
 

 

 

 

Lightning Induced Voltages on Overhead 

Lines above Non-Uniform and Non-

Homogeneous Ground 
 

 

 

Author 

Raúl Esteban Jiménez Mejía 

 

 

 

Master Thesis Dissertation  

 

 

 

Universidad Nacional de Colombia 

Departamento de Energía Eléctrica y Automática 

Facultad de Minas 

November 2014 

 
 

  



 
 

 

Lightning Induced Voltages on Overhead 

Lines above Non-Uniform and Non-

Homogeneous Ground 
 

 

 

Author 

Raúl Esteban Jiménez Mejía 

 

 

Master Thesis Dissertation  

Presented as a partial fulfillment of the requirements for the degree of 

Master on Electrical Engineering 

 

 

 

Advisor 

Prof. Javier Gustavo Herrera Murcia, Ph.D. 

 
 

 

 

Universidad Nacional de Colombia 

Departamento de Energía Eléctrica y Automática 

Facultad de Minas 

November 2014 
 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gratefulness:     To my Parents 
 

 

 

 

 

 

 

 

 

 

 



 

i 
 

 

Acknowledgments 
 

There are many people that I must be grateful with by all of their attention and comprehension 

along these two years. I would like to express my sincere gratitude to all of those that have been 

there offering me their valuable comments and assistance during the development of this thesis. 

Along the time working on it, I have learned not only about lighting induced voltages but also that 

when you are with a good working group and excellent people around you, there are more 

probabilities to succeed.  

I wish to thank Prof. Javier Herrera for accepting to be the advisor of this work and the way how 

he from the first time offered me all his experience on lightning research for the development of 

this thesis. 

I really have to highlight all the support that I have received from the Research Group on Applied 

Technologies (GITA) and express my especial gratitude to Prof. Guillermo Mesa who has been a 

very important advisor not only academically but also as a real and sincere friend. I would also like 

to thank to Prof. Clara Rojo for all of her valuable advices and her support whereas I held my 

position as teaching assistant of the high voltage laboratory. 

My sincere gratitude to my parents for all of their confidence on me and on my work. Special 

thanks to my brother David who has given me important advices along this work and to Stephanie 

who has been present to encourage me along this two years. 

I am sincerely grateful to my teamwork and friends: Gilbert, Camilo and Juan Fernando for backing 

me up when I was unavailable and for all of their valuable suggestions and encouragements. 

Finally, I would also like to address my gratitude to all of my old friends and colleagues for their 

valuable assistance and comments.  

 

 

 

  



 

ii 
 

Abstract 
 

Lightning induced voltages are one of the most common sources of failures on distribution 

networks operating in high lightning activity regions. Traditionally, the selection of insulation levels 

and protecting devices are carried out using statistical analysis based on typical values of resistivity 

and assuming a homogeneous ground for the whole network. In calculating lightning induced 

voltages, the effect of the topography and non-homogeneities of the ground have been 

traditionally neglected. 

In rural distribution lines, non-homogeneous and non-uniform ground is a common feature. In 

literature, induced voltages calculations are mainly calculated based on several assumptions that 

are not valid when more realistic conditions are taken into account. In order to allow a better 

selection of protective devices and hence contributing to the improvement of some power quality 

indicators of rural distribution networks, the calculation of lightning induced voltages for 

distribution lines must be performed including the effects of the non-homogeneous and non-

uniform ground. 

Most of the theoretical approaches proposed for calculating the propagation path effects on the 

radiated electromagnetic fields for a current dipole above ground, are valid only in the far-field 

region even when considering irregular and inhomogeneous terrain. Despite some authors have 

demonstrated the validity of those approaches for flat ground in the near field range calculations, 

there are valid for some specific cases and geometric symmetry that in some practical cases 

cannot be assumed.  

In order to overcome this problem, this thesis presents an extensive application of a full wave 

solution obtained from the implementation of the Finite Difference Time Domain (FDTD) method 

including a non-regular mesh. This method is applied to the calculation of lightning induced 

voltages on an overhead single wire when different ground features such as: homogeneity, 

inhomogeneity and non-uniformity are present all simultaneously in a simulation scenario. In 

order to validate the FDTD implementation, some numerical comparisons were made with 

previous results presented in the literature. 

The aim of this thesis is to provide new elements related to the effects on lighting induced 

voltages on overhead lines when different electric and geometric parameters of the surrounding 

ground are considered. Along this thesis, the lightning induced voltage problem has been analyzed 

taking into account three involved aspects individually: the return-stroke model, the propagation 

of the electromagnetic field produced by it, and the resulting induced voltages on the overhead 

lines once all their models are included into an FDTD simulation. 

This document has been divided into eight sections. The first section presents a discussion about 

lightning induced voltages and how they have been addressed in the literature. Throughout this 
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section all the involved elements into the lighting induced problem have been addressed and a 

short discussion about their previous results and conclusions is also presented. 

In section 2 the scope of the thesis is defined in order to give the reader a brief summary about 

the objectives that were established in the master thesis proposal.  

Section 3 presents the FDTD method. In this section most of the theoretical background is 

presented related to: sources, lumped elements and thin-wire modeling techniques. Next, the 

FDTD method is formulated for a non-regular mesh and a general formulation for an automatic 

meshing algorithm is proposed. Finally, a comparison between the FDTD method implementation 

used in this thesis and some experimental data from a two horizontal wires cross-talk problem is 

presented. 

Section 4 deals with the calculation of radiated fields when different propagation paths are 

present. Homogeneous ground effects on radiated fields were obtained by using the Norton’s 

approach and the surface impedance concept. Inhomogeneities of the ground conductivity for flat 

grounds were also analyzed by using the surface impedance concept and the Wait´s formula 

derived from the compensation theorem; the Wait´s formulas for a mixed-path of two and three 

section were implemented and compared with some results presented before in literature. Finally, 

the terrain non-uniformity was addressed by means of the Ott’s integral approach. Despite all of 

these implemented approaches allow the analysis of radiated fields, they are derived under 

several assumptions and are valid only for the far field region and a cylindrical symmetry regarding 

geometry. Then, a comparison between these and the results obtained by means of the FDTD 

method were performed for different simulation scenarios in order to analyze their validity. 

In section 5 the lightning return-stroke is modeled by means of an implementation of engineering 

and electromagnetic models. A discussion about the current distribution along the channel 

depending on the return-stroke model is also presented. Besides, a comparison between the 

antenna theory and the series RL-loaded thin-wire model included into the FDTD method was 

carried out taking into account the characteristics of apparent propagation velocity and current 

wave shape along the channel. 

In section 6 the lightning radiated fields are calculated for different propagation path conditions 

such as: perfectly conducting ground, homogeneous finitely conductive ground and 

inhomogeneous conducting ground. For those propagation paths a set of comparisons between 

the FDTD method and the approximated formulas discussed in section 5 were performed.  

Lightning induced voltages are analyzed in section 7. In this section the lightning channel and the 

overhead line are included into the FDTD method. A set of simulations scenarios were proposed in 

order to evaluate the influence of different ground features on the induced voltages on a single 

overhead-wire. Important influences on induced voltage waveforms were determined for 

inhomogeneous and irregular terrains, resulting in changes on polarity and higher induced peak 

voltages values when compared to those obtained from a flat homogeneous ground. 
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In section 8 concluding remarks about the analyzed cases and most critical situations are 

presented. There is also a future work proposed by the author based on the obtained results. 
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1 The Lighting Induced Voltage Problem: State of the Art 

Discussion 
 

Lightning induced over-voltages on power overhead lines has been one of the most important 

research fields related to lightning return strokes consequences, not only because its negative 

effects on power quality indicators, but also for the academic challenge they represent. Several 

proposals have been made in the literature in order to relate the lighting return stroke 

characteristics and the induced voltages on overhead lines [1], some of them resulting into 

different induced voltage magnitudes and waveforms because of the assumed theoretical 

background and the different approaches used for the return stroke current representation. 

Another important source of difference is the coupling model for the incident electromagnetic 

field on the overhead line, which depending on the assumptions can lead to different induced 

voltage magnitudes. One of the most popular and complete formulation for the coupling of an 

incident electromagnetic field to an overhead line was proposed by Agrawal [2], which allows the 

inclusion of simultaneous horizontal and vertical components of the lightning radiated electric 

field as excitation sources in the transmission line equations. From this approach, the lightning 

induced voltage problem has been focused traditionally on the lightning radiated field calculation, 

especially for the electric field components. 

The problem of lightning induced voltages on overhead lines has been usually analyzed taking into 

account three aspects: 1) the lightning return-stroke modeling including the characteristics of the 

current propagation along the channel, 2) the calculation of the electromagnetic fields including 

the effect of the propagation path and 3), the coupling of the electromagnetic fields with the 

overhead line. All the involved aspects in lightning induced voltages must be carefully analyzed 

and depending on the problem scenario, they can become crucial for the induced voltage 

characteristics.  

For lightning protection engineering and lightning induced voltages analysis, several 

representations of the lightning return-stroke channel have been used in order to reproduce the 

measured electromagnetic fields due to the natural lightning discharges, resulting in reasonably 

agreement [4]. Nowadays, several techniques have contributed to determine the characteristics, 

parameters and typical waveforms of the lightning current discharges for the study of lightning 

interactions between other systems, especially with overhead transmission lines [5][6][7][8].  

The effects of the Lightning Electromagnetic Pulse - LEMP can lead to over-voltages and flashovers 

depending on the lightning current characteristics and the distance between the overhead-line 

and the striking point [4][9]. When the induced voltage on the line propagates along the overhead 

line reaching the distribution transformer, severe damages in the transformer itself, protective 

devices or in the end-user’s equipment can be caused due to the transferred surge [10][11][12]. 
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This situation is even more critical in rural distribution lines where costs and time associated to the 

re-establishment of the service are representative. Taking into account all of the problems that 

could be presented by the lighting induced voltages on overhead lines, the well understanding of 

this electromagnetic phenomena and the parameters that are involved in it would allow a better 

power lines and protective devices design [13].  

It has been also demonstrated that the lightning induced voltages are reasonably affected by the 

characteristics of the ground. Not only because the overhead line parameters are affected [14], 

but also because the propagation path is able to modify the lightning radiated electric and 

magnetic field waveforms, and hence, the its electromagnetic coupling with the line conductors 

[15]. In actual overhead lines, several ground configurations can be found along them being more 

common finding ground in-homogeneities and topography irregularities in rural regions where the 

lines are longer covering large areas. However, the most common ground structure considered for 

lighting induced voltage calculations, even independent on the length of the line, has been the flat 

homogeneous ground.  

The problem of calculating induced voltages on overhead lines lies on the calculation of the 

incident field radiated due to a lightning return-stroke and its electromagnetic coupling to the 

overhead line. In order to calculate the radiated electromagnetic fields due to the current 

distribution along the channel, several return-stroke models have been presented in literature [6]. 

Although, the lightning-channel modeling is still a research topic, existing models have being 

useful for engineering applications and they have enabled the analysis of the lightning induced 

voltages effects and effective protective systems design [13].   

The calculation of the radiated fields by an electrical dipole located above flat homogeneous was 

historically addressed by Arnold Sommerfeld who proposed a set of equations for calculating 

radiated electric and magnetic field components  based on a cylindrical expansion of the magnetic 

vector potential, and a Leontovich’s boundary condition of continuity along the air-ground 

interface [16]. Sommerfeld´s integrals take into account the presence of a flat homogeneous 

ground and establish a rigorous solution for the radiated electromagnetic field components due to 

a harmonic oscillator current dipole [16]. However, because of his original formulation doesn’t 

have an analytical closed solution, numerical techniques must be implemented for the solution of 

the integrals in order to calculate the radiated electric field components. These numerical 

approaches must deal with high oscillatory integrands with slow convergence and for most of the 

practical cases it leads to time-consuming computational routines [16]. Although there have been 

proposed several approaches in order to solve the Sommerfeld’s integrals with reasonably low 

computation times when evaluating them at an observation point [17], the rigorous solution 

based on the Sommerfeld´s formulation continues being time-consuming when several 

observation points must be calculated or detailed frequency spectrum must be analyzed. 

One of the most interesting results in the Sommerfeld’s formulation is that after some 

rearrangements of the terms in the resulting equations, the total solution of the radiated fields 

can be seen as superposition of a perfectly conductive ground solution and a term that relates the 



 

3 
 

ground effect on the total field [16]. Based on those results, various approximations and simplified 

formulas have been derived from the Sommerfeld´s original formulation and proposed in 

literature to deal with the radiation above a finitely conducting ground [17][20]. The Norton´s 

proposal is one of the most popular; in this approach, the radiated fields can be calculated without 

the integration of the Sommerfeld´s integrals allowing faster and quite accurate results for several 

cases. Norton´s approach predicts the waveform of the radiated fields above finitely conductive 

ground with reasonably accuracy for several cases when compared with the rigorous solution.  

A popular solution for the lightning radiated field calculation above finitely conductive flat ground 

has been derived from the Norton’s approach with good accurate results for typical ground 

resistivity values, this approach is known as the Cooray – Rubinstein (CR) formula [21][22], which 

allows predicting the horizontal electric field at intermediate and long ranges from the lightning 

channel base by using straightforward calculations. Despite its usefulness, some considerations to 

the initial CR formulation must be taken into account when lightning radiated fields are calculated 

in presence of high resistivity grounds [17][22]. The accuracy of the CR formula has been tested in 

different scenarios showing good agreements when they are compared with rigorous solutions. 

Lightning induced voltages are also dependent on the striking point. Typically, they have been well 

characterized in presence of finitely conducting flat ground [23]. Recently, there have been some 

attempts to calculate the induced voltages when lightning strikes to an elevated and tall object 

presenting differences related to the flat ground strike scenario [24][25]. From them, coupling 

models to the overhead line have been extended satisfactorily and measured data have been 

reasonably reproduced [25][26]. 

When ground inhomogeneities are present in the propagation path within the near field region 

and even for some of the far field regions, the formulas and approximations mentioned before 

cannot be used and only for some cases accurate results can be found. The solution to this 

problem has been obtained mainly by the application of the compensation theorem or the 

Green´s theorem based on the wave solution in the frequency domain [16]. These solutions have 

been typically proposed taking into account some simplified boundary conditions and symmetry 

assumptions regarding the geometry.  

When ground conductivity variations are present along the propagation path above the ground 

surface, the traveling electromagnetic wave faces several changes of surface impedances and 

hence the existence of different reflection coefficients along the surface terrain that are able to 

modify the electromagnetic waveform characteristics; this propagation path is also known as a 

mixed-path.  

For the study and analysis of the mixed-path problem, Wait proposed a formula in order to deal 

with it based on the compensation theorem and the surface impedance concept [18][19]. Wait´s 

formulation for mixed paths is one of the most used in literature [18] and its validity within the 

near field range have been analyzed by several authors showing good agreement for some of the 

field components, when compared with a full-wave solutions as the ones obtained from the FDTD 

method [19]. An alternative formulation is based on the integral equation method and the Green´s 
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theorem. This formulation not only allows the inclusion of non-homogeneities, but also non-

uniformities along the boundary between air and the ground. However, several assumptions must 

be imposed to the radiated field characteristics and accurate results can be obtained for the far 

field region only and taking into account some high-frequency bands [16] [18]. 

The effects of the ground inhomogeneities and non-uniformities on the lightning radiated fields 

and their related induced voltages on overhead lines have shown to impose important variations 

on the radiated fields in some scenarios [27]. Recently, an induced voltage calculation on a single-

wire overhead line was performed in [28] by using also a cone-shaped representation of the 

mountain and a full-wave solution by using the Finite Element Method (FEM). 

This thesis presents the induced voltages calculations for several inhomogeneous and irregular 

ground propagation paths, not only when the inhomogeneity and irregularity exist nearby the line, 

but also when they are present under the overhead line by means of a full wave solution based on 

the FDTD method using a non-regular mesh. 
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2 Scope of the Thesis  
 

This thesis deals with the problem of the lightning induced voltages on overhead lines in presence 

of a non-homogeneous and non-uniform ground.  

This work is focused on the analysis of the influence of the ground characteristics on the overhead 

lines over-voltages when a nearby lightning strike occurs. The general objective of this thesis is the 

evaluation of the influence of a non-homogeneous and non-uniform ground on the lightning 

induced over-voltages on single-phase overhead lines. 

In order to achieve this general objective, this thesis studies several existing approaches for 

lightning radiated field calculations for medium and long range distances from the lightning 

channel base; a set of simulation scenarios have been implemented for testing their validity and 

limitations.  Once the methods for calculating lightning induced voltages have been analyzed, the 

thesis addresses the lightning induced voltages by means of a full wave time-domain solution 

based on the Finite-Difference Time-Domain method. 

The results for lightning induced voltages simulations are presented and discussed for several set-

ups in presence of non-homogenous and non-uniform grounds, giving initial conclusions about 

some of the influences on the lightning induced voltages when more realistic scenarios regarding 

to ground geometry and electrical parameter variations are represented. 
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3 The Finite Difference Time-Domain Method for Electromagnetic 

Fields 
 

The finite-difference time-domain method is in general a discrete approach for solving spatial-

temporal differential equations. This method allows solving scalar and vector field equations by 

means of a recursive scheme in order to find the time and space evolution of a vector field. There 

are several applications of the FDTD in physics and engineering, although it was primarily applied 

to electromagnetic fields, it has been also applied to acoustical fields and fluid dynamic problems. 

Traditionally, most numerical approaches intended for solving complex electromagnetic problems 

were based on frequency domain solutions. The frequency response of the problem is calculated 

for several frequencies by the harmonic representation of the excitation sources and once it is 

obtained, the inverse Fourier transform is applied in order to find the solution in the time-domain. 

Using this approach, the inclusion of non-linearities usually requires highly sophisticated 

implementations. One of the advantages of the FDTD method is that it allows a direct inclusion of 

time-dependent characteristics on the equations in order to find the time evolution of a vector 

field.  

3.1 Maxwell´s Equations and Electromagnetic Fields 
 

The solution of Maxwell's equations predicts the propagation of the electromagnetic fields 

produced by a known source through a medium described by its electrical constitutive 

parameters. These equations relate the electric and magnetic field vectors to their sources under 

the following spatial-temporal equations (3.1)(3.2)(3.3)(3.4). 

 

   ⃗    
  ⃗⃗ 

  
 (3.1) 

   ⃗  
 

 
 (3.2) 

   ⃗⃗   
  ⃗ 

  
   ⃗    ⃗⃗⃗   (3.3) 

   ⃗⃗    (3.4) 

 

where  ⃗  and  ⃗⃗  are the electric and magnetic field intensities;  ,   and   are the medium electrical 

constitutive parameters;   corresponds to the volumetric charge density in space and   ⃗⃗⃗   to free 

conduction current sources present in the media. The electric and magnetic fields are also related 

by the constitutive equations through electric field density  ⃗⃗    ⃗  and the magnetic field 

density  ⃗    ⃗⃗ . 



 

7 
 

 

3.2 Numerical Solution of the Maxwell´s Equations 
 

The finite-difference time-domain method is a discrete approach to the continuous 

electromagnetic field formulation presented before, where the electric field components (Ex, Ey, 

Ez) and the magnetic field components (Hx, Hy, Hz) are located in a staggered fashion over the faces 

of a cube known as e Yee´s cell [28] as shown in Figure 1. The electrical constitutive parameters 

are also discretized and related to each field component as (  ,   ,   ), (  ,   ,   ) and (  ,   , 

  ). Each cell representing a part of the space is related to a unique location (i, j, k) where i, j and k 

are integers. These indexes are related to the actual coordinates of each field component, for 

example, for the x-component of the magnetic field Hx the actual coordinates would be 

  (     )  ((   )   (     )   (     )  ) (3.5) 

 

where       and    are the lengths of the cell sides.  

(i, j, k)

Δx

Ex(i,j,k)

Hx(i,j,k)

x

yz

Ez(i,j+1,k)

Ey(i,j,k+1) Δy

Δz

Ey(i,j,k)

Ez(i,j,k)

Hz(i,j,k)

 

Figure 1 Yee's cell for the electric and magnetic fields location in space. 

