEF feature 

selection algorithm offers many advantages, since it works with non-linear classes and efficiently 

separates the classes by performing an iterative process. In this process, each iteration of a "X" instance 

of the data set is chosen randomly and the weight of each characteristic becomes updated according to 

the distance from "X" to the nearest instance of the same class ("NearHit"), and in turn to the nearest 

instance of a different class ("NearMiss"). Finally, all the data are added in a class (Kira and Rendel 1992; 

Kononenko et al. 1997). 

The detection of a specific relevant wavelength range around 510-520 nm for tomato vascular wilt 

caused by F. oxysporum coincides with the maximum absorbance peak of the carotenoids (Zur et al. 

2000; Merzlyak et al. 2003). In plants, carotenoids fulfill different functions, mainly as light-gathering 

molecules and photoprotection (Demmig-Adams et al. 1996). Additionally, others studies show that 

carotenoids play a key role in the adaptation of plants to mild stress and other unfavorable factors 

(Strzalka et al. 2003). The majority of specific wavelengths relevant to the pathosystem S. lycopersicum-

F. oxysporum was found in the range of 650-750nm, which is an absorption region for groups of 

molecules that have oxygen, mainly water and free -OH alcohol (possibly phenols). The phenols are the 

result of the secondary metabolism of plants, crucial for the functional aspects in the life of the same, 

with different functions as protector against pests, environmental stress and pathogens. This result can 

be related with an importance of the reflectance near 700 nm as a fundamental characteristic of green 

vegetation produced by a balance between biochemical and biophysical characteristics of plants 

(Gitelson and Merzlyak 1996, 1997). It has been observed that the displacement towards the blue of the 

red edge of the reflectance curve frequently accompanies the stress generated by pathogens in plants, 

whereby it could be used in the early detection of diseases, since an increase in reflectance around 700 
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nm can be a first indicator to detect cultures infected by pathogens. However, this relevant wavelength 

(700nm) is not specific to a disease, since in plants there can be an overlap with important nearby 

wavelengths, like 680nm, which is related to the chlorophyll content. With respect to water stress, there 

are decreases in reflectance in the Vis/NIR, which becomes more evident after the 15th day, considering 

that the plants were subject to 60% field capacity, which can be considered as a slight stress in the state 

of development of the plants. These RSW were present in the near-infrared region in which the main 

information is generated regarding the water absorption of the leaf (760-1100), with peaks in the ranges 

750-760nm and 900nm-960nm. Water absorption characteristics, as a result of absorption by O-H 

bonds, can be found at approximately 760 nm, 970 nm, 1200 nm, 1450 nm and 1950 nm (Li et al. 2006). 

It is important to note the lower magnitude on the reflectance spectra obtained in the plants of the 

tolerant cultivar. These results in the region suggest greater photosynthesis and subsequent synthesis of 

different types of polysaccharides compared to susceptible plants. In vitro studies from the 1980s and 

1990s showed that tolerant phenotypes infected with F. oxysporum generated high contents of 

polysaccharides and callose, and induction of peroxidase, phytoalexins synthesis and inhibition of 

pathogens in dual crops (Storti et al. 1989). In contrast, moderately tolerant phenotypes had lower 

polysaccharide content and showed no hypersensitivity reaction when treated with the pathogen. The 

authors proposed that the presence of high levels of polysaccharides in incompatible interactions 

generally should be considered as evidence of direct inhibition of the fungus by these compounds and 

with their recognition by the plant, limit their defensive factors. 

Our results support the hypothesis that the differences in spectral responses during the incubation 

period of the disease of evaluated cultivars (susceptible and tolerant) are due to physiological changes 

generated in the plant-pathogen recognition process and the generation of polysaccharides important 

to inhibiting the pathogen. These changes at different times of the incubation period may cause 

differences at the time that make it possible to discriminate each cultivar with percentages of 

classification greater than 80%: 9-12 dpi (tolerant) and 18-21dpi (susceptible), under these particular 

test conditions. The colonization of susceptible and tolerant plants is systemic and similar in terms of the 

amount of inoculum used for both. In tolerant plants, pathogen recognition occurs quickly and therefore 

important compounds are synthesized to suppress growth and spread of the pathogen. In contrast, 

susceptible plants have delayed responses. The plants respond to the invading pathogen with physical 

barriers, producing depositions in the cell walls, blockages of the xylem vessels, and by chemical 

defense, synthesizing antimicrobial substances (Fradin et al. 2006; Cregeen et al. 2015). The different 
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physical and chemical responses to the pathogen by the susceptible and tolerant varieties generate 

spectral changes that can be detected in real time with spectroscopic techniques and different types of 

multivariate analysis. 

The ability to identify healthy tomato plants and those infected with F. oxysporum, or subjected to water 

stress with RSW seems to have been demonstrated in this work, although it is important to remember 

that other factors could also have an impact on the development of the disease, since the plants were 

maintained under semi-controlled conditions. There were varying percentages of success in the 

classification by increasing time after infection of the plant. Values between 85% -93% were reached in 

the varieties evaluated (although at different dpi). Previous studies on the detection and classification of 

plant diseases using Vis/NIR spectroscopy and different multivariate analysis techniques (including the 

Linear Discriminant Analysis, Partial Least Squares and Regression by Main Components) have shown 

percentages in the classification accuracy greater than 80% in a wide cultivar of pathosystems, such as 

Wheat-Yellow Rust (90.0%), Cotton-Verticillium (82.4%), GLAVV-Vid-virus (81.0%), Tomato-F. oxysporum 

(85.0%-100%), Tomato-Ralstonia solanacearum (85.0%), Palm oil-Ganoderma Boninense (92%), Sugar 

beet-Uromyces betae (80.3%), Sugar beet-Cercospora (85%), Citron-Candidatus liberibacter americanus 

(Lam) (80%-90%), among others (Mahlein et al. 2013; Abu-Khalaf 2015; Alfadhi et al. 2017; Marin-Ortiz 

et al. 2018). 

Even though of an appreciable amount of research has focused on the detection and classification of 

plant diseases using reflectance spectroscopy in the Vis/NIR as well as on the use of multivariate 

techniques for the analysis of high dimensionality data matrices, more detailed research is needed in the 

search for WSR. These subsequent specific indexes and analysis of data could be used for detection and 

early discrimination of systemic diseases in plants. 

2.5 Conclusions 

Plants of S. lycopersicum infected with F. oxysporum presented a clear spectral response compared to 

their respective controls, increasing their reflectance in the Vis and decreasing slowly in the NIRs 

measured (750nm-1000nm) during the incubation period of the disease. The tomato varieties evaluated 

(tolerant and susceptible) presented the same pattern of response in the the part of Vis/NIR range 

evaluated, but with a delay of the tolerant cultivar, mainly in regard to the decrease of reflectance on 

the measured infrared region. Traditionally vascular wilt has been related to the death of the plant due 

to hydric stress, caused by the plugging of vascular bundles, which prevents the flow of water in the 
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plant and causes its death in advanced stages of the disease. These results showed marked differences 

in the plants subjected to water stress in the Vis/NIR, which suggests that there are different 

physiological and structural response mechanisms to the two types of stress during the incubation 

period in which the symptoms are not visible. 

The RSWs related to infection by F. oxysporum were found in the Vis range, which suggest changes in 

photosynthetic pigments in plants as a response to the pathogen, probably by variation in carotenoids 

(510nm-520nm range), Chlorophyll a (650nm-670nm range), and some groups of molecules that have 

oxygen, mainly water and free -OH alcohol (700-750nm range). Otherwise, the RSW related to water 

stress which were found (750nm, 900-960nm) were in the near-infrared range measured, in which the 

main information is generated regarding water absorption of the leaf (760-1100), suggesting high 

specificity and sensitivity to detect and discriminate F. oxysporum infection from hydric stress in tomato 

plants in the asymptomatic stage of the disease. However, it is important to highlight the importance of 

performing comparative studies with specific indices developed from RSW for different diseases and 

other indexes proposed in current literature, in order to evaluate the specificity and sensitivity of the 

wavelengths found in each type of infection. 

The detection of the disease in tomato plants had a correct classification greater than 70%. Linear 

discriminant models on spectral reflectance data were able to classify plants infected with F. oxysporum 

from no infected ones with high precision (85% -93%), due to minor changes in the reflectance of 

diseased leaves at this stage. This study showed that the discrimination of systemic diseases in early 

infection stages is possible, but remains a challenge.  Therefore, future research is required to provide 

additional information about factors that affect the spectral response in plants, such as differences 

between plant varieties, responses to various environmental conditions and nutritional considerations.  
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CHAPTER 3. LINKING PHYSIOLOGICAL PARAMETERS WITH 
VISIBLE/NEAR-INFRARED LEAF REFLECTANCE IN THE 
INCUBATION PERIOD OF VASCULAR WILT DISEASE 

 

ABSTRACT 

The photosynthetic pigments are mainly responsible for absorbing the light intended to promote photosynthesis 
on the chloroplast of the leaves. Different studies have related the spectral response in the leaves of plants with 
the biotic stress generated by pathogens. In general, maximum differences in reflectance have been found in the 
range of 380-750nm between plants subjected to biotic stress and healthy plants. In this study, it was possible to 
characterize and relate the spectral variance in leaves of S. lycopersicum infected with F. oxysporum with this 
physiological variation and pathogen concentration in tomato plants during the asymptomatic period of vascular 
wilt. Photosynthetic parameters derived from gaseous exchange analysis in the tomato leaves correlated related 
with four bands in the visible range (Vis). Additionally, five specific bands also present a high correlation with the 
increase in the concentration of F. oxysporum conidia measured at the root: 448-523nm, 624-696nm, 740-960nm, 
973-976nm, and 992-995nm. These wavelengths allowed a 100% correct classification of the plants inoculated 
with F. oxysporum from the plants subjected to hydric stress and the control plants in the asymptomatic period of 
the disease. The spectral response to biotic and abiotic stress in the measured Vis/NIR range can be explained by 
the general tendency to change the concentration of chlorophyll and carotene in tomato leaves. These studies also 
highlight the importance of the implementation of robust multivariate analysis over the multiple univariate 
analysis used in the applied biological sciences and specifically in the agricultural sciences. These results 
demonstrate that specific wavelength responses are due to physiological 
changes in plants subjected to stress, and can be used in indexes and algorithms applied to the early detection of 
diseases in plants on different pathosystems. 
 
Keywords: plant diseases; vascular wilt; reflectance spectroscopy; multivariate analysis; early detection; plant 
physiology. 

3.1 Introduction 

Fusarium oxysporum (Schltdl. 1824) is a widely accepted model organism in studies for plants 

pathogenicity and one of the most morphologically diverse and widely distributed species of the genus 

Fusarium spp., currently considered as a complex of plant pathogenic fungal species (Baayen et al., 

2000). This species has many pathogenic strains that parasitize more than 100 plant species named 

formae specialis, causing diseases in specific hosts that have economic importance such as tomato, 

banana, and cotton (Bosland, 1998). 

