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Abstract

Medical diagnosis, treatment, follow-up and research activities are nowadays strongly

supported on different types of diagnostic images, whose main goal is to provide an

useful exchange of medical knowledge. This multi-modal information needs to be pro-

cessed in order to extract information exploitable within the context of a particular

medical task. In despite of the relevance of these complementary sources of medical

knowledge, medical images are rarely further processed in actual clinical practice, so the

specialists take decisions only based in the raw data. A new trend in the development

of medical image processing and analysis tools follows the idea of biologically-inspired

methods, which resemble the performance of the human vision system. Visual atten-

tion models and sparse representations are examples of this tendency. Based on this,

the aim of this thesis was the development of a set of computational methods for au-

tomatic morphometrical analysis, combining the relevant region extraction power of

visual attention models with the incorporation of a priori information capabilities of

sparse representations. The combination of these biologically inspired tools with com-

mon machine learning techniques allowed the identification of visual patterns relevant

for pathology discrimination, improving the accuracy and interpretability of morpho-

metric measures and comparisons. After extensive validations with different image

data sets, the computational methods proposed in this thesis seems to be promising

tools for the definition of anatomical biomarkers, based on visual pattern analysis, and

suitable for patient’s diagnosis, prognosis and follow-up.

Keywords: Computational neuroanantomy, Sparse representations, Visual attention

models, Machine learning techniques, Alzheimer’s disease, Semantic-based representa-

tions, Visual pattern analysis.



Resumen

Las actividades de diagnóstico, tratamiento, seguimiento e investigación en medicina

están actualmente soportadas en diferentes clases de imágenes diagnósticas, cuyo ob-

jetivo principal es el de proveer un intercambio efectivo de conocimiento médico. Esta

información multimodal necesita ser procesada con el objetivo de extraer información

aprovechable en el contexto de una tarea médica particular. A pesar de la relevan-

cia de estas fuentes complementarias de información cĺınica, las imágenes médicas son

raramente procesadas en la práctica cĺınica actual, de forma que los especialistas sólo

toman decisiones basados en los datos crudos. Una nueva tendencia en el desarrollo

de herramientas de análisis y procesamiento de imágenes médicas persigue la idea de

métodos biológicamente inspirados, que se asemejan al sistema de visión humana. Son

ejemplos de esta tendencia los modelos de atención visual y las representaciones escasas

(sparse representations). Con base en esto, el objetivo de esta tesis fue el desarrollo de

un conjunto de métodos computacionales para soportar automáticamente los análisis

morfométricos, combinando el poder de extracción de regiones relevantes de los mode-

los de atención visual junto con la capacidad de incorporación de información a priori

de las representaciones escasas. La combinación de estos métodos biológicamente in-

spirados con técnicas de aprendizaje de máquina facilitó la identificación de patrones

visuales relevantes para discriminar patoloǵıas cerebrales, mejorando la precisión e in-

terpretabilidad de las medidas y comparaciones morfométricas. Después de extensivas

validaciones con diferentes conjuntos de imágenes, los métodos computacionales pro-

puestos en esta tesis se perfilan como herramientas prometedoras para la definición de

biomarcadores anatómicos, basados en el análisis visual de patrones, y convenientes

para el diagnóstico, pronóstico y seguimiento del paciente.

Palabras clave: Neuroanatomı́a computacional, Representaciones escasas, Modelos de

atención visual, Técnicas de aprendizaje de máquina, Enfermedad de Alzheimer, Rep-

resentaciones basadas en semántica, Análisis de patrones visuales.
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1 Introduction

Current medical and clinical practices have been improved by new technical and tech-

nological developments in medical imaging devices. The increasing production and

compilation of medical images in digital form, coming from diverse modalities such

as Magnetic Resonance Imaging (MRI), Computed Tomography (CT) or Ultrasound,

provide a useful exchange of medical knowledge. In fact, thanks to these advances,

physicians and specialists have now more useful structural and functional information

to facilitate and increase accuracy of medical diagnosis, treatment and follow-up, as

well as to support medical and biological research and training.

Medical image processing refers to those tools and methods that can assist a medical

expert (radiologist, pathologist) to identify, interpret and analyze all the useful infor-

mation available in a medical image. Most of these methods are based on known facts

about how image interpreters work on different kinds of medical images. Image inter-

pretation can be seen then as a process to generate a content-based representation of

image data [15]. Thus, image processing, interpretation and/or analysis deal, in gen-

eral, with the process of extracting information from images. Information extraction

tasks range from simple processes such as finding regions with different color or texture

on an image, to complex procedures that could determine the absence or presence of a

specific pathology in a diagnostic image. As the complexity level of the medical task

increases, a high-level interpretation of the information must be attained, by relating

the visual information with semantic concepts associated to a particular knowledge

domain. The process of inferring and associating the visual information present in an

image with semantic concepts is currently known as image understanding [108]. Some

medical applications that can be benefited with the integration of automatic (or semi-

automatic) image understanding capabilities, one of the most important among them

is the automatic quantification or morphometry on medical images.

1.1 Research Problem

As already mentioned, medical diagnosis, treatment, follow-up and research activities

are nowadays strongly supported on the different types of images produced in clinics

and hospitals. This multi-modal information, which combines visual structural and
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functional information with textual descriptions and other types of medical informa-

tion, needs to be processed in order to extract information useful within the context of

a particular medical task. In despite of the relevance of these complementary sources

of medical knowledge, medical images are rarely further processed in actual clinical

practice, so the specialists take decisions only based in the raw data.

Recognition and interpretation with semantic meaning of medical images offer a wide

range of possibilities such as serve as a second opinion in diagnosis, or to complement

the training of new specialists. These processes are nowadays considered as challenging

tasks, because they should be performed by hand, implying large amounts of working

time of human experts. A lot of image processing tools, such as different segmenta-

tion, recognition and classification methods, have been introduced into the medical

domain in order to semi- or fully-automatize this medical information-extraction pro-

cess. However, most of them are designed to work under specific assumptions, in

controlled environments and for a particular pathology and/or organ. For this reasons,

only a few number of image processing applications have reached the status of stable

tools for computational medical analysis.

Inference and interpretation of medical information for a single patient are valuable

tools for diagnosis and treatment. In addition, the comparison of this information with

the one from other patients that are in similar conditions or present the same pathology,

helps to understand the behavior of pathologies in particular environments and human

groups, and also provides important information for development of public health poli-

cies. In most of the cases, the comparison of groups of patients is not an immediate

process, because the anatomical variability between subjects induces errors that bias

the statistical conclusions that could be extracted from the population analysis. Ef-

fective modeling and/or quantification of this inter- and intra-subject anatomical vari-

ability helps to understand which image structures are common or uncommon within

a given population, which image or anatomic features could characterize the subject

variability and in which ways a subject could be defined as similar to or different from

the population.

1.1.1 Research Question

The referred situations unveil the lack of computational tools that could exploit all the

specific knowledge contained in medical images and infer as much as possible accurate

and pertinent information that could be helpful in actual clinical practice. This leads

us to the main research question in this work: how can we infer or interpret medical

useful knowledge from diagnostic images?
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1.2 Computational Brain Morphometry using MRI

The target clinical application selected for the work developed in this thesis corresponds

to the area of brain morphometry (also known as computational neuroanatomy or

neuromorphometry [92]), which involves the analysis of features derived from the form

(size and shape) of subject brains. Given the particular and complex anatomy of the

human brain, and the importance of this organ as the central control system of the

whole human body, this problem results of high interest in many different domains.

The techniques proposed in this thesis aim to provide both accurate and clinically

meaningful morphometric tools for brain analysis, based only on structural information

coming from brain Magnetic Resonance (MR) images. The effectiveness of MRI as a

valuable diagnostic technique in neurological diseases has been widely proved, usually

on the T1-weighted imaging data [74]. Such popularity comes from the obtained good

contrast between soft tissues, giving the possibility of identifying the distribution of

changes in neuroanatomical structures, such as estimates of damaged tissue or atrophy

rates. The study of complex neurological diseases, namely the Alzheimer’s disease

(AD), the Parkinson disease, the schizophrenia or the multiple sclerosis, have benefited

by using MR images in the actual clinical analysis and diagnosis, allowing to improve

the disease physiopathological knowledge.

As pointed out by Mietchen and Gaser [92], a brain morphometric study is composed

of two important elements: a common spatial representation of the brain and the corre-

sponding morphometrical measures and statistical analyses. A common reference frame

is needed given the intrinsic anatomical variability and the image acquisition condi-

tions, so that all images are warped or registered together to a specific template or an

atlas. The whole set of working images can be extracted from different brains (a cross-

sectional study) or from one specific brain along the time (a longitudinal study). The

particular morphometrical measures come from different sources of information, such

as locations (landmarks), voxel intensities, template deformations or surface represen-

tations; each of them springing up a specific morphometric technique: landmark-based

morphometry [34], voxel-based morphometry [5], deformation-based or tensor-based

morphometry [6] and surface-based morphometry [102]. The most commonly used

approaches are detailed hereafter, and their relationships are illustrated in Figure 1-1.

Voxel-Based Morphometry (VBM), proposed by Ashburner and Friston in 2000 [5], is

by far the morphometric approach most commonly used by the neuroscience research

community (the proposing manuscript has, up to date, about 3600 cites in Google

Scholar1). It is based on using the brain tissue segmentations for comparing their

volume across a subject population, in a voxel-by-voxel basis. In this approach, brain

1http://scholar.google.com/scholar?q=Voxel-based+morphometry-the+methods
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Figure 1-1: Schematic description of the principal morphometric analyses used in

computational neuroanatomy, indicating the different information sources.

(Illustration adapted from http://www.fil.ion.ucl.ac.uk/spm/doc/

intro/Figure3.htm)

tissue membership of each voxel is identified using a mixture of gaussians, generating

up to three tissue probability maps. Then, tissue maps are warped together to a

common anatomical space, using some intersubject registration model2, and then they

are spatially blurred (with an isotropic gaussian kernel) to obtain a weighted sum of

the tissue around each voxel. Finally, voxel-by-voxel statistical analyses of the whole

data are performed by fitting a general linear model at each voxel. This morphometric

strategy has been incorporated into currently used software packages for brain analysis,

such as SPM (Statistical Parametric Mapping) [51] and FSL (FMRIB Software Tools)

[69].

VBM approach is considered to be oriented to mesoscopic differences, that is to say,

to local differences. In contrast, identification of macroscopic anatomical differences

among brains can be modeled using the deformation fields that warp individual brains

to a common reference space. This is known as Deformation-Based Morphometry

(DBM), and was proposed in 1998 by Ashburner et al. [6]. The deformation fields

thus encode the shapes of individual brains, providing additional information to the

analysis about lengths, areas and angles, among others. Because the deformation

2DARTEL [4] is the most accurate and the most used so far
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fields are multivariate, the comparisons among them require the use of multivariate

statistical techniques, allowing to establish the nature of the differences and to make

inferences from them. This approach has also been included into the very well known

SPM software package [51].

A main drawback of these morphometrical analyses is the requirement of an inter-

subject registration as accurate as possible, in order to guarantee that the statistical

analysis compares homologous structures across all subject brains and to avoid unre-

liable interpretation of the results. However, this kind of one-to-one correspondence

between subjects need not be achieved for every case, mainly because of the inherent

intersubject anatomical variability and the effects of a brain pathology. In fact, the

same anatomical structure may not be present in all subjects, or may exhibit multiple

morphologies across the population. On the other hand, some pathologies may affect

not only a single anatomical structure or interconnected regions, but specific struc-

tures localized far away from each other. This kind of patterns are difficult to find

and analyze with the standard morphometrical techniques. To cope with this issue,

Toews et al. have proposed in 2010 a new approach, called Feature-Based Morphome-

try (FBM) [121], focused in modeling such natural image patterns that might not occur

in all subjects. Four stages are involved in this approach: first, an affine alignment

of the subject brains is performed, assuming an approximate arrangement of similar

image structures. Then, a set of SIFT (Scale Invariant Feature Transform) features

is extracted per volume. These features are characterized by their robustness to geo-

metrical and intensity variations and by their image appearance distinctiveness. With

these features, each subject volume is modeled as a collection of brain features, and

a probabilistic framework is formulated to estimate the relationship between a feature

and the brain. These estimations allow to cluster features across subjects, taking into

account the geometry, appearance and group class similarities. Finally, group analyses

are performed using coocurrence statistics between features and class groups.

In spite of the increasing research interest in this kind of morphometric approaches,

these are still far from emulating the process that a radiologist follows when examin-

ing a particular case and, moreover, from the required medical interpretability for any

method to be used in actual clinical scenarios. In the computational attempt of emu-

lating the radiologist visual perception, the use of biologically inspired tools for image

analysis is a new perspective that naturally leads to useful interpretation. Therefore,

the techniques proposed in this thesis incorporate some of these approaches, such as the

visual attention models and the sparse representations, exploring their contributions

in the development of efficient support systems in medicine.



6 1 Introduction

1.3 Contributions and Academic Products

This work presents several contributions to the morphometric analyses of medical im-

ages, with an important focus in the study of the Alzheimer’s disease, using mea-

surements obtained only from structural brain MR images. These contributions are

mainly focused to the extraction of relevant image regions with medical and diagnostic

meaning and also to the effective introduction of prior medical knowledge. These goals

have been achieved by the use of two important biologically-inspired tools for image

analysis: sparse representations and visual attention models. The following are the

main applications covered by the methods proposed in this thesis, together with the

corresponding references to published works.

1.3.1 Segmentation of Medical Images

As the accuracy of any morphometrical analysis is subject to the quality of the input

information, early efforts were devoted to improve tissue classification, mainly in brain

MR images. As a complementary work, some contributions were also made for a liver

segmentation approach.

Brain Tissue Segmentation

Refinement of brain tissue segmentations, improving at the same time the Partial

Volume (PV) classification and the fractional content computation, was achieved by

imposing topological constraints to an initial binary segmentation. This procedure

allowed to identify a set of mixed voxels, for which the fractional content is estimated

using a local averaging of pure tissue voxels. This work was published in:

• Andrea Rueda, Oscar Acosta, Michel Couprie, Pierrick Bourgeat, Jurgen Fripp,

Nicholas Dowson, Eduardo Romero and Olivier Salvado. Topology-corrected seg-

mentation and local intensity estimates for improved partial volume classification

of brain cortex in MRI. Journal of Neuroscience Methods, 188 (2), pag. 305-315,

2010.

• Andrea Rueda, Oscar Acosta, Pierrick Bourgeat, Jurgen Fripp, Erik Bonner,

Nicholas Dowson, Michel Couprie, Eduardo Romero and Olivier Salvado. Partial

volume estimation of brain cortex from MRI using topology-corrected segmenta-

tion. Proceedings of the IEEE International Symposium on Biomedical Imaging:

From Nano to Macro, ISBI 2009. June 28 - July 1, 2009. Boston, Masachussetts,

United States of America.
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Liver Segmentation

Additional contributions have made to a semi-automatic approach for segmentation,

reconstruction and estimation of the liver volume in Computed Tomography (CT)

images. The proposal includes an intensity-based deformation method, which acts on

an averaged liver shape, placed by hand over the region of interest. This work was

published (in Spanish) in:

• Gerardo Tibamoso, Andrea Rueda and Eduardo Romero. Segmentación Semi-

automática del Volumen del Hı́gado en Imágenes de Tomograf́ıa Computarizada.

Acta Biológica Colombiana, 15 (3), 2010.

• Gerardo Tibamoso, Andrea Rueda and Eduardo Romero. Segmentación Semi-

automática del Volumen del Hı́gado en Imágenes de TAC. Proceedings of the

Seminario de Ingenieŕıa Biomédica y Seminario Internacional de Procesamiento

y Análisis de Imágenes Médicas, SIB-SIPAIM 2009. November 26-27, 2009. Bo-

gotá, Colombia.

1.3.2 Super-Resolution of Medical Images

Another limitation for accurate morphometric measurements comes from the intrinsic

resolution of the acquired images. Hence, improving image resolution (directly in the

acquisition process or as a post-processing step) is one of the main challenges in medical

image processing. A powerful technique was proposed for solving the super-resolution

of brain MR images problem, while also some contributions in super-resolution of 4D

cardiac MR images were made.

Brain MR Images

An automatic technique for resolution enhancement of complete 3D brain MR volumes

was proposed, comprising a multi-scale feature analysis, semantic-based dictionaries

and a dimensionality reduction scheme. Coupled low- and high-resolution were con-

structed from training images, and then used to locally describe a new low-resolution

image as a sparse combination of the dictionary patches. Finally, a global correction

is performed to ensure consistency and remove discontinuity effects. This work was

published in:

• Andrea Rueda, Norberto Malpica and Eduardo Romero. Single-image Super-

Resolution of Brain MR Images using Overcomplete Dictionaries. Medical Image
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Analysis3, 17 (1), pag. 113-132. 2013.

• Andrea Rueda, Gloria Dı́az and Eduardo Romero. Learning compact dictio-

naries for brain MR image super-resolution. Proceedings of the Seminario In-

ternacional de Procesamiento y Análisis de Imágenes Médicas, SIPAIM 2010,

December 1-4, 2010. Bogotá, Colombia.

• Andrea Rueda and Eduardo Romero. Super-Resolution of Brain MR Images

based on Sparse Representations. Proceedings of the Interdisciplinary Workshop

on Sparsity and Modern Mathematical Methods for High Dimensional Data.

April 6-10, 2010. Brussels, Belgium.

Cardiac MR Images

A different strategy for super-resolution of cardiac MR image series was proposed,

given the highly anisotropic voxels and the number of non-orthogonal series available

per subject. A Bayesian approach is then used to model the contribution of each low-

resolution voxel in the final intensities of the high-resolution image. This work was

published in:

• Nelson Velasco, Andrea Rueda, Cristina Santa Marta and Eduardo Romero.

Super-resolution in cardiac MRI using a Bayesian approach. SPIE Medical Imag-

ing 2013. February 9-14, 2013. Lake Buena Vista, Florida, USA.

• Nelson Velasco, Andrea Rueda, Cristina Santa Marta and Eduardo Romero.

Estimación por Máxima Verosimilitud para Super-Resolución en Imágenes de

Resonancia Magnética Card́ıaca. Proceedings of the International Seminar on

Medical Information Processing and Analysis, SIPAIM 2012. November 12-15,

2012. San Cristóbal, Venezuela.

• Nelson Velasco, Andrea Rueda and Eduardo Romero. Combinación de proyec-

ciones no ortogonales de imágenes de RM card́ıaca. Proceedings of the Seminario

Internacional de Procesamiento y Análisis de Información Médica, SIPAIM 2011.

December 5-7, 2011. Bucaramanga, Colombia.

3This journal is one of the Top-10 journals in Computer Science, according to SCImago Jour-

nal & Country Rank (http://www.scimagojr.com/journalrank.php?area=1700&category=

1701&country=all&year=2011&order=sjr&min=0&min_type=cd)
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1.3.3 Semantic Representation of Medical Information

In the search of image-based computational tools useful for support training and diag-

nosing processes, research efforts have been focused in the identification of distinctive

and reproducible patterns as well as in their relations with a particular diagnosis,

thereby accomplishing medical interpretability. Relationships between visual features

and pathological conditions can be established in different ways, as proposed in the

approaches described hereafter.

Classification of Alzheimer’s Disease

Automatic identification and quantification of systematic differences with clinical mean-

ing among normal subjects and Alzheimer’s disease (AD) patients was achieved by a

fusion strategy that mixes information coming from a multi-scale analysis of visual fea-

tures together with machine learning and fusion techniques. The proposed approach

allows an objective graduation and understanding of the different AD stages. This

work was published in:

• Andrea Rueda, Fabio A. González and Eduardo Romero. Learning visual

salient patterns for structural MR morphometry of the Alzheimer’s disease. Sub-

mitted to Human Brain Mapping. 2013.

• Andrea Rueda, Fabio A. González and Eduardo Romero. Saliency-based char-

acterization of group differences for Magnetic Resonance disease classification.

Revista DYNA, in press, 2013.

• Andrea Pulido, Andrea Rueda and Eduardo Romero. Classification of Alz-

heimer’s disease using regional saliency maps from brain MR volumes. SPIE

Medical Imaging 2013. February 9-14, 2013. Lake Buena Vista, Florida, USA.

• Andrea Pulido, Andrea Rueda and Eduardo Romero. Classification of Alzhei-

mer’s Disease using Regional Saliency Maps from Brain MR Images. Proceedings

of the International Seminar on Medical Information Processing and Analysis,

SIPAIM 2012. November 12-15, 2012. San Cristóbal, Venezuela.

• Andrea Rueda, John Arévalo, Angel Cruz, Eduardo Romero and Fabio A.

González. Bag of Features for Automatic Classification of Alzheimer’s Disease

in Magnetic Resonance Images. Proceedings of the Iberoamerican Congress in

Pattern Recognition, CIARP 2012. September 3-6, 2012. Buenos Aires, Ar-

gentina.
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• Andrea Rueda, Katherine Baquero and Eduardo Romero. Saliency-based Char-

acterization of Group Differences for MR Disease Classification. Proceedings of

the Seminario Internacional de Procesamiento y Análisis de Información Médica,

SIPAIM 2011. December 5-7, 2011. Bucaramanga, Colombia.

Breast Masses Classification

An application of sparse representations in a classification task was explored in the

context of severity (benign or malign) identification for breast masses. A set of Regions

of Interest (RoIs) were characterized by their projection onto learned malign and benign

dictionaries, and the region class was identified using a decision rule algorithm. This

work was published in:

• Fabián Narváez, Andrea Rueda and Eduardo Romero. Breast masses classi-

fication using a sparse representation. Proceedings of the Workshop in Medical

Image Analysis and Description for Diagnosis Systems, MIAD 2011. January

28-29, 2011. Rome, Italy.

Classification of Basal Cell Carcinoma

Diagnosis of a histopathology glass slide is a complex process that involves accurate

recognition of several structures, their function in the tissue and their relation with

other structures. A graph-based semantic representation was then proposed, allowing

to describe histopathological concepts suitable for classification. Using learned dictio-

naries, the proposal models their spatial relations as the co-occurence of dictionary

atoms in the image. This work was published in:

• Ricardo Gutiérrez, Andrea Rueda and Eduardo Romero. Learning seman-

tic histopathological representation for basal cell carcinoma classification. SPIE

Medical Imaging 2013. February 9-14, 2013. Lake Buena Vista, Florida, USA.

1.4 Thesis Outline

The remaining chapters of the thesis are organized as follows:

• Chapter 2: Topology-corrected segmentation and local intensity esti-

mates for improved partial volume classification of brain cortex in

MRI. This chapter introduces a new method to label voxels and compute brain

tissue fractional content, integrating a mechanism for detecting sulci with topol-

ogy preserving operators. The proposal allows to improve the computation of the
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fractional content of mixed voxels using local estimations of pure tissue intensity

means, increasing the precision of cortical thickness estimation in brain regions

where this measure is particularly difficult, such as deep sulci. Accuracy and

precision of the proposed technique is assessed using simulated and real MR data

and comparison with other existing approaches demonstrates its benefits.

• Chapter 3: Single-image Super-Resolution of Brain MR Images us-

ing Overcomplete Dictionaries. This chapter presents a sparse-based super-

resolution method, adapted for easily including prior knowledge, which couples

up high- and low-frequency information so that a high-resolution version of a

low-resolution brain MR image is generated. The proposed approach includes

a whole-image multi-scale edge analysis and a dimensionality reduction scheme,

which results in a remarkable improvement of the computational speed and ac-

curacy. The method is validated by comparing interpolated and reconstructed

versions of various data sets of brain volumes with the original images, and also

compared with a recent state-of-the-art algorithm, suggesting a substantial im-

pact in voxel-based morphometry studies.

• Chapter 4: Extracting Brain Patterns using Visual Saliency for Imaging-

Based Classification of Neurodegenerative Diseases. This chapter presents

a new fully automatic classification method that finds discriminative brain pat-

terns associated to the presence of Alzheimer’s disease, mining systematic dif-

ferences and therefore grading objectively any neurodegenerative disorder. This

is accomplished by a fusion strategy that mixes together bottom-up and top-

down information flows. Bottom-up information comes from a multiscale analysis

of different image features, while the top-down stage includes learning and fu-

sion strategies formulated as a max-margin multiple-kernel optimization problem.

The proposal shows to outperform a state-of-the-art method in classification per-

formance over different subject groups of a public brain MR data set. In terms of

the anatomical analysis, relevant regions found by the proposed approach highly

correlates to what has been reported in clinical studies of Alzheimer’s disease.

• Chapter 5: Conclusions and Perspectives. This final chapter presents

the main conclusions of the proposed work, highlighting the main contributions

achieved and its impact in the research area. In addition, it depicts some of the

future research directions and perspectives promoted by this thesis.



2 Topology-corrected segmentation

and local intensity estimates for

improved partial volume

classification of brain cortex in MRI

In morphometric analyses based on magnetic resonance imaging (MRI), is of paramount

importance the accuracy and precision with which brain structures can be quantified.

One of the most common artifacts that hampers this measurements is the partial vol-

ume (PV) effect, due to the limited spatial resolution of MRI compared to the size of

the anatomical structures. Accurate classification of mixed voxels and correct estima-

tion of the proportion of each pure tissue (fractional content) may help to increase

the precision of morphometrical tasks, such as the cortical thickness estimation, in re-

gions where these measures are particularly difficult, such as deep sulci. This chapter

presents a new PV classification-estimation method which integrates a mechanism for

correcting brain tissue delineation using topological operators. The contribution of this

work is twofold: on the one hand, we propose a new method to label voxels and com-

pute tissue fractional content, integrating a mechanism for detecting sulci with topology

preserving operators. On the other hand, we improve the computation of the fractional

content of mixed voxels using local estimation of pure tissue intensity means. The com-

plete content of this chapter has been published as a research article in the Journal

of Neuroscience Methods (see [111]).

2.1 Introduction

Accurate segmentation of Magnetic Resonance (MR) images into different brain tissues,

namely gray matter (GM), white matter (WM), and cerebro-spinal fluid (CSF), can

allow in-vivo quantification of structural modifications appearing during neurodegen-

erative diseases. However, MR-related artifacts, such as intensity inhomogeneity, noise

and partial volume (PV) effects, can hamper the precision of this task. Inhomogeneities

can be characterized by a low frequency multiplicative bias field and are mostly due
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to the sensitivity of the receiver coils and, in some cases, to non-homogeneous tissue

MR properties. The noise is Rician distributed and it has be shown to strongly affect

the tissue classification [125]. Finally, PV effects appear when the size of anatomical

features being imaged is comparable to the voxel size, causing blurring at the interfaces

between tissues. In some cases, e.g. with opposed banks of GM in deep sulci, mis-

classification problems appears, affecting further processings such as cortical thickness

estimation.