In vacuum, without any electric charge or current source, the set of equations (3.1)-(3.4) can be 

reduced to (3.1) and (3.3) as the divergence equations are included in them [30]. When the 

rotational equations are expanded using a Cartesian coordinate system, it is possible to obtain an 

equation for the time variation of each component of the electromagnetic field as a function of 

the spatial variation of its counterpart. This is shown in (3.6) for the x-component of the magnetic 

field Hx. 

   

  
 

 

  
(
   

  
 

   

  
) (3.6) 

 

The side of the Yee’s cell relating the components of (3.6) is shown dotted in Figure 1. It can be 

seen that (3.6) relates the time variation of the x-component of the magnetic field as a function of 

the spatial variations of the electric fields components circulating around it; in this case the y and z 

components of Ez and Ey. This distribution is adequate in order to apply a central-difference 

approximation [30][31][32] to the terms on right hand side of (3.3) resulting in (3.7) 
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(
  

 (       )    
 (     )

  
 

  
 (       )    

 (     )

  
) (3.7) 

 

The time updating equation for each field component is determined based on a leap-frog scheme 

as it is shown in Figure 2.  

 

timen-1 n+1/2

B,H fields 

calculation

D,E fields 

calculation

Leapfrog scheme 

calculation in time

Ey(i, j,k+1)

Hx(i, j,k)Ez(i, j,k) Hx(i, j,k)

Ey(i, j,k)

Ez(i, j+1,k)

Ey(i, j,k+1)

Ez(i, j,k)

Ey(i, j,k)

Ez(i, j+1,k)

n-1/2 n

D,E fields 

calculation

B,H fields 

calculation

y

z

 

Figure 2 Leapfrog scheme in time for updating electric and magnetic fields. 

As it is illustrated, in order to calculate the magnetic field component Hx at the time step n+1/2, 

the information of the electric field at instant n and the magnetic field information calculated at n-

1/2 are needed. This means that the magnetic and electric field components are not calculated at 

the same actual discrete time step; this spatial-time discretization results in a recursive calculation 

for electric and magnetic field components [28][30]. Applying again a central-difference approach 

to the time derivative on the left-hand side of (3.6), the x-component magnetic field equation can 

be written as (3.8): 

  
     (     )    

     (     )

  
 

 

  
(
  

 (       )    
 (     )

  
 

  
 (       )    

 (     )

  
) (3.8) 

 

From this, a recursive updating equation can be obtained for Hx. The same analysis can be 

performed for all six faces on the Yee's cell in order to obtain the complete set of discrete-space 

equations [28][30][32]. The set of equations (3.9 - 3.14) for all of the electromagnetic components 

is: 

  
   (     )    

 (     )

  
 

 

  
(
  

     (       )    
     (     )

  
 

  
     (       )    

     (     )

  
+ (3.9) 

  
   (     )    

 (     )

  
 

 

  
(
  

     (       )    
     (     )

  
 

  
     (       )    

     (     )

  
+ (3.10) 
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   (     )    

 (     )

  
 

 

  
(
  

     (       )    
     (     )

  
 

  
     (       )    

     (     )

  
+ (3.11) 

  
     (     )    

     (     )

  
 

 

  
(
  

 (       )    
 (     )

  
 

  
 (       )    

 (     )

  
) (3.12) 

  
     (     )    

     (     )

  
 

 

  
(
  

 (       )    
 (     )

  
 

  
 (       )    

 (     )

  
) (3.13) 

  
     (     )    

     (     )

  
 

 

  
(
  

 (       )    
 (     )

  
 

  
 (       )    

 (     )

  
) (3.14) 

 

3.3 Numerical Stability Criteria 
 

In this section the numerical stability criteria is defined in order to determine the limits of minimal 

time and space discretization. Consider a one-dimensional wave propagating along the x-axis in 

the vacuum. As it has been shown, the wave-equation can be written for one-dimension as (3.15): 

   

   
 

 

  
 

   

   
 (3.15) 

 

where   represents any of the electromagnetic field components. This one-dimensional wave-

equation can be described by means of two waves traveling in opposite directions as [30] 

(
  

  
 

 

  

  

  
* (

  

  
 

 

  

  

  
*    (3.16) 

 

Now, taking the wave traveling in the negative x-direction (3.17) and applying a central difference 

approximation [30][31], a time-space discrete equation can be obtained as shown in (3.18): 

   

  
 

 

  

  

  
 

(3.17) 

       
         

 

  
 

 

  

  
      

   
      

  
 

(3.18) 

 

Rearranging (3.18), a numerical scheme in order to find the time-evolution of the field under 

calculation can be written as (3.19): 

  
      

   
      

  (       
         

 ) (3.19) 
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where,          . 

It can be shown that depending on the factor λ value, the recursive updating equation presented 

above is stable if    . Then, 

  

  

  
   

(3.20) 

 

The expression above allows defining the time-step value for stable calculations. Using an 

attenuation factor, expression (3.20) can be written as (3.21) 

     

 

  

   
(3.21) 

 

where,     is an attenuating factor used for maintaining a reasonable quantization error.  The 

same numerical stability condition can be found for the three dimensional wave equation as 

[30][31][32]: 

     

 

  √
 

(  )  
 

(  )  
 

(  ) 

 
(3.22) 

 

If the spatial discretization is made by cubic cells             the stability criteria can be 

simplified to [31][32]: 

     

  

  √ 
 

(3.23) 

 

where    is the cell side length. In general,      and it is typically set to be 0.9 for FDTD 

simulations. This factor is known as the Courant’s factor. The relations that have been presented 

here are illustrative, a more rigorous determination of the Courant’s factor can be found in [30]. 

3.4 Media Modeling 
 

As the electrical constitutive parameters of the medium are directly related to their electric and 

magnetic field components, the FDTD approach allows a straightforward inclusion of any material 

and medium representation. As it was shown in section 3.2, the electrical constitutive parameters 

are also discretized and related to each field component as (  ,   ,   ), (  ,   ,   ) and (  ,   , 

  ). In order to describe the constitutive parameter location into the Yee’s cube, some of the 

constitutive parameters components are shown in Figure 3. 
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εz(i,j+1,k)

σz(i,j+1,k)

(i, j, k)

Δx

Ex(i,j,k)

Hx(i,j,k)

x

yz

Ez(i,j+1,k)

Ey(i,j,k+1)
Δy

Δz

Ez(i,j,k)

Hz(i,j,k)

μz(i,j,k)

μx(i,j,k)

εz(i,j,k)

σz(i,j,k)

εy(i,j,k+1)

σy(i,j,k+1)

εx(i,j,k)

σx(i,j,k)  

Figure 3 Material Inclusion into the Yee’s Cell 

In order to include the complete set of Maxwell’s equation into the FDTD method, the equations 

(3.1)-(3.4) are expanded as:  
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         ) (3.24) 
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         * (3.25) 
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) (3.27) 

   

  
 

 

  
(
   

  
 

   

  
* (3.28) 

   

  
 

 

  
(
   

  
 

   

  
) (3.29) 

 

The new term present in the components equations of the electric field, which is related to the 

conductivity of the media must be included carefully. As it was described in the leap-frog scheme 

in Figure 2, the central difference discretization used to find the time-updating equations scheme 

implies the calculation of the fields on the right side of the equations (3.24)-(3.29) at a time step 

located between the time steps of the left side components. The expression (3.30) shows the 

discretization of equation (3.29) using the central difference approach [28][30][31][32]: 

  
   (     )    

 (     )

  

 
 

  

(

 
   

     (       )    
     (     )

  
 

  

  
 
 (       )    

  
 
 (     )

  

   (     )  
  

 
 (     )     

  
 
 (     )
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(3.30) 
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As the electric field component at the n+1/2 time step is not calculated by means of the time-

updating equation, an average of this electric field must be performed with those components 

calculated at the n and n+1 time-steps as is shown in (3.31): 

  
  

 
 (     )  

  
   (     )    

 (     )

 
 

(3.31) 

 

Replacing (3.31) in (3.30) and rearranging some terms, a time-updating equation for the electric 

field component under analysis can be found as is presented in (3.32). The time-updating 

equations for the other electric field components can be found similarly [28][30][31][32]. As the 

equations of the magnetic field components have not been modified by any new term, their time-

update equations remain unaltered as those presented in section 3.1. 

  
   (     )  (

   (     )      (     )

   (     )      (     )
)  

 (     )

 
   

   (     )      (     )
(
  

     (       )    
     (     )
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   (     )      (     )
(

  

  
 
 (       )    

  
 
 (     )

  
,

 
   

   (     )      (     )
   

  
 
 (     ) 

(3.32) 

 

As can be seen, the media parameter inclusion can be performed easily into the FDTD method if 

the geometrical shape of the material coincides with a straight or parallelepipedal geometry. If this 

is not the case, different techniques such as subcell models can be used in order to represent 

curved geometrical features [30]. 

3.5 Lumped Elements Modeling 
 

As it has been shown in the previous sections, the FDTD method uses a relation between the 

electric and magnetic fields and the media parameters when they are located at specific places in 

a cube cell. Based on this, it is possible to calculate the evolution in time of an electromagnetic 

simulation scenario if the magnitude of any component of the electric or magnetic field is imposed 

at some point. Lumped elements, such as sources, resistors, capacitors, inductors and non-linear 

elements can be included into the FDTD method by means of the voltage-current relation between 

their terminals. Equations (3.24) and (3.25) present the integral expression relating the voltage 

and current magnitudes with the electric field and current density respectively [31]. 

Voltage and Electric Field relation Current and density Current relation 

    ∫  ⃗   ⃗⃗  ⃗

 

 

 

(3.33) 
  ∬   ⃗⃗⃗     ⃗⃗⃗⃗ 

 

 

 

(3.34) 
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Any lumped component represented by means of it voltage-current relation can be included into 

the FDTD scheme through the impressed current density term   ⃗⃗  ⃗ in the Ampère-Maxwell equation 

(3.26): 

   ⃗⃗   
  ⃗ 

  
   ⃗    ⃗⃗⃗   (3.35) 

 

Care must be taken as the voltage must be calculated in the same discrete time n as the electric 

field, and the current must be also calculated as the same discrete time n+1/2 for the magnetic 

field as: 

        
  (3.36) 

       
 

    
       (3.37) 

 

Taking into account the equations (3.36) and (3.37) any voltage-current relation can be included 

into the Yee´s cell and into the FDTD scheme in different convenient ways. Following subsections 

show how to include different lumped elements such as sources and loads starting from their 

voltage-current relation. All of the lumped elements that have been considered for illustration 

have been placed in the z-direction. 

3.5.1 Sources Modeling 

 

Voltage and current sources are useful to model several electromagnetic problems, especially for 

several engineering applications where the electromagnetic fields are generated by sophisticated 

physical arrangements that depending on the simplifications and approximations, can be reduced 

to this kind of representation. These elements can be included into the FDTD by means of the 

imposition of a time-varying function on a component of the electric or magnetic field using the 

physical relation between the fields and the voltage-current characteristic [30][31]. 

Consider a voltage source having an internal impedance different of zero placed between two z-

directed nodes of the Yee´s cube as is shown in Figure 4(a).  

(i,j,k+1)

(i,j,k)

I
V

-

+

∆Z

Rs

x

y

z

Vs(t) +
-

 
(a) 

(i,j,k+1)

(i,j,k)

V

-

+

∆Z

x

y

z

Is(t)

 
(b) 

Figure 4 Source Modeling into the Yee´s Cell (a) Lumped Voltage Source with non-zero internal impedance (b) Current 
Source 
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The lumped voltage source can be related to the vertical electric field component between the 

two nodes in the time domain by means of the expression: 

  ( )   ( )     ( )   (3.38) 

 

As it was explained before, the most convenient time-discretization for the expression (3.38) can 

be written as: 

  
         

    (3.39) 

 

As the current at the discrete instant n (  ) is not calculated explicitly in the recursive FDTD 

scheme, its average is used: 

   
             

 
 

(3.40) 

 

Replacing (3.40) into (3.39) the expression for the voltage source with internal resistance can be 

written as: 

  
  (             )

  

 
   

    
(3.41) 

 

Rearranging equation (3.41) and using (3.34), the lumped source expression can be written as: 

               
 

      

(  
      

 ) 
(3.42) 

 

If the source to be modeled has zero internal resistance, then the voltage time-varying voltage 

source into the FDTD method can be included as 

  
  

  
 

  
 

(3.43) 

 

In order to include a lumped current source, the expression (3.34) applied to a side of the Yee’s 

cube leads to (3.44).  

  
      

 

    
  

      
(3.44) 

 

As it is shown in Figure 4(b) the current between the two nodes can be directly related to the 

current density. 
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3.5.2 Resistor 

 

Consider a resistor element placed between two z-directed nodes of the Yee´s cell as it is shown in 

Figure 5. 

(i,j,k+1)
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+

∆Z R

x

y

z

 

Figure 5 Resistor Modeling into the Yee´s Cell 

 

For a resistor, the relation between current and voltage in the time domain can be written as: 

 ( )  
 ( )

 
 

(3.45) 

 

Using the discrete-time relation at the time instant n+1/2 the following relation can be found: 

       
      

 
 

(3.46) 

 

As the voltage cannot be calculated at the discrete time n+1/2, the same time average approach 

presented before for the voltage source can be applied here for the voltages: 

       
         

 
 

(3.47) 

 

Using this result, the current calculation for the discrete-time n+1/2 can be written as: 

       
  

      
 

  
   

(3.48) 

 

Finally, the current density can be calculated by means of the following expression allowing the 

inclusion of the resistor into the FDTD scheme: 
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[  

      
 ] 

(3.49) 

 

 

3.5.3 Inductor 

 

Consider a lumped inductor placed between two z-directed nodes of the Yee´s cell as it is shown in 

Figure 6 
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Figure 6 Inductor Modeling into the Yee´s Cell 

The voltage-current relation through the element involves a time-derivative operator over the 

current time-varying function given by: 

 ( )   
  

  
 

(3.50) 

 

A central finite-difference approach can be included in order to calculate the voltage between the 

two terminals as: 

    (
             

  
) 

(3.51) 

 

Using this central approach and rearranging the expression, the current density at that cell due to 

the presence of the inductor can be carried out by the following expression: 

              
    

     
  

  
(3.52) 
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3.5.4 Capacitor 

 

Consider a capacitor placed between two z-directed nodes of the Yee´s cell as it is shown in Figure 

7. 
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Figure 7 Capacitor Modeling into the Yee´s Cell 

For a capacitor, the voltage-current relation involves a time-derivative operator on the voltage 

given by: 

 ( )   
  

  
 

(3.53) 

 

The most convenient discrete-time relation for the current through the capacitor must be 

calculated at the instance n+1/2: 

        
       

  
 

(3.54) 

 

As the expression (3.54) relates voltage terms calculated at the same time-steps as the electric 

field components in the FDTD method, the current density equation is: 

       
   

      
[  

      
 ] 

(3.55) 

 

 

3.5.5 Series RL load 

 

This lumped element is composed by a resistor and an inductor connected in series and located at 

the same spatial point. In order to be included into the FDTD equations, a relation between the 



 

18 
 

electric and magnetic fields must take into account the effect of the series inductive and resistive 

load. Consider a lumped resistor in series with an inductor placed between two z-directed nodes 

of the Yee´s cell as it is shown in Figure 8. 
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Figure 8 Lumped RL-Load Modeling into the Yee´s Cell 

The equation that relates the voltage and current for the series RL-lumped element can be written 

as: 

 ( )   ( )   
  

  
 

(3.56) 

 

In order to include the series RL-lumped element into the FDTD scheme, the discretization can be 

done as it was presented for the resistor and the inductor. The most convenient formulation can 

be written as: 

    (
             

 
)   (

             

  
) 

(3.57) 

 

Using the expression for the voltage calculation by means of the electric field and rearranging 

expression (3.57), it can be obtained (3.58): 

       
(      )

(      )
       

  

(      )
  

  
(3.58) 

 

Finally, using equation (3.58) and expressing in terms of the current-density, it can be shown: 

       
(      )

(      )
       

  

    (      )
  

  
(3.59) 
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3.5.6 Parallel RC load 

 

Consider a RC lumped element placed between two z-directed nodes of the Yee´s cell, as it is 

shown in Figure 9. 
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Figure 9 Parallel RC-lumped Load into the Yee´s Cell 

The current through a parallel RC circuit can be written as the sum of each branch current by 

means of the current Kirchhoff’s law as: 

 ( )  
 ( )

 
  

  

  
 

(3.60) 

 

Equation (3.60) can be written at the n+1/2 time-step for convenience leading to: 

         
        

      (3.61) 

 

As both currents   
      and   

      were previously calculated for the resistor and the capacitor 

in section 3.5.2 and section 3.5.4 respectively, the lumped RC element can be described using the 

same results described in the above sections: 

       
   

  
[  

      
 ]  

  
      

 

  
   

(3.62) 

 

Finally, the equation for the current density can be written as: 
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]  
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]   

  
(3.63) 
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3.6 Boundary Conditions 
 

As it has been presented above, the FDTD method produces a recursive scheme for calculating 

magnetic and electric field including not only the material properties but also different lumped 

elements. The relations derived before have been presented for a general discrete point (i,j,k) 

inside the problem space.  

In all cases, the problem space must be represented by a finite computational domain composed 

by a finite number of Yee´s cubes. Some of those cubes will have all of their components located 

inside the computational volume making their electric and magnetic field possible to be calculated 

using the surrounding components from contiguous cubes [30][31]. When one of the Yee´s cube 

coincides with the boundary of the computational domain, some of the field components cannot 

be calculated by surrounding fields as some of them are out of the domain. Figure 10 depicts this 

situation when the vertical electric field component located at the 2D boundary must be 

calculated based on the surrounding components. As can be seen from Figure 10, all the vertical 

electric field components that are located inside the domain can be calculated using the central 

difference approach by means of the surrounding magnetic fields. However, when the electric 

field is at the boundary, there are magnetic field components outside the computational domain 

which are not available for the calculation.  

x

z

Magnetic Field Component Hy 

These magnetic fields 
components are not 

available.

 

Figure 10 Electric Field Components calculation at the Boundary of the Computational Domain 
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In order to overcome this problem, several methods have been proposed in literature for 

calculating the components of the electromagnetic field at the boundary based on its past values 

and available components located inside the domain. Typically, the boundary conditions are 

applied to the electric field components because they can be easily related to physical conditions 

(i.e. when perfectly conductive planes are present). However, boundary conditions can be also 

applied for magnetic field components placed on the boundary [30]. In this thesis all the 

boundaries conditions were implemented for the electric field components. 

3.6.1 Perfectly Conductive Boundary Condition 

 

This boundary condition assumes that the boundaries of the computational domain are perfect 

conductors with zero thickness [28][30][31]. This assumption allows defining the electric field 

components as inside a perfect conductor, therefore they are forced to be zero. These boundaries 

are commonly named as Perfect Electric Conductor or “PEC” Boundaries. 

A computational set up was proposed in order to evaluate the PEC implementation into the FDTD 

scheme. The total domain was simulated using 50x24x10 cubic cells; each cube was simulated with 

a side of 2mm in length. The source was represented by means of an array of vertical electric field 

components with the same waveform; it is worth noting that all of the sources were imposed with 

no phase delay between each other in order to control the symmetry of the radiated wave 

propagation.  The vertical source array was placed at (26, 13) on the XY plane and extended along 

the Z axis; the electric field measured was located at the node (33, 13, 5). Figure 11(a) presents the 

simulation set-up. 
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(c) (d) 

Figure 11 (a) Simulation Set-up for PEC Boundaries Implementation (b) Source Waveform (c) Electric Field Magnitudes 
for each component at the Receiver Point (d) Magnetic Field magnitudes for each component at the Receiver Point 

Figure 11(b) shows the source waveform used in the simulation set-up. This waveform known as 

the normalized derivative Gaussian waveform and is commonly used for the excitation of a wide 

frequency spectrum without taking into account very low frequency components [31].  