This fungus is a hemibiotrophous pathogen (Chen et al., 2014). In the biotrophic phase. The fungus 

grows on its host tissues, with the recognition, deposition or contact, adaptation, and inoculation or 

penetration of the infective unit or inoculum as a preliminary stage. Subsequently, colonization occurs in 

a tissue recognized as a susceptible host. The time elapsed between inoculation and the moment of 
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symptomatic expression in the host is called the incubation period, this phase causes difficulties on 

detection of diseases caused by pathogens, since they are asymptomatic in its hosts for a period of time 

without causing visual changes, being foci of infection in natural ecosystems or crops. Once typical 

symptoms appear, observation is the traditional way to detect them. During the asymptomatic stage 

(incubation period) there are several methods that are currently used for the detection of diseases in 

plants, such as the Enzyme-Linked Immunoassay (ELISA) and the Polymerase Chain Reaction (PCR). 

These generally take time, resources and destroy the plant. Despite the availability of these techniques, 

a system of early detection of the disease can help reduce losses caused in crops and prevent a greater 

spread of the disease. A fast and reliable method is needed, with the sensitivity, selectivity and that 

does not require the destruction of samples.  

Indicators of biotic and abiotic stress commonly use the spectral quality of the light absorbed, reflected 

and transmitted by the plant leaves (Sankaran et al., 2010). More specifically, in the past 20 years, 

important advances focused on the application of spectroscopy to the early detection of diseases in 

plants (Khaled et al., 2017). However, as a result of increased interest in remote sensing, the study of 

reflectance deepens more than the absorbance and transmittance in the last decades as responses to 

stress in plants (Gregory et al., 2001). Additionally, the spectral characteristics of the radiation reflected 

by the leaves can provide a frame to physiological responses on plants with different types of pathogens 

(Carter and Knapp, 2001). 

In the latest decades, the development of new equipment and techniques in the application of 

reflectance spectroscopy in early detection of plant diseases also intensified in terms of searching for 

spectral characteristics related to physiological responses (Khaled et al., 2017). These techniques are 

based on measuring the amount of radiation reflected by a surface as a function of the wavelengths to 

produce a unique reflectance spectrum for each material, which can be used as a "fingerprint" (spectral 

signature) that allows to detect infected plants (Zhang et al 2003, Huang et al., 2004, Larsolle and 

Muhammed, 2007, Mahlein et al., 2010). Previous research has related some regions of the visible 

spectrum (400nm-750nm) and the physiological parameters obtained from the classical measurements, 

similar to those obtained from gaseous exchange analysis, and that these are determined for specific 

absorbance-reflectances patterns for the photoactive pigments, mainly chlorophylls, and carotenoids 

(Sims and Gamon, 2002). 
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These two types of pigments are mainly responsible for absorbing the light intended to promote 

photosynthesis in the chloroplast: chlorophylls (“a” and “b”) and carotenoids (alpha-carotene, beta-

carotene and xanthophyll), with chlorophyll being the chromophore biomolecule that intervenes most 

directly in the absorption and conversion of light energy (Azcon, 2008). Consequently, changes in total 

chlorophyll foliar concentration and chlorophyll proportions “a” and “b” are indicators of physiological 

variation due to stress, leaf development, senescence and factors directly related to the primary 

production rate (Blackburn and Ferwerda, 2008). Reflectance in the leaf changes significantly due to the 

stress generated by pathogens at specific wavelengths in the visible range (Vis, 380nm-750nm), and a 

general variation in the far red range (690nm- 720nm) provides an indication of earlier or more 

consistent infection than the reflectance in other regions of the electromagnetic spectrum (Carter, 1994; 

Carter and Knapp, 2001). However, the level at which different pathogens can produce different spectral 

signatures in plants and the degree to which the spectral response to a particular stress factor can vary 

between species, are questions yet still unresolved on many pathosystems due to specificity. 

Based on this, a large number of indexes and algorithms have been developed for the non-destructive 

estimation of chlorophylls and carotenes, which stand on the spectral reflectance in the Vis range in a 

wide cultivar of species, plants and organs (Gitelson et al. , 2002, Gitelson et al., 2003; Merzlyak et al 

2003;. Anatoly et al, 2017. Solovchenko et al, 2005). The detection and discrimination of diseases in 

plants use these indices and algorithms based on specific wavelengths, related to physiological changes 

in plants (Naidu et al., 2009; Song et al., 2011; Zhang et al., 2012; Mahlein et al., 2013). However, the 

mechanisms responsible for close relationships between reflectance and plant physiology at early stages 

of infection, even when symptoms are not visible, need more detailed research. 

The objective of this study was to relate the changes in specific spectral traces present due to the 

invasion of F. oxysporum in tomato, with the invasion of the pathogen in the tissue and associated 

physiological changes, which allow verifying that process of pathogenesis cause specific spectral 

variations. Additionally, since water stress in the plant is one of the consequences of F. oxysporum 

invasion in the tissue, hydric stress and its spectral fingerprint and other parameters were compared 

with infected plants, in order to verify the specificity of the spectral response found with the pathogen.  
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3.2Methodology 

3.2.1 Biological material 

The plants used in this study were maintained under semi-controlled greenhouse conditions, located at 

the Universidad Nacional de Colombia in Medellín (Antioquia, Colombia). The environmental conditions 

presented average temperatures between 18-24 °C, relative humidity between 60-70% and a 

photoperiod of 12 hours during the time the experiments lasted. In this study, the tomato cultivar 

Ponderosa was used. This cultivar is susceptible to all races of F. oxysporum (Reis and Boiteu, 2007). F. 

oxysporum Fo5 strain isolated from Passiflora edulis (passionfruit) was used because it is highly 

pathogenic on tomato plants. This strain showed an incubation period of 24 dpi on tomato plants. The 

maintenance protocol of the plants, the process of pathogen inoculation (Ortiz and Hoyos-Carvajal 

2016), and the infectivity tests were described extensively in previous publications made by our work 

team (Marin et al. 2018). 

3.2.2 Physiological parameters on foliar tissue 

Some important photosynthetic parameters were measured on all plants (infected plants before the 

appearance of disease symptoms, those subjected to hydric stress and controls): the net assimilation 

rate of CO2 (A), intercellular CO2 concentration (Ci), stomatal conductance (gs) and transpiration rate (E), 

using an Infrared Gas Analyzer (ADC Scientific Ltd., model LCi, UK). It was also calculated the intrinsic 

water use efficiency (A/gs), transpiration efficiency (A/E) and the ratio of internal (Ci) and atmospheric 

(Ca) CO2 concentration (Ci/Ca). The quantitative yield of PSII (ΦPSII) and continuous fluorescence (Ft) 

performance were measured with a modulated fluorometer (FluorPen 100 WP) to evaluate the 

efficiency of photosystem II in tomato leaves subjected to different treatments as indicators of biotic 

stress in plants. The measurements were made in 30 plants for each treatment, with five repetitions per 

plant, in the second developed leaf. Samples were taken on day 0 and 12 (the asymptomatic period for 

plants inoculated with F. oxysporum) and at the end of the experiment, at 24 dpi (the symptomatic 

period in plants inoculated with F. oxysporum). 

3.2.3 Data Analysis 

Five reflectance spectra of the adaxial face of the second leaf of each tomato plant were measured in 

the spectral range between 380-1000nm with a spectral resolution of ~0.5nm, using an Ocean Optics 

HR2000 spectroscope with a tungsten halogen light source HL-2000-HP (wavelength range of 360-2400 
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nm). A completely randomized design was carried out to compare two treatments: susceptible plants 

inoculated with F. oxysporum, and plants subjected to water stress at 60% field capacity; additionally, no 

infected plants were measured with 100% field capacity. Reflectance measurements were performed 

every three days after infection. Physiological parameters derived from the gas exchange and 

chlorophyll fluorescence analysis were performed at day 0 dpi, at day 12 dpi (when symptoms are not 

visible) and at day 24 dpi (with visible symptoms). Due to this design, we collected three groups of data 

with 150 spectra each (30 leaves per treatment), for each sampling day (450 spectra/day of sampling). 

We performed a selection of the spectra and those with noise were removed, either because the 

spectra was deformed and/or because of a reading error. These spectra showed very different patterns. 

The differences were confirmed with an outlier analysis identified in a Principal Component Analysis 

(PCA) without prior data treatment. The SNV transformation was chosen as one of the best pre-

treatments that allow a good grouping of the plants in the treatments carried out, according to the 

results of the analyses carried out in previous works (data not shown). 

After performing the pretreatment, we built a matrix graph of the correlation coefficients initially 

calculated as a measure of the relationship between the growth of F. oxysporum in roots and leaves 

(CFU/mg) and the reflectance in the spectral range measured. The evaluated treatments were then 

compared using only the physiological parameters derived from the gas exchange analysis and the 

chlorophyll fluorescence, testing the difference between the means with a one-way ANOVA with 

multiple samples and represented with bar graphs. Then, the determination coefficients for linear 

regressions plotted with the objective of relating the spectral variance in leaves of S. lycopersicum 

submitted to the three treatments evaluated, with the variation in physiological parameters measured 

with the Infrared Gas Analyzer. Finally, we proceeded to make the adjustment of the regression lines 

with the largest R2. Linear Discriminant Analysis (LDA) were made to carry out supervised classifications 

with the photosynthetic variables, and the specific wavelengths selected above. All analyses were done 

with the Software R (R Development Core Team, 2005). 

3.3 Results 

Plants inoculated with F. oxysporum developed visual symptoms between 21-24 dpi under moderate 

environmental conditions (temperature between 18-24 °C and relative humidity between 60-70%). The 

leaves suffered gradual chlorosis, starting from the lower layers upwards, but without loss of turgor 
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evident in most of the plants (Fig. 4). Plants subjected to water stress presented visual symptoms after 

18 dpi (data not shown). 

 

Fig. 4. The photo shows the first six leaves of a plant inoculated with F. oxysporum (A), and a no-infected  
plant  (B): a) leaf 1, b) leaf 2, c) leaf 3, d) leaf 4, e) leaf 5, f) leaf 6. 

3.3.1 Colonization of F. oxysporum in tomato plants and relationship with the 
spectral response in leaves during the incubation period of the disease 

The growth of an isolate of F. oxysporum (Fo5) on root and stem, in a cultivar of susceptible tomato 

plants, was evaluated during the incubation period of vascular wilt. The increase in the concentration of 

F. oxysporum conidia in the course of the experiment describes the classical "J" type growth curves for 

both organs measured. During the first 12 dpi, a similar tendency, coincidently, was observed in the 

spectral response of the control plants, even presenting a slight decrease in the reflectance in the 

infected plants in the range Vis/NIR measured (Fig. 5A and 5B). After this period, there is a higher 

growth of fungi, up to 1.5 x 103 CFU/mg on inoculated roots(Fig. 5), and in terms of reflectance, after  12 

dpi there is an increase of reflectancia in the Vis/NIR region in infected plants with respect to the non-

infected plants (Fig. 5C and 5D). 

Disease symptoms were clearly observed in most infected plants after 24 dpi. These symptoms coincide 

with a marked increase in reflectance in the VIS range and a decrease in the NIR range evaluated in the 

infected plants (Fig. 4e). 
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Fig. 5. Inoculum density of F. oxysporum (CFU) by mg in fresh plant tissue on the incubation period. A: 
day 0 dpi; B: day 6 dpi; C: day 12 dpi; D: day 18 dpi; E: day 24 dpi. Red series in boxes: Plants infected 
with F. oxysporum; Green series in boxes: control plants (without infection). 