Topological operators and constraints have been widely used to correct and achieve

accurate cortical tissue segmentations [9, 60, 75, 116]. It has been assumed that the

cerebral cortex is a folded sheet of GM built upon the WM, which would have the

topology of a hollow sphere if the midline hemispheric connections were artificially

removed. Due to MR artifacts, the segmentation process cannot guarantee this as-

sumption, generating deviations from the true anatomy of the structures of interest.

Proposed approaches that address this issue can be classified in two categories: meth-

ods that include topological constraints directly into the segmentation process, based

on active contours [116], topology adaptive snakes [91], digital topology models [9, 10]

or segmentation by registration to an atlas [75]; and retrospective techniques that cor-

rect the topology after the segmentation process [60]. Those approaches are focused on

ameliorating the topology of the segmented tissues, working directly on a voxel or on

a mesh (surface) space. Voxel-based methods operate directly on the volumetric tis-

sue segmentations, by removing or adding voxels according to topological constraints.

However, remotion or addition of a whole voxel in thin structures such as the GM may

considerably modify the measure of thickness (ranging between± 1 voxel) if any mecha-

nism such as partial volume is not used to compensate for the structural modifications.

In contrast, mesh-based techniques requires an initial 3D reconstruction (triangular

mesh) of the volumetric segmentations. The approaches for segmentation and cortical

thickness estimation operating directly with the surfaces, such as CLASP [71], Brain-

VISA [86] or Freesurfer [32,45,46], incorporate mechanisms to prevent self-intersection

of surfaces or topology correction, imposing also some smoothness constraints. Mesh-

based approaches are however computationally more expensive, because of the needed

additional reconstruction step. Overall, after or during the mesh generation, most of

the methods tackle the elimination of tunnels and handles [46, 47,68,139].

On the other hand, PV estimation has received considerable attention in the last few

years and different approaches have been proposed for classification and computation

of fractional content [24, 77, 93, 115, 117, 122, 125]. Most techniques model voxel inten-

sity as a linear combination of the intensity distributions of the possible tissue types

within each voxel [25, 93]. Computing the fractional content of voxels therefore re-

quires both pure and mixed voxels to have been previously classified. Shattuck et
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al. [117] implemented a maximum a posteriori (MAP) classifier, which combined a

tissue measurement model with a prior model of the local spatial interactions to obtain

six tissue types: three pure and three mixed. The fractional content for the mixed

voxels was calculated based on the global intensity mean of pure tissue types. Tohka

et al. [122] proposed an algorithm which used statistical estimators, based on the MAP

estimation [117]. Recently, Chiverton et al. [24] presented a local adaptive Gradient-

controlled spatial regularizer (GSR) using a Markov Random Field to model the class

membership and a Markov chain Monte Carlo (MCMC) simulation to adapt the model

to the observed data. The labelling error may remain high because the intensity inho-

mogeneities (not explicitly modelled) and the noise may lead to misdetection of mixed

voxels mainly in tight sulci, representing a portion of GM/CSF/GM within the same

voxel.

The approaches previously presented have been focused on solving either the PV es-

timation or the topology correction. Our contribution consists in demonstrating that

better results and performance are obtained if both strategies are combined together

with a spatial intensity variation modeling. In this paper, we propose a new method

aimed at improving both PV classification and fractional content computation, working

at a voxel level in order to be accurate and computationally efficient. The improved

classification is achieved by imposing topological constraints to the binary segmentation

and thus detecting hidden mixed voxels in zones of tight sulci. The accurate fractional

content estimation is attained by computing the fractional content as a linear relation

between robust local intensity averages of pure tissue voxels. The spatially dependent

averaging helps to overcome the problems of intensity inhomogeneity for a given tissue

across the image.

In the next section we describe our methods, followed by experiments using simulated

and real data. We also compare the results with other previously proposed methods.

We demonstrated the utility of our approach by integrating the whole process to our

voxel-based cortical thickness estimation pipeline.

2.2 Methods

The proposed strategy follows the steps depicted in Figure 2-1: Firstly, an initial clas-

sification of voxels into pure tissues WM, GM and CSF and mixed tissues WM/GM

and GM/CSF is performed. Secondly, topology-constraints are introduced in the clas-

sification assuming that the GM is a continuous layer covering the WM. A topology

preserving dilation of the WM over GM adds robustness to the delineation of mixed

voxels GM/CSF in deep sulci. Finally, the estimation of fractional content for mixed

voxels is adaptively performed based on a local averaging of the pure tissue voxels.
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Figure 2-1: Overall process for topology-corrected PV estimation in MR images.

2.2.1 Pure tissue segmentation

A first segmentation of pure brain tissues into GM, WM and CSF is performed based

on an implementation of the expectation-maximisation (EM) segmentation method as

in [124]. Here, the Colin atlas and associated priors are first affinely registered to the

data using a robust block matching approach [98], followed by a diffeomorphic Demons

non-rigid registration [127]. Probabilistic tissue maps associated with the atlas were

used to initialize the EM segmentation and enforce spatial consistency throughout

the segmentation. The probability density functions of the tissues are modelled with

6 Gaussians (WM, GM, CSF and 3 for non brain tissues, skull and background).

Finally, hard segmentations are obtained after the EM segmentation by labelling each

voxel with the most probable tissue.

2.2.2 Initial partial volume labelling

Using the hard segmentations, a first labelling of partial volume voxels are identified

within the hard segmentations and along the interfaces of pure tissues. Three pure

tissue classes and two mixture classes are considered Γ = {GM,CSF,WM,CSF/GM,

GM/WM}. A maximum a posteriori classification (MAP) is made and labels the
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voxels as belonging to the set Γ. This procedure, relying on both intensity and spatial

information, extends the method proposed by [117], but we assume that each voxel

contains at most two tissues [115], and PV classification is restricted to the region

formed by a dilated GM region (radius 2) because only the cortical thickness is sought.

To take into account dependency on the neighbouring tissue types, a Markov prior

that models local spatial interactions was implemented using a Potts model in order to

perform the labelling. As in [71,117,122], we use the Iterated Conditional Modes (ICM)

algorithm as explained in [13] to search for the optimal labelled image. According to

this, every voxel is updated once per iteration until no label changes occur between

iterations. This model favors classification of contiguous regions of GM, WM and CSF

and encourages configurations of voxels that make physical sense such as GM/CSF or

GM/WM voxels adjacent to GM.

2.2.3 A topology preserving segmentation

After the MAP labelling, some of the sulci may be misdetected, as the intensity of

buried PV GM/CSF voxels is close to that of the GM. In order to refine the segmen-

tation and identify such buried GM/CSF voxels, we used a homotopic dilation of the

consolidated WM = {WM,WM/GM} constrained by the GM, leading to a better de-

lineation of deep sulci. To preserve this folds during dilation, the set WM is corrected

first to assure that shares the topology of a filled sphere.

The homotopic transformations that we used are topology-preserving procedures that

consist of sequentially deleting or adding single points (voxels) as described in [12]. The

algorithms used are detailed in Appendix A. Our topology preserving segmentation of

the WM consists in performing a homotopic dilation of a seed set of voxels, called

S, constrained to only add voxels from the set WM, knowing that S is topologically

equivalent to a filled sphere. The result of this operation is denoted by SWM. For

example, S could be made of single voxels chosen in the white matter, but we describe

below a way to obtain a seed that is closer to the expected result, and thus leads to a

more robust segmentation.

To obtain the seed S, we first compute a surface skeleton SK of WM, by dilating

using Algorithm 3 as described in Appendix A. Then, we perform an homotopic

erosion, constrained by SK, of a full cuboid that includes SK. Finally, we perform an

homotopic dilation of the same seed set S, constrained by the set SWM ∪ GM to

only add GM and WM voxels, and we substract SWM from the result to obtain the

corrected GM.

This method is performed on 3D sets, but for clarity we illustrate it on a 2D reduced

example in Figure 2-2. Notice that small black components in Figure 2.2(b) can



2.2 Methods 17

correspond to tunnels in the 3D image, thus simple connected component filtering

would not give the correct region. Figures 2-3 and 2-4 show further examples in 3D.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2-2: (a): original grayscale image. (b): segmented white matter (set WM). (c):

segmented white and gray matter (set WM ∪ GM). (d): surface skeleton

of WM (set SK). (e): seed set (set S). (f): corrected white matter (set

SWM). (g): corrected white and gray matter formed by further homotopic

dilation. (h): corrected gray matter (final result) formed by substracted

images (g) and (f).

2.2.4 Partial volume relabelling and fractional content

The main contribution of the topology is the relabelling of missegmented GM voxels

in hidden sulci as mixed GM/CSF. Once the topologically corrected WM, GM, CSF,

WM/GM and GM/CSF segmentations are obtained, the portion of pure tissue, called

here fractional content F , is computed for each mixed voxel by estimating the local con-

tribution of each pure tissue. We assume that each voxel contains at most two tissues

and the new labelling corresponds only to the mixed voxels WM/GM and GM/CSF.

For each mixed voxel, the fractional content F ranges between [0, 1] depending on the

amount of pure tissue. Thus, for pure tissue voxels the fractional content Fj are set

to 1 for the class j and 0 otherwise. For mixed voxels (x ∈ WM/GM,GM/CSF ),

the fractional content Fj/k between both pure tissues j and k is computed using the

intensity I(x) of the image and the robust local averages of the closest pure tissue
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2-3: First row (a) - (d): Different initial configurations of a synthetic phan-

tom. Second row (e) - (h): Corresponding topologically corrected WM-GM

segmentations.

voxels µj(x) and µk(x), such that:

Fj/k(x) = U

(
µk(x)− I(x)

µk(x)− µj(x)

)
(2-1)

where U(·) is a limiter restricting the range of the fractional content to [0, 1]. Unlike

[117], which uses the same linear relation between global means of tissues to compute

fractional content, we compute µk and µj as robust local averages rather than global

means. This is done by computing the mean of the median 50% of pure tissue intensities

(interquartile mean) within a 5mm radius sphere, thus rejecting local outliers, over a

denoised version of the original MR image. The noise is removed by applying the

optimized non-local means method proposed in [31].

Pure tissue voxels are selected by eroding pure tissue segmentations using a 2mm ra-

dius, therefore reducing the influence of any mixed voxel. Finally, the computed aver-

ages are propagated back towards the location of the mixed voxels x, resulting in values

of µj(x) and µk(x) that represent the average of the closest pure tissue voxels (Figure 2-

5). The GM fractional content map is eventually defined as FGM/WM∪FGM∪FGM/CSF.

Using a robust local mean overcomes issues related to intensity inhomogeneities and

variations of pure tissue signal across the image, weighting accordingly the signal when
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(a) (b)

(c) (d)

Figure 2-4: (a) Initial and (b) topologically corrected WM-GM segmentations, high-

lighted within the rectangle; (c) marching cubes reconstruction of GM

before and (d) after the topology correction procedure.

computing the fractional content.

Regional differences in the cell structure and the distribution of different layers of the

cortex result in variation of regional intensity differences for the same tissue across the

brain. These differences produces local variation of contrast between the tissues that

might be pronounced with ageing [114]. Whereas global homogeneity assumptions will

bias the voxel fractional content estimation, a local computation of intensity averages

for pure tissue yields a more accurate value, which accounts for the changes in cy-

toarchitecture visibles in MR. A local estimate allows also to overcome the issues of

intensity inhomogeneities due to the artifacts during the acquisition.

To illustrate the spatial differences in signal, GM intensity was measured over the
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Figure 2-5: Schematic view of the local tissue averages for a given mixed voxel, where

d1 and d2 relates to the closest voxels in the pure tissues.

Figure 2-6: Averaged intensity within the connected components of the pure GM, com-

puted as the interquartile mean (IQM) within a 5mm radius sphere on an

OASIS example data, normalized by the Maximum of intensity. The dif-

ferences between the regions clearly appear. Thus, GM tissue intensity will

be different between the regions and global homogeneity assumptions will

slightly bias the computation of partial volume.

population of 20 young adults scans, acquired as described in Section 2.3.3. Figure

2-6 shows the local average intensity of GM across the brain for an individual. In

this example, precentral gyrus presented a higher average value than the temporal or



2.3 Experiments 21

occipital lobe. The same pattern appear in average in all the healthy individuals. The

contrast between the tissues has been also measured using the Equation 2-2 as

FContrast =
µWM − µGM

µGM − µCSF

(2-2)

where µWM, µGM and µCSF are the regional averages of WM, GM and CSF respectively,

which can be considered as a measure of the contrast between WM and GM normalized

by the CSF. Figure 2-7 shows the regional differences for the population of 20 young

controls.

Figure 2-7: AAL template showing the regional differences in contrast between WM

and GM over the surface, by calculating the ratio µWM−µGM

µGM−µCSF
. Darkest

colours indicate bigger ratios, light colours indicate small values. Left:

lateral and Right: medial views.

2.3 Experiments

To evaluate our method, named hereafter as Topologically-corrected Partial Volume

(TPV), we used different brain MR data sets including simulated and real images.

The purpose was twofold, firstly to illustrate the effect of the topology correction in

the estimation of fractional content for mixed voxels, and secondly to compare the

obtained results with those publicly available in the area. After that, the method

was integrated to our voxel-based cortical thickness estimation pipeline. Experiments

demonstrated that the overall method showed a better estimate of thickness and a high

reproducibility on real data.
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2.3.1 Simulated MR data

A set of 15 simulated MR brain images was obtained from the BrainWeb Simulated

Brain Database, maintained by the McConnell Brain Imaging Centre at the Montreal

Neurological Institute [26] and available at www.bic.mni.mcgill.ca/brainweb. Each

simulation was a 1mm3 isotropic T1-weighted MRI volume with dimensions 181 ×
217× 181, generated with varying noise level and intensity inhomogeneity. We tested

our method on each combination of 1%, 3%, 5%, 7% or 9% noise levels together with

0%, 20% or 40% intensity nonuniformities. BrainWeb also provides the fuzzy tissue

membership volumes, one for each tissue class, together with a discrete anatomical

model of the simulated normal brain.

2.3.2 Manually segmented real MR data

20 normal MR brain data sets and their manual segmentations were obtained from

the Internet Brain Segmentation Repository (IBSR), provided by the Center for Mor-

phometric Analysis at Massachusetts General Hospital and available at www.cma.mgh.

harvard.edu/ibsr. The data sets were acquired along the coronal axis with slice di-

mension of 256×256 and 1mm2 resolution. Interslice distance is 3mm and the number

of slices for each volume varies between 60 and 65. The data sets have various lev-

els of artifacts, as low contrast and relatively large intensity gradients, that further

affects performance of the algorithm. CMA also provides expert tissue labellings of

each brain into WM, GM, and CSF, together with reference similarity values for some

classification techniques.

2.3.3 Cross sectional series of real MR scans

20 young healthy subjects (12 female, 8 male; age between 19 - 34 years), who un-

derwent 4 scans at baseline and 4 more scans during a subsequent session after a

short delay (less than 90 days), were randomly selected from the Open Access Series

of Imaging Studies (OASIS) database [89], available at www.oasis-brains.org. For

each session, an average motion-corrected image (co-registered average of all available

data) was used for our tests. The scans were T1-weighted Magnetization Prepared

RApid Gradient Echo (MP-RAGE) in sagittal orientation with isotropic 1mm3 res-

olution (256 × 256 × 128 pixels). This data was used to assess the precision of the

method when classifying partial volume voxels. We also tested the robustness when

the method was integrated in our voxel-based cortical thickness estimation pipeline [1],

particularly when the detection of deep sulci was improved.
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2.3.4 Error and similarity measures

To quantitatively evaluate performance of the method over both simulated and real

MR data sets and compare these results with other well-known results, we used two

different metrics: the root mean square (RMS) error for comparison of PV classification

maps, and the Jaccard similarity measure for comparison of the corresponding crisp

tissue segmentations. The RMS error was used to quantify the differences between the

fractional content calculated for each tissue and the corresponding values in the ground

truth fuzzy membership images. As in [117], the RMS error between two images X

and Y is calculated as

eRMS(X, Y ) =

√
1

|Ω|
∑
k∈Ω

|yk − xk|2

were Ω is the brain region, xk and yk are the image intensities at position k.

The Jaccard similarity metric, also known as the Tanimoto coefficient, measures the

amount of overlap (agreement) between two images X and Y by taking the ratio

between the size of their intersection and the size of their union:

J(X, Y ) =
|X ∩ Y |
|X ∪ Y |

This metric yields values between 0 and 1, where 0 means complete dissimilarity and

1 stands for identical images.

2.4 Results and discussion

2.4.1 BrainWeb

Performance of our TPV method was firstly assessed on the simulated brain images

from BrainWeb. One example of the resulting PV maps for WM, GM and CSF,

compared with the available ground truth, on the synthetic brain volume, 3% noise

level and 20% bias field, is depicted in Figure 2-8. Comparisons between our method

and a classical MAP approach are shown in Figure 2-9 for the computed GMPVC

fractional content map. It must be noted that compared to a classical MAP approach

as in [117], the sulci were better delineated by introducing the topological constraints

(Figure 2.9(g)). In this example, a deep sulci voxel with similar intensity to the average

GM, will be classified as GM and not as a mixed GM/CSF voxel unless anatomical

constraints are introduced. The mean RMS error of fractional content over the entire

BrainWeb data set significantly decreased to 6.1% (p < 0.01) for the obtained GMPVC

map, as compared with the results reported in [117]. Overall, a good agreement was
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shown between the computed PV maps and the ground truth, available as fuzzy tissue

membership volumes. RMS errors for different noise and intensity nonuniformity levels

are shown in Table 2-1. As expected, the computed error was robust to the bias field,

which additionally validates the local averaging approach rather than the global one.

(a) (b) (c)

(d) (e) (f)

Figure 2-8: Partial volume segmentation of a simulated BrainWeb volume (3% noise,

20% bias field). PV maps for (a) WM, (b), GM (c) and CSF. Ground

truth: (d) WM, (e), GM and (f) CSF.

The variability between different regions in the brain may affect the performance of

PV classifiers [24]. To illustrate this effect, we used the automated anatomical labeling

(AAL) template [123] to calculate the RMS error within each region as in [24]. Averaged

results for different levels of noise are shown in Figure 2-10. As a low variability with

respect to the bias field was observed, the depicted value corresponds to the average

over all the bias field levels (0%, 20% and 40%). The smallest errors appeared in the

amygdala (42xx), the insula (30xx), the supplementary motor area (24xx) and the

olfactory (25xx); while lower agreement was found in the basal ganglia (70xx), the

middle occipital (52xx) and the parietal superior (61xx).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2-9: Example of PV estimation of a simulated BrainWeb volume (3% noise,

20% bias field). (a),(e) Original image, (b),(f) MAP PV estimation, (c),(g)

Topologically-corrected PV, (a),(h) ground truth. In the detailed views we

can observe the improvement in deep sulci, (g) relative to (f), brought by

the topology correction.

Intensity inhomogeneity

0% 20% 40%

Noise WM GM WM GM WM GM

1% 0.129 0.130 0.129 0.131 0.125 0.132

3% 0.139 0.142 0.140 0.141 0.140 0.142

5% 0.174 0.174 0.172 0.171 0.170 0.171

7% 0.214 0.216 0.210 0.213 0.208 0.212

9% 0.251 0.261 0.245 0.258 0.242 0.256

Table 2-1: Fractional content RMS error on BrainWeb.

We also compared our TPV method with the results reported by Chiverton et al. [24]

(GSR) and Shattuck et al. [117] (SMAP). The results are depicted in Figure 2-11.

Evidence suggests that the local average intensity strategy makes the classification

more robust to bias field variations, and on average performs better than other methods
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(a) WM (b) GM

Figure 2-10: RMS error per AAL region (a) WM and (b) GM regions, for different

noise levels using the same labels as [24].

for low levels of noise (1% to 7%) and bias field of 20%. We point out the fact that

GSR does not explicitly take into account the bias field, hence its effect appears in the

reported results.

2.4.2 Real MR Data

OASIS

The reproducibility was measured by applying the method to two of the MR scans from

the same individual from the OASIS database. We compared the results with the MAP

classifier as in [117]. Significant improvements in GM PV estimation were brought by

the topology correction. The reproducibility error decreased by 8.8% in GM and 8.5%

in WM (p < 0.001), measured as the RMS between the PV maps obtained on the rigidly

registered baseline and repeat scans. Likewise, when comparing the crisp segmentations

obtained by thresholding by 0.5 the baseline and repeat GM PV maps, the Jaccard

similarity measure increased by 3.5% in GM. To compute crisp segmentations, each

mixed voxel was assigned to the tissue class with the highest fractional content and

the obtained segmentation were subsequently compared.

IBSR

Our method was also compared with both TMCD (trimmed minimum covariance deter-

minant) [122] and MMC (mixture model clustering) [93] on the IBSR data sets. Since
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(a) WM

(b) GM

Figure 2-11: PV estimation errors for (a) WM and (b) GM on BrainWeb, for different

noise and bias field levels. (SMAP results for 1% noise not publicly

available)

the ground truth is available as manual segmentations performed by clinical experts, we

compared the segmentations obtained from the crisped PV maps. Figure 2-12 shows

an example of the ground truth provided by IBSR and a hard segmentation calculated

after applying our method. Figure 2.13(b) depicts the results of the comparison for

the GM in the 20 normal subjects. As in [24], results of manual expert segmentation

and pure tissue classsification presented by Ibrahim et al. [64] (HMM, hidden Markov

model) were included for reference. Significant improvements in GM classification were

demonstrated using the TPV, compared to a MAP classifier. The similarity measure

(Jaccard) was improved by 8.7% in GM and 2.6% in WM (p < 0.001).
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(a) (b) (c)

Figure 2-12: (a) IBSR Ground truth pure tissue classification. (b) Estimated PV maps

(blue: GM/CSF, white: GM, yellow: GM/WM) and (c) computed crisp

segmentation.

Poor similarity results were obtained in 5 cases, which exhibited strong shading artifacts

that impeded a reliable GM and WM classification. Similar findings were presented

in [93], who excluded them from the analysis. We also observed that the anisotropy

in the images biased the computation of the local averages. Table 2-2 summarizes the

mean (± standard deviation) of the Jaccard similarity values for each method, exclud-

ing the volumes with too severe intensity inhomogeneity. In average, our TPV method

performed better for WM and GM compared to the others, excepting averaged GM

segmentation against [93]. It must be noted that when the PV maps were used to gen-

erate the crisp segmentations, the mixed GM/CSF voxels in deep sulci with fractional

content above 0.5 might be wrongly reclassified as GM. Under those conditions, the

contribution of topology correction in the segmentation can not be fully and accurately

validated with this experiment. Nonetheless, we report these results for completeness.

MMC [93] TMCD [122] TPV

WM 0.648 (± 0.198) 0.696 (± 0.050) 0.701 (± 0.042)

GM 0.753 (± 0.120) 0.697 (± 0.064) 0.708 (± 0.045)

Table 2-2: Mean (± standard deviation) of Jaccard similarity index for each method.

2.4.3 Computational performance

On each image of the BrainWeb data set, after the initial MAP segmentation, the

topology correction and PV fractional content estimation takes less than 10 minutes.

For the OASIS data sets, the procedure takes about 9 minutes, while for the IBSR

images the topology correction and PV fractional content estimation takes less than 4
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(a) WM (b) GM

Figure 2-13: Jaccard similarity results for WM (a) and GM (b).

minutes. Operations were encoded in a single-thread application and then executed in

a standard Intel Core 2 Duo (3.00GHz, 2 GB RAM) machine running Linux.

2.4.4 Deep sulci cutting and cortical thickness estimation on real

data

We integrated the proposed sulci detection and improved partial volume classification

methods to our cortical thickness estimation pipeline [1], as depicted in Figure 2-14.

Then, we computed the thickness, at two different acquisition times, for the same 20

young healthy subjects from the OASIS database [89] used in the experiment described

in Section 2.3.3. The reproducibility was assessed by using the Pearson correlation

coefficient for each Region Of Interest (ROI) of the AAL template [123], excluding the

cerebellum and subcortical nuclei from the analysis.

Thickness estimation with the proposed method (TPV) showed a higher reproducibility

compared with the measure performed after partial volume classification using [117].

As can be seen in Figure 2-15, the differences in cortical thickness between scans

were reduced after applying the TPV. The Pearson correlation coefficient was 0.915 in

average and a paired t-test did not reveal any significant differences between the two

measurements (p < 0.1). Also, the difference between scans was decreased by 13.7%

in average, as shown in Table 2-3.

By using the proposed method, we found a mean (± std. dev.) cortical thickness over

the whole brain of 2.08mm (± 0.11) for all the subjects, which is within the accepted

range of cortical thickness for healthy young adults. In previous studies, when the
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(a) (b) (c)

(d) (e) (f)

Figure 2-14: Example of cortical thickness estimation from MR. (a) Original T1-W

MRI, (b) GM segmentation, (c) Topologically-corrected GM PV map.

Cortical thickness maps (d) without any topology modifications, (e) after

topology correction only, (f) after TPV. In the detailed views we can

observe the improvement brought by the topology to delineate deep sulci

zones, which allows an accurate measurement of the cortical thickness.

PV is not taken into account as in [135], the computed mean thickness for the same

population was 4.69mm (± 0.11). And when the PV classification method proposed
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(a) (b)

(c) (d)

Figure 2-15: Surface representation of cortical thickness, computed at different steps

for two scans of a single subject (OASIS). Top row: Scan 1, Bottom

row: Scan 2. (a),(c) Without topology modifications, and (b),(d) with

topologically-corrected GM PV map (TPV). Overall, we can observe the

high values of thickness corrected with the TPV method.

Correlation coefficient Differences between scans

Brain lobule SMAP TPV SMAP TPV

Frontal 0.922 0.930 0.090 0.090

Limbic 0.901 0.883 0.158 0.121

Occipital 0.902 0.904 0.101 0.063

Parietal 0.906 0.920 0.058 0.060

Temporal 0.932 0.938 0.105 0.106

Average 0.912 0.915 0.102 0.088

Table 2-3: Pearson correlation coefficient and differences between scans for the OASIS

dataset, grouped by brain lobules.
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by Shattuck et al. [117] is used, without any topology correction, the computed mean

thickness was 3.06mm (± 0.25); using those same PV maps, but correcting the topology

problems, decreases the mean thickness to 2.75mm (± 0.17).