Despite the excitation vanishes once the bipolar pulse ends, the electromagnetic field components 

showed in Figure 11(c) and Figure 11(d) present an oscillatory pattern for the entire time interval. 

These patterns are caused by the multiple reflections of the electromagnetic wave on the 

boundaries. An infinite oscillatory steady-state will be reached and most of the resonance 

characteristics of the cavity can be analyzed from the time solution. 

3.6.2 Absorbing Boundaries Conditions 

 

PEC boundaries are useful when perfectly conductive thin layers must be included into the 

simulation. However, several applications require that the boundaries act as an open space, 

meaning that no reflections of the incident waves are desired. This section presents some of the 

most popular boundary conditions that have been proposed in literature for non-reflecting 

characteristics at the boundary of the computational domain. All of these boundaries are based on 

known values taken from the internal domain, leading to a set of updating equations for the 

electric field components at the boundary.  

3.6.2.1 Mur´s Boundaries 

 

The Mur´s Boundaries conditions are based on the plane-wave unbounded propagation 

characteristics [33]. The wave equation for any component of the electromagnetic field can be 

written as: 

    
 

  
 

   

   
 (3.64) 
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where F, represents any component of the electromagnetic field and C0 is the propagation 

velocity. Using rectangular coordinates:   

(
  

   
 

  

   
 

  

   
)  

 

  
 

   

   
   

(3.65) 

 

Along the x-axis, expression (3.65) can be rearranged as in (3.66). 

(
  

   
)  

 

  
 

   

   
 (

  

   
 

  

   
)  

(3.66) 

 

Figure 12 shows a geometric interpretation about the boundary condition based on a one-way 

propagation wave along the x-axis. 
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Figure 12 Geometric Interpretation of an incident wave for the Mur’s Boundary Conditions derivation 
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From Figure 12, an area ∆Y∆Z is taken into account as a part of the wave front reaching the 

boundary. The vertical electric field component at the boundary can be related to the spatial 

variation of the field on the wave front segment and its time variation, by means of the expression 

(3.66) evaluated at the auxiliary grid located at ∆X/2. 

In order to obtain an explicit time-updating equation for the components at the boundary, 

expression (3.66) can be rearranged as: 

(
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  (3.67) 

 

Defining, 
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, 

(3.68) 

and replacing (3.68) in (3.67) yields to: 
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(3.69) 

By means of the derivative operator properties, the wave equation can be factorized as [30]: 

(
 

  
 

 

  

 

  
√    * (

 

  
 

 

  

 

  
√    *    

(3.70) 

 

The boundary condition now can be applied depending on the direction of the incident wave. If 

the field component in the x-direction    is assumed to be a plane unidirectional wave traveling in 

the negative direction of the x-axis, the boundary condition can be calculated for the left term of 

the equation above as: 

(
 

  
 

 

  

 

  
√    *    

(3.71) 

 

The imperfection of the absorbing characteristics rises from the discretization of equation (3.71). 

Engquist and Majda [34] proposed an expansion of the √     term using Taylor series and 

leading to different approximations for the numerical simulation of incident waves depending on 

the number of terms taken into account [30]. 

Mur, proposed a discrete approach for equation (3.71) and a Taylor series representation based 

on a finite central difference approximation, in order to represent the boundary condition using 
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the same scheme of the FDTD method. The first order Mur´s boundary condition can be derived if 

the spatial derivatives terms are disregarded. The expression (3.71) can be simplified to 

(
 

  
 

 

  

 

  
*    

(3.72) 

 

Consider the incident wave of the vertical electric field component as shown in Figure 12. Applying 

the derivative operator (3.72) to the field component under analysis it can be obtained that: 

   

  
 

 

  

   

  
 

(3.73) 

  

Applying the central difference approach to (3.73) yields to: 
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(3.74) 

 

As the central difference approach is performed at an auxiliary grid         , it is not included 

directly into the FDTD scheme presented in section 3.1. The derivative value at          can 

be averaged using known derivative values as: 
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(3.75) 

Applying a central difference approach to each term and replacing in (3.74), a time updating 

equation can be written for the field component under analysis [30]: 

  
   (     )    

 (     )  
       

       
(  

   (     )    
 (     )) 

(3.76) 

 

The result presented in (3.76) can be extended to the rest of the components and directions of the 

propagating traveling wave. 

If the Taylor´s series is again applied for representing the expression √    , and two terms of 

the expansion are taken into account, a better representation of the incident wave can be 

obtained: 
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, (3.77) 

  

Replacing (3.77) in (3.71) and rearranging the equation we find: 
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(3.78) 

 

Using a central difference approach for discretizing the differential equation in space and time, the 

second order Mur’s boundaries can be found. For this case the discretization leads to a second 

order derivative discrete equation. Again, the central difference approach is used at the auxiliary 

grid presented in Figure 12. As the auxiliary grid is not explicit in the FDTD scheme presented in 

section 3.1, the second order time derivative can be calculated as an average between the time 

derivative of the adjacent points (3.80) and for the space-second order derivatives (3.81)-(3.82): 
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Applying the central differences and replacing in (3.78), an expression for the unknown field at the 

boundary can be found in function of the inner field values as [30][33]: 
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(3.83) 

The expression presented in (3.83) can be also derived for the remaining components.  In order to 

validate the implementation of the Mur´s boundaries in the FDTD formulation presented in this 

thesis, Figure 13 shows the comparison between the results obtained by the implementation of 

the Mur’s boundaries in this thesis with those results presented in [33]. The simulation set-up 

consisted of a vertical current dipole with a harmonic excitation of wavelength λ. The current 

dipole was located at the coordinate (5λ, 5λ) on the XY plane. A contour plot of this field 

component is obtained from XY plane values. 
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(a)  

(b) 
Figure 13 Vertical Electric Field contour plot of an oscillating vertical current dipole by using Mur’s Boundaries as ABCs 
(a) Contour Radiation Pattern for the first Order and second order approximation presented in [33] (b) 1st Order and 

2
nd

 Order Mur’s Boundaries implementation 

As the results presented in [33] were obtained from a 2D implementation of the FDTD method, 

and the implementation made in this thesis was extended to the 3D full wave solution, some 

slightly differences between both results are present. It can be seen that using the Mur’s 

boundaries, the expected behavior of the electric field of a typical vertical dipole can be well 

reproduced by the proposed expressions for the truncation of the computational domain. It can be 

also seen that the second order representation of the boundary conditions improves enormously 

the radiation contour plot when they are compared to the first order approach.  

3.6.2.2 Liao´s Boundaries 

 

The Liao´s boundaries are one of the most simple and effective absorbing boundary conditions 

presented in the literature. They were proposed in 1984 by Liao et al [35]. The idea behind the 

Liao’s proposal is to obtain the electric field components at the boundary by means of an 

extrapolation of the internal electric field values. These boundaries are based on the wave 

propagation characteristics as it was proposed by Mur [33]. However, the fields at the boundary 

are calculated based on the past values of the fields using a polynomial expression. Figure 14 

presents an interpretation of the Liao´s extrapolation for a one-dimensional propagating wave. 
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Figure 14 One-Dimensional propagating wave calculated at discrete time-spatial locations 

Figure 14 shows a one-dimensional wave u(x,t) propagating at a fixed velocity Vp. The unknown 

value at the boundary u(NDX+1,t+1) is proposed to be obtained from past values of the same 

function, using an extrapolation equation representing the propagation characteristics of the 

traveling wave. Liao´s boundaries formulation establishes this kind of relation based on past values 

from the traveling wave as: 

 (         )     (     )     (         )     (         )       (         ) 
 

(3.84) 

The expression (3.84) adopts the form of an interpolating Newton’s polynomial and the unknown 

constants can be calculated as shown in [30]. Depending on the number past-time terms, the 

Liao´s Boundaries are higher in order and obviously more past field values must be allocated 

during the FDTD loop calculations. 

It can be demonstrated that finding the coefficients of the interpolating Newton’s polynomial, the 

expressions for the 2nd order and 3rd order Liao’s boundaries can be written respectively as [30]: 

 (         )    (     )    (         ) (3.85) 
 (         )    (     )    (         )   (         ) (3.86) 

 

As an example of the performance of the Liao’s boundaries, a comparison between the Mur´s 

boundaries presented before and the Liao´s boundaries was implemented. The simulation set-up 

is the same as that presented in section 3.6.2.1. Figure 15(a) presents the radiation pattern when 

2nd order Mur´s boundaries are applied and Figure 15(b) presents the same simulation set-up 

when Liao’s 2nd order boundaries are applied.  



 

29 
 

 
(a) 

 
(b) 

 
(c) 

Figure 15 Liao´s Boundaries performance compared with (a) Mur´s Boundaries (2
nd

 Order) Boundaries (b) Liao’s 
Boundaries (2

nd
 Order) (c) Contour plot comparison  

 

As can be seen from Figure 15(c), Liao’s boundaries present a better performance for the expected 

cylindrical pattern. Due to this, Liao’s boundaries have become one of the most used absorbing 

boundaries not only by its good performance, but also by its straightforward implementation 

when compared with other sophisticated absorbing boundary conditions. Liao´s boundaries has 

been tested in several numeric experiments and it has been shown a good absorbing condition 

and low sensitivity to the incident wave propagating angle. These boundaries present between 

10dB and 20dB less reflection than the 2nd order Mur’s boundaries [30].  
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3.6.3 PML and CPML Boundaries 

 

One of the most effective implementation for absorbing boundaries is that proposed by Berenger 

in 1994 [36]. This approach is based on the idea of truncating the computational domain by means 

of an artificial medium with the same electromagnetic propagation characteristics of the medium 

in which an electromagnetic wave is propagating through. This has the mathematical consequence 

of non-reflections from the truncating medium. The Perfectly Matched Layer - PML absorbing 

boundary condition can theoretically perfectly match any type of medium [36]. Depending on the 

implementation and the discretization of the equations, some numerical reflections can occur. 

However, it has been shown that the reflections due to the PML implementation are far lower 

than other absorbing boundaries approaches [30][36]. 

The implementation of the PML into the FDTD method has been very popular and its better 

performance as an absorbing boundary condition has been widely demonstrated [30][31][36][37]. 

The Convolutional Perfect Matched Layer (CPML) is an improvement of the PML boundary 

condition [31][39]. 

Figure 16 presents a comparison of the performance between the CPML boundaries and the 

implementations of boundary conditions that have been analyzed before in this thesis. The results 

presented for the CPML boundary conditions were obtained by using the formulation discussed in 

[31].  

The simulation setup was composed of a vertical electric dipole represented by a voltage source 

with a 50Ω internal resistance. The total problem space was 50 x 50 x 50m3 and the discretization 

was performed using cubic Yee´s cells with 1m3 in volume. The source was placed at the center of 

the problem space volume and the observation point was located at the coordinate (X=10.5m, 

Y=10.5m, and Z=10.5m). The voltage source excitation was set to be a Gaussian’s pulse described 

by the expression: 

 ( )   
 

(    ) 

   
(3.87) 

 

The parameters were set to          and           [31].Figure 16(a) presents the excitation 
waveform. 
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(a) 

 
(b) 

 

 
(c) 

Figure 16 Comparison between ABCs boundaries implementations (a) Gaussian’s Pulse Excitation (b) Mur’s and CPML 
ABCs (Solid: Mur’s 2

nd
 Order 3D Boundaries, Circles: CPML) (c) Performance Comparison between Liao’s and CPML 

ABCs (Solid: Liao’s 2
nd

 Order Boundaries, Circles: CPML) 

As can be seen from Figure 16(b) the Mur´s boundary condition for the case under simulation 

presents some reflections distorting the electric field components before vanishing at latter time 

instants. This effect is more representative for the vertical component of the electric field. For the 

X and Y component of the electric field no representative reflections are observed mainly because 

the incident angle of the traveling wave is near to be normal at the boundary surface.  

From the derivation of the Mur’s boundaries shown in section 3.6.2.1, it can be observed that they 

are obtained assuming a plane wave incidence. Therefore, a high sensitivity of the wave-

propagation angle is present expected and hence, affecting its effectiveness for grazing incidence.  

In Figure 16(c) there is a comparison for the Liao’s boundary conditions and the CPML ones. As it 

can be seen, the Liao’s boundaries absorb almost perfectly the incident wave due to the X and Y 

component and its waveform is in very good agreement with those results calculated by the CPML 

implementation. As in the Mur’s boundaries, Liao´s presents some reflections for the vertical 

component but it is also evident that for the Liao´s boundaries the Z component converges rapidly 

to zero. 
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3.7 Thin-Wire Modeling 
 

Overhead lines are one of the most common configuration for electric energy distribution. 

Depending on the amount of power to be transmitted, the number of wires and its configuration 

can vary; the simplest configuration is the single wire above the ground. 

The problem of including wires into FDTD simulations raises from the inclusion of the small 

geometrical dimensions of the wire into larger cell sizes. A fine mesh could be used for 

representing thin wires geometry and its conductive characteristics. Nevertheless, simulations of 

full size scenarios using such sizes for the FDTD cells are even today computationally prohibitive.  

In order to include a thin wire into the FDTD simulations, several models have been proposed 

assuming that their radius are smaller than the cell side length [40][41].  

Figure 17 shows the main features of the inclusion of a perfectly conducting wire into the FDTD 

method along the z-axis direction. The wire is represented by a cylindrical segment with ΔZ in 

length and radius a. As it is shown in Figure 17, the wire is placed along one of the edges of a Yee’s 

cube. The vertical electric field component along the wire is forced to be zero; the equations 

related to the surrounding components of the electromagnetic field remain initially unaltered 

from those formulated in section 3.2. 
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Figure 17 Thin-wire segment inclusion into the Yee´s cell  

In order to take into account the presence of the thin wire, the constitutive parameters related to 

the surrounding components must be modified due to the thin wire presence. Next sections 

present two of the most popular thin-wire approaches. 

3.7.1 Umashanark´s Model (UM) 

 

A very popular thin wire model was proposed by Umashankar et al. [40]. This thin-wire model 

(called UM in the following) is based on a modification of the surrounding magnetic field 

components due to the presence of the wire. The main idea behind the Umashankar´s proposal is 
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to find the surrounding magnetic field by means of the Faraday´s law equation assuming an 

electrostatic and magnetostatic behavior of the fields near the wire[30][31][40]. In Figure 18 there 

is a representation of a vertical segment of a straight wire. 
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Figure 18 Segment of a z-directed wire 

Applying the Faraday´s law on the shadowed area, the components of the fields can be related 

each other as: 

∬    ⃗ 

    

  ⃗⃗⃗⃗    ∬
  ⃗⃗ 

  
    

  ⃗⃗⃗⃗  (3.88) 

 

Using the Stokes´ theorem in (3.88) a relation between the magnetic field on the area of interest 

and the surrounding electric fields can be obtained: 
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 (3.89) 

 

Assuming static electric and magnetic fields distributions in the vicinity the wire, their components 

can be expressed as inverse-distance dependent from the wire axis, as: 
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where    | 
( ) ,     |    

( ) and    ( ) are a unknown time-dependent functions evaluated at 

the locations depicted in Figure 18. Including them into (3.89) it can be obtained: 
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Integrating (3.93) and rearranging some terms,  
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Evaluating the fields at the locations presented in Figure 18, it can be found that: 
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Replacing (3.95), (3.96) and (3.97) in (3.94) yields finally to: 
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Rearranging terms in the (3.98) it is possible to obtain: 
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(3.99) 

 

Figure 19 presents the inclusion of a vertical thin-wire segment between the nodes (i,j,k) and 

(i,j,k+1) using the same indexes notation as in section 3.2. It is worth noting that the location of 

the components coincides with those obtained from the Umashankar’s method but in this case for 

a general location point (i,j,k) in the discrete computational domain in order to use the FDTD 

scheme for the time-space discretization [31][40].  
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Figure 19 Thin-wire inclusion in the Yee´s cube  

In order to discretize (3.99) and include it into the FDTD scheme, the time-updating equations for 

the magnetic fields presented in section 3.1 and section 3.4 must be modified for all magnetic 

components surrounding the wire.  The discrete time-updating equation for the magnetic fields 

components around the wire shown in Figure 19, can be found applying the central difference 

approach to (3.99) leading to: 
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     (     )  
   

   (     )   (
  
 

)
  

 (       )  
  

 (     )  
[  
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 (     )] 

(3.100) 

 

The UM model has been useful for the calculation of the radiated fields from an antenna; however 

its accuracy decreases for surge impedance calculations [40][41]. 

3.7.2 Noda-Yokoyamas’s Model (NY) 

 

As it was presented in the previous section, the thin-wire is included into the FDTD scheme 

modifying the time-updating equations for the magnetic field components around the wire. Noda 

and Yokoyama proposed a thin-wire model (NY) based on the concept of the intrinsic radius [41]. 

In this model, the electric field component along the wire is also forced to be zero in order to 

satisfy the perfectly conductive condition inside the wire. Besides, this model modifies not only 

the surrounding magnetic field components but also the electric field ones.  

The NY thin-wire representation assumes an artificial wire with radius ro surrounded by a modified 

media characterized by its electric permittivity and magnetic permeability, in order to reproduce 

the electric and magnetic field distributions around the actual wire. This artificial radius is called 

the intrinsic radius. The correction factor m applied to the electric permittivity and magnetic 

permeability around the artificial wire, can be found by equating the electrostatic distribution due 

to the actual wire to the distribution produced by the artificial wire. According to this, the 

correction factor can be calculated from [41]: 



 

36 
 

  
     

  (
  
 

)
 

(3.101) 

  

where    is the side length as it is shown in Figure 20. Once the correction factor is calculated, the 

modified permittivity    and the modified permeability   around the wire can be obtained from 

(3.102) and (3.103) respectively.  

      (3.102) 
       (3.103) 

 

Figure 20 presents the permittivity and permeability components around the wire that must be 

modified by the factor m calculated in (3.101).  These components have been highlighted in the 

figure.  
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Figure 20 Permittivity and Permeability components modifications for the NY thin-wire model  

An experimental setup is proposed in [41] where a horizontal wire was placed above a conductive 

plate with 50cm in height and 4m in length. The wire was excited by a voltage pulse in one of its 

ends and current and voltages where measured. Figure 21 depicts the experimental set-up. 

 

Figure 21 Experimental Set-up geometry for a Horizontal conductor above a Cooper Plate (from [41]) 

In order to verify the validity of the thin-wire implementation into the FDTD scheme developed in 

this thesis, the source waveform presented in [41] was assumed to have a ramp waveform with 
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10ns of time-rise and 60V of peak value. The used waveform for the simulation is presented in 

Figure 22(a) 

 
(a)  

(b) 

 
(c) 

Figure 22 Thin-wire Representation (a) Voltage Source Waveform (b) Voltages at the near and far end of the line (c) 
Current Waveform at the source 

Figure 22(b) shows the voltages at the end of the source vertical wire and at the end of the line. 

Figure 22(c) shows the current at the source. The results presented before have similar waveforms 

and magnitudes as those presented in [41]. Some differences are present in the predicted current 

and voltages because in this simulation the voltage waveform was approximated to a ramp 

waveform and in [41] it was included as piece-wise linear approximation of the actual measured 

voltage. 

In order to validate the capability of the NY thin-wire model to represent wires, the voltages along 

the line were calculated using a TEM approach taking into account the frequency dependence of 

the parameters through the J-Marti model of the ATP/EMTP [43][44][45][46]. In Figure 23 the 

comparison between the two approaches is shown. It is worth noting that the source vertical 

conductor is strictly a non-uniform transmission line, then its representation by using the TEM 

approach and the J-Marti model cannot be in rigor performed. For the simulation the vertical wire 

a uniform horizontal transmission line with 10mm in radius and 50cm in height was used. 
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(a) 

 
(b) 

Figure 23 Comparison between the TEM approach and the FDTD calculations (dashed: TEM Approach, Solid: FDTD) (a) 
Voltages along the Line (b) Current at the source 

As it can be seen from Figure 23(a), the voltage waveforms predicted by the thin-wire 

representation included into the FDTD method agree with those predicted by the TEM approach. 