Five spectral bands most highly correlated with the growth of F. oxysporum in root and leaf (r≥0.8, 

p≤0.05) on infected tomato plants are shown (Fig. 6A). Two of them were positively correlated in the 

visible range, 448-523nm and 624-696nm, and three were negatively correlated  in the near infrared 

(NIR) range measured, 740-960nm, 973-976nm, and 992-995nm. In general, higher values were 

observed in the correlation coefficients and lower values for p-value on the F. oxysporum measurements 

made on the leaves of the plants, in Figure 6B a specific example can be seen in the 992-995nm band. 

This figure shows a significant negative correlation between the concentration of conidia (CFU) and the 

percentage of reflectance at 950 nm measured in infected plants with F. oxysporum. 
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Fig. 6. Quantitative relationship between the growth of F. oxysporum on roots and leaves (CFU/mg) and 
the reflectance in tomato leaves. A) Matrix plot showing eight bands with high R2 values ; B) Linear 
regression for the dependent variable "CFU" measured in roots (brown) and leaves (green) as a function 
of reflectance at 950 nm. 

3.3.2 Physiological response of tomato plants inoculated with F. oxysporum 
during the incubation period and subjected to water stress 

Regarding the physiological parameters evaluated by means of classical instruments, no significant 

differences were detected in the plants infected with F. oxysporum and subjected to water stress with 

respect to the control plants at 12 ppi (asymptomatic period, Fig. 7C, 7E), suggesting a minor 

differentiation between inoculation, water stress, and healthy plants. At 24 dpi, when the symptoms of 

the disease were already visible, the significant variation was observed in most of the physiological 

parameters evaluated in the plants subjected to the two types of stress with respect to the control 

plants. Specifically, in the plants infected with F. oxysporum there was a significant reduction with 

respect to the control plants for A, E, A/gs, A/E and Ft (Fig. 7A, 7C, 7E, 7F and 7H), and an increase in gs, 

Ci and Ci/Ca (Fig. 7B, 7D and 7I). Plants subjected to water stress presented the same pattern as infected 

plants, but there was no significant difference in gs (Fig. 7B). 

3.3.3 Spectral variance in S. lycopersicum infected with F. oxysporum vs 
physiological responses 

In all groups of plants, the determination of the coefficient resulting from each linear regression 

between reflectance vs physiological parameters (A, E, Ci and gs) result in high values on the range of 

420-490nm (blue light), and had secondary peaks close to 560 nm (green), 680nm and 710nm (red) (Fig. 

8).   
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Figure 7. Bar plots showing the mean values (± standard error) of A, gs, E, Ci, A/gs, A/E, Ci/Ca (measured 
with an Infrared Gas Analyzer). The Ft' and Qy' (Φ PSII) under constant actinic light (measured with 
FluorPen 100 WP modulated fluorometer). Red: infected plants with F. oxysporum; blue: subjected 
plants to water stress; green: no-infected plants. Estimates indicated by * and ** were significant at the 
5% and 1% levels, respectively. 

Figure 8 shows the determination coefficients (R2) calculated for each wavelength in the measured 

spectral range, with respect to each monitored physiological parameter. This R2 are maximum on ranges 

420-490 nm, 560 nm, and 680 nm, mainly in plants inoculated with F. oxysporum (Fig. 8A). On plants 

subjected to water stress, r was also slightly greater than 0.7 in the wavelengths of blue (Fig. 8C). In gs 

and E, the majority of wavelengths mentioned above had high correlation values (Fig. 8G-8L), except for 

the peak at 560nm that had low correlations with these physiological parameters in plants subjected to 

water stress (Fig. 9I, 9L), and in the particular case of E in the control plants (Fig. 8K). The graph referring 

to r for linear regressions between reflectance and intercellular CO2 exhibits an inverse pattern to that 

observed in the other parameters (A, gs and E) (Fig. 8D-8F), in which they presented high peaks (R2> 0.7) 

at 510 nm, 658 nm, 694 nm, and 750 nm only in plants subjected to water stress (Fig. 8F). The reasons 

why this inverse pattern occurs and other particularities will be discussed later in this manuscript. 
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Figure 8. Coefficient of determination (R2) vs wavelength for simple linear reflectance relationships in 
tomato leaves with photosynthetic parameters in plants infected with F. oxysporum (Fo5), subjected to 
water stress and controls. The wavelengths in which the best fit relationships were identified are 
indicated in parentheses (the black line indicates the R2 = 0.7). 

Once the wavelengths with a higher coefficient of determination are defined, adjusted regression lines 

with the highest R2 (and r and p-value) were drawn and shown in fig. 9. The blue range is represented by 

a wavelength of 440 nm where some of the physiological parameters showed R2 maxima. It is important 

to highlight the similarity between the linear regressions of the wavelengths in the blue (440 nm) and 

the first peak in the red (680nm), with positive relationships between predictor (X) and response 

variables with low values of p (p << 0.05). This suggests that fluctuations in the predictor variables (A, Ci, 

gs and E) are highly associated with the response variable (reflectance at 440nm and 680nm). This 

pattern is not equivalent on particular cases of intercellular CO2 in plants inoculated with F. oxysporum 

and controls on which there is a negative relationship betwen reflectance (440nm and 680nm) and "Ci" 

(Fig. 5D and 5E); but since p values are high (p >> 0.05), predictor variable (Ci) and response are not 

associated. In the  green wavelength (~ 560nm) the reflectance decreases with increasing A (Fig. 9A, 9B 

and 10C), gs (Fig. 10G, 10H and 10I) and E (Fig. 10J, 10K and 10L) with p values << 0.05, instead, a 

positive relationship between intercellular CO2 was noticed with the explanatory variables. A similar 

pattern occurs in the red light wavelength (710nm) even with lower p values, except Ci on plants 
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subjected to water stress (p = 0.340) (Fig. 9F), revealing that changes in Ci are not linked with reflectance 

at this point. 

 
Fig. 9. Best adjusted linear reflectance near 440nm (blue), 564nm (green), 683nm (light red) and 718nm 
(dark red) with A, E, gs and Ci on  tomato leaves inoculated with F. oxysporum, subjected to water stress 
and control plants on day 12 after inoculation (incubation period of the disease). 
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As a result of the Principal Components Analysis (PCA), the first two Principal Components (PC) explain 

83.3% of the variance of the data (Fig. 10A), the quality of the variables is represented in the factor map 

by means of the square cosine or square coordinates (cos2). Since high values of cos2 indicate a 

satisfactory contribution of the variable in the PCs. Most variables are placed near the correlation circle 

on this study, indicating a good representation of the variables in the first PCs (red); others like Ci, Ft, 

and A/E present moderate correlation values (yellow), and A/gs, close to the center, have a reduced 

representation in the first PCs (blue).  

To perform a dimensional reduction for the use of relevant variables in future prediction models, 

percentages of the contributions of the variables in each principal component were represented (Fig. 

10A, 10B). Variables correlated with PC1 (Dim-1) are the physiological parameters gs, Qy, E, A, and the 

wavelengths at 718nm, 564nm, 484, 683, and 700nm (Fig. 6B); and with PC2 (Dim-2) are Ci, Ft and the 

wavelengths at 510nm, 800nm, 650nm, 750nm, 700nm, and 950nm. These are critical variables to 

explain the variability in the data set. Others that do not correlate with any PC or with last dimensions 

correspond to variables with poor contribution and could be eliminated to simplify the general analysis. 

 
Fig. 10. A) Principal Components Analysis in which the contribution of representative physiological 
variables and wavelengths with high coefficients of determination to the first PCs by means of the 
square cosine is represented. B) Contribution of variables to PC1 (%). C) Contribution of variables to PC2 
(%). 

A statistical Linear Discriminant Analysis (LDA) with transformed data (SNV) was done to achieve a 

supervised classification with the photosynthetic variables and the specific wavelengths selected above. 

Three groups were defined a priori: i) plants inoculated with F. oxysporum (12 dpi, asymptomatic 
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period), ii) plants subjected to water stress and iii) controls (Fig. 11). The LDA with photosynthetic 

parameters obtained from the analysis of gaseous exchange and fluorescence of the chlorophyll 

achieved an acceptable classification percentage of 82%; plants inoculated with F. oxysporum are well 

separated from the other treatments, but the model does not differentiate plants subjected to water 

stress from the no-infected plants at 12 dpi (asymptomatic period) (Fig. 11A). Finally, the LDA done with 

the spectral variables achieved a correct classification of 100% (Fig. 11B), perfectly discriminating the 

three treatments at day 12 after the inoculation, when the symptoms are not visible yet. 

 
Fig. 11. Linear Discriminant Analysis (LDA) with transformed data (SNV) in plants inoculated with F. 
oxysporum (12 dpi), plants with water stress and controls. A) Physiological variables: A, gs, Qy, E, A, Ci, 
Ft, and Qy B) Reflectance data of the selected wavelengths: 484nm, 510nm, 564nm, 650nm, 683nm, 
700nm, 750nm, 800 and 950nm. 

3.4 Discussion 

3.4.1 Relationship of F. oxysporum concentration with the spectral response in 
the incubation period of the disease  

The measurement of conidial concentration of F. oxysporum in tomato and its relation with spectral 

response in leaves during the incubation period of the disease is a basic requirement to allow 

comparisons, repetitiveness, and analysis of disease tolerance and standardization of the results in 

many experiments on controlled and semi-controlled environments (Caligiore-Gei and Valdez, 2014). 

The inoculum concentration of F. oxysporum influenced the severity of the disease. Specifically, it has 

been demonstrated that the increase of inoculum of F. oxysporum showed an increase on the incidence, 

mortality (20%), the severity of the disease and number of lesions on gladiolus roots (Riaz et al., 2014). 

Additionally, it was found a high coefficient of determination (R2 = 0.94) on the linear relationship 

between the severity of the disease generated by F. solani in bean plants and the concentration of 

chlamydospores in the substrate (Nicoli et al., 2013). 
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Results on this investigation suggest a high correlation between inoculum concentration and spectral 

response of tomato plants inoculated with F. oxysporum before the symptoms are visible, particularly in 

the blue (448nm-523nm) and red (624nm-696nm) regions of the visible spectrum and in the infrared 

plateau between 750nm-1100nm. The mechanism underlying this correlation is different for each region 

of the electromagnetic spectrum. Primarily the main photosynthetic pigments (chlorophylls and 

carotenoids) determine reflectance in the visible region, while in the infrared plateau the high 

reflectance is due to multiple dispersion within the leaf, in relation to air spaces within the tissue 

(internal structure) and its water content (Jacquemoud and Ustin, 2001). Maximum absorption peaks for 

chlorophyll and carotenoids in the blue range (chlorophyll a = 428nm, chlorophyll b = 453nm, 

carotenoids = 450nm) and red range (chlorophyll a = 661nm, chlorophyll b = 642nm) (Guidi et al., 2017) 

are coincident with wavelengths on the Vis spectrum correlated with the concentration of the pathogen 

(448nm-523nm and 624nm-696nm) under our experimental conditions. These results suggest a direct 

relationship between the inoculum concentration and the photosynthetic response in the plant that can 

be used for the design of models to quantify pathogen densities in asymptomatic periods of different 

vascular diseases. Spectral responses assessed on tomato plants for this research were complete at leaf 

scale, in order to observe specific changes on spectral characteristics in the course of the infection 

process. The inoculum concentration is indirectly measured by intermediate responses in tissue. 