(a)

(b) (c)

Figure 2-16: (a) Histogram of the average thickness for the 20 MR before topology

correction (step 1), after topology correction (step 2) and with TPV. It

is shown how the number of higher thickness voxels was reduced. (b)

Differences in cortical thickness histograms between steps 1 and 2 for

the 20 MR. This figure depicts the improvement after the topology. The

number of voxels above 4mm in average has been dramatically reduced.

(c) Differences between topology and TPV, in average the number of

voxels above 2.5mm has been reduced consolidating the average thickness

around 2.5 mm (typical value for young adults).

Fig. 2-16 depicts in histograms the impact of the topology correction and the accurate

PV estimation on the cortical thickness calculation task. The higher thickness values
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produced after the first PV classification dissapeared when the topology of GM is

corrected and the accurate PV value is computed with the TPV. Fig. 2.16(a) shows

the histogram of the average thickness for the 20 MR subjects before any topological

modifications, after the topology correction and with TPV. Fig. 2.16(b) depicts the

differences for each of the cortical thickness histograms between Step 1 and Step 2,

illustrating the improvement after the TPV. The number of voxels above 4mm in

average has beed dramatically reduced. Fig. 2.16(c) shows the differences between

topology corrections and TPV, in average in this further step the number of voxels

above 2.5mm has been reduced.

2.5 Conclusion

We have described a simple and fast technique to improve PV estimation of brain tissues

from T1W MRI. It improves the detection of hidden mixed voxels in deep sulci by

correcting for the topology errors in the segmentation and uses local averages to better

estimate the fractional content. We show that fractional tissue content estimation can

be improved for low levels of noise and regardless the intensity inhomogeneity, resulting

in superior brain tissue segmentations.

Topology correction improved the classification of mixed voxels in opposed banks of

buried sulci by assuming GM as a continuous layer following the WM, with the topol-

ogy of a filled sphere. Local modelling of tissue intensities helps to overcome the issues

related with local intensity inhomogeneity and tissue MR properties across the image.

Even with a preprocessing stage to correct the intensity inhomogeneities, pure cortical

tissues show different intensity levels in the MRI. This suggests that the tissue prop-

erties are different depending on the region of the brain. Accuracy and precision were

demonstrated and comparisons with other methods showed comparative performance

with simulated and real MR data.

We demonstrated the usefulness of the method to improve the accuracy of the cor-

tical thickness estimation. By labelling mixed GM/CSF voxels in deep sulci and by

recomputing a spatially compensated PV map, the measure of thickness in difficult

regions is improved. Our method showed a high reproducibility on real data, with

an extremely good agreement between the baseline and repeat scans. The computed

values of thickness for young adults are similar to the ones reported previously in the

literature. In the future, we plan to use our technique on clinical data to study cortical

atrophy in Alzheimer’s disease and other neurodegenerative diseases. We intend also to

develop voxel-based techniques for inter-subject comparisons, a challenging issue given

the large anatomical variability between patients.



3 Single-image Super-Resolution of

Brain MR Images using

Overcomplete Dictionaries

Resolution in Magnetic Resonance (MR) is limited by diverse physical, technological

and economical considerations. In conventional medical practice, resolution enhance-

ment is usually performed with bicubic or B-spline interpolations, strongly affecting

the accuracy of subsequent processing steps such as segmentation or registration. This

chapter presents a sparse-based super-resolution method, adapted for easily including

prior knowledge, which couples up high and low frequency information so that a high-

resolution version of a low-resolution brain MR image is generated. The proposed

approach includes a whole-image multi-scale edge analysis and a dimensionality reduc-

tion scheme, which results in a remarkable improvement of the computational speed and

accuracy. The proposed method is shown to obtain accurate high-resolution reconstruc-

tions, outperforming the baseline interpolation and a recent state-of-the-art algorithm,

and suggesting a substantial impact in voxel-based morphometry studies. The complete

content of this chapter has been published as a research article in the Medical Image

Analysis journal (see [112]).

3.1 Introduction

Resolution in Magnetic Resonance (MR) is limited by diverse physical, technological

and economical considerations. These factors together introduce a series of artifacts,

such as the partial volume (PV) effect, affecting the performance of image analysis and

post-processing algorithms, and preventing derivation of accurate measurements. In

conventional medical practice, interpolation of images to higher resolutions is usually

performed by applying standard image processing techniques such as the bicubic or

B-spline interpolation. This interpolation has a strong influence on the subsequent

processing steps, such as segmentation or registration. Hence, improving image res-

olution is one of the main challenges in medical image processing. The fundamental

problem can be stated as if some high-frequency information (edges) has been lost
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during the acquisition process. Therefore, any reconstruction technique should be able

to coherently recover these high-frequencies.

Super-Resolution (SR) techniques have been broadly used to increasing medical image

resolution [58]. At the beginning, these methods attempted to recover a high-resolution

image by combining multiple shifted low-resolution acquisitions. Two kinds of ap-

proaches can be identified: one works at the acquisition level over raw data (frequency

space), while the others act on the volumetric images (spatial or image space) as an ad-

ditional processing step. At the acquisition stage, the k-space data can be manipulated

and combined to obtain adequate spatial resolution while reducing acquisition time [62];

or parameters can be configured to obtain multiple scans with different slice directions

which are then mixed up [118]. Regarding volumetric images, Peled et al. [103] and

Greenspan et al. [59] have proposed the first approaches to adapt the iterative back-

projection method proposed by Irani et al. [65] to 2D and 3D MR images, respectively;

followed by other strategies such as the resolution enhancement method described by

Carmi et al. [20]. Recent approaches have changed the classical SR paradigm with

multiple images, evolving towards the use of information from a single low-resolution

image, but also improving the image information by combining different modalities.

Patch-based approaches with non-local regularization frameworks have been proposed

by Rousseau [109] and Manjón et al. [88], which have also extended the formulation to

super-resolve low-resolution T2w images using high-frequency information from T1w

images [87,110].

A recent trend in signal and image processing is the use of models that exploit the

natural redundancy of signals, taking advantage of the fact that media signals, such

as audio, images and video can be sparsely represented using transform-domain meth-

ods. Many important tasks involving this kind of signals can be better solved as

sparse solutions to undetermined systems of linear equations [16]. This kind of models

have shown to outperform common approaches for inverse problems and have led to

important state-of-the-art results, with successful applications in synthesis [105], de-

noising [43], restoration [85], reconstruction and compression, among others. One of

the classical inverse problems studied under the sparse representation framework is SR,

a problem for which important state-of-the-art results have been reported in natural

images [133, 137]. In MR images, efforts have been focused in applying or adapting

the Compressed (or Compressive) Sensing (CS) approach [38], which is claimed to be

able to accurately reconstruct MR images from a small subset of Fourier coefficients

(k-space samples), as shown by Lustig et al. [83]. Ravishankar et al. [107] propose a CS

modification which uses adaptive dictionaries, by alternating back and forth between

image domain and k-space, while Adluru et al. [2] applies a reconstruction method with

Total Variation constraints in space and time. Other strategies include the adaptation
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of the focal underdetermined system solver (FOCUSS) for MR projection reconstruc-

tion [134].

While SR methods working in the frequency domain could be preferred over those

working in the image space, given their theoretical simplicity and low computational

cost, they also present some important drawbacks. Completion of high-frequencies

only implies adding punctual values to the k-space, while in the image space these

added values generates aliasing and visual artifacts, according to the point spread

function (PSF) of the acquisition. Besides, this PSF can be highly variable under

certain subsampling policies, the smaller the number of samples the larger this PSF

can be. Therefore, SR methods would need to go back and forth from the frequency to

the spatial domain in order to minimize the occurrence of these artifacts. On the other

hand, dictionary patches in the image domain provides much more interpretability to

medical specialists than particular punctual frequencies in the frequency space. These

image patches can be directly related to pathologies or imaging findings and more

importantly, they also facilitate the inclusion of a priori medical knowledge.

For achieving minimization of PV effects, we have addressed the problem from a com-

pletely new angle: rather than developing PV segmentation algorithms, we chose to

use very simple segmentation methods on improved input data. To recover the missing

information, we used a sparse representation framework which builded up a high-

resolution version from a low-resolution image, as in [133] and [137]. Provided that

a straight applicability of this approach was impossible because of the computational

time per slice but also because the original approach has been implemented so far only

for 2D images, we have adapted the whole method to handle MR brain volumes. First,

low-resolution and high-resolution coupled dictionaries were constructed by randomly

sampling 3D patches from previously preselected tissue regions in low-resolution and

high-resolution images. Then, a multi-scale edge filtering, followed by a dimensional-

ity reduction, are performed on both the low-resolution image and the low-resolution

dictionary. Afterwards, the low-resolution image is described as a sparse combination

of the patches in the low-resolution dictionary. Finally, the obtained sparse vector

is projected onto the high-resolution dictionary to generate the high-resolution recon-

struction.

The main differences between our proposal and those from Yang et al. [133] and Zeyde

et al. [137] are: an appropriate missing edge analysis for MR images, that uses 3D

multi-scale Sobel filters and which acts as an adequate sparsifying transform of the

brain boundaries information (the information of interest); a knowledge-driven patch

selection criteria, based on previous segmentations of brain tissues, that allows to

construct semantic-based dictionaries from brain MR images; and the selection of non-

overlapping patches for local reconstruction, which greatly reduces the computational
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reconstruction time. We will show that the precision of brain tissue segmentation can

be improved by applying this technique, furthermore, increasing the accuracy of brain

morphometrical tasks. The proposed method was also compared with a state-of-the-

art approach that performs non-local MRI upsampling [88], showing that our proposal

produces better results, both in accuracy and execution time. Finally, the method

was evaluated in a real scenario: a morphometric study of pathologic subjects versus

controls, indicating that both the original and reconstructed images generate a very

similar statistical map in a voxel-based morphometry study.

The rest of the chapter is organized as follows. Section 3.2 introduces some generalities

about sparse representations, while the mathematical formulation of the SR problem

is presented in Section 3.3, and the different stages of the proposed methodology are

detailed in Section 3.4. Section 3.5 proposes an extensive validation on different brain

MR datasets, and the discussion presented in Section 3.6 concludes the paper.

3.2 Sparse Representations in Image Processing

Image analysis, from its beginning, has gathered concepts from many different do-

mains [56]. Recently, several techniques have exploited the fact that it turns out to be

much more difficult to perform an analysis at the level of the whole image structure

than at the level of its parts, a fundamental idea that comes from the domain of neuro-

sciences [95]. Briefly stated, Olshausen and Field developed a learning method under

the assumption that information is somehow sparsely coded. This method decomposes

an image into a set of parts (atoms) that are localized, oriented and frequency band-

limited, as performed by the primary visual area V1 of mammalian brains. Based on

Barlow’s principle of redundancy reduction [8], the representation searches for those

atoms with the largest statistical independence, resulting in non-orthogonal elements

that cover the space and that grouped together constitute a dictionary, i.e. the basic

code behind semantics.

Different image analysis approaches, such as non-negative matrix factorization [79]

or sparse and redundant representations [95], use this assumption at their very base.

These two methods, in particular, identify the constituent parts of a scene and then,

using some of them, the same scene or similar ones may be accurately reconstructed.

These parts, denoted as basis functions or atoms, are usually arranged in overcom-

plete dictionaries with a larger number of elements than the effective dimensionality

of the input space, thereby representing a wider range of image phenomena. From

this perspective, it can be assumed that there exists a random generation machine

M that returns images following a prior distribution P (x), which is defined by the

representation coefficients (see Appendix B).
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3.3 Super-Resolution of Brain MR Images

The super-resolution problem can be mathematically stated as follows. Given an origi-

nal high-resolution imageX ∈ Rz (represented as a vector of z pixels), its corresponding

low-resolution version is denoted as Y ∈ Rq (with q < z), where the relation between

the two images can be modeled as

Y = LMBX (3-1)

where B : Rz → Rz is a linear (blurring) filter and LM : Rz → Rq is the down-sampling

operator (by a factor M). B attenuates high-frequency image information, while LM

is a decimation operator (defined as taking each Mth value starting from zero in each

dimension). This means that the observed low-resolution image Y is a blurred and

downsampled version of X.

In the single image super-resolution problem, the goal is to approximately recover a

high-resolution image X̂ ∈ Rz given its blurred and down-sampled version Y , such

that X̂ ≈ X. To obtain a feasible solution to this problem, we have chosen to work

at the level of small patches and to apply the sparse representation framework, aiming

to represent each patch from the images by using a linear combination of some atoms

from a dictionary.

Denote as Rc : Rq → Rn the operator that allows to extract a low-resolution patch

pcY = RcY ∈ Rn of size 3
√
n× 3

√
n× 3

√
n from the image Y around location c = (i, j, k).

With the sparse generative model, each patch pcY can be projected over the dictionary

Dℓ ∈ Rn×a, which characterizes the low-resolution patches. This projection produces

a sparse representation of pcY via αc ∈ Rn, namely

pcY = Dℓα
c

where ∥αc∥0 ≪ n.

The corresponding high-resolution patch pdX = SdX ∈ Rm, with size 3
√
m× 3

√
m× 3

√
m

(where m = nM3), is then extracted from the image X around the corresponding

location d = Mc. Applying again the sparse generative model we have

pdX = Dℏα
d

where Dℏ ∈ Rm×a is the dictionary that characterizes the high-resolution patches, and

is coupled to Dℓ through the relation Dℓ = LMBDℏ. This means that each atom in Dℏ

has its corresponding low-resolution version in Dℓ and viceversa. Given the relation

between Dℓ and Dℏ, and c and d, it can be assumed that the sparse representation of a

low-resolution patch in terms of Dℓ can be directly used to recover the corresponding

high-resolution patch from Dℏ, namely, thar αc = αd.
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With this in mind, the reconstructed high-resolution image X̂ can be built up by

applying the sparse representation to each pcY and then using the estimated αc with

Dℏ to obtain each p̂dX , which together form the image X̂.

3.3.1 Dictionary Considerations

As mentioned in Appendix B, the sparse representation approach is based on the as-

sumption that the dictionaries Dℓ and Dℏ are overcomplete, with more atoms than the

signal dimensions, allowing to represent a wide range of signal phenomena. However,

the choice of an optimum dictionary for a given task, despite many good approxi-

mations proposed so far, can still be considered as an open problem. In particular,

Yu et al. [136] indicates that, for obtaining precise and stable sparse super-resolution

estimates, the chosen dictionaries should meet some necessary qualitative conditions:

• Sparsity: Dℏ provides a sparse representation for pdX .

• Recoverability: The dictionary atomsDℏ
a have non negligible norms ∥UDℏ

a∥2 ≫
0, where U represents a degradation operator, in this case U = LMB.

• Stability: The transformed dictionary Dℓ = LMBDℏ is incoherent enough, in

the sense that the columns in Dℓ are not too similar between them.

3.4 Proposed Methodology

The proposed method consists of two separate stages. First, the coupled low-resolution

and high-resolution dictionaries must be constructed from training images (Figure 3-

1). Then, a two-step reconstruction algorithm is applied to a new low-resolution image

to recover its estimated high-resolution version. This strategy makes use of a local

model with the sparse prior to recover lost high-frequencies in a patch-by-patch basis

(Figure 3-2 in page 43), followed by a global correction which removes discontinuity

effects and ensures consistency and naturalness of the final result (Figure 3-3 in page

43). The complete super-resolution process is summarized in Algorithm 1.

3.4.1 Dictionary Construction

Dictionaries are constructed (as depicted in Figure 3-1) starting from a training set,

composed by some high-resolution images {Xj}j. The corresponding low-resolution

image set {Y j}j is constructed by blurring and down-sampling, by a factor M , each

training image (where Y j = LMBXj). Finally, the upsampled set {Y j
X}j is constructed

by scaling-up back again each low-resolution image to the original high-resolution size



40 3 Single-image Super-Resolution of Brain MR Images

Algorithm 1 Image SR via Patch-based Sparse Representation

Require: semantic-based dictionaries Dℏ and Dℓ, a low-resolution image Y

Upsample low-resolution image Y by YX = HMY

Apply the multi-scale edge analysis on YX (Equation 3-2 in page 41)

for each patch pdYX
of YX , at locations d taken starting from the anterior-upper-left

corner do

Solve the optimization problem for pdYX
(find αc through Equation 3-3 in page 42)

Generate the high-resolution patch with p̂dX = Dℏα
d

Place the patch p̂dX into the high-resolution image X̂0

end for

Apply the discontinuity correction method (Equation 3-5 in page 44) to find the

closest image (X̂) to X̂0 which satisfies the reconstruction constraint (Equation 3-4

in page 44)

return the super-resolution image X̂

Figure 3-1: Illustration of low- and high-resolution dictionary construction.

using HM , the upsampling operator implemented as a bicubic interpolator (where
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Y j
X = HMY j).

As proposed by Zeyde et al. [137], the high-resolution images are processed to obtain

only the high-frequency information, by using the upsampled images to remove their

low-frequencies through F j = Xj − Y j
X . On the upsampled images, the preprocessing

step that we propose involves a multi-scale edge analysis, where a series of 6 different

filters (Sobel kernels, size 3×3×3 and 5×5×5, in x, y and z directions) are applied to the

upsampled image set {Y j
X}j. In brain MR images, this multi-scale edge analysis make

explicit certain aspects of the missing information, namely, boundaries with structural

regularity and directionality. The Sobel operator combines a perpendicular smoothing,

denoted as h3 for size 3×3×3 and h5 for size 5×5×5, with a simple central difference,

denoted as h′
3 and h′

5, respectively:

h3(−1) = 1; h3(0) = 2; h3(1) = 1;

h′
3(−1) = 1; h′

3(0) = 0; h′
3(1) = −1;

h5(−2) = 1; h5(−1) = 4; h5(0) = 6; h5(1) = 4; h5(2) = 1;

h′
5(−2) = 1; h′

5(−1) = 2; h′
5(0) = 0; h′

5(1) = −2; h′
5(2) = −1;

With this definitions, the 6 different kernels applied for the multi-scale image analysis

have the form:

Ef1 = h′
3(x)h3(y)h3(z), Ef4 = h′

5(x)h5(y)h5(z)

Ef2 = h3(x)h
′
3(y)h3(z), Ef5 = h5(x)h

′
5(y)h5(z) (3-2)

Ef3 = h3(x)h3(y)h
′
3(z), Ef6 = h5(x)h5(y)h

′
5(z)

where x, y and z correspond to a certain location within the image volume. With these

kernels, 6 different filtered images (Ef1Y
j
X to Ef6Y

j
X) are obtained.

Prior knowledge related to brain tissues is introduced at this stage by processing also

the high-resolution images {Xj}j with standard medical image processing tools, which

remove the skull and skin, and produce binary image segmentations of the three brain

tissues (gray matter Xj
GM , white matter Xj

WM and cerebrospinal fluid Xj
CSF ).

Following the preprocessing tasks described before, Dℓ and Dℏ dictionaries are con-

structed by collecting image patches only in a predetermined number of random image

locations d (arranged in a set Φ) from the {Y j
X}j images. The working area is re-

stricted to the voxels belonging to a (2-voxel) dilated version of the binary gray matter

segmentations {Xj
GM}j, thereby working with patches that mainly belong to the inter-

faces between tissues (WM-GM or GM-CSF), i.e., with important edge information.

At each location d of the high-frequency image F j, a patch pdX of size 3
√
m× 3

√
m× 3

√
m

is extracted, while the corresponding low-resolution patches are extracted from the
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filtered images (Ef1Y
j
X to Ef6Y

j
X), at the same location and with the same size. Low-

resolution patches are then concatenated into one vector p̃dYX
of length 6m. Then, the

high-resolution dictionaryDℏ is built up by collecting together all patches {pdX}d, d ∈ Φ,

and the low-resolution dictionary D̃ℓ is comprised of all patches {p̃dYX
}d, d ∈ Φ.

Finally, the dimensionality of D̃ℓ may be reduced to speed up the subsequent compu-

tations, given the intrinsic redundancy of the multi-scale edge analysis (as 6 different

filters are applied to the same image, resulting in complementary but redundant in-

formation of the image edges). For doing so, a Principal Component Analysis (PCA)

is applied to this matrix, searching for a set of projection coefficients that represents

at least the 90% of the original variance. With the selected coefficients, a projection

operator P ∈ Rml×6m can be defined as the one that transforms the patch p̃dYX
∈ R6m

to its reduced feature vector pdYX
∈ Rml , that is to say, pdYX

= Pp̃dYX
. All patches pdYX

are colected together to form the reduced low-resolution dictionary Dℓ, whereby the

number of atoms in the dictionary has not changed.

3.4.2 Local reconstruction by sparsity

Once the dictionaries Dℓ and Dℏ are constructed, the next stage is related with the

estimation of a high-resolution version X̂ from a given low-resolution image volume Y .

The reconstruction stage involves two steps: first, a local reconstruction is made for

each patch, and then, a global image regularization is performed.

First, the low-resolution image needs to be preprocessed to extract the edge features.

So, Y is scaled up by a factor of M using HM , resulting in YX . This upsampled image

is multi-scale filtered, as described before (Equation 3-2), leading to 6 images Ef1YX

to Ef6YX .

Then, the local reconstruction step works at the level of patches in the upsampled

image, as depicted in Figure 3-2. The filtered images Ef1YX to Ef6YX are divided

into a grid of regular image patches, and the feature information that corresponds to

the same location d is concatenated to form a patch vector p̃dYX
. Each patch vector is

multiplied by the projection operator P, for dimensionality reduction, resulting in pdYX
.

Then, a sparse representation for each reduced patch vector pdYX
is found by solving

αd = argmin
α

λ∥α∥1 +
1

2
∥Dℓα− pcYX

∥22 (3-3)

where λ balances sparsity of the solution and approximation fidelity (see [16, 44] for

additional details). The αd vector obtained is then multiplied by the Dℏ dictionary to

obtain the reconstructed patch p̂dX . Finally, each reconstructed patch is placed in the

corresponding location d of the high-resolution image X̂0.
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Figure 3-2: Illustration of patch-based local super-resolution reconstruction.

3.4.3 Global regularization by back-projection

Figure 3-3: Illustration of global regularization.

As the local reconstruction process is locally-oriented and completely independent, no

continuity conditions are imposed in the boundaries between patches. The entire high-

resolution image X̂0 (produced by the local sparse representation approach) should thus

be further regularized and refined by using the reconstruction constraint (Equation 3-
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1). A simple implementation of this idea [65,133] consists in back-projecting the error

as in computerized tomography, through the calculation of

X∗ = argmin
X

∥X −X0∥ s.t. LMBX = Y (3-4)

The solution to this optimization problem (illustrated in Figure 3-3) can be roughly

described as an iterative calculation of the residual image (difference between the re-

constructed and original low-resolution images), which is then convolved with a back-

projection kernel, warped back into the super-resolution frame (upsampling) and finally

used to update the high-resolution estimated image. This process can be written as

X̂t+1 = X̂t + (HM(Y − LMBX̂t)) ∗ p (3-5)

where X̂t is the estimate of the high-resolution image after the t-th iteration, p is the

back-projection filter (closely related to the blurring filter B) and ∗ is the convolution

operator. This process is iteratively repeated until the Euclidean norm of the difference

between consecutive images is less than a given µ. A detailed description and analysis

of this scheme and its convergence can be found in [19,65].

3.5 Experimental Results

To demonstrate the benefits of applying the proposed SR approach to structural 3D

brain MR images, we have designed an extensive set of validation experiments, divided

in four parts. In the first one, aspects related with the process of dictionary construction

were studied and validated. Then, with the appropriate dictionaries, we studied the

influence of different parameters in the SR proposed scheme. Once the parameters of

our complete approach are tuned, we performed a comparison with recently proposed

methods for super-resolution of natural and MR images. Finally, we investigated the

influence of the proposed approach in common medical post-processing tasks.

3.5.1 Implementation Details

The image super-resolution algorithm has been implemented in MATLAB R14, running

on a Linux PC with 2 Intel Quad Core i7 at 3.07GHz and 24GB of RAM, and using the

SparseLab1 library that provides a set of solvers for the optimization problem. From

this library, we have chosen the Basis Pursuit solver, designed to find an approximated

solution to the optimization problem of Equation 3-3. Other optimization toolboxes,

1http://sparselab.stanford.edu/
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such as SPAMS (SPArse Modeling Software)2 could also be used, however, we have

experienced reduced computational times (up to 78% less) using the SparseLab toolbox

on the same Linux machine.

We have chosen to use the Basis Pursuit solver because it is a kind of swap-down

approach, which starts from a sort of full model which is iteratively improved by swap-

ping useless elements with new useful ones, guided by an optimization goal. Matching

Pursuit approaches, in contrast, add one element at a time, applying a simple rule

repeatedly. In initial experiments, solvers based on Matching Pursuit (MP, OMP,

StOMP) did not converge for our approach, while the Basis Pursuit solver converged

in few iterations.

The linear filter B was implemented as the convolution with a Gaussian kernel of size

3 × 3 × 3 and standard deviation 1. In spatial domain, the best way to approximate

a continuous signal is the use of a base of sinc functions. However, in practice, it is

impossible to obtain an actual sinc function since it requires an infinite support. As

the truncated version introduces a ringing pulse in the frequency domain, it is then

quite frequent to decently approximate the sinc function with a Gaussian (Normal)

distribution or even a triangle, with finite extents and weights greater than or equal

to zero. On the other hand, the downsampling operator LM implies only taking each

Mth value starting from zero in each dimension. The Gaussian blurring operator was

firstly used, followed by the subsampling operator. The combination of these two

processes (in this order) is known as decimation, and it guarantees anti-aliasing after

the downsampling. These operators are commonly used in SR approaches to describe

the observation model of the image [44,109,133], as it accounts for degradation effects

and sub-sampling. For upsampling, the HM operator was implemented as a bicubic

spline interpolator. The main advantages of using splines are their smoothness, their

robustness to noise and their approximation accuracy for they are considered as discrete

representations of a continuous function. Also, the magnification factor was set to 2,

with a patch size of 3× 3× 3 in low-resolution and 6× 6× 6 in high-resolution.

For all experiments, the λ parameter was set to 0.01. A sensitivity analysis for this

parameter showed that values between 0.01 and 50 × dim(feature patch) in the local

reconstruction only generated a variation of about 0.0075 in the root mean squared

error and so of 0.1651 dB in the peak signal-to-noise ratio. These variations show the

small dependence of the problem on this parameter, so we decided to use 0.01 as had

already been reported in the literature [133].