Some differences are present in the waveforms mainly due to the representation of the vertical 

wire in the TEM approach, as it produces a different reflection coefficient for the back-propagating 

wave. 

The results presented in Figure 23 show the validity of the thin-wire model for predicting surge-

wave propagation along overhead lines. 

 

3.7.3 Limit of Stability of the NY-Thin Wire 

 

Using the thin wire formulation based on the modification of the surrounding permeability and 

permittivity of the wire as it was discussed in the previous section, the incident and scattered 

fields near the wire will be affected by the artificial media modification. Due to this, the Poynting´s 

vector around the wire will present different magnitudes when it is calculated for the magnetic 

components parallel to the wire. This difference occurs because the magnetic field modification 

leads to differences in the propagation wave constants around the wire [42]. It can be 

demonstrated that the NY thin-wire formulation leads into numerical instability when the side-cell 

size is larger than: r/0.15; being r the radius of the wire [42]. 

In order to validate the instability condition, the same set-up presented in Figure 21 will be 

analyzed. In this case, if the minimum radius is defined to be 10mm (which is the radius of the 

source vertical conductor) the maximum size of the cell must be about 6.67cm being at the limit of 

stability.  In order to reach the numerical instability, the same simulation was performed using 

ΔS=8cm.  The courant’s factor is fixed to be 0.9. Figure 24 presents the voltage calculation along 

the line in order to validate the achievement of the instability condition. 
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Figure 24 Instability condition for radius lower than 0.15 times the cell-side size 

As can be seen from Figure 24 the voltages along the line are well reproduced for the first time 

instants. However, due to the error propagation caused by the Poynting’s vector difference 

discussed before, the FDTD simulation becomes unstable at about 38ns. 

3.7.4 Improved Noda-Yokoyama Model (INY) 

 

The thin wire improvement proposed in [42], which will be referred as INY, proposes modifying 

not only the magnetic relative permeability around the wire but also the components in the 

vicinity in order to obtain the same Poyinting´s vector. The improved thin wire formulation was 

included in the simulation using ΔS=8cm and maintaining the geometry as was proposed in Figure 

21. The instability problem presented in Figure 24 was solved as it is shown in Figure 25. 
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Figure 25 Voltages along the Line by using the Improved Thin-Wire Formulation 

A comparison for the same simulation set-up using the NY thin-wire model and the INY thin-wire 

model was made. The results at the near and far end of the line are shown in order to validate that 

the modification proposed in [42] does not affected the performance of the NY thin-wire model. 

Figure 26 presents the comparison between the INY improved thin-wire formulation and the 

stable NY thin-wire model.  

 

Figure 26 Voltages at the near and far end of the Line (a) Thin Wire placed on the X-axis direction 

 
As can be seen from Figure 26 both models reproduce the same waveform for the voltages at the 

near and far end of the line. The INY model was implemented in all directions into the FDTD 

scheme developed in this thesis.  
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3.8 Non-Regular mesh into the FDTD method 
 

When the case under study requires simulating detailed structures or small objects using cubic 

cells, regular meshing can be computationally restrictive because a large number cells must be 

included into the domain under study in order to perform the simulation. As it was explained in 

section 3.2, Maxwell´s equations relate the electromagnetic field components initially located on 

the sides of a cubic cell. However, based on the same central-difference approach and the 

recursive scheme for the time-domain electromagnetic field solution proposed by Yee, a non-

regular mesh can be also be used in order to perform more detailed representations of complex 

geometries located in some regions inside de simulation space, and a coarser discretization for the 

rest of it [30]. 

Non-regular meshing presents important advantages over regular meshing. First, the formulation 

of the non-regular meshing does not modify the maximum quantization error in the central 

difference approach used in the FDTD method [30] and second, the matrix sizes used for saving 

the electromagnetic field components values can be reduced significantly. It reduces the memory 

allocated for the simulation and the total time spent to perform the simulation. 

In this thesis a non-regular implementation of the FDTD method was implemented because the 

calculation of lightning induced voltages involves different detailed geometries that will not allow 

a simulation by means of cubic cells. It has been also proposed an algorithm for automatic mesh 

generation that will be explained in the following section.  

3.8.1 The FDTD Method in a Non-regular Mesh 

 

The FDTD method can be also formulated for a non-regular mesh as the Yee´s cell can be 

generalized to a prismatic volume. In this case, the components of the electric and magnetic fields 

will be located in the same fashion as the original ones. However, the length of the cell edges will 

be variable and the electric and magnetic field components location will be a function of it [30].  

For the electric field component locations, the center of the edges and the length between them 

must be determined in order to modify the original time-updating equations for the magnetic field 

components. The edge lengths between the vertices in the non-regular mesh can be expressed by: 

            (3.104) 
            (3.105) 
            (3.106) 

 

The edge centers can be defined by: 

                (3.107) 

                (3.108) 

                (3.109) 
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For the magnetic field location and its time-updating equation based on the electric field 

component location, the lengths between the edge centers must be also determined. They will be 

denoted by the letter h as: 

    (
         

 
* 

(3.110) 

    (
         

 
* 

(3.111) 

    (
         

 
* 

(3.112) 

  

Where         and     are the lengths of the cell sides at the (     ) location. Figure 27 shows 

the location of the electric and magnetic field components, and the cell lengths definition taking 

into account all of the expression presented before and using the same indexes notation as in 

section 3.2. 
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Figure 27 Location of the electric and magnetic field component in the non-regular cell 

As it can be seen from Figure 27, the electric and magnetic field components are calculated at 

convenient locations in order to apply the finite difference formulation for the Maxwell’s 

equations. This figure shows three Yee’s cells adjacent to each other where different side lengths 

are considered for the cell located at the (i,j,k) node. It must be also note that due to the different 

cell-side lengths for each direction    ,       and    ,      , the distances     and     between 

the components will also change for each direction. 

Finally, the electric field and magnetic field components can be found by similar time-updating 

equations presented in previous sections but taking into account the non-regular location of the 

edge centers, the variable cell-length and the distances between each edge center. 
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As an example, the central difference formulation for a non-regular cell applied to the x-

component of the magnetic field is: 
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 (     )
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 (       )    

 (     )
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(3.113) 

 

 

3.8.2 Automatic-Mesh Algorithm 

 

Several techniques can be proposed in order to generate the irregular mesh grid for the 

computational domain. In this section the performance for one of the algorithms that were taken 

into account is shown and a general formulation for defining the mesh grid is also presented. The 

procedure will be shown for the x-axis only. However, it can be used by the same fashion for the 

other the coordinate axes. 

3.8.2.1 General Formulation 

 

The aim of the meshing grid algorithm is to find the spatial coordinates when a spacing function is 

defined. There are two restrictions that must be imposed to the spacing function, the first one is 

that the derivative of the spacing function cannot be higher than 2; it means that the maximum 

change between two consecutive spacing sizes must twice as maximum [30]. The second 

restriction is that the coordinates of the mesh grid must be the cumulative sum of each of the 

spaces defined in the spacing function. In order to write these two restrictions in a mathematical 

form, consider    ( ) be the spacing function to be proposed,   the total of discrete points for 

the interval with            and let be       and       the minimum and maximum spacing 

size respectively.  

In order to include the minimum spacing restriction, the restriction   ( )        must be 

imposed. The minimum spacing parameter can be selected based on the dimensions of the 

geometry to be represented. For the maximum spacing selection in the coarser domain, the short-

electric distance criteria must be satisfied. In this case, the maximum discretization step       

which can be defined as an input, must be less than λmin/10 or λmin/15 for more accurate solutions, 

where λmin is the minimal wave-length corresponding to the upper frequency band component of 

the excitation source [30]. 

The number of the discrete points needed in the spacing-function are found given the restrictions 

to the spacing function imposed as: 

   ( )

  
        

(3.114) 

 

Finally, the second restriction can be written as:   
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∫   ( )  
 

 

           
(3.115) 

 

where, N is the upper limit of the integration interval.  

Figure 28 presents an example of a spacing-function and its coordinates mesh distribution. 
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Figure 28 Spacing Function and Coordinate Points function 

As it can be seen from Figure 28, there is a coarser spacing for the coordinate function in the 

middle on the interval and more detailed mesh can be found near its extreme values. 

The mesh coordinates values can be found by evaluating the integral proposed for the second 

restriction. This can be done numerically by means of a first order approach. A recursive scheme 

for the coordinate points can be found as: 

 (    )   (  )    (  ) (3.116) 

 

Any spacing function can be used if the restrictions presented in (3.114) and (3.115) are satisfied; 

the recursive equation presented in (3.116) calculates the integral of (3.115) by a first order 

backward approach. 

 

3.8.2.2 Parabolic Mesh 

 

The parabolic meshing algorithm uses a linear equation for defining the spacing function. The 

maximum and minimum spacing values are required as inputs of the algorithm and also the limits 

of the interval to be meshed. This implementation leads to a parabolic mesh near to the limits of 
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the algorithm and a linear meshing within the interval; Figure 29 depicts the parabolic meshing 

algorithm. 
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Figure 29 Parabolic Mesh based on a trapezoidal spacing function 

The spacing function can be written as a piecewise function defined by: 

  ( ) {

              
              

     (     )                
 

(3.117) 

 

Where   is the slope of the straight line and           . 

In order to obtain n1, the restriction on the maximum spacing function derivative must be 

imposed. As the spacing function has the same linear variation on the increasing and decreasing 

sections, the derivative of the function can be evaluated in the first interval      as: 

   ( )

  
   

(3.118) 

         (3.119) 
   (           )   (3.120) 

 

The slope   can be calculated from the desired spacing rate. In general           where   

can be set between       in order to consider the minimum and maximum slope 

respectively. The   factor can be understood as a decreasing or increasing factor for the spacing 

rate;   factors lower than 1 implies soft changes on the spacing mesh. 

Using the definition of the second restriction for the spacing function we will have: 
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∫   ( )  
 

 

           
(3.121) 

 

Using this restriction it is obtained that:  

 
  (           )

 
                            

(3.122) 

 

Where n2 can be found by means of the expression: 

   
(         )    (           )

     

 
(3.123) 

 

The spacing function has now been completely defined and the integration over the interval is 

performed numerically. Figure 30 show the automatic parabolic-mesh for an interval [100mm, 

975mm] using a minimum spacing of 2.5mm and a maximum of 55mm. As can be seen from the 

Figure 30(b), 26 discrete points are needed for the entire interval using the irregular mesh instead 

of 350.000 discrete points required using the traditional regular meshing. 

 

 
(a) 

 
(b) 

Figure 30 Parabolic Mesh Algorithm (a) Example of a Spacing Function (b) Coordinate mesh nodes 
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3.9 Experimental Validation Case: – The Cross-Talk Effect. 
 

Crosstalk is an undesirable effect taking place when two or more transmission lines are close each 

other affecting their voltages and currents due to their strong capacitive and inductive coupling. 

This could lead to a corruption or distortion of their own transmitted signals [47][48]. 

Crosstalk is typically studied in transmission systems used in digital data at high frequencies, 

because the fast wave-fronts of the signals excites the frequency band where the capacitance and 

inductance coupling effect cannot be neglected. As Crosstalk could be higher enough for disabling 

the communication process between two points, this effect must be taken into account when the 

system is under operation. In cable manufacturing for example, crosstalk effect is commonly 

mitigated by braided cables and shielding techniques [47][48]. 

Despite the crosstalk effect is a near electromagnetic field problem and a rigorous solution must 

be performed using a full-wave solution of the electromagnetic problem [48], Multiconductor 

Transmission Line (MTL) theory assuming the transversal electromagnetic (TEM) propagation 

mode is an accurate way to deal with it [47][48].   

The multiconductor transmission line model assumes a constant cross section along the length of 

the wires where the conductor and the return path are perfectly conductive. This is a good 

approximation when the MTL is larger than its height and when its non-uniformity is negligible.  

Another assumption is related to the uniform charge and current distribution along the line. As it 

is shown in Figure 31(a), there can be a proximity effect influence between conductors that create 

charge accumulation in some areas on the wire’s surface. However, as can be demonstrated, when 

the distance S between wires is almost 7 times higher than the radius of the wire, the mutual 

influence is negligible.   
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(b) 

Figure 31(a) Schematic Representation of capacitive coupling for two wires above a conductive return plate (cross 
section). (b) Schematic Representation of inductive coupling for two wires above a conductive return plate (lateral 

section) 

Current along the wire is assumed to be constant along an infinitesimal length allowing writing 

magnetic field expressions only from the geometric constants associated to the line conductors as 

it shown Figure 31(b). Finally, the consideration about a perfect conducting wire, can be easily 

overcome by the cuasi-TEM approximation where the electric field in the direction of propagation 

is neglected for low resistance values. 

These assumptions allow having a transversal electromagnetic field along the line and voltages 

and current relation can be easily derived from this EM field formulation [47][48]. The well-known 

formulation for currents and voltages in the generator and receptor wire is presented as follows 
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Where   ,    and    are the self-inductance and mutual inductance and CG, CR and Cm are the self-

capacitance and mutual capacitance for the generator and receptor wire respectively. 

An experimental set up was implemented in order to compare the theoretically obtained results 

by computation and measured data. The set up was composed by two copper wires with a DC 

resistance per unit length of 84Ω/km located next to each other with a distance of 1.5cm between 

them. The radius of the wire was about 0.25mm. Each wire was horizontally at the same height of 

5.5cm from a conductive plate. The resistivity of the plate was assumed to be 1.69x10-8Ωm. The 
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victim wire was loaded at each end (Near End and Far End) with 50Ω resistances. The generator 

wire was excited by a ramp voltage source with 30ns of wave front and 20V in magnitude. The 

internal resistance of the source was 50Ω and the wire was also was also loaded with the same 

resistance value at the end. The experimental assembly is shown in Figure 32(a) and (b). 
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 (a) 

 
(b) 

Figure 32 Typical Cross-talk Simulation scenario for two horizontal parallels wires (a) Schematic Representation of the 
experimental set-up (b) Experimental set-up. 

The experimental set up shown in Figure 32(b) was used to compare the measured voltages at 

each extreme of the lines with simulated ones. The measurements were carried out with one 

oscilloscope at each extreme of the lines.  The experimental waveforms are presented in Figure 

33. 
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(a) 

 

(b) 

Figure 33 Measured Voltages on the Generator and the Victim Wire for the performed Cross-talk Experiment (a) 
Voltage on the load of the generator Wire (b) Victim Wire Voltages at the near and far end 

 

Typically, the oscilloscope probes are compensated by a RC circuit that cannot be neglected in 

some frequency bands. Figure 34(a) shows the circuital model for the scope probe used in the 

experimental set-up and its frequency response is also shown in Figure 34(b). As can be seen from 

Figure 34(b), the probe response can be simplified at high frequencies as a resistive attenuation of 

almost 0.88 p.u. meaning that the scope probe will decrease the measured signal by 12% percent 

approximately; during the measurements, this effect was compensated. 
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(a) 

 

(b) 

Figure 34 (a) Circuital model for the scope probe used in the measurements (b) Frequency response of the circuital 
model for the scope probe 

The experimental set-up was modeled into the ATP/EMTP software, and into a FDTD method 

implementation. In order to validate the regular and non-regular performance for the FDTD 

simulations, two kinds of simulations were done: first, a regular mesh for the FDTD method was 

performed and second, a non-regular mesh obtained from the proposed automatic mesh 

algorithm presented in section 3.8.2.2 was implemented. 

 

3.9.1 Simulation by FDTD using a Regular Mesh 

 

The simulation set-up in FDTD was performed using a 1x2x0.2m3 computational domain with a 

space cell discretization of 2.5mm. CPML absorbing boundary conditions were implemented in 

order to truncate the problem space. A total of 400x800x80 cells were used to represent the total 

problem space in the computational domain. 
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The ascending wire, also known as the riser wire, was simplified as a straight vertical wire as is 

shown in Figure 32(a). The results for the voltages on the generator wire and the victim wire (at 

the near and far end) were calculated by mean the TEM approach and the FDTD method. The 

results are shown in Figure 35 when a separation of 1.5cm between lines is considered. 

 
(a) 

 
(b) 

 
Figure 35 Voltages for a typical Cross-Talk set-up of two parallel conductor with  1.5cm of Separation (Dashed Line: 
ATP/EMTP, Solid Line: FDTD) (a) Voltages on Generator Wire (b) Voltages on Victim Wire at the near and far end. 

Figure 36 shows the comparison between measured voltages and those predicted by the FDTD 

and TEM approach. 

 
(a) 

 
(b) 

Figure 36 Victim Wire Induced Voltage (Dashed Line: ATP/EMTP, Solid Line: FDTD, Dotted: Measured) (a) Comparison 
between measured and TEM approach at source and load voltage (1.5cm of separation) (b) Comparison between 

measured and TEM approach at near and far end voltage (1.5cm of separation). 

 

3.9.2 Simulation by FDTD using a Non-Regular Mesh 
 

When a non-regular meshing is applied, longer physical dimensions can be represented using the 

same computational domain size. For this case a total cell domain 279x181x77 were needed for 

representing a total space of 4x1x1m3. 
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The FDTD non-regular simulation set up was truncated using 2nd Order Liao´s boundaries. Figure 

37  shows the non-regular mesh for the simulation; the finer mesh was imposed near the line end 

locations. 

 

 

(a) 
 

(b) 

Figure 37 Irregular Meshing for the FDTD simulation (a) Top View (XY) (b) Lateral View (XZ) 

 

The results for the FDTD non-regular mesh approach agree with those measured voltages as it is 

presented in Figure 38. These results validate the ability to represent by means of the FDTD 

method a uniform transmission line when a perfectly conducting ground is present.  
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(a) 

 

(b) 

Figure 38 Voltages on the Victim Wire (dotted: Measured, solid: FDTD non-regular mesh) (a) Voltage at the Near End 
(b) Voltage at the Far End 
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4 Radiated Electromagnetic Field 
 

Electromagnetic radiation occurs when a time-varying source is present in a region of the space, 

allowing the interaction of electric and magnetic fields in the medium and its propagation through 

the space [49]. Most of the analysis made on electromagnetic radiation are based on the Hertzian 

dipole concept in which a pair of wires of a finite length are excited at the middle by a voltage 

source as it is shown in Figure 39(a). 
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l
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(b) 
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(c) 

Figure 39 (a) Dipole Antenna (b) Current Distribution for a half-wave dipole (c) Current-Element Dipole 

 

In order to calculate the radiation of the dipole, the distribution current along it must be known. 

This current distribution can be found by means of the scattered field formulation and the solution 

of the resulting integral equation. This integral equation can be solved by several numerical 

techniques being the Method of Moments (MoM) one of the most popular approaches for solving 

the current distribution along conducting wires in the frequency domain [49]. When the length of 

the wires is finite, the current distribution of the Hertizian dipole is maxima at the middle and 

decreases to the ends as is shown in Figure 39(b). The simplest representation of a radiating dipole 

is that known as the infinitesimal dipole or current dipole [16][49], where its current distribution 

along the segment is assumed to be constant even if it is finite in length as is shown in Figure 

39(c). 

This assumption simplifies enormously the calculation of radiated fields due to vertical current 

dipoles and it will be fundamental for the calculation of lightning electromagnetic fields as will be 

shown in chapter 5. 

4.1 Radiating Vertical-Current Dipole over a homogeneous ground. 
 

The geometry when a Cartesian coordinate system is assumed is shown in Figure 40.  
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Figure 40 Vertical electric current dipole radiation in the free-Space 

As the vertical dipole is defined to have z-directed current, the magnetic vector potential will have 

only z-axis component and will be given by: 

   
     

    

            
(4.1) 

 

The term      will be omitted during the following. Once the magnetic vector potential is 

obtained, the magnetic field components can be also found [16] by using: 

  
 

 
    

(4.2) 

 

The electric radiated fields due to a vertical current element in the free space can be calculated by 

the Maxwell equations. Selecting a cylindrical coordinates system as the most convenient for the 

vertical current dipole representation, the magnetic and electric field components can be 

calculated from: 
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Expressions (4.3), (4.4) and (4.5) allow calculating the radiated electromagnetic fields in free space 

due to a vertical current dipole. 
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4.1.1 Radiation above a perfectly conductive Ground 

 

This section deals with the radiation of a vertical current dipole located above a perfectly 

conducting ground. For simplicity the dipole coincides with the z-axis direction and it is located at 

a height H from the XY plane. Relevant geometry for the problem under analysis is depicted in 

Figure 41.  