However, to measure the direct concentration of spores or structures of the fungus in a particular 

tissue, the use of hyperspectral microscopes is necessary (Thomas et al, 2017). 

3.4.2 Analysis of physiological changes in tomato plants  

In this section, the effects generated in the exchange of gases from photosynthesis and the fluorescence 

of chlorophyll by the inoculation of F. oxysporum and the submission to water stress, on leaves, of a 

susceptible cultivar of tomato, in the incubation period of the disease are reported. Meanwhile during 

the asymptomatic period of the disease (12 dpi), a significant difference w found on the gs, E, A/gs and 

A/E, which suggests a water imbalance on plants inoculated with F. oxysporum respect to the control 

plants, thus corroborating water stress as an important factor for vascular wilt diseases (Nogués et al., 

2002; Ghaemi et al., 2009; Ochola et al., 2015). Vessel obstruction is one of the relevant effects of F. 

oxysporum in the photosynthesis of leaves, but little is known about the effect of water stress induced 

by pathogens. However, the reduction of the diameter of the vascular bundles by species of the 

Fusarium spp., their metabolites, and enzymes or by inducing the accumulation of gummy and hairy 



 

 

38 
 

 

 

substances, generating resistance to the movement of water, has been widely reported (Aguirreolea et 

al., 1995, Jensen, 2002). 

Under the experimental conditions here, non-significant differences were found on net photosynthesis 

at 12 dpi using univariate analysis with the Infrared Gas Analyzer (IRGA), neither with parameters of 

chlorophyll fluorescence (discussion of multivariate analysis will be addressed later), although it has 

been reported to be one of the first symptoms of vascular wilt. The often is reported indicating that the 

water imbalance generates a decrease in the rate of CO2 fixation, on electron transport chain in 

chloroplasts, and lack of activity of ATP synthase (Yordanov et al., 1997, Flexas et al, 1999, Flexas et al, 

1999b). However, different authors have also reported the absence of significant differences up to 17 

dpi in gas exchange parameters measured with an infrared gas analyzer and changes in quantum yield of 

photosystem II only until 27 dpi in tomato plants infected with F. oxysporum (Lorenzini et al., 1997; 

Nogués et al., 2002). 

The pattern development of the wilt by Fusarium reduces the photosynthetic activity depending on 

different mechanisms. Photosynthesis variation is difficult to detect on the asymptomatic period of the 

disease with these techniques. This can also be explained according to the type of vascular wilt (type I or 

II) described by Pshibytko et al. (2006), which depends on environmental conditions such as 

temperature, relative humidity and moisture content of the floor. In this research, the pattern of disease 

development on inoculated tomato plants was Type I, according to the classification of Pshibytko et al 

(2006). In this study, plants inoculated with Fo5 exhibited yellowing, and slow-wilting from lower to 

upper leaves (Fig. 1), on moderate environmental conditions (average relative humidity between 60% -

70%, temperature of 18-24 ° C), and gradual symptom display, only after 21 dpi. Pshibytko et al. (2006), 

suggest that on infection type I wilt, the mycelium of F. oxysporum partially obstructs xylem and grows 

extensively within the parenchyma, being able to absorb the nutrients and regulate the metabolic 

processes of the plant. Finally, in this type of wilting, plants die due to nutrient deficiency and poisoning 

by fungal toxins, and not due to water deficit. This hypothesis plausibly explains the chronology of the 

symptoms described above and why in this research the leaves of plants infected with F. oxysporum only 

showed loss of turgor shortly before wilting. 

The difficulty in detecting responses associated with the disease in the asymptomatic period could be 

due to the lack of sensitivity in the equipment used for measuring gas exchange and fluorescence 

parameters of chlorophyll. Since in both cases few parameters are assessed on the plant, such as the 
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absorbance in the NIR to 1640cm-1 for the case of the IRGA, and a relation between the pulse of 

saturating light generated by the fluorometer (usually ultraviolet light) and its consequent response of 

lower energy generated by the sample (in the Vis or NIR). The conclusions obtained from the limited 

univariate analysis can also lead to erroneous conclusions. Therefore, it is necessary to implement more 

robust multivariate analyses (as in Fig. 7 and 8), which will be discussed later. 

Finally, when the plants inoculated with F. oxysporum have finished the incubation period (24 dpi) and 

the symptoms of the disease on the leaf and on plants subjected to water stress can be observed, net 

photosynthesis decreases, as well transpiration rates, intrinsic efficiency in water use, transpiration 

efficiency (A/E), and the proportion between intercellular CO2. Nevertheless, there is no evidence that 

this variation on parameters can lead to permanent damage on energy transduction phases, nor by 

stomatal or hydric limitations, coincident with results obtained in P. edulis with the same isolate of F. 

oxysporum (Cruz, 2012). Chlorophyll fluorescence parameters, especially the transient fluorescence (Ft), 

which significantly decreased on this study between evaluated treatments, remarks the importance to 

obtain information about the pigment complexes, the organization and the transfer of excitation energy 

between them, and different specific electron transfer reactions in photosystem II (Stirbet, 2012). 

Additionally, plant samples have a transient fluorescence that levels off in a new stable state before any 

change in the quality or quantity of the light to which they are exposed, regardless of whether the 

sample was adapted to darkness or light. Although Ft is an important tool to assess plant stress (Strasser 

et al., 2000), nevertheless in this study it is not an indicator of early stress on plant diseases. 

3.4.3 Linking the physiological parameters with the leaf reflectance in the 
Vis/NIR during the incubation period of the disease 

Chlorophyll (mainly “a” and “b”) and carotenoids are essential pigments for the conversion of light 

energy into stored chemical energy. The amount of solar radiation absorbed by a leaf is a function of the 

content of photosynthetic pigments; therefore, the chlorophyll content can determine directly 

photosynthetic potential and primary production (Filella et al., 1995, Gitelson et al., 2003). Higher 

coefficients of determination (R2) between some regions of the Vis spectrum and the parameters 

obtained from the gas exchange measurements are determined by the specific absorbance-reflectance 

patterns of the photoactive pigments, mainly chlorophylls and carotenoids (Gitelson et al., 2002, 

Gitelson et al., 2003; Merzlyak et al. 2003; Anatoly et al., 2017; Solovchenko et al., 2005). These 

pigments have ranges of maximum absorption that coincide with the wavelengths linked with the F. 

oxysporum infection found in this work. In this research, plants inoculated with F. oxysporum showed 
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high correlations with A, gs and E on 4 bands of the Vis spectrum. The first high correlation zone is 

located between 420nm-490nm and coincides with the spectral region where the maximum absorbance 

of chlorophyll a (430nm), chlorophyll b (453nm) and carotenoids (450nm and 485nm) occurs, while 

secondary peaks of the chlorophylls in the far-red (642nm and 662nm) match with regions of low 

correlation (Fig. 12). Chlorophylls and carotenes absorb light on mesophyll  mainly at wavelengths 

between 400-500nm (blue), its measurement is a signal of the physiological variation due to  biotic and 

abiotic stress, leaf development, senescence and factors directly related to the photosynthetic primary 

production rate (Blackburn and Ferwerda, 2008). The results of this study support the idea that infection 

by F. oxysporum has correlation with photosynthetic pigments concentration on early stages of the 

disease. Additionally, the wavelengths with the highest coefficients of determination with the 

physiological parameters in the gas exchange analysis could be used in mathematical models for early 

detection of plant diseases based on spectral data in the Vis. 

 
Fig. 12. Line plot illustrating the superposition of the relationship between the R2 net photosynthesis vs 
wavelength in plants inoculated with F. oxysporum (green line) and the optimal absorption of light from 
the main photosynthetic pigments (lines black, absorption curves extracted from "The light-dependent 
reactions of photosynthesis: Figure 4," by OpenStax College, Biology [CC BY 3.0]). 
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Plants under water stress, show high correlations in the band of 420nm-490nm and the peak of 680nm, 

coincident with the absorbance of main photosynthetic pigments, due to the decrease in water 

potential on the leaf that suppresses the photosynthetic activity of the plant (discussed previously). 

However, on tomato, water stress has a high correlation between reflectances at 730nm and 750nm, 

which are not affected by the absorption of chlorophyll. These are linked with water stress or changes in 

tissues (Carter and Knapp, 2001). The control plants did not show high coefficients of determination (R2> 

0.7) between the A and Ci on none of the wavelengths in the measured spectral range, confirming the 

lack of significant variation of these parameters within the individuals for this treatment. The correlation 

found in these plants between gs and E, and the spectral bands 420nm-490nm, 560 nm, 680nm, may 

suggest differences in the concentration patterns of photosynthetic pigments due to gaseous exchange 

in the leaves (mainly water vapor) without significantly affecting net photosynthesis. This hypothesis is 

reinforced by the high correlation between stomatal conductance and reflectance at 710nm in this 

treatment (R2> 0.75). 

Reflectance spectroscopy is widely applied for the non-destructive estimation of leaf chlorophyll as an 

indirect measurement of the photosynthetic potential and primary production of the plant (Richardson 

et al., 2002). The bands of 420nm-490nm, 560nm and about 700nm (far red), which presented high 

values in the determination coefficients with gas exchange parameters in this research, have been 

widely used in the form of indexes and simple functions to relate the concentration of chlorophyll in a 

cultivar of plant species and in a wide range of photosynthetic pigment composition (Gitelson and 

Merzlyak, 1996; Gitelson and Merzlyak, 1997; Sims and Gamon, 2002; Gitelson et al., 2003; Merzlyak et 

al. ., 2003). Additionally, some bands in the Vis/NiR regions can be used to develop biotic stress indices 

during the incubation period and the moment that symptoms are already visible in the plant with 

vascular wilt disease (Sankaran et al., 2010; Khaled et al., 2017). Some of the bands identified in this 

study have been used independently and/or to develop indices, sensitive to plant disease processes, 

such as: the Photochemical Reflectance Index [PRI = (R570 - R531]/[ R570 + R531)], Physiological 

Reflectance Indices [PhRI = (R550 - R531)/(R550 + R531)], Standard chlorophyll pigment rate index [NPCI 

= R680 - R430) / (R680 + R430)] and the Index of Anthocyanin Reflectance [ARI = (R550) -1 - (R700) -1] 

(Song et al., 2011; Zhang et al., 2012; Krishna et al., 2014). On plants exposed to water stress, main 

water absorption information in the spectral range measured in this research is in the range of short 

wave NIR (750-1000 nm) (Zhang et al. al., 2012; Genc et al., 2013). Due to the intention to relate 
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reflectance to the physiological parameters measured from a gaseous exchange analysis, it is expected 

that no specific bands are related to the water content in this spectral range. 

The results obtained in the biplot of the PCA (Fig. 10) and the LDA (Fig. 11) reinforced the previous idea. 

On these analysis, some wavelengths that belong to the range of short wave NIR were added, which 

were highly correlated with the concentration of conidia in the plants inoculated with F. oxysporum (Fig. 

5). In general, the wavelengths selected from the proposed methodology provided a high contribution 

to the first two main components, while only the parameters gs, Qy and E (derived from the gas 

exchange analysis) offered a contribution classified as high on main components. 