2http://www.di.ens.fr/willow/SPAMS/
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3.5.2 Brain MR Data Sets

To evaluate the super-resolution algorithm we used different brain MR data sets, in-

cluding simulated and real images of normal and pathologic subjects.

• Base data set: Twenty-nine T1-weighted brain MR images were selected as the

evaluation data set. Volumes were acquired in a 3 Tesla General Electric Signa II

scanner, at the Alzheimer’s Research Center of Fundación Reina Sof́ıa in Madrid,

using a SPGR sequence in sagittal view, with a slice thickness of 1.0mm, a slice

dimension of 512 × 512 and pixel size of 0.469mm × 0.469mm. The number of

slices per volume varies between 144 and 168. The data set includes images from

control subjects, as well as patients suffering from mild cognitive impairment

(MCI) and Alzheimer’s disease.

• BrainWeb Simulated Brain Database: Simulated brain MRI data was ob-

tained from the BrainWeb [27] digital brain phantom3, maintained by The Mc-

Connell Brain Imaging Centre at Montreal Neurological Institute. The simulation

provides volumes acquired in the axial plane with slice dimension of 181 × 217

and 1mm2 resolution. For evaluating with different slice thicknesses, we selected

interslice distances of 1mm and 3mm, with a number of slices for each volume

of 181 and 60, respectively. For analysis of noise influence, we selected noise

percentages of 1%, 3%, 5%, 7% and 9%; while for testing influence of intensity

inhomogeneities we selected INU (Intensity Non-Uniformity) percentages of 20%

and 40%.

• MCI data set: Forty T1-weighted brain MR images comprise this data set

used for a statistical study in MCI, with results already reported [3]. Volumes

were acquired in a 3 Tesla General Electric Signa II scanner, at the Alzheimer’s

Research Center of Fundación Reina Sof́ıa in Madrid, using a FSPGR sequence in

axial view, with a slice dimension of 512×512, a pixel size of 0.469mm×0.469mm,

a slice thickness of 1.0mm and 158 as the number of slices per volume. The data

set includes images from 18 control subjects and 22 patients suffering from MCI.

• Multicenter data set: Eight images were collected from two different centers

and scanners. At Hospital Internacional Ruber (Center 1) in Madrid, 5 volumes

were acquired in a 3 Tesla General Electric Genesis Signa scanner, using a 3D

SPGR sequence in axial view, with a slice thickness of 1.0mm, a slice dimen-

sion of 512 × 512, a pixel size of 0.469mm × 0.469mm and a varying number of

slices (between 98 and 176). At Hospital 12 de Octubre (Center 2) in Madrid,

3available at http://mouldy.bic.mni.mcgill.ca/brainweb
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3 volumes were acquired in a 1.5 Tesla Philips Achieva scanner, using a SENSE

SPGR sequence in axial view, with a slice dimension of 512× 512, a pixel size of

0.357mm× 0.357mm, a slice thickness of 1.0mm and 150 as the number of slices

per volume.

3.5.3 Volume Processing Tools

For the base, BrainWeb and multicenter data sets, we applied the Brain Extraction Tool

(BET) [119] to every volume, aiming at leaving only the brain tissues, i.e. removing the

skull and skin. After skull stripping and super-resolution reconstruction, we used the

FMRIB’s Automated Segmentation Tool (FAST) [138] to segment the three main brain

tissues (white matter, gray matter, cerebrospinal fluid), and obtain the corresponding

binary segmentations.

For the MCI data set, skull stripping, brain tissue segmentation and statistical analysis

have been performed using the tools provided in the Statistical Parametrical Mapping

(SPM) software toolkit. Then, voxel-based morphometry (VBM) was performed using

Diffeomorphic Anatomical Registration Through Exponential Lie Algebra (DARTEL)

[4].

3.5.4 Quantitative Performance Measures

To quantitatively evaluate the performance of the reconstruction over the different

brain data sets, we used four different metrics for comparison of the reconstructed

images with the original ones:

• Root Mean Square Error (RMSE): quantifies the pixel intensity differences

between the original high-resolution image (A) and its corresponding super-

resolution reconstruction (B), using

RMSE(A,B) =

√
1

|Ω|
∑
k∈Ω

|bk − ak|2

where Ω is the brain region, ak and bk are the image intensities at position k.

• Peak Signal-to-Noise Ratio (PSNR): measures the reconstruction accuracy,

expressed in terms of the logarithmic decibel scale. The PSNR was calculated as

PSNR(A,B) = 10 · log10
(

MAX2
I

RMSE(A,B)2

)
where MAXI is the maximum pixel value. Typical values for the PSNR are

between 25 dB and 50 dB, where higher is better.
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• Structural Similarity Index (SSIM) [128]: measures the similarity between

two images, in a way which is more consistent with the human visual system and

perception. The SSIM was calculated on image windows (size 8× 8× 8), where

the similarity between windows a and b was measured as

SSIM(a, b) =
(2µaµb + c1)(2σab + c2)

(µ2
a + µ2

b + c1)(σ2
a + σ2

b + c2)

where µa and µb are the mean values of images a and b, σa and σb are the standard

deviation of images a and b, σab is the covariance of a and b, c1 = (k1L)
2 and

c2 = (k2L)
2 (with L being the maximum pixel value, k1 = 0.01 and k2 = 0.03).

The resultant SSIM index is a decimal value between -1 and 1, where 1 is only

reachable in the case of two identical images.

• Jaccard similarity index [67]: measures the overlap (agreement) between two

binary images A and B, by taking the ratio between the size of their intersection

and the size of their union:

J(A,B) =
|A ∩B|
|A ∪B|

This metric yields values between 0 and 1, where 0 means complete dissimilarity

and 1 stands for identical images.

3.5.5 Tests on Dictionary Construction

The dictionary construction step described in Subsection 3.4.1 requires some analyses

in order to verify that the dictionaries Dℓ and Dℏ comply with the conditions described

in 3.3.1. Also, it is important to explore the influence of important parameters such as

the dictionary size and the sampling strategy.

For all experiments in this paper (unless otherwise stated), dictionaries were con-

structed using images only from the base data set, by sampling 150 random image loca-

tions from 28 images, resulting in 29 complete dictionaries of 4200 atomic patches. With

this configuration, each dictionary was constructed in about 18 minutes. The multi-

scale edge analysis on the low-resolution images leads to a atom size of 6m = 1296.

With this, Dℓ size is 1296× 4200, while Dℏ size is 216× 4200.

Atom Correlation - Stability Condition

Correlation of atoms in the dictionaries Dℏ, D̃ℓ and Dℓ was evaluated by randomly

dividing each dictionary in two different groups of atoms and then performing a one-by-

one comparison of each atom in one group with all atoms in the other group, using the
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Pearson’s correlation coefficient. The correlation coefficient was computed assuming

atoms A and B as random variables, and using

ρA,B =
cov(A,B)

σAσB

The experiment was repeated several times, at least 20 times per dictionary, and

correlation values obtained at each repetition were averaged. The results obtained

reveals very low correlation values for all dictionaries: Dℏ (0.00001 ± 0.1524), D̃ℓ

(0.0007± 0.3287) and Dℓ (−0.00002± 0.3849).

Projection Sparsity - Sparsity Condition

The sparse representation approach (Equation B-2) was used to reconstruct a set of

randomly sampled patches from high-resolution images with different Dℏ dictionaries,

aiming to verify the sparsity of the projection vector α. In average, the optimization

method generates α vectors with a number of nonzero values between 400 and 850,

representing the 10%− 20% of the original dictionary atoms.

Reconstruction with Different Dictionaries - Recoverability Condition

First, a small experiment with a single dictionary was performed in order to find

the corresponding lower bound in the condition ∥UDℏ
a∥2 ≫ 0. Given that, for each

dictionary atom, UDℏ
a = Dℓ

a, and the multi-scale edge information is the one that

composes the low-resolution dictionary, we have obtained edge values that range from

0 to 10000 at each dictionary atom. The minimum norm value for these atoms results

in about 3000, corresponding to the 30% of the original range, and being about three

orders of magnitude greater than zero, which corroborates the recoverability condition

of our dictionaries.

Then, the local representation step (Subsection 3.4.2) was applied to super-resolve a set

of randomly sampled patches from low-resolution images using several Dℓ dictionaries,

with the objective of verifying that the different dictionaries could produce almost the

same reconstruction for a given patch. The different high-resolution reconstructions

obtained for a fixed patch were compared using the RMSE, showing in average a

variation around 0.4% in the reconstruction error. Figure 3-4 presents an example of

the obtained results, showing a slice of the low-resolution patch, the corresponding high-

resolution patch, and some SR reconstructions obtained with different dictionaries.

Differences between the obtained reconstructions are hardly noticeable, denoting that

the dictionary construction process do not bias or deviate the SR results.
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(a) (b) (c) (d) (e) (f)

Figure 3-4: Comparison of local super-resolution of a low-resolution patch using several

dictionaries. (a) low-resolution patch, (b) original high-resolution patch,

(c) - (f) high-resolution reconstructions with different dictionaries.

Dictionary Size

The number of atoms in dictionaries Dℓ and Dℏ has impact on two important aspects

of the proposed SR method: reconstruction accuracy and reconstruction time. Larger

dictionaries include more image patterns, therefore they are entailed with much more

information samples, yielding more accurate super-resolved images. Side effects of

using a large number of atoms are that both the computational cost of solving the

optimization problem and the time involved in patch extraction increase. Here, we

evaluate the effect of dictionary size on our SR approach. Two different strategies were

tested: number of used images and number of patches sampled per image. First, we

fix a number of 150 patches per image, and construct 5 different dictionaries using

1, 2, 5, 10 and 20 different images, obtaining dictionaries of 150, 300, 750, 1500 and

3000 atoms. Then, we fix to 28 the number of used images, and construct 5 different

dictionaries by extracting 10, 25, 50, 75 and 100 patches per image, yielding dictionaries

of 280, 700, 1400, 2100 and 2800 atoms.

In terms of dictionary construction times, for the first strategy this value ranges from 1

minute for a 150-size dictionary to 18 minutes for a 3000-size dictionary, while for the

second strategy the time ranged from 20 minutes for a 280-size dictionary to 24 minutes

for a 2800-size dictionary. Building times for the second strategy included the image

loading time. This is why times were much less variable in the second strategy when

comparing with the first. In terms of image reconstruction times, smaller dictionar-

ies, such as those with 150 and 280 atoms, yielded reconstructions in an average time

of 11.59 minutes, while larger dictionaries, such as those with 2800 and 3000 atoms,

yielded image reconstructions in an average time of 19.63 minutes. Accuracy recon-

struction measurements (RMSE / PSNR / SSIM) have little but possibly significant

variations among all dictionary sizes: for smaller dictionaries these values were about

3.95 / 36.18 dB / 0.957, while for larger dictionaries these values were in average 3.82

/ 36.49 dB / 0.958.
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Atom Sampling Strategy

A main contribution of our proposal with respect to the dictionary construction was

the introduction of prior knowledge to determine the image region where the dictio-

nary atoms will be extracted from. As mentioned in Subsection 3.4.1, a previous

GM segmentation of the brain volume was morphologically dilated using a 2-voxel-size

structuring element, and patches were randomly sampled from this region. Provided

that an usual GM segmentation results in a tissue width of about 3 to 4 voxels, the

dilation operation transforms this width into 7 to 8 voxels, so that most of the atoms

mainly belong to the interfaces (boundaries) between GM-WM and GM-CSF. To in-

vestigate the impact of this sampling strategy we have generated SR reconstructions

using our segmentation-based dictionaries and also using dictionaries sampled from

the whole image, with different sizes (number of atoms per dictionary between 150 and

4200). When the dictionary size was set to 150, a maximum PSNR difference of 0.5 dB

was found between our segmentation-based dictionaries and whole image based dictio-

naries, and as long as the number of patches in the dictionary increased, this difference

decreased. In contrast, with dictionaries of 4200 patches, no difference between both

approaches was observed.

Dictionary Construction Strategy

We have chosen to construct dictionaries only by a random sampling of image patches,

in contrast to the current trend of learning smaller dictionaries from a larger set of

sampled atoms, thus obtaining compact and descriptive dictionaries. This can be

seen as a sub-optimal choice. However, in our particular case, training dictionaries

built up from 3D patches takes a considerable time, given the dimensionality of the

patches. To justify this choice, we have downloaded the MATLAB code provided by

Yang et al. [133] for dictionary learning4, and used it to learn dictionaries for our SR

method. With this code, from initial sets of about 10000 3D (vectorized) patches, we

have learned compact dictionaries of 512 patches in about 1.2 hours each, in contrast

with our random sampling, that takes in average 18 minutes per dictionary. In terms

of accuracy, both SR reconstructions, from a learned dictionary and from a sampled

dictionary, perform similarly, with very little differences in PSNR (0.21%), RMSE

(0.46%) and SSIM (0.02%) values.

4http://www.ifp.illinois.edu/ jyang29/ScSR.htm
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3.5.6 Tests on the Super-Resolution Approach

Once the important parameters for dictionary construction were tested and fixed, the

next step is to validate the proposed super-resolution approach. Important aspects to

take into account in this validation are related with the influence of image artifacts and

features (noise, intensity non-uniformity, slice thickness), and SR parameters such as

scaling factor, non-overlaping local reconstruction, Sobel multi-scale analysis and PCA

dimensionality reduction.

Noise and Intensity Non-Uniformity (INU) Sensitivity

The proposed super-resolution approach did not take into account image artifacts such

as noise or intensity inhomogeneities. Overall, a reconstruction procedure aims to get

data the more similar to artifact free data, however the intention in our particular MR

application is to reconstruct images with a better resolution than that delivered by

a MR scanner, but without exposing the patient to larger acquisition times. We are

not specially focused in improving the reconstructed image by removing noise and/or

correcting intensity non-uniformities. However, it is important to identify the impact

of such factors in the final reconstruction result. To do so, simulated brain MR images

with different noise and INU percentages were selected from the BrainWeb database,

and corresponding low-resolution versions of each were constructed by blurring and

downsampling with a factor of 2. Then, low-resolution noisy images were denoised

using MNLM3D [30] and super-resolved with our approach, a nearest-neighbor inter-

polator, a bicubic interpolator and the non-local approach of Manjón [88] (without

the denoising step), and finally compared with the original image with 0% noise and

0% INU. Tables 3-1 and 3-2 presents the obtained accuracy reconstruction values in

terms of RMSE, PSNR and SSIM. These tables shows that our approach performs

better in all cases than the nearest-neighbor and bicubic interpolation and also than

the non-local approach [88].

Influence of Slice Thickness

As mentioned in Section 3.1, the partial volume (PV) effect depends directly on the

spatial resolution of the acquisition. In particular, the PV effect is stronger as the

inter-slice distance increases. To study the effect of slice thickness on the proposed

super-resolution algorithm, two simulated brain MR images with different inter-slice

distances were selected from the BrainWeb database. The original size of the vol-

umes (see Subsection 3.5.2) was modified to odd numbers (180 × 216 × 180 for 1mm

thickness, 180 × 216 × 60 for 3mm thickness) to facilitate downsampling and further

super-resolution reconstruction. Again, the low-resolution versions of these images were
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% noise 0% 1% 3% 5% 7% 9%

Nearest-

neighbor

interpolation

RMSE 17.12 17.36 18.89 19.63 20.29 22.23

PSNR (dB) 23.40 23.18 21.90 21.18 20.75 19.61

SSIM 0.895 0.803 0.635 0.562 0.521 0.490

Bicubic

interpolation

RMSE 14.19 14.64 16.83 18.13 19.11 21.33

PSNR (dB) 25.03 24.66 22.90 21.87 21.26 19.97

SSIM 0.922 0.829 0.657 0.581 0.538 0.505

Non-local

approach

RMSE 13.78 14.17 16.18 17.53 18.57 20.85

PSNR (dB) 25.28 24.94 23.24 22.17 21.51 20.17

SSIM 0.932 0.839 0.668 0.592 0.548 0.514

Proposed

approach

RMSE 11.44 9.55 10.20 10.66 11.37 13.11

PSNR (dB) 26.89 28.37 27.25 26.48 25.78 24.20

SSIM 0.977 0.888 0.709 0.632 0.589 0.560

Table 3-1: Accuracy super-resolution values under influence of noise.

constructed by blurring and downsampling by a factor of 2 each volume, resulting in a

slice dimension of 90×108 pixels, and number of slices per volume of 90 (1mm) and 30

(3mm). Figure 3-5 presents the super-resolution reconstructions obtained for the dif-

ferent slice thicknesses, compared with the corresponding interpolated images. RMSE

/ PSNR values obtained for the bicubic interpolation were 13.7 / 25.4 dB in 1mm and

13.5 / 25.5 dB in 3mm, which were improved by the super-resolution reconstruction

with values of 5.6 / 33.2 dB in 1mm and 10.9 / 27.4 dB in 3mm.

Effect of the Sobel Operator

We have tested the influence of selecting the Sobel operator as feature detector, by

comparing the results obtained with the local reconstruction step (Equation 3-3) over

the 29 brain MR images of the base data set and using three different edge extraction

operators: the first- and second-order derivatives proposed by Yang et al. [133], the

3 × 3 and 5 × 5 Sobel kernels and the 3 × 3 and 5 × 5 Prewitt kernels. Differences

between the three approaches are imperceptible for the human eye, as can be noticed in

Figure 3-6, but in average, the Sobel operator reduces the RMSE in about 30%, when

compared with an standard bicubic interpolation, while the Prewitt operator and the

proposal of Yang et al. [133] only reduces the error in about 26%.

Effect of dimensionality reduction

To test the influence of the dimensionality reduction step in the reconstruction results,

different amounts of PCA coefficients were selected: ml = 12, 51, 116, 193, which cor-
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% INU 0% 20% 40%

Nearest-neighbor

interpolation

RMSE 17.12 19.71 25.04

PSNR (dB) 23.40 21.67 19.54

SSIM 0.895 0.887 0.870

Bicubic

interpolation

RMSE 14.19 17.47 23.48

PSNR (dB) 25.03 22.71 20.10

SSIM 0.923 0.913 0.898

Non-local

approach

RMSE 13.78 16.89 22.92

PSNR (dB) 25.28 23.01 20.31

SSIM 0.932 0.924 0.906

Proposed

approach

RMSE 11.44 14.99 22.40

PSNR (dB) 26.89 24.04 20.51

SSIM 0.977 0.969 0.948

Table 3-2: Accuracy super-resolution values under influence of intensity non-

uniformities.

responds to 1%, 4%, 9% and 15% of the original atom size (1296), respectively. An

analysis of the coefficients obtained after application of PCA, on the different con-

structed dictionaries, reveals that selecting the first 12 coefficients explains 90% of the

original variance, 36 coefficients explains 99% of the original variance, and 100% is

approximatly explained by selecting the first 162 coefficients. The reconstruction algo-

rithm was then tested using a conventional leave-one-out on the base data set, leading

to 29 different experiments, where the dictionary construction process was performed

using 28 images and the reconstruction was performed on the remaining one. Low-

resolution versions of these images were constructed by blurring and downsampling

by a factor of 2 each high-resolution image. Each leave-one-out experiment was then

executed using the different percentages of PCA coefficients, and the obtained results

were compared with a version of the method where no dimensionality reduction was

performed before the super-resolution reconstruction.

Panels (a), (b), (c) and (d) in Figure 3-7 show the evolution in average of each metric

(RMSE, PSNR, SSIM and execution time, respectively). As the charts show, the

larger the number of coefficients the smaller the achieved accuracy (up to a limit,

see Appendix C), even though these differences can be considered as non significant

given the small variations (0.05 in RMSE, 0.1 dB in PSNR, 0.0005 in SSIM, calculated

between 1% and 15% of PCA coefficients). However, the main difference appears in

the reconstruction time, that ranges between 26 minutes for 1% to 92 minutes for 15%.

Compared with a reconstruction without the dimensionality reduction step, the PCA

analysis provides clear benefits, by reducing the execution time to nearly 3.7% of the
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(a) (b) (c)

(d) (e) (f)

Figure 3-5: Results of the reconstruction with 1mm (top) and 3mm (bottom) slice

thicknesses. Column 1 (a),(d): Bicubic interpolation of low-resolution

image. Column 2 (b),(e): Super-resolution reconstruction. Column 3

(c),(f): Original high-resolution image.

original time and the reconstruction error in about a 4%.

Influence of Non-Overlapping Local Reconstruction

An important contribution of the proposed approach is the use of non-overlapping

patches when solving the optimization problem per patch, whereby the scheme be-

comes fully-parallelizable. The introduction of this strategy allows to process the

entire volume in a reduced time. To evaluate the real impact of this selection, we

have compared our proposed approach with a modified version which uses a 1-voxel

overlap per patch (resembling [133]). In overlapping regions, multiple reconstruction

values are just averaged to obtain the final reconstruction. All images in the base data

set were super-resolved using both strategies, and reconstruction time and accuracy

were recorded and compared. RMSE / PSNR / SSIM values for the non-overlapping

approach were in average 4.17 / 36 dB / 0.967, and slightly better values were ob-

tained using the overlapping approach: 4.14 / 36.06 dB / 0.967. However, the main

difference is observed in the reconstruction time, which was about 26 minutes for the
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(a) (b) (c) (d) (e)

Figure 3-6: Comparison of the local high-resolution reconstruction using different edge

extraction operators. Detailed views of (a) bicubic interpolation of low-

resolution image, (b) local reconstruction with the proposal of [133], (c)

local reconstruction with Sobel operator, (d) local reconstruction with Pre-

witt operator, and (e) original high-resolution image. The differences be-

tween the three proposals result imperceptible for the human eye.

non-overlapping approach and 75 minutes in average for the overlapping. Given this

result, we can state that our non-overlapping approach reconstructs image versions as

accurate as those obtained with the overlapping strategy, in a considerably smaller

interval of time, and with the side effect that the reconstruction is fully-parallelizable

in this case.

Influence of the Scaling Factor

In all experiments, the scaling factor was set to 2. However, it could be interesting to

test the effect of using a larger factor, given that it implies that more high-resolution

complex patterns are associated to a very simple low-resolution patch. To do so, we

have set the scaling factor to 4, and with this we constructed low-resolution versions of

the base data set high-resolution images, resulting in an in-plane resolution of 128×128

and a number of slices ranging from 36 to 42. Afterwards, we have constructed new

dictionaries using this low- and high-resolution images, following the same procedure

(random sampling of 150 patches per image, using 28 images at a time, obtaining

dictionaries of 4200 atoms) and the SR approach have been applied to the low-resolution

images in a leave-one-out fashion. Figure 3-8 presents an example of the reconstruction

using a scaling factor of 4, and the comparison with a bicubic interpolation and the

original high-resolution image. Using a bicubic interpolation on the low-resolution

images, the accuracy reconstruction values (RMSE / PSNR / SSIM) obtained were in

average 16.71 / 24.13 dB / 0.879, while with our approach we achieved average values
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(a) (b)

(c) (d)

Figure 3-7: Comparison of super-resolution reconstruction with different amounts of

PCA coefficients (1%, 4%, 9% and 15%) and without dimensionality re-

duction (noPCA), in terms of (a) RMSE, (b) PSNR (in dB), (c) SSIM,

and (d) reconstruction time (in hours).

of 10.93 / 27.93 dB / 0.887. This represents a reduction in the reconstruction error of

34.6%, and increments in the PSNR of 15.8% and in the SSIM of 0.91%.

Relation between Low-resolution and High-resolution Acquisition

In a different SR experiment, images from the same subject, with different resolutions

(256×256×156 with voxel size 0.94mm×0.94mm×1mm and 512×512×156 with voxel
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(a) (b)

(c) (d)

Figure 3-8: Comparison of super-resolution of a low-resolution image using a scaling

factor of 4. (a) low-resolution image, (b) bicubic interpolation of low-

resolution image, (c) high-resolution reconstruction, and (d) original high-

resolution image.

size 0.47mm× 0.47mm× 1mm) were acquired in the same scan session, with the aim

of comparing the super-resolved image (reconstructed from the low-resolution image)

with the corresponding high-resolution image produced by the MR equipment. When

the resolution is increased in MR, the size of the pixel is reduced, so that the intensity

of the image is also reduced. On the other hand, as long as the detail increases, the

tissues show a different texture (these effects are shown in Figure 3-9). A quantitative

comparison between both images is thus not direct. Panel 3.9(c) shows a slice of

the reconstructed image after our algorithm is applied (using a dictionary constructed

with images of the base data set), and Panel 3.9(d) the corresponding slice of the high-

resolution image. As can be seen, both images are visually very similar in terms of the

brain structures, although the tissue intensities and textures are not exactly the same.

To perform a real quantitative evaluation, a previously downsampled version of the
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(a) (b)

(c) (d)

Figure 3-9: Comparison of super-resolution of a low-resolution image with the cor-

responding high-resolution image acquired from the same subject in the

same scan session. (a) low-resolution image, (b) bicubic interpolation of

low-resolution image, (c) high-resolution reconstruction, and (d) original

high-resolution image.

high-resolution image was super-resolved by applying the proposed methodology (again

with a dictionary constructed with images of the base data set) and also by using a

standard bicubic interpolation. The obtained results are presented in Figure 3-10.

As can be visually noted, the proposed method was able to better reconstruct the

downsampled volume, producing better defined boundaries between tissues. Using the

RMSE and the PSNR, these results were compared with the original high-resolution

image. The proposed method achieved a RMSE of 4.46 and a PSNR of 35.15 dB, while
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the bicubic interpolation results in a RMSE of 11.95 and a PSNR of 26.58 dB. This

represents an increment of about 9 dB and a reduction of 63% in the reconstruction

error by applying our super-resolution algorithm.

(a) (b)

(c) (d)

Figure 3-10: Comparison of super-resolution of a previously downsampled low-

resolution image with the corresponding high-resolution image. (a) low-

resolution image, (b) bicubic interpolation of low-resolution image, (c)

high-resolution reconstruction, and (d) original high-resolution image.

3.5.7 Comparison with Other Approaches

Once our super-resolution approach was tuned, the next step was to compare its perfor-

mance with other interpolation and SR approaches, to clearly identify the advantages
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and improvements introduced. These other methods includes: the 2D SR method pro-

posed by Yang et al. [133], a 3D standard bicubic interpolation and the 3D non-local

approach of Manjón et al. [88].

Comparison with 2D Super-Resolution [133]

The proposed SR approach has some elements in common with the method presented

by Yang et al. [133], although their method has been implemented so far on 2D images.

