On the Two-Parabolic Subgroups of ${ m SL}(2,{\mathbb C})$

Sobre los subgrupos dos-parabólicos de $SL(2, \mathbb{C})$

Christian Pommerenke¹, Margarita Toro^{2,a}

¹Technische Universität Berlin, Berlin, Germany

²Universidad Nacional de Colombia, Medellín, Colombia

ABSTRACT. We consider homomorphisms H_t from the free group F of rank 2 onto the subgroup of $SL(2, \mathbb{C})$ that is generated by two parabolic matrices. Up to conjugation, H_t depends only on one complex parameter t. We study the possible relators, that is, the words $w \in F$ with $w \neq 1$ such that $H_t(w) = I$ for some $t \in \mathbb{C}$.

We find several families of relators. Of particular interest here are relators connected with 2-bridge knots, which we consider in a purely algebraic setting. We describe an algorithm to determine whether a given word is a possible relator.

Key words and phrases. Representation, Parabolic, Wirtinger presentation, Twogenerated groups, Homomorphism, Longitude.

2000 Mathematics Subject Classification. 15A30, 57M05.

RESUMEN. Consideramos homomorfismos H_t del grupo libre F de rango 2 sobre el subgrupo de SL $(2, \mathbb{C})$ que es generado por dos matrices parabólicas. Salvo conjugación, H_t depende sólo de un parámetro complejo t. Estudiamos los posibles relatores, esto es, las palabras $w \in F$ con $w \neq 1$ tal que $H_t(w) = I$ para algún $t \in \mathbb{C}$.

Encontramos varias familias de relatores. De particular interés aquí son los relatores asociados con nudos de 2 puentes, los cuales consideramos de forma puramente algebraica. Describimos un algoritmo para determinar cuándo una palabra dada es un posible relator.

Palabras y frases clave. Representación, parabólico, presentación de Wirtinger, grupos dos-generados, homomorfismos, longitud.

^a Partially supported by COLCIENCIAS, code 1118-521-28160.

1. Introduction

The subgroup of $SL(2, \mathbb{C})$ generated by $A_t = \begin{bmatrix} 1 & 0 \\ t & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ has been studied by many mathematicians, for instance by R. Riley [16, 17], J. Gilman [4] and P. Waterman [6]. It is of particular interest in knot theory [12, Chapter 4][2].

In terms of the corresponding Moebius transformations α and β it is, up to conjugation, the only subgroup of PSL(2, \mathbb{C}) generated by two parabolic transformations with distinct fixed points. Indeed, we may assume that $\alpha(0) = 0$, $\beta(\infty) = \infty$, moreover that $\beta(z) = z + 1$. Writing $\alpha(z) = (az + b)/(cz + d)$ with ad - bc = 1, we may also assume that tr $\alpha = a + d = 2$. Since b = 0 it follows that a = d = 1 and $c = t \in \mathbb{C} \setminus \{0\}$ remains as a free parameter. It is convenient to allow t = 0.

Let F be the free group $\langle x, y \rangle$. We consider the homomorphisms $H_t : F \to$ SL(2, \mathbb{C}) with $H_t(x) = A_t$ and $H_t(y) = B$. For clarity we distinguish between the abstract group F and its image in the matrix group SL(2, \mathbb{C}). Our main interest is to study the set of possible relators, that is the sets

$$R^{\pm} = \{ r \in F, r \neq 1 \mid \text{there is } s \in \mathbb{C} \text{ with } H_s(r) = \pm I \}.$$

If $r \in \mathbb{R}^+$ then $H_s(F)$ has a presentation $\langle x, y; r_1, r_2, \ldots \rangle$ with $r_1 = r$ and perhaps other relators r_2, \ldots

We shall exhibit various families of relators, some old, some new. An important family of relators comes from the presentations $\langle x, y; xw = wy \rangle$ of 2-bridge knots. Riley introduced the automorphism $w \in F \to \tilde{w} \in F$ induced by $x \to x^{-1}$ and $y \to y^{-1}$. Our group has the special property that $r \in R^{\pm}$ implies $\tilde{r} \in R^{\pm}$. At the end we give 8 examples to illustrate the results and show their scope.

We try to give a systematic account of the theory including some folklore results. We will use several results from Combinatorial Group Theory [13, 10] and stress the connections to Knot Theory [2]. We have not been able to elucidate the role of palindromes, that is, words of F that read the same way forwards and backwards [8, 5].

We will not discuss the set orthogonal to R^+ , namely

$$\{s \in \mathbb{C} \mid \text{there exists } r \neq 1 \text{ such that } H_s(r) = I\},\$$

the set of s where H_s is not injective. This set and its closure has been studied in [16, 4, 6] and, in a more general context, in [18, 14].

Volumen 45, Número 1, Año 2011

2. Groups and Homomorphisms

Let $SL(2,\mathbb{C})$ and $PSL(2,\mathbb{C})$ be the groups with elements of the forms

$$C = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \qquad \gamma(z) = \frac{az+b}{cz+d}, \qquad (a, b, c, d \in \mathbb{C}, ad-bc=1)$$

respectively. For $t \in \mathbb{C}$ we write

$$A_t = \begin{bmatrix} 1 & 0 \\ t & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \qquad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \tag{1}$$

While the group $\text{PSL}(2, \mathbb{C})$ of Moebius transformations is perhaps more important in analysis and geometry, the group $\text{SL}(2, \mathbb{C})$ is more convenient for computations.