The advantages of multivariate analysis over the multiple univariate analysis shown in Figure 10 should 

be highlighted, as a possible way of identifying system constructs of response variables, selecting 

subsets of variables and determining the relative value for each stand out variable (Huberty and Morris, 

1989). Precisely, the addressing of this analysis with the multivariate approach, allowed to obtain high 

percentages of classification (82%) in the LDA,  during the incubation period (12 dpi) with the variables 

derived from the analysis of gas exchange, while in the same period with multiple univariate analysis did 

not find significant difference for most parameters. Even with the multivariate analysis, the use of 

parameters derived from gaseous exchange analysis have limitations for the realization of applicable 

models in the early detection of plant disease. For example, the model applied in this study using these 

parameters did not allow to efficiently separate the plants subjected to water stress from the control 

plants (healthy and with 100% field capacity), while the model completed from the spectral reflectance 

with relevant specific wavelengths allows correct classification of 100% of the three treatments. The 

relevant specific wavelengths related to the physiological response of the plant to F. oxysporum can be 

used in the development of portable instruments for the early detection of vascular wilt, easily, quickly 

and non-destructively. 

3.5 Conclusion 

It is possible to relate, by means of an indirect methodology such as reflectance spectroscopy in the 

Vis/NIR, the concentration of conidia with the spectral response on the leaves of inoculated plants of F. 

oxysporum during the incubation period of the disease. The increase in the concentration of pathogen 

on the vascular system of the plant coincides with the increase of reflectance in the Vis region (380nm-

750nm), but has an inverse relationship in the range of the infrared plateau (750nm-1000nm), at least in 

the last week of the incubation period. Five specific bands were found highly correlated with the 
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increase in the concentration of F. oxysporum conidia measured at root and leaves, two on the Vis range 

(448-523nm, 624-696nm), and three near the infrared measured (740- 960nm, 973-976nm, and 992-

995nm). 

Tomato plants inoculated with F. oxysporum maintained under greenhouse conditions did not present a 

significant difference in net photosynthesis with respect to control plants at 12 dpi (asymptomatic 

period), using only gas exchange and fluorescence analysis of chlorophyll. Multiple univariate analyzes 

only allowed to detect a significant decrease in this period in the transpiration, the transpiration 

efficiency and the proportion between the intercellular CO2 and the environmental CO2. However, there 

is no evidence of permanent damage in the energy transduction phase, nor by stomatal or water 

limitations. When the disease symptoms were observed (24 dpi) there was a marked decrease of the net 

photosynthesis, but the parameters derived from the chlorophyll fluorescence analysis showed no 

decrease in the electron transport efficiency of the photosystems in the plants infected with F. 

oxysporum. 

Four bands in the Vis range correlated to the photosynthetic parameters derived from the gaseous 

exchange analysis in the tomato leaves subjected to biotic and abiotic stress. The sensitivity of the 

relationship between reflectance with net photosynthesis, stomatal conductivity and transpiration was 

higher on spectral ranges such as 420nm-490nm, 560nm, 680nm, and 710nm. Particularly, the far-red 

bands correlated more with those on net photosynthesis in the plants inoculated with F. oxysporum, 

allowing the estimation and detection of the infected plants during the early stages of infection. 

The wavelengths selected whit this methodology allowed classifying correctly 100% of the plants 

inoculated with F. oxysporum, the plants subjected to water stress and the control plants in the 

asymptomatic period of the disease. These results allow a significant increase in the knowledge in the 

area of early detection of diseases in the specific pathosystem S. lycopersicum-F. oxysporum. 

Based on the findings of this research, the use of robust multivariate analysis is recommended for the 

applied biological sciences and, specifically in the agricultural sciences. The efficacious use of these 

multivariate application tools can avoid falling on wrong conclusions on specific areas of interest, such 

as the identification of variable response systems, subset selection of variables and determination of the 

relative value for each variable in highly complex matrices. 
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CHAPTER 4. BINOMIAL LOGISTIC REGRESSION MODELS (BLRM) 
TO PREDICT F. oxysporum INFECTION IN TOMATO PLANTS 

DURING THE DISEASE INCUBATION PERIOD: A 
METHODOLOGICAL PROPOSAL 

Abstract 

The vascular wilt is a serious threat to a large number of economic crops. The evaluation of the 
disease incidence it is done visually, which makes it subjective and delayed, besides requiring the 
destruction of plants. The application of the Binomial Logistic Regression Models (BLRM) to predict 
Fusarium infection using reflectance data in the Visible (Vis) and near infrared (NIR) spectral range 
has not been attempted so far in any of its hosts. The field study was carried out during the 
asymptomatic period of the disease with two tomato varieties, one tolerant and one susceptible to 
all races of F. oxysporum, measuring the reflectance data every three dpi. We developed 16 BLRM, 
one model for each group data, which were highly significant (p <0.001) and showed high goodness 
of fit after 6 dpi, represented by the Pseudo R2 of McFadden > 0.5 and r2CU> 0.8. The assumptions 
that the BLRMs make about the data were verified: I) the dependent variable only has two 
categories: plant infected with F. oxysporum ("1") and healthy plants ("0"). II) Linear relationship 
between the logit function of the results and the three main predictor variables (R750, R550, and 
R430). III) Atypical values were selected and eliminated; IV) High correlations between predictors 
were decreased to the maximum using the generalized variance-inflation factors (vif). The variables 
chosen using the proposed methodology were significant in most models, except for R430 in I 3dpi and 
I9dpi, R445 and R750 in I9dpi, and R550 in I15dpi on susceptible plants. In the models developed from 
reflectance data in tolerant plants only the variables R550 in I3dpi, R970 in I3dpi, and R704 in I9dpi were 
not significant. According to the areas under the curve (AUC) obtained, the BLRMs generated from 
the reflectance in the tolerant plants have a higher prediction yield, surpassing AUCs of 0.9, and 0.8 
in susceptible plants after 9 dpi. The BLRMs models developed in this study from reflectance data in 
the Vis/NIR range have a potential use for rapid detection and non-destructive estimation of vascular 
wilt incidence in tomato cultivars during the disease incubation period. 

Keywords: Vascular wilt, spectral reflectancia, Binomial Logistic Regression Models, plant disease, infection 
prediction. 

4.1 introduction 

Vis/NIR applications are based on calibration models, which stablish a mathematical relationship 

between absorption or reflectance spectra and the interest factors. These models require 

measurements of sample’s spectra of a population that includes all the possible variation for future 

prediction, considering the population as the set of all the measurements that cover the characteristics 

of the sample (Cao 2013). The potential of different statistical methods for the spectral data modeling in 

order to estimate physical and chemical properties can only be carried out if the properties studied are 
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dependent on molecular structure. This is because changes in molecular structure are reflect in the 

spectra, and linearly related to spectral intensities (Haaland and Thomas 1998). 

Although different multivariate statistical tools have been used to perform calibration models applied to 

the quantitative analysis of ultraviolet, visible and near infrared, such as classical least squares modeling 

(CLS), inverse least squares (ILS) and Principal Components Regression (PCR). It is perhaps the 

methodology for Partial Least Square (PLS) one of the most widely used in prediction models with good 

levels of sensitivity and accuracy in detection, discrimination and quantification of plants disease (Wu et 

al. 2008; Song et al. 2011), furthermore the damage caused by insects (Couture et al. 2013; Ranjitha et 

al. 2014). This is because the PLS is related to the regression of principal components, but instead of 

finding hyperplanes of minimum variance between the response variable and the independent 

variables. A linear regression is found through the projection of the prediction variables and the 

observable variables to a new space, so it has some advantages over other methods for the analysis of 

spectral data. Although CLS modeling offers more qualitative information, PLS modeling can offer 

important information used to allocate bands and identify unexpected components in models. 

The presence, discrimination and quantification of diseases in plants can be determined with good 

precision by means of multivariate calibration models of the spectral data based on plant-pathogen 

interaction (Martinelli et al. 2016). Most published studies report models performed from diseases in 

plants that develop local symptoms (Abu-Khalaf and Salman 2014; Krezhova et al. 2014; Lu et al. 2018). 

Local symptoms generated by physiological or structural changes within a limited area of the host tissue, 

such leaf spots, gill and cankers and for its measurement, the severity is calculated. This method of 

evaluation is a subjective visual estimate in which the level of infection in a given plant is established 

based on the amount of diseased tissue, so it refers to the percentage of the affected area of a specific 

organ of plant. In studies in which spectroscopy is applied in the modeling of infection of local diseases, 

the response variable is usually the percentage of severity, and the absorbance or reflectance at certain 

wavelengths are the explanatory variables (Wang et al. 2016). 

However, studies focused on infection modeling in plants systemic diseases are less common, perhaps 

because their measurement is done by calculating the percentage of diseased plants throughout the 

crop (incidence) and should only be used for diseases that affect the entire plant. That is, if a specific 

measurement is made on affected organ with a systemic disease, that plant is diseased or healthy (a 

percentage of infection is not considered) (Leonberger et al. 2016). For this reason, in modeling 
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infection by systemic diseases in plants, the modeling techniques mentioned previously (CLS, ILS, PCR, 

PLS) are not recommended. For this purpose, the use of logistic regression methods is recommended, 

since it is one of the best-known techniques used to model a categorical response variable based on 

continuous or categorical predictor variables.  

For the particular case of systemic diseases, Binomial Logistic Regression Models (BLRM) are more 

appropriate, since they predict the probability that an observation is assigned in one of the two 

categories of a dependent dichotomous variable, based on one or more independent variables that can 

be continuous or categorical, according to equation: 

 

P(Y) =   eb0+ b1x1+ b2x2+…+ bnxn__ 
           1+ eb0+ b1x1+ b2x2+…+ bnxn   

Where P: probability of occurrence of Y, Xn: predictive variable, b1: gradient line; bn: Regression 
coefficient of Xn, e: logarithm in base e 

Traditionally, nonlinear indices have been used in plants epidemiology, most often using linearized 

transformations or non-linear CLS (Macchiavelli et al. 2004). However, these results assume that the 

disease index has a normal distribution, that they are independent and that they have a constant 

variation, which cannot verified in the disease indexes. Otherwise, the BLRMs assume that the response 

variable must follow a binomial distribution, linear relationship between the independent variables and 

the link function (logit), absence of extreme values and low correlations between the predictors (Park 

2013). However, the BLRMs do not assume normality of the data, although it is advisable to perform a 

normality analysis of the residuals of each model to avoid Type I error inflation (rejecting the null 

hypothesis when it is true in the population). Wherefore, a methodology is proposed to generate binary 

logistic regression models that allow predicting the incidence of Fusarium infection in plants based on 

reflectance spectra, this in order to perform a non-destructive diagnosis when the plants are in disease 

asymptomatic period. 

4.2 Methodology 

4.2.1 Study area and biological assays 

The study was conducted between 2017-2018 with tomato plants of Ponderosa varieties, which is 

susceptible to all races of F. oxysporum (Reis and Boiteu 2007), and the Santa Cruz cultivar that is 

tolerant to races 1 and 2, maintained under semi-controlled greenhouse conditions at the National 
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University of Colombia, Medellín (Antioquia, Colombia). A completely randomized design carried out 

and used to compare two treatments: I) tomato plants var. Ponderosa inoculated with F. oxysporum 

(Fo5), II) tomato plants var. Santa Cruz inoculated. Additionally, uninfected control plants of each 

cultivar were used. More information about the experimental design, inoculation process and 

pathogenicity tests are widely described in chapters 2 and 3 of this manuscript. 