The radiation above a perfectly conductive ground can be addressed by means of the image 

theory [16][49]. In this case, the field at the receiver point is the superposition of the direct field 

produced by the source, and the field produced by an image source which represents the effect of 

the presence of the conducting ground. 
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Figure 41 Radiation above perfectly conducting ground 

Taking into account the geometry presented in Figure 41 the radiated electric field generated by 

the source and its image can be calculated respectively by: 
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The total horizontal component of the radiated electric field can be calculated by the sum of (4.6) 

and (4.7) by: 
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The same for the vertical radiated electric field component, 
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Finally, the total vertical component can be calculated adding (4.9) and (4.10): 

   
         

  
(       ) 

(4.11) 

 

Next sections will consider a finite conductively ground where the image theory cannot be used as 

presented in this section. 

4.1.2 Radiation above a Flat Homogeneous ground 

 

In this section a finite conducting ground is taken into account for the radiated field calculations. 

The assumption of perfectly conducting ground is unpractical when poorly conductive grounds are 

present. Figure 42 depicts the scenario and the relevant geometry for this case. 
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Figure 42 Vertical Current Dipole above Homogeneous Finitely Conducting Ground 

 

Radiation above homogeneous ground represents a difficulty in evaluating the effect of the 

ground presence. This problem was addressed initially by Sommerfeld, who proposed a solution in 

order to calculate the radiated electric field for a current dipole [16].  

4.1.2.1 Sommerfeld’s Solution 
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The Sommerfeld´s solution consists on a plane wave expansion of the magnetic vector potential 

contribution due to the homogeneous ground presence. Once the boundary conditions are forced 

at the air-ground interface, the total magnetic vector potential leads to an expression where two 

terms of the total solution coincide with the case of the perfectly conducting ground, and a third 

term includes the finitely conductive ground effect [16]. This latter term has been historically 

named the surface wave term, referring to a wave that travels into the ground and modify the 

total fields above the ground [16]. 

The expression for calculating the magnetic vector potential by using the Sommerfeld’s approach 

can be written as [16]: 
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(4.12) 

 

Where, the surface wave term is determined by: 
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(4.13) 

 

The integrand of (4.13) is highly oscillatory and slow convergent. Hence, the Sommerfeld´s 

equations must to be solved by sophisticated numerical methods [16][53].  

In literature, several techniques have been proposed in order to evaluate the Sommerfeld´s 

integrals by efficient numerical methods. However, when several frequencies must be taken into 

account, the rigorous solution becomes computationally prohibitive. Next subsection present one 

of the most popular approaches for the Sommerfeld´s integral solution. 

4.1.2.2 Norton´s Approach 

 

Norton’s approach is one of the most used formulations in calculating radiated fields over a flat 

homogeneous ground. In this approximation, the electromagnetic field can be calculated taking 

into account the lossy-ground effects without solving directly the Sommerfeld´s integrals. By 

means of the Norton’s approach, some considerations are made regarding the ground 

conductivity values and the geometrical distances in order to simplify the integral in the 

Sommerfeld’s formulation [16][22][50].  

For the horizontal electric field component, the direct field remains unaltered as in the free space 

[16]: 
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The contribution on the horizontal electric field due to the ground presence can be written as [16]: 
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Finally, the total horizontal field can be calculated by: 
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(4.16) 

 

For the vertical electric field, the direct contribution can be also calculated as in free-space by: 
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The contribution on the vertical electric field due to the ground presence can be written as [16]: 
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(4.18) 

 

Finally, the total vertical field component can be calculated by: 
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(4.19) 

 

In expression (4.15) and (4.18),    represents the reflection coefficient and can be calculated by: 

   
        

        

 
(4.20) 

 

where, 

    √           (4.21) 

 

and  

  
  

  

 
(4.22) 
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   √     (       ) is the propagation constant for the lossy ground and     √     is 

the propagation constant for air.  The    function is also called the normalized surface impedance. 

The  ( ) function also present in (4.15) and (4.18), is known as the attenuation function and can 

be calculated by: 

 ( )     √         ( √ ) (4.23) 

 

The function    is expressed by: 

  
      

 

   
(        )

  
(4.24) 

 

The attenuation function proposed by Norton has been compared with the rigorous solution from 

the Sommerfeld integrals and it has shown a good agreement for almost all far-field situations and 

for the near field when considerably good ground conductivity is assumed. It must be taken into 

account for calculations using the Norton´s approach, that the proposed results have used the 

approximation that   
    

      . 

In Figure 43(a) there is a comparison of the attenuation function magnitude between the 

Sommerfeld’s solution and the Norton´s approach when a vertical dipole is radiating at 1MHz over 

a flat ground, and with ρ=100Ωm and ε=10ε0 in resistivity and permittivity respectively.  

  

 

Figure 43 Attenuation Function Magnitude Comparison for a Vertical Current-Dipole above a Flat Homogeneous 
Ground. Norton Approach (dashed lines) and Sommerfeld’s solution (circles)   taken from [52]  
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Figure 43 shows that there is a good agreement between the two approaches. The effects on the 

attenuation function due to variations in the dipole excitation frequency were also calculated by 

using the Norton´s approach for the frequencies 5MHz and 10MHz.  

Once the attenuation function has been calculated, the horizontal electric field can be evaluated 

assuming a current-dipole magnitude. For this case the current-dipole magnitude is 1A; the 

observation points for the radial-electric field calculations were assumed to be at 10m above the 

ground surface. Figure 44 presents the effect of the excitation frequency on the horizontal electric 

field. Near the source, the differences are representative. 

 

 

Figure 44 Radiated Horizontal Electric Field (10m in height) along the propagation path 

4.2 Radiating Vertical-Current Dipole over an Inhomogeneous and 

Irregular Ground (far-field region). 
 

Most of the popular approaches for calculating radiated electromagnetic fields in presence of 

irregular and in-homogeneous ground have been based on the Compensation theorem and on the 

Green´s theorem. Both of them lead to two-dimensional integral equation formulations for the 

field component under evaluation [16]. Once the two-dimensional integral equation has been 

formulated, an assumption of radial symmetry and the introduction of elliptic coordinates allow 

the formulation of a one-dimensional integral equation along the radial direction. Some of the 

main results will be presented in this section. A complete deduction can be found in [16][53]. 

4.2.1 Green´s Theorem Approach 

 

Consider a vertical current dipole above an irregular ground as presented in Figure 45. 
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Figure 45 Relevant Geometry Irregular Terrain profile. 

In general, the solution of the electromagnetic field must satisfy the non-homogenous Helmholtz 

equation with a set of boundary conditions related to the ground conductivity inhomogeneities 

and its height profile. Consider the non-homogenous Helmhotlz equation for a scalar field  : 

      
       (     ) (4.25) 

  

where   will represent the vertical electric field component,          √     is the 

propagation constant in the air and  (     ) is the vertical dipole current density in the space, 

which is defined to be zero at every point of the region except at the current-dipole location. The 

scalar function   will include in its solution the influence of the ground characteristics once the 

boundary conditions have been applied. This influence can be interpreted as a modification of the 

free-space solution due to the presence of the ground characteristics; It is usually called the path-

gain function or the attenuation function. The scalar field   at the observation point can be 

calculated as: 

 ( )   ( )
       

  

 
(4.26) 

 

where  ( ), represents the path gain function calculated at the observation point. Function 

 ( ) will contain all the modifications introduced by the presence of non-homogeneities and 

irregularities of the ground and its effects on the observation point.  

The free-space solution   , is calculated by: 

  ( )   ( )
       

  

 
(4.27) 

 

Where  ( ) represents the radiation pattern of the transmitter dipole. As   represents the 

vertical electric field due to a vertical current dipole, the radiation pattern function and its 

contribution to the observation point can be found for the far-field region by: 
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 ( )  
         

  
(      ) 

(4.28) 

 

Boundary conditions must be applied depending on the component that the scalar function   is 

representing. When   is representing the vertical electric field due to a vertical-current dipole, the 

boundary condition at the interface air-ground can be derived by the Leontovich´s method. The 

normal continuity condition for vertical polarization can be written as [16]: 
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(4.29) 

 

where    the normalized surface impedance presented in section 4.1.2.2 and is given by: 
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Using the Green’s theorem and rearranging some terms of the equations (a complete deduction 

can be found in [53]), the unknown path function at the observation point  ( ) can be calculated 

by: 
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Using elliptical coordinates and considering the inhomogeneities and irregularities in radial 

direction only, the two-dimensional integral equation presented above can be reduced to a one-

dimensional equation as: 

 ( )   ( )  (
    

  
*

 
 

∫  ( ) [ ( )  
   

  
]               (

 

√ (   )
)   

 

 

 (4.32) 

  

The expression presented before, is a general formulation for taking into account in 

homogeneities and irregularities along the propagation path in the far-field region. From this 

expression, the mixed-path condition can be also derived simplifying some terms [53]. 

4.2.2 Radiation fields over an inhomogeneous ground. 

 

The propagation path to be considered in the following corresponds to a vertically stratified 

ground or well-known as a mixed-path [18]. This in-homogeneity is described as vertical abrupt 

change of conductivity along the propagation path as is shown in Figure 46. There can be several 

configurations for mixed paths depending on the number of conductivity changes. Figure 46(a) 
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depicts the general geometry for a mixed-path of two-sections and Figure 46(b) for a mixed-path 

of three-sections.  
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(b) 

Figure 46 (a) Two-Sections Mixed-Path Condition (b) Three-Section Mixed-Path 

 

One of the most popular analysis of the propagation effect due to the presence of a mixed path is 

that proposed by Wait based on the compensation theorem approach [55][56][57][58], where the 

attenuation function at the observation point can be expressed by: 
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 (4.33) 

 

The attenuation functions    and    are the attenuation functions for regions 1 and segment 2 

respectively.  The solution proposed by Wait assumes that both the vertical-current dipole and the 

observation point are located at the ground surface and the observation point must be in the far 

field region. 

The attenuation functions    and    are obtained using the same idea as the attenuation 

function proposed by Norton when a homogeneous ground is considered. Nevertheless, in this 

case    and    will be dependent on the normalized impedance at each position in order to take 

into account the longitudinal change of the ground conductivity. Some variables presented in the 

attenuation function derived in the Norton’s approach have been redefined with the aim for 

maintaining the same notation from Wait. The attenuation function can be written as: 
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 ( )     √           ( √  ) (4.34) 

 

Where the function   , is described by: 
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(4.35) 

 

It is worth noting that the expression for    corresponds to the expression for   in the Norton 

approach when the radiating dipole is on the ground leading to    ,         and        . 

For each region, the normalized impedance must be calculated as: 

    √     (4.36) 

 

Where,  

  
  

  

 
(4.37) 

 

When multiples vertical changes on conductivity occur along the propagation path, the expression 

proposed by Wait can be extrapolated by taking into account the presence of each mixed path and 

their mutual interaction along the path until reaching the observation point. As an example, the 

attenuation function for a three-section mixed-path such as presented in Figure 46(b) can be 

calculated by [57]: 
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(4.38) 

 

where     (  ) is the attenuation function for the first mixed-path of two sections, which can be 

calculated as presented before: 
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In order to validate the implementation of Wait´s proposal for the mixed-path problem, Figure 47 

presents its comparison with the approach presented by Ott for a frequency of 10MHz [54]. For 

this case, a three-section mixed-path (sea-land-sea) is used. Geometrical parameters are shown in 

Figure 47(a). The results of the comparison are shown in Figure 47(b) and Figure 47(c) respectively. 
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(a) 

 
(b) 

  
(c) 

Figure 47 Attenuation Function for a Mixed-Path (dashed: Wait´s Approach, circles: Ott’s integral presented in [54]) 
(a) Relevant Geometry for three section Mixed-Path (b) Wait’s Attenuation Function for Two Sections ρ1=0.5Ωm/ 
ρ2=500Ωm (c) Wait’s Attenuation Function for Three-Sections ρ1=0.5Ωm/ ρ2=500Ωm / ρ3=0.5Ωm 

Once the attenuation function has been calculated, the radiated fields can be evaluated along the 

path for different frequencies. Figure 48 presents the calculation of the electric field components 

along the three-section mixed-path when three frequencies are taken into account. 

 
(a) 

 
(b) 

Figure 48 Radiated Electric Field Components along the Path at 10m in height (a) Horizontal Electric Field Component 
(b) Vertical Electric Field Component 

As can be seen from Figure 48, the electric field components are affected by the presence of the 

mixed path. For this case, the change from a higher conductivity ground to a lower one, increases 

the field magnitude for the horizontal electric field component and decreases the magnitude of 
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the vertical one. The effect of increasing the magnitude is also called as the “recovery effect” and 

it has been evidenced experimentally [18][56]. 

4.2.3 Radiation fields over an irregular ground. 

 

An alternative integral equation was proposed by Ott [54] for the calculation of the attenuation 

function not only when ground homogeneities are present, but also when irregular terrain is 

present along the propagation path. By using the Ott´s approach [54], several terrain profiles can 

be taken into account. In order to analyze the effects of the irregular ground on the electric field 

components a Gaussian shape was used as an obstacle. This kind of shape has the advantage of 

having a continuous derivative function over distance and soft changes. The function that 

describes the profile of the irregularities was defined by: 

     (
    

 
)
 

 
(4.40) 
 

 and its derivate function can be calculated as: 

      (
    

  
)   (

    
 

)
 

 
(4.41) 

 

where,    represents the center of the Gaussian curve,   represents the height and   is an input 

parameter for controlling the base-length. 

The first path under analysis was a Gaussian ridge and the second one a Gaussian cliff with 500m 

in height and deep respectively. The center of the Gaussian shape was located at          with 

a base-length parameter      .  Figure 49(a) and Figure 49(b) depicts the terrain profiles under 

analysis. 
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(c) 

 
(d) 

Figure 49 Irregular Propagation Path and their Attenuation Function Magnitude. (a) Ridge Terrain Profile (b) 
Attenuation Function for a Ridge Terrain Profile (c) Cliff Terrain Profile (d) Attenuation Function for a Cliff Terrain 

Profile 

The attenuation function magnitudes were calculated for both profiles at 1MHz, 5MHz and 10MHz 

for the current dipole frequency. Depending on the irregularity, the attenuation function changes. 

As can be seen in Figure 49(b), the attenuation function related to the Gaussian ridge has an 

attenuation magnitude greater than the unity along the first part of the ridge (where the 

derivative of the profile is positive) and decreases after the top of the ridge. The frequency 

dependence of the attenuation function shows that for higher frequencies the attenuation 

function raises and decreases faster than for lower ones. 

Figure 50 presents the calculated radiated electric field components when the ridge and the cliff 

described before are present along the propagation path. As can be seen from Figure 50(a) and 

(b), the ridge presence along the propagation path increases the field magnitude along the 

positive slope for each geometry. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 50 Irregular Ground Effect on Radiated Electric Fields. Gaussian Ridge: (a) Horizontal Electric Field (b) Vertical 
Electric Field. Gaussian Cliff: (c) Horizontal Electric Field (d) Vertical Electric Field 

It can be also seen, that the effect is more representative as the excitation frequency increases. As 

it is shown in Figure 50, the electric fields components are more affected for the excitation 

frequency of 10MHz. This occurs because the wave-length becomes comparable with the 

geometrical dimensions of the terrain irregularity. 

4.3 Radiating Vertical-Current Dipole over an Inhomogeneous and 

Irregular Ground (near-field region). 
 

As it was discussed before, the calculation of the near field radiation could be carried out using the 

Sommerfeld’s formulation. However, the Norton’s approach has shown its validity for calculating 

radiated electric fields within a close range distance from the radiating dipole. Next sections show 

the effects of the propagation path in the near field. 
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4.3.1 Radiated Fields over Homogeneous and Inhomogeneous Flat Ground 

 

The solutions presented before have been derived under several assumptions, especially the 

azimuthal symmetry of the mixed-path problem and the far field assumption for the radiated 

fields. In order to analyze the validity of the FDTD method in the near field region, a comparison 

was made with the Norton´s and Wait’s approaches for the calculation of radiated fields above a 

homogeneous and over a mixed-path structure. A three section mixed-path condition 

(sea/land/sea) was assumed. The ground conductivity changes were 

ρ1=0.5Ωm/ρ2=500Ωm/ρ3=0.5Ωm with a relative permittivity of εr1=81/ εr2=15/εr3=81 respectively. 

The boundaries of the vertical stratification were located at X1=492.5m X2=842.5m. 

A non-regular mesh for the FDTD simulation was performed using the non-regular parabolic-

meshing algorithm proposed in this thesis. The parameters were set to 5m and 20m for the 

minimum and maximum spacing size respectively with a maximum spacing-rate factor of 1.  The Z-

axis was meshed by regular discretization. The total space of simulation was 4000x4000x1000m3 

with the dipole located at 2.5m in height above the ground at the coordinate X0=1000m, 

Y0=1500m. The simulation space truncation was achieved by using absorbing 2nd order Liao´s 

boundaries. The ground was simulated by means of a 200m height conductive block and the total 

computational domain was 236x186x200 of non-regular Yee’s cells.  Horizontal electric fields were 

evaluated at 10m above the ground when the radiating source is represented by a voltage source 

with 50Ω in internal resistance and a sinusoidal waveform of 1MHz in frequency.   

As the implementation of the excitation source was different in both methods, the current 

magnitude of the vertical dipole in the Norton´s and Wait’s approach was adjusted in order to 

match the radiated electric field values for the homogeneous condition in the FDTD simulation. 

The results are shown in Figure 51. 
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(b) 

 

Figure 51 Horizontal Electric Field Component due to a vertical current dipole within the Near Field Range (circles: 
FDTD, cross: Wait´s Approach) (a) Homogeneous Case (b) Two-Section Mixed path (c) Three Section Mixed-path 

 

The results presented in Figure 51 show that the FDTD method results are in good agreement with 

those results obtained by Norton’s and Wait´s approaches for the considered ground 

conductivities. 

The expressions used to calculate the radiated electric field components presented by Norton [16] 

were corrected by King [50] by means of two different factors calculated at the observation point: 

the reflection coefficient due to the local impedance surface, and the attenuation function which 

can be seen as an accumulated effect due to the presence of the ground. 

In order to show the influence of the attenuation function on the horizontal radiated electric field, 

Figure 52 presents the radiated horizontal electric field component calculated taking into account 

the attenuation function, and the results assuming the attenuation function to be equal to the 

unity. As it can be seen, the attenuation function does not represent an important factor on the 

calculation of the electric radiated fields for relative low frequencies such as 1MHz. However, its 

effect becomes important for higher frequencies values.  
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Figure 52 Attenuation Function influence in the near-field Horizontal Electric Field Calculation 

Other important factor influencing the attenuation function values is the ground resistivity. Figure 

53 presents the frequency response of the attenuation function magnitude when two ground 

resistivity values: 100Ωm and 1000Ωm are considered for the homogeneous ground. The 

frequency response has been calculated at four different distances: 100m, 500m, 1000m and 

2000m from the radiating dipole. 

 

Figure 53 Attenuation Function Magnitude Frequency Response at different distances from the radiating dipole (gray 
lines: 1000Ωm, black lines: 100Ωm) 

As can be seen from Figure 53 the attenuation function not only presents lower cut-off 

frequencies but also a different behavior at higher frequencies.  

An additional simulation for a three section mixed-path was performed by means of the FDTD 

method, in order to observe the behavior when the ground conductivity change occurs near the 

current dipole location. In this case the boundaries between the ground sections were located at 
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X1=250m and X2=450. A voltage dipole oscillating at 1MHz was placed at 1m above a mixed-path of 

three sections; calculations of the e peak value were obtained once the steady-state of electric 

field waveforms was achieved. The simulation in the FDTD was performed using regular meshing 

with cubic cells with 5x5x2m3 in volumes. The total simulation volume space was 50x900x2000m3. 