Let F be the abstract free group $\langle x,y\rangle.$ There are [11, Theorem 8.04] unique homomorphisms

$$H_t: F \to \mathrm{SL}(2,\mathbb{C})$$
 with $H_t(x) = A_t, H_t(y) = B.$ (2)

$$h_t: F \to \mathrm{PSL}(2, \mathbb{C}) \quad \text{with} \quad h_t(x) = \alpha_t, h_t(y) = \beta,$$
 (3)

where $\alpha_t(z) = z/(tz+1)$ and $\beta(z) = z+1$ are both parabolic.

Every word $w \neq 1$ in F can be uniquely written as

$$w = x^{e_0} y^{e_1} \cdots x^{e_{m-1}} y^{e_m}, \qquad e_\mu \in \mathbb{Z} \setminus \{0\} \quad (\mu = 1, \dots, m-1)$$
(4)

with $e_0, e_m \in \mathbb{Z}$ and $m \in \mathbb{N}$. The exponent sums

$$\sigma_x(w) = e_0 + e_2 + \dots + e_{m-1}, \qquad \sigma_y(w) = e_1 + e_3 + \dots + e_m$$
 (5)

are invariant under conjugations in F. As in [17, p.206] we write $\tilde{1} = 1$ and

$$\widetilde{w} = x^{-e_0} y^{-e_1} \cdots x^{-e_{m-1}} y^{-e_m}.$$
(6)

This defines an automorphism of F. In formulas we write (\cdot) .

Now suppose that $w \in F$ is not conjugate in F to x^k or y^k with $k \in \mathbb{Z}$. Then the process of cyclic reduction shows that w is conjugate to a word u of the form

$$u = y^{k_1} x^{j_1} \cdots y^{k_n} x^{j_n}, \qquad k_{\nu}, j_{\nu} \in \mathbb{Z} \setminus \{0\} \quad (\nu = 1, \dots, n) \quad \text{with} \quad n \in \mathbb{N}.$$
 (7)

Our standard form (7) allows us to arrange all words of F up to conjugation in sequences. Let (j_n) and (k_n) be any given sequences with $j_n, k_n \in \mathbb{Z} \setminus \{0\}$. Then we define $u_0 = 1$ and

$$u_n = y^{k_1} x^{j_1} \cdots y^{k_n} x^{j_n}, \quad \text{for} \quad n \in \mathbb{N}.$$
(8)

A conjugate of every $w \in F$ will appear in many such sequences. No u_n with $n \ge 1$ is conjugate to x^k or y^k .

Now we turn to the matrix elements. We often write

$$H_t(u) = \begin{bmatrix} a(t) & b(t) \\ c(t) & d(t) \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} a & b \\ c & d \end{bmatrix};$$
(9)

the elements of $H_t(u_n)$ will be a_n, \ldots, d_n .

The following proposition is folklore.

Proposition 1. Let (u_n) be given by (8). Then, for $n \ge 0$,

$$a_{n+1} = j_{n+1}k_{n+1}ta_n + a_n + j_{n+1}tb_n, (10)$$

$$b_{n+1} = k_{n+1}a_n + b_n, (11)$$

$$c_{n+1} = j_{n+1}k_{n+1}tc_n + c_n + j_{n+1}td_n,$$
(12)

$$d_{n+1} = k_{n+1}c_n + d_n. (13)$$

For $n \geq 1$, the a_n, \ldots, d_n are polynomials over \mathbb{Z} of the forms

$$a_n = j_1 k_1 \cdots j_n k_n t^n + \cdots, \qquad b_n = j_1 k_1 \cdots j_{n-1} k_{n-1} k_n t^{n-1} + \cdots, \qquad (14)$$

$$c_n = j_1 j_2 k_2 \cdots j_n k_n t^n + \cdots, \quad d_n = j_1 j_2 k_2 \cdots j_{n-1} k_{n-1} k_n t^{n-1} + \cdots.$$
 (15)

The trace tr $H_t(u_n) = a_n + d_n$ is non-constant for $n \ge 1$.

Proof. By (8), (1) and (2) we have

$$H_t(u_{n+1}) = H_t(u_n y^{k_{n+1}} x^{j_{n+1}}) = H_t(u_n) B^{k_{n+1}} A_t^{j_{n+1}} \\ = \begin{bmatrix} a_n & b_n \\ c_n & d_n \end{bmatrix} \begin{bmatrix} 1 & k_{n+1} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ j_{n+1}t & 1 \end{bmatrix}$$

and (10)–(13) follow by (9); we have $a_0 = d_0 = 1$ and $b_0 = c_0 = 0$.