4.2.2 Variable selection and model construction 

In the previous chapters, a set of relevant specific wavelengths (RSW) were identified for Fo5 infection 

during the incubation period of the disease, using a classification algorithm (RELIEF) and relating 

changes in specific spectral bands with physiological changes associated with F. oxysporum infection in 

tomato during the incubation period. The selection of the wavelengths (explanatory variables) for 

Binomial Logistic Regression Models (BLRM) was done with the use of biplots and loading plots for 

Principal Components Analysis (PCA) for each data group without previous association. The data 

obtained from healthy and infected plants, with F. oxysporum in two tomato varieties on 27 variables 

(selected wavelengths). The training data for the construction of the models were obtained from the 

measurement of 5 reflectance spectra in each leaf of 25 plants per treatment, that is, 500 spectra in 

total. Using the methodology of selecting variables described above, 16 BLRMs were developed (Table 

2), a model for each group of data that were taken every three days during the disease incubation. The 

Likelihood Ratio Test (LRTest) used to verify models significance and then effects of each predictor 

(explanatory variable) in the BLRMs were evaluated. Additionally, the Akaike Information Criterion (AIC) 

was calculated as a relative quality measure of models for a set of given data, and the pseudo R2 of 

McFadden and Ragg and Uhler (r2CU), to evaluate the goodness of fit of models. All statistical analyses 

were performed using R Software, the main libraries and functions used are summarized in table 4. 

Table 4. Description of main analyzes used in BLRMs development with R software 

 Analysis Library Function Description 

 Pre processing 
 

mdatools, 
prospectr 

prep.snv, 
gapDer 

Apply the transformations: standard normal variate 
(SNV) and derivatives of different orders to the rows 
of the data matrix 

 PCA kazaam Prcomp Performs the principal component analysis on the 
data matrix by taking the singular value 
decomposition (SVD) 

 Models fit stats Glm, AIC glm is used to fit generalized linear models; AIC 
calculating Akaike's Information Criterion 
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 Models 
significance 

lmtest Lrtest Generic function for comparisons of models via 
asymptotic likelihood ratio tests 

 goodness of fit pscl pR2 Compute various pseudo-R2 measures for various 
generalized linear models (GLMs) 

 LRGMs 
assumptions 

car Vif, residuals, 
kurtosis, plot 

Functions to evaluate the assumptions for the data 
of GLMs 

 Make 
predictions 

Raster Predict Generic function for predictions from the results of 
various model fitting functions 

 AUC calculation ROCR performance Predictor evaluations are performed  

Data 
visualization 

mdatools, 
ggplot2 

mdaplot, 
ggplot, plot 

Functions used for data visualization (scatter plots, 
bars, histograms) 

 

 

4.2.3 Verification of BLRM assumptions 

BLRM makes several assumptions about the data and its verification is essential to build a good model. 

First, the response variable in this work has two possibilities: "1" (plants infected with F. oxysporum) and 

"0" (healthy plants) which realizes the first assumption, which requires to be the result of binary or 

dichotomous variable like “yes” vs “no”, “positive” vs “negative”, “1” vs “0”. To validate the second 

assumption, graphs were made of results logit function and three predictor variables that explained the 

pronounced variability of data in each model, since this requires linearity between them (Logit (p) = log 

(p / ( 1-p)), where p is the probability of result. To comply with the third assumption of BLRMs (values or 

atypical should not be taken), those values whose leverage was more than three times the critical  value 

threshold in residual value exploration in an individualized manner were marked and eliminated (data 

not shown). Finally, the generalized variance-inflation factors (vif) were calculated at time of inserting 

each explanatory variable "one by one" to avoid high correlations between the predictors. 

4.2.4 Evaluation of predictive capacity and model performance 

To evaluate the predictive capacity of models, probabilities were generated in form of P (I = 1 | R) (I = 

variable response, R = explanatory variable), and a high threshold, which was 0.8. Therefore, if P (I = 1 | 

R)> 0.8 then I = 1, otherwise I = 0. To perform the corresponding validation in BLRMs, test data from a 

sample of susceptible and tolerant tomato plants (with their respective controls) taken independently 

(no cross-validation) in an experiment performed at different time from used to obtain the training data. 

The curves of Receiver Operating Characteristic (ROC) type were drawn, and the corresponding areas 

under the curve (AUC), and precisions were calculated, which are the typical measures performance for 

a binary classifier.  



 

 

53 
 

 

 

4.3 Results 

The Figure 13 plots an example of variable selection process, in which a biplot (Fig. 13A) and the 

"loading plot" of the Main Component 1 (PC1) (Fig. 13B) to select the variables with highest loadings and 

incorporate them into the model. Once these variables are incorporated in PC1, the same procedure is 

use to variables select with the highest loadings in the first PCs (Fig. 13C and 13D) and incorporate them 

into the model “one by one”, as long as they meet the following criteria: A) the model remains 

significant. B) The new predictor variable is not highly correlated with the previously selected ones. C) 

Improve the model predictive capacity. In general, the reflectances at 550nm and 750nm (R550 and 

R750) had high positive charges in CP1 in all models performed, so this component may be related to 

the variables that determine plants infection. Other variables, such as R430, R445, R510, R704, and 

R970, were also selected using this method, although in general they explain a lower percentage of data 

variability in the PCAs. However, the relevance of model variables, their significance and predictive 

capacity of model with these variables will be discussed in detail below. To verify the second 

assumption, the logit function of the results Vs value of predictor variable was graphed. 

 
Figure 13. Biplot (A) and loading plots of Principal Component Analysis (PCA, A: PC1, B: PC2, C: PC3) with 
Vis/NIRs reflectance measures without grouping of infected (12 dpi) and healthy plants of a susceptible 
tomato cultivar. 
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4.3.1 BLRMs to predict F. oxysporum infection in tomato plants during the 
disease incubation period 

Using the variable selecting methodology previously described, 16 BLRMs were developed, a model for 

each group of data, taken every three days during the incubation period of disease. Table 5 summarizes 

the developed models, denoting as "I" the response variable with an indicator of day after the 

inoculation (DPI) in which the reflectance data was taken, which has two possibilities: "1" (plants) 

infected with F. oxysporum) and "0" (healthy plants). The explanatory variables are denoted by the 

capital letter R followed by the corresponding wavelength value.  

To analyze the goodness of fit of logistic regression models (LRM) there is no statistical equivalent to R2. 

However, several pseudo R2 have been developed, which receive the name since they are on a scale 

similar to R2 (although some never reach "0" or "1"), but cannot be interpreted as an R2 in the approach 

of the OLS. A clear example of this point is the pseudo R2 of McFadden, which considered having good 

goodness of fit of LRM when it presents values between 0.2-0.4. Then we can consider that the models 

of both varieties in our study show good goodness of fit from the six dpi, which corroborated with 

pseudo R2 of Cragg and Uhler (r2CU), which if it reaches values of 0-1. Additionally, the Likelihood Ratio 

Test (LRTest) used to verify the significance of models, which were highly significant (Table 5). It must be 

taken into account that this step is very important, since, if the global model were not significant, the 

effects of each predictor or explanatory variable would not be revised. 

Table 5. Results of data adjustment to each binomial logistic regression model to predict F. oxysporum 
infection in tomato plants (susceptible and tolerant) using Vis/NIRs spectral data during the incubation 
period of the disease 

 Equations Pseudo R2 Likelihood 
Ratio Test 

DPI Susceptible plants McFadden r2CU LRtest 

0 I0dpi = 3.86 + 6.42*R430 - 8.97*R484 + 0.25*R550 + -0.12*R750 0.24 0.66 *** 

3 I3dpi = -0.58 + 1.43*R430 - 3.70*R445 + 1.33*R510 - 0.55*R550 

+ 0.13*R750 
0.16 0.80 *** 

6 I6dpi = -30.09 + 16.13*R430 -  4.69*R510 + 1.22*R564 - 

0.19*R704 + 0.10*R750 
0.52 0.69 *** 

9 I9dpi = -23.07 + 2.63*R430 + 4.45*R445 + -0.64*R510 + 

0.30*R550 + 0.01*R750 + 0.15*R970 
0.50 0.83 *** 

12 I12dpi = -94.34 - 2.47*R430 - 6.19*R445 + 1.82*R550 - 

0.08*R750 + 0.85*R970 
0.79 0.88 *** 

15 I15dpi = -103.75 + 15.01*R445 + 0.36*R550 + 1.09*R750 0.79 0.80 *** 

18 I18dpi = -18.32 + 12.19*R430 + 1.36*R550 - 1.28R704 + 0.67 0.88 *** 
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0.05*R750 

21 I21dpi = -20.71 - 11.25*R445 + 1.60*R550 + -0.04*R704 - 

0.28*R750 
0.67 0.77 *** 

 Tolerant plants    

0 I0dpi = -2.69 - 2.07*R430 + 0.01*R550 + 0.04*R750 0.04 0.08 ** 

3 I3dpi = -2.92 - 3.04*R430 - 0.01*R550 + 0.10*R750 - 0.04*R970 0.14 0.24 *** 

6 I6dpi = -8.36 + 0.87*R550 - 1.28*R650 - 0.09*R750 0.31 0.47 *** 

9 I9dpi = -20.43 - 5.75*R430 + 1.03*R550 -0.25*704 + 0.15*R750 0.62 0.77 *** 

12 I12dpi = -40.27 + 12.74*R430 + 3.35*R500 + 0.46*R750 0.87 0.94 *** 

15 I15dpi = -34.65 + 8.88*R430 + 0.66*R704 + 0.37*R750 0.87 0.94 *** 

18 I18dpi = -12.00 – 4.43*R430 + 4.85*R510 – 0.42*R704 + 

0.20*R750 
0.73 0.92 *** 

21 I21dpi = -66.57 + 5.07*R510 + 1.06*R550 + 0.51*R750 0.83 0.91 *** 

Significance codes:  *p<0.05; **p<0.01; ***p<0.001 

4.3.2 Verification of BLRM assumptions in reflectance data 

The BLRMs makes several assumptions about the data. This chapter describes the main assumptions and 

provides a practical guide to verify if these assumptions are true for data used, which is essential to build 

a successful model. The first assumption requires that dependent variable be binary (dichotomous, 

"dummy"). In the particular case of this study, the dependent variable has only two categories: plant 

infected with F. oxysporum ("1") and healthy plants ("0"). To pass the second assumption there must be 

a linear relationship between the logit and the variables of each predictor. Figure 14 shows the 

relationship between the logit function of the results and the three-predictor variables that explained 

the greater variability of data in each model. In models made for days at 0 and 3 dpi for susceptible 

plants, the variables tend to move in the same relative direction, but not at a constant rate, that is, they 

have a "monotonous" relationship (the linear relationships are also monotonous). In addition, there are 

high dispersions in models made during this period. After 6 dpi, there are clear relationships between 

logit function and predictor variables, in addition to low dispersion of data during the incubation period 

of disease, except the R750 in model made for 21 dpi that presents a "curve pattern". The BLRM 

performed for tolerant plants follow the same pattern as the susceptible described above, with 