To demonstrate the impact of the introduced modifications, we have prepared a version

of our approach which super-resolves 2D images, in order to compare against [133],

whose MATLAB code is available on the Web5. In this case, one slice per volume in

the base data set was selected as the high-resolution images, and the corresponding

low-resolutions versions were obtained after blurring and downsampling by a factor

of 2 each slice. Afterwards, 29 different dictionaries were constructed, in our case

by randomly sampling 150 patches per image with 28 images at a time to obtain

dictionaries of 4200 2D patches, and in Yang et al. [133] approach by selecting initial

sets of 100000 patches from 28 images at a time and then learning compact dictionaries

of 512 atoms. Finally, the SR approaches were applied to the 29 low-resolution versions

to generate high-resolution approximations of the slices, and reconstruction results were

compared in terms of accuracy and computational time. In average, the approach by

Yang et al. [133] yielded RMSE / PSNR / SSIM values of 10.12 / 28.24 dB / 0.922,

while our approach obtained more accurate values: 7.46 / 31.12 dB / 0.930. Figure

3-11 presents one of the reconstructed slices with both methods, and the original high-

resolution image as reference. In terms of reconstruction time, in average our approach

takes 151 seconds per 2D image, while [133] takes 72 seconds per image.

Comparison with Standard Bicubic Interpolation

Figure 3-12 presents one slice of the obtained results after applying the proposed

method (using 1% of PCA coefficients) to one brain MR volume of the base data

set, and also the corresponding comparison with a standard bicubic interpolation and

the original image. In the low-resolution image (panel (a)) a series of small blocky

artifacts can be observed in the boundary between the gray matter and cerebrospinal

fluid, specially in the parietal and occipital lobes. These artifacts are not longer present

in the high-resolution reconstruction (panel (b)), indicating that the super-resolution

method yields sharper edges. Detailed views in panels (c) to (f) allow a better visual

comparison and show that boundaries between tissues, which are somehow blocky in

the low-resolution and fuzzy in the bicubic interpolation, have been sharply recovered.

5http://www.ifp.illinois.edu/ jyang29/ScSR.htm
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(a) (b) (c)

Figure 3-11: Comparison of super-resolution results obtained after applying our pro-

posal and the method in [133]. Left: reconstruction produced by [133].

Middle: reconstruction produced by our algorithm. Right: original high-

resolution image.

Differences between the reconstructed and the original high-resolution images are not

visually noticeable, showing that the proposed method does not introduce noise or

other artifacts in the reconstruction.

Each reconstruction and its corresponding interpolated version were compared with the

original high-resolution image using the RMSE, the PSNR and the SSIM. Applying a

standard bicubic interpolation technique, an average PSNR of 25.71 dB was obtained,

together with an average RMSE value of 14.01 and an average SSIM value of 0.94.

The proposed super-resolution algorithm achieved an average PSNR of 36.00 dB, an

average RMSE of 4.17 and an average SSIM of 0.97, representing an increment of about

10.3 dB, an increment of 2.4% in the similarity and a reduction of 70% (p < 0.001) in

the reconstruction error with respect to the interpolated images.

Comparison with a Non-local Approach [88]

Recently, Manjón et al. [88] have proposed a new upsampling method that recov-

ers some of the missing high-frequency information in brain MR images by using an

iterative scheme that combines a data-adaptive patch-based reconstruction with a sub-

sampling coherence constraint. This approach, based on an adaptation of the non-

local means algorithm [17,31], is shown to outperform classical interpolation methods

(nearest neighbor, trilinear, cubic and B-spline interpolation) using synthetic (T1w

BrainWeb digital brain phantom6 [27]) and real brain MR data (T2w low-resolution

and high-resolution images). As the MATLAB source code is freely available on the

6available at http://mouldy.bic.mni.mcgill.ca/brainweb
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(a) (b)

(c) (d) (e) (f)

Figure 3-12: Reconstruction with 4200 dictionary patches from multiple MR brain

images. Top row : (a) low-resolution image, (b) reconstruction by super-

resolution. Bottom row : Detailed views of (c) low-resolution image, (d)

bicubic interpolation of low-resolution image, (e) reconstruction by super-

resolution, and (f) original high-resolution image. Blocky artifacts in

low-resolution image and smoothness in the interpolation have been elim-

inated in the high-resolution reconstruction, obtaining sharper edges as

the ones present in the original image.

Web7, we compared the results obtained with our method to those obtained with the

method by Manjón et al. [88].

Manjón et al. [88] proposal includes two main steps: an initial image denoising using

MNLM3D [30], followed by the super-resolution reconstruction. As our approach does

not includes a denoising step, two different configurations for both methods were tested:

7http://personales.upv.es/jmanjon/reconstruction/upsampling.htm
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first, denoising was disabled in the Manjón et al. [88] approach, allowing to compare

the sparse-based approximation versus the nonlocal-based one; and then, the denoising

step was performed for both methods, to identify the impact of this preprocessing in

the reconstruction results.

The 29 images in the base data set (without any preprocessing) were then reconstructed

using both algorithms: our proposal was performed with 1% of PCA coefficients, while

the Manjón et al. [88] approach was performed without the denoising step; on a Linux

PC with 2 Intel Quad Core i7 at 3.07GHz and 24GB of RAM, and compared in terms of

quantitative measures (RMSE, PSNR, SSIM) and execution time. While our proposal,

in average, achieved RMSE / PSNR / SSIM values of 4.17 / 36 dB / 0.967, the non-

local method obtained an average score of 14.81 / 26.12 dB / 0.945, indicating that

our strategy produces more accurate images with sharper edges. This fact can also be

verified by visually comparing the results obtained by both methods (examples shown

in Figure 3-13). In terms of processing time, our approach takes in average 0.44 hours

(26 minutes) to yield a high-resolution reconstruction, while the non-local technique

takes 0.72 hours (43 minutes).

(a) (b) (c)

Figure 3-13: Comparison of super-resolution results obtained after applying our pro-

posal and the method in [88]. Left: reconstruction produced by the non-

local algorithm [88]. Middle: reconstruction produced by our algorithm.

Right: original high-resolution image.

After this, the 29 images were then preprocessed using the MNLM3D [30] denoising

algorithm, and these images were then reconstructed using both algorithms, in the

same conditions as before. With the denoised images, our approach achieved in average

RMSE / PSNR / SSIM values of 8.25 / 30.3 dB / 0.952, while the non-local method

reaches in average values of 15.39 / 25.64 dB / 0.938. In this case, our proposal also

produces more accurate reconstructions. Figure 3-14 presents an example of the results

on denoised images.
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(a) (b) (c)

Figure 3-14: Comparison of super-resolution results obtained on denoised images with

our proposal and the method in [88]. Left: reconstruction produced by

the non-local algorithm [88]. Middle: reconstruction produced by our

algorithm. Right: original high-resolution denoised image.

3.5.8 Impact on Post-processing Tasks

To place the proposed SR approach in a medical application context, we have tested its

influence in different medical post-processing tasks, such as segmentation, voxel-based

morphometry and multicentric studies.

Impact on Brain Tissue Segmentation

Figure 3-15 illustrates the improvements introduced by the super-resolution method

on brain MR gray matter segmentations, with enlarged views of the low-resolution

MR image and its corresponding high-resolution reconstruction (GM segmentations of

images in Figure 3-12). An ellipse highlights the cortical folds that are misdetected in

the low-resolution version of the image, while in the high-resolution reconstruction these

folds are better delineated. In this particular case, the reconstruction outperforms the

original image in the segmentation task, by detecting completely a convolution (panel

(b)) that is segmented as fractionated in the original image (panel (c)).

Compared with other approaches, such as the bicubic interpolation and the proposal of

Manjón et al. [88], our method allows to obtain more accurate GM segmentations, as

illustrated in Figure 3-16. In terms of the Jaccard index, gray matter segmentation of

reconstructed images in average shows larger overlapping (0.85) with the original image,

compared with the interpolated image (0.75) and the result obtained with the nonlocal-

based reconstruction (0.71), representing an increment of about 9% (p < 0.001).
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(a) (b) (c)

Figure 3-15: Improvement of gray matter segmentation using the proposed method.

Detailed views of (a) low-resolution image, (b) high-resolution recon-

struction, and (c) original high-resolution image. Ellipses highlights the

delineation of cortical folds, which are accurately segmented in the high-

resolution reconstructed image.

(a) (b) (c) (d) (e)

Figure 3-16: Comparison of improvement in gray matter segmentation. Detailed views

of (a) low-resolution image, (b) bicubic interpolation of low-resolution

image, (c) nonlocal-based reconstruction [88], (d) high-resolution recon-

struction, and (e) original high-resolution image. Ellipses in the segmen-

tation highlights the accurate delineation of cortical folds in the high-

resolution reconstructed image.
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Results on a real study of Mild Cognitive Impairment

To evaluate the effect of the proposed approach on morphometric analysis of real clinical

data, we collected a set of 40 high-resolution images, acquired in the axial direction,

which includes 8 normal controls and 22 patients suffering different degrees of MCI

(4 amnestic, 9 non-amnestic and 9 multi-domain). A previous morphometrical study

on this data set [3] (using VBM and DARTEL) has revealed volume reductions in the

parahippocampal gyrus, lingual gyrus and cerebellum for amnestic MCI patients; in

the posterior cingulate gyrus for the non-amnestic MCI group, and in the posterior

cingulate and parahippocampal gyrus in multi-domain MCI. We wanted to reproduce

these results by applying VBM on reconstructed high-resolution volumes, obtained

after applying the proposed method to low-resolution versions (obtained by blurring

and downsampling, volume size: 256× 256× 79) of the original images.

Panel (a) in Figure 3-17 presents slices of the statistical map obtained after VBM

analysis of the original data set (p < 0.01, comparison of control subjects versus MCI

patients), while panel (b) presents the statistical map obtained by using the recon-

structed high-resolution images for VBM analysis. A visual comparison of the regions

with significative differences in both statistical maps, reveals that the VBM analysis

on the reconstructed images produces similar results than VBM applied to the high-

resolution original images.

Influence on Multicentric Studies

To demonstrate the capability of super-resolving images from other centers (differ-

ent scanners) using the previously constructed dictionaries, we have collected a set of

images from two different centers and scanners, as described in Subsection 3.5.2. Low-

resolution versions of these images were constructed by blurring and downsampling

each high-resolution volume. Dℓ and Dℏ dictionaries, constructed using images from

the base data set, were selected for super-resolving the low-resolution images, and the

results were compared with a bicubic interpolation and the original images through the

accuracy measurements (RMSE / PSNR / SSIM). For images from Center 1 the bicu-

bic interpolation reaches average scores of 7.03 / 31.3 dB / 0.977, while our proposal

largely outperforms these results: 2.20 / 41.8 dB / 0.990. A similar behavior has been

observed with images from Center 2, where the interpolation obtains in average 3.15 /

38.4 dB / 0.978 and our approach reaches 1.51 / 44.8 dB / 0.984. Figure 3-18 shows

two examples of the obtained results, each image coming from a different center.
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(a)

(b)

Figure 3-17: Statistical map (p < 0.01) of comparison between control subjects and

MCI patients, obtained using (a) the original and (b) the reconstructed

high-resolution images of MCI data set.

3.6 Discussion

We have presented a powerful technique which reconstructs high-resolution brain MR

images from low-resolution images using a sparse representation. Basically, the missing
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(a) (b) (c)

(d) (e) (f)

Figure 3-18: Reconstruction of images from different centers (different scanners and

acquisition parameters). Top: Example from Center 1, Bottom: Example

from Center 2. (a), (d) low-resolution image; (b), (e) high-resolution

reconstruction; (c),(c) original high-resolution image.

edge information was inferred from a multi-scale edge analysis and used to reconstruct

a high-resolution version by including prior knowledge from high-resolution images.

A sparse representation can be thought of as a decomposition of the input image as

a linear combination of statistically semi-independent image patches, which make up

a dictionary. Low- and high-resolution dictionaries for the reconstruction were built

up by randomly sampling patches from low- and high-resolution images, which were

previously cropped to leave only the three main brain tissues (WM, GM and CSF). The

introduction of the PCA, as a dimensionality reduction technique, allows to project the

data in a new coordinate system which better captures relevant information, whereby
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only few dimensions are enough. The combination of a multi-scale analysis together

with the semantic-based dictionaries and the dimensionality reduction scheme led to a

useful technique that improves the quality of reconstruction in about 10 dB, compared

with interpolation approaches.

The accomplished dimensionality reduction when applying a technique such as PCA in

the compression of the low-resolution dictionary suggests the existence of anatomical

patterns, a remarkable agreement with the fact that the cortical folding patterns are

finite and redundant [96]. In consequence, brain MR image analysis should fully exploit

the redundancy and finite variability of these patterns, i.e. a sparse representation

framework which captures the relevant information. The example-based dictionary

construction allows to collect multi-scale edge information of groups of folding patterns,

thereby including a complementary source of redundancy: edge information in different

directions and sizes. This fact implies that the relevant information characterizing the

image patches, is encoded in few directions that can be effectively identified with a

general technique such as PCA. Taking a large number of PCA coefficients increases the

reconstruction error, issue that can be attributed to the fact that PCA eliminates many

statistical dependences by projecting information into the principal directions, so any

additional directions may behave as noise. Nevertheless, it is important to study if other

approaches such as Non-negative Matrix Factorization (NMF) [79] or Probabilistic

Latent Semantic Analysis (PLSA) [63], commonly used for matrix decomposition under

certain constraints, would improve the reached performance presented here.

The principal element for sparsely representing a signal, the dictionary used to describe

each image patch, has shown to comply (Section 3.5.5) with the desired conditions

identified in SR problems: sparsity, recoverability and stability [136]. In addition, high-

resolution reconstructions have shown to be nearly invariant to the chosen dictionary,

indicating that our proposal does not introduces bias or deviations with respect to the

images used to construct the dictionaries. It is important to mention that in these

experiments the dictionaries were constructed using images from the base data set,

which mixes brain volumes from normal and pathological subjects, so that normal and

pathological patterns are present in the same dictionary. Also, the sparsity of the

projection vector α in all experiments indicates that reconstructions are using at most

20% (850) of the atomic dictionary patches for representing each input patch, and

thereby information from several bases are being combined at each time to estimate

the SR corresponding patch.

One of the main contributions of the proposed approach is the reconstruction using

non-overlapping patches when solving the optimization problem per patch. The re-

construction using overlapping patches involves an additional time (given that it is

necessary to use a larger number of patches to cover the same region in the image),
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and also requires a strategy (such as averaging) to handle multiple reconstruction values

in overlapping areas. In average, reconstruction of a single image without overlapping

takes about 26 minutes (needless to mention that in this case the algorithm is fully-

parallelizable and therefore the processing time can be of the order of seconds), while

using overlapping information increases this time to about 70 minutes (and this ap-

proach is hardly parallelizable). In terms of accuracy and similarity, our exhaustive

experimentation indicates that non-overlapping and overlapping strategies are equiv-

alent, that is to say, they give nearly the same image reconstruction errors. Given

this result, we can state that our non-overlapping approach reconstructs image ver-

sions as accurate as those obtained with the overlapping strategy, in a considerably

smaller interval of time. From a theoretical point of view, this can be considered as a

result of the sparsification introduced by the Sobel transform and the fact that each

voxel is described by a set of coupled high-low frequency information, obtained from

neighbouring patches, enforcing coherence at boundaries between patches.

Another important contribution of this work is the use of a multi-scale edge analysis

to estimate the missing high-frequency information. Representing brain MR image

information in terms of edges for the SR problem has brought two major advantages.

Firstly, introduction of multiplicative and high-frequency noise is clearly avoided. High-

frequency information, related to true edges, has more influence in the reconstruction

than other kinds of data, allowing at the same time to infer missing edge parts. Sec-

ondly, it is not strictly necessary to enforce image coherence and regularity by means

of patch overlapping, as usually needed for natural images [133]. Indeed, in the present

work each high-resolution patch was independently reconstructed, followed by a global

regularization filter that corrects possible coherence problems that could appear be-

tween patches. This will lead us to naturally process the entire image in a parallel way,

using a grid, cluster or any other distributed computing approach, decreasing in many

orders of magnitude the computational time of reconstructing the entire image so as

to use this approach in actual clinical scenarios.

It is important to note that, as our approach did not perform any preprocessing of the

images, such as denoising or correction of intensity inhomogeneities, the super-resolved

version of a noisy image will be noisy too. The main point is that we did not want to

super-resolve and enhance an image at the same time, we are focused on the super-

resolution, so that we are simply restoring an image as if it were generated by the

MR equipment. Experiments on simulated and real brain MR volumes with different

parameters (noise, intensity non-uniformities, slice thickness, scaling factor) have shown

the adequate performance of our proposal under different scenarios. Regarding noise

influence, the proposed approach has shown to work better when the image noise level is

at 1%-3% than when the image is noiseless. This can be attributed to the fact that the
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test image is synthetic and therefore this image is actually noiseless, but not the images

used for constructing the dictionary, even though the original images were filtered out

attempting to get a noiseless dictionary. The Rician noise, present in these images, is

usually modeled as an additive noise, meaning for this case that when a noisy image

is reconstructed with a noisy dictionary, this works better for the noisy image than for

the noiseless one. Even though, even with few images acquired in diverse scanners and

under varying protocols and acquisition parameters, such as in multicentric studies,

our proposal is able to deliver meaningful high-resolution reconstructions to be further

used in morphometric and statistical studies.

Our method is based on constructing dictionaries from previously acquired images.

This fact (use of training images) can be seen as a drawback of our proposal when

compared to other approaches that only uses information from the same image, in terms

of additional image acquisition time, cost and specific MR equipment configuration.

However, in our case, the acquisition of a set of few images for training has a non-

significant raise of time or cost, when applied to a large study. The same scanner used

to acquire the images in a study can be used to acquire the training data. Also, as

we have demonstrated, meaningful dictionaries can be constructed even with a single

image. Regarding MR sequence development, the idea of our method is to obtain the

maximum resolution of the scanner from a lower resolution image, likewise it is always

possible to acquire a high-resolution image to use as training data. Besides, the use of

dictionaries for performing the super-resolution has other advantages, namely: it allows

a better clinical interpretability, since the dictionaries can be built from pathological

subjects. The pattern analysis of these pathologies may define anatomical markers

(biomarkers) that could be useful not only for the diagnosis but also for the prognosis

and follow-up. Finally, the distance of a particular image to a set of dictionaries could

actually constitute a morphometry index.

The proposed method has demostrated, visually and quantitatively, a substantial im-

pact in brain tissue segmentation, representing an important step towards MR image

analysis of anatomical details. However, immediate research efforts must be focused on

determining the optimal number of raw sample patches required to generate compact

semantic-based dictionaries, attempting to reduce the computational complexity and

the time involved in solving the optimization problem. We have demonstrated that,

in contrast with the actual trend that learned dictionaries will reduce the reconstruc-

tion time without loosing accuracy, in our particular case, training of dictionaries built

up from 3D patches takes a considerable time, given the atom dimensionality. The

great computational time involved was the main reason for not choosing to learn the

dictionaries, but instead to use the basic random sampling on specific regions of the

images. The results obtained so far with the proposed approach have been generated
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using a dictionary size of 4200 patches, however, two different approaches for reducing

the dictionary size were tested: using less images but extracting the same number of

patches from each, and extracting less patches per image but using the same number

of images. Visual inspection of the results obtained using these dictionary sizes do not

reveal noticeable differences (radiologist examination), but quantitatively, larger dic-

tionaries always yield smaller RMSE. Nevertheless, the computational cost and time is

approximately linear to the size of the dictionary [133], implying that larger dictionaries

requires heavier computation. In fact, meaningful dictionaries can be constructed even

with a single image, and this dictionary can still achieve good accuracy reconstructions.

Our SR approach has been compared to a state-of-the-art algorithm, recently proposed

by Manjón et al. [88], outperforming that strategy in a data set of real MR images.

The main difference between this upsampling method and our SR method is that we

perform a prior learning step from data sets of real brain MR images for appropriate

dictionary construction, while the non-local approach of Manjón et al. [88] only uses

information from the image to be reconstructed. In other contexts, such as in real-

time applications, avoiding this learning step can be critical; however, in most clinical

applications, where a large number of images are produced daily, this knowledge needs

to be extracted only once to construct meaningful dictionaries adapted to specific

characteristics of MRI sequences and equipments. We confirmed that the inclusion of

a prior learning step on similar images represents an advantage in single-image SR, and

increases both the accuracy as well as the computational speed of the reconstruction.

The proposed approach can be explored to work with multimodal reconstructions, as

studied before by other researchers [87,110]. Following this, we have performed a pre-

liminary experiment where 5 different low-resolution T2w images (size: 256x256x36)

were super-resolved using dictionaries trained with the T1w images from the base

dataset. As the original high-resolution T2w images are not available, quantitative

information about reconstruction performance can not be reported. However, by vi-

sual inspection and comparison with a bicubic interpolation, our approach can provide

better definition at image boundaries, in despite of some noise introduced in the re-

construction. With this experiment, we can state that our approach could handle

multimodal reconstructions, however, it will require some additional work to improve

performance.

Results on tissue segmentation have shown that the super-resolution reconstruction is

a promising methodology for increasing the accuracy of morphometric analysis. Here, a

preliminary study using SPM and DARTEL allowed us to verify that the reconstructed

images can have nearly the same statistical power in Voxel Based Morphometry analysis

of patient populations. However, more experiments are required to clearly identify the

impact in statistical analyses and the relations with image acquisition parameters.



4 Extracting Brain Patterns using

Visual Saliency for Imaging-Based

Classification of Neurodegenerative

Diseases

Neurodegenerative diseases comprise a wide variety of disorders with different neuro-

logical dysfunction and a very irregular evolution. Currently, an objective method that

helps to correlate the clinical onset with the radiological signs, is not available and the

whole interpretation is dependent on the radiologist’s skills. From a structural point

of view, a main problem is that clinical analysis is not directly related to the visual

analysis made by radiologists on brain images. Radiologists can hardly quantify sys-

tematic differences in these stages and current brain morphometry automatic analyses,

that perform this quantification, do not allow a clinical useful interpretation. This pa-

per presents a new fully automatic classification method that finds discriminative brain

patterns associated, mining systematic differences and therefore grading objectively any

neurodegenerative disorder. This is accomplished by a fusion strategy that mixes to-

gether bottom-up and top-down information flows. Bottom-up information comes from

a multiscale analysis of different image features, while the top-down stage includes

learning and fusion strategies formulated as a max-margin multiple-kernel optimization

problem. Comparison of the classification performance of different configurations of

the proposed approach in a public brain MR dataset (OASIS) with patients diagnosed

with Alzheimer’s disease, reveals an increment varying from 0.05 to 0.09 in the equal

error rate measure for four different experimental groups, with respect to what has been

reported by a state-of-the-art method. In terms of the anatomical analysis, relevant

regions found by the proposed approach highly correlates to what has been reported in

clinical studies of Alzheimer’s disease. A short version of this chapter has been sub-

mitted for publication to the Human Brain Mapping journal.
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4.1 Introduction

Existing studies suggest neuroimaging may become a valuable tool in the early diag-

nosis of neurodegenerative diseases by extracting anatomical patterns and revealing

hidden relations from structural Magnetic Resonance (MR) images. The value of neu-

roimaging against clinical, neuropsychological and biochemical analysis remains to be

demonstrated in large representative populations, yet there exists sufficient evidence

in small series of patients with different states of neurodegenerative disorders. The

usual examination workflow is performed by expert neurologists or radiologists that

are able to figure out complex pathological conditions and subtle changes with clinical

meaning. The process that an expert follows when examining a particular case involves

two different kinds of tasks: those related with image perception, such as visual search

or exploration paths, and others associated with cognitive skills, mainly related to di-

agnostic reasoning and decision making [14]. An expert structures a diagnosis by using

contextual knowledge and fusing information from different sources, a process that has

been recently under study [14].

At analyzing structural brain MR images, a main aim is to find anatomical changes,

either local or global, related to functional disturbances. In particular, radiologists

examine images by looking at distinctively regions and compare them by searching dif-

ferences [14]. In the computational attempt of emulating the human vision process –a

synchronized collaborative work between the brain and low level visual mechanisms–

the concept of visual attention has introduced a generation of techniques that are able

to transform an image into a hierarchy of relevant regions, known as salient regions.

Relevant regions in radiological terms may be defined as those image areas that are

visually altered and are entailed with a certain degree of clinical interpretability. Nev-

ertheless, most methods used to compare brains establish local rather than regional

(salient) differences.

Currently, a morphometric brain analysis consists of a set of strategies aimed to extract

and quantify anatomical differences between groups of subjects. Commonly, this anal-

ysis comprises two main processes: first, all images are warped or registered together to

a common reference frame or template, and second, a quantification of the estimated

local deformation required to register is computed, producing specific measurements of

interest. Voxel-Based Morphometry (VBM) [5] and Deformation-Based Morphometry

(DBM) [6] are currently the most used techniques to compare populations. In VBM,

local differences, found in brain tissue segmentations, are voxel-by-voxel statistically

analyzed, while DBM statistically compares information coming from the deformations

fields obtained after registration to the template. With these methods, one-to-one cor-

respondences between subjects are assumed and statistics are computed for the same
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voxel across all subjects. However, conclusions are limited when the same structure

may be partially present, or when a single anatomical region may exhibit multiple

shapes across the population. On the other hand, some pathologies may affect not

only a unique anatomical structure or even contiguous regions, but localized structures

separated from each other. These kinds of patterns are difficult to find and analyze

with these classic morphometric techniques. A recent proposal, the Feature-Based

Morphometry (FBM) [121], copes with these issues by modeling the image as a collage

of local scale-invariant features and by learning, from them, a probabilistic model that

reflects group-related anatomical characteristics. However, these approaches disregard

the local statistical dependences, and then subtle changes are hardly detected; ex-

actly the opposite strategy used by the radiologists, who analyses regions rather than

pixels [76].

In recent years, there has been an increasing interest in using analytical methods to

improve inferences using a small set of individuals. These methods include, among

others, supervised machine learning techniques and supervised pattern recognition al-

gorithms, which are able to automatically extract information from data. Most of

them are used for classification, while they attempt to automatically discover data

patterns. The most popular technique has been by far the Support Vector Machine

(SVM), which has been applied to classifying individuals with several neurological dis-

orders. A complete review and comparison of about 40 SVM-based approaches for

classification of neurological and psychiatric diseases using neuroimaging data can be

found in [97], specifically from structural MR brain images. Classifications of patients

with depressive disorders, psychosis, schizophrenia, Alzheimer’s disease and Parkin-

son’s disease, among others, have been presented in this review. Useful information for

classification can be extracted from the whole brain volume or from specific Regions

of Interest (ROIs), manually delineated or registered to a parcellated atlas. The SVM

classifier is usually fed with features such as intensity [99,113], textural and statistical

information [36, 54, 82], binary tissue segmentations [73, 81, 132] or cortical thickness

estimations [130]. Overall, a dimensionality reduction technique helps to decrease the

computational time and the presence of irrelevant and noisy features. Recently, it has

been shown that the analysis using only ROIs [40,55,84] outperforms any of the other

methods. This statement points out the fact that a biased analysis, performed specifi-

cally on the known anatomical disease locations, systematically leads to stronger and

more significant conclusions. However, most neurological disorders have a very variable

clinical and pathological presentation, whereby subtle patterns or the atypical disease

entities can be easily missed and, on the other hand, previous ROIs delineations are

highly time-consuming and expert-dependent.