Now we prove the other assertions by induction. In each of the recursion formulas (10)–(13), all coefficients are in \mathbb{Z} . Furthermore, the degree of the first term is always, by induction hypothesis, higher than the degree of the other terms. Hence, by (14), a_{n+1} begins with $j_{n+1}k_{n+1}t \cdot j_1k_1 \cdots j_nk_nt^n$ and b_{n+1} begins with $k_{n+1} \cdot j_1k_1 \cdots j_nk_nt^n$, similarly for c_{n+1} and d_{n+1} . The statement about the trace follows from (14) and (15).

Theorem 2. Let u_n satisfy (8) with $|j_{\nu}| = |k_{\nu}| = 1$. Then the coefficients $a_{n,m}$ of $a_n(t)$ and so on satisfy

$$|a_{n,m}| \le \binom{n+m}{2m} (0 \le m \le n), \qquad |b_{n,m}| \le \binom{n+m}{2m+1} (0 \le m \le n-1), \\ |c_{n,m}| \le \binom{n+m-1}{2m-1} (1 \le m \le n), \quad |d_{n,m}| \le \binom{n+m-1}{2m} (0 \le m \le n-1).$$

If $u_n = (yx)^n$ then equality holds without taking absolute values.

Volumen 45, Número 1, Año 2011

Compare [16, p. 233] for the last statement. The values for the case $v_n = (yx)^n$ were found by the method of generating functions. We have for instance

$$\sum_{n=0}^{\infty} a_n(t) z^n = \frac{1-z}{(1-z)^2 - tz}.$$

Proof. Let $n \ge 0$ and $m \ge 0$. Writing $a_{n,-1} = \cdots = d_{n,-1} = 0$, we obtain from (10)–(13) that

$$a_{n+1,m} = a_{n,m} + j_{n+1}k_{n+1}a_{n,m-1} + j_{n+1}b_{n,m-1},$$

$$b_{n+1,m} = k_{n+1}a_{n,m} + b_{n,m},$$

$$c_{n+1,m} = c_{n,m} + j_{n+1}k_{n+1}c_{n,m-1} + j_{n+1}d_{n,m-1},$$

$$d_{n+1,m} = k_{n+1}c_{n,m} + d_{n,m}.$$

Now we verify the assertions by induction on n. The case n = 0 is clear because $H_t(1) = I$. We repeatedly use that $\binom{\alpha}{\beta} + \binom{\alpha}{\beta-1} = \binom{\alpha+1}{\beta}$.

Since $|j_{n+1}| = |k_{n+1}| = 1$ the above recursion formulas show that

$$\begin{aligned} |a_{n+1,m}| &\leq |a_{n,m}| + |a_{n,m-1}| + |b_{n,m-1}| \\ &\leq \binom{n+m}{2m} + \binom{n+m-1}{2m-2} + \binom{n+m-1}{2m-1} \\ &= \binom{n+m}{2m} + \binom{n+m}{2m-1} = \binom{n+1+m}{2m}, \\ |b_{n+1,m}| &\leq |a_{n,m}| + |b_{n,m}| \leq \binom{n+m}{2m} + \binom{n+m}{2m+1} = \binom{n+1+m}{2m+1} \\ |c_{n+1,m}| &\leq |c_{n,m}| + |c_{n,m-1}| + |d_{n,m-1}| \\ &\qquad (n+m-1) \qquad (n+m-2) \qquad (n+m-1) \qquad (n+m-1) \end{aligned}$$

$$\leq \binom{n+m-1}{2m-1} + \binom{n+m-2}{2m-3} + \binom{n+m-1}{2m-2} = \binom{n+m}{2m-1},$$
$$|d_{n+1,m}| \leq |c_{n,m}| + |d_{n,m}| \leq \binom{n+m-1}{2m-1} + \binom{n+m-1}{2m} = \binom{n+m}{2m}.$$

If $u_n = (yx)^n$ then $j_{n+1} = k_{n+1} = 1$ and all quantities are non-negative. Hence we have equality in all the above inequalities.

Our homomorphism has an important property with respect to the automorphism $u \to \tilde{u}$ defined in (6). The following proposition is well-known.

Proposition 3. Let
$$u \in F$$
, $H_t(u) = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $Q = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$. Then

$$H_t(\widetilde{u}) = QH_t(u)Q^{-1} = \begin{bmatrix} a & -b \\ -c & d \end{bmatrix}.$$
(16)

Proof. It is easy to see that

$$Q\begin{bmatrix}a&b\\c&d\end{bmatrix}Q^{-1} = \begin{bmatrix}a&-b\\-c&d\end{bmatrix}.$$
(17)

Hence it follows from (1) and (2) that

$$QA_tQ^{-1} = \begin{bmatrix} 1 & 0 \\ -t & 1 \end{bmatrix} = A_t^{-1} = H_t(x^{-1}) = H_t(\tilde{x}),$$
$$QBQ^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = B^{-1} = H_t(y^{-1}) = H_t(\tilde{y}).$$

This implies (16) because $(uv) = \tilde{u}\tilde{v}$, $(u^{-1}) = \tilde{u}^{-1}$ and H_t is a homomorphism.