"monotone" relationships and high dispersion of data in relationships (logit-predictive variables) during 

the first week. In addition to clear linear relationships and low data dispersion in the models compared 

with the rest of incubation period, except for some particular cases (R750 in I6ddi, R430 in I9dpi, R430 and 

R750 in I18dpi). 
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Figure 14. Relationship between the "logit" function of the result and three predictor variables that 
explain greater variability in each model 

Before proceeding with the meanings of predictor variables, the overdispersion coefficients (φ) 

estimated, which were used to recalculate the significance (φ should be ~ 1). The final models for both 

varieties obtained φ values between 0.2-1.0 (Table 6). Finally, vifs calculated at time of inserting "one by 

one" each explanatory variable to avoid high correlations between the predictors. As a general criterion, 

variables were included in the different models when the magnitude of vif<10, with some point 

exceptions that showed high values of vif between two pairs of variables: R550-R704 for the BLRM in 

susceptible plants of 18 dpi, and R510 -R704 for BLRM in tolerant plants of the same day (Table 6). 
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Table 6. Overdispersion coefficients (φ) and generalized variance-inflation factors (vif) 

DPI φ Susceptible plants Vif 

R430 R445 R484 R510 R550 R650 R704 R750 R970 

0 1.00 3.07   3.56   1.80     1.45   

3 0.99 3.31 3.83   5.80 7.51     2.97   

6 0.44 2.47 2.85   11.40 8.74   2.14 1.72   

9 0.69 2.30 2.75   9.30 6.93     8.04 7.46 

12 0.37 7.11 11.33     8.13     4.49 7.11 

15 0.37 1.46       1.02     1.48   

18 0.63 1.49       16.43   17.33 1.38   

21 0.66   3.90     5.94   2.06 2.61   

DPI φ Tolerant plants Vif 

R430 R445 R484 R510 R550 R650 R704 R750 R970 

0 1.02 2.13       3.25     2.62   

3 1.03 1.60       2.64     9.05 6.79 

6 0.93         5.06 5.32   3.76   

9 0.61 2.01       6.57   5.65 1.18   

12 0.24 3.12       1.82     3.72   

15 0.24 1.20           1.02 1.21   

18 0.75 1.66     14.70     14.51 2.61   

21 0.23       4.26 1.22     3.85   

 

The logistic regression does not assume the assumption of normality of the data. Even so, a residuals 

normality analysis of each model was performed (data not shown), since if we do not have normality the 

Type I error can be inflating. It was confirmed that residuals of deviance (measure of the residual 

variation of a model) are centered at zero, and there is no predominance of negative or positive residual 

values, confirming the homoscedasticity of the models. The distribution of the residues is not biased, 

shows positive value and bias on the right, with low values of kurtosis (positive value close to 3); this 

slight bias does not substantially alter the critical alpha values of significance. Finally, the normal 

probability graph for each BLRM evaluated, in which the observed empirical data represented against 

the data that would obtained in a theoretical normal distribution, which confirmed that there is a slight 

deviation from the normal canonical assumptions. 

4.3.3 Evaluation of explanatory variables significance 

Because the models are highly significant at global level, we can proceed to evaluate significance of 

explanatory variables. First, we can see that the variables chosen are statistically significant in most 

models, except R430 (in I3dpi and I9dpi), R445 and R750 (in I9dpi), and R550 (I15dpi) in susceptible plants 
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(Table 7A). In the models developed from reflectance data in tolerant plants only the variables R550 (in 

I0dpi, I3dpi), R970 (in I3dpi), R704 (in I9dpi) and R750 (in I0dpi) were not significant (Table 6B). Regarding 

the statistically significant variables, in general R550 had the values of p lower in susceptible plants, 

whereas R750 had the lowest in the tolerant cultivar. his suggests a strong association between 

reflectance at 550nm and 750nm, and the probability that the plant is infected, but does not necessarily 

mean a high predictive capacity of models (this will be discussed later in this text). The positive 

coefficient for these two predictors in most models indicates infection in plants. At this point, it is 

important to remember that in the logit model the response variable is the probability of the record: 

𝑙𝑛 (
𝑝

1 − 𝑝
) = 𝑎 ∗ 𝑋1 + 𝑏 ∗ 𝑋2 +⋯+ 𝑍 ∗ 𝑋𝑛 

 
By performing a more parameters detailed analysis of each predictive variable, it can observed that an 

increase in one unit of reflectances at 550nm and 750nm increases the probability of record in small 

quantities compared to other variables. Conversely, an increase in one unit of reflectance to 430nm 

greatly increases the registration probabilities, as can be seen in the models for plants of the susceptible 

cultivar: 6.42 (0) dpi, 16.13 (6 dpi), 12.19 (12 dpi). Despite the model and highly significant variables, we 

cannot yet say anything about the models quality, compliance with assumptions of data used and their 

predictive capacity. Regarding the relative quality of the BLRM, we can see that the AICs are lower after 

the 12 DPI, which supposes a higher quality of the models generated from the explanatory variables 

selected in this stage of disease incubation period (Table 7). 

Table 7. Coefficients summary of binomial logistic regression models to predict F. oxysporum infection in 
tomato plants (susceptible and tolerant) using Vis/NIRs spectral data during the incubation period of the 
disease 

 Dependent variable (Infection) 

A. Susceptible plants 

Wavelength 0 DPI 3 DPI 6 DPI 9 DPI 12 DPI 15 DPI 18 DPI 21 DPI 

R430 6.42** 1.43 16.13** 2.63 -2.47  12.19**  

R445  -3.70*  4.45 -6.19 15.01**  -11.25** 

R484 -8.97**        

R510  1.33** -4.69** -0.64     

R550 0.25 -0.55**  0.30* 1.82** 0.36* 1.36** 1.60** 

R564   1.22**      

R704   -0.19    -1.28** -0.04 

R750 -0.12 0.13** 0.10* 0.01 -0.08 1.09** 0.05 -0.28** 

R970    0.15 0.85***    
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Constant 3.86* -0.58 -30.09** -23.07** -94.34** -103.75** -18.32** -20.71** 

Observations 235 217 223 243 193 180 199 183 

AIC 256.91 266.00 205.34 182.87 67.70 47.67 101.23 94.08 

 B. Tolerant plants 

Wavelength 0 DPI 3 DPI 6 DPI 9 DPI 12 DPI 15 DPI 18 DPI 21 DPI 

R430 -2.07** -3.04**  -5.75** 12.74** 8.88** -4.43**  

R500     3.35*    

R510       4.85** 5.07** 

R550 0.01 -0.01 0.87** 1.03**    1.06* 

R650   -1.28**      

R704    -0.25  0.66* -0.42  

R750 0.04 0.10** -0.09** 0.15** 0.46** 0.37** 0.20** 0.51** 

R970  -0.04       

Constant -2.69* -2.92** -8.36** -20.43** -40.27** -34.65** -12.00** -66.57** 

Observations 228 228 235 229 225 236 231 228 

AIC 310.245 280.949 232.665 130.074 47.292 64.387 162.349 62.98 

Significante codes:  *p<0.05, **p<0.001 

4.3.4 Evaluation of predictive capacity and models performance 

Although so far it has been proven that BLRMs describe well the reflectance observations set in healthy 

plants and infected with F. oxysporum, it is clear that most researchers are more interested in accuracy 

of the predictions than in the goodness of fit (White 2013). In the previous steps, the adaptation of the 

BLRM was evaluated, now you can see how those models are performing when predicting on a new data 

set. The accuracies obtained after the sixth dpi were greater than 80% (except for I15 of the susceptible 

cultivar in which it was 0.79), even with values over 90% in tolerant cultivar. At this point, be aware of 

that these results depend to some extent on the test data origin and validation mechanism. 

The ROCs constructed from True Positive Rate (TPR) Vs False Positive Rate (FPR) (Fig. 15). It should be 

remembered that the TPR defines how many correct positive results occur among all the positive 

samples available during the test (equivalent to sensitivity), while the FPR defines how many incorrect 

positive results occur among all negative samples available during test (1- specificity). The best possible 

prediction method would produce a point in the upper left corner or coordinate (0.1) of the ROC space, 

which represents 100% sensitivity (without false negatives) and 100% specificity (without false 

positives). A random assumption would give a point along a diagonal line (gray line in Fig. 16). The ROC 

graphs of models made from reflectance data at 0 dpi and 3 dpi are very close to the line of non-

discrimination and have low values of AUC, which represents high randomness of the test and a Low 
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efficiency of models for correctly classify the observations during this period. On the contrary, the ROC 

curves of BLRMs for the tolerant cultivar showed maximum sensitivity (100%) after 6 dpi, with low FPRs 

(high specificity); in addition to AUC values greater than 0.9 after 9 dpi. The ROC curves of susceptible 

cultivar also reached high sensitivities, but with higher FPRs than in the tolerant cultivar (lower 

specificity), mainly between 12 dpi-21dpi. In general, their AUC were lower than previous cultivar, but 

with also high levels, greater than 0.8 (except ROC at 21 dpi). 

 
Figure 15. Receiver Operating Characteristic (ROC) curves of reflectance predictors to predict infection 
by F. oxysporum in two tomato varieties, susceptible (black line) and toleran (blue line). Diagonal line of 
no-discrimination (gray line) 
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4.4 Discussion 

The absorbance and/or reflectance data in Vis/NIR ranges have used for models development in a wide 

range of plants applications. Such as the forage quality determination, chlorophylls and carotenes 

concentration, estimation of seeds oil content and total antioxidant capacity, among others 

(Hărmănescu et al. 2008; Ding and Fuchigami 2009; Elfadl et al. 2010; Asekova et al. 2015; Marin et al. 

2018). The use of spectroscopy in plants diseases detection has carried out mainly in diseases with local 

symptoms from the so-called "Disease indices", which have the disadvantage of not being linear, 

adjusting most of the time with linearized transformations (White 2013). Specifically in infections with 

Fusarium, soft independent modeling of class analogy (SIMCA), neuronal and parametric classifiers have 

used for pathogen identification in corn grains, in addition to use LDA for detection of F. oxysporum 

isolates (Draganova et al. 2010; Salman et al. 2012). However, studies that describe the Vis/NIR 

application to predict systemic infections, and specifically vascular wilt in plants are very limited.  

In this study, the Vis/NIR models developed to determine F. oxysporum infection during vascular wilt 

incubation period, when disease symptoms are not yet visible. The BLRMs constructed from described 

variables selection in the methodology were highly significant. The selected predictor variables that 

explained the highest percentage of data variability were R550 and R750, which were highly significant 

in most models. However, it noted that R550 was significant in most of BLRMs performed for susceptible 

cultivar during the incubation period, while R750 was significant mainly from the BLRMs for tolerant 

cultivar. The explanatory variable R430 was also significant in most models, but its percentage of data 

explained variation was very low. It should be taken into account that the test performed is a difference 

of null model residual deviances (the one that does not introduce any predictor variable, only the 

ordered one in the origin that coincides with the average of the answer) and interest model (Park 2013). 