Among the neurodegenerative diseases studied using structural MR image information,
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the most known are the Alzheimer’s disease (AD), the Mild Cognitive Impairment

(MCI) and the schizophrenia. In particular, AD is the most common type of dementia,

affecting over 20 millions of people in the world. In the clinical practice, a probable

diagnosis is reached with specific neuropsychological tests, clinical examinations and

particular conditions of relatives. Complementary sources of information, relevant

for accurate AD diagnosis, come from different medical imaging techniques, such as

structural and functional Magnetic Resonance Imaging (MR) and positron emission

tomography (PET). At present, brain atrophy, hypometabolism and quantification of

specific proteins measured using these techniques have been proved to be sensitive to

AD. In the particular case of structural MR images, early diagnosis of AD turns out

to be a challenging task [39], basically because the atrophy patterns associated with

aging can be confounded with complex patterns associated with the pathology. The

necessity of arriving to accurate diagnoses, given these difficulties, has increased the

interest in structural neuroimaging.

Several studies, by taking structural MRI volumetric measurements of specific brain

regions, have demonstrated significant differences between patients with probable AD

and normal controls [23, 33, 55, 104, 106, 129–131]. These studies have reported several

signs of the disease progression by using exclusively anatomical relationships, i.e., from

MCI to AD. In particular, it has been classically described that AD early stages are

characterized by premature atrophic changes along the perforant hippocampal pathway,

including the entorhinal cortex (a portion of the anterior parahippocampal gyrus), the

hippocampus and the posterior cingulate cortex [41,50], and, in some cases, along the

banks of the superior temporal sulcus [39,70]. Later on, larger regions such as the tem-

poral, parietal and frontal neocortices may also be compromised and exhibit neuronal

loss. In terms of the disease progression, Frisoni et al. [50] have established the morpho-

metric protocol when measuring the whole-brain, paying particularly attention to the

entorhinal cortex, hippocampus and temporal lobe volume estimations, as well as to

the associated ventricular enlargement percentages. From the diverse automatic classi-

fication approaches that have been applied to the study of AD, the relevant anatomical

regions usually corresponds to those clinically described: hippocampus, amygdala, en-

torhinal cortex, temporal gyrus and parahippocampal gyrus [81,84,121,130].

This paper proposes an automatic image analysis method inspired by the radiologist

visual perception. The method builds on a visual saliency model and extends it to

involve a learning process that mimics the adaptation of a radiologist visual percep-

tion. The method performs a multiscale analysis of saliency maps that are optimally

combined. This method is able to map any brain to a set of visual patterns that previ-

ously have been learned as associated to the pathological or normal condition. This is

not about certain salient points but salient regions, whereby the whole brain structure
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results classified either as pathological or normal. The proposed method has been val-

idated by accurately classifying patients from a public brain MR dataset (OASIS) [89]

as probable AD subjects or normal controls.

A main contribution of this paper is a fusion strategy that learns, from training data,

the discriminant structural patterns of neurological disorders, in particular, the Alz-

heimer’s disease. Another important contribution is the model interpretability, since

the learned patterns can be mapped to the original brain and used to quantitatively

estimate the importance of each region for the final classification, thereby improving

the current understanding of the disease. Technical contributions include: the use of

a 3D multiscale analysis of the brain saliency inspired by what radiologists do when

examining cases, the use of low-level features that sparsify data, and the formulation of

the model adaptation and fusion strategies as a max-margin multiple-kernel optimiza-

tion problem. An extensive parameter analysis of the influence of the image features as

discriminative factors is also carried out. The classification accuracy between normal

controls and probable AD subjects is improved by applying this approach, outperform-

ing a recently proposed technique (FBM). To the best of our knowledge, this kind of

visual-saliency-based pattern extraction approach has not been previously investigated

for AD characterization and classification in structural MR images.

The rest of the chapter is organized as follows. First, Sections 4.2 and 4.3 presents the

methodological considerations for modeling the problem and the proposed solution.

Then, the description of the dataset and the proposed saliency-based classification

framework is presented in Section 4.4, together with extensive experiments and com-

parison with another approach on the OASIS dataset presented in Section 4.5. Finally,

the conclusions and future work are discussed in Section 4.6.

4.2 Representation of Relevant Structural Regions by

their Saliency

Salient regions can be thought of as those image regions considered as relevant in a

particular context. Identification of such regions is associated with structuration of the

image information following bottom-up or top-down organizational flows. Bottom-up

approaches emulate the preattentive vision mechanisms and are independent of the

problem knowledge [53, 66, 78]. In contrast, top-down strategies are task guided and

aim to reach a global understanding of the image contents [49, 52, 94]. Such strategies

are broadly used in artificial vision to determine areas of interest, but as long as we

know this type of analysis has not been applied to figure out particular image patterns,

specially in the medical context.
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At analysing structural brain MR images, a main aim is to find anatomical changes

related to functional disturbances that may result in local or global morphological

alterations. This problem can be formulated as a search of changes of particular pat-

terns among the anatomical areas and can be considered as equivalent to figure out

the preferential information flux through a net of nodes belonging to a fully-connected

graph, being each node a particular anatomical region and each edge a similarity (or

dissimilarity) measure. Similar approaches have been successfully used to determine a

privileged path when an user is browsing Web pages, namely the well known Google’s

PageRank [100] or HITS [72] algorithms. If an image is partitioned and its parts are

somehow connected together, the interaction process between an user and the image can

be modeled as a fully connected graph. In particular, radiologists usually analyze im-

ages by looking at distinctively regions and compare them by searching differences [14].

Relevant regions in radiological terms may be defined as those image areas with clinical

meaning that are visually altered and correspond to the salient image features. There

exist different approaches to calculate the image saliency in natural images, but, to our

knowledge, none of them has been applied to medical images.

Some approaches have taken into account the possibility of using graphs and induced

Markov chains to model saliency and attentional fixations in natural images. Typically,

to construct a graph associated to an image, the image pixels (or patches) are repre-

sented as vertices, and the relations between them are encoded within the graph edges,

in some cases with a specific weight associated to each connection. Global relations

are represented when interconnecting all vertices, forming a fully-connected graph,

while local relations can be analyzed by connecting each vertex only to its immediate

neighbors. Graph relations are summarized in the adjacency matrix A, for which each

position i, j corresponds to the edge connection weight between the pair of vertices i

and j. Algebraic operations of the adjacency matrix A allow to select important infor-

mation about the graph structure. For example, the centrality measure, proposed by

Freeman [48], allows to estimate the global importance of each vertex, if importance is

defined in terms of how “central” the vertex is within the graph structure. An applica-

tion of such measures (centrality degree) to modeling visual saliency in natural images

was proposed by Pal et al. [101].

Once the image graph is constructed, a Markov chain allows to analyze the graph

flow by associating the graph vertices to states, and the edge weights to transition

probabilities. The adjacency matrix A of the graph corresponds now to the stochastic

matrixM of the Markov chain, and under some appropriate assumptions (irreducibility

of M due to a strongly connected graph) it has been proved that the Markov chain

tends to a unique stationary probability distribution. This stationary (equilibrium)

distribution represents the amount of time (or frequency of visits) that a random walker
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would spend at each state if he were allowed to walk for an infinitely long time. This

can be interpreted as a proportional measure of the vertex importance, with respect

to all other vertices in the chain. This measure has been shown to be equivalent

to the eigenvector centrality described by Freeman [48], where the vertex importance

is calculated in a self-referential way: a vertex is important because it is adjacent to

other important vertices. Costa et al. [29] has used this as a saliency measure, however,

his proposal lacks of an extensive validation over real images (only saliency results of

two synthetic images were reported). On the other hand, Gopalakrishnan et al. [57]

proposed a robust approach where global and local image properties are computed from

Markov random walks on a complete graph and a sparse k-regular graph, respectively.

From this information, a small number of the most salient (object) and background

nodes are set and labeled as object or background. Then, a semi-supervised learning

technique uses them to determine the labels of the remaining image nodes (patches)

and yield a binary saliency map. The combination of global and local properties

allows, according with these authors, to better identify salient regions that correspond

to objects in the image, discarding cluttered backgrounds with high local contrasts

that can result in larger saliencies.

A similar approach, known as Graph-Based Visual Saliency (GBVS), was proposed by

Harel et al. [61], case in which the graph connections encode dissimilarities between

feature pixels modulated by a closeness measure, i.e., salient pixels are the most dissim-

ilar in a local context. This method aims to find areas of human visual fixation rather

than salient objects in a scene (as attempted by Costa et al. [29] and Gopalakrishnan

et al. [57] approaches), and therefore is closer to a radiologist’s diagnostic process [14].

Unlike other approaches that connect graph vertices in terms of similarity of image fea-

tures, the local dissimilarity between image pixels in the GBVS method can be seen as

an approximation to the visual analysis made by radiologist when studying a medical

image. The method therein introduced was adapted to extract the relevant patterns

involved in the diagnostic process, as further described in Section 4.4.

4.3 Adaptive Learning of Salient Regions

Medical images are particularly challenging for saliency modeling since the relevant in-

formation is a complex mixture of local and global patterns that are somehow altered

by a particular pathological process. The human visual system (HVS) is not natu-

rally trained to find such patterns. Radiologists undergo a long learning process that

trains their visual system to find patterns associated with particular physiological or

pathological conditions, detecting salient areas with clinical meaning. This condition is

however limited in quantitative terms since radiologists can naturally determine where
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the differences are, if they are notorious enough, but they can hardly establish how

important these differences may become, among others because of the high anatomical

and pathological variability of any neurological disorder, in particular the Alzheimer’s

disease. The interest then on revealing such salient meaningful clinical locations is that

an objective strategy could set a hierarchy of differences, thereby decreasing the inter-

expert variability. The whole task nevertheless consists not only in exposing those

relevant areas but also in finding an adaptive strategy that picks those regions and

sorts them out by an importance order with clinical meaning.

The fact that brain anatomical and pathological variabilities can easily hinder subtle

structural changes makes that any learning strategy should be adaptive and non lin-

ear. If some salient features are less informative than others, it should be possible to

down-weight their importance. If a disorder causes atrophic and hypertrophic changes

simultaneously, the linear model would only be able to encode one mode of variability,

but a non-linear model may be able to capture both modes [7]. From a clinical stand-

point, in terms of the disease knowledge, it is fundamental to determine the minimum

number of morphological regions that better correlates with a pathological stage, in

which case the learning strategy should also be sparse. In consequence, a main goal of

the present investigation was to build a fusion strategy, i.e., an hybrid bottom-up-top-

down computer saliency model that were able to find visual patterns in MR images

associated to the presence of Alzheimer’s disease. Fulfilling such goal requires: (1),

to use a set of visual features which are appropriate for modeling the visual content

of MR images (bottom-up) and, (2), to properly involve the problem knowledge in an

adaptive representation scheme (top-down).

In theory, a proper characterization of the anatomical differences between two groups

passes by determining the specific dissimilar areas. The performance of any model in

such a task is simply measured as how good this model is to separating the two groups.

Different techniques have allowed to approach this problem, from standard multivariate

models, PCA or MANOVA to complex pattern recognition approaches. Two different

approximations, the discriminative and generative strategies, have been used, being

the discriminative models more robust except for small population groups [7]. Overall,

these discriminative techniques are non-linear models that project the data into a space

with a higher number of dimensions, where data can be linearly fitted. From the broad

spectrum of existing non-linear models, Support Vector Machine (SVM) has been used

as a paradigm in many types of problems with separable and non-separable data. SVM

uses a kernel function k(xi,xj) which computes the similarity between samples xi and

xj. This kernel is nothing but a projection of the data to another space in which data

can be linearly separable. The success of SVM is dependent on the choice of good

kernels which are typically hand-crafted and known in advance. In practice, learning
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problems involve multiple, heterogeneous data sources that hide complex statistical

dependences and therefore are really difficult to separate in consistent classes. A better

alternative consists then in somehow mixing up multiple kernels into a single kernel,

that is to say a transformation that represents an optimal combination of what the

individual kernels make to a each part of the data space. In particular, Multiple

Kernel Learning (MKL) learns the kernel from training data, it focuses on how the

optimal kernel can be learnt as a linear combination of given base kernels. It should be

strengthen out that a linear combination of base kernels corresponds to concatenation

of individual kernel feature spaces, whereby the type of information fusion is non-linear

and therefore the relevant features of each space can be fully conserved.

4.4 Materials and Methods

4.4.1 OASIS public data set

A set of 198 brain MR images from healthy (98) and pathological (100) subjects,

extracted from the OASIS (Open Access Series of Imaging Studies) database [89], were

used to evaluate the performance of the proposed approach. Each subject has been

previously analyzed with a Mini-Mental State Examination (MMSE) and a Clinical

Dementia Rating (CDR), and diagnosed as normal controls (NC) or with probable

Alzheimer’s disease (AD) using the scores obtained in the MMSE and CDR tests. As

described in [89], a set of 3-4 images were acquired per each subject on a 1.5T Vision

scanner (Siemens, Erlangen, Germany), using a T1-weighted magnetization prepared

rapid gradient-echo (MP-RAGE) sequence, on a single imaging session. Images were

first spatially warped into the 1988 atlas space of Talairach and Tournoux, using a 12-

parameter affine transformation as described by Buckner et al. [18]. Images per each

subject were then averaged, obtaining a single, high-contrast MP-RAGE image in atlas

space per subject, and skull-stripped by application of a loose-fitting atlas mask, as

described in [89]. Finally, images were gain-field corrected, based on a fitted quadratic

inhomogeneity model introduced in [120]. For the sake of a comparison with the FBM

technique, which has been tested on the same dataset (Toews et al., 2010), results are

reported for four different groups:

• Group 1: 86 subjects, aged between 60 to 80 years: includes 66 healthy controls

and 20 patients suffering only mild AD (CDR=1).

• Group 2: 126 subjects, aged between 60 to 96 years: includes 98 healthy con-

trols and 28 patients suffering only mild AD (CDR=1). This group results after
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including in the Group 1 elderly subjects (¿80 years) to increase the difficulty

level, given that aging patterns can be confounded with the disease patterns.

• Group 3: 136 subjects, aged between 60 to 80 years: includes 66 healthy con-

trols and 70 patients suffering both very mild and mild AD (CDR=0.5,1): This

group results after including in Group 1, patients with very mild AD to increase

the difficulty level, given that in this case the very mild AD patients could not

necessarily present visual differentiating patterns.

• Group 4: 198 subjects, aged between 60 to 96 years: includes 98 healthy controls

and 100 patients suffering very mild, mild and moderate AD (CDR=0.5,1,2).

This group includes all subjects available in the OASIS data set, and can be

categorized as the most difficult to classify, given that it mixes both elderly

subjects and different stages of the disease.

As pointed out by Toews et al. [121], analysis of the classification performance must

take into account the clinical and demographic information of subjects in the dataset,

given that it is more difficult to discriminate between elderly normal and pathological

subjects, or between healthy subjects and patients with very mild AD. The four dataset

groups are proposed to illustrate the influence of these aspects.

4.4.2 Proposed Approach

The proposed method is based on a two-phase visual saliency model that combines

a bottom-up and top-down approaches to achieve accurate classification of brain MR

images into normal controls or probable AD subjects. The bottom-up phase performs

a multiscale analysis of different basic image characteristics, similar to what was pre-

viously described [61], and fuse them to feed a discriminative model. The top-down

phase uses high level knowledge, represented by the labels assigned to the training

brain MR volumes, to adapt the parameters of the bottom-up saliency model using a

Multiple Kernel Learning strategy. A graphical overview of the proposed approach is

presented in Figure 4-1.

Calculation of Saliency Maps

Calculation of saliency information starts by extracting a set of feature maps from a

given image volume x, {T ϕ(x)}ϕ, where ϕ ∈ Φ indicates a a visual feature at a par-

ticular scale, as depicted in Figure 4-2. For MR images, selected features includes

intensity, orientation and edges. Intensity information corresponds to the individual

gray value of each voxel; orientation information is calculated using a bank of Gabor
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Figure 4-1: Graphical overview of the proposed method. Input brain MR images are

processed to extract different feature-scale saliency maps that highlight

different brain features, then a learning algorithm fuses optimally this in-

formation to feed a SVM classifier. The model produces both a classifica-

tion model as well as maps of anatomical regions where differences were

established.

filters with four different orientations (0o, 45o, 90o and 135o); and finally, edge in-

formation is extracted by applying a Sobel operator, with a kernel size of 5x5x5, for

the 3 different orthogonal directions. Projection of the original data into these three

different spaces attempts to sparsify the raw brain data since sparser representations

facilitate dimensionality reduction [37], a crucial factor for the success of any classi-

fication strategy. Furthermore, the selected features aim to approximate the sparsity

of the Human Visual System, a concept illustrated recently by Olshausen et al. [95],

who have shown that sparse coding of images produces Gabor-like oriented filters that

resemble the receptive fields of simple cells in the visual cortex. The feature maps are

also calculated at different scales, by subsampling the volume to 1/4, 1/8 and 1/16 of

the original size. The motivation for including such a multi-scale analysis comes from

the observation that objects in a scene may appear in different ways depending upon

the scale of observation [80], but their information is proportional to the coherence

through the different scales. In summary, a set of 18 different 3D feature maps at

various scales (3 for intensity, 12 for orientation and 3 for edges) is finally collected.

Subsequently, a per-slice-fully-connected graph Gϕ
A is defined on each feature map

T ϕ(x), where vertices correspond to image pixels and edges store information of a

regional dissimilarity between nodes. As proposed in [61] and depicted in Figure 4-3,
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Figure 4-2: Construction of the saliency maps: first, the input image is decomposed

into three diferent scales. Second, different features are extracted from the

scaled images, namely intensity, orientation and Sobel edges. Finally, per

each feature and scale, the obtained maps are down-sampled to set maps

with the same size. The master saliency map is built by adding up all

scales and features into one single saliency map.

the edge weight between graph nodes gAi,j and gAp,q is calculated with

wA(g
A
i,j, g

A
p,q) = d(gAi,j, g

A
p,q) · F (i− p, j − q)

where d(gAi,j, g
A
p,q) encodes the dissimilarity (in terms of the respective feature informa-
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Figure 4-3: Overview of the graph-based approach for computing saliency. Once a set

of characteristics are calculated, this feature image is represented using a

fully-connected graph, which encodes the closer dissimilarity of the pre-

viously found features. A Markov chain is then induced over the graph

and its associated equilibrium distribution sets the more salient nodes as

those with the larger probability of being visited if a random walker were

allowed to wander around. This saliency is coded in the first eigenvector

of the adjacency matrix and superimposed upon the feature image as the

output saliency

tion) and F (i− p, j − q) encodes the spatial closeness between nodes. Dissimilarity is

calculated as

d(gAi,j, g
A
p,q) =

∣∣∣∣log T ϕ(v)i,j
T ϕ(v)p,q

∣∣∣∣
, where the inclusion of a logarithmic metric guarantees that larger feature dissimi-

larities pop out easily while similar feature information have little impact in the edge

weight. On the other hand, the closeness is measured with

F (a, b) = exp

(
−a2 + b2

2σ2

)
,

where σ is a free parameter of the GBVS algorithm, fixed to 0.15. This means that

feature dissimilarity information is penalized with the spatial distance between nodes,

thus enconding regional dissimilarity information at the graph edges.

Afterward, activation maps Aϕ that expose connected regions of high dissimilarity, are

determined by constructing a Markov Chain on each Gϕ
A and estimating its equilibrium
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distribution as the principal eigenvector of the stochastic matrix, using the Power

Iteration Method [100]. Once activation maps are computed, a normalization step is

required to guarantee that these maps concentrate the activation (saliency) only in

a few key locations [61]. To do so, the same Markovian approach is applied to each

activation map Aϕ, using a new graph Gϕ
N with image pixels as vertices, but edges now

storing information about regional activation:

wN(g
N
i,j, g

N
p,q) = Aϕ(p, q) · F (i− p, j − q)

so the equilibrium distribution of a new Markov chain on each Gϕ
N highlights pixels

with high activation (saliency). Finally, the feature saliency map Sϕ(x) for the whole

volume x is constructed by stacking the 2D-per-slice saliency maps.

Bottom-up Saliency Fusion

The model described in the previous section provides a set of saliency maps for a volume

x, {Sϕ(x)}ϕ, that encompasses different scales, different types of basic visual features

(color, edges etc), and different volume orientations (sagittal, coronal or axial). Each

saliency map is calculated by a function Sϕ : I → [0, 1]m×n×l, where ϕ ∈ Φ indicates a

particular combination of scale, visual feature and volume orientation, and I indicates

the volume representation space which is usually {0, . . . , 255}m×n×l, with (m,n, l) the

volume size.

Computational visual saliency models use different strategies to fuse information from

saliency corresponding to different visual features. A common strategy is to weight the

maps and then sum them up to calculate an overall saliency map [49]:

S∗(x) :=
∑
σ,ϕ

ωσ,ϕS
ϕ
σ (x)

The problem with this strategy is that important information from the individual

features may be lost when somehow linearly filtering out the maps. The proposed

model uses a different strategy that keeps all the information from the different saliency

maps and only fuse them when a decision needs to be made. Specifically, the saliency

maps are used as input to a discriminant function, gW (x), that indicates to which

extend a particular volume x corresponds to a probable AD case:

gW (x) =
⟨
W,

(
S1(x), . . . , S|Φ|(x)

)⟩
,

where W ∈ R|Φ|×m×n×l is the vector of parameters that indicates the relative impor-

tance of each voxel extracted from each saliency map Sϕ(x). The value of gW (x) is
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expected to satisfy g(x) ≥ 0 if x corresponds to an AD case and gW (x) < 0 if x cor-

responds to a healthy subject. This model can be extended by introducing a saliency

mapping function as follows:

gW,Γ(x) =
⟨
W,

(
γ1Ψ(S1(x)), . . . , γ|Φ|Ψ(S|Φ|(x))

)⟩
, (4-1)

where Ψ : [0, 1]m×n → F is a function that maps each saliency map Sϕ(x) to a feature

space F , W ∈ Rdim(F )×|Φ| and the parameters Γ = {γϕ} indicate the relative impor-

tance of each saliency map Sϕ(x). This formulation has the advantage of improving

the flexibility by allowing the model to account for potentially complex non-linear in-

teractions between original single saliency values corresponding to different features

and scales.

An important parameter of the model in Equation 4-1 is the function Ψ, which maps

a saliency map to a new feature space. The main aim of such representation transfor-

mation is that complex non-linear patterns in the original space become linear in the

new, potentially high-dimensional, feature space. This is a well known strategy used in

kernel methods, the kernel trick, where the mapping Ψ is implicitly induced by a kernel

function. A kernel is a function k : X ×X → R associated to a mapping Ψ : X → F

such that ∀x, y ∈ X, k(x, y) =< Ψ(x),Ψ(y) >F , i.e., k calculates the dot product in F .

Intuitively, a kernel may be seem as a function that measures the similarity between

two objects from the input space. In the proposed model, the input space is the space

of saliency maps, so a kernel function measures the similarity between saliency maps.

Top-down Learning

The goal of the top-down model is to adapt the parameters of the bottom-up model

in such a way that the most discriminative image features, represented in the different

saliency maps, receive a higher weight value. Specifically, the top-down model uses

domain knowledge codified as a set of labeled training volumes, to find optimal values

for the parametersW and Γ that maximize the discriminative ability of the model. This

is formulated as the following min-max-margin-discrimination optimization problem:

min
W,Γ

C

N∑
i=1

max(0, 1− yigW,Γ(xi)) + ∥W∥22 + ∥Γ∥1

s.t. Γ ≥ 0

(4-2)

where xi represents a training volume, yi ∈ {−1, 1} represents the corresponding label,

N is the number of training samples, and C controls the regularization of the model.
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The first term of the objective function in Equation 4-2 is a loss function that penalizes

the wrong classification of training samples, the second and the third terms are regu-

larizers of the W and Γ parameters respectively. It is important to notice the difference

between the regularizer of W (l2 norm) and Γ (l1 norm). The regularization of W is

associated to finding a max margin classifier in the same way as it is done for support

vector classification [28], while the regularization of Γ aims to find the sparsest set of

feature weights. In this context, sparsity is motivated by the goal of finding a reduced

set of saliency maps that better codify visual patterns to discriminate probable AD

cases from normal controls.

Regarding the function Ψ, in this work we used two different kernels: the linear kernel

that simply calculates the dot product between its inputs and corresponds to an identity

map Ψ(x) = x, and the histogram intersection kernel defined as:

khi(sp, sq) =
∑
i

∑
j

∑
k

min (sp(i, j, k), sq(i, j, k)) .

The histogram intersection kernel requires the input saliency maps to be normalized in

such a way that all their values add up to 1. This is inspired by the fact that a saliency

map may be seen as a saliency probability distribution over the voxels of a volume.

A saliency map kernel k may be extended to a volume kernel as follows:

kϕ(xp, xq) := k(Sϕ(xp), S
ϕ(xq))

These kernels can be combined in a single kernel k∗ =
∑

ϕ γϕkϕ. It is not difficult to

show that the kernel k∗ is associated to the mapping:

Ψ∗ : I → F |Φ|×|Σ|

x 7→
(
γ1Ψ(S1(x)), . . . , γ|Φ|Ψ(S|Φ|(x))

)
that maps a volume to the feature space where the discriminant function in Equation

4-1 is defined. In other words, the proposed model fuses the information from the

different saliency maps by combining the respective kernels instead of directly adding

the saliency maps themselves. This means that the optimization problem in Equation

4-2 can be seen as a Multiple Kernel Learning (MKL) problem, where in addition to

finding a good discriminant hyperplane determined by the parameters W , the contri-

bution of each kernel, determined by coefficients in Γ, must be also found. Several

MKL formulations have been proposed so far, the approach herein used was proposed

by Varma et al. [126], and describes a Generalized Multiple Kernel Learning (GMKL),

suitable for learning different combinations of kernels.