3. Relators

Our main interest is in the set of words

$$R^{\pm} = \{ r \in F, r \neq 1 \mid \text{ there exists } s \in \mathbb{C} \text{ with } H_s(r) = \pm I \}, \qquad (18)$$

$$R = \{ r \in F, r \neq 1 \mid \text{ there exists } s \in \mathbb{C} \text{ with } h_s(r) = \text{id} \}.$$
(19)

Let N(r) denote the normal closure of r, that is the smallest normal subgroup of F with $r \in N(r)$.

It follows from Proposition 3 that $H_s(u) = I$ implies $H_s(\tilde{u}) = I$; see (6) for the definition of \tilde{u} . Hence, for $r \in R^+$ or $r \in R$, the normal closure of $\{r, \tilde{r}\}$ also belongs to R^+ or R for the same s. Thus we have

$$u = v_1 r_1 v_1^{-1} \cdots v_m r_m v_m^{-1} \in \mathbb{R}^+ \quad \text{or} \quad u \in \mathbb{R}$$
(20)

where $v_{\mu} \in F$ and $r_{\mu} \in \{r, r^{-1}, \tilde{r}, \tilde{r}^{-1}\}$ for $\mu = 1, \ldots, m$ and $m \in \mathbb{N}$. It follows that the exponent sums (5) for $u \in \mathbb{N}$ satisfy

$$\sigma_x(u) = \lambda \sigma_x(r), \quad \sigma_y(u) = \lambda \sigma_y(r) \quad \text{for some} \quad \lambda \in \mathbb{Z}.$$
 (21)

If $r \in R$ and thus $h_s(r) = id$ for some $s \in \mathbb{C}$ then, by the first isomorphism theorem, there is a homomorphism

$$h_{r,s}: \langle x, y; r \rangle \xrightarrow{onto} h_s(F) \tag{22}$$

defined by $h_{r,s}(w) := h_s(u)$ for any $w \in uN(r)$. Now we show that $h_{r,s}$ is in general not an isomorphism so that the representation of $\langle x, y ; r \rangle$ is not faithful. See Example 1.

Proposition 4. If $h_{r,s}$ is an isomorphism then \tilde{r} is conjugate to r or r^{-1} .

Volumen 45, Número 1, Año 2011

Note that, if \tilde{r} is conjugate to r, then $\sigma_x(r) = \sigma_y(r) = 0$. This result is related to [3, Theorem 3.1]. On the other hand, it is easy to see that even $\tilde{r} = r^{-1}$ holds if r is a palindrome, that is, the word r reads forwards the same as backwards. See [3, Propositions 3.4 and 3.2] for a fuller description.

Proof. Let $h_{r,s}$ be an isomorphism. Since $h_s(\tilde{r}) = \text{id}$ it follows that $\tilde{r} \in N(r)$. Hence the normal closure $N(\tilde{r})$ of \tilde{r} , the smallest normal subset of F containing \tilde{r} , satisfies $N(\tilde{r}) \subset N(r)$. Furthermore $\tilde{r} = v_1 r^{\pm 1} v_1^{-1} \cdots v_m r^{\pm 1} v_m^{-1}$ and therefore

$$r = (\widetilde{r}) = \widetilde{v}_1 \widetilde{r}^{\pm 1} \widetilde{v}_1^{-1} \cdots \widetilde{v}_m \widetilde{r}^{\pm 1} \widetilde{v}_m^{-1} \in N(\widetilde{r}).$$

Hence $N(r) \subset N(\tilde{r})$ so that r and \tilde{r} have the same normal closure N(r). It follows [13, p. 261] [10, Proposition. 5.8, p. 106] that \tilde{r} is conjugate to r or r^{-1} .

Now we present a general method to obtain relators. See Examples 2 and 3.

Theorem 5. Let $u \in F$ not be conjugate to x^k or y^k with $k \in \mathbb{Z}$. Then

$$u\widetilde{u} \in R^+, \qquad u^2 \in R^-, \tag{23}$$

$$u^n \in R^+ \cap R^-, \qquad for \qquad n \ge 3, \tag{24}$$

thus $u\widetilde{u} \in R$ and $u^n \in R$ for $n \geq 2$.

For $u\tilde{u}$ we have to exclude the case that u is a palindrome because then $u\tilde{u} = 1$, compare (18) and (19). Note that $u\tilde{u} = 1$ holds if and only if u is a palindrome.

Proof.

(a) We obtain from (9) and (16) that

$$H_t(u\widetilde{u}) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & -b \\ -c & d \end{bmatrix} = \begin{bmatrix} 1+a(a-d) & -b(a-d) \\ c(a-d) & 1-d(a-d) \end{bmatrix}.$$

Since a-d is non-constant by Proposition 1, it follows that a(s) - d(s) = 0for some $s \in \mathbb{C}$. Hence $H_s(u\tilde{u}) = I$.

(b) First let $n \ge 2$. There exists s such that $\operatorname{tr} H_s(u) = 2\cos(\pi/n)$. Then $\operatorname{tr} H_s(u) \ne \pm 2$. Hence $H_s(u)$ is conjugate to $\operatorname{diag}(e^{i\pi/n}, e^{-i\pi/n}) \ne I$. It follows that $H_s(u^n) = -I$.