The computational domain was truncated by means of CPML boundaries.  

 

(a) 

Figure 54 Validity of the Wait formula for Mixed-Path of Three sections (a) Horizontal Electric Field  

 

As can be seen from Figure 54 there is a good agreement between the results. 

4.3.2 Radiated Fields over Irregular Ground 

 

As it was discussed before, by means of the integral equation proposed by Ott [54] it is possible to 

calculate the attenuation function in the far field region when there are irregular profiles along the 

propagation path.  

In order to evaluate this effect, a monochromatic oscillating voltage source with 50Ω in internal 

resistance was placed at 2.5m above the ground and an obstacle with 50m in height and 400m in 

length was included in the propagation path. A non-regular mesh FDTD simulation was performed 

using the non-regular parabolic-meshing algorithm proposed in this thesis. The parameters were 

set to 5m and 20m for the minimum and maximum spacing size respectively with a maximum 

spacing-rate factor of 1. The Z-axis was meshed by regular discretization. The total space of 

simulation was 4000x3000x1000m3 and the dipole was located at the coordinate X0=1000m, 

Y0=1500m. In order to truncate the simulation space, absorbing 2nd order Liao´s boundaries were 

implemented. The ground was simulated assuming 0.5Ωm in ground resistivity and εr=81 in 

relative permittivity. Figure 55(a) shows the inclusion of the terrain irregularity in the FDTD 

method. A finer mesh that can be seen near 1000m was included for a better representation of 

the source. 
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(a) 

 

(b) 

Figure 55 Irregular ground effect on radiated field in the near field (a) Ground Profile along the x-axis included into the 
FDTD method (b) Horizontal electric field from the current dipole location along an abrupt profile change for different 
oscillating frequencies (dashed: Homogeneous, black empty circle: 1MHz, gray filled circles: 5MHz , black filled circles: 

10MHz) 

As can be seen from Figure 55(b), the horizontal component of the radiated electric field increases 

its magnitude before the terrain irregularity is reached. This effect is caused by the wave 

reflections due to the presence of the ground step. In Figure 55(b) the electric field magnitude for 

the homogeneous case is also shown in dashed line. As it can be seen for the 1MHz case, the 

magnitude of the electric field changes when compared to the homogenous case value, then it 

increases its magnitude closer to the ground step and once it is surpassed, the magnitude of the 

electric field component returns to the homogeneous case value. A different behavior is observed 

for the frequencies of 5MHz and 10MHz. As it can be seen, the first section of the path differs from 

the homogeneous case due to the reflected wave magnitude and once the step ground is 

overcome, the electric field magnitude presents different maxima and minima along the path. This 

is mainly due to the interaction between the wave and the obstacle at the frequencies under 

analysis. 
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5 Lightning Return-Stroke Modeling  
 

The lightning return-stroke modeling is one of the most important factors in determining the 

induced voltages on overhead lines because there is a strong dependence between the radiated 

fields and the current propagation features along the lightning return-stroke channel.  For 

lightning radiated field analysis, several lightning return stroke models [58] have been proposed in 

order to reproduce the typical behavior of measured lightning electromagnetic fields [6]. 

Depending on the mathematical formulation and the physical assumptions made for each 

lightning return stroke models, the current distribution along the channel is predicted or imposed, 

taking the current waveform at the base of the channel as an input [59]. 

Depending on the approach used for representing the current distribution along channel, these 

models are classified as: Engineering Models, Electromagnetic Models (HEM) and Circuital Models 

[6][8]. Following sections will present different lightning return-stroke models that have been 

proposed in literature. 

5.1 Engineering Models 
 

The engineering models assume the current propagation along the channel as a function of a 

known current waveform at its base and at a given constant propagation velocity. The current 

propagates either without any distortion, or considering very simple attenuation functions. The 

most common expressions that are used in order to include the amplitude attenuation along the 

channel are: linear-current decaying (Modified Transmission Line Model with Linear decay, MTLL) 

and exponential-current decaying (Modified Transmission Line Model with Exponential decay, 

MTLE) [61][62][63]. The expressions for the amplitude variation are shown in Table 1 [63]. 

Longitudinal Current Expression 

TL 
 (    
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Being   the current 
velocity of propagation. 

MTLL 
[  

  

 
]  (    
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Being   the length of the 
lightning channel. 

MTLE 
  (    ) (    

  

 
) 

Being   the current-
decay height constant. 

Table 1 Longitudinal Current Expressions depending on the return-stroke model 

From these models, it is possible to represent the lightning channel as a set of current sources 

each one of them having a current waveform given by the expressions presented before. Figure 56 

shows the current distribution when a MTLE model with a current-decay height constant λ=2km 

and velocity of propagation        is used. 
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Figure 56 Current Propagation by means of the MTLE with λ=2000, v=c/2 

 

The mathematical expression used for the base-current corresponds to a superposition of 

exponential Heidler´s functions, which is a typical waveform used for subsequent return-strokes: 
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Where    and    can be calculated using the expression: 
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Where the value of the parameters for the channel base current were assumed to be:    

                  ,     ,             ,            ,         ,           .  

5.2 Electromagnetic Models 
 

As in natural lightning, a charge transfer take place between the ground to the cloud and lightning 

return-stroke models must approach to represent this process. A vertical thin wire transporting 

current from ground to cloud establish an adequate scenario to achieve this [59]. The thin-wire 

model corresponds to the simplest electromagnetic model for a return-stroke in which the current 

distribution along the channel results from the solution of the Maxwell´s equations along the 

vertical thin wire, when a current waveform is imposed at the channel base. The solution of the 

Maxwell’s equations for can be found by several methods.  
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Two numerical techniques were used in order to solve the current distribution for a vertical thin-

wire. One of the techniques addresses the problem in the frequency-domain and the other one in 

the time-domain.  

One of the most popular solutions consists in dividing the channel into several segments and the 

resulting integral equation for the scattered field is solved by the Method of moments (MoM) [66]. 

The current distribution along the channel is obtained solving the integral equation for each 

segment in the frequency-domain and then by applying the inverse Fourier transform, the current 

distribution along the channel can be obtained in the time-domain [64].  

In order to solve the integral equation a computer program called the Numerical Electromagnetics 

Code (NEC-4) was used [67]; this well-known program allows evaluating several setups for 

predicting conducted and propagated electromagnetic fields.  For the time-domain solution, the 

full-wave equations were solved by means of the Finite Difference Time Domain (FDTD) algorithm 

implemented in this thesis. The return-stroke model can be included by using the Noda and 

Yokoyama thin-wire representation as it was discussed in section 3.7. 

Figure 57 shows a comparison of the current distribution along the channel when two different 

methods for solving the electromagnetic equations are used. 

 

Figure 57 Longitudinal Current Propagation for a Vertical Thin-Wire with radius 0.3m (solid line: NEC-4, dashed: FDTD) 

 

As it can be seen from Figure 57 there is a good agreement between the two formulations for the 

thin-wire model and as it is discussed in [59], the attenuation of the current along the lightning 

channel describes the current distortion as it occurs in the natural return stroke.  

Despite of the lightning return-stroke model using a perfectly conducting thin-wire reproduces the 

current distortion along the channel, the upwards velocity of propagation cannot be controlled 

and it is near the speed of light.  
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5.3 Lightning Channel as a Loaded Thin-wire 
 

In order to control the propagation velocity, distributed lumped elements that are able to storage 

energy are included long the channel. By means of this approach the current propagation can be 

delayed in time, achieving slower apparent phase-velocities [6][64].  

In this case, a lightning channel having a radius of 0.23 m was placed in an air working volume of 

60  60  2300 m3 divided into 1  1  10 m3 cells, above a perfectly conducting ground. The 

channel was loaded with a series inductance L = 2µH/m and excited by a 10 m lumped current 

source. Absorbing CPML boundaries were placed at the top and all sides of the working volume. 

Figure 58 shows the calculated currents at different heights contrasted with those presented in 

[6].  

 

Figure 58 Current Distribution along a Thin-Wire inductance-loaded (Solid line: FDTD implementation, circles line: 
Results presented in [6]). 

As it can be seen from Figure 58, the calculated current distribution along the channel exhibits 

distortion as in the perfectly conducting thin-wire model, but in addition the velocity of 

propagation is controlled about 0.6 times the speed of light.  

The thin wire model can be also loaded with a series resistive-inductive per unit length in order to 

reproduce not only the phase-velocity of the propagating current as it was shown with the 

inductive load, but also to obtain more attenuation whereas the current propagates. 

In order to analyze the effect of loading the thin-wire by RL-series load, a simulation in NEC-4 by 

means of a wire loaded by lumped RL series branches and a thin-wire implementation into the 

FDTD method was performed. The thin-wire had 2000m in length and 0.23m in radius. In order to 

obtain a current propagation velocity of near one-third of the speed of light a series resistive-

inductive (RL) load value of 1Ω/m and 2µH/m was used. The current waveform used was the one 

proposed by Chen as illustrated in [10]. 

0 1 2 3 4 5
0

5

10

15

20

Time [s]

C
u
rr

e
n
t 

[k
A

]

0m
150m

300m

600m



 

81 
 

The results of the current distribution along the channel using the two methods described above 

are shown in Figure 59 where both approaches are in good agreement with the current wave 

propagation prediction. 

 

 

 

Figure 59 Current Propagation along the Lightning Channel (solid line: NEC-4, dashed: FDTD) 

As can be seen from Figure 59, the lightning channel model represented by a loaded thin-wire 

allows the control of the phase velocity of the current wave and produces distortion on its 

waveform. 

As a result, obtaining the current distribution by means of an electromagnetic models instead of 

impose it by means of an engineering model, differences can be seen among current waveforms 

along the channel. In Figure 60 there is a comparison between the current distribution along the 

return-stroke for the MLTE model and the RL loaded thin wire. As can be seen, despite the phase-

velocity for both models is about a half of the speed of light, there is more current-dispersion 

along the channel when the RL loaded thin-wire model is considered.  
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Figure 60 Comparison between the MLTE and RL loaded thin-wire for return stroke models (solid: base channel 
current, solid grayed: RL-loaded thin-wire, dashed: MTLE λ=2km) 

 

Besides, depending on the return stroke model different current distribution waveforms along the 

lightning channel are found. The selection of the lightning return-stroke model can be done 

depending on the case under study. Although the MLTE and the series RL-loaded thin-wire model 

present different current distributions, both models are able to reproduce similar lightning 

radiated electric field characteristics of natural and rocket-triggered lightning. 
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6 Propagation Path Effects on Lightning Radiated Fields 
 

This section addresses the effects of the presence of different ground structures on the lightning-

radiated fields. As it was presented before for a current dipole, the characteristics of the 

propagation path can affect the electric radiated fields in a considerable magnitude. These effects 

were analyzed not only in the far-field region but also it was demonstrated to have an important 

contribution in the near field region. 

As it was shown before, the lightning return-stroke channel can be modeled by means of several 

approaches. All of those models reproduce the most important characteristics of the natural 

return-stroke current distribution and any could be used for calculating lightning radiated fields. 

As it was discussed in section 5, the characteristics of the current propagation in a natural return-

stroke can be reproduced when electromagnetic models are used.  

Based on this approach, the results discussed before for a vertical-current dipole above different 

ground structures in the frequency domain can be extended, using the superposition theorem, by 

means of a set of vertical-current dipoles along the channel and the evaluation of its contribution 

at the observation point. Once the frequency response at an evaluation point has been calculated 

including all the sources that represent the lightning channel, the inverse Fourier transform can be 

used in order to determine the time-domain waveform for a determined channel-base current. 

 

6.1 Perfectly Conducting Ground 
 

The perfectly conducting ground effect can be taken into account by the theoretical formulation 

based on the image theory method. The perfectly conducting ground can be seen as a reference 

condition for cases where the lossy, inhomogeneous and irregular ground conditions are present. 

A comparison between the theoretical predictions and those results calculated by a full-wave 

solution for the near field region were carried out in order to validate the FDTD method for 

calculating lightning radiated fields from return-stroke modeled by means of a RL-loaded thin-

wire.  Using the FDTD implementation with non-regular meshing, a more detailed mesh was 

specified near the lightning channel location whereas a coarser domain was assumed for the rest 

of the region.  

The minimum spacing size was assumed to be 5m. The maximum spacing was about 50m for the x 

and y direction and 7.5m for the z direction. The z-direction domain was meshed as regular up to 

150m above the ground interface. The non-regular mesh was calculated by means of the proposed 

parabolic meshing using an attenuation factor α=0.1 for soft spacing change along the z-axis and 

α=0.5 and for the x and y axis. Figure 61 presents the mesh distribution for the simulation 

scenario. The lightning channel modeled as a loaded thin-wire was placed at the coordinate 



 

84 
 

X0=1500m, Y0=1500m. It was simulated with 1500m in height and 0.3m in radius. In order to 

control the propagation velocity of the current along the channel to be a half of the speed of light, 

it was loaded with a RL series load with 1Ω/m and 3μH/m in resistance and inductance values 

respectively. 

 
(a) 

 
(b) 

Figure 61 FDTD Non-regular mesh distribution (a) Top View (Plane XY) (b) Side View (Plane XZ) 

 

A typical waveform used for representing subsequent return-strokes is assumed at the base of the 

channel given by: 
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Where    and    can be calculated using the expression: 
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The parameters that were used for the simulations were assumed to be:                  
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Figure 62 presents the current distribution along the lightning channel for both different 

approaches, one of them is based on the antenna theory model with fixed inductive load and 

when the RL loaded thin-wire model is considered into a non-regular mesh FDTD simulation. As it 

can be observed, the current distributions obtained from the FDTD method agree well with those 

obtained from the MoM solution using the NEC-4 code. 

 

Figure 62 Current Distribution along the Lightning Channel RL loaded Return-Stroke model (solid grayed: NEC-4, 
dashed line: FDTD-Thin Wire RL loaded) 

In Figure 63 there is a comparison for the horizontal electric field calculation by means of the FDTD 

in the near field region and those results using the theoretical calculation by means of the image 

theory. Two different distances from the lightning channel base to the observation point were 

analyzed. Range I: distances closer than 200m and Range II: distances longer than 500m.  

 
(a) 

 
(b) 

Figure 63 Lightning Radiated Fields above Perfectly Conducting Ground, Horizontal Electric Field (Solid Line: 
Theoretical, Dashed Line: FDTD) (a) Hor. Electric Field Range I (closer distances than 200m to the Channel Base) (b) 

Hor. Electric Field Range II (longer distances  than 500m to the Channel Base) 

As can be seen from Figure 63 the FDTD results are in a good agreement with those using the 

theoretical calculation. The maximum error between both results is about 2%. This is a tolerable 
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error taking into account the considerable decreasing on the total simulation time and the 

maximum space volume when a non-regular mesh is used. 

 

6.2 Homogeneous Lossy Ground 
 

The presence of lossy ground has been demonstrated to be a very important factor in lighting 

radiated field waveforms, especially for the horizontal electric field component within the near 

field region.  

Norton´s approximation has been tested for lightning radiated field calculations in multiple 

scenarios of distance and ground conductivities, concluding about its validity in the near-field only 

when relatively good ground conductivities values are present. Even for some cases, the Norton´s 

approximation provides reasonable results for ground resistivity values lower than 1000Ωm and 

for distances within 50m up to 200m from the channel base. It has been also showed that the 

Norton´s approach leads to better results in the case of subsequent return strokes.  

In order to validate the lightning radiated fields. Figure 64 presents a comparison between the 

rigorous solution of the Sommerfeld´s equations taken from [20] and the Norton´s approach 

implemented in this thesis for the horizontal electric field component above a homogeneous 

ground with a resistivity ρ=1000Ωm at 200m from the lightning channel. The return-stroke current 

corresponds to a typical subsequent stroke and the same parameters presented in [15] were used. 

 

Figure 64 Horizontal Electric field at 10m height above a lossy ground of resistivity 1000Ωm at a distance of 200m 
from the stroke modeled by MLTE (dashed: Norton Approach, circles: Sommerfeld’s taken from [20]) 

 

As can be seen from Figure 64 Norton´s approach is in well agree with the rigorous solution of the 

Sommerfeld´s integrals as most of the principal characteristics of the radiated waveform are 
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reproduced. The negative excursion that is present in the horizontal electric field component has 

been shown to be highly dependent on the resistivity of the ground and the vertical electric field 

component. 

In order to analyze the effect of the ground resistivity on the lightning radiated field magnitudes 

and waveforms, a set of simulations with different ground conductivities were performed by using 

the Norton´s approach. In Figure 65 a comparison for the electric radiated field components for 

10Ωm, 100Ωm and 1000Ωm resistivity values is presented. The return stroke was modeled by a 

straight wire loaded with a lumped RL load of 1Ω/m in resistance and 3μH/m in inductance 

respectively. The current distribution along the channel was obtained by means of the antenna 

theory approach by using the NEC-4 code as it was discussed in section 5.3. The electric fields were 

calculated at 10m above the ground.  

As it can be seen from Figure 65(a), the vertical component of the radiated electric field is less 

affected by the resistivity ground values than the horizontal one. Figure 65(b) and Figure 65(c) 

shows that the waveform shape of the horizontal component is highly affected by the resistivity 

changes. The negative excursion is the most evident distortion especially for distances greater 

than 500m from the lightning channel base. However, for all the cases radiated electric fields 

tends to the same maximum value. 
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(a) 

 
(b) 

 
(b) 

Figure 65 Radiated Electric Fields above different Ground Resistivity values (a) Vertical Electric Field (b) Horizontal 
Electric Field for distances closer than 200m (c) Horizontal Electric Field for distances further than 500m 

 

As it was presented in section 5, the current distribution along the channel depends on the 

lightning channel model. In order to verify the influence on the lightning radiated fields due to the 

current distribution along the channel, a comparison between the horizontal and vertical 

component due to a MLTE model and RL-Thin-wire was performed. For the lightning channel 

model represented by the loaded vertical wire the current distribution along the channel was 

calculated by the NEC-4, however the radiated fields are in both cases calculated by the Norton´s 

approach. In Figure 66 there is a comparison between the current distribution along the channel 

and their radiated fields above lossy ground with 1000Ωm in resistivity and 10ε0 in permittivity 

when two different lightning return-stroke models are used, the MLTE model with λ=2km and the 

RL loaded thin wire with 1Ω/m in resistance and 3μH/m in inductance. 
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(a) 

 

(b) 

 

(b) 

Figure 66 Horizontal Electric Field Component with different lightning return-stroke model (solid: RL Thin-Wire, 
dashed: MLTE) (a) Current distribution along the Channel (b) Electric Field Component at distances closer than 200m 
(c) Electric Field Component at distances further than 500m 

As can be seen from the comparison presented in Figure 66, the waveforms of the radiated fields 

are similar to each other but it can be also found some important differences at closer distances 

from the lightning channel base. For further distances from the lightning channel base the 
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negative excursion is the most affected characteristic of the waveform by the current distribution 

[69]. 

As it has been shown by several authors, Norton´s approach can be applied for some near field 

situations of lightning radiated fields. However, this approach is not valid for all the distance 

ranges and its intrinsic assumption of cylindrical problem space symmetry is normally invalid for 

general cases of lightning induced voltages. The FDTD method can be used for those situations 

where the Norton’s approach assumptions are not valid or more general simulation scenarios 

must be simulated. 

In [70] a FDTD simulation with a fine mesh was performed in order to validate the popular CR 

formula for the horizontal radiated field above lossy ground [21][22]. Figure 67 presents a 

comparison between the results presented in [70] by a very fine-mesh FDTD and the Norton´s 

approach implemented in this thesis. The comparison is presented for the near field range at 

100m and 1000m from the lightning channel base. 

 

  
Figure 67 Horizontal Electric field at 10m height above a lossy ground of resistivity 100Ωm at two-different distances 

from the channel modeled by RL Loaded Thin-Wire (a) at distance of 100m (b) at distance of 1km (dashed: Norton 
Approach, circles: FDTD taken from [70]) 

 

In order to validate the Norton´s approach for calculating lightning radiated fields above a relative 

high ground resistivity (ρ=1000Ωm), a simulation set-up using a full-wave solution by means of the 

FDTD method with non-regular mesh was performed.  