Three different kernel groups were evaluated to test the influence of the different fea-

tures, scales and orientations:
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• Kernel group 1 (KG 1): 3 kernels calculated using saliency maps coming from

only intensity, orientation or Sobel edge information

• Kernel group 2 (KG 2): 9 kernels calculated using saliency maps coming

from only intensity, orientation or Sobel edge information evaluated in the three

acquisition planes (sagittal, coronal and axial)

• Kernel group 3 (KG 3): 18 kernels calculated using saliency maps coming

from only intensity, orientation (each orientation angle evaluated separately) or

Sobel edge information evaluated at three different image scales (1/4, 1/8, 1/16)

At each group, saliency maps per feature, scale and orientation were individually com-

pared using the histogram intersection to construct a kernel matrix per each. Then,

the model parameters (W and Γ) are learned by solving the optimization problem in

Equation 4-2 over a set of labeled training volumes. Cross validation over a subset of

training images was used to find an optimal value for the regularization parameter C.

Finally, with the optimal C, the final classification of test subjects is performed.

In all experiments, we used the GMKL source code posted in http://research.

microsoft.com/en-us/um/people/manik/code/gmkl/download.html, while the SVM

classifier is implemented using the LIBSVM toolbox [21], with precomputed kernel ma-

trices.

4.4.3 Performance Evaluation

Classification of each group is performed in a leave-one-out manner, for which one

subject at a time is set aside during the training phase and then classified using the SVM

model trained with the remaining subjects. Classification performance was validated

using the following metrics:

• Accuracy (Acc) = TP+TN
TP+TN+FP+FN

• Sensitivity (Sens) = TP
TP+FN

• Specificity (Spec) = TN
FP+TN

• Balanced Accuracy (BAC) = Sens+Spec
2

• Equal Error Rate (EER): the point on a ROC (Receiving Operating Characteris-

tic) curve where the false positive rate and false reject rate (1- true positive rate)

are equal.

where TP stands for true positives (AD individuals correctly classified), TN for true

negatives (NC individuals correctly classified), FP for false positives (NC individuals

misclassified) and FN for false negatives (AD individuals misclassified).
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4.4.4 Anatomical Interpretation

A main contribution of this work is that the method allows not only to classify struc-

tural MRI brain images but rather to highlight the anatomical areas related with a

particular diagnosis, thereby achieving clinical interpretability. The method actually

finds a quantitative estimate of the found brain differences, an important issue in terms

of the clinical management of the Alzheimer’s disease.

The solution of the max-margin classification problem defined in Eq 4-2, requires to

find both an optimal coefficient vector W , which indicates the relative importance of

each voxel of each saliency map in the saliency map space, and an optimal vector Γ,

which indicates the contribution of each individual kernel. Provided that the transfor-

mation used effectively separates the space into two classes, the saliency maps voxels

with largest absolute coefficients can be considered as those that contain the most rel-

evant information characterizing a class, while the saliency maps voxels with smallest

coefficients are entailed with less related information.

In the proposed approach, the pre-defined kernels convert the input image into indi-

vidual feature saliency maps, whose voxels corresponds to dimensions of the saliency

map space. The vector Γ allows to construct a master saliency map that incorporates

the relevant feature information, by combining the individual feature saliency maps

according with the learned kernel weights. Therefore, the vector W defining the sepa-

rating hyperplane allows to identify the most relevant regions for AD discrimination,

i.e., to set a particular set of saliency map voxels as important for discriminating AD

class from the NC class, by using the coefficient value (positive or negative) associated

to each master saliency map voxel. Those relevant regions can then be visualized in an

overall discrimination relevance map by performing a linear combination of the master

saliency maps and their corresponding coefficients, as illustrated in Figure 4-4.

By aligning these discrimination relevance maps to some previously delineated brains

in standard atlases, it is possible to accurately identify the specific anatomical brain

areas involved in the identification of normal controls and probable AD patients. In

the present investigation, 96 cortical and 21 subcortical structural areas obtained from

the Harvard-Oxford atlas [35] (see Figure 4-5), have been used to label the Regions of

Interest. For each anatomical region, the maximum value of its discrimination relevance

map is stored, allowing to compare relevance values of the different anatomical regions.

This scale allows to set different disease patterns at quantifying the importance of each

of the anatomical areas.



92 4 Extracting Brain Patterns using a Visual Saliency Model

Figure 4-4: Schematic description of the relevance weight map construction. The opti-

mal hyperplane, defined by W , found by solving the max-margin optimiza-

tion problem (Eq 4-2) is visualized directly over the brain volume. Voxels

with the highest positive or negative coefficients are colored according to

the class: red for AD and blue for NC.

Figure 4-5: Illustration of Harvard-Oxford cortical (left) and subcortical (right) atlases.

4.5 Experimental Results

The proposed method was assessed with respect to its capability to discriminate differ-

ent experimental groups of the dataset as well as its ability to determine the important

regions and to weight them in diagnostic terms.

4.5.1 Classification Results

First of all, the obtained performance was compared with a state-of-the-art method, the

FBM framework [121], that reports classification results over the same OASIS groups

using the Equal Error Rate (EER). Table 4-1 shows the EER values obtained with

the different kernel groups and the values reported in [121] for the same classification

groups.

The presented results show the performance for the three different kernel groups (3

features, 9 feature-plane combinations and 18 feature-scale combinations) and the re-

ported classification values of the FBM framework. A single kernel and a conventional

SVM algorithm (without MKL), reach a similar performance to what has been re-
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Baseline Our approach

FBM Single kernel KG 1 KG 2 KG 3

Group 1 0.80 0.80 0.82 0.83 0.86

Group 2 0.70 0.71 0.76 0.73 0.79

Group 3 0.71 0.71 0.73 0.74 0.76

Group 4 0.65 0.68 0.70 0.69 0.69

Table 4-1: Comparison of classification performance (using the EER) of the different

configurations tested in the proposed approach (use of a single kernel against

different combinations of feature, scale and plane kernels) with respect to

the FBM approach of Toews et al. [121]. Best classification performance

per each OASIS group is highlighted in bold.

ported by Toews et al. [121] (p = 0.25). This performance improves when introducing

the learning step and, as long as information is segregated into different kernels, clas-

sification values ameliorate even more. For classification of Group 1, the KG 3 with

18 dimensions reports 0.86 and outperforms the other learned kernels, while the KG 2

with 9 dimensions reports 0.83 and the KG 1 with 3 dimensions reaches 0.82. Overall,

this trend is observed through the whole experimental setup: the performance increases

in about 7.5% for Group 1, 13% for Group 2, 7% for Group 3 and 7.6% for Group 4

with respect to the baseline (p < 0.05). The last group, which corresponds to the

whole dataset, mixes different disease conditions, and therefore the particular patterns

result hindered by the large anatomical variability. In that case, the mechanism of

segregating information is insufficient to capture the discriminant features and then

a more general analysis classifies slightly better, i.e., KG 1 moderately outperforms

KG 2 and KG 3. For all these cases, the presented method is more accurate than the

baseline.

Evaluation has been extended to other type of measurements, not only to the reported

EER, as introduced in previous Section, but also to the full set of biomedical measures:

accuracy, sensitivity, specificity and balanced accuracy, aiming to obtain a more precise

experimental description. In addition, we have tested the influence of the particular

type of metric (l1 or l2) used by the kernel regularizer. Overall, one expects that l1
norm would prefer sparsest solutions for the optimization problem. These results are

further explored hereafter.

Classification performance of KG 1

KG 1 is composed of 3 feature kernels: intensity, orientation and Sobel edges, extracted

by following the sagittal plane. This plane is commonly used by the radiologist in
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the diagnosing workflow since, in general, the MR scanner acquires images in this

plane. Table 4-2 presents the classification values for the KG 1 using both l1 and l2
regularizers.

Acc Sens Spec BAC EER

Group 1
l1 86.04 65 92.42 78.71 0.76

l2 82.56 85 81.82 83.41 0.82

Group 2
l1 77.78 71.43 79.59 75.51 0.76

l2 76.98 75 77.55 76.28 0.76

Group 3
l1 71.32 67.14 75.76 71.45 0.71

l2 72.06 70 74.24 72.12 0.73

Group 4
l1 70.20 71 69.39 70.19 0.70

l2 70.71 70 71.43 70.71 0.70

Table 4-2: Classification performance measures for KG 1 (3 feature kernels) for the

different OASIS subject groups, using both l1 and l2 regularizations. Best

classification performance per each OASIS group is highlighted in bold.

Whilst all l2 sensitivity values are larger for the first and second experimental groups,

this pattern is not observed at all for the l1 norm. The specificity is nevertheless

larger for the l1 norm and deteriorates from the first to the fourth experimental group,

while with the l2 norm, sensitivity progressively decays from the first group to the

fourth. Overall, results show that in all dataset groups, the best values are obtained

when using the l2 regularizer, probably because of the tight correlation between the

three information sources so that it results more optimal to combine them. These

observations are corroborated by the learned kernel weights presented in Table 4-3.

Group 1 Group 2 Group 3 Group 4

Feature l1 l2 l1 l2 l1 l2 l1 l2
Intensity 11.38 1.99 19.08 2.44 20.33 2.05 27.63 3.22

Orientation 7.78 2.05 6.09 2.28 11.94 2.12 13.77 3.11

Sobel edges 0 1.86 0 2.09 0.21 1.91 0 2.83

Table 4-3: Kernel weights learned for KG 1 (3 feature kernels, each in one row) on the

different OASIS subject groups, using both l1 and l2 regularizations.

Table 4-3 shows the learned kernel weights, per each dataset group, using both reg-

ularizers. When using the l1 norm, information coming from Sobel edges is usually

discarded, while the l2 norm uniformly weights the three sources. In this case, it can

be observed that in Groups 1 and 3 (with younger subjects) the orientation information
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is a little bit more important, whilst in Groups 2 and 4 the intensity information shows

the largest weight. Overall, the edge information counts less in either approach.

Classification performance of KG 2

KG 2 is composed of 9 feature-plane kernels: intensity, orientation and Sobel edges,

each extracted following the three planes: coronal, sagittal and axial. These features

have been included to investigate the discriminability of the information calculated

from the three different views and their relative importance when they are integrated

within a single strategy. Table 4-4 presents the classification metrics obtained for the

KG 2, in terms of the l1 and l2 regularizers.

Acc Sens Spec BAC EER

Group 1
l1 87.21 80 89.39 84.70 0.82

l2 84.88 90 83.33 86.67 0.83

Group 2
l1 73.81 82.14 71.43 76.79 0.73

l2 77.78 64.29 81.63 72.96 0.72

Group 3
l1 72.79 75.71 69.70 72.71 0.74

l2 72.79 74.29 71.21 72.75 0.74

Group 4
l1 68.69 66 71.43 68.71 0.67

l2 69.19 71 67.35 69.17 0.69

Table 4-4: Classification performance measures for KG 2 (9 feature-plane kernels) for

the different OASIS subject groups, using both l1 and l2 regularizations.

Best classification performance per each OASIS group is highlighted in bold.

The obtained sensitivity follows no pattern at all, the value is very good for the first

experimental group with both norms, but abruptly falls down for the second group

when using the l2 norm. Notice this value is very similar in case of the l1 norm for the

first and second groups, and slightly degrades for the third and fourth groups, with a

larger sensitivity value for the l2 norm of the last group. These values are consistent

with the obtained accuracy since high values indicate a high capability of detecting

each of the two classes in the set of four groups. In case of this kernel, in spite of the

larger number of information sources, it was not possible to identify which regularizer

performs the best in all dataset groups. For Groups 1 and 4, the BAC and the EER

indicate that the best choice is the l2 norm, however, performance difference is really

small for Group 3. In contrast, the best values are obtained using the l1 norm for

Group 2. The learned weights for the nine kernels are presented in Table 4-5.

Unlike the previous kernel group, the number of used feature-plane kernels allows in

this case to identify the sparsity introduced by the l1 norm regularizer, contrasting
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Group 1 Group 2 Group 3 Group 4

Feature Plane l1 l2 l1 l2 l1 l2 l1 l2

Intensity

Sagittal 0 1.26 4.23 1.44 0 1.27 9.59 1.73

Coronal 5.08 1.33 3.47 1.45 0 1.31 4.23 1.72

Axial 0 1.23 0 1.34 0 1.23 0 1.59

Orientation

Sagittal 8.09 1.29 7.14 1.45 0 1.27 14.79 1.75

Coronal 1.95 1.29 2.33 1.43 8.66 1.45 8.73 1.79

Axial 0 1.22 0 1.34 0 1.20 0 1.56

Sobel edges

Sagittal 3.14 1.28 5.59 1.45 0 1.26 2.40 1.69

Coronal 0 1.23 0 1.38 0 1.23 0 1.66

Axial 0 1.22 0 1.37 0 1.20 0 1.59

Table 4-5: Kernel weights learned for KG 2 (9 feature-plane kernels, each in one row)

on the different OASIS subject groups, using both l1 and l2 regularizations.

with the similar weights learned by the l2 norm regularizer. With the l1 norm, it is

observed that the axial plane is completely ignored, while the sagittal plane is the

one with the largest weights in almost all features, thereby suggesting that relevant

information is captured from this single acquisition plane (as it is commonly done by

expert radiologists). In case of the l2 norm, the axial plane has always the lowest

weights, while the sagittal and coronal planes reach higher values. In Groups 2 and 4

(when oldest subjects are included), the observed similar weighting pattern gives more

priority to the sagittal and coronal planes. In Group 3, it seems that the orientation

information at the coronal plane is the most relevant to discriminate normal controls

from patients with probable mild and very mild AD.

Classification performance of KG 3

KG 3 is composed of 18 feature-scale kernels: intensity, orientation (at 4 different an-

gles) and Sobel edges, each extracted at 1/4, 1/8 and 1/16 of the original volume size;

all of them picked from the sagittal plane. Information from multiple scales has been

introduced here to investigate the influence of the image scale-space representation,

i.e., a one-dimensional family of images with various levels of spatial scales. Addition-

ally, the orientation feature has been disaggregated into 4 different angles (0o, 45o, 90o

and 135o) to better identify the preferential orientations, aiming to detect volumet-

ric changes into the transversal and diagonal planes. The classification performance

obtained with the proposed method for the KG 3 is presented in Table 4-6.

The first and third groups are better separated by the l1 norm in terms of sensitivity

while the first two groups are better classified regarding specificity with the same norm,
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Acc Sens Spec BAC EER

Group 1
l1 86.05 85 86.36 85.68 0.86

l2 82.56 80 83.33 81.67 0.80

Group 2
l1 80.16 75 81.63 78.32 0.79

l2 76.19 75 76.53 75.77 0.76

Group 3
l1 75.74 87.14 63.64 75.39 0.76

l2 76.47 82.86 69.70 76.28 0.74

Group 4
l1 70.20 67 73.47 70.23 0.69

l2 69.20 70 68.37 69.18 0.68

Table 4-6: Classification performance measures for KG 3 (18 feature-scale kernels) for

the different OASIS subject groups, using both l1 and l2 regularizations.

Best classification performance per each OASIS group is highlighted in bold.

indicating that the discriminant capability of this kernel is easily adaptable, yet this

ability decreases when groups are mixed and the classifier is not class-specific anymore.

Specificity is nevertheless better for the l2 norm in the third experimental group, but

this is reversed for the fourth group, showing that when groups are very different, the

anatomical and pathological variability end up by hiding the characteristic pattern of

each group.

This set of measurements shows in general that the multiscale analysis improves the

classification rates for every group and that the learning strategy effectively chooses

those characteristics with more discriminant power. The larger number of information

sources allowed to more precisely find the particular kernels to be combined. This

was evidenced in the classification results since best values were obtained using the l1
norm regularizer for the whole set of experimental groups. Nevertheless, as long as

the group size increases and the experimental group includes both very mild versions

of the disease and elderly subjects, the difference between the results obtained with

both norms decreases. This sparsity condition emerges when increasing the number of

analysis sources and introducing the l1 norm regularizer, thereby facilitating the search

of the particular anatomical areas with more important differences. The sparsity of

the found solutions can be verified by looking at the learned kernel weights in Table

4-7.

This table shows that the relevant information for discriminating AD patients from

NC subjects is mainly due to the 0o, 45o and 135o orientations at the three different

scales. Interestingly, intensity information, as well as Sobel edges and 90o orientations

are always disregarded. Basically, this amounts to consider horizontal and diagonal

changes of a bi-dimensional brain view in a multi-scale analysis, a topic on which we
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Group 1 Group 2 Group 3 Group 4

Feature Scale l1 l2 l1 l2 l1 l2 l1 l2

Intensity

1/4 0 1.03 0 1.05 0 1.03 0 1.08

1/8 0 1.04 0 1.05 0 1.03 0 1.09

1/16 0 1.04 0 1.07 0 1.04 0 1.12

Orientation

0o

1/4 0 1.06 0 1.09 0 1.05 0 1.19

1/8 0.22 1.06 0.27 1.09 0 1.05 0 1.15

1/16 1.97 1.08 0.57 1.10 2.66 1.09 2.46 1.18

Orientation

45o

1/4 4.67 1.08 6.46 1.13 2.26 1.06 1.50 1.20

1/8 0 1.06 0.62 1.10 0 1.06 1.65 1.19

1/16 0 1.04 0 1.08 0 1.04 0 1.14

Orientation

90o

1/4 0 1.07 0 1.10 0 1.05 0 1.18

1/8 0 1.06 0 1.09 0 1.05 0 1.16

1/16 0 1.05 0 1.08 0 1.05 0 1.14

Orientation

135o

1/4 4.30 1.08 6.68 1.13 10.68 1.08 4.63 1.23

1/8 0.60 1.06 0.20 1.09 1.37 1.07 1.17 1.18

1/16 0 1.05 0 1.07 0 1.05 0 1.14

Sobel edges

1/4 0 1.04 0 1.06 0 1.04 0 1.09

1/8 0 1.03 0 1.04 0 1.03 0 1.08

1/16 0 1.03 0 1.03 0 1.02 0 1.07

Table 4-7: Kernel weights learned for KG 3 (18 feature-scale kernels, each in one row)

on the different OASIS subject groups, using both l1 and l2 regularizations

will come back later in this paper.

4.5.2 Anatomical Patterns and Saliency

Several studies, by taking structural MRI volumetric measurements of specific brain re-

gions, have demonstrated significant differences between patients with probable AD and

normal controls. These studies have reported several signs of the disease progression by

using exclusively anatomical relationships, i.e., from Mild Cognitive Impairment (MCI)

to AD. In particular, it has been described that AD early stages are characterized by

premature atrophic changes along the perforant hippocampal pathway, including the

entorhinal cortex (a portion of the anterior parahippocampal gyrus), the hippocampus

and the posterior cingulate cortex [50], and, in some cases, along the banks of the su-

perior temporal sulcus [70]. Later on, larger regions such as the temporal, parietal and

frontal neocortices may also be compromised and exhibit neuronal loss. In terms of

the disease progression, Frisoni et al. [50] have established the morphometric protocol

when measuring the whole-brain, paying particularly attention to the entorhinal cor-
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tex, hippocampus and temporal lobe volume estimations, as well as to the associated

ventricular enlargement percentages.

The anatomical analysis carried out with the discrimination relevance maps, as de-

scribed in Section 4.4.4, remarkably agrees with these very known anatomical find-

ings [50,70]. Figure 4-6 illustrates, per each OASIS subject group, some sagittal slices

of the corresponding discrimination relevance maps constructed upon the classification

model trained using the KG 3 and the l1 norm as regularizer. Those regions, systemat-

ically similar in case of pathological condition, are drawn in red, while those areas that

remain similar for the normal brains, are colored in blue, all of them overlaid upon a

structural brain MR image. The obtained relevance patterns are consistent through

the four experimental groups, with a high coincidence level of discriminant regions, as

observed in Figure 4-6. Notice that most important structures in terms of differences

are mainly located at the subcortical level, specially the hippocampus cortex. However,

as long as elderly patients and different AD conditions and evolutions are included into

the groups, the discrimination capability of the relevant regions diminishes, as expected

and broadly documented in several clinical studies [50, 70].

By registering each of the maps presented in Figure 4-6 to the Harvard-Oxford cortical

and subcortical atlases, the discrimination values per region can be better identified. As

described in Section 4.4.4, the relevance maps contain both positive and negative values,

associated to the AD and NC classes, respectively. Then, using the atlases, the largest

positive and negative relevance values enclosed within each anatomical region are then

selected for the two different classes, producing a quantitative indicator that allows

to identify those regions that enclose the most relevant patterns for discrimination of

the AD and NC classes. Thus, this procedure can deliver high relevance values for

both classes simultaneously, leading to find the same anatomical region as relevant for

classification for both AD and NC classes.

Separation between cortical and subcortical regions is performed with these two atlas

to facilitate the analysis and visualization of the relevance values. Figure 4-7 presents

some sagittal slices of the relevance values assigned to each cortical and subcortical re-

gion for all OASIS subject groups. Notice that some regions appear systematically as

AD discriminant for the four experimental groups, namely the anterior division of the

left and right parahippocampal gyrus (left and right entorhinal cortices), the left precu-

neous cortex, the left and right amygdalas and the left hippocampus. The discriminant

level is obviously not the same but this difference can be used to characterize different

levels of AD, a side result of the presented method. In contrast, normal subjects are

mainly discriminated with very different regions, including the temporooccipital part

of the right middle temporal gyrus, the inferior division of the right lateral occipital

cortex, the right angular gyrus and the right lateral ventricle. The differences in the
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Figure 4-6: Relevance maps for AD classification. Rows: OASIS subject groups,

Columns: selected sagittal slices (same slice for all groups). Blue regions

are associated to NC class and red regions are associated to AD class.

relevant patterns found among the four experimentation groups may be attributed

to two different factors: the presence or absence of elderly subjects and the different

stages of the disease. In the first case, it is possible to identify, for example, certain

correlations between the patterns of Groups 1 and 3, those ones that do not include

very elderly subjects, in particular for those regions relevant for NC discrimination. In

the second case, the relevance values of specific regions, used for AD discrimination,

decay as long as different stages of the disease are included in the classification groups,

for example when comparing the AD relevant regions in Groups 1 and 3.

The tesellation of the discrimination relevance maps allows to quantify directly the

importance of each anatomical region in the classification. Different patterns can be

obtained by setting the number of regions responsible for a given percentage of the

found differences, value which defines also the discrimination degree of these regions.

The regions with higher relevance values are then identified per each class and compared
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Figure 4-7: Anatomical relevance maps for AD classification. Rows: OASIS subject

groups and structural regions (cortical and subcortical), Columns: selected

sagittal slices (same cortical or subcortical slice for all groups). Blue regions

are associated to NC class and red regions are associated to AD class.
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through the different configurations tested. In this case, up to the eight most relevant

cortical structures and the six most relevant subcortical structures, responsible for

about the 60% of the found differences, are selected, however, in some cases the number

of relevant subcortical structures are less than six, revealing that only few regions

encode the largest percentage of differences. Tables 4-8 to 4-11 present the ID numbers

of the cortical and subcortical regions identified per each OASIS group, kernel group

and subject class, with the regularizer that brings the best classification results at each

kernel group. The corresponding anatomical region names are provided in Tables D-1

and D-2 in the Appendix D.

Class Relevant Regions

Group 1

Cortical
AD C33 C27 C24 C47 C31 C34 C77 C8

NC C29 C77 C60 C58 C61 C68 C27 C52

Subcortical
AD S10 S12 S13 S11 S18 S26

NC S43 S4

Group 2

Cortical
AD C65 C55 C33 C77 C29 C90 C54 C19

NC C58 C60 C68 C79 C61 C84 C72 C55

Subcortical
AD S10 S12

NC S43 S4 S50 S16

Group 3

Cortical
AD C77 C29 C34 C50 C82 C19 C20 C43

NC C77 C29 C54 C53 C55 C49 C52 C79

Subcortical
AD S18 S10 S12 S54 S17 S53

NC S43 S4 S50 S58

Group 4

Cortical
AD C77 C29 C90 C19 C34 C55 C65 C54

NC C79 C72 C58 C71 C84 C95 C77 C70

Subcortical
AD S18 S17 S10 S12 S53 S51

NC S43 S4 S50 S58

Table 4-8: List of relevant cortical and subcortical regions highlighted by the classifi-

cation process using a single kernel, discriminated for the different OASIS

subject groups. Red rows correspond to regions relevant for AD class and

blue rows corresponds to regions relevant for NC class. Correspondant

anatomical areas are provided in Tables D-1 and D-2 in the Appendix D.

Relevant cortical and subcortical regions, shown in Tables 4-8 to 4-11, are consistent

with what has been described in clinical studies, previously discussed at the beginning

of this Section. When considering the whole set of four groups and the different analysis

kernels, discrimination of probable AD patients was mainly due to specific anatomical

regions, namely the anterior division of the right cingulate gyrus, the anterior division

of the right parahippocampal gyrus (entorhinal cortex), the left intracalcarine cortex,

the anterior division of the left cingulate gyrus, the right insular cortex and the right

postcentral gyrus; while the most used subcortical regions were the left and right puta-

men, the left and right hippocampus, the left thalamus, caudate and pallidum, and the
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Class Relevant Regions

Group 1

Cortical
AD C19 C10 C29 C77 C46 C65 C20 C24

NC C7 C54 C61 C75 C60 C27 C4 C52

Subcortical
AD S13 S10 S12 S11 S52 S18

NC S4 S43 S16 S54

Group 2

Cortical
AD C65 C29 C77 C55 C19 C10 C28 C46

NC C58 C60 C61 C68 C8 C78 C79 C56

Subcortical
AD S49 S52

NC S43 S4 S16 S17

Group 3

Cortical
AD C65 C67 C19 C68 C17 C46 C10 C84

NC C54 C53 C55 C52 C49 C29 C77 C1

Subcortical
AD S10 S11 S13 S53 S12 S43

NC S4 S43

Group 4

Cortical
AD C19 C65 C77 C29 C46 C10 C45 C2

NC C58 C67 C53 C54 C60 C94 C8 C49

Subcortical
AD S10 S12 S53 S49 S51 S17

NC S43 S4 S50

Table 4-9: List of relevant cortical and subcortical regions highlighted by the classi-

fication process using the KG 1 (3 feature kernels), discriminated for the

different OASIS subject groups. Red rows correspond to regions relevant

for AD class and blue rows corresponds to regions relevant for NC class.