Now let $n \geq 3$. There exists s such that tr $H_s(u) = 2\cos(2\pi/n)$ so that, again, tr $H_s(u) \neq \pm 2$. Hence $H_s(u)$ is conjugate to diag $(e^{2\pi i/n}, e^{-2\pi i/n}) \neq I$ so that $H_s(u^n) = I$.

Proposition 6. Let $u \in F$ have the form (7). If $s \neq 0$ and $H_s(u) = I$ then s is an algebraic number of degree $\leq (n-1)/2$, and if $H_s(u) = -I$ then s is an algebraic number of degree $\leq n/2$. If $|j_{\nu}| = |k_{\nu}| = 1$ for $\nu = 1, ..., n$ then s is an algebraic integer.

This is common knowledge except for the sharp bounds (n-1)/2 and n/2 for the degrees, see Example 4. Note that $H_s(F) \subset SL(2, \mathbb{Z}[s])$. We have shown that, up to conjugation, u has the form (7) whenever u is not conjugate to x^k or y^k .

Proof. We use the notation (9). If $H_s(u) = \pm I$ then c(s) = 0. Hence, by (15), s is an algebraic number which is an algebraic integer if $|j_{\nu}| = |k_{\nu}| = 1$. Now let p(t) be the minimal polynomial of s. First let $H_s(u) = I$ and $s \neq 0$. We write

$$a + d - 2 = -(a - 1)(d - 1) + bc.$$

Since a(s) = d(s) = 1 and b(s) = c(s) = 0, we conclude that p divides (a - 1), (d - 1), b and c. Hence p^2 divides a + d - 2. Since $s \neq 0$, it follows that tp^2 divides a + d - 2, which is a polynomial of degree n by (14). Thus s has degree $\leq (n - 1)/2$.

Now let $H_s(u) = -I$. We write

$$a + d + 2 = (a + 1)(d + 1) - bc.$$

Now p divides (a+1), (d+1), b and c. Hence p^2 divides the polynomial a+d+2 of degree n. Thus s has degree $\leq n/2$.

Now we describe an algorithm to determine whether $u \in F$ belongs to R^+ or R^- . This is not the case if u is conjugate to x^k or y^k . Therefore we may assume that u has the form (7). We use the notation (9).

First we check whether it is possible that b = c = 0 for some $t \in \mathbb{C}$. To do this we calculate the polynomial

$$q_0 := \gcd(b, c) \in \mathbb{Z}[t].$$
(25)

If deg $q_0 = 0$ then $u \notin R^+ \cup R^-$. If however deg $q_0 > 0$ then we calculate the polynomials

$$q^{\pm} := \gcd(a \mp 1, q_0). \tag{26}$$

If deg $q^+ = 0$ then $u \notin R^+$, if deg $q^- = 0$ then $u \notin R^-$.

Now if deg $q^{\pm} > 0$ then there is $s \in \mathbb{C}$ such that $a(s) = \pm 1$. It follows from (25) and (26) that b(s) = c(s) = 0 so that $1 = a(s)d(s) - b(s)c(s) = \pm d(s)$. Therefore we have $H_s(u) = \pm I$ and thus $u \in R^{\pm}$. Additionally we may factorize q^{\pm} into irreducible polynomials over \mathbb{Z} . If s is a zero of a factor then all other zeros t of this factor satisfy $H_t(u) = \pm I$. The main computational difficulty of this algorithm is that very large integer coefficients may occur during the calculation of (25) and (26).

Volumen 45, Número 1, Año 2011

4. The Wirtinger Relators and the Longitude

Let K be a knot in \mathbb{R}^3 , see e.g. [2, 9]. The complement $\Omega = \overline{\mathbb{R}^3 \setminus V(K)}$, where V(K) is a tubular neighborhood of K, is a multiply connected domain. The fundamental group $\Pi_1(\Omega)$ is an important invariant of K though it does not completely determine the equivalence class of K, although the prime knots are determined by their knot group [7]. A very well understood family of knots are the so called 2-bridge knots and links [20, 2, 15, 19].

The fundamental group of a 2-bridge knot admits a presentation $\langle x,y;\; xw_n=w_ny\rangle$ where

$$w_{n} = y^{k_{n}} x^{k_{n-1}} \cdots y^{k_{1}} x^{k_{1}} y^{k_{2}} \cdots y^{k_{n-1}} x^{k_{n}}, \qquad k_{\nu} \in \{1, -1\}, \quad n \text{ odd}$$

$$w_{n} = y^{k_{n}} x^{k_{n-1}} \cdots y^{k_{2}} x^{k_{1}} y^{k_{1}} \cdots y^{k_{n-1}} x^{k_{n}}, \qquad k_{\nu} \in \{1, -1\}, \quad n \text{ even}$$
(27)

for $n \in \mathbb{N}$, where $k_{\nu}, \nu = 1, \ldots, n$, satisfy some additional conditions [2, 1]. We inverted the usual order of exponents in order to have a recursive definition. On the following we leave the context of knot theory and call any word of the form (27) a Wirtinger word.