The lightning channel was modeled by means of the MTLE model assuming λ=2km and a velocity 

of propagation of c/2 and 1500m in height. The ground conductivity was assumed to be 1000Ωm 

along with a Non-regular mesh with a maximum space discretization of 17.5m in the coarser 

domain. In the region of interest a delta space of 5m was used. In Z-directed coordinates regular 

spacing was considered and the lightning channel was placed in the center of the XY plane. 

Radiated fields were calculated along the x-axis in order to coincide with those radial electric fields 

calculated from the Norton´s approach. Figure 68 shows the non-regular mesh used for the 

simulation. 
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Figure 68 Top View of the non-regular FDTD Meshing of the Problem Space 

The total volume was 3000x3000x2500m3 which corresponds to 209x209x501 non-regular cells in 

the computational domain. Figure 69 shows the radiated horizontal electric field component.  
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Figure 69 Horizontal Electric field at 10m height above a lossy ground of resistivity 100Ωm (dashed: FDTD non-regular 
Mesh, Solid: Norton´s Approach) (a) Distances closer than 200m (b) Distances further than 200m 

By several simulations, it was evident that in the FDTD method the horizontal electric field 

component is highly affected by the ground conductivity, mainly in the negative excursion portion 

of the waveform. However, for closer distances to the lightning channel base, the Norton´s 

approach and the FDTD are a very good agreement and for further distances the error is less than 

2%. 

6.3 Non-homogeneous Ground 
 

As it was presented before, a lossy ground presence can modify the waveforms and peak values of 

the lighting radiated fields. It has been shown that radiated electric field waveforms are 

dependent on the distance and particularly, the horizontal electric field component can present 

changes of polarity for some close distance ranges. This section shows other effects that can be 

present on the radiated field when non-homogeneities are present along the propagation path. 

6.3.1 Mixed-Path ground 

 

In order to analyze the effects of a mixed path on the lightning electromagnetic field, first the 

Norton’s and Wait’s approaches are compared. The path parameters were set to ρ1=0.5Ωm with 

relative permittivity εr1=81 for the first section, and ρ2=500Ωm with relative permittivity εr2=15 for 

the second section. The boundary for the first section was located at X1=750m from the lightning 

channel base. Figure 70(a) depicts the simulation problem space. Horizontal and vertical electric 

field components were calculated at 10m in height above the ground.  

The lightning return stroke was modeled as a RL loaded thin wire with 3km in length and it was 

represented as a loaded vertical thin-wire in the NEC-4 code, once the current distribution along 

the channel was available, the calculation of the radiated fields was performed by using the Wait´s 

formula. The RL series parameters were set to be 1Ω/m and 3μH/m in lumped resistance and 

inductance respectively in order to obtain a velocity of propagation about one half of the speed of 

light. There were used 1500 segments with 2m in height to represent the lightning channel. 

Figure 70(b) and (c) presents the comparison between the lightning radiated fields along the two 

section mixed path and the homogeneous case assuming a lossy ground with constant resistivity 

value of ρ1=0.5Ωm and relative permittivity εr1=81. As can be seen from Figure 70(c) the vertical 

electric field remains practically unmodified by the mixed path presence, however the horizontal 

electric field component shown in Figure 70(a) presents the same waveform characteristics as in 

the high resistivity homogeneous ground analyzed in the previous section. 
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(a) 

 

 
(b) 

 
(c) 

 

Figure 70 two-section mixed-path (solid: Homogeneous Case, dashed: Mixed-path condition)  (a) Relevant geometry 
of the Mixed-path of two section under analysis (b) Horizontal Electric field (c) Vertical Electric field 

The recovery effect mentioned before takes place when the traveling wave goes from a low 

conducting ground to a high conductivity one. In order to validate the recovery effect on the 

lightning radiated fields a third section was placed at 500m after the boundary X1 with the same 

ground parameters as those assumed before for the first two sections of the mixed-path. Figure 

71(a) shows the simulation geometry set-up.  

As can be seen from Figure 71(c) the vertical electric field component also remains with no 

appreciable modifications of its waveform when it is compared with the homogeneous case. The 

horizontal component presents a negative excursion when it is calculated over the second path 

which is characterized by a high resistivity ground value. However, when it is calculated above the 

low resistivity value the horizontal electric field component “recovers” the magnitude as in the 

homogeneous case. The same effect was validated for the vertical radiating dipole in chapter 5. 
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(a) 

 

 
(b) 

 
(c) 

Figure 71 Mixed-Path of three sections for lightning radiated fields  (solid: Homogeneous Case, dashed: Mixed-path 
condition)  (a) Relevant geometry of the Mixed-path of three sections under analysis (b) Horizontal Electric field (c) 

Vertical Electric field 

As it was discussed in previous sections, the Wait´s approach for the propagation along a mixed- 

path sections is based on several considerations that in general cannot be assumed on several 

scenarios. The FDTD method allows simulating multi mixed-path sections without specific 

assumptions about the section lengths and geometric symmetry. In order to compare the results 

obtained with the Wait approach with those obtained with the FDTD method, a simulation set-up 

of a mixed-path was performed and its results were compared with those calculated by means of 

the Wait´s formulas. 

The Mixed Path was located at 205m from the lightning channel base and electric field 

components have been calculated along the propagation path at 10m above the ground. Figure 

72(a) depicts the simulation scenario. The lightning channel was simulated in the FDTD by means 
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of a MTLE model with a velocity of propagation set to be one half of the speed of light and 

attenuation factor λ=2km. The lightning channel length was assumed to be 1.5km in length. 

Ex1 Ex2

σ1, ε1, μ 1
σ2, ε2, μ2

Lighting Channel 
MTLE 

Representation

1.5km
λ=2000
v=c/2

205m

310m

1010m  

(a) 

 

(b) 

 

(c) 

Figure 72  Lightning Radiated Fields Mixed-Path of Two-Section calculated by the FDTD method. Case 1 (Gray line): 
10Ωm / 1000Ωm, Case 2 (Black line): 1000Ωm / 10Ωm (a) Simulation Set-Up (b) Horizontal Electric Field (c) Vertical 

Electric Field 
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As it can be seen from Figure 72(b) and Figure 72(c), the change of ground conductivity affects 

mainly the horizontal electric field component. The vertical electric field component can be 

assumed as undisturbed by the ground conductivity changes; this result is in agreement with the 

analysis presented in section 6.2 where different ground conductivity and distances from the 

channel base were considered. As in Figure 70, similar waveforms for the horizontal electric field 

can be seen in both simulations. 

In order to validate the effects of the mixed-path on the lightning radiated fields and the validity of 

the Wait´s formulas within the near field range, the same simulation set-up proposed in Figure 

72(a) was used for the calculation of the radiated fields by using the Wait´s formulas and the 

results are compared with those presented in Figure 72(b) and Figure 72(c) by means of the FDTD. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 73 Radiated Electric Field Components along a Mixed-Path of two-sections. (Dashed Line: Wait’s Formulas, 
Solid Line: FDTD Method) Case 1: 10 Ωm / 1000 Ωm (a) Hor. Electric Field (b) Ver. Electric Field, Case 2: 1000 Ωm / 

10Ωm (c) Hor. Electric Field (d) Ver. Electric Field Case 

 

As it can be seen in Figure 73(b) and Figure 73(d) the vertical electric field can be well reproduced 

by the Wait´s formula within the near field range. In both cases , the vertical electric field 

component prediction by the Wait´s formula agrees with the FDTD predictions with a relative 

error under the 1%. This validity has been also examined recently in [58] with different channel-

base current waveforms for first and subsequent return stroke representations showing 
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reasonably accuracy for predicting the vertical electric field component at closer distances. 

However, Figure 73(a) and Figure 73(c) present important differences for the horizontal electric 

field calculation, especially for the case when the traveling electromagnetic wave goes from a 

lower conductivity ground to a higher one.  

As it was presented in section 4.2.2 the Wait´s formula is valid for the far field range only and the 

vertical inhomogeneity boundary must be far enough from the radiating dipole. The differences 

observed in the horizontal electric field component can be caused by those approximations. As it 

can be seen from Figure 73(a) the results predicted by the Wait´s formula are in good agreement 

for most of the simulation time interval except for the peak calculation which is overestimated by 

the Wait’s approach.  
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7 Lightning Induced Over-voltages 
 

This section deals with the induced over-voltage calculation on the overhead lines due to a nearby 

lightning strike. At this point several effects on the lightning radiated fields due to the propagation 

path characteristics have been analyzed. One of the most common applications on the study of 

lightning radiated fields is the induced over-voltages on overhead lines, that is why the 

understanding of the propagation path effects on the lightning radiated fields are highly important 

to be characterized and accurately calculated in order to determine their effects on power quality 

due to the induced voltages adverse effects. 

The electromagnetic coupling between lightning radiated fields and the overhead line has been 

typically analyzed by the incident-scattered field formulation. One of the most popular is that 

proposed by Agrawal [2], where the transmission homogeneous line equations are modified by 

external electromagnetic source due to the incident field. By means of this coupling model, the 

vertical and horizontal component of the radiated electric field can be included into the 

transmission line equations as external sources in a straightforward way. The incident-scattered 

field formulation has been one of the most used methods to calculate lightning induced voltages, 

in this formulation the induced voltages can be calculated using the electric field components [71] 

or using the magnetic field components [72] depending directly on the assumptions made for the 

lightning radiated fields calculation [73].  

As it has been shown in previous sections, all of the approaches for the lightning radiated field 

calculations are based on far-field assumptions and cylindrical symmetry which is not adequate for 

most of the practical scenarios. Although, the far-field approaches can be used showing a good 

agreement with experimental results [23][23].  

This section analyzes different effects on the lightning induced voltages that cannot be addressed 

by the approaches presented in literature and discussed in previous sections. To achieve this, the 

FDTD method will be used combined with the non-regular meshing algorithms developed in this 

thesis in order to represent typical configurations of overhead lines. As several simulation 

scenarios are not available to be compared with existent results in literature, a basis scenario of a 

flat lossy ground will be simulated in order to compare the effects on the lightning induced 

voltages due to the inhomogeneities and non-uniformities of the ground. 
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7.1 Overhead Line Modeling and Electromagnetic Coupling 
 

As it has been discussed along this thesis, there are many factors that can contribute to the 

radiated electromagnetic field components behavior. However, there is a last step in calculating 

the induced voltage on overhead lines; this step consists on exposing an overhead conductor to its 

influence in order to calculate not only the induced voltages along it, but also the induced currents 

that will be propagating along the line and reaching its ends. Lightning induced voltages has been 

characterized by many authors in order to determine the most considerable factors that influence 

the power quality indicators of overhead distribution networks [75].  

 

7.1.1 Perfectly Conducting Ground and Homogeneous Ground 

 

There has been shown that the presence of a homogeneous conductive ground, when a nearby 

lighting return-stroke occurs, is able to modify the induced voltages waveforms and its peaks value 

on an overhead line. A FDTD simulation set-up was performed using the representation of an 

overhead line by means of a horizontal thin wire with 1km in length and 10m in height. The radius 

of the overhead line was assumed to be 5cm. Figure 74 shows a comparison of a lightning induced 

voltage calculation by means of the FDTD method implemented in this work and those results 

presented in [76] also using the FDTD method. 
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(b) 

Figure 74 Calculated Induced Voltages on a 1km at 50m from the lightning strike (solid: FDTD, circles: presented in 
[76]) 

As it can be seen from Figure 74, the induced voltages are highly modified by the presence of a 

finite conducting ground. Figure 74(a) presents the induced voltage assuming a perfectly 

conducting ground and when these results are compared with those obtained for a lossy ground of 

1000 Ωm shown in Figure 74(b), several differences in the waveform can be evidenced. 

One of the most interesting results between Figure 74(a) and Figure 74(b) is that the presence of 

the lossy ground can include a change the polarity of the induced voltage. This effect is caused by 

the incident lightning radiated field waveform, especially due to the same change of polarity 

present in the horizontal electric field. As it was presented in section 6.2, the lossy ground affects 

mainly the horizontal electric field component and its resulting waveforms exhibit a negative 

excursion for the first time instants. These polarity changes interact with the overhead line 

yielding to induced voltages having a similar behavior. 

7.1.2 In-homogeneous Ground 

 

This section pretends to evaluate some of the effects of the inhomogeneities on the lightning 

induced voltages. 

7.1.2.1 Mixed-Path condition 

 

The Mixed path condition was demonstrated to contribute representatively to the lighting 

radiated field waveforms in section 6.3.1. Hence, the induced voltages waveforms related to those 

incident fields will be also affected. In order to analyze the effects of the non-homogenous ground 

on induced voltage calculations, an overhead transmission line illuminated by the electromagnetic 

field produced by a lightning channel striking at 50 m from one of its ends is considered. The 

calculation was performed using a regular mesh implementation of the FDTD method as 
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mentioned before. A schematic draw of the simulation set-up is depicted in Figure 75.  This case of 

study was also presented in [77]. 
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Figure 75 Simulation setup for the induced voltage calculation on an overhead transmission line above vertically 
stratified ground due to a lightning channel at 50m of one of the ends (near end NE) and both ends connected to a 

resistor of 150Ω. 

The lightning return-stroke was modeled by means of a RL-series loaded thin-wire conductor as 

presented in section 5.3. The radius of the channel was 0.3 m with 1.5 km in length; the 

distributed inductance value used was of 3 µH/m and the value for the series resistances 1 Ω/m in 

order to obtain a velocity of propagation about one half of the speed of light. The total working 

volume of 1000  900  2000 m3 was divided with cell sizes of 5  5  2 m3 and CPML boundaries 

were placed at the top and all sides of the domain in order to simulate an unbounded medium. 

The distribution overhead line under study has been assumed to be at 12 m above ground with a 

radius of 15 mm and 500 m in length terminated at each extreme with a 150Ω resistance. The 

Umashankar’s thin-wire model was used for the overhead conductor as discussed in detail in 

chapter 3. [40]  

The ground is first assumed to be homogeneous (case I and case II). Then, a mixed-path is analyzed 

(case III and case IV) and induced voltages at the line ends are compared with those obtained for 

the homogeneous condition. The ground relative permittivity and permeability have been 

assumed to be for all simulations as εr=10 and µr=1 respectively and the lightning strike location 

was defined to be always on one side of the mixed-path. A resume of the simulated cases is 

referred in Table 2. 

Case Ground resistivity configuration 

Ground along Propagation Path Ground 1 ρ1*Ωm+  Ground 2 ρ2*Ωm+ 

I Homogeneous 10 10 

II Homogeneous 1000 1000 

III In-Homogeneous (mixed path) 10 1000 

IV In-Homogeneous (mixed path) 1000 10 

Table 2 Simulated Cases Description 
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Figure 76 shows the horizontal electric field components for the second section of the mixed-

paths considered in the simulation. As it is shown in Figure 76(b), the presence of the mixed path 

section does not influence in a representative way the vertical electric field component. However, 

the horizontal electric field component is markedly affected by the mixed-path structure.  

 

(a) 

 

Figure 76 Electric field components above the second mixed path section (Black: 10 Ωm / 1000 Ωm case, Gray 1000 
Ωm / 10 Ωm case) (a) Horizontal electric field over a mixed-path ground (b) Vertical electric field over a mixed-path 

ground 

As it can be seen from Figure 76(a) for case III, when the wave propagates initially along a ground 

of 10 Ωm it suffers almost no distortion when compared to a propagation along a perfectly 

conducting ground. Once it starts to propagate along the 1000 Ωm ground, it is strongly distorted 

changing its polarity for the first microseconds (black line).  On the opposite case (case IV), the 

wave starts to propagate above a highly lossy ground but when it enters to the 10 Ωm section, it 

recovers the features of a propagation above an almost ideal ground. This leads to the differences 

between the induced voltages calculated for the homogeneous and the in-homogeneous cases as 

is presented in Figure 77. 
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Figure 77(a) presents the induced voltages at the near end. It is worth noting that the mixed-path 

under the overhead line changes the surge impedance along the line, resulting in a wave 

reflection; the wave front maintains the same behavior as its homogeneous counterpart until the 

wave arrives at the mixed-path division between the two grounds.  

 

(a) 

 

(b) 

Figure 77  (a) Induced voltage at near end (b) Induced voltage at far end. 

As it has been discussed along this thesis and taking as reference the Agrawal´s formulation, the 

lightning induced voltage on overhead lines is highly dependent of the incident radiated electric 

field generated by nearby lightning strikes, and it has been demonstrated that there is an 

important effect on those radiated electric field components due to the ground conductivity 

changes, especially for the horizontal component. Due to this, some differences on the induced 

voltages are expected. However, once the overhead line is reached by the incident radiated field, 

the induced voltages are also dependent on the line parameters which can play an important role 

of the voltage waveforms at the line terminations.  

 Figure 78 shows the variation of the reflection factor along the overhead line for each considered 

mixed-path case assuming a TEM propagation mode. Despite the magnitudes of the reflection 

factor are the same for both cases, it can be seen an important difference on the phase of the 

reflection factor, being almost zero degrees for the 10 Ωm / 1000 Ωm case and about 180°for the 
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1000 Ωm / 10 Ωm case; this means that the reflection for the latter case is negative at the division 

between the two grounds.  This situation reduces the voltage reflected at the near end of the line 

once the reflected traveling wave reaches it (dotted line on Figure 77(a)). For the first case (10 Ωm 

/ 1000 Ωm) the reflection factor results positive, increasing the voltage at the near end (black 

dashed waveforms on Figure 77(a)). 

 
a) 

 
 

(b) 
Figure 78  (a) Reflection factor magnitude (b) Reflection factor phase. 

 
As it is shown in Figure 77 (b) the far end induced voltages have been highly affected by the mixed 

path condition when they are compared with the homogeneous case. Although their polarity 

coincide with the polarities obtained for the homogeneous case, the magnitude of the induced 

voltages is reduced to almost two to three times compared to those voltages obtained from the 

homogeneous case. This effect can be understood by the horizontal electric field behavior 

presented in Figure 76(a)). For case III, the lightning electromagnetic field initially travels above a 

low resistivity ground; as this value changes on the second half of the line to a high resistivity 

value, the contributions of the horizontal electric field coupled to the line tend to reduce the 

induced voltage due to the negative polarity presented on them (Black waveforms on Figure 

76(a)). For Case IV the same occurs, the horizontal electric field coupled to the line also tends to 

reduce the induced voltage; in this case the induced voltage results in a lower magnitude due to 
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the positive polarity contributions of the horizontal electric field coupled on the second section of 

the line (Gray waveforms on Figure 76(a)). 

Recently, the mixed-path effects on lightning induced voltages has been addressed by using full-

wave approaches in order to validate several approximations and the examination of their 

consequences on the induced voltage waveforms characteristics [19][78]. An additional case of the 

mixed-path condition is presented in Figure 79(a), this scenario was also presented in [78] as a 

representation of a river-crossing overhead line. The results were obtained using the finite 

element method (FEM) for the solution of the magnetic vector potential representation in the 

time-domain.  

In this case, the scenario was implemented into the FDTD method by using the non-regular mesh 

algorithm developed in this thesis. The lightning channel was simulated by the MLTE model using a 

typical double-exponential function for the subsequent return-stroke current representation; the 

parameters of the lightning return-stroke current were the same as those used in [78]. The three-

section mixed-path effects were calculated for three cases. The first case represents the 

homogeneous case with a ground resistivity of 1000 Ωm and a relative permittivity of 10. The 

second case was assumed as a river-crossing overhead line where the ground conductivities were 

assumed to be 1000 Ωm/0.25 Ωm/1000 Ωm with relative ground permittivities of 10/30/10 

respectively. A last simulation case represents a dry-sand-crossing overhead line where the ground 

conductivities were assumed to be 1000 Ωm/10000 Ωm/1000 Ωm. For the case under study the 

relative permittivities remained unaltered with the same values as in the second case. Table 3 

presents a summary of the cases taken into account. 