Correspondant anatomical areas are provided in Tables D-1 and D-2 in

the Appendix D.

left and right amygdala. On the other hand, cortical regions systematically unchanged

in the group of normal subjects were the left subcallosal cortex, the right frontal pole,

the right middle frontal gyrus, the pars triangularis and opercularis of the right infe-

rior frontal gyrus, the right precentral gyrus, the posterior division of the right superior

temporal gyrus and the right precuneous cortex; while the subcortical regions involved

were basically the left and right lateral ventricles, the brainstem and the right cau-

date. These findings indicate that frontal and temporal cortex and global subcortical

structures are fundamentally altered in AD patients, presenting a complex composition

of different levels of local alterations which are therefore difficult to characterize and

manage.

In Table 4-8, the regions that always appear as discriminant, using a single kernel,

include the anterior division of the right cingulate gyrus, the left putamen and the

left thalamus for AD class, and the left and right lateral ventricles for NC class. The

left frontal cortex can be considered possibly related with presence of mild AD (CDR

= 1), as it appears as discriminant in Groups 1 and 2. In contrast, left and right

hippocampus are found to be relevant for discrimination when mixed stages of AD

are present (Groups 3 and 4). Similar regional patterns are found for Groups 2 and
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Class Relevant Regions

Group 1

Cortical
AD C96 C69 C70 C68 C48 C59 C66 C62

NC C34 C56 C82 C85 C75 C8 C14 C27

Subcortical
AD S10 S13 S53 S12 S49 S11

NC S16 S53 S54 S17 S43 S4

Group 2

Cortical
AD C22 C23 C77 C29 C25 C28 C68 C69

NC C85 C82 C86 C70 C71 C52 C31 C47

Subcortical
AD S52 S49 S51 S16

NC S16 S4 S54 S53 S17

Group 3

Cortical
AD C68 C65 C66 C69 C67 C50 C82 C17

NC C33 C8 C1 C53 C52 C49 C54 C55

Subcortical
AD S10 S13 S11 S52 S54 S53

NC S16 S43 S4

Group 4

Cortical
AD C65 C18 C17 C68 C67 C66 C70 C52

NC C49 C1 C33 C79 C95 C8 C29 C58

Subcortical
AD S49 S16 S53 S52 S10 S51

NC S43 S16 S50 S17 S18 S4

Table 4-10: List of relevant cortical and subcortical regions highlighted by the clas-

sification process using the KG 2 (9 feature-plane kernels), discriminated

for the different OASIS subject groups. Red rows correspond to regions

relevant for AD class and blue rows corresponds to regions relevant for

NC class. Correspondant anatomical areas are provided in Tables D-1

and D-2 in the Appendix D.

4 (same regions marked as relevant), suggesting that those regions are responsible

for the increasing in clasification performance of the single kernel configuration, when

compared to the FBM framework (See Table 4-1). Regions such as the anterior division

of the left and right cingulate gyrus and the right precentral gyrus appears in Table 4-8

as simultaneously discriminant for AD and NC classes, suggesting that within these

regions there exist distinctive relevance patterns for both classes.

For the first kernel group (KG 1, Table 4-9) similar regional results are found for

the NC class, given that the left and right lateral ventricles are those that appear as

discriminant in the four OASIS groups, while for discrimination of AD class the most

relevant regions include the posterior division of the left superior temporal gyrus, the

anterior division of the left supramarginal gyrus, the left planum temporale and the

right postcentral gyrus. In OASIS groups with mainly mild AD patients (Groups 1

and 2), the right pallidum always appears as discriminant, possibly relating this region

to early stages of AD; while in those groups that include different AD stages (Groups

3 and 4), the right hippocampus appears as the most discriminant for the disease.

The only region with simultaneous relevant AD and NC patterns is the right lateral

ventricle, which appears in Group 3.
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Class Relevant Regions

Group 1

Cortical
AD C77 C76 C50 C82 C8 C34 C24 C47

NC C27 C49 C52 C29 C79 C95 C77 C72

Subcortical
AD S54 S51 S53 S18 S12 S17

NC S4 S43 S50 S11 S26

Group 2

Cortical
AD C33 C8 C34 C50 C79 C24 C77 C17

NC C79 C95 C72 C78 C84 C58 C94 C27

Subcortical
AD S18 S51 S53 S54 S17 S16

NC S43 S4 S50

Group 3

Cortical
AD C50 C82 C56 C86 C4 C92 C5 C6

NC C49 C52 C79 C78 C51 C84 C77 C17

Subcortical
AD S54 S53 S51 S18 S17

NC S43 S50 S4 S53

Group 4

Cortical
AD C82 C86 C92 C50 C34 C85 C63 C8

NC C17 C18 C49 C52 C94 C68 C79 C91

Subcortical
AD S53 S51 S54 S18 S17 S16

NC S43 S50 S53 S4

Table 4-11: List of relevant cortical and subcortical regions highlighted by the classi-

fication process using the KG 3 (18 feature-scale kernels), discriminated

for the different OASIS subject groups. Red rows correspond to regions

relevant for AD class and blue rows corresponds to regions relevant for

NC class. Correspondant anatomical areas are provided in Tables D-1

and D-2 in the Appendix D.

In the second kernel group (KG 2, Table 4-10), only the posterior division of the right

supramarginal gyrus appears as the most discriminant for the AD class, while the left

lateral ventricle and the brainstem are the most relevant regions for discrimination of

NC. In OASIS Groups 3 and 4, where very mild, mild and moderate stages of the AD

are present, the most discriminant regions include the left and right postcentral gyrus

and the anterior division of the right supramarginal gyrus. The right putamen can be

considered as a region possibly relevant for discrimination of AD in elderly patients,

located in Groups 2 and 4, while the left caudate and the left pallidum can be related

as relevant for “younger” AD subjects (Groups 1 and 3). Combinations of relevant

patterns for both classes are found in the brainstem and the right hippocampus, regions

that appear at the same time as discriminant for AD and NC in Groups 1, 3 and 4.

Finally, if we center our analysis only in the kernel group that obtained the best

classification results (KG 3, Table 4-11), we can see that the right insular cortex, the

left and right hippocampus, the left and right amygdalas and the right putamen always

appear as discriminant for AD, while the right precuneous cortex, the left and right

lateral ventricles and the right caudate always pop out as discriminant for NC in all

subject groups. Regions such as the left temporal pole, the left intracalcarine cortex
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and the anterior division of the left parahippocampal gyrus (left entorhinal cortex) can

be closely related with presence of mild AD, given that they are mainly present for

Groups 1 and 2, which enclose only pathological subjects with mild AD (CDR = 1).

In contrast, the posterior division of the right temporal fusiform cortex and the right

planum polare emerge as significant for Groups 3 and 4, where mixed stages of AD

(very mild, mild, moderate) are present, suggesting that changes in these structures

can generally indicate presence of the pathology. The right hippocampus is the only

region in Table 4-11 present in Groups 3 and 4 as relevant for both AD and NC classes.

4.6 Discussion

This paper has introduced a fully automatic strategy that reveals structural brain

patterns associated to the presence of the Alzheimer’s disease in a public dataset of

brain MR images. The underlying idea behind this proposal is that it is possible to

find the discriminant patterns that an expert clinician might discover in similar images.

This is accomplished using a fusion strategy that mixes together bottom-up and top-

down information flows, achieving accurate classifications of probable AD patients or

healthy controls. The bottom-up representation is given by a visual saliency method

that automatically highlights relevant regions correlated with the AD diagnosis, using

contributions from different multi-scale visual features. On the other hand, the top-

down scheme allows to adaptively select the meaningful part of the representation,

identifying patterns associated to pathological stages. The whole strategy allows to

find anatomical regions with clinical meaning that can be quantitatively related to the

diagnosis, and therefore, may be suitable for an objective graduation and understanding

of the different AD stages.

Morphometrical analysis of groups of subjects, for identifying discriminant patterns

associated to diverse pathologies (mainly neurodegenerative diseases), is currently a

wide and active research area [7]. As mentioned in the Introduction (Section 4.1),

information coming from voxel intensities (VBM), deformation fields (DBM), spatial

locations and 3D-reconstructed boundaries (SBM) is commonly used for statistical

identification of anatomical between-group-differences. However, so far such analyses

are only able to establish very localized differences that can not be systematically

found at exactly the same place along an experimental group, whereby their clinical

meaning is still limited. In addition to their anatomical inconsistency, these analyses

can hardly identify complex relations between these local differences. In the search of

morphometrical methods, more robust to the anatomical variability and to the lack of

one-to-one correspondence between all subjects, the analysis paradigm has evolved from

the very local approaches to the identification of distinctive and reproducible patterns,
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represented by scale-invariant salient features, along with a probabilistic framework

that together permit to evaluate the significance and differentiation degree of salient

features. This is the main idea behind the FBM approach [121], which automatically

discovers sets of anatomical features which are consistent with clinically established

differences between normal controls and probable AD patients. These sets of features,

with their appearance and geometric information, are then considered as group-related

anatomical patterns, suitable to be used as image biomarkers [121]. Nevertheless,

this analysis is really far from a usual diagnostic analysis, in which case anatomo-

physiological correlations are required to determine the physiopathology of a particular

disease. In contrast, the approach herein described can be seen as an improvement

to the state-of-the-art analysis of localized salient features and much closer to the

clinical interpretation of a pathological finding and therefore more suitable to support

any diagnostic decision. By combining local and global visual analyses, the presented

method allows to extract anatomic relevant regions and weight their contribution to

the differentiation of pathological stages.

The present investigation has included an extensive validation and parameter study,

evaluating both its accuracy for discriminating different experimental groups and its

capacity of determining the relevant anatomical regions together with their weights.

Regarding discriminative power, different parameters involved in the top-down and

bottom-up information flows, were assessed in terms of classification accuracy, allowing

to identify the influence of the different visual features, acquisition planes and image

scales in the final discrimination between AD and NC classes. The simpler version

of our proposal (combining a single saliency-based kernel with a SVM learning) has

reached an equivalent performance to a state-of-the-art approach (FBM proposed by

Toews et al. [121]). Comparisons between three different kernel groups (KG 1, KG 2 and

KG 3) and the single kernel approach, have shown that the segregation of information

into different feature-scale kernels, improves the classification performance in all OASIS

subject groups, reaching an average increment of 8.8% in the EER measure, with

respect to what was reported by the FBM technique. The presented approach allows

to identify in addition that the most relevant information for AD classification comes

from the orientation feature, specially at 0o, 45o and 135o, extracted in the sagittal

and coronal planes, and at the three different scales. This result illustrates that the

learning technique herein used is able to separately explore the parameter space and

to optimally combine or fusion each part of the complete parameter space.

One of the main contributions of this work has been the design of a fully automatic

method which is also completely interpretable and consistent with what radiologists di-

agnose. The optimal fusion of different features and their learned discriminative power,

facilitates an objective understanding and localization of pathological differences. In
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the first place, the sagittal plane, identified after the proposed method as the most

discriminant, is the one mostly used in acquisition and analysis of brain MR images,

and also corresponds to the acquisition plane of the herein used OASIS dataset. In the

second place, the optimal fusion of the relevant features, through the l1 or l2 norm reg-

ularizers, brings out at the end those anatomical areas with systematically important

differences, with respect to the available feature information. Results shown in Sec-

tion 4.5.1 reveal that when the information sources are few (such as in kernel groups

KG 1 and KG 2), the non-sparse l2 norm regularizer delivers the best classification

results, since it attempts to better combine the small number of available features.

In contrast, when the information is more segregated and there exists a large number

of features (KG 3), the sparse l1 norm regularizer selects only a small set of relevant

sources, disregarding those that may provide redundant or divergent information for

the classification.

In terms of the anatomical analysis, the regions found with the proposed approach as

systematically relevant for discrimination of AD patients, include the cingulate gyrus,

the anterior division of the parahippocampal gyrus (entorhinal cortex) and subcorti-

cal structures such as the putamen, amygdala and hippocampus; results completely

coherent to what has been reported by clinical studies of AD [50, 70]. Likewise, this

analysis has determined that main discriminative features are orientations, in particu-

lar, systematic changes were mainly detected at the horizontal and diagonal directions.

Yet the number of cases is not enough as to statistically conclude that this finding is

disease-related, similar outcomes have been described in other global neurological dis-

orders. It has been observed for instance that patients with schizophrenia exhibit faster

volume decline in regions like the right frontal gray matter and the bilateral posterior

superior temporal gray matter, that is to say global changes in anterior or posterior

brain regions [90]. In this study we have found that main changes are located in hor-

izontal and diagonal directions, an indirect evidence that changes occur very likely in

oriented areas but not precisely located in a particular region. From the clinical per-

spective, the proposed strategy follows the visual analysis made by radiologists when

diagnosing medical images, allowing in addition a quantitative determination of the

brain anatomical regions which are different between experimental groups. With an

adequate and exhaustive evaluation in larger data sets, containing sufficient examples

of the different AD stages, this method can be also used as a second diagnostic opinion

in the current clinical practice.
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This thesis has developed and validated novel techniques and strategies to address

the problem of automatically extracting relevant medical information from brain MR

images, aiming to improve the accuracy and interpretability of the morphometric mea-

sures and comparisons. The thesis has introduced and adapted biologically inspired

methods for identification of diagnostic-relevant image regions in a very complex and

challenging problem, the Alzheimer’s disease (AD). The automatic strategies herein

developed have included prior anatomical and medical knowledge within the morpho-

metrical analysis. The set of proposed tools constitute an innovative framework in the

context of anatomical studies: sparse-based representations and visual attention meth-

ods, together with machine learning techniques, provide efficient representations of the

image content in terms of visual features, leading to the discovery of visual patterns

directly related with a specific pathology.

The techniques introduced in this thesis have led to an innovative perspective of the

brain morphometric analyses: the clinical interpretability. This condition can be con-

sidered as an important requirement of any software package intended to be used in

the actual clinical practice, as it assures a simple integration with common diagnostic

tasks and routines. In this particular case, the clinical interpretability comes from two

important sources: the efficient incorporation of prior medical knowledge and the mean-

ingful information extracted by means of visual features. These sources, combined with

biologically inspired techniques, have allowed to identify and infer pathology-related

patterns for discrimination of neurological diseases, in particular, the AD. Analysis of

these patterns may help to define anatomical biomarkers, useful for diagnosis, prognosis

and follow-up. In fact, with a dataset including both normal subjects and patients with

different stages of AD, the proposed techniques have shown to be capable of finding

anatomical regions with clinical meaning while at the same time they permit to quan-

titatively relate these findings to the diagnosis, a very promising contribution towards

discriminating pathological stages.
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5.1 Perspectives

This thesis was developed attempting to contribute to the construction of a computa-

tional framework for morphometrical analyses of medical images. It aims to provide

a set of analysis, interpretation and visualization tools that serve as a support for di-

agnosis, training and research processes. For a physician, the possibility of obtaining

quantitative and complementary information about the patient condition, allows to re-

fine the medical management, decreases the diagnostic variability and results in more

accurate treatments, impacting directly the patient quality-of-life. Also, compilation

and comparison of this knowledge within different populations affect positively the de-

velopment of public and preventative health policies. We expect that the proposed

computational tools, in the future, will contribute to these medical advances. In the

meanwhile, some work must be performed to prepare these tools to be used by medical

experts in a daily basis. Some of this work includes:

1. Fusion of multimodal information. For complex diseases such as the Alz-

heimer’s disease, a large set of diagnostic information sources, such as neuropsy-

chological tests, structural images, metabolic images, functional images, genetic

information and so on, are currently available. As these sources provide comple-

mentary information for the decision making process, a computational framework

for diagnosis support could benefit from this multimodality by effectively inte-

grating these diverse sources of information. For each source, a weighting factor

should be identified and assigned, according with its importance in the patholog-

ical diagnosis, and a preprocessing step should be applied to reduce the amount

of information only to a small set of relevant features. Then, all multimodal

features should be interpreted in terms of a common reference frame to facilitate

further analyses and inferences.

2. Performance validation with larger and complex data sets. Evaluation

of the proposed techniques have been performed mainly with data sets that are

widely available, to facilitate comparison with other approaches and their pub-

lished results. However, these data sets need not necessarily include enough

examples of the different pathological conditions to diagnose, or they do not pro-

vide an adequate number of cases to reach significant statistical conclusions. To

increase the sensitivity and specificity of clinical studies, and also to serve as a

second diagnostic opinion in the current clinical practice, the proposed compu-

tational tools must be exhaustively evaluated in larger data sets.

3. Mining complex visual patterns for diagnosis support. At conducting

group-based analyses of pathological conditions in structural medical images, a
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main aim is to find anatomical changes related to functional disturbances, that

may result in a complex mixture of local and/or global morphological alterations.

This problem can be formulated as the systematic search of visual patterns asso-

ciated with particular pathological conditions, and the formulation of an adaptive

strategy for classification of these patterns according to their clinical meaning.

Differential patterns of subject groups can thus serve as a meaningful input to

a knowledge extraction framework, applying data mining techniques to infer un-

known or latent relations among them, and thus serving as an important infor-

mation source for diagnosis support.

4. Towards a new evidence-based medicine perspective. Medical specialists

undergo a long training process to be able to find clinically-relevant patterns

defining particular physiological or pathological conditions. However, they can

hardly quantify systematic differences, that is to say, to establish the relative

importance of the differences and to organize them as a hierarchical structure. A

computational strategy capable of automatically extracting pathological-related

visual patterns and estimating their quantitative importance can provide the basis

for this new perspective in evidence-based medicine, yielding objective estimates

of risks and benefits that may aid to strength the medical act in terms of the

patient diagnosis, prognosis and treatment.



A Topology Preservation and

Homotopic Transformations

Homotopic transformations are topology-preserving procedures that consist of sequen-

tially deleting or adding simple points. This operation works only on binary images,

such as the pure tissue segmentations, where each voxel is considered as a point. In-

formally, a simple point of an object X is a point that can be added or removed

from X without changing the topological characteristics of X. It is possible to locally

characterize simple points in 3D using two topological numbers T and Tb [12].

Thus, skipping some technical details, let A(x) be the set of points of X \ {x} lying

in a neighborhood of x, and let Ab(x) be the set of points of the complement of X

(background) lying in a neighborhood of x. Then, T (x) (resp. Tb(x)) is the number

of connected components of A(x) (resp. Ab(x)). A point x is simple if and only if

T (x) = Tb(x) = 1. Topological numbers are useful for classifying points of an object

X based on local topological characteristics: for example, a point x such that Tb(x) > 1

characterizes a region of the object which separates (locally) its background into several

parts.

Based on these notions, given an object X, a subset I of X and a priority function P ,

Algorithm 2 computes an homotopic erosion of X constrained by I, that is, an object

that is topologically equivalent to X, that contains I and that has no simple point

outside I. In this algorithm, the priority function P is usually chosen as the inverse of

the distance to I, in order to select in the first place the points that are farthest to the

set I. This choice will be assumed in the remaining operations.

Algorithm 2 Homotopic erosion of X constrained by I

with priority P
repeat

Select x ∈ X \ I such that P (x) is minimal

if x is simple for X then

X = X \ {x}
end if

until stability
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Applying Algorithm 2 to the complementary sets of X and I, then inverting the result,

yields an homotopic dilation of X constrained by I. In a similar way, Algorithm 3 [11]

computes a surface skeleton of X which contains medial surfaces of the original object

(provided that the priority function P is a distance map of X).

Algorithm 3 Surface skeleton of X with priority P

Let C be a null image

repeat

Select x ∈ X such that x is simple for X,

C(x) == ∅ and P (x) is minimal

X = X \ {x}
for all y in the neighborhood of x do

if Tb(y) > 1 then

C(y) = 1

end if

end for

until stability



B The Super-Resolution Generative

Model

Consider a n × a matrix D, where each column is a possible 3D image in Rn with

size 3
√
n × 3

√
n × 3

√
n (each image is thus known as an atom) and a ≫ n, so that

D becomes an overcomplete dictionary of atoms. The projection of an image x onto

the space spanned by D yields a weighting vector α (x = Dα). Furthermore, if α is

sparse (with k0 ≪ m nonzeros), this produces a linear combination of k0 atoms with

varying weights. Nonzero values are located randomly within the vector, and their

values are drawn independently from the zero-mean, τ -variance, Gaussian distribution

N (0, τ) [44]. A random perturbation is usually introduced, in terms of a noise vector

e ∈ Rn with bounded power ∥e∥2 ≤ ϵ, such that x = Dα + e. This gives us a

probabilistic generative model for images, denoted by M(D, k0, τ, ϵ) [44].

Suppose we have a 3D image x, which we assume to have been generated by the model

M(D, k0, τ, ϵ), and that the parameters of the model are known. To determine the

underlying vector α which generates x (atomic decomposition), we need to solve the

problem P0(D, x, δ), which has the form

P0(D, x, δ) : min
α

∥α∥00 subject to ∥x−Dα∥2 ≤ δ

The solution to this problem consists in finding the sparsest vector α that weights x

as a linear combination of atoms from D with an error no larger than δ [44].

Unfortunately, this turns out in an NP-hard problem. Given that the base equation

x = Dα is undetermined for the unknown coefficients α, solving this problem amounts

to a combinatorial optimization process. Different alternative techniques for approxi-

mating the solution to this problem have been recently proposed, detailed descriptions

and references can be found in [16]. One of these approaches is based on relaxing

(convexification) the sparsity restriction, so that the ℓ0 penalty is replaced by the ℓ1
penalty, whereby the P0(D, x, δ) problem is read as:

P1(D, x, δ) : min
α

∥α∥11 subject to ∥x−Dα∥2 ≤ δ (B-1)

This problem is currently known in the literature as Basis Pursuit Denoising (BPDN)

[16, 22]. Furthermore, these two norms are shown to be equivalent for ”sufficiently

sparse“ solutions [42].
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For an appropriate Lagrange multiplier λ (function of D, x and δ), the solution to the

following problem

G1(D, x, λ) : min
α

λ∥α∥11 +
1

2
∥x−Dα∥22 (B-2)

is equivalent to the solution of P1(D, x, δ) [16].



C Influence of Dimensionality

Reduction in Super-Resolution

We have performed a simple experiment using only one image of the base data set,

and applying the proposed super-resolution approach using different amounts of PCA

coefficients, to illustrate the performance of our proposal in terms of RMSE, PSNR and

reconstruction time. The following graphs shows the behavior of each measure with

respect to the PCA selected coefficients, which ranges between 1 and 907, corresponding

to up to 70% of the original dimensions.
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These figures shows that although the optimum value is around 50 coefficients, the

difference between using 50 coefficients and 12 (which is the amount that we have

selected, corresponding to 1% of the original dimensions) in terms of RMSE is about

0.02 and in PSNR is about 0.03 dB, difference that can be considered as negligible.

However, in terms of reconstruction time, the difference between reconstructing with

50 coefficients and 12 coefficients is an increment in about 0.2 hours (12 minutes),

representing an increment of 150% in the reconstruction time for this particular image.

This is the reason why we have chosen to work with 1% of the PCA coefficients (12

coefficients), which also explains 90% of the original variance.



D Cortical and Subcortical Regions in

Harvard-Oxford Atlases

Tables D-1 and D-2 provides the correspondant names per each anatomical region

code presented in Tables 4-8 to 4-11.

C1 Left Frontal Pole C53 Right Inferior Frontal Gyrus, pars triangularis

C2 Left Insular Cortex C54 Right Inferior Frontal Gyrus, pars opercularis

C4 Left Middle Frontal Gyrus C55 Right Precentral Gyrus

C5 Left Inferior Frontal Gyrus, pars triangularis C56 Right Temporal Pole

C6 Left Inferior Frontal Gyrus, pars opercularis C58 Right Superior Temporal Gyrus, posterior division

C7 Left Precentral Gyrus C59 Right Middle Temporal Gyrus, anterior division

C8 Left Temporal Pole C60 Right Middle Temporal Gyrus, posterior division

C10 Left Superior Temporal Gyrus, posterior division C61 Right Middle Temporal Gyrus, temporooccipital part

C14 Left Inferior Temporal Gyrus, anterior division C62 Right Inferior Temporal Gyrus, anterior division

C17 Left Postcentral Gyrus C65 Right Postcentral Gyrus

C18 Left Superior Parietal Lobule C66 Right Superior Parietal Lobule

C19 Left Supramarginal Gyrus, anterior division C67 Right Supramarginal Gyrus, anterior division

C20 Left Supramarginal Gyrus, posterior division C68 Right Supramarginal Gyrus, posterior division

C22 Left Lateral Occipital Cortex, superior division C69 Right Angular Gyrus

C23 Left Lateral Occipital Cortex, inferior division C70 Right Lateral Occipital Cortex, superior division

C24 Left Intracalcarine Cortex C71 Right Lateral Occipital Cortex, inferior division

C25 Left Frontal Medial Cortex C72 Right Intracalcarine Cortex

C27 Left Subcallosal Cortex C75 Right Subcallosal Cortex

C28 Left Paracingulate Gyrus C76 Right Paracingulate Gyrus

C29 Left Cingulate Gyrus, anterior division C77 Right Cingulate Gyrus, anterior division

C31 Left Precuneous Cortex C78 Right Cingulate Gyrus, posterior division

C33 Left Frontal Orbital Cortex C79 Right Precuneous Cortex

C34 Left Parahippocampal Gyrus, anterior division C82 Right Parahippocampal Gyrus, anterior division

C43 Left Parietal Operculum Cortex C84 Right Lingual Gyrus

C45 Left Heschl’s Gyrus (includes H1 and H2) C85 Right Temporal Fusiform Cortex, anterior division

C46 Left Planum Temporale C86 Right Temporal Fusiform Cortex, posterior division

C47 Left Supracalcarine Cortex C90 Right Central Opercular Cortex

C48 Left Occipital Pole C91 Right Parietal Operculum Cortex

C49 Right Frontal Pole C92 Right Planum Polare

C50 Right Insular Cortex C94 Right Planum Temporale

C51 Right Superior Frontal Gyrus C95 Right Supracalcarine Cortex

C52 Right Middle Frontal Gyrus C96 Right Occipital Pole

Table D-1: Names of relevant cortical regions listed in Tables 4-8 to 4-11.
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S4 Left Lateral Ventricle S43 Right Lateral Ventricle

S10 Left Thalamus S49 Right Thalamus

S11 Left Caudate S50 Right Caudate

S12 Left Putamen S51 Right Putamen

S13 Left Pallidum S52 Right Pallidum

S16 Brain-Stem S53 Right Hippocampus

S17 Left Hippocampus S54 Right Amygdala

S18 Left Amygdala S58 Right Accumbens

S26 Left Accumbens

Table D-2: Names of relevant subcortical regions listed in Tables 4-8 to 4-11.
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