It follows from (27) that, with \sim defined in (6),

$$w_{n+1} = \left(y^{-k_{n+1}}\widetilde{w}_n x^{-k_{n+1}}\right) \widetilde{}$$

$$\tag{28}$$

Instead of (9) we now write

$$W_n = H_t(w_n) = \begin{bmatrix} a_n & b_n \\ c_n & d_n \end{bmatrix}.$$
 (29)

It follows from (28), (1) and Proposition 3 that, with $k = k_{n+1}$,

$$W_{n+1} = QB^{-k}W_n^{-1}A^{-k}Q^{-1}$$
$$= Q\begin{bmatrix} 1 & -k\\ 0 & 1 \end{bmatrix} \begin{bmatrix} d_n & -b_n\\ -c_n & a_n \end{bmatrix} \begin{bmatrix} 1 & 0\\ -kt & 1 \end{bmatrix} Q^{-1}$$

Using also (17) and $k^2 = 1$, we obtain

$$W_{n+1} = \begin{bmatrix} ta_n + ktb_n + kc_n + d_n & ka_n + b_n \\ kta_n + c_n & a_n \end{bmatrix}.$$
 (30)

Since $b_0 = c_0 = 0$ we deduce by induction the well-known formula [12, p. 141]

$$c_n = tb_n. (31)$$

Hence we obtain from (30) the recursion formulas

$$a_{n+1} = ta_n + 2k_{n+1}tb_n + a_{n-1}, \qquad b_{n+1} = k_{n+1}a_n + b_n.$$

Now (27) is a special case of (7). Hence the estimates of Theorem 2 apply also with the new notation.

Now we drop the index n and write

$$W_t := H_t(w) = \begin{bmatrix} a(t) & b(t) \\ c(t) & d(t) \end{bmatrix}.$$
(32)

Theorem 7. If w satisfies the Wirtinger condition (27) then

$$H_s(xw) = H_s(\widetilde{w}y^{-1}) \tag{33}$$

holds if and only if a(s) + 2b(s) = 0. Thus $wy\widetilde{w}^{-1}x \in \mathbb{R}^+$.

Proof. By (16) and (31), the condition (33) is equivalent to

$$\begin{bmatrix} a & b \\ t(a+b) & tb+d \end{bmatrix} = A_t W_t = \widetilde{W}_t B^{-1} = \begin{bmatrix} a & -a-b \\ -tb & tb+d \end{bmatrix},$$

and this condition holds if and only if t satisfies a(t) + 2b(t) = 0. The nonconstant polynomial a + 2b has a root s. Hence

$$r = wy\tilde{w}^{-1}x = x^{-1}(xw)(\tilde{w}y^{-1})^{-1}x \in R^+.$$

In knot theory the condition (33) is replaced by

$$H_s(xw) = H_s(wy), \qquad r = wy^{-1}w^{-1}x \in R^+.$$
 (34)

which holds if and only if a(s) = 0, see e.g. [12, p. 141].

By Proposition 3 and conjugation, we see that (34) implies

$$H_s(x\widetilde{w}) = H_s(\widetilde{w}y), \qquad \widetilde{r} = \widetilde{w}y\widetilde{w}^{-1}x^{-1} \in \mathbb{R}^+.$$
(35)

Condition (34) induces a homomorphism $h_{r,s}$ from $\langle x, y; r \rangle$ into $\text{PSL}(2, \mathbb{C})$; see (22). Now (35) says that it automatically induces a homomorphism from $\langle x, y; r, \tilde{r} \rangle$. In the case of a 2-bridge knot it is known [2, 1] that there exists a faithful discrete $\text{SL}(2, \mathbb{C})$ -representation of a 2-bridge knot of type (p, q) with $q \neq \pm 1$, so that xw = wy implies $x\tilde{w} = \tilde{w}y$. But this is not true in general, see Example 5.

The situation is different for (33) because $\tilde{r} = \tilde{w}y^{-1}w^{-1}x^{-1}$ is conjugate to r^{-1} so that r and \tilde{r} have the same normal closure; compare Proposition 4. Hence they induce the same group.

For 2-bridge knots the group $G = \langle x, y; xw = wy \rangle$ and its peripheral subgroup are important concepts to distinguish equivalence classes of knots. This subgroup is generated by a meridian, say y, and the *longitude* $l = w^{-1}\tilde{w}$

Volumen 45, Número 1, Año 2011

(see [17, p. 206]). We omitted Riley's factor $y^{2\sigma}$. It is easy to check that $(r = 1, \tilde{r} = 1)$ is equivalent to (r = 1, ly = yl).

Now we study the longitude $l = w^{-1}\tilde{w}$ in a more general context. We do not assume that the word w comes from knot theory and we do not assume the consequence (31) of the Wirtinger condition. For $w \in F$ we obtain from (32) and (16) that

$$H_t(l) = W_t^{-1} \widetilde{W}_t = \begin{bmatrix} ad + bc & -2bd \\ -2ac & ad + bc \end{bmatrix}.$$
 (36)

We note that $l = w^{-1} \widetilde{w}$ is a palindrome.