Case 
Ground resistivity configuration 

Propagation Path 
Ground 1 

ρ1*Ωm+ 

Ground 2 

ρ2*Ωm+ 

Ground 3 

ρ3*Ωm+ 

I Homogeneous 1000 1000 1000 

II River-crossing representation 1000 0.25 1000 

III Dry Sand-crossing representation 1000 10000 1000 

Table 3 Three-section mixed path cases resume 

As it can be seen from Figure 79(b) both methods are in good agreement for the induced voltage 

predictions at both line terminations. Some of the differences between the predicted waveforms 

could be explained by the overhead line representation used in both simulations.  
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(a) 

 
(b) 

Figure 79  (a) Relevant geometry of the simulation set-up (b) Comparison of the induced voltages by using the FEM 
method and the FDTD method (circles: FEM, solid: FDTD) 

 
 
The results presented in Figure 79(b) are compared with the homogeneous case and the 

comparison is presented in Figure 80 for the near and far end. The results at the near end are in 

agreement with the analysis presented before for the two-section mixed path; As in the two-

section mixed path the reflected wave from the first impedance change in the case II (1000 

Ωm/0.25 Ωm/1000 Ωm) leads to a decrease of the near end induced voltage (dashed line in Figure 

80(a)). However, the increasing of the ground conductivity due to the second mixed-path affects 

representatively the far end induced voltage. This behavior can be related with the behavior of the 

horizontal electric field component as in the simulation set-up presented before. As it was 

presented in section 6.3.1, there is a “recovery effect” (there is no a bipolar waveform above the 

high conductivity section) of the horizontal electric field component when traveling from a high 

resistivity soil to a low resistivity one, increasing the contribution of this component on the 

electromagnetic coupling with the overhead line and leading to a higher induced voltage at the far 
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end. In the other hand, the third case represents a positive reflection coefficient at the first mixed 

path section leading to a higher voltage at the near end, being again in agreement with the results 

presented for the two-section mixed-path analysis (dotted line in Figure 80(a)). As the middle 

section presents a higher resistivity ground value, the horizontal electric field component 

decreases its contribution on the induced voltages at the far end due to the change of polarity 

evidenced in section 6.3.1. 

 

 
(a) 

 
(b) 

Figure 80 Induced Voltages for a Three-section mixed-path (a) Near End (b) Far End 

 
As it has been presented in this section, the mixed propagation path for the lightning radiated 

fields, could lead to a variation of the induced voltage waveforms and magnitudes when compared 

with the homogeneous lossy ground case. The effects that have been evidenced are multi-variable 

dependent and the total result is obtained by several contributions, however two main features 

can be derived from the induced voltage characteristics in presence of a mixed-path: First, the 

calculation of the surge impedance of the overhead line can be useful for a qualitative description 

of the reflected waves at the division of the mixed-paths and their contribution to the induced 

voltages at the line terminations and second, the effects of the mixed-path on the components of 
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the lightning radiated electric fields lead to strong variations on the induced voltages due to the 

electromagnetic coupling with the overhead line. 

7.1.3 Non-Uniform Ground Effect 

 

This section presents some results of lightning induced voltages due to a typical subsequent return 

stroke current waveform where different ground irregularities are present. The non-uniform 

ground effect on the induced voltages was taken into account by means of the full-wave solution 

based on the FDTD method and using the non-regular meshing method developed in this thesis 

and discussed in detail in section 3.8.  

The first simulation case corresponds to a lightning striking at the top of a step mountain which 

induces an overvoltage on a single overhead line located at the bottom of it; Figure 81(a) depicts 

the geometry for the case under study. The lightning return stroke current was simulated by 

means of a MTLE model with velocity of propagation of 0.3 times the speed of light and a constant 

decay λ=1700. The overhead line is 1km in length and 10m in height, and was represented as a 

thin-wire with 1cm in radius by using the INY model presented in section 3.7.4. The line has been 

terminated with a 330Ω resistor at each end. The ground resistivity was assumed to be 1000Ωm 

and a relative permittivity of 10ε0. 

Similar situations have been analyzed in literature when the lightning strikes to nearby conductive 

tall objects and tall structures, and the effects on the induced voltages are related with the 

multiple reflections of the current occurring between the top of the structure and the ground [25]. 

In this scenario no current reflections are considered along the channel, only the effects on the 

induced voltages due to the radiated fields caused by the ground geometry are taken into account.  

 

 

NE

1
0

m

Overhead line

ρ1, μ1, ε1

330Ω

1000 m

Ground 1

FE

50 m

50 m

 
(a) 

Lightning 

Channel

1
0

m

Overhead line

ρ1, μ1, ε1

Ground
50m 1000m

5
0

m

330Ω 330Ω 

 
(b) 

  



 

109 
 

 
(c)  

 
(d) 

Figure 81 Geometry for the calculation of the induced voltages for a lightning strike on the top of a step mountain 
(Solid: Flat Ground, Dashed: Irregular Ground) (a) Relevant Geometry for the simulation set-up (b) Side view along the 

center of the mountain along the X-axis direction (c) Induced voltage at the near-end (d) induced voltage at the far-
end 

Figure 81(c) and Figure 81(d) show the induced voltages calculated at the near and far end. As it 

can be seen from Figure 81(c) there are two important effects on the peak magnitude on the 

induced voltage at the near-end when compared with the flat ground case: first a reduction on the 

peak-magnitude due to the relative distance between the channel base and the near-end location, 

and second, due to the presence of the step-terrain profile a “shadow effect” for the radiated field 

is present at points nearby this end as it was discussed in section 4.3.2. The induced voltage at the 

far-end presents an increase of the magnitude of about 30% above the flat ground case as it is 

shown in Figure 81(d).  

A similar case is presented in Figure 82(a-b). In this case the overhead line is on the top of a step 

mountain and the lighting strikes to the bottom of the terrain profile. The same ground 

parameters and lightning channel model were used as in the previous case. The induced voltages 

at the near and far end are presented Figure 82(c) and Figure 82(d) respectively. 
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(c)  

(d) 
Figure 82 Geometry for the calculation of the induced voltages for a lightning strike on the bottom of a step mountain 
(Solid: Flat Ground, Dashed: Irregular Ground) (a) Relevant Geometry for the simulation set-up (b) Side view along the 
center of the mountain along the X-axis direction (c) Induced voltage at the near-end (d) induced voltage at the far-
end 

As it can be seen from the induced voltages at both terminations, there is an expected delay on 

the time of arrival of the incident field due to the first propagation path from the bottom of the 

step mountain where there is no interaction with the overhead line.  

As it can be seen from Figure 82(d), there is a decrease of the magnitude of the induced peak-

voltage at the far-end when compared with the flat ground case. For this scenario in contrast to 

the situation presented in the previous case of study, the far-end of the line is being “shadowed” 

by the terrain step-profile leading to a lower voltage magnitude. On the other hand, at the near-

end a small decrease of the peak-magnitude is expected due to the current attenuation along the 

lightning channel. However, as it is a short length compared with the length of the channel and the 

distance to the overhead line remains unaltered, the attenuation effect and the radiation pattern 

of the lightning return-stroke is not considerably affected and the results are almost the same in 

magnitude and waveform as in the flat ground case, this can be also evidenced in Figure 82(c).  

In order to include a more realistic terrain profile, a case of lightning induced voltages due to a 

lightning striking to the top of a mountain is presented in Figure 83(a). In this case the mountain is 

represented by a Gaussian. The simulated overhead line was open at both ends and no riser wires 

were simulated. In this case the ground irregularity was included into the FDTD method by a set of 

several cubes with a resolution of 1m in height. Side views along X and Y axis of the implemented 

ground structure into the FDTD are presented in Figure 83(b) and Figure 83(c) respectively. The 

lightning channel was represented by the MLTE model with 1.5km in length, the velocity of 

propagation was imposed to be 0.43 times the speed of light and a constant decay λ=2000. 

Despite both line terminations are located symmetrically from the channel base, they will be 

named near and far end in order to keep the used notation and descriptions. 
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 (a) 

 
(b) 

 
(c) 

Figure 83 Geometry for the calculation of the induced voltages for a lightning strike on the top of a Gaussian 
Mountain (a) Relevant Geometry for the simulation set-up (b) Side view along the center of the mountain along the X-

axis direction (c) Side view along the center of the mountain along the Y-axis direction 

 

Figure 84 presents the induced voltages at the near and far end of the line. Similar results were 

presented in [28] by using a full-wave solution by means finite element method (FEM) for a 

striking point to the top of a cone-shaped mountain with a similar height. The proposed scenario 



 

112 
 

has an evident symmetry regarding distances to the lightning channel base and the terrain 

geometry is not causing important “shadowing effects” on any of the line terminations. Figure 84 

presents the induced voltages for three different situations: the flat ground case in solid gray line, 

the cone-shaped mountain irregularity in gray circles and the Gaussians ridge mountain in dashed 

line.  

 

Figure 84 Induced voltages at near and far end due to a lightning strike on the top of a mountain (Solid Line: Flat 
Ground case with FEM, Dashed: Gaussian Mountain with FDTD, Circles: cone-shaped mountain with FEM presented in 

[28]) 

 

As it can be seen from the figure, there are not important differences in magnitude or waveforms 

between the three cases meaning that for the case under consideration, the effects of the terrain 

irregularities caused almost no distortion on the lightning propagated fields remaining similar to 

the flat ground case. It is worth noting that the slightly differences between the induced voltage 

waveforms are caused by the differences of the simulation approaches used.  

The next simulation scenario is a typical case in rural distribution lines in mountainous regions. 

Figure 85 presents an overhead line on the top of a mountain and a nearby lightning striking to the 

flat ground area. This case can be seen as a variation of the last case. However, in this simulation 

the mountain has been extended along the overhead line path. In this simulation the overhead 

line was matched at both ends with a 450Ω resistor. The overhead line was simulated by means of 

the INY presented in section 3.7.4 with 5cm in radius and the lightning channel was simulated by 

means of the MLTE model with λ=1700 and a controlled velocity of propagation about 0.43 times 

the speed of light.  
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Figure 85 Overhead Line on the top of a mountain 

In this scenario the location of the overhead line respect to the lightning channel lead to an 

increase of the induced voltage in almost 50% in its peak magnitude as is presented in Figure 86. 

 

Figure 86 Induced Voltage for an Overhead Line on the top of a mountain (Solid Line: Flat Ground Case, Dashed: non-
uniform ground) 

It is worth noting that the induced voltage for the irregular terrain case presented in Figure 86 

coincides for the first part of the waveform (about 3.4µs) with the flat ground case. In order to 

validate these effects of the previous scenario on the lightning radiated fields, a variation of the 

case presented before is depicted in Figure 87(a). In this scenario the overhead line is at the same 

ground level as the channel base and the mountain is located 200m behind the overhead line. The 

same ground parameters and lightning channel model as in the previous case was used. 

0 2 4 6 8 10
-10

0

10

20

In
d

u
c
e

d
 V

o
lt
a

g
e

 [
k
V

]

time [s]



 

114 
 

1
0

m

Overhead 
line

ρ1, μ1, ε1
Ground 1

NE

FE

Gaussian 
Mountain

Lightning 
Channel

450Ω

500 m

500 m

200 m

50 m
450Ω

50 m  

(a) 

 

(b) 

Figure 87 Induced Voltage for an Overhead Line with a mountain behind it (a) Relevant Geometry  (b) Induced Voltage 
for an Overhead Line with a mountain behind (Solid Line: Flat Ground Case, Dashed: non-uniform ground) 

Figure 87(b) presents the results of the induced voltage for the case under consideration. It can be 

seen that the difference between the irregular terrain case and the flat ground case begins once 

the reflected wave arrives from the mountain (at about 2.4µs). The effect of the reflect wave from 

the mountain behind the line represents less than the 3% in peak magnitude when compared with 

the flat ground but there can be observed differences of about 10% in some parts of the waveform 

due to the increase of the incident field at the overhead line location. 

The next simulation cases are focused on the scenarios where the irregular terrain is under the 

overhead line. For these simulation scenarios the line parameters are highly affected by the 

irregular terrain and the interaction between the overhead line and the incident lightning 

electromagnetic field cannot be analyzed by using the uniform transmission line theory.  
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A typical case of an overhead line above non-uniform ground is presented in Figure 88, for this 

case the ends of the overhead line are located between two mountains. The same simulation 

parameters for the lightning channel and overhead line are used. The ground resistivity value 

remained unaltered in 1000Ωm. Near and far end names will be also used for referring the line 

terminations in the current case although they are at the same distance from the lightning channel 

base. 
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Figure 88 Overhead Line on between the top of two mountains (a) Relevant Geometry of the scenario (b) Side View 

The comparison of the induced voltages between the non-uniform case and the flat ground case 

are presented in Figure 89. As it can be seen from the induced voltage for the irregular terrain 

scenario, the effect of the lightning electromagnetic fields and its interaction with the overhead 

line lead to almost three times the peak voltage magnitude for the homogeneous case. 

 

Figure 89 Induced Voltage for an Overhead Line between the tops of two mountains (Solid Line: Flat Ground Case, 
Dashed: non-uniform ground) 

As it has been discussed along this thesis, the lightning induced voltage problem involves several 

parameters and variables that must be taken into account for the calculations, not only the effects 
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of the propagation path on the lightning radiated fields, but also the overhead line characteristics. 

The case under study presents both effects at the same simulation scenario. In order to address 

the line-parameters modifications due to the ground non-uniformity beneath the overhead line, a 

comparison of the calculated characteristic impedance for a single-wire overhead line for different 

heights is presented in Figure 90. These results show that under the TEM approach, the surge 

impedance increases with the relative height of the conductor to the ground level for a wide 

frequency band, therefore the propagating wave along the overhead line will face several 

reflections. 

 

Figure 90  Characteristic impedance of a single-wire overhead line above 1000Ωm lossy ground depending on the 
conductor height by using the TEM approach 

Based on the results presented in Figure 90 the increase of the induced voltage in Figure 89 is the 

result of a contribution of both effects: the propagation path effects and their electromagnetic 

coupling with the overhead line, and the line-parameter modifications which can lead to an 

increase of the induced voltage at both ends. 

The next case of study quantifies the lightning induced over-voltages for a more realistic case of 

irregular terrains beneath the overhead line. For this case a cliff is present under the line as it is 

shown in Figure 91(a-b). In some practical situations there is not possibility for planting poles on 

the cliff bottom and two robust towers must be installed at each extreme of the cliff leading to a 

non-uniform line configuration. The lightning channel was simulated by means of a MTLE model 

with a velocity of propagation about 0.5 times the speed of light and a constant decay λ=1700. The 

simulation was performed assuming a ground resistivity of ρ1=1000Ωm and permittivity εr1=10. 

The overhead line is terminated with 330Ω resistors at both ends and the wire risers are also 

included at the line terminations. Despite both line terminations are located symmetrically from 

the channel base, they will be named near and far end for maintaining the used notation and 

descriptions. 
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Figure 91  (a) Description of the Simulation Set-up for the irregular ground effects on induced voltages (b) Side View of 
the simulation set-up (c) Induced Voltage Comparison when a cliff is present under the ground 

Figure 91(c) presents the comparison between the induced voltages on the near and the far end 

when a cliff is present under the overhead line compared with the flat ground induced voltage 

situation. As it can be seen, the presence of the cliff under the overhead line increases 

considerably the peak-value and the waveform at each ends of the line, reaching to almost 5 times 

the magnitude of the flat ground case.  

It is worth noting that the induced voltages are not symmetric as in the flat ground case due to the 

location of the cliff section. This leads to a higher induced voltage at the near-end when compared 

with the induced voltage at the far-end. This result evidences the markedly effect that has the 

propagation path on the lighting radiated fields and the line-parameters modification for the 

induced voltage calculations. 

An additional simulation based on the last case of study was performed in order to represent a 

river-crossing overhead line between two mountains. Figure 92(a) presents a combination 

between a cliff and a conductive change at its bottom which can be also seen a mixed-path 

condition for the propagating field. The simulation was performed assuming a ground resistivity of 
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ρ1=1000Ωm and permittivity εr1=10 for the ground. The cliff section at the bottom was simulated 

with a ground resistivity of ρ2=100Ωm and permittivity εr2=10. The same names as in the previous 

case will be used to refer the ends of the overhead line. 
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Figure 92 (a) Irregular and Mixed Path Ground structure for Induced voltages calculation (b) Induced Voltage at the 
near end (c) Induced Voltages at the far end 

 

Figure 92(b-c) presents the comparison between the cliff condition without change of resistivity at 

its bottom and when the ground resistivity at its bottom is decreased. As it can be seen from the 

induced voltages waveforms presented in Figure 92(b-c), the effect of the change of the resistivity 

value at the bottom of the cliff is reducing the induced peak voltage at the near end and increasing 

it at the far end, this effect can be also associated to the modifications of the radiated electric 

fields due to the ground conductivity influence and on the line parameters.  
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8 Conclusions Remarks and Future work 
 

This thesis dealt with all of the three aspects of the lightning induced voltage problem: return 

stroke models, calculation of lightning radiated fields and the evaluation of the induced voltages 

on single-phase overhead lines.  

Several methods used nowadays for evaluating lighting radiated fields were analyzed in this thesis 

showing their theoretical basis and specifying their limitations, especially for calculations within 

the near field region. 

A full wave solution was implemented using the FDTD Method including a non-regular mesh in 

order to represent different geometric features and allowing adequate near-field interactions 

calculation. The implemented FDTD scheme based on a non-regular meshing algorithm, allowed 

the representation of the ground irregularities and the overhead lines with a finer mesh and a 

coarser domain was used the rest of the problem space. An experimental case of a typical cross-

talk problem was analyzed using the classical implementation of the FDTD and the non-regular 

mesh approach, showing its advantages over the classical formulation in representing larger 

problem space dimensions and lesser number of Yee’s cells.  

By means of the proposed methodology for representing the problem space by means a non-

regular mesh, the calculation of lightning induced voltages became available including complex 

geometry into the simulation scenario in order to achieve more realistic representations of actual 

situations. 

The effects on the lightning radiated fields due to the presence of different propagation paths 

were analyzed along this thesis showing their representative influence especially for the horizontal 

electric field. Several approaches based on far-field formulation and cylindrical symmetry 

regarding geometry were analyzed and compared with the full-wave solution by using the FDTD 

method, showing that those approaches could lead for some of the cases to an over or under 

estimation in the calculations of the radiated field components. 

The mixed propagation path for the lightning radiated fields, lead to a variation of the induced 

voltage waveforms and magnitudes when compared with the homogeneous lossy ground case. 

The effects that have been evidenced are multi-variable dependent and the total result is obtained 

by several contributions. However, two main features can be derived from the induced voltage 

characteristics in presence of a mixed-path: First, the calculation of the characteristic impedance 

of the overhead line can be useful for a qualitative description of the reflected waves at the 

division of the mixed-paths and their contribution to the induced voltages at the line terminations 

and second, the effects of the mixed-path on the components of the lightning radiated electric 

fields lead to strong variations on the induced voltages due to the electromagnetic coupling with 

the overhead line. 
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Regarding irregular grounds, relatively important effects on the induced voltages were obtained 

when an effect of “shadowing” is present for some segments of the overhead line and the 

irregularities are larger enough to diffract part of the radiated fields. However, the most 

representative variations were obtained when the irregular terrain is below the overhead line 

leading to over-voltages near 5 times higher than those occurring over flat ground scenarios. 

Based on the obtained results and the analysis made along this thesis, it is proposed as a future 

work to perform experimental testing for induced voltages above inhomogeneous and irregular 

grounds in reduced scale experimentations and full-scale controlled induced voltages by triggered 

lightning experiments, in order to validate their theoretical effects. 

From the theoretical analysis and by using the implemented FDTD scheme, it will be interesting to 

address the modeling of the return-stroke including inclination and tortuosity in order to quantify 

their effects on the induced voltages taking into account irregular and inhomogeneous 

propagation paths in order to simulate a more realistic scenario. 
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