Therefore, model significance does not imply that original data fulfill the assumptions for BLRM and/or 

that model has good predictive capacity. At this point, the question "which are the best models?" may 

arise, since each BLRM model developed in this study was made from a different data set, so it could not 

be compared with traditional indicators. So, in this work the Akaike Information Criterion (AIC) was used 

as relative quality measure of models for a set of given data, even with models made from different data 

groups. Thus, the AIC results in models of both varieties was quite consistent, as the BLRMs values were 

lower after 9 dpi, when the physiological response of the plant to the pathogen increased its intensity 

(see chapter 3). 
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In general, the data adjustment to the BLRM was good in both varieties, presenting values greater than 

0.5 (McFadden) and 0.8 (r2CU) in the Pseudo R2 of models made after 6 dpi; however, the Pseudo R2 

values tend to be slightly higher on tolerant cultivar models. Unfortunately, to date there are no other 

reports on the BLRMs performance to determine infection by F. oxysporum, but the Pseudo R2 obtained 

are consistent (even superior) with R2 homologs in multivariate models and traditional indexes applied 

to plants diseases detection (Song et al. 2011; Luo et al. 2013; Krishna et al. 2014; Zhang et al. 2014). It is 

important to note that the model estimates from a logistic regression are maximum likelihood estimates 

obtained through an iterative process that are not calculated to minimize the variance, so the ordinary 

least squares (OLS) approach is not applied (Czepiel 2019). For this reason, to logistic models goodness 

of fit evaluate several pseudo R2 have been developed; they are called in this way since they are 

measured on similar scale (although some never reach "0" or "1"), but they cannot be interpreted as an 

R2 in the strict approach of OLS. 

The adjustment of reflectance data to BLRMs asks for verification of some assumptions, and it is 

important to discuss them for well-adjusted models development. The first assumption requires that 

dependent variable be binary, or in a practical way in this study, each reflectance spectrum measured on 

the sheet could only have two options as to its origin. Can be taken from a point in a sick plant that 

responds biochemically and physiologically to the pathogen (with or without visual symptoms), or be 

measured from a healthy plant. By definition, systemic diseases are those that alter the normal 

physiological function of an organ or whole organism, and specifically on infections caused by F. 

oxysporum it has been demonstrated that plant resistance to disease is based precisely on activation of 

plants systemic defense mechanisms (He et al. 2002). It is important to note that reflectance at selected 

wavelengths (explanatory variables) obtained linear relationships with link function (logit), that is, the 

second assumption (linearity) is fulfilled. This is very important, since we can discard some problems 

that can be generated by its non-compliance (specification error): omission of important independent 

variables, inclusion of irrelevant independent variables, an incorrect functional form, changing 

parameters and that dependent variable can be part of simultaneous equations system (Sapra 2005). 

Checking the third assumption requires the atypical and influential cases detection, and their 

subsequent treatment is a crucial task in any modeling exercise. It is common to find atypical data in the 

reflectance measurements used to develop BLRMs caused by environmental noise and human errors, 

which can involve large residues and often have marked effects on linear maximum likelihood predictor 

(Sarkar 2011). The "manual" process performed to select the variables comparing the vif between 
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explanatory variables of models is also important to reduce the collinearity that commonly exists in 

hyperspectral data (Maimaitiyiming et al. 2017), since the collinear predictor, variables cause unstable 

estimates and inaccurate variations that affect confidence intervals and hypothesis testing. Also inflating 

the variances of parameter estimates and, consequently, causing incorrect inferences about the 

relations between the explanatory and response variables (Midi et al. 2013). 

The models developed in this study were restricted to short periods of time (every three days), while the 

symptoms of the disease were not visible. The lowest predictive capacity in models obtained with 

reflectance data in first week after infection is related to physiological low response of plant to F. 

oxysporum during this period, which has been supported in this study in previous chapter and by others 

authors (Michielse and Rep 2009; Zvirin et al. 2010). According to the areas under the AUC obtained, the 

BLRMs generated has a higher prediction yield, exceeding an AUC of 0.8 in susceptible plants and 0.9 for 

tolerant plants after 6 dpi. One possible reason for not obtaining higher values is that the wavelengths 

selected as predictors for BLRMs are in the spectral range of 400nm-1000nm and some important 

biomolecules in the plant-pathogen interaction have peaks of absorbance/reflectance NIR (Türker-Kaya 

and Huck 2017; Ozaki et al. 2018). The increase of the predictive variables in the models could also 

improve the values in the AUC, but the correlation between the multiple predictors used in this study 

would have caused problems in the adjustment of the model. A final point that draws attention is the 

higher prediction performance in the models developed from the reflectance data in tolerant plants. 

Since the plant-pathogen interaction is highly specific, each cultivar has particular physiological changes 

generated in the process of recognition of the pathogen and generates different polysaccharides 

important for its inhibition. These changes at different times of the incubation period may be causing 

differences in prediction yields (detailed discussion of this topic in Chapter 2). 

 The use of reflectance spectroscopy in the Vis / NIR in BLRM to predict the infection by F. oxysporum in 

tomato plants facilitates the objective, rapid and non-destructive estimation of the samples, which 

contrasts with other techniques for detecting diseases in plants (Sankaran et al. 2010). The methodology 

developed to generate the BLRM could be a viable technique to detect infection by F. oxysporum during 

the incubation period of the disease, when the symptoms are not yet visible. This research is the first 

step towards the application of BLRM based on reflectance data in the Vis/NIR range for the prediction 

of fungal diseases, which can be used as a basic input in the design of technological tools that allow the 

plant disease detection in real time. 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=MICHIELSE%2C+CAROLINE+B
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=REP%2C+MARTIJN
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4.5 Conclusion 

In this chapter, we have succeeded applying the BLRM to the early detection of vascular wilt in tomato 

plants using reflectance data in the Vis/NIR range; additionally, a general methodology for calculating 

the adjustment has been provided. Several logistic regressions based on different combinations of 

predictive variables (reflectance at a specific wavelength) are shown in this study. By using the spectral 

data in BLRMs it was possible to predict incidence of wilt vascular in tomato plants with reasonable 

degree of accuracy (accuracy> 0.8, after 6 dpi). It was possible to create models with good predictive 

performance, mainly in the susceptible tomato cultivar evaluated, using nine identified variables (see 

table 5) with the selection method described above. However, the obtained results in this work suggest 

the infection in tomato plants can be predicted using three basic variables, R750, R550, and R430, 

wavelengths located in the upper limit of red, green and violet. Therefore, it is expected that by using 

some combinations of these three reflectances in BLRMs or in plant disease indices it should be possible 

to quickly examine a large number of tomato cultivars due to their reaction with F. oxysporum infection. 

The BLRMs committed fewer errors of identification when exceeding the 6 dpi, and those generated 

from the reflectance data in the tolerant cultivar were more efficient. 

Finally, the results of this study provided valuable information for use of reflectance data for evaluation 

at organ and plant scales, which can be scaled for measurements made from remote sensors on aerial or 

satellite platforms for evaluation of large infected areas with vascular wilt. Subsequent studies should 

focus on the specific relationship of some important biomolecules in tomato-F. oxysporum interaction 

with reflectance in NIR ranges not covered in this project (100nm-2500nm). 
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5. GENERAL CONCLUSIONS AND RECOMMENDATIONS 

5.1 General conclusions 

 Reflectance spectroscopy is a powerful and reliable technique to identify and discriminate plants 

infected with F. oxysporum from healthy plants and subjected to water stress. RSWs related to 

the disease were found in the Vis range (mainly the ranges 510nm-520nm, 650nm-670nm and 

700-750nm), suggesting physiological changes in the plants in response to the pathogen. The 

diseased tomato plants were correctly classified using the RSWs obtained, with percentages 

greater than 70%, after 12 dpi in the varieties evaluated. 

 In this work, it was possible to identify and relate some physiological and spectral responses 

before the appearance of visible symptoms caused by fungal infections in S. lycopersicum. The 

sensitivity for relationship between reflectance with net photosynthesis, stomatal conductivity 

and transpiration was greater in spectral ranges, such as 420nm-490nm, 560nm, 680nm and 

710nm. In particular, distant red bands had greater correlation than that net photosynthesis in 

plants inoculated with F. oxysporum, which allows estimating and detecting infected plants 

during the early stages of infection. It is important to indicate that the tomato plants inoculated 

with F. oxysporum did not present a significant difference in the net photosynthesis with respect 

to the control plants at 12 dpi (asymptomatic period), using only univariate analyzes with data 

derived from the gases exchange and Chlorophyll fluorescence analysis. On the other hand, the 

analyzes derived from spectral data and even the multivariate analyzes with same 

photosynthetic parameters (measured with the IRGA) could discriminate the infected plants, 

healthy ones and those subjected to water stress with a 100% correct classification percentage. 

 It was apply in this research the BLRMs with reflectance data in Vis/NIR range for prediction and 

early detection of vascular wilt in tomato plants with reasonable degree of accuracy, greater 

than 80% in susceptible cultivar and, 90% on tomato tolerant cultivar. The obtained results in 

this work suggest that is possible to achieve these degrees of precision using only three basic 

variables (R750, R550, and R430), which are wavelengths located in the upper limit of red, green 

and violet. 
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5.2 Recommendations 

The results obtained in this thesis has highlighted a number of topics on which further research would be 

beneficial. 

In general, there are few works focused on the early detection of systemic diseases using reflectance 

spectroscopy. Specifically, the scientific articles focused on S. lycopersicum - F. oxysporum using this 

technique have typically been limited to disease identification in plants and pathogen isolate 

classification in vivo cultures. Future studies could be focused on evaluating whether the wavelengths 

related to the infection are specific or not to the pathosystem studied, or may be important in other 

plant-pathogen associations (fungi, bacteria, viruses, and nematodes), nutritional deficiencies or even 

damage by abiotic environmental factors.  

Additionally, it is important to use spectroscopes with a wider spectral range, especially that they 

measure in complete NIR (800nm-2500nm). In this range, it is possible to correlate changes in important 

biomolecules concentrations for specific plant-pathogen interactions, with spectral changes in plants 

leaves. These wavelengths obtained in this way tend to be more specific to each specific pathosystem, so 

they could be used in robust BLRMs to predict infections of different pathogens in their respective hosts. 

Finally, it is important to emphasize to the data registration and publication describing the informative 

content of spectral data collection process (metadata), since they can be very important in general data 

analysis and discussion of patterns unexpected in study phenomenon. Detailing and reporting the 

methodology used in specific programs for data analysis (such as Software R) is also important to ensure 

its repeatability and facilitate its realization by new researchers in this research line. 
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Annexed IV. Nutrient solution for hydroponic tomato cultivation (Hort Americas) 

 
Nutrient Concentration (ppm) 

Nitrate (NO3) 200 ppm 

Ammonium (NH4) 7 ppm 

Potassium (K) 240 ppm 

Phosphate (PO4) 50 ppm 

Calcium (Ca) 220 ppm 

Magnesium (Mg) 50 ppm 

Iron (Fe) 1.5 ppm 

Manganese (Mn) 0.55 ppm 

Zinc (Zn) 0.33 ppm 

Boron (B) 0.3 ppm 

Copper (Cu) 0.05 ppm 

Molybdenum (Mo) 0.05 ppm 

Sulfates (SO4) 20 ppm 

Chloride (Cl) <300 ppm 

Sodium (Na) <100 ppm 

 
 

 