Theorem 8. Let w satisfy (7) with $|j_{\nu}| = |k_{\nu}| = 1$ and let a(s) = 0. Then

$$L_s := H_s(l) = \begin{bmatrix} -1 & -2b(s)d(s) \\ 0 & -1 \end{bmatrix}.$$
 (37)

If a = c + d then b(s)d(s) = 1. If the polynomial a is irreducible and if $a \neq c + d$ then $b(s)d(s) \notin \mathbb{Q}$ and L_s and B generate a free abelian group of rank 2.

Formulas similar to (37) follow from (36) if b(s) = 0, c(s) = 0 or d(s) = 0. The 2-bridge knots of type (2n + 1, 1) have the Wirtinger word $w = (yx)^n$. It follows from Theorem 2 that a = c + d so that b(s)d(s) = 1. See Examples 6, 7 and 8.

Proof. Since ad - bc = 1 we can write ad + bc = -1 + 2ad. Hence (37) follows from (36). If a = c + d then c(s) = -d(s) and thus b(s)d(s) = -b(s)c(s) = 1 because a(s) = 0.

Now let q := b(s)d(s) and suppose that $q \in \mathbb{Q}$. Since a(s) = 0, it follows from Proposition 1 that s is an algebraic integer so that $q \in \mathbb{Z}$. It follows from (14) and (15) that

$$f(t) := qc(t) + d(t) = q\lambda t^n + \cdots, \qquad \lambda = \pm 1.$$
(38)

Since a(s) = 0 implies b(s)c(s) = -1 we have

$$b(s)f(s) = qb(s)c(s) + b(s)d(s) = -q + q = 0$$

so that f(s) = 0. Hence the irreducible polynomial a(t) divides f(t). Since $a(t) = \lambda t^n + \cdots$ with the same λ , we conclude from (38) that q = 1 and therefore a = c + d. If $a \neq c + d$ we therefore have $-2b(s)d(s) \notin \mathbb{Q}$ so that L_s and B are free abelian generators.

5. Examples

The words of F in the following examples are generated by

 $z_0 = yx,$ $z_1 = yx^{-1},$ $z_2 = y^{-1}x,$ $z_3 = y^{-1}x^{-1}.$

All polynomials will be written as the product of irreducible factors in $\mathbb{Z}[t]$. The factorization used the program Kash3 developed by M. Pohst and his group, www.math.tu-berlin.de/~kant.

Example 1. The following two words

$$\begin{aligned} r_1 &= z_0^2 z_1 z_3^2, & \sigma_x(r_1) &= -1, & \sigma_y(r_1) &= 1, \\ r_2 &= z_0^{10}, & \sigma_x(r_2) &= 10, & \sigma_y(r_2) &= 10 \end{aligned}$$

are relators with the same minimal polynomial $1 + 3t + t^2$. The normal closures satisfy $r_1 \notin N(r_2)$ and $r_2 \notin N(r_1)$ because the exponent sums do not satisfy (21). It follows that no homomorphism $h_{r,s}$ with $s = -1/2 \pm \sqrt{5}/2$ can be injective, see (22).

Example 2. Let $u = z_0^2 z_2$ and $r = u\tilde{u} = z_0^2 z_2 z_3^2 z_1$. The polynomials for u are $a(t) = 1 + 4t - t^2 - t^3$ and $d(t) = 1 - t - t^2$. Now part (a) of the proof of Theorem 5 shows that $H_t(r) = I$ if and only if $a(s) - d(s) = s(5 - s^2) = 0$. Hence $r \in \mathbb{R}^+$.

Example 3. Let $r = z_0^2$. Then

$$H_t(r) = \begin{bmatrix} 1+3t+t^2 & 2+t\\ 2t+t^2 & 1+t \end{bmatrix} \neq \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}, \quad \text{for} \quad t \in \mathbb{C}$$

so that $r \notin R^+$. But (23) shows that $r \in R^-$.

Example 4. The following words belong to $R^+ \cap R^-$. Their minimal polynomials

$$u = z_0^5: \qquad p^+(t) = 5 + 5t + t^2, \qquad p^-(t) = 1 + 3t + t^2, u = z_0^6: \qquad p^+(t) = 3 + 4t + t^2, \qquad p^-(t) = 2 + 9t + 6t^2 + t^3$$

have the smallest degrees possible by Proposition 6.

Example 5. The Wirtinger word $w = z_0 z_1 z_1 z_0$ does not come from a 2-bridge knot. Its relator is $r = wy^{-1}w^{-1}x$ with $\sigma_x(r) = 1$, $\sigma_y(r) = -1$. Furthermore $\tilde{r} = \tilde{w}y\tilde{w}^{-1}x^{-1}$ with $\sigma_x(\tilde{r}) = -1$, $\sigma_y(\tilde{r}) = 1$ so that \tilde{r} is not conjugate to r. Now r^{-1} contains $y^{-1}x^{-1}y^{-1}x^{-1}$ whereas no conjugate of \tilde{r} contains this word. Hence r is not conjugate to r^{-1} either. Thus it follows from Proposition 4 that, with $H_s(r) = I$, the homomorphism

$$\langle x, y; r, \widetilde{r} \rangle = \langle x, y; xw = wy, x\widetilde{w} = \widetilde{w}y \rangle \to \mathrm{SL}(2, \mathbb{C})$$

is not injective.

Volumen 45, Número 1, Año 2011

Example 6. The Wirtinger word of the 2-bridge knot of type (9,1) is $w = z_0^4$ and

$$a(t) = (1+t)(1+9t+6t^2+t^3)$$

is reducible. It satisfies a = c + d and thus b(s)d(s) = 1 by Theorem 8.

Example 7. Let $w = z_0 z_3 z_2 z_0$. This is not a Wirtinger word because $c \neq tb$. It satisfies

$$a(t) = (1+t)p(t), \quad p(t) = -1 + t + 2t^{2} + t^{3},$$

$$b(t)d(t) - 1 = (1+t)(-1 - t - t^{2} + 2t^{3} + 2t^{4} + t^{5}),$$

$$b(t)d(t) + 1 = (-1 + t + t^{2} + t^{3})p(t).$$

Hence b(-1)d(-1) = 1 whereas b(s)d(s) = -1 if p(s) = 0. Thus, in Theorem 8, the assumption that a(t) is irreducible can not be omitted.

Example 8. The 2-bridge knot of type (5,3) has $w = z_1 z_2$ and $a(t) = 1 - t + t^2$. This gives $s = (1 + i\sqrt{3})/2$ and $b(s)d(s) = \pm i\sqrt{3}$.

Acknowledgment. We would like to thank the referees for the careful reading and helpful comments.

References

- W. Brumfield and H. M. Hilden, SL(2) Representations of Finitely Presented Groups, Contemporary Math (Providence, United States), vol. 187, AMS, 1995.
- [2] G. H. Burde and H. Zieschang, *Knots*, Walter de Gruyter, 1985.
- [3] B. Fine, F. Levin, and G. Rosenberger, Faithful Complex Representations of one Relator Groups, N. Z. J. Math. 26 (1997), 45–52.
- [4] J. Gilman, The Structure of Two-Parabolic Space: Parabolic Dust and Iteration, Geom. Dedicata 131 (2008), 27–48.
- [5] J. Gilman and L. Keen, Discreteness Criteria and the Hyperbolic Geometry of Palindromes, Conform. Geom. Dyn 13 (2009), 76–90.
- [6] J. Gilman and P. Waterman, *Classical T-Schottky Groups*, J. Analyse Math. 98 (2006), 1–42.
- [7] C. Gordon and J. Luecke, *Knots are Determined by their Complements*, Bull. Amer. Math. Soc. **20** (1989), 83–87.
- [8] H. M. Hilden, D. M. Tejada, and M. M. Toro, *Tunnel Number one Knots Have Palindrome Presentations*, J. Knot Th. Ramif. **11** (2002), no. 5, 815–831.

- [9] A. Kawauchi, A Survey of Knot Theory, Birkhäuser Verlag, 1996.
- [10] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, Berlin, Germany, 1977.
- [11] I. D. Macdonald, The Theory of Groups, Clarendon Press, Oxford, 1968.
- [12] C. Maclachlan and A. W. Reid, *The Arithmetic of Hyperbolic 3-Manifolds*, Springer, New York, United States, 2003.
- [13] W. Magnus, A. Karrass, and D. Solitar, *Combinatorial Group Theory*, 2nd revised edition ed., Dover Publ., New York, United States, 1966.
- [14] D. Mejía and Ch. Pommerenke, Analytic Families of Homomorphisms into PSL(2, ℂ), Comput. Meth. Funct. Th. 10 (2010), 81–96.
- [15] T. Ohtsuki, R. Riley, and M. Sakuma, Epimorphisms between 2-Bridge Link Groups, Geom. Topol. Monogr. 14 (2008), 417–450.
- [16] R. Riley, Parabolic Representations of Knot Groups I, Proc. London Math. Soc. 3 (1972), no. 24, 217–242.
- [17] _____, Nonabelian Representations of 2-Bridge Knot Groups, Quart. J. Math. Oxford 2 (1984), no. 35, 191–208.
- [18] _____, Holomorphically Parametrized Families of Subgroups of SL(2, C), Mathematika 32 (1985), 248–264.
- [19] _____, Algebra for Heckoid Groups, Trans. Amer. Math. Soc. 32 (1994), no. 1, 389–409.
- [20] H. Schubert, Knoten Mit Zwei Brücken, Math. Z. 65 (1956), 133–170.

(Recibido en septiembre de 2010. Aceptado en febrero de 2011)

INSTITUT FÜR MATHEMATIK MA 8-1 TECHNISCHE UNIVERSITÄT BERLIN D-10623, BERLIN, GERMANY *e-mail:* pommeren@math.tu-berlin.de

Escuela de Matemáticas Universidad Nacional de Colombia Sede Medellín Cra 59A #63-20, bloque 43 Medellín, Colombia *e-mail:* mmtoro@unal.edu.co

Volumen 45, Número 1, Año 